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Propensity scoring is often utilized to overcome the challenges posed by covariate 

imbalance to make causal inferences within observational studies. While methods for 

utilizing propensity scoring in a binary treatment case are well studied and established, 

generalizations to multiple unordered (multinomial) and continuous treatments are more 

complicated. In Aim 1, we developed and tested a novel multinomial treatment propensity 

score method, the GPS-CDF method, which derives a single scalar balancing score that can 

match and stratify subjects. Simulation results showed superior performance of the new 

methodology compared to standard multinomial propensity score methods. The proposed 

GPS-CDF method was also applied to an electronic health records study to determine the 

causal relationship between vasopressor choice and mortality in patients with non-traumatic 

aneurysmal subarachnoid hemorrhage (SAH). The GPS-CDF method indicated that 

phenylephrine may be the superior vasopressor choice for patients that present with non-

traumatic SAH. We further applied the GPS-CDF method to the Emergency Truncal 

Hemorrhage Control Study to determine whether emerging hemorrhage control interventions 

influence patient mortality. Based on the GPS-CDF method, patients receiving resuscitative 



 
 

endovascular balloon occlusion of the aorta (REBOA) had similar morality as patients who 

received Laparotomy. In Aim 2, we extended the GPS-CDF method to the continuous 

treatment setting and further introduced the npGPS-CDF method. Both novel methods use 

empirical cumulative distribution functions (CDF) in order to stratify subjects based on 

pretreatment confounders to produce causal estimates. A detailed simulation study showed 

superiority of the novel methods based on the empirical CDF when compared to standard 

weighting techniques. The proposed methods were applied to the “Mexican American 

Tobacco use in Children” (MATCh) study and found a significant association between 

exposure to smoking imagery in movies and smoking initiation among Mexican-American 

adolescents. Finally in Aim 3, we developed an R package for researchers to implement the 

proposed GPS-CDF method in practice. Overall this research provides investigators with new 

options for implementing multinomial and continuous treatment propensity scoring. 
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CHAPTER I 

 

Background 

 

1.1 Introduction 

While randomized experiments are considered the gold standard when evaluating 

causal treatment effects, it is sometimes difficult to implement this design due to potential 

logistical and ethical issues, high cost, and low generalizability to a larger population. 

Instead, researchers often use observational studies to measure treatment effects. Currently, 

data from large observational studies including national surveys, electronic health records 

(EHR), and genome wide association studies (GWAS) are becoming publicly available. 

Although there is an influx in the amount of data available, treatment assignment in 

observational studies is not randomly assigned. Thus subjects receiving a treatment may 

differ from subjects not receiving a treatment based on one or more covariates. This covariate 

imbalance between treatment groups makes causal inference more challenging.    

Propensity scoring is often utilized to overcome the challenges posed by covariate 

imbalances to make causal inference. In a binary treatment case, which includes one 

treatment and one control group, the propensity score is the probability of receiving the 

treatment conditional on a given set of observed covariates (Rosenbaum and Rubin, 1983). 

This probability (commonly called the propensity score) can be calculated using standard 

regression techniques (typically logistic regression) with the treatment (𝑍𝑍) being considered 

the outcome and the covariates (𝑿𝑿) the predictors. Treatment and control subjects with 
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similar estimated values for their propensity scores will have, on average, similar sets of 

covariate vectors (Greene, 2017). Since it can be used to remove covariate imbalance 

between treatment groups, the propensity score is known as a balancing score (Greene, 

2017).   

In order for the propensity score to be used to conduct causal inference in 

observational studies, a few assumptions need to be met, namely: consistency, 

exchangeability, positivity, and no misspecification of the propensity score model (Austin 

and Stuart, 2015). Consistency implies that a subject’s potential outcome under the treatment 

they received is equal to the subject’s observed outcome. Exchangeability assumes all true 

confounders for treatment assignment and the relationship with the outcome are observed and 

measured. Although not testable, conducting propensity scoring without measuring all 

possible variables that influence treatment assignment and the outcome can result in biased 

estimates of the treatment effect. The positivity assumption states that all subjects have a 

non-zero (positive) probability of receiving each treatment. This assumption can be tested by 

confirming overlap of histograms or boxplots of each subject’s propensity score stratified by 

treatment group. Finally, misspecification of the propensity score model, although formally 

untestable, seeks to find the ‘true’ propensity score to balance covariates between treatment 

groups. In practice, there are many balancing scores that can remove covariate imbalance 

between groups (Rosenbaum and Rubin, 1983), so this assumption is considered met if 

covariate balance is achieved between treatment groups (Austin and Stuart, 2015).  

When conducting causal inference using propensity scoring, researchers are interested 

in two possible summary measures of the treatment effect, the average treatment effect 

(ATE) or the average treatment effect among the treated (ATT). ATE is of interest for 
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comparisons of the mean outcome when the entire population is eligible for all treatments 

(McCaffrey et al., 2013). In a binary treatment setting with one treatment and one control 

group, ATE is the effect of giving the treatment to the entire population instead of giving the 

control to the entire population. ATE is calculated by taking the expectation across the entire 

population and is given by:  

 
 𝐴𝐴𝐴𝐴𝐸𝐸𝑘𝑘,𝑘𝑘′ = 𝐸𝐸[𝑌𝑌(𝑘𝑘) − 𝑌𝑌(𝑘𝑘′)] = 𝐸𝐸[𝑌𝑌(𝑘𝑘)] − 𝐸𝐸[𝑌𝑌(𝑘𝑘′)] (1.1) 

 

where 𝑌𝑌 is the outcome for the comparison of treatment 𝑘𝑘 and treatment 𝑘𝑘′. ATT is of 

interest when comparing the effectiveness of a particular treatment relative to the alternatives 

available to the population of interest (McCaffrey et al., 2013). Thus in the binary treatment 

setting, ATT finds the effect of the treatment only on those who actually received the 

treatment. The formal definition of ATT is given by: 

 
 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘,𝑘𝑘′ = 𝐸𝐸[𝑌𝑌(𝑘𝑘′) | 𝑍𝑍 = 𝑘𝑘] − 𝐸𝐸[𝑌𝑌(𝑘𝑘) | 𝑍𝑍 = 𝑘𝑘] (1.2) 

 

where 𝑌𝑌 is the outcome and 𝑍𝑍 is the treatment of interest. 

It has been shown that the difference between treatment and control subjects at each 

value of a balancing score is an unbiased unit-level estimate of the ATE or ATT if treatment 

assignment between subjects is independent given a set of covariates (Rosenbaum and Rubin, 

1983). That is to say, within matched pairs or strata of a balancing score, treatment 

assignment is independent of observed covariates. By using a balancing score for matching, 

stratification, or adjustment, the outcome analysis will produce unbiased estimates of ATE or 

ATT. Thus by using the propensity score in the final outcome analysis, researchers are able 

to make causal inferences with observational data.  
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Current Methods for Multinomial Treatments 

While methods for utilizing propensity scoring in a binary treatment case are well 

studied and established, generalizations to multiple unordered (multinomial) treatments are 

more complicated. Intuitively in this treatment setting, analyses among multinomial 

treatments can be broken down into a series of binary comparisons (Lechner, 2001; 2002). 

For example, in an experimental setting with 3 treatment arms (A, B, and C), analyses can be 

conducted within treatment pairs (A,B), (A,C), and (B,C). This decomposition facilitates the 

utilization of binary propensity score methods on each of the pairwise treatment 

comparisons. Alternatively, using common reference matching, propensity scores can be 

used to match subjects, for example, within the pairs (A,B) and (A,C). Then using these two 

matched samples, a final cohort of 1:1:1 matched triplets can be created (Rassen et al., 2011). 

This final cohort would include subjects who received treatment A that were matched to both 

a subject receiving treatment B and a subject receiving treatment C (Rassen et al., 2011). 

Although these two approaches enable the implementation of standard binary propensity 

scoring, the results are compromised by limited external validity. Furthermore, these 

approaches are only able to estimate ATT, which is not always the estimate of interest. This 

makes it difficult to identify a superior treatment for the general population which is a 

common goal in many analyses (Lopez and Gutman, 2017).    

 

1.1.1 Generalized Propensity Score 

Instead of decomposing the multiple treatment setting into binary treatment 

comparisons, the generalized propensity score (GPS) can be used to extend the theory of 



5 
 

causal inference from a binary treatment setting to a multiple treatment setting (Joffe and 

Rosenbaum, 1999; Imbens, 2000; Imai and Van Dyk, 2004). The GPS is defined as the 

probability of receiving one of 𝐾𝐾 treatments conditional on a given set of observed covariates 

(Imbens, 2000). Unlike the binary treatment case where the propensity score is a single value 

representing the probability a subject was treated, the GPS is a vector, of length 𝐾𝐾, 

representing the probabilities of a subject being treated under each of the 𝐾𝐾 conditions.  

Commonly used methods for propensity scoring in the presence of multinomial 

treatments have relied on the GPS vector that is produced from some type of multinomial 

regression model, e.g.,   

 

 log �
𝑃𝑃𝑃𝑃(𝑍𝑍𝑖𝑖 = 𝑘𝑘)
𝑃𝑃𝑃𝑃(𝑍𝑍𝑖𝑖 = 𝐾𝐾)� =  𝜃𝜃𝑘𝑘 + 𝑥𝑥𝑖𝑖′𝛽𝛽𝑘𝑘  (1.3) 

 

where 𝜃𝜃𝑘𝑘 is a constant, 𝛽𝛽𝑘𝑘  is a vector of regression coefficients, 𝑍𝑍 is the treatment received, 

and 𝐾𝐾 if the total number of treatments, for 𝑘𝑘 = {1,2, … ,𝐾𝐾 − 1}. In this nominal case, 

treatments do not follow any set order, so there is no defined relationship between the various 

treatment assignments.  

 

1.1.2 Distance Metrics  

Distance metrics can be used to match subjects with similar GPS vector distributions. 

Aitchison distance, a compositional data analysis tool, has been proposed as one way to 

match subjects based on the relative distance of their GPS vectors (Seya and Yoshida, 2017). 

Additionally, Rassen et al. developed the ‘within-trio’ matching algorithm that finds a triplet 

of patients, with different treatments, while minimizing the within-trio distance (Rassen et 
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al., 2013). Although these procedures successfully match subjects, there are potential draw 

backs. First, they cannot be used to derive ATE, in the case of Aitchison distance, and 

second, they cannot be used for more than three treatments, in the case of ‘within-trio’ 

matching. Mahalanobi’s distance, a commonly used multivariate distance metric, can also be 

used to match subjects (Rubin, 1979; Zhao, 2004). Instead of using the GPS vector, 

Mahalanobi’s distance matches subjects with similar covariate distributions. While 

Mahalanobi’s distance has been shown to be effective for matching in analyses involving a 

limited number of covariates (Rubin, 1979; Zhao, 2004), it does not perform well when there 

are more than 8 covariates or when the covariates are not normally distributed (for example if 

they are non-continuous (Gu and Rosenbaum, 1993; Stuart, 2010)). Additionally, distance 

metrics need to be modified to enable matching across different treatments since subjects 

within a treatment group will more likely have similar distances.  

 

1.1.3 Clustering Techniques 

Extensions to the above include clustering techniques as a possible method to group 

subjects with similar GPS vectors. Tu et al. demonstrated how four popular clustering 

techniques could be used to group subjects with similar observed covariate distributions 

based on a transformation of the GPS vector (Tu et al., 2013). Ultimately, Tu et al. showed 

that k-Means clustering (KMC), which minimizes the sum of squares between a subject in a 

cluster and the centroid of that cluster, provides the best covariate similarity between subjects 

in different treatment groups (Tu et al., 2013; Lopez and Gutman, 2017). Lopez et al. further 

extended these methods by combining KMC and 1:1 matching to create a matched analysis 

cohort (Lopez and Gutman, 2017). Lopez et al. first utilized KMC to place subjects into 
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clusters with similar values for one or more components of the GPS vector, and subsequently 

matched subjects (within each sub-cluster) using standard propensity score techniques 

(Lopez and Gutman, 2017). Matching within sub-clusters ensures that subjects will have 

matched values for one component of the GPS vector and similar values for the other 

components. However, with clustering, there exists the possibility of obtaining clusters 

without representation from every possible treatment group (Lopez and Gutman, 2017). 

Moreover, after running KMC, Lopez et al. limits matching to within each cluster which may 

lead to some possible matches not being considered by the method (Lopez and Gutman, 

2017). Furthermore, as clustering techniques utilize distance metrics in their algorithms, they 

are subject to the same limitations as Mahalanobi’s distance when used to balance covariates. 

 

1.1.4 Machine Learning Methods 

Although multinomial regression is the most commonly used method for estimating 

the GPS vector, other techniques may be considered. Notably, non-parametric machine 

learning methods of estimating the GPS vector, such as the generalized boosted model 

(GBM), recursive partitioning, and neural nets have been proposed (McCaffrey et al., 2004; 

Setoguchi et al., 2008; McCaffrey et al., 2013; Burgette et al., 2017). Although not well-

studied, GBM and other tree-based methods could provide a few notable benefits over 

parametric regression. For example, variable selection including the decision to include 

higher order or interaction terms in the model occurs automatically, unlike with parametric 

models. This is of particular importance when working with ‘big data’ (i.e. EHR, GWAS, 

etc.) as there are a large number of covariates available to be selected for the GPS 

(McCaffrey et al., 2013). Further, the iterative estimation procedure used by GBM, which fits 
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regression trees that maximize log likelihood in order to produce a piecewise constant model 

that perfectly fits the data, can easily be fine-tuned to provide the propensity score model 

with the best balance between treatment groups (McCaffrey et al., 2013). After estimating the 

GPS vector, inverse probability weighting (where the weight is the inverse propensity of the 

treatment an individual actually received (Imbens, 2000; Feng et al., 2012; McCaffrey et al., 

2013; Burgette et al., 2017)) can be applied directly to the outcome (Feng et al., 2012) or be 

utilized within weighted regression models (McCaffrey et al., 2013; Burgette et al., 2017) to 

estimate ATEs. Additionally, when the weights derived by multiplying the inverse 

probability weight by the probability an individual received the target treatment, weighted 

regression models can estimate ATTs (McCaffrey et al., 2013; Burgette et al., 2017).  

However, while it might initially appear that non-parametric methods of estimating 

the GPS vector could be immediately adapted to the multiple treatment setting in conjunction 

with inverse probability weighting (IPW), this approach is limiting for several notable 

reasons. First, because non-parametric methods only estimate a GPS vector, matching and 

stratification in the outcome analysis cannot be performed since no obvious scalar balancing 

score can currently be produced from the resultant vector. Thus machine learning algorithms 

are limited to IPW to derive treatment effects; however, IPW may produce unreliable 

outcome estimates with large sample variances due to extreme weights (Busso et al., 2014; 

Lopez and Gutman, 2017; Li et al., 2018). Alternative weighting methods have been 

proposed that are not as susceptible to these extremes (Hirano and Imbens, 2001; Imai and 

Ratkovic, 2014; Li et al., 2018), but since weighting directly uses the scalar estimated 

propensity score in determining the effect of treatment (Austin et al., 2007; Rubin, 2004), as 

Rubin (Rubin, 2004) suggests, this results in the greatest sensitivity to misspecification of the 
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propensity score. Furthermore, the use of GBM may suffer from issues of power when some 

(but not complete) structure in the data can be assumed. Finally, the black box nature of 

nonparametric approaches prevent the user from being able to discern how the model 

specifically utilizes each variable in producing the propensity scores (Ridgeway et al., 2016). 

These limitations have impeded the use of nonparametric methods in propensity scoring over 

the last decade, despite their promise.   

 

1.1.5 Stratification, Matching, Adjustment 

Even though a function that maps the GPS vector to a scalar balancing score does not 

currently exist, methods for covariate balancing using stratification, matching, and 

adjustment based on the GPS vector have been studied in the multiple treatment setting. 

Stratification techniques using the GPS vector were first described by Zanutto et al. (Zanutto 

et al., 2005) and further extended by Huang et al (Huang et al., 2005). Huang et al. showed 

that stratification of subjects by propensity scores at each treatment level, in combination 

with weighted averages, can produce estimates of the average potential outcome (Huang et 

al., 2005). Yang et al. utilized a similar stratification and weighting method for covariate 

balancing, but further extended the method to match subjects in order to produce causal 

treatment effects (Yang et al., 2016). A similar matching procedure was also used by Lechner 

(Lechner, 2001). Additionally, Feng et al. was able to estimate ATEs by using generalized 

linear models to assess the relationship between outcomes and the GPS vector; then by using 

this model, estimate the expected outcome of a subject under a certain treatment given the 

GPS (Feng et al., 2012).  
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Though these procedures are more relatable to the methods available in standard 

binary propensity scoring, a cornerstone of these approaches is the estimation of average 

potential outcomes that are performed separately for each treatment level. This does simplify 

the inherent problems that arise when creating balance among multiple treatment groups, but 

since these approaches are only concentrating on one element of the GPS vector instead of 

the full GPS vector (Greene, 2017), they might suffer from a loss of information and thus not 

create the best possible covariate balance.  Additionally, the methods proposed by Huang et 

al. (Huang et al., 2005) and Yang et al. (Yang et al., 2016) suffer from their inability to adjust 

for covariates in the outcome model and further lack the flexibility to be applied to complex 

analyses. 

 

Current Methods for Continuous Treatments 

Although methods for propensity scoring in both binary and multiple treatment 

settings have been well studied (Rosenbaum and Rubin, 1983, 1984, 1985; Joffe and 

Rosenbaum, 1999; Imbens, 2000; Imai and Van Dyk, 2004), there has been less research 

devoted to propensity score methods for continuous treatments. In practice when presented 

with continuous treatments, researchers often dichotomize or categorize the treatment in 

order to utilize standard and well established propensity score techniques (e.g. Chertow et al., 

2004; Davidson et al., 2006; Donohue and Ho, 2007; Flores-Lagunes, Gonzalez, and 

Neumann, 2007; Harder et al., 2008; Boyd et al., 2010; Nielsen et al., 2011; Greene, 2017). 

Although propensity score methods are correctly applied in these settings, categorization of a 

continuous treatment may lead to loss of information and power during the outcome analysis 

(Royston et al., 2006; Zhu et al., 2015; Fong et al., 2018).  
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1.1.6 Maximum Likelihood Estimation 

Instead of decomposing the continuous treatment setting into binary or categorical 

treatment comparisons, maximum likelihood estimates (MLE) derived from linear models 

have been proposed to estimate the generalized propensity score (GPS) (Robins et al., 2000; 

Imai and Van Dyk, 2004; Hirano and Imbens, 2004). In the continuous treatment framework, 

𝑟𝑟(𝑡𝑡,𝑥𝑥), the conditional density of the treatment given the covariates, is defined as  

 
 𝑟𝑟(𝑡𝑡, 𝑥𝑥) = 𝑓𝑓𝑇𝑇|𝑋𝑋(𝑡𝑡|𝑥𝑥) (1.4) 

 

where 𝑇𝑇 represents the continuous treatment and 𝑿𝑿 the covariates of interest (Hirano and 

Imbens, 2004).  Thus the GPS for continuous treatments is defined as 𝑅𝑅 = 𝑟𝑟(𝑇𝑇,𝑋𝑋) (Hirano 

and Imbens, 2004). In practice, this GPS can be estimated by fitting a linear regression model 

of the form  

 
 𝑇𝑇 = 𝜷𝜷𝜷𝜷+ 𝜀𝜀 (1.5) 

 

where 𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎2). Then the GPS is estimated as 

 

 𝑅𝑅𝚤𝚤� =
1

√2𝜋𝜋𝜎𝜎�2
exp �−

1
2𝜎𝜎�2

�𝑇𝑇𝑖𝑖 − 𝑇𝑇�𝑖𝑖�
2
� (1.6) 

 

for the 𝑖𝑖𝑡𝑡ℎ individual (Hirano and Imbens, 2004). Although 𝑅𝑅𝚤𝚤� , applied directly in regression 

adjustment (Hirano and Imbens, 2004), or the scalar value, 𝜷𝜷�𝑿𝑿𝒊𝒊, utilized for matching or 

stratification (Imai and Van Dyk, 2004), can produce causal estimates, using the GPS in 

weighted outcome analyses has been given more attention recently (Robins et al., 2000; Zhu 

et al., 2015; Schuler et al., 2016; Fong et al., 2018; Austin, 2018a; Austin, 2018b).  
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 Robins et al. proposed using the GPS to produce causal estimates by implementing 

inverse probability weighting (IPW) (Robins et al., 2000). Briefly, IPW seeks to weight 

subjects with dissimilar covariate distributions higher than subjects with similar covariate 

profiles within the same treatment. That is to say, IPW gives higher weight to subjects, under 

a certain treatment, who have similar covariate distributions as subjects who received a 

different treatment. In the calculation of 𝑅𝑅𝚤𝚤� , subjects with unexpected covariate distributions 

will have large estimates for  𝑇𝑇𝑖𝑖 − 𝑇𝑇�𝑖𝑖 and conversely have small values for 𝑅𝑅𝚤𝚤� . Thus the IPW, 

given by  

 

 𝑤𝑤𝑖𝑖 =
1
𝑅𝑅𝚤𝚤�

 (1.7) 

 

will be higher, effectively giving more weight to subjects that have unexpected covariate 

distributions based on their treatment assignment.  

 Although weights using the GPS can be applied directly in the form given above, 

Robins et al. warn that  𝑤𝑤𝑖𝑖 has infinite variance and a stabilizing factor should be applied to 

𝑤𝑤𝑖𝑖 to be used in practice (Robins et al., 2000). This stabilizing factor, 𝑊𝑊(𝑇𝑇𝑖𝑖), is given by the 

marginal density of 𝑇𝑇 and can be estimated by first fitting an intercept only model of the 

form 

 
 𝑇𝑇 = 𝛽𝛽0 + 𝜀𝜀 (1.8) 

 

where 𝜀𝜀 ~ 𝑁𝑁�0,𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 �. Then the stabilizing factor is estimated as 

 

 𝑊𝑊� (𝑇𝑇𝑖𝑖) =
1

�2𝜋𝜋𝜎𝜎�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2

exp �−
1

2𝜎𝜎�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 (𝑇𝑇𝑖𝑖 − 𝜇̂𝜇)2� (1.9) 
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where 𝜇̂𝜇 is the mean treatment value of the sample (Austin, 2018b). Thus the final estimated 

stabilized IPW is given by 

 

 𝑠𝑠𝑠𝑠𝑖𝑖 =
𝑊𝑊� (𝑇𝑇𝑖𝑖)
𝑅𝑅𝚤𝚤�

 . (1.10) 

 
Although the calculation of these weights is straightforward, the MLE method 

detailed above relies heavily on correctly specifying the linear treatment model. If the model 

is not correctly specified or the model assumptions are not met (i.e. normality assumptions), 

the MLE method can produce extreme weights that can lead to severely biased outcome 

estimates (Fong et al., 2018). Therefore, methods that operate outside of this MLE 

framework may produce better weights, leading to more covariate balance, and less biased 

estimates of the outcome.  

 

1.1.7 Generalized Boosted Model 

While Flores et al. estimates the GPS through generalized linear models (Flores et al., 

2007), non-parametric methods of estimating the GPS vector, such as kernel methods, 

penalized spline models, and the generalized boosted model (GBM), can provide more 

accurate estimates of the GPS compared to parametric regression (Bia et al., 2014; Zhu et al., 

2015). Instead of estimating a linear model for treatment on 𝑿𝑿, like in a parametric setting, 

GBM fits a more general model of the form 

 
 𝑇𝑇 = 𝑚𝑚(𝑿𝑿) +  𝜀𝜀 (1.11) 

 



14 
 

where 𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎2) and 𝑚𝑚(𝑿𝑿) is the mean function of 𝑇𝑇 given 𝑿𝑿 (Zhu et al., 2015). This 

mean function can be estimated using a machine learning algorithm, boosting, that additively 

fits regression trees until the model is sufficiently flexible to fit the data (McCaffrey et al., 

2013; Zhu et al., 2015). Boosting automatically selects important covariates, nonlinear terms, 

and interaction terms to accurately estimate the mean function thus providing better estimates 

of the GPS (McCaffrey et al., 2013; Zhu et al., 2015). With the mean function derived, 

stabilized IPW can be calculated and implemented just like in the MLE weighting procedure.  

  While it seems that GBM provides better estimates of the GPS, thereby providing 

less biased outcome estimates, there are still draw backs that limit this method. First, the 

method does not give users the ability to force variables into the final treatment model. The 

black box nature of GBM prevents the user from knowing how the model specifically utilizes 

each variable in producing the final propensity scores (Ridgeway et al., 2016). Additionally, 

although GBM has been shown to outperform MLE in simulation, covariate balance after 

GBM weighting can still remain poor leading to unstable estimates, worse than if no weights 

had been applied at all (Fong et al., 2018). Finally, while GBM does attempt to optimize 

balance, the only way to improve balance is by increasing the number of regression trees 

used by the method which may still not provide adequate control over sample imbalance 

(Fong et al., 2018). 

 

1.1.8 Covariate Balancing Generalized Propensity Score 

Recently, work has been done to extend the Covariate Balancing Propensity Score, 

which models treatment assignment while optimizing covariate balance, to the continuous 

treatment setting (Imai and Ratkovic, 2014; Fong et al., 2018). This new method, termed 
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Covariate Balancing Generalized Propensity Score (CBGPS), uses moment conditions to 

derive IPW such that the weighted correlation between 𝑿𝑿 and 𝑇𝑇 is minimized (Fong et al., 

2018). While the CBGPS method has a parametric approach that follows closely to the MLE 

method, it also has a nonparametric extension that places no parametric restrictions on the 

GPS nor on the marginal distribution of the treatment (Fong et al., 2018).  This 

nonparametric Covariate Balancing Generalized Propensity Score (npCBGPS) gives 

researchers a method to directly derive weights without giving a functional form to the 

propensity scores (Fong et al., 2018).   

 Even though the CBGPS offers a method to optimize covariate balance while 

estimating the GPS, it is still not without limitations. Specifically, in simulation studies, it has 

been shown that GBM produces less biased outcome estimates compared to CBGPS and 

npCBGPS when sample sizes are large (~1,000) (Fong et al., 2018). Additionally, since the 

nonparametric extension, npCBGPS, is based on an empirical likelihood approach, there is 

no guarantee that the optimization procedures find the global optimum (Fong et al., 2018). 

Furthermore, when the number of covariates is large or if 𝑿𝑿 strongly predicts 𝑇𝑇, the 

npCBGPS can fail to find a solution leaving the researcher to sacrifice covariate balance to 

derive weights (Fong et al., 2018).  

 Although there are many methods that seek to create balanced data for multiple and 

continuous treatments within observational studies, these methods are complex, possibly 

difficult to implement in practice, and do not have the same flexibility as a scalar balancing 

score used in typical binary propensity score methods. The goal of this work will be to 

develop and test new methodology to better conduct propensity scoring for more complicated 

treatment settings.   



16 
 

 

1.2 Public Health Significance 

Randomized control trials are considered the gold standard when conducting 

research. The reason for this is due to the randomization that can be performed by researchers 

at the start of the study. Before the initiation of the study, researchers have the ability to 

balance covariates among the treatment groups by randomly assigning subjects to the groups. 

This randomization effectively creates treatment groups, with no systematic differences, that, 

on average, are identical in terms of their covariates. At the end of the study, when 

conducting the outcome analysis, any differences in the outcome can be attributed directly to 

the treatment, and not due to any covariate bias, as randomization successfully produces 

covariate balance between the treatment groups. Thus due to the randomization performed at 

the start of the study, causal inference in randomized control trials is made possible as there 

is covariate balance between the treatment groups. Although randomized experiments allow 

for direct causal inference between a treatment and an outcome, their utilization is not 

practical under many scenarios.  

Instead, researchers can implement observation studies when randomized 

experiments are not feasible. That is, when the disease of interest is rare, subjects cannot be 

randomized to exposure groups do to ethical issues, the study will be too costly, etc. Thus, 

observation studies are highly utilized in public health analyses. While these study designs 

facilitate research that otherwise may not be feasible to conduct, investigators using 

observational study designs relinquish the ability to randomize subjects into treatment groups 

as their data is observational. Thus at the end of an observational study, there is no longer 
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covariate balance between the treatment groups. As a result, observational studies restrict an 

investigator’s capacity to make causal inferences without utilizing complex statistical tools.  

 To create covariate balance between the treatment groups within observational 

studies, researchers often use propensity scoring. The underlying theory is that subjects with 

the same values for their propensity scores will have, on average, similar covariate profiles. 

Thus by using the propensity score in the outcome analysis, researchers are able to create 

covariate balance and produce causal estimates with observational studies.  

Existing research in the area of propensity score methodology is limited outside 

binary treatment comparisons. Additionally, as data from large observational studies 

becomes more readily available, new propensity score methods are needed for these data 

types. Continuation of research into novel methods of propensity scoring is needed to ensure 

causal estimates can be made under all treatment scenarios and data types.  

 

1.3 Specific Aims 

1.3.1 To develop a novel method of propensity score analysis for multinomial treatments 

As detailed above, current multinomial methods do not utilize the full GPS vector to 

match, stratify, or weight subjects. Although GBM, the most commonly used machine 

learning method for propensity scoring in multiple treatment scenarios, does have the ability 

to accurately derive the GPS vector, outcome analyses are limited by implementation of the 

GPS vector though IPW. Using a single value of the GPS may result in inaccurate outcome 

estimates. Therefore, developing a method that has the same flexibility as the scalar value 

used in binary treatment settings that can encapsulate the full GPS vector would be a useful 

addition to current propensity score literature. The proposed method can be used with all 
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types of propensity score models (parametric and non-parametric) and will adapt machine 

learning methods for the use in regular as well as complex observational data types, such that 

both matching and stratification are supported.  

 

1.3.2 To develop a novel method of propensity score analysis for continuous treatments 

In the continuous treatment setting, the GPS is not estimable through logistic 

regression models, as is common with binary and multiple treatments. Instead, methods for 

creating balanced data for the continuous treatment setting within observational studies have 

relied heavily on weighting procedures. Although methods have been proposed that operate 

outside of a parametric setting to derive weights, all weighting methods may produce 

unreliable outcome estimates due to extreme weights. Thus methods that do not utilize 

weighting nor rely on parametric assumptions may produce more reliable outcome estimates. 

Specifically, a method that can accurately stratify subjects based on a desired set of 

covariates would be a valuable tool for researchers.  

 

1.3.3 To develop an R package to implement multiple treatments propensity scoring 
methods 

The utility of new a propensity score method is directly related to the ease by which it 

can be used by researchers. Methods often require significant data manipulation, nuanced 

selection procedures, and complex algorithms to be used in practice. Thus having a standard 

R package that can be downloaded and easily adapted for various research projects will 

exponentially increase the notoriety of new propensity score methods and help facilitate more 

robust propensity score analyses by researchers.  
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Abstract 

The generalized propensity score (GPS), a vector whose elements represent the 

probabilities a subject was assigned each treatment, is used to extend work in binary 

treatment propensity scoring to the multiple treatment setting. Currently, methods for 

conducting multiple treatment propensity scoring in the presence of high-dimensional 

covariate spaces that result from ‘big data’ are lacking – the most prominent method relies on 

inverse probability treatment weighting (IPTW). However, IPTW only utilizes one element 

of the GPS vector and can lead to a loss of information and inadequate covariate balance in 

the presence of multiple treatment groups. The above limitations motivate the development 

of a novel propensity score method that uses the entire GPS vector to establish a scalar 

balancing score that when adjusted for, achieves covariate balance in the presence of 

potentially high-dimensional covariates. Specifically, the generalized propensity score 

cumulative distribution function (GPS-CDF) method is introduced. A one-parameter power 

function fits the CDF of the GPS vector and a resulting scalar balancing score is used for 

matching and/or stratification. Simulation results show superior performance of the new 

method compared to IPTW both in achieving covariate balance and estimating average 

treatment effects in the presence of multiple treatments. The proposed approach is applied to 

a study derived from electronic medical records to determine the causal relationship between 

three different vasopressors and mortality in patients with non-traumatic aneurysmal 

subarachnoid hemorrhage. Our results suggest that the GPS-CDF method performs well 

when applied to large observational studies with multiple treatments that have large covariate 

spaces.  

 
Keywords: Causal Inference, Multinomial Treatments, Observational Study, Propensity 
Score 
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2.1 Introduction  

Propensity scoring is utilized to overcome the covariate imbalance prevalent in 

observational studies, enabling causal estimates of treatment outcome relationships, when 

propensity scoring assumptions are met. Increasingly, large data sources including national 

surveys, electronic health records (EHRs), and genome wide association studies (GWAS) 

with phenotypic and covariate data are becoming publicly available. These observational data 

sources are indexed by large covariate spaces for example, patient demographics, vital signs, 

laboratory findings, medications/prescriptions, comorbidities, etc. (Patorno et al., 2014; Chen 

and Moskowitz, 2016). It is of interest to use these potential pretreatment confounders in a 

propensity model to ultimately assess the causal relationship between treatments and an 

outcome. While these data types have gained rapid traction in the literature, propensity 

scoring methods for assessing the effects of multiple (non-binary) treatments in the presence 

of high-dimensional covariate spaces that result from these data sources are lacking 

(Schneeweiss et al., 2009; Schuemie et al., 2012; Stuart et al., 2013; Low, Gallego and Shah, 

2016; Ju et al., 2019). 

Methods for utilizing propensity scoring in a binary treatment case are well studied 

and established (e.g., Rosenbaum and Rubin 1983, 1984, 1985; Stuart, 2010; Gutman and 

Rubin, 2015). However, generalizations to multiple unordered (multinomial) treatments are 

more complicated. The generalized propensity score (GPS) is often used to extend the theory 

of causal inference from a binary treatment setting to a multiple treatment setting (Joffe and 

Rosenbaum, 1999; Imbens, 2000; Imai and Van Dyk, 2004). The GPS is defined as the 

probability of receiving one of 𝐾𝐾 treatments conditional on a given set of observed covariates 

(Imbens, 2000). Unlike the binary treatment case where the propensity score is a single value 

representing the probability a subject was treated, the GPS is a vector, of length 𝐾𝐾, 
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representing the conditional probabilities of a subject being treated under each of the 𝐾𝐾 

treatments.  

An important distinction for causal inference using propensity scoring for 

multinomial treatments are the two different summary measures of the treatment effect: the 

average treatment effect (ATE) and the average treatment effect among the treated (ATT). 

ATE is of interest for comparisons of the mean outcome when the entire population is 

eligible for all treatments (McCaffrey et al., 2013). ATE is calculated by taking the 

expectation across the entire population and is given by:  

 

 𝐴𝐴𝐴𝐴𝐸𝐸𝑘𝑘,𝑘𝑘′ = 𝐸𝐸[𝑌𝑌(𝑘𝑘) − 𝑌𝑌(𝑘𝑘′)] = 𝐸𝐸[𝑌𝑌(𝑘𝑘)] − 𝐸𝐸[𝑌𝑌(𝑘𝑘′)] (2.1) 

 

where 𝑌𝑌 is the outcome for the comparison of treatment 𝑘𝑘 and treatment 𝑘𝑘′. ATT is of 

interest when comparing the effectiveness of a particular treatment relative to the alternatives 

available to the population of interest (McCaffrey et al., 2013). ATT finds the effect of the 

treatment of interest among only those subjects who actually received the treatment. ATT is 

formally defined as: 

 

 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘,𝑘𝑘′ = 𝐸𝐸[𝑌𝑌(𝑘𝑘′) | 𝑍𝑍 = 𝑘𝑘] − 𝐸𝐸[𝑌𝑌(𝑘𝑘) | 𝑍𝑍 = 𝑘𝑘] (2.2) 

 

where 𝑌𝑌 is the outcome and 𝑍𝑍 is the treatment of interest. 

Traditionally, methods for conducting propensity scoring in the presence of 

multinomial treatments have relied on the GPS vector that is produced from some type of 

multinomial regression model, e.g.,   
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 log �
𝑃𝑃𝑃𝑃(𝑍𝑍𝑖𝑖 = 𝑘𝑘)
𝑃𝑃𝑃𝑃(𝑍𝑍𝑖𝑖 = 𝐾𝐾)� =  𝜃𝜃𝑘𝑘 + 𝑥𝑥𝑖𝑖′𝛽𝛽𝑘𝑘  (2.3) 

 

where 𝜃𝜃𝑘𝑘 is a constant, 𝛽𝛽𝑘𝑘  is a vector of regression coefficients, 𝑍𝑍 is the treatment received, 

and 𝐾𝐾 is the total number of treatments, for 𝑘𝑘 = {1,2, … ,𝐾𝐾 − 1}. Commonly used methods of 

conducting multinomial propensity scoring based on a parametrically derived GPS can be 

classified into distance metrics (Seya and Yoshida, 2017; Rassen et al., 2013; Rubin, 1979; 

Zhao, 2004), clustering techniques (Tu, Jiao and Koh, 2013; Lopez and Gutman, 2017), and 

stratification, matching, and adjustment methods (Zanutto, Lu and Hornik, 2005; Huang et 

al., 2005; Yang et al., 2016; Lechner, 2001; Feng et al., 2012).    

Although many methods have been proposed to conduct multinomial propensity 

scoring, there is no unified method, and current methods have drawbacks that diminish their 

utility, especially in the context of big data. For example, as most of the aforementioned 

methods exclusively estimate either ATE or ATT, their practical utility is limited. 

Additionally, the distance based matching approach proposed by Rassen et. al cannot be 

extended past three treatments (Rassen et al., 2013). Likewise, matching based on 

Mahalanobi’s distance (Rubin, 1979; Zhao, 2004), does not perform well with more than 8 

covariates or when covariates are not normally distributed (for example if they are non-

continuous (Gu and Rosenbaum, 1993; Stuart, 2010)). These are major limitations for big 

data applications, which as previously stated, often have multiple treatment groups and a 

large number of pretreatment confounders. Furthermore, although methods that produce 

covariate balance using stratification, matching, and adjustment based on the GPS vector 

have been studied in the multiple treatment setting (Zanutto, Lu and Hornik, 2005; Huang et 

al., 2005; Yang et al., 2016; Lechner, 2001; Feng et al., 2012), a function that maps the GPS 

vector to a scalar balancing score has not, to our knowledge, been proposed. A cornerstone 
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of these current approaches is the estimation of treatment effects that are performed 

separately for each treatment level. This simplifies the inherent problems that arise when 

assessing balance among multiple treatment groups. However, since these approaches utilize 

one element of the GPS vector instead of the full GPS vector (Greene, 2017), in some cases 

they may suffer from a loss of information, resulting in suboptimal covariate balance. 

To address the aforementioned issues without placing any parametric restrictions on 

the relationship between treatment groups and pretreatment confounders, non-parametric 

machine learning methods of estimating the GPS vector, such as generalized boosted models 

(GBM), recursive partitioning, neural nets, and super learners have been proposed 

(McCaffrey, Ridgeway and Morral, 2004; Setoguchi et al., 2008; McCaffrey et al., 2013; 

Burgette, Griffin and McCaffrey, 2017; Ju et al., 2019). The most popular method, due to the 

availability of a comprehensive R package, appears to be GBM (Burgette, Griffin and 

McCaffrey, 2017) – this and other tree-based methods provide notable benefits over 

parametric regression. For example, variable selection including the decision to 

accommodate higher order or interaction terms in the model occurs automatically. This is of 

particular importance when working with EHRs since there are a large number of potential 

confounders available (McCaffrey et al., 2013). Further, the iterative estimation procedure 

used by GBM, which fits regression trees that maximize the log likelihood in order to 

produce a piecewise constant model, can easily be refined to provide the propensity score 

model with the best balance between treatment groups (McCaffrey et al., 2013). After 

estimating the GPS vector, inverse probability treatment weighting (IPTW), where the 

weight is the inverse propensity of the treatment an individual actually received (Imbens, 

2000; Feng et al., 2012; McCaffrey et al., 2013; Burgette, Griffin and McCaffrey, 2017), may 

be either applied directly to the outcome (Feng et al., 2012) or utilized within weighted 
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regression models (McCaffrey, 2013; Burgette, Griffin and McCaffrey, 2017) to estimate 

ATEs. Additionally, weights derived from multiplying the inverse probability weight by the 

probability of the target treatment may be used to estimate ATTs (McCaffrey et al., 2013; 

Burgette, Griffin and McCaffrey, 2017).  

One issue with utilizing machine learning methods to estimate the GPS vector is that 

they are only compatible with IPTW. Matching and stratification cannot be utilized in the 

outcome model since no obvious scalar balancing score is produced. Although this simplifies 

many of the inherent issues that arise with multiple treatments, IPTW may produce unreliable 

outcome estimates, with large sample variances, due to extreme weights (Busso, DiNardo, 

McCrary, 2014; Lopez and Gutman, 2017; Li, Morgan, Zaslavsky, 2018). Alternative 

weighting methods have been proposed that are less susceptible to these extremes (Hirano 

and Imbens, 2001; Imai and Ratkovic, 2014; Li, Morgan, Zaslavsky, 2018). However, since 

weighting directly uses the scalar estimated propensity score in determining the effect of 

treatment (Austin, Grootendorst and Anderson, 2007; Rubin, 2004), as Rubin (Rubin, 2004) 

suggests, this results in the greatest sensitivity to misspecification of the propensity score. 

Furthermore, the utility of IPTW may diminish as the number of treatment groups increases 

past 𝐾𝐾 = 3; Yang et al. (2016) showed that IPTW performs well in the presence of three 

treatments but has inferior performance with six treatments. These limitations have precluded 

the use of machine learning methods in propensity scoring over the last decade, despite their 

promise.    

In sum, while multinomial propensity score methods exist, they are somewhat ad hoc, 

potentially difficult to implement, and do not have the flexibility of the scalar balancing score 

obtained from binary propensity scoring. To address these limitations, this paper presents a 

novel approach, the generalized propensity score cumulative distribution function (GPS-
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CDF), which maps a GPS vector to a single scalar value that can be used for propensity score 

matching and stratification in order to produce causal inferences with multinomial 

treatments. The methodology is a natural extension of the binary setting. It is tested via 

simulation and applied to an EHR-derived study to evaluate the effect of vasopressor choice 

on mortality in patients with non-traumatic aneurysmal subarachnoid hemorrhage. The 

proposed GPS-CDF methodology is publicly available through the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 R package 

(Brown et al., 2019). 

 

2.2 Methods 

Since the GPS vector represents the probability a subject received each of the 𝐾𝐾 

treatments conditional on a given set of observed covariates (Imbens, 2000), the GPS vector 

can be thought of as a discrete probability distribution that can be used to create a probability 

mass function (PMF) (Greene, 2017). In this way, subjects with similar shapes for their 

PMFs will have similar values for their GPS vectors, which in turn means, on average, they 

will have similar covariate distributions. A single scalar parameter function that can 

accurately describe the shape of the PMF could be used as a balancing score to easily match 

or stratify subjects.  

 The PMF is not a monotonically increasing or decreasing function. The shape of the 

PMF will vary for each subject depending on their treatment probabilities; therefore, 

estimating a one parameter function that describes the shape of the PMF is difficult. Instead, 

a cumulative distribution function (CDF) can be created for each subject by summing across 

values of the GPS vector. By definition, the CDF is a strictly increasing function bounded by 

zero and one, so fitting a one parameter function to the shape of the CDF is possible. As the 

CDF is a 1-to-1 function of the GPS vector, subjects with similar values for a one parameter 
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function that maps the shape of the CDF will have similar GPS vectors. As such, a one 

parameter power function can be used to model the CDF. The equation of this proposed 

power function that maps the CDF of the GPS vector is given by: 

 

 𝑃𝑃(𝑍𝑍𝑖𝑖 ≤ 𝑑𝑑) = 𝐹𝐹𝑘𝑘(𝑍𝑍)  ≈  𝑓𝑓(𝑎𝑎�) = 𝑑𝑑𝑘𝑘
exp(𝑎𝑎�)   for 𝑘𝑘 = 1, . . . ,𝐾𝐾 − 1   (2.4) 

 

where the left side represents the CDF for the GPS vector, 𝑑𝑑𝑘𝑘  is a standardized treatment 

dose which lies between 0 and 1, 𝑎𝑎� is the scalar that dictates the shape of the power function 

fitting the CDF, and 𝑘𝑘 is the indicator of the treatment group. In a three treatment setting, for 

example, the standardized dose 𝑑𝑑𝑘𝑘  is taken to be 0.33, 0.66 for the first two treatment groups 

and equal to 1 for the final treatment group. The chosen power function in equation (2.4) 

allows both convex and concave CDFs to be accurately modeled (Storer, 1989; O’Quigley, 

Pepe and Fisher, 1990) as shown by Figure 2.1. Other one parameter functions (e.g. 

exponential, logarithmic, sigmoid) might initially seem obvious to apply but do not have this 

advantage (O’Quigley, Pepe and Fisher, 1990). Once the CDF has been calculated for each 

subject, a non-linear least squares (NLS) algorithm (Marquardt, 1963) is used to fit the power 

function. This NLS algorithm iteratively fits values for 𝑎𝑎�, the shape parameter, until the 

residual distance between the CDF and fitted power function is minimized. Formally, NLS 

estimation is given by: 

 

 min
𝑎𝑎�
∑ �𝑑𝑑𝑘𝑘

exp(𝑎𝑎�) − 𝐹𝐹𝑘𝑘(𝑍𝑍)�
2

𝐾𝐾−1
𝑘𝑘=1   for 𝑘𝑘 = 1, . . . ,𝐾𝐾 − 1. (2.5) 

 

An important feature of the proposed method is its compatibility with any parametric or 

machine learning model that produces a GPS vector. Currently, there are no methods for 

multinomial treatment propensity scoring that are both “propensity model free” and produce 
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a scalar balancing score that facilities matching and stratification. While it may initially 

appear that other methods (e.g. multivariate distances, Kolmogorov-Smirnov test statistic, 

isotonic regression, Kullback–Leibler divergence, etc.) could be used to differentiate CDFs 

derived from the GPS vector, these methods do not result in a scalar balancing score. 

Although these alternative options may be used to match subjects, they do not allow for 

adjustment through stratification. The proposed approach in equation (2.4) will both 

accurately describe the curvature of the CDF and also produce a single scalar balancing score 

that can easily be used for both matching and stratification of subjects.  

Unlike ordinal treatment settings where there is a natural ordering to the treatments, 

multinomial treatments can be aligned in any order within the GPS vector. In a setting with 

three multinomial treatments (A, B, and C), for example, the GPS vector can be ordered as 

A-B-C, A-C-B, B-A-C, B-C-A, C-A-B, and C-B-A. Each ordering is intuitive and will 

produce a different CDF, and subsequently a new shape parameter, 𝑎𝑎�, for each subject. Since 

a balancing score is just a function of covariates such that the conditional distribution of the 

covariates given the balancing score is the same for all treatment groups (Rosenbaum and 

Rubin, 1983), for three multinomial treatments, there are 6 different balancing scores 

produced by the proposed GPS-CDF method. By rearranging the GPS vector for all possible 

orderings, 𝐾𝐾! balancing scores can be created in a 𝐾𝐾 treatment setting. As with standard 

propensity score methods, covariate balance can be assessed after matching or stratification 

based on each of the 𝐾𝐾! orderings of the GPS vector to choose the ordering and method that 

creates the best covariate balance in the data. While this may at first appear ad hoc, it has 

substantial precedent in the literature - several recently proposed propensity score methods 

(e.g., Fong, Hazlett and Imai, 2018; Imai and Ratkovic, 2014; Papadogeorgou, Choirat and 

Zigler, 2018) seek to optimize covariate balance before implementing propensity scoring in 
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the outcome analysis. For example, the spatial propensity score method proposed by 

Papadogeorgou et al. (2018) incorporates an automated data-driven process of selecting 

matched pairs over a possible range of weights, and further selects the weight that achieves 

the best covariate balance. In this way, the proposed iterative nature of finding the 𝑎𝑎� that 

optimizes covariate balance is analgous to the aforementioned method. Covariate balance 

should be assessed using each resultant 𝐾𝐾! balancing score produced by the GPS-CDF 

method, and the ordering that achieves the best covariate balance, among all subjects, should 

be retained for the outcome analysis.  

 

2.2.1 GPS-CDF Matching 

As the estimated power parameter, 𝑎𝑎�, is a scalar value, it can be used in either greedy 

or optimal matching algorithms to pair subjects, with similar 𝑎𝑎� values, who received different 

treatments. The proposed metric for matching is the absolute difference between the power 

parameters for two subjects, 𝑎𝑎�𝑖𝑖 and 𝑎𝑎�𝑗𝑗 who received different treatments. Minimizing this 

difference will jointly pair subjects with similar values of 𝑎𝑎� while ensuring the subjects 

received different treatments. This metric for two subjects, 𝑖𝑖 and 𝑗𝑗, is given by equation (2.6).  

 

 ∆𝑝𝑝= ∆�𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗� =  |𝑎𝑎�𝑖𝑖 − 𝑎𝑎�𝑗𝑗| (2.6) 

 

 After the matching procedure is performed for each of the 𝐾𝐾! orderings of the GPS 

vector, the order that creates matches with the best covariate balance should be retained for 

the outcome analysis. As is standard with propensity score methods, we propose selecting the 

ordering that minimizes the standardized mean difference (SMD) within matches (Austin, 

2011; Burgette, Griffin and McCaffrey, 2017; Fong, Hazlett and Imai, 2018; Imai and 
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Ratkovic, 2014; Lopez and Gutman, 2017; McCaffrey et al., 2013; Papadogeorgou, Choirat 

and Zigler, 2018; Yang et al., 2016). Formally, this selection can be written as:  

 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎�𝑘𝑘

⎣
⎢
⎢
⎢
⎢
⎡

� � �

⎝

⎜
⎜
⎛ 𝑥̅𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡𝑖𝑖 − 𝑥̅𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡𝑗𝑗

�𝑠𝑠𝑝𝑝,𝑚𝑚,𝑡𝑡𝑖𝑖
2 + 𝑠𝑠𝑝𝑝,𝑚𝑚,𝑡𝑡𝑗𝑗

2

2 ⎠

⎟
⎟
⎞

𝑡𝑡𝑖𝑖≠𝑡𝑡𝑗𝑗

𝑀𝑀𝑎𝑎�𝑘𝑘

𝑚𝑚=1

𝑃𝑃

𝑝𝑝=1

⎦
⎥
⎥
⎥
⎥
⎤

 (2.7) 

 

where 𝑎𝑎�𝑘𝑘 is the 𝑎𝑎�  derived from each 𝐾𝐾! ordering of the GPS vector, 𝑃𝑃  is the number of 

covariates, 𝑀𝑀𝑎𝑎�𝑘𝑘 is the index for the number of matched pair treatment groups created from 

each ordering of the GPS vector, and 𝑡𝑡𝑖𝑖 = 1, 2, . . . ,𝐾𝐾 represents the multinomial treatment 

groups. The following steps detail the matching procedure:  

1. Choose variables related to the treatments to include in the propensity model (see 

Brookhart et al. (2006) for a detailed discussion of varaible selection for propensity models). 

2. Estimate the GPS vector for each subject using any desired parametric or machine learning 

model (i.e. multinomial logistic regression, GBM, etc.). 

3. Choose an ordering of the 𝐾𝐾 treatments within the GPS vector. 

4. Calculate the CDF of the ordered GPS vector for each subject.  

5. Fit a one parameter power function to the CDF of each subject to obtain 𝑎𝑎�.  

6. Calculate the ∆(𝑖𝑖,𝑗𝑗) matrix between all pairs of subjects.  

7. Create matched pairs using a matching algorithm.  

8. Repeat steps 3-7 for each additional (𝐾𝐾! − 1) ordering of the GPS vector.  

9. Assess covariate balance after matching separately for each of the 𝐾𝐾! balancing scores via 

SMD. 

10. Retain the balancing score that creates matches with the best covariate balance. 

11. Conduct a matched outcome analysis to estimate ATE or ATT (e.g. conditional logistic 

regression).   
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2.2.2 GPS-CDF Stratification 

The method for stratification follows closely to the method proposed for matching. 

Using the estimated power parameter, 𝑎𝑎�, strata can be created to group subjects with similar 

values of 𝑎𝑎� who received different treatments. Thus within strata, subjects have similar 

covariate distributions and received different treatments. Although any number of strata can 

be created, it has been shown in previous studies that stratifying the data into quintiles 

removes approximately 90% of the initial observed covariate imbalance (Cochran, 1968; 

Rosenbaum and Rubin, 1984; Zanutto, Lu and Hornik, 2005; Austin, 2011).   

As with the matching procedure, stratification can be performed for each of the 𝐾𝐾! 

orderings of the GPS vector. Again, the ordering that creates the strata with the best covariate 

balance should be retained for the outcome analysis. We propose selecting the ordering that 

minimizes the SMD within strata (Austin, 2011; Burgette, Griffin and McCaffrey, 2017; 

Fong, Hazlett and Imai, 2018; Imai and Ratkovic, 2014; Lopez and Gutman, 2017; 

McCaffrey et al., 2013; Papadogeorgou, Choirat and Zigler, 2018; Yang et al., 2016). 

Formally, this selection can be written as:  

 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎�𝑘𝑘
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�𝑠𝑠𝑝𝑝,𝑠𝑠,𝑡𝑡𝑖𝑖
2 + 𝑠𝑠𝑝𝑝,𝑠𝑠,𝑡𝑡𝑗𝑗
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2 ⎠

⎟
⎟
⎞

𝑡𝑡𝑖𝑖≠𝑡𝑡𝑗𝑗

𝑆𝑆𝑎𝑎�𝑘𝑘

𝑠𝑠=1

𝑃𝑃

𝑝𝑝=1
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⎥
⎥
⎥
⎥
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 (2.8) 

 

where 𝑎𝑎�𝑘𝑘 is the 𝑎𝑎�  derived from each 𝐾𝐾! ordering of the GPS vector, 𝑃𝑃  is the number of 

covariates, 𝑆𝑆𝑎𝑎�𝑘𝑘  is the number of strata created for each ordering of the GPS vector, and 𝑡𝑡𝑖𝑖 =

1, 2, . . . ,𝐾𝐾 represents the multinomial treatment groups. The following steps detail the 

stratification procedure:  
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1. Repeat steps 1 and 2 from the CDF matching procedure.  

2. Choose an ordering of the 𝐾𝐾 treatments within the GPS vector. 

3. Calculate the CDF of the ordered GPS vector for each subject.  

4. Fit a one parameter power function to the CDF of each subject to obtain 𝑎𝑎�. 

5. Rank observations based on their value for the power parameter 𝑎𝑎� and separate the data 

into quintiles. 

6. Repeat steps 3-5 for each additional (𝐾𝐾! − 1) ordering of the GPS vector. 

7. Assess covariate balance after stratification separately for each of the 𝐾𝐾! orderings via 

SMD. 

8. Retain the GPS vector ordering that creates strata with the best covariate balance. 

9. Conduct a stratified outcome analysis to estimate ATE or ATT (e.g. conditional logistic 

regression).  

 

2.3 Simulation Study 

A simulation study is conducted to determine how the GPS-CDF matching and 

stratification methods perform under different data scenarios with varying degrees of model 

misspecification. The design of the current simulation follows closely to several recently 

published simulations that seek to be representative of real data (Austin, Grootendorst, and 

Anderson, 2007; Fong, Hazlett and Imai, 2018; Greene, 2017). Four data scenarios are 

considered with three treatment categories, one binary outcome, and nine baseline covariates. 

Six covariates are associated with treatment assignment probability, and six covariates are 

associated with outcome assignment probability, producing various levels of treatment and 

outcome confounding. A table describing the associations of the baseline covariates with the 

treatment and outcome variables is shown in Table 2.1. From the table, it can be observed 

that 𝑥𝑥1, 𝑥𝑥2,𝑥𝑥4, and 𝑥𝑥5 are generated to be pretreatment confounders.  

The four data scenarios considered within this simulation study are similar to those of 

Fong et al. (Fong, Hazlett and Imai, 2018) and Greene (2017) and vary whether treatment 
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and outcome assignment models are correctly specified. Incorrect specification is created 

through inclusion of a non-linear term. The nine baseline covariates are multivariate 

normally distributed with mean 0, variance 1, and covariances of 0.2.  

Scenario 1 assumes both the treatment and outcome models are correct through 

inclusion of only linear terms. The true treatment and outcome models are given by equations 

(2.9) and (2.10), respectively.  

 

 
log �

𝑃𝑃𝑃𝑃(𝑍𝑍𝑖𝑖 = 𝑘𝑘)
𝑃𝑃𝑃𝑃(𝑍𝑍𝑖𝑖 = 3)� =  𝜃𝜃𝑘𝑘 + 𝛽𝛽1,𝑘𝑘𝑥𝑥𝑖𝑖,1 + 𝛽𝛽2,𝑘𝑘𝑥𝑥𝑖𝑖,2 + 𝛽𝛽4,𝑘𝑘𝑥𝑥𝑖𝑖,4 + 𝛽𝛽5,𝑘𝑘𝑥𝑥𝑖𝑖,5 + 𝛽𝛽7𝑥𝑥𝑖𝑖,7 + 𝛽𝛽8𝑥𝑥𝑖𝑖,8 (2.9) 

   

for   𝑘𝑘 = 1,2, 𝜃𝜃 = (0.25, 0.3), 𝛽𝛽1 = 𝛽𝛽4 = (0.7, 0.4), 

𝛽𝛽2 = 𝛽𝛽5 = (0.2, 0 .3),  𝛽𝛽7 = 0.6, and 𝛽𝛽8 = 0.2 

 

 log �
𝑃𝑃𝑃𝑃(𝑌𝑌𝑖𝑖 = 1)

1− 𝑃𝑃𝑃𝑃(𝑌𝑌𝑖𝑖 = 1)� =  𝛼𝛼 + 𝛽𝛽𝑍𝑍𝑍𝑍𝑖𝑖 + 𝛽𝛽1𝑥𝑥𝑖𝑖,1 + 𝛽𝛽2𝑥𝑥𝑖𝑖,2 + 𝛽𝛽3𝑥𝑥𝑖𝑖,3 + 𝛽𝛽4𝑥𝑥𝑖𝑖,4 + 𝛽𝛽5𝑥𝑥𝑖𝑖,5 + 𝛽𝛽6𝑥𝑥𝑖𝑖,6 (2.10) 

for   𝛼𝛼 = −0.2,  𝛽𝛽𝑍𝑍 = (−0.1, 0.6, 0.3),   𝛽𝛽1 = 𝛽𝛽2 = 𝛽𝛽3 = 0.6, 

𝑎𝑎𝑎𝑎𝑎𝑎    𝛽𝛽4 = 𝛽𝛽5 = 𝛽𝛽6 = 0.4 

 

The three level multinomial treatment and binary outcome variables are simulated by 

sampling one value from a multinomial distribution and Bernoulli distribution using the 

probabilities calculated from equation (2.9) and (2.10), respectively, as the probability 

sampling weights. From the data generation procedure, the true treatment effects are 0.7, 0.4, 

and -0.3 for treatment pairs (1, 2), (1, 3), and (2, 3), respectively.  

 Scenario 2 introduces a non-linear term based on a mis-measured variable, 

(𝑥𝑥𝑖𝑖,1 + 0.5)2 , into the treatment assignment model, while the outcome model remains the 

same as equation (2.10). The misspecified treatment model is given by: 
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 log �
𝑃𝑃𝑃𝑃(𝑍𝑍𝑖𝑖 = 𝑘𝑘)
𝑃𝑃𝑃𝑃(𝑍𝑍𝑖𝑖 = 3)� =  𝜃𝜃𝑘𝑘 + 𝛽𝛽1,𝑘𝑘(𝑥𝑥𝑖𝑖,1 + 0.5)2+ 𝛽𝛽1,𝑘𝑘𝑥𝑥𝑖𝑖,1 + 𝛽𝛽2,𝑘𝑘𝑥𝑥𝑖𝑖,2 + 𝛽𝛽4,𝑘𝑘𝑥𝑥𝑖𝑖,4 + 𝛽𝛽5,𝑘𝑘𝑥𝑥𝑖𝑖,5 + 𝛽𝛽7𝑥𝑥𝑖𝑖,7 + 𝛽𝛽8𝑥𝑥𝑖𝑖,8 (2.11) 

 
for   𝑘𝑘 = 1,2, 𝜃𝜃 = (−0.5, 0), 𝛽𝛽1 = 𝛽𝛽4 = (0.7, 0.4), 

𝛽𝛽2 = 𝛽𝛽5 = (0.2, 0 .3),  𝛽𝛽7 = 0.6, and 𝛽𝛽8 = 0.2. 

 

 Scenario 3 introduces a non-linear term based on a mis-measured variable, 

(𝑥𝑥𝑖𝑖,1 + 0.5)2 , into the outcome assignment model, while the treatment model remains the 

same as equation (2.9).  The misspecified outcome model is given by: 

 

log �
𝑃𝑃𝑃𝑃(𝑌𝑌𝑖𝑖 = 1)

1− 𝑃𝑃𝑃𝑃(𝑌𝑌𝑖𝑖 = 1)� =  𝛼𝛼 + 𝛽𝛽𝑍𝑍𝑍𝑍𝑖𝑖 + 0.5(𝑥𝑥𝑖𝑖,1 + 0.5)2 + 𝛽𝛽1𝑥𝑥𝑖𝑖,1 + 𝛽𝛽2𝑥𝑥𝑖𝑖,2 + 𝛽𝛽3𝑥𝑥𝑖𝑖,3 + 𝛽𝛽4𝑥𝑥𝑖𝑖,4 + 𝛽𝛽5𝑥𝑥𝑖𝑖,5 + 𝛽𝛽6𝑥𝑥𝑖𝑖,6 (2.12) 

 
for   𝛼𝛼 = −0.8,  𝛽𝛽𝑍𝑍 = (−0.1, 0.6, 0.3),   𝛽𝛽1 = 𝛽𝛽2 = 𝛽𝛽3 = 0.6, 

𝑎𝑎𝑎𝑎𝑎𝑎    𝛽𝛽4 = 𝛽𝛽5 = 𝛽𝛽6 = 0.4. 

 

 Finally in Scenario 4, both the treatment and outcome models are misspecified using 

the treatment and outcome assignment models detailed in equations (2.11) and (2.12). 

  

2.4 Results 

For each data scenario considered, 1000 datasets each containing 1000 observations 

are generated. Five analytic tools are used to estimate and compare ATEs: unadjusted (crude 

odds ratio) model, adjusted (adjusted odds ratio) model, GBM with IPTW, GPS-CDF greedy 

matching, and GPS-CDF stratification. The GBM propensity model adjusts for all nine 

baseline covariates. Additionally, the GPS vector generated through GBM is used for GPS-

CDF matching and stratification, and a caliper of 0.25 standard deviations of 𝑎𝑎� is used for 

GPS-CDF greedy matching (Cochran and Rubin, 1973; Lunt, 2014). Outcome models to 

obtain ATE estimates utilize logistic regression for the unadjusted and adjusted models, 
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survey-weighted generalized linear models for GBM weighting, and conditional logistic 

regression for GPS-CDF matching and stratification. Furthermore, outcome models (with the 

exception of the unadjusted model) adjusted for all first order covariates associated with 

outcome assignment (Rosenbaum and Rubin, 1984; Hirano and Imbens, 2001; Imai and Van 

Dyk, 2004).   

Figure 2.2 is a graphical depiction of the amount of covariate balance achieved by 

each analytical tool under both the correctly and incorrectly specified treatment model. The 

adjusted model was not included in this balance assessment plot as it has the same covariate 

balance as the unadjusted model. The plot depicts the maximum pairwise SMD for each of 

the nine baseline covariates within each of the simulated datasets (Lopez and Gutman, 2017). 

For each treatment pair, the SMD is calculated and the maximum value across treatment 

pairs is retained. Methods that achieve covariate balance have smaller maximum SMD 

values.   

The three propensity based methods achieve better covariate balance, on average, 

compared to the original unweighted data. Within the correctly specified treatment model 

(left plot), GBM weighting produces better balance than both GPS-CDF matching and 

stratification. GPS-CDF matching and stratification produce similar balance in the correctly 

specified treatment model, but it appears that GPS-CDF stratification is less prone to outliers. 

Within the incorrectly specified treatment model (right plot), GBM weighting and GPS-CDF 

matching produce similar balance results. GPS-CDF stratification produces slightly worse 

balance than GBM weighting and GPS-CDF matching, but still produces better balance than 

the original data.  

For each of the data scenarios considered, the five analysis methods are compared 

using average bias, mean squared error (MSE), and coverage probability of the estimated 
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ATEs. As there are three treatment groups, the performance of each method is assed for each 

of the three treatment group comparisons. Figure 2.3 shows the distribution of the ATE 

estimates from each analytical method under each data scenario between treatment 1 and 

treatment 3. The true pairwise treatment effect of 0.4 is included as the dotted horizontal line.  

 Within Scenario 1, all methods produce estimates with minimal bias and high 

coverage probabilities, with the exception of the unadjusted model. The adjusted model, 

which does not include any propensity scoring, actually has the smallest MSE compared to 

the methods that include propensity models. This result was anticipated as there is no 

misspecification in either the treatment or outcome model under this data scenario. 

Additionally, GBM weighting performs better in terms of bias and MSE compared to GPS-

CDF matching. However, even though GBM weighting produces better balance than GPS-

CDF stratification, as indicated in Figure 2.2, GPS-CDF stratification has lower bias and 

higher coverage probability compared to GBM weighting. In Scenario 2, where the treatment 

model is misspecified but the outcome model is correct (Figure 2.3, Scenario 2), results are 

consistent with Scenario 1. The adjusted model performs better than GBM in terms of bias, 

MSE, and coverage probability. Again, GPS-CDF stratification produces lower bias than all 

other methods and obtained the highest coverage probability.  

 For Scenario 3, which includes a correctly specified treatment model but misspecified 

outcome model (Figure 2.3, Scenario 3), GBM weighting has lower bias but higher MSE 

compared to the adjusted model. GPS-CDF matching and stratification have lower bias 

compared to all other methods, with both GPS-CDF methods outperforming GBM weighting 

in terms of coverage probability. Finally in Scenario 4 (Figure 2.3 Scenario 4), the adjusted 

model, GBM weighting, and GPS-CDF matching all fail to obtain accurate ATE estimates. 

GPS-CDF stratification is still able to produce minimally biased ATE estimates while 
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maintaining low MSE and coverage probability close to 0.9 when both the treatment and 

outcome models are misspecified.   

 The ATE estimate results from the comparisons between treatments 1 and 2 

(Appendix A: Supplemental Figure 1) and between treatments 2 and 3 (Appendix A: 

Supplemental Figure 2) are consistent with those detailed above. GPS-CDF stratification 

produces ATE estimates with minimal bias and MSE, while maintaining high coverage 

probability across all data scenarios.  

 Finally, Supplemental Figure 3 (Appendix A) is a graphical representation of the 

CDF mapping produced by the GPS-CDF method under 4 different multinomial treatment 

group scenarios: 3, 4, 6, and 10 treatments. For each multinomial treatment group, 1000 

subjects are simulated in a manner similar to the above simulation study, and GBM is used to 

estimate the GPS vector for each simulated subject. The subsequent CDF vector for each 

subject is found by summing across the subject specific GPS vectors. The GPS-CDF method 

is then applied to derive subject specific 𝑎𝑎� values. Each panel of Supplemental Figure 3 

(Appendix A) shows the resultant CDF vector and estimated power function for 5 simulated 

subjects across each treatment group scenario. Supplemental Figure 3 (Appendix A) indicates 

that as the number of treatment groups increase, the power function, based on 𝑎𝑎�, still 

accurately maps the CDF of the GPS vector. The average of the absolute difference between 

the CDF of the GPS vector and the produced power function is 0.034, 0.047, 0.049, and 

0.055 for 3, 4, 6, and 10 treatments, respectively, for all simulated subjects.  

 

2.5 Data Applications  

To illustrate the utility of the above proposed methods, two data applications are 

conducted. First, electronic health records (EHR) data from the Cerner Health Facts database 
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are used to analyze the relationship between vasopressors and mortality in patients with non-

traumatic aneurysmal subarachnoid hemorrhage (SAH). Additionally, the GPS-CDF methods 

are further applied to the Emergency Truncal Hemorrhage Control Study (ETHCS), a 

prospective observational study, to determine whether emerging hemorrhage control 

interventions influence patient mortality. 

 

2.5.1 Cerner Health Facts database 

The utility of the novel approach is demonstrated on EHR data from the Cerner 

Health Facts database. The database was used to analyze the relationship between 

vasopressor choice and mortality in patients with non-traumatic aneurysmal subarachnoid 

hemorrhage (SAH). SAH is defined as a blood vessel that bursts in the brain, and is a 

devastating cerebrovascular condition not only due to the effect of the hemorrhage but also 

the complicated treatment regimens required to manage such patients. A major complication 

resulting from SAH includes delayed cerebral ischemia (DCI), which is a main source of 

morbidity following SAH (Roy et al., 2017). Although current guidelines suggest 

maintaining an elevated blood pressure after management of an aneurysm may reduce the 

incidence of DCI, there is little data to suggest which vasopressor is the most efficacious to 

achieving this end with regards to mortality. The effectiveness of the three most commonly 

accepted drugs used to achieve an increase in blood pressure (dopamine, phenylephrine, and 

norepinephrine) are studied in relation to mortality in patients with non-traumatic SAH.   

 The study population included in the current analysis has been previously described 

(Williams et al., submitted). Briefly, the Cerner Health Facts EHR database was queried from 

years 2000 to 2015 to select adult patients (over age 17) with a new diagnosis of aneurysmal 

SAH based on ICD-9 code 430. Only patients who received infusions of dopamine, 
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phenylephrine, or norepinephrine were included in the study population (Williams et al., 

submitted). Among the 4,850 patients that met the above study inclusion criteria, 40 patients 

presented with multiple first vasopressor treatments; these patients were excluded from the 

cohort. Furthermore, patients whose diagnosis included a traumatic cause of SAH (based on 

ICD 9 codes: 800.2x, 800.7x, 801.2x, 801.7x, 803.2x, 803.7x, 804.2x,  804.7x, 852.x) or with 

unknown mortality status were excluded from the study population leaving 2,634 patients in 

the final cohort.  

The propensity score analysis presented here includes 2,417 patients with complete 

data for demographic variables (age, gender, race, and marital status) as well as pretreatment 

medication variables. Of the patients included in the analysis, 492, 1,253, and 672 were 

administered dopamine, phenylephrine, and norepinephrine, respectively. In total, 170 

pretreatment variables are entered into GBM in order to produce patient specific GPS 

vectors. More details on variable selection as well as variables included in the propensity 

model can be found in previous work (Williams et al., submitted).  

 The five analytical methods investigated within the simulation study are applied to 

this EHR dataset to determine the causal relationship between vasopressor choice and 

mortality. A visual representation of the covariate balance achieved by each method is 

depicted in Figure 2.4. The left plot shows maximum pairwise SMD for each potential 

pretreatment confounder. Similarly, the right plot shows the average pairwise SMD, which is 

calculated by averaging the SMD for each potential pretreatment confounder across 

treatment pairs. It has been suggested that values of SMD less than 0.2 indicate small levels 

of covariate imbalance (Cohen, 1988; McCaffrey et al., 2013). Based on this cutoff, both 

GBM weighting and GPS-CDF matching produce better covariate balance compared to the 
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original data, while GPS-CDF stratification produces less satisfactory levels of covariate 

balance.  

 As all subjects within this EHR dataset were eligible for all three treatments, ATE is 

the estimand of interest. Results from applying each of the five analytical methods, assessed 

within the simulation study, are shown in Table 2.2. GPS-CDF matching and stratification 

show that the odds of mortality are significantly higher in patients who received dopamine 

versus patients who received phenylephrine (ORGPS-CDF Matching = 1.53, 95% CI [1.11, 2.10], p 

= 0.008; ORGPS-CDF Stratification = 2.59, 95% CI [2.03, 3.31], p = <0.001). Patients receiving 

norepinephrine are found to have a higher odds of mortality versus patients receiving 

phenylephrine when analyses are conducted using the GPS-CDF stratification method 

(ORGPS-CDF Stratification = 3.21, 95% CI [2.55, 3.31], p = <0.001), but this association is not 

significant with GPS-CDF matching (ORGPS-CDF Matching = 1.41, 95% CI [1.00, 1.99], p = 

0.051). Furthermore, GPS-CDF matching and stratification do not show any significant 

differences in the odds of mortality between patients who received dopamine and patients 

who received norepinephrine. 

 Importantly, all three propensity scoring approaches applied attenuate the unadjusted 

and covariate adjusted association between vasopressor choice and mortality. Overall, it does 

appear that phenylephrine is superior to dopamine in relation to mortality in patients with 

non-traumatic SAH, but the comparison between phenylephrine and norepinephrine remains 

unclear. Although results from GBM weighting indicate nearly a 50% reduction in mortality 

in patients given phenylephrine, the effects of vasopressor choice on patient mortality are not 

as strong when the analyses are conducted using GPS-CDF matching. GPS-CDF matching 

creates satisfactory levels of covariate balance within the data and further attenuates the 

association between vasopressor choice and mortality. Again, outcome models to obtain 
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ATEs utilize logistic regression, survey-weighted generalized linear models, and conditional 

logistic regression for the unadjusted and adjusted model, GBM weighting, and GPS-CDF 

matching and stratification, respectively. Additionally, the GPS-CDF approach is 

computationally quick; results were available in 8 minutes using a dual-core Intel Core i3-

3110M with 4 GB RAM. 

 

2.5.2 Emergency Truncal Hemorrhage Control Study 

 Severe hemorrhage of the non-compressible torso is the leading cause of potentially 

survivable deaths in trauma cases. Non-compressible torso hemorrhage (NCTH) is defined as 

blood loss due to trauma of the torso (chest, abdomen, and pelvis), pulmonary parenchyma, 

solid abdominal organs, and disruption of the bony pelvis causing hypotension or shock 

(Stannard, Eliason and Rasmussen, 2011; Eastridge et al., 2012; Kisat et al., 2013). A new 

treatment, namely, resuscitative endovascular balloon occlusion of the aorta (REBOA), is a 

technique that could temporarily mitigate hemorrhage from the abdomen and pelvis. ETHCS 

aims to compare various hemorrhage control techniques (laparotomy, thoracotomy, and 

REBOA) in relation to patient mortality.  

 As ETHCS is an observational study, and patients undergoing REBOA or other 

procedures (laparotomy or thoracotomy) have different covariate distributions, it is an 

excellent example for the utility of the GPS-CDF multinomial propensity score method. The 

current analysis contains 409 subjects, of which 264 (64.5%), 67 (16.4%), and 78 (19.1%) 

were treated with laparotomy, thoracotomy, and REBOA, respectively. Again, the five 

analytical methods investigated within the simulation study are applied to this ETHCS 

dataset to determine the causal relationship between hemorrhage control techniques and 

mortality. A visual representation of the covariate balance achieved by each method is 

depicted in Figure 2.5. The plot shows the average pairwise SMD for all pre-treatment 



48 
 

confounders: age, race, gender, injury mechanism, and study site. Based on Figure 2.5, GPS-

CDF matching produces better covariate balance compared to all other methods investigated.   

  Again as all subjects were eligible for all three hemorrhage control techniques, ATE 

is the estimand of interest. Mortality results were not computed for comparisons with the 

thoracotomy group, as 94% of subjects within this group died. GPS-CDF matching shows 

that the odds of mortality are not significantly different for patients treated with REBOA 

compared to patients treated with laparotomy (ORGPS-CDF Matching = 5.75, 95% CI [0.98, 

33.83], p = 0.053). Conversely, results within the unadjusted and GBM weighted models do 

indicate a significant difference in mortality between these two techniques (ORUnadjusted= 

6.54, 95% CI [3.70, 11.56], p <0.001; ORGBM Weighted = 8.31, 95% CI [3.46, 19.94], p <0.001). 

As the balance achieved via GPS-CDF matching is by far superior to any other method 

investigated (Figure 2.5), the results suggest that there is no difference in mortality between 

hemorrhage control techniques (REBOA and laparotomy) within the study population.  

 

2.6 Discussion 

 Although methods exist to conduct propensity scoring in the presence of multinomial 

treatments (e.g. Seya and Yoshida, 2017; Rassen et al., 2013; Rubin, 1979; Zhao, 2004; Tu, 

Jiao and Koh, 2013; Lopez and Gutman, 2017; Zanutto, Lu and Hornik, 2005; Huang et al., 

2005; Yang et al., 2016; Lechner, 2001; Feng et al., 2012), few methods have the capability 

and flexibility to estimate both ATE and ATT and correctly model data sources that present 

with large covariate spaces. Recently, researchers have advocated for the use of machine 

learning propensity models to produce more accurate GPS vectors especially in the presence 

of a large covariate space (Setoguchi et al., 2008; Guertin et al., 2016; Chen and Moskowitz, 

2016). Although the benefits of using GBM and other machine learning methods as detailed 
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above, are apparent, there are still drawbacks to these methods that need to be addressed. 

Currently, the GPS vector produced by machine learning methods is adjusted in outcome 

analysis via IPTW. Although IPTW is an easily adaptable method in order to produce causal 

treatment effect estimates, Rubin (Rubin, 2004) suggests that weighting directly on the 

propensity score leads to a higher degree of sensitivity to model misspecification. 

Furthermore, via simulation, Yang et al. (2016) show that when presented with six treatment 

groups (not an impossibly large number when considering EHR-derived studies), 

implementation of the GPS via IPTW leads to extreme weights. For example, the maximum 

weights reported by Yang et al. (2016) are 95.8 within in a three treatment scenario and 

185.1 within a six treatment scenario. Although these extreme weights may not adversely 

impact covariate balance, they will lead to inaccurate ATEs/ATTs. Given the published 

limitations for IPTW for multiple treatments propensity scoring, this paper derived and tested 

via simulation and practice, a novel multinomial propensity scoring technique that utilizes 

the entire GPS vector. The GPS-CDF method directly maps the GPS vector resulting from 

any propensity model to a scalar value that is easily used for matching and stratification to 

produce either ATEs or ATTs. As this method generates 𝐾𝐾! balancing scores, it follows 

closely to the current opinion in the literature of the ‘covariate balancing propensity score’ 

(Fong, Hazlett and Imai, 2018; Imai and Ratkovic, 2014) and the ‘distance adjusted 

propensity score’ (Papadogeorgou, Choirat and Zigler, 2018). 

 The proposed method of mapping the CDF of the GPS vector is given by equation 

(2.4). While other methods may be used to map CDFs (e.g. Kolmogorov-Smirnov test 

statistic, isotonic regression, Kullback–Leibler divergence, etc.), they do not result in a scalar 

balancing score, analogous to the scalar value derived within binary treatment propensity 

scoring. For example, the Kolmogorov-Smirnov test statistic tests the equality of CDFs 
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through a distance based metric (Massey, 1951). Although this approach may be used to 

match subjects with similar CDFs, the resultant pairwise distances cannot be easily adapted 

to stratify subjects. Furthermore, other common one parameter functions (e.g. exponential, 

logarithmic, sigmoid) do not have the same flexibility as the power function for mapping 

CDFs that present with both concave and convex shapes. Thus the proposed GPS-CDF 

method utilizes a one parameter power function in order to accurately map CDFs via a scalar 

value, which may be used to match and stratify subjects.  

 The current simulation study closely followed several recently published simulations 

(Austin, Grootendorst and Anderson, 2007; Fong, Hazlett and Imai, 2018; Greene, 2017); 

matching and stratification via the GPS-CDF method produced better covariate balance than 

the original data in both the correctly and incorrectly specified treatment model. Although 

GBM weighting produced better covariate balance compared to GPS-CDF matching and 

stratification within the correctly specified treatment model, similar to results presented by 

Fong et al. (2018), this increased balance did not translate to more accurate ATE estimates. 

GBM weighting produced highly biased estimates compared to GPS-CDF stratification for 

each treatment comparison when both the treatment and outcome models were misspecificed.  

Unlike IPTW which has been shown to produce unreliable estimates in the presence 

of multiple treatment groups (Yang et al., 2016), the GPS-CDF method is still valid. Using 

data simulated under different multinomial treatment group scenarios, the GPS-CDF method 

was able to accurately map CDFs of the GPS even in the presence of numerous treatment 

groups. When presented with 10 treatments, the average difference between the true CDF of 

the GPS vector and the estimated power function was minimal. Since the mapping 

capabilities of the method was shown to still be valid even in the presence of numerous 

treatment groups, the GPS-CDF method may produce more accurate causal inference 
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estimates compared to those derived by IPTW, especially in the presence of multiple 

treatment groups.  

Finally, the performance and utility of the GPS-CDF method was further 

demonstrated using two data applications. First, data from the Cerner Health Facts database 

were queried in order to assess the association between vasopressor choice and mortality in 

patients with non-traumatic SAH. Overall, the novel multinomial propensity analysis 

approach, GPS-CDF, had low computational burden and produced better covariate balance 

compared to the original (unadjusted) data when applied via matching. Additionally, this 

EHR data example demonstrates the easy applicability of the GPS-CDF approach. These 

results further indicate that prospective studies should be conducted in order to determine 

which vasopressor is the most efficacious for patients with non-traumatic SAH. Additionally, 

the GPS-CDF methods were applied to the ETHCS to determine whether emerging 

hemorrhage control interventions influence patient mortality. These results demonstrate that 

REBOA has a similar effect on patient mortality compared to laparotomy.  

 

2.7 Conclusion 

 This paper details the derivation and application of the GPS-CDF method that 

removes covariate imbalance in observational studies with multinomial treatments. 

Currently, no methods exist that transform the GPS vector into a single number, analogous to 

the single scalar balancing score found in binary treatment propensity scoring. Using a NLS 

algorithm, the GPS-CDF method directly maps any GPS vector to a scalar value which easily 

facilitates either matching or stratification in order to produce causal treatment effect 

estimates. Importantly, the scalar value derived from the GPS-CDF method can be adapted to 

produce either ATE or ATT estimates. Our detailed simulation study found that 
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implementation of the GPS-CDF method via stratification may lead to less biased causal 

inference estimates compared to methods based on IPTW. Furthermore, when applied to an 

EHR data set, the GPS-CDF method indicates that phenylephrine may be the superior 

vasopressor choice for patients that present with non-traumatic SAH.  

 There are limitations of this study. First, the EHR data application was derived from 

the Cerner Health Facts database, which contained a large number of patients with complete 

covariate data. Patients were included in the analysis based on a new diagnoses of SAH, but 

their diagnosis could not be confirmed via imaging. Additionally, due to the absence of 

baseline diagnostic variables, there is of course the possibility of unmeasured confounding 

within the analysis, as with any propensity score analysis, especially one derived from EHR. 

Furthermore, within the ETHCS data application, 94% of patients who received thoracotomy 

died. Thus meaningful analyses were not able to be conducted using this treatment group.  

 The GPS-CDF method presented here gives researchers more options when 

conducting multinomial treatment propensity scoring. This novel method can be used in 

conjunction with current machine learning methods in order to better facilitate propensity 

score adjustment in the presence of big data. Future studies should further evaluate the use of 

the GPS-CDF method when conducting propensity scoring with multinomial treatments in 

the context of relevant research questions. Open-source software is available to help facilitate 

the use of the proposed method in practice (Brown et al., 2019). 
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 Strongly Associated 
with Treatment 

Moderately Associated 
with Treatment 

Independent of 
Treatment 

Strongly Associated 
with Outcome 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

Moderately Associated 
with Outcome 𝑥𝑥4 𝑥𝑥5 𝑥𝑥6 

Independent of 
Outcome 𝑥𝑥7 𝑥𝑥8 𝑥𝑥9 

 

Table 2.1. True association between baseline covariates with treatment and outcome. Note, 

𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥4, and 𝑥𝑥5 are simulated to be pretreatment confounders.  
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Figure 2.1. Graphical representation of the convex and concave modeling produced by the 

power function.  
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Figure 2.2. Graphical representation of the covariate balance achieved by each method under 

the correctly specified and incorrectly specified treatment assignment models. SMD was 

calculated for all baseline covariates within each treatment pair, and the maximum SMD 

across treatment pairs was retained.  
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Figure 2.3. Distribution of the ATE for each method under each scenario between treatment 1 

and treatment 3. The true ATE value of 0.4 is included as the dotted horizontal line.  
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Figure 2.4. Graphical representation of the covariate balance achieved by each method for 

SAH patients within the Cerner Health Facts EHR database. The left plot presents the 

maximum pairwise SMD across treatment groups for each potential confounder. The right 

plot presents the average pairwise SMD across treatment groups for each potential 

confounder.   
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Figure 2.5. Graphical representation of the covariate balance achieved by each method for 

hemorrhage patients within the Emergency Truncal Hemorrhage Control Study. The plot 

presents the average pairwise SMD across treatment groups for each potential confounder.  
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Abstract 

 Continuous treatments propensity scoring remains understudied, as the majority of 

methods are focused on the binary treatment setting. Current propensity score methods for 

continuous treatments typically rely on weighting in order to produce causal estimates. It has 

been shown that in some cases, weighting methods can result in worse covariate balance than 

had no adjustments been made to the data. Furthermore, weighting is not always stable, and 

resultant estimates may be unreliable due to extreme weights. These issues motivate the 

current development of novel propensity score stratification techniques to be used with 

continuous treatments. Specifically, the generalized propensity score cumulative distribution 

function (GPS-CDF) and the nonparametric GPS-CDF (npGPS-CDF) approaches are 

introduced. Empirical CDFs are used to stratify subjects based on pretreatment confounders, 

in order to produce causal estimates. A detailed simulation study shows superiority of these 

new stratification methods based on the empirical CDF, when compared to standard 

weighting techniques. The proposed methods are applied to the “Mexican American Tobacco 

use in Children” (MATCh) study to determine the causal relationship between continuous 

exposure to smoking imagery in movies, and smoking behavior among Mexican-American 

adolescents. These promising results provide investigators with new options for 

implementing continuous treatment propensity scoring. 
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3.1 Introduction  

Propensity scoring is often used to make causal inference about a treatment/exposure-

outcome relationship in non-randomized observational studies. Although methods for binary 

and more recently, multiple treatments have been well-studied (e.g., Rosenbaum and Rubin, 

1983, 1984, 1985; Joffe and Rosenbaum, 1999; Imbens, 2000; Imai and Van Dyk, 2004), 

there has been less research devoted to propensity score methods for continuous treatments. 

In this paper, continuous treatments refer to treatment assignment (e.g. dosing trials) or 

continuous exposures (e.g. environmental exposures). In the presence of continuous 

treatments, investigators may instead dichotomize or categorize the treatment in order to 

utilize more well-established propensity score techniques (e.g. Chertow, Normand, and 

McNeil, 2004; Davidson et al., 2006; Donohue and Ho, 2007; Flores-Lagunes, Gonzalez, and 

Neumann, 2007; Harder, Stuart, and Anthony, 2008; Boyd, Epstein, and Martin, 2010; 

Nielsen et al., 2011; Greene, 2017). However, it has been shown that categorization of a 

continuous treatment may lead to loss of information and subsequent decrease in power when 

conducting outcome analyses (Royston, Altman, and Sauerbrei, 2006; Zhu, Coffman, and 

Ghosh, 2015; Fong, Hazlett, and Imai, 2018). Also, not analyzing exposures on their original 

scale can produce clinical interpretations that are awkward to domain-area researchers.  

Propensity scoring methods directly applicable to continuous exposures have been 

proposed. For example, maximum likelihood estimates (MLEs) derived from linear models 

have been used to estimate the generalized propensity score (GPS) (Robins, Hernan, and 

Brumback, 2000; Imai and Van Dyk, 2004; Hirano and Imbens, 2004). In practice, the GPS 

can be obtained by fitting a linear regression model of the form  

 𝑇𝑇 = 𝜷𝜷𝜷𝜷+ 𝜀𝜀 (3.1) 
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where 𝑇𝑇 is a continuous treatment, 𝑿𝑿 is a vector of potential confounders, and 

𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎2). The GPS for individual 𝑖𝑖, is estimated as, 

 𝑅𝑅�𝑖𝑖 =
1

√2𝜋𝜋𝜎𝜎�2
exp �−

1
2𝜎𝜎�2

�𝑇𝑇𝑖𝑖 − 𝑇𝑇�𝑖𝑖�
2
� (3.2) 

 (Hirano and Imbens, 2004). The GPS is then used to remove covariate bias by first 

estimating the conditional expectation of the outcome as a function of the treatment level (𝑇𝑇) 

and the GPS (𝑅𝑅), 

 𝛽𝛽(𝑡𝑡, 𝑟𝑟) = 𝐸𝐸[𝑌𝑌|𝑇𝑇 = 𝑡𝑡,𝑅𝑅 = 𝑟𝑟] (3.3) 

(Hirano and Imbens, 2004). The dose-response function, i.e. the average response in the 

sample, is then estimated at a particular treatment level by averaging equation (3.3) over the 

GPS at that level of treatment, 

 𝜇𝜇(𝑡𝑡) = 𝐸𝐸�𝛽𝛽�𝑡𝑡, 𝑟𝑟(𝑡𝑡,𝑋𝑋)�� (3.4) 

(Hirano and Imbens, 2004). By calculating the dose response function at two treatment 

levels, i.e. 𝜇𝜇(𝑡𝑡1) and 𝜇𝜇(𝑡𝑡2), the mean change in the outcome can be estimated (Austin 

2018b). In practice, although the estimated GPS, 𝑅𝑅�𝑖𝑖, can be applied directly in regression 

adjustment (Hirano and Imbens, 2004), or the scalar value, 𝜷𝜷�𝑿𝑿𝒊𝒊, can be utilized for matching 

or stratification (Imai and Van Dyk, 2004), to produce causal estimates; using the GPS in a 

weighted outcome analyses has been prioritized recently (e.g., Robins et al., 2000; Zhu et al., 

2015; Schuler, Chu, and Coffman, 2016; Fong et al., 2018; Austin, 2018a; Austin, 2018b). 

Specifically, Robins et al. (2000) propose using the GPS to produce causal estimates 

using inverse probability weighting (IPW) (Robins et al., 2000). Briefly, IPW weights each 

individual with the inverse of the probability of receiving the treatment they actually 

received, given the covariates. By up-weighting those individuals less likely to receive the 
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treatment, IPW has the advantage of giving more weight in the analysis to subjects with 

dissimilar covariate distributions than subjects with similar covariate profiles (i.e. subject 

specific covariate values) within the same treatment level. In the calculation of 𝑅𝑅�𝑖𝑖, subjects 

with unexpected covariate distributions will have large estimates for  𝑇𝑇𝑖𝑖 − 𝑇𝑇�𝑖𝑖, and conversely 

will have small values for 𝑅𝑅�𝑖𝑖. Thus, the IPW, given by  

 𝑤𝑤𝑖𝑖 =
1
𝑅𝑅�𝑖𝑖

 (3.5) 

will be higher, effectively giving more weight to subjects that have unexpected covariate 

distributions based on their continuous treatment level. Weights of the above form have 

infinite variance, so a stabilizing factor is applied to 𝑤𝑤𝑖𝑖 in practice, called, 𝑊𝑊(𝑇𝑇𝑖𝑖),  (Robins et 

al., 2000), given by the marginal density of 𝑇𝑇, which may be estimated by first fitting an 

intercept only model of the form 

 𝑇𝑇 = 𝛽𝛽0 + 𝜀𝜀 (3.6) 

where 𝜀𝜀 ~ 𝑁𝑁�0,𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 �. The stabilizing factor is estimated as 

 

 𝑊𝑊� (𝑇𝑇𝑖𝑖) =
1

�2𝜋𝜋𝜎𝜎�𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝
2

exp �−
1

2𝜎𝜎�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 (𝑇𝑇𝑖𝑖 − 𝜇̂𝜇)2� (3.7) 

 

where 𝜇̂𝜇 is the mean treatment value of the sample (Austin, 2018b). The final estimated 

stabilized IPW is given by 

 𝑠𝑠𝑠𝑠𝑖𝑖 =
𝑊𝑊� (𝑇𝑇𝑖𝑖)
𝑅𝑅�𝑖𝑖

 , (3.8) 

which is utilized in a weighted outcome regression of the form  
 

 𝐸𝐸(𝑌𝑌|𝑇𝑇) = 𝛼𝛼 + 𝛽𝛽𝑇𝑇𝑇𝑇 (3.9) 
 

in order to estimate the average treatment effect (ATE) (Schuler et al., 2016).  
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Although the calculation of these weights is straightforward, the MLE method 

detailed above relies heavily on correctly specifying the linear treatment model. If the model 

is not correctly specified or the model assumptions are not met (e.g., deviations from 

normality of errors), it has been shown that the MLE method can produce extreme weights 

that can lead to severely biased causal inference estimates (Fong et al., 2018). Therefore, 

methods that operate outside of the MLE framework may produce better weights, resulting in 

more covariate balance, and less biased estimates of the outcome.   

 Nonparametric methods of estimating the GPS vector have been shown to provide 

more accurate estimates of the GPS compared to parametric regression (Bia et al., 2014; Zhu 

et al., 2015). One such method that has gathered traction is the generalized boosted model 

(GBM) (Zhu et al., 2015; Fong et al., 2018). GBM fits a general model of the form, 

 𝑇𝑇 = 𝑚𝑚(𝑿𝑿) +  𝜀𝜀 (3.10) 

where 𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎2) and 𝑚𝑚(𝑿𝑿) is the mean function of 𝑇𝑇 given 𝑿𝑿 (Zhu et al., 2015). The 

mean function is estimated using a boosting algorithm that additively fits regression trees 

until the model is sufficiently flexible to fit the data (McCaffrey et al., 2013; Zhu et al., 

2015). With the mean function derived, stabilized IPWs can be calculated and implemented 

just as in the MLE weighting procedure. Although it may appear as though GBM ultimately 

provides minimally biased causal inference estimates, there are still drawbacks that limit its 

usefulness. First, GBM does not afford users the ability to force variables into the final 

treatment model (Ridgeway et al., 2016), which is often appropriate in biomedical research 

(for example, age, gender, and other demographic or baseline clinical information). 

Additionally, although GBM has been shown to outperform MLE in simulation studies, 

covariate balance after GBM weighting can still remain poor, subsequently resulting in more 
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unstable estimates than if weights were not applied at all (Fong et al., 2018). Finally, the 

primary way to improve balance using GBM is by increasing the number of regression trees 

used by the method, which may not provide adequate control over sample imbalance (Fong 

et al., 2018). 

Recent important extensions of the “covariate balancing propensity score,” which 

models treatment assignment while optimizing covariate balance, have been made for 

continuous treatments (Imai and Ratkovic, 2014; Fong et al., 2018). Specifically, the new 

covariate balancing generalized propensity score (CBGPS) uses the method of moments 

framework to derive IPWs such that the weighted correlation between 𝑿𝑿 and 𝑇𝑇 is minimized 

(Fong et al., 2018). The nonparametric extension of this CBGPS (npCBGPS) places no 

parametric restrictions on the GPS, as weights are directly derived without giving a 

functional form to the propensity scores. 

 Although the CBGPS is a method for optimizing covariate balance while estimating 

the GPS, it is not without limitations as shown in Fong et al. (2018). In simulation, it was 

shown that GBM produces less biased causal estimates compared to CBGPS and npCBGPS 

when sample sizes are large (~1,000). Additionally, since the nonparametric extension, 

npCBGPS, is based on an empirical likelihood approach, there is no guarantee that the 

optimization procedures find the global optimum. Furthermore, when the number of 

covariates is large, or if 𝑿𝑿 strongly predicts 𝑇𝑇, the npCBGPS may fail to find a solution, 

leaving the investigator to sacrifice covariate balance to derive weights. Moreover, even in 

scenarios where the CBGPS and npCBGPS methods produce the best covariate balance, they 

may not produce causal inference estimates with the lowest bias.  
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 In sum, current methods for creating balanced data in the continuous treatment setting 

have relied heavily on weighting procedures, even though it has been well-studied that 

weighting methods may produce unreliable causal inference estimates due to extreme 

weights (Zhu et al., 2015; Fong et al., 2018). And although nonparametric methods have 

been proposed to derive weights in order to attenuate this issue, it is has not yet been resolved 

(Zhu et al., 2015; Fong et al., 2018). Specifically, researchers have shown within simulations 

that when both treatment and outcome models are misspecified, all weighting propensity 

score methods fail to obtain accurate ATE estimates (Fong et al., 2018). The current 

literature indicates alternatives to weighting are desirable in some settings. Currently, fitting 

a parametric linear model and stratifying subjects based on the scalar value 𝜷𝜷�𝑿𝑿𝑖𝑖, that is 

derived from the estimated model (Imai and Van Dyk, 2004), is the only, and seldom used 

(Elliott, Zhang, and Small, 2015), stratification method proposed to produce causal estimates 

for a continuous treatment. Although it is possible to successfully group subjects in this 

manner, there exists a possibility of subjects with similar values for 𝜷𝜷�𝑿𝑿𝑖𝑖 presenting with 

different covariate distributions. Therefore, this paper seeks to derive more refined methods 

of stratification that neither utilize weighting nor rely on parametric assumptions in order to 

produce more reliable causal inference estimates (i.e., ATEs). Specifically, the current paper 

proposes two novel methodologies that produce causal estimates for continuous treatments: 

both the generalized propensity score cumulative distribution function (GPS-CDF) and the 

nonparametric GPS-CDF (npGPS-CDF) methods stratify subjects, based on pretreatment 

confounders, in order to produce causal estimates.  
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3.2 Methods 

Stratifying subjects with the objective of achieving covariate balance based on 

pretreatment confounders amounts to creating groups of subjects with similar covariate 

distributions who received different treatments. With this goal in mind, this section describes 

two novel stratification methods that seek to refine current methods in order to produce better 

covariate balance and more accurate ATE estimates. Both proposed methods create subject 

specific covariate distributions that are used in order to create balancing strata. The first 

method (GPS-CDF) closely follows the stratification method introduced by Imai and Van 

Dyk (2004). The second method (npGPS-CDF) does not place any parametric restrictions on 

the relationship between 𝑇𝑇 and 𝑿𝑿.  

 

3.2.1 GPS-CDF - parametric approach  

Similar to the method proposed by Imai and Van Dyk (2004), the GPS-CDF approach 

creates balancing strata from a regression model in order to produce ATE estimates. 

However, to improve balance, a representation of the distribution of an individual’s 

covariates is proposed, rather than using just the observed instance. This distribution, which 

is derived through bootstrapping, provides more detailed covariate information for each 

subject, which can lead to more accurate balancing strata and more accurate causal estimates.  

The bootstrapping algorithm of the GPS-CDF method begins by fitting any regression 

model in the form of equation (3.1), that returns model estimates, in order to predict the 

continuous treatment (e.g. linear model, generalized linear model). 𝑇𝑇�𝑖𝑖, or a subject’s 

predicted treatment, is calculated by multiplying the estimated model coefficients by each 

subject’s covariate profile,   
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 𝑇𝑇�𝑖𝑖 = 𝜷𝜷�𝑿𝑿𝑖𝑖. (3.11) 

To further capture the complete covariate profile of a subject, 𝐵𝐵 sets of  𝜷𝜷�∗ coefficients are 

resampled assuming a multivariate normal distribution, 
 

 𝜷𝜷�1∗ , … ,𝜷𝜷�𝑏𝑏∗  ~𝑴𝑴𝑴𝑴𝑴𝑴�𝝁𝝁,  ∑� (3.12) 

𝝁𝝁 = �
𝛽̂𝛽1
⋮
𝛽̂𝛽𝑗𝑗
�       ∑  = �

𝑉𝑉𝑉𝑉𝑉𝑉� �𝛽̂𝛽𝟏𝟏� 𝟎𝟎
⋱

𝟎𝟎 𝑉𝑉𝑉𝑉𝑉𝑉� �𝛽̂𝛽𝒋𝒋�
� 

 

where 𝛽̂𝛽𝟏𝟏, … , 𝛽̂𝛽𝒋𝒋 and 𝑉𝑉𝑉𝑉𝑉𝑉� �𝛽̂𝛽𝟏𝟏�, … ,𝑉𝑉𝑉𝑉𝑉𝑉� �𝛽̂𝛽𝒋𝒋� are the estimates derived from the original 

treatment regression model with 𝑗𝑗 covariates for 𝑏𝑏 = 1, … ,𝐵𝐵 (an arbitrarily large number, 

taken in this paper to be 10,000). 𝑇𝑇�𝑖𝑖,𝑏𝑏∗  is then calculated for each subject using each of the 𝐵𝐵 

sets of sampled 𝜷𝜷�∗ coefficients, 

 𝑇𝑇�𝑖𝑖,𝑏𝑏∗ = 𝜷𝜷�𝑏𝑏∗𝑿𝑿𝑖𝑖 (3.13) 

for 𝑏𝑏 = 1, … ,𝐵𝐵. Placing 𝑇𝑇�𝑖𝑖,𝑏𝑏∗  values in ascending order, individually for each subject, will 

create bootstrapped distributions of each subject’s predicted treatment values. Each 

distribution is a separate unimodal probability density function (PDF) that fully encapsulates 

the covariate profile for each subject. The equation of a particular PDF is given by, 

 𝑃𝑃𝑃𝑃𝐹𝐹𝑖𝑖 =  𝑇𝑇�𝑖𝑖,(1)
∗ , … ,𝑇𝑇�𝑖𝑖,(𝑏𝑏)

∗   (3.14) 

for individual 𝑖𝑖. As subject specific PDFs are derived through variation in 𝜷𝜷� , two subjects 

with identical covariate profiles will have identical PDFs; this would not be true if variation 

were introduced in relation to 𝑿𝑿. Therefore, subjects with similar PDFs will have, on 

average, similar covariate distributions. Thus, a function that accurately maps the PDF of 

each subject can subsequently be used to classify subjects into covariate balancing strata. 
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 Unfortunately, mapping directly to this PDF is challenging. A PDF is not a monotone 

function; the shape of the PDF depends on the covariate distribution for each subject. Instead 

of mapping a function directly to the PDF, an empirical cumulative density function (eCDF) 

is estimated for each subject by summing across the subject specific PDF, 
 

 𝐹𝐹�𝑖𝑖,𝑏𝑏(𝑡𝑡𝑖𝑖) = 𝑃𝑃�𝑖𝑖,𝑏𝑏�𝑇𝑇�𝑖𝑖∗ < 𝑡𝑡𝑖𝑖� = 𝑏𝑏−1� 𝐼𝐼�𝑡𝑡𝑖𝑖,𝑙𝑙 ≤ 𝑡𝑡𝑖𝑖�
𝑏𝑏

𝑙𝑙=1
 (3.15) 

 

where 𝐼𝐼 is the indicator function. The shape of the eCDF for each subject is a strictly non-

decreasing function. Furthermore, as the eCDF is a 1-to-1 function of the PDF, subjects with 

similar eCDFs will have similar PDFs, and resultantly, similar covariate distributions. One 

proposed equation used to map the eCDF of subject specific predicted treatments (𝑻𝑻�𝑖𝑖∗) 

generated from this bootstrapping method is a 2-parameter logistic curve given by,  

 𝐹𝐹�𝑇𝑇�� =  
1

1 + exp �−𝑘𝑘 ∗ �𝑇𝑇� − 𝑇𝑇0��
 (3.16) 

where 𝑘𝑘 represents the scale or shape parameter of the logistic curve, and 𝑇𝑇0 is the location or 

midpoint of the sigmoid. Once eCDFs are calculated for each subject, a non-linear least 

squares (NLS) algorithm (Marquardt, 1963) is used to fit the logistic curve,  
 

 min
𝑘𝑘,𝑇𝑇0

� �𝐹𝐹�𝑇𝑇�� − 𝐹𝐹�𝑏𝑏(𝑡𝑡)�
2𝐵𝐵

𝑏𝑏=1
  for 𝑏𝑏 = 1, . . . ,𝐵𝐵.  (3.17) 

 

The above NLS algorithm iteratively fits values for 𝑘𝑘 and 𝑇𝑇0 until the residual distance 

between the eCDF and fitted logistic curve is minimized. Based on the fitted logistic curve, 

subjects with similar values for 𝑘𝑘 and 𝑇𝑇0 will have similar eCDF vectors and thus similar 

covariate distributions. Although there are many ways to classify subjects into strata based on 

two variables, k-Means clustering (KMC) has been shown to provide the highest covariate 
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similarity within clusters (Tu, Jiao, and Koh, 2013). Additionally, while any number of strata 

can be formed, following the convention set within binary treatment propensity score 

analyses, 5 strata are created (Cochran, 1968; Rosenbaum and Rubin, 1984; Zanutto, Lu, and 

Hornik, 2005; Austin, 2011). Thus using KMC, subjects can be accurately placed into one of 

five strata with subjects with similar values for both 𝑘𝑘 and 𝑇𝑇0, and subsequently similar 

covariate distributions. 

 

3.2.2 npGPS-CDF - nonparametric approach 

Although typical propensity scoring methods fit a treatment model in order to create 

covariate balance, this is not always beneficial or necessary in the continuous treatment 

setting. Unlike binary and multiple treatment settings where the GPS is typically estimated 

through a logistic, multinomial, or probit regression model, the continuous treatment setting 

typically utilizes a linear model to calculate a predicted treatment. Thus if model assumptions 

are not met (e.g., deviations from normality of errors), the predicted treatment value from the 

linear model will be inaccurate, which could lead to poor balance and poor ATE estimates. 

Instead, as every subject represents a unique treatment group in the continuous treatment 

setting, creating balance utilizing stratification reduces to grouping subjects with similar 

covariate distributions, independent of treatment assignment. Thus, a method that stratifies 

subjects directly using potential confounders without using predicted treatment may improve 

covariate balance.   

 Consider the extreme case where one has a non-randomized study with an outcome, a 

continuous treatment, and two binary potential confounders (sex (male, female), and age 

(<50 or ≥50)). Instead of fitting a model between treatment and the confounders, four strata 
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can intuitively be created: young males, young females, older males, and older females. 

Thus, without fitting a treatment model, the two confounders of interest are completely 

balanced within the four strata. Although this method of stratification may not be possible in 

applied contexts that include continuous confounders, it does illustrate that balancing strata 

can be created without fitting a treatment model.  

Utilizing the extreme case as a heuristic, the nonparametric extension to the GPS-

CDF method, the npGPS-CDF, does not place any parametric restrictions on the relationship 

between 𝑇𝑇 and 𝑿𝑿 as it does not involve fitting a regression model for treatment. Instead, an 

eCDF based solely on the potential confounders of interest is calculated for each subject and 

used for stratification.  

  A covariate based distribution can be formed for each subject by sampling 𝐵𝐵 sets of 

𝜞𝜞�∗ values assuming any continuous distribution centered at 0 (e.g. multivariate standard 

normal, multivariate T) 

 𝜞𝜞�1∗ , … ,𝜞𝜞�𝑏𝑏∗  ~𝑴𝑴𝑴𝑴𝑴𝑴�𝟎𝟎𝑗𝑗 ,  I𝑗𝑗�  (3.18) 

where 𝑗𝑗 is the number of covariates and I𝑗𝑗 is the identity matrix for 𝑏𝑏 = 1, … ,𝐵𝐵 (an 

arbitrarily large number, taken here to be 10,000). These 𝜞𝜞�∗ values are then used in order to 

derive subject specific covariate distributions. Each of the 𝐵𝐵 sets of sampled 𝜞𝜞�∗ coefficients 

is used to calculate 𝑍̂𝑍𝑖𝑖,𝑏𝑏∗  for each subject using, 

 𝑍̂𝑍𝑖𝑖,𝑏𝑏∗  = 𝜞𝜞�𝑏𝑏∗𝑿𝑿𝑖𝑖 (3.19) 

 for 𝑏𝑏 = 1, … ,𝐵𝐵. Placing 𝑍̂𝑍𝑖𝑖,𝑏𝑏∗  values in ascending order, individually for each subject, will 

create separate covariate distributions for each subject. The sampled distribution is given by, 

 𝑃𝑃𝑃𝑃𝐹𝐹𝑖𝑖 =  𝑍̂𝑍𝑖𝑖,(1)
∗ , … , 𝑍̂𝑍𝑖𝑖,(𝑏𝑏)

∗   (3.20) 
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for the 𝑖𝑖𝑡𝑡ℎ individual, which again can be thought of as a unimodal PDF. Once again, eCDFs 

can be estimated for each subject by summing across subject-specific PDFs, 
 

 𝐹𝐹�𝑖𝑖,𝑏𝑏(𝑧𝑧𝑖𝑖) = 𝑃𝑃�𝑖𝑖,𝑏𝑏�𝑍̂𝑍𝑖𝑖∗ < 𝑧𝑧𝑖𝑖� = 𝑏𝑏−1� 𝐼𝐼�𝑧𝑧𝑖𝑖,𝑙𝑙 ≤ 𝑧𝑧𝑖𝑖�
𝑏𝑏

𝑙𝑙=1
 (3.21) 

 

where 𝐼𝐼 is the indicator function. 

Unlike the parametric GPS-CDF method that requires a location parameter (𝑇𝑇0) to 

accurately map each eCDF, in the nonparametric setting, all eCDFs are centered at 0. This is 

a direct byproduct of sampling 𝜞𝜞�∗ values from a continuous distribution centered at 0 (e.g. 

𝑴𝑴𝑴𝑴𝑵𝑵�𝟎𝟎𝑗𝑗,  I𝑗𝑗� distribution). The proposed 1-parameter logistic curve that can accurately map 

the eCDF of each subject is given by,  

 𝐹𝐹�𝑍̂𝑍� =  
1

1 + exp�−𝑘𝑘 ∗ 𝑍̂𝑍�
 (3.22) 

where 𝑘𝑘 represents the scale or shape parameter of the logistic curve. Similarly, once the 

eCDF has been calculated for each subject, an NLS algorithm (Marquardt, 1963) can be used 

to fit this 1-paramater logistic curve, 

 min
𝑘𝑘
� �𝐹𝐹�𝑍̂𝑍� − 𝐹𝐹�𝑏𝑏(𝑧𝑧)�

2𝐵𝐵

𝑏𝑏=1
  for 𝑏𝑏 = 1, . . . ,𝐵𝐵. (3.23) 

 Importantly, the npGPS-CDF method results in a single scalar value, 𝑘𝑘, that fully 

describes the covariate distribution of each subject. This single scalar balancing score can 

then be used to stratify subjects into quintiles, such that subjects within a quintile will have 

similar values of 𝑘𝑘 and thus similar covariate distributions.  
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3.3 Simulation Study 

A simulation study is conducted to determine how the GPS-CDF stratification and 

npGPS-CDF stratification methods perform under different data scenarios with varying 

levels of model misspecification. The design of the current simulation follows very closely to 

several recently published simulations that strive to represent real data (Austin, Grootendorst, 

and Anderson, 2007; Fong et al., 2018; Greene, 2017). Four data scenarios are considered 

with one continuous treatment, one binary outcome, and nine baseline covariates, 4 of which 

are defined as pretreatment confounders of the treatment outcome relationship. A table 

describing the associations of the baseline covariates with the treatment and the outcome 

variables is shown in Table 3.1. From the table, it may be noted that 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥4, and 𝑥𝑥5 are 

simulated to be pretreatment confounders.  

The four data scenarios considered within this simulation are very similar to those of 

Fong et al. (2018) and Greene (2017) in that they vary whether treatment assignment or 

outcome assignment were correctly specified through inclusion of a non-linear term. Within 

all four data scenarios, 𝑥𝑥1,𝑥𝑥6, 𝑥𝑥8, and 𝑥𝑥9  are multivariate normally distributed with mean 0, 

variance 1, and covariances of 0.1, while all other baseline covariates (𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4,𝑥𝑥5, and 𝑥𝑥7) 

were independently drawn from a Bernoulli(𝑝𝑝 = 0.5) distribution.  

 In Scenario 1, both the treatment and outcome models are correctly specified, 

containing only linear terms. The true treatment and outcome models are given by equations 

(3.24) and (3.25), respectively: 

 𝑇𝑇𝑖𝑖 =  0.6�𝑥𝑥𝑖𝑖,1 + 𝑥𝑥𝑖𝑖,4 + 𝑥𝑥𝑖𝑖,7� + 0.2�𝑥𝑥𝑖𝑖,2 + 𝑥𝑥𝑖𝑖,5 + 𝑥𝑥𝑖𝑖,8� +  𝜀𝜀𝑖𝑖 (3.24) 

log � 𝑃𝑃𝑃𝑃(𝑌𝑌𝑖𝑖=1)
1−𝑃𝑃𝑃𝑃(𝑌𝑌𝑖𝑖=1)

� =  𝛼𝛼 + 0.7𝑇𝑇𝑖𝑖 + 0.6�𝑥𝑥𝑖𝑖,1 + 𝑥𝑥𝑖𝑖,2 + 𝑥𝑥𝑖𝑖,3� + 0.2�𝑥𝑥𝑖𝑖,4 + 𝑥𝑥𝑖𝑖,5 + 𝑥𝑥𝑖𝑖,6�               (3.25) 
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where|𝜀𝜀𝑖𝑖  ~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,1) is the error term, 𝛼𝛼 = -5, and the true ATE is set at 0.7. The binary 

outcome is simulated by sampling one value from a Bernoulli distribution using the 

probabilities calculated from equation (3.25) as the probability sampling weights.  

Scenario 2 introduces a non-linear term based on a mis-measured variable, 

(𝑥𝑥𝑖𝑖,1 + 0.5)2 , into the treatment assignment model, while the outcome model remained the 

same as equation (3.25). The misspecified treatment model is given by: 

  𝑇𝑇𝑖𝑖 =  0.4�𝑥𝑥𝑖𝑖,1 + .5�
2

+ 0.6�𝑥𝑥𝑖𝑖,1 + 𝑥𝑥𝑖𝑖,4 + 𝑥𝑥𝑖𝑖,7� + 0.2�𝑥𝑥𝑖𝑖,2 + 𝑥𝑥𝑖𝑖,5 + 𝑥𝑥𝑖𝑖,8� +  𝜀𝜀𝑖𝑖 (3.26) 

where|𝜀𝜀𝑖𝑖  ~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,1).  

Scenario 3 introduces a non-linear term based on a mis-measured variable, 

(𝑥𝑥𝑖𝑖,1 + 0.5)2 , into the outcome assignment model, while the treatment model remained the 

same as equation (3.24). The misspecified outcome model is given by: 

log �
𝑃𝑃𝑃𝑃(𝑌𝑌𝑖𝑖 = 1)

1− 𝑃𝑃𝑃𝑃(𝑌𝑌𝑖𝑖 = 1)� =  𝛼𝛼 + 0.2�𝑥𝑥𝑖𝑖,1 + .5�2 + 0.7𝑇𝑇𝑖𝑖 + 0.6�𝑥𝑥𝑖𝑖,1 + 𝑥𝑥𝑖𝑖,2 + 𝑥𝑥𝑖𝑖,3�+ 0.2�𝑥𝑥𝑖𝑖,4 + 𝑥𝑥𝑖𝑖,5 + 𝑥𝑥𝑖𝑖,6� (3.27) 

where 𝛼𝛼 = -5.  

Finally in Scenario 4, both the treatment and outcome models are misspecified using 

the treatment and outcome assignment models detailed in equations (3.26) and (3.27) with    

𝛼𝛼 = -6. 

 

3.4 Results 

For each scenario, 1000 datasets each containing 1000 observations are generated. 

Five methods from the literature are applied to estimate and compare ATEs: GBM weighting, 

CBGPS weighting,  𝜷𝜷�𝑿𝑿𝑖𝑖 stratification, GPS-CDF stratification, and npGPS-CDF 

stratification. The propensity model for each method includes all 9 baseline covariates. 

Outcome analyses to produce ATE estimates utilize survey-weighted generalized linear 
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models for GBM and CBGPS and conditional logistic regression for 𝜷𝜷�𝑿𝑿𝑖𝑖 stratification, GPS-

CDF stratification, and npGPS-CDF stratification. Furthermore, to ensure robust ATE 

estimates, the outcome models additionally adjusted for all first order covariates associated 

with outcome assignment (Rosenbaum and Rubin, 1984; Hirano and Imbens, 2001; Imai and 

Van Dyk, 2004).   

Figure 3.1 is a graphical representation of covariate balance achieved by each 

propensity score method under the correctly specified and incorrectly specified treatment 

assignment models. The plots depict the distribution of F-statistics obtained from regressing 

𝑇𝑇 on 𝑿𝑿, in the overall (unweighted) dataset and using the weights or strata derived from each 

propensity score method, to give an overall covariate balance summary for the simulated 

datasets (e.g., as done in Fong et al., 2018). F-statistics were calculated using weighted 

generalized linear models for GBM and CBGPS. Stratified models, that pooled F-statistics 

via weighted averages, were used for  𝜷𝜷�𝑿𝑿𝒊𝒊 stratification, GPS-CDF stratification, and 

npGPS-CDF stratification, as is common with stratified analyses (Rosenbaum and Rubin, 

1984; Huang et al., 2005; Austin, 2011). Methods that achieved covariate balance have F-

statistics closer to zero.  

 All methods compared achieve better balance, on average, compared to the original 

(unweighted) data. However, weights derived through GBM produce variable F-statistics, 

especially within the incorrectly specified treatment model (right plot). The balance achieved 

by CBGPS weighting is better compared to GBM weighting, but CBGPS is still prone to 

inadequate covariate balance in both treatment assignment scenarios. Alternatively, 𝜷𝜷�𝑿𝑿𝑖𝑖 

stratification and GPS-CDF stratification produce smaller F-statistics, which are less 

sensitive to model misspecification and less susceptible to F-statistic outliers, compared to 
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both GBM and CBGPS weighting. The balance achieved by npGPS-CDF stratification 

appears to be poorer overall in the correctly specified model, but better in the incorrectly 

specified model, compared to GBM and CBGPS weighting. Additionally, npGPS-CDF 

stratification produces F-statistics without outliers that are less sensitive to model 

misspecification.  

 Within each scenario, the five propensity score methods are compared via average 

bias, mean squared error (MSE), and coverage probability of the estimated ATE. Figure 3.2 

depicts the distribution of the ATE for each method under each scenario. The true ATE value 

is 0.7 and is included as the dotted horizontal line. 

 In Scenario 1, both GBM and CBGPS produce estimates with increased bias and 

MSE, as well as decreased coverage probability compared to 𝜷𝜷�𝑿𝑿𝑖𝑖 stratification, GPS-CDF 

stratification, and npGPS-CDF stratification. Additionally, GBM and CBGPS both produce 

severe ATE outliers, which was expected as the balance produced by these methods was not 

well controlled. Alternatively, even though the degree of balance produced by npGPS-CDF 

stratification is poorer than other methods, it performs the best in terms of bias in ATEs and 

produces the lowest MSE. When the treatment model is misspecified but the outcome model 

is correct (Figure 3.2, Scenario 2), results are similar to Scenario 1. Again, GBM produces 

the highest bias and MSE, and the lowest coverage probability. Although CBGPS produces 

the lowest bias among the five methods, it still produces high MSE and large ATE outliers. 

Again, npGPS-CDF stratification outperforms 𝜷𝜷�𝑿𝑿𝑖𝑖 stratification in terms of bias, MSE, and 

coverage probability.  

 When the treatment model is correct, but the outcome model is misspecified (Figure 

3.2, Scenario 3), application of GBM results in lower bias and MSE compared to CBGPS. 
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Consistent with the previous scenarios, CBGPS produces large ATE outliers. GPS-CDF 

stratification and npGPS-CDF stratification have lower bias and MSE compared to all other 

methods, with npGPS-CDF stratification producing the most accurate estimates. Finally, 

Figure 3.2 Scenario 4 further demonstrates that the weighting procedures, GBM and CBGPS, 

do not perform as well compared to the stratification procedures while the novel npGPS-CDF 

stratification vastly outperformed all other propensity score methods yet still maintaining a 

coverage probability equal to 0.95. 

For completeness, npCBGPS weighting was additionally conducted under each 

simulation scenario, but the results obtained were worse than those for CBGPS weighting 

under all scenarios and are therefore not presented. 

 

3.5 Data Application: Effect of exposure to smoking imagery on smoking initiation in 

youth 

To assess the utility of the novel continuous propensity scoring techniques, GPS-CDF 

stratification and npGPS-CDF stratification are applied to the Mexican-American Tobacco 

use in Children (MATCh) study to determine whether exposure to smoking imagery in 

movies influences smoking initiation among Mexican-American adolescents (Wilkinson et 

al., 2008).  

 The MATCh study was a longitudinal population-based cohort study among 

Mexican-American teens in Houston, Texas, that aimed to measure factors that influence an 

adolescent’s decision to experiment with cigarettes (Spelman et al., 2009). One of the 

predictors of interest, exposure to smoking imagery in movies (SIM), was measured using a 

previously validated method in which subjects indicate whether or not they had viewed 50 
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randomly selected movies from a pool of 250. A scaled continuous variable which quantifies 

a subject’s exposure to SIM was then calculated (Sargent et al., 2008). 

 Typically, the continuous SIM exposure variable is categorized into four ordinal 

exposure groups. A previous ordinal propensity score analysis of these data determined that 

the odds of smoking initiation among teens significantly increased as their level of exposure 

to smoking imagery quartile increased (stratified ordinal propensity score OR=1.53, 95% CI 

[1.15, 2.03], p= 0.004) (Greene, 2017). Although this method of categorization is not 

inappropriate, categorization of a continuous treatment variable may lead to loss of 

information during the outcome analysis (Zhu et al., 2015; Fong et al., 2018). The GPS-CDF 

stratification and npGPS-CDF stratification methods allow one to treat SIM exposure as a 

continuous covariate to assess its relationship with smoking initiation in adolescents. 

Several potential pre-exposure confounders (that are associated with both the level of 

exposure to smoking imagery in movies and smoking initiation) are included in the current 

analyses (Table 3.2). Details of all variables included in the propensity models can be found 

in previous publications (Wilkinson et al., 2009; Greene, 2017). A visual representation of 

covariate balance is shown in Figure 3.3. The left plot shows the absolute Pearson 

correlations between each potential confounder (including square terms) and the treatment 

variable in the original (Unweighted) dataset as well as after utilization of each propensity 

score method (Zhu et al., 2015; Fong et al., 2018; Austin, 2018b). Zhu et al. (2015) suggest 

that correlation values less than 0.1 indicate that the confounding effect of the covariate is 

small. Based on this cutoff, all propensity score methods create better covariate balance 

compared to the original data.   
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The right plot of Figure 3.3 presents F-statistics that are calculated by regressing the 

continuous treatment variable against each potential confounder one at a time. The 

interquartile range of F-statistics within the figure are (2.52-20.08) for the original data, 

(0.02-0.54) for GBM, (0.00-0.00) for CBGPS, (0.31-0.79) for  𝜷𝜷�𝑿𝑿𝑖𝑖 stratification, (0.39-0.92) 

for GPS-CDF stratification, and (0.75-2.21) for npGPS-CDF stratification. As all propensity 

score methods produce small F-statistics, they result in much better balance compared to the 

original data.  

 After stratification using GPS-CDF and npGPS-CDF, covariate imbalance within the 

sample is largely removed. As our simulations show GPS-CDF and npGPS-CDF perform the 

best in terms of ATE estimation, even in the presence of model misspecification, analyses of 

the MATCh study are conducted using GPS-CDF and npGPS-CDF stratification. Results 

from the analyses are shown in Table 3.2. The methods show that the odds of smoking 

initiation among teens significantly increases as exposure to smoking imagery in movies 

increases (ORGPS-CDF = 3.75, 95% CI [1.50, 9.38], p = 0.005; ORnpGPS-CDF = 3.84, 95% CI 

[1.52, 9.68], p = 0.004).  

Results are similar when the analysis are conducted using GBM, CBGPS, and 𝜷𝜷�𝑿𝑿𝑖𝑖 

stratification with ORs equal to 4.41, 4.46, and 3.34, respectively. All methods attenuated the 

relationship between exposure to smoking imagery in movies and the odds of smoking 

initiation among teens compared to the original unweighted data (OR= 6.57). Again, 

outcome analyses are conducted using survey-weighted generalized linear models and 

conditional logistic regression for weighting methods and stratification methods, 

respectively. Running the analyses using a dual-core Intel Core i3-3110M with 4 GB RAM, 
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results were available in 28 seconds, 5 seconds, 3 seconds, 8 seconds, and 7 seconds using 

GBM, CBGPS, 𝜷𝜷�𝑿𝑿𝑖𝑖 stratification, GPS-CDF, and npGPS-CDF, respectively.  

 

3.6 Discussion 

 Although weighting methods have been proposed to conduct propensity score 

analyses with continuous treatments (Robins et al., 2000; Zhu et al., 2015; Fong et al., 2018), 

these methods are not always stable and may produce unreliable estimates. Through 

simulation, Fong et al. (2018) showed that MLE (Robins et al., 2000) and GBM (Zhu et al., 

2015) weights may result in worse covariate balance than had no adjustment been made. 

These authors further demonstrated that their newly developed weighting methods, CBGPS 

and npCBGPS, were able to produce better balance than both the MLE and GBM methods. 

Although the CBGPS methods aim to optimize covariate balance, this increased balance does 

not always provide more accurate estimates within the outcome analyses. When both 

treatment and outcome models were misspecified, they found that all weighting propensity 

score methods failed to obtain accurate ATE estimates. Although, a simplistic method has 

been proposed that operates without weighting, stratification based on the scalar value 

𝜷𝜷�𝑿𝑿𝑖𝑖 (Imai and Van Dyk, 2004), its performance has not been sufficiently evaluated through 

simulation, and is therefore seldom used in practice (Elliott et al., 2015). Based on the 

inability of weighting procedures to produce both stable and accurate ATE estimates and the 

underutilization of stratification methods for continuous treatments, we developed new 

continuous propensity score stratification techniques, GPS-CDF and npGPS-CDF, and 

investigated their performance against other continuous treatment propensity score methods. 
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Our simulation study is stronger than some previously conducted (Austin, 2018a; 

Fong et al., 2018), as it was representative of biomedical data through inclusion of both 

continuous and binary covariates. The inability of GBM weighting to produce reliable and 

accurate covariate balance was re-established within our simulation. When treatment 

assignment was both correctly and incorrectly specified, GBM weighting produced poor 

balance with patterns similar to the previous simulation (Fong et al., 2018). Unlike Fong et 

al. (2018), the CBGPS method did not optimize balance for all datasets within our 

simulation. Since CBGPS methods seek to minimize the weighted correlation between 

baseline covariates and the treatment, inclusion of binary covariates (as with our simulation) 

in the propensity score model may cause the CBGPS methods to fail, in terms of producing 

reliable covariate balance. Of note, we were able to fully replicate the results of Fong et al. 

(2018) using a simulation consisting of only continuous covariates (not presented), which in 

our opinion, is not generally applicable to biomedical research questions. 

 Failure to achieve covariate balance when presented with both continuous and binary 

pretreatment confounders did not arise in the stratification methods, 𝜷𝜷�𝑿𝑿𝑖𝑖 and GPS-CDF. 

Both methods produced better balance than GBM and CBGPS within our simulation. 

Interestingly, GPS-CDF stratification produced better covariate balance than npGPS-CDF 

stratification. Rubin (2006) detailed, within a binary treatment setting, that matching on a 

regression based scalar value produces better covariate balance than methods that match 

directly on covariates. As GPS-CDF stratification is implemented using a regression model 

and npGPS-CDF stratification balances directly on potential confounders, our findings in a 

continuous treatment setting are analogous to those of Rubin (2006).   
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GPS-CDF and npGPS-CDF stratification performed well across Scenarios 1-3 for 

comparisons of the ATE. Similar to the previous simulation (Fong et al., 2018), CBGPS had 

the lowest average bias among all five methods in Scenario 2 even though the balance 

achieved by CBGPS weighting was worse than both GPS-CDF and npGPS-CDF, for the 

incorrectly specified treatment model. This finding may further demonstrate that better 

covariate balance does not always lead to less biased causal inference estimates (Lee, 

Lessler, and Stuart, 2010; Stuart, Lee, and Leacy, 2013). The superiority of CBGPS 

weighting within Scenario 2 did not extend outside of average bias, as CBGPS had MSE 

three times that of npGPS-CDF stratification. For Scenario 4, which contained 

misspecification in both the treatment and outcome models, GBM and CBGPS failed to 

obtain satisfactory ATE estimates, while our newly developed GPS-CDF methods were still 

robust. The npGPS-CDF method had minimal bias and MSE, and high coverage probability 

for models with high amounts of misspecification.  

 The utility and performance of the GPS-CDF methods was further demonstrated on 

the MATCh study. Our newly derived methods have similar computational burden as current 

methods. Additionally, GPS-CDF and npGPS-CDF stratification produced better covariate 

balance compared to the original (unweighted) dataset. Furthermore, our stratification 

methods showed a stronger association between the odds of smoking initiation and exposure 

to smoking imagery in movies in Mexican-American adolescents than previous ordinal 

propensity score analyses (Greene, 2017). Based on these causal findings, public health 

interventions, including anti-smoking ad campaigns, may be formulated and implemented to 

help prevent potentially at-risk youth from forming smoking habits.  
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3.7 Conclusion 

 This paper details the derivation and application of two propensity scoring methods 

that remove imbalance due to confounding in observational studies with continuous 

treatments. Unlike current methods of continuous treatment propensity scoring that utilize 

weighting, the GPS-CDF and npGPS-CDF methods presented here, create balancing strata 

that contain subjects with similar covariate distributions. Our simulation study shows that 

stratification methods may produce less biased causal inference estimates compared to 

methods that rely on weighting, since extreme weights lead to inaccurate estimates. 

Furthermore, when applied to the MATCh study, the GPS-CDF and npGPS-CDF methods 

found a significant association between exposure to smoking imagery in movies and smoking 

initiation among Mexican-American adolescents. 

There are limitations within the current study. Primarily, only 4 data scenarios were 

considered within the simulation. Thus there exists a possibility that results could differ 

under different modeling assumptions. However, the simulation scenarios in this paper 

follow very closely to several recently published simulation studies by experts in the field of 

causal inference, and are representative of real-world data (e.g., Austin et al., 2007; Fong et 

al., 2018; Greene, 2017).  

In summary, the novel methods presented here allow investigators additional options 

when conducting continuous treatment propensity scoring in both parametric (GPS-CDF) and 

nonparametric (npGPS-CDF) frameworks. As with all propensity score methods, 

investigators should select the method that creates the best covariate balance for their data. 

Future research should further investigate the use of stratification techniques when 
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conducting continuous treatment propensity scoring with applications to relevant public 

health research questions.  
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 Strongly Associated 
with Treatment 

Moderately Associated 
with Treatment 

Independent of 
Treatment 

Strongly Associated 
with Outcome 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

Moderately Associated 
with Outcome 𝑥𝑥4 𝑥𝑥5 𝑥𝑥6 

Independent of 
Outcome 𝑥𝑥7 𝑥𝑥8 𝑥𝑥9 

 

Table 3.1. Association of covariates with treatment and outcome. From the table, it may be 

noted that 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥4, and 𝑥𝑥5 are simulated to be pretreatment confounders.  
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Table 3.2. Model estimates after GPS-CDF and npGPS-CDF stratification from the MATCh 

study. Note: HS = High School, POE = Positive outcome expectation, TAS = Thrill and 

adventure seeking, DAA = Drug and alcohol, SD = Social disinhibition score, SSS = 

Subjective Social Status.   

ORGPS-CDF 95% CI p-value ORnpGPS-CDF 95% CI p-value
Movie Exposure 3.75 [1.50, 9.38] 0.005 3.84 [1.52, 9.68] 0.004
Age 1.25 [0.81, 1.94] 0.307 1.34 [0.86, 2.09] 0.196
Gender 0.73 [0.36, 1.47] 0.378 0.72 [0.42, 1.25] 0.248
Born in USA 0.92 [0.45, 1.86] 0.811 0.99 [0.54, 1.82] 0.969
Level of Acculturation 0.75 [0.43, 1.30] 0.298 0.78 [0.51, 1.18] 0.241
Parental Education

Less than HS Ref - - Ref - -
Completed some HS 0.96 [0.49, 1.89] 0.908 1.00 [0.51, 1.96] 0.996
More than HS 0.67 [0.30, 1.52] 0.341 0.69 [0.35, 1.38] 0.295

Household Members who Smoke
None Ref - - Ref - -
One 0.81 [0.42, 1.55] 0.524 0.82 [0.45, 1.50] 0.521
Two or More 0.71 [0.26, 1.97] 0.510 0.74 [0.28, 1.99] 0.555

Close Peer who Smokes 1.40 [0.68, 2.87] 0.364 1.60 [0.80, 3.20] 0.183
Served in Detention 1.39 [0.71, 2.70] 0.334 1.39 [0.82, 2.38] 0.221
Cognitively Susceptibile 1.09 [0.53, 2.21] 0.817 1.11 [0.62, 2.00] 0.720
Risk Taking Behavior Score 1.17 [0.78, 1.77] 0.453 1.24 [0.87, 1.77] 0.241
POE Average 1.41 [0.68, 2.91] 0.354 1.45 [0.75, 2.82] 0.271
TAS 1.00 [0.89, 1.12] 0.960 1.03 [0.84, 1.28] 0.760
DAA 1.38 [1.08, 1.77] 0.010 1.40 [1.14, 1.71] 0.001
SD 1.30 [1.05, 1.61] 0.016 1.38 [1.12, 1.69] 0.003
SSS 0.92 [0.76, 1.12] 0.424 0.94 [0.72, 1.23] 0.664
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Figure 3.1. Graphical representation of the covariate balance achieved by each propensity 

score method under the correctly specified and incorrectly specified treatment assignment 

models. F-statistics obtained from regressing 𝑇𝑇 on 𝑿𝑿.  
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Figure 3.2. Distribution of the ATE for each method under each scenario. The true ATE 

value is included as the dotted horizontal line.  
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Figure 3.3. Graphical representation of the covariate balance achieved by each propensity 

score method within the MATCh study. The left plot presents the absolute Pearson 

correlation between treatment and each potential confounder (including square terms). The 

right plot presents F-statistics obtained from regressing 𝑇𝑇 on each potential confounder one 

at a time.   
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4.1 Introduction  

A freely downloadable R software package (R Foundation, Vienna, Austria) was 

created to facilitate the distribution of the newly created GPS-CDF propensity score methods. 

The 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 R package (Brown et al., 2019) includes both the ordinal (Greene, 2017) and 

multinomial (as detailed in Chapter II) GPS-CDF propensity score methods. This package 

allows researchers to input a GPS vector of length >2, and outputs 𝑎𝑎� , the single scalar 

balancing score that dictates the shape of the CDF. Additional functionality of the package 

allows researchers to automatically match (both optimal and greedy matching) and stratify 

subjects based on 𝑎𝑎�. The R documentation for the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 R package (Brown et al., 2019) 

is given below in Section 4.2, and an illustrative data example is detailed in Section 4.3. The 

package code used to implement the GPS-CDF method is given in Appendix B.  

 
 

4.2 R Documentation 
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4.2.1 User Defined Inputs 

 
 

4.2.2 GPS-CDF Package Outputs 
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4.2.3 GPS-CDF Package Examples 
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4.3 Illustrative Data Example 

 The methodology presented in Chapter II for estimating multiple treatments 

propensity scoring is available in the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 package in R (Brown et al., 2019). Below is 

an illustration of how to implement the package in practice in order to estimate ATEs using 

the Cerner Health Facts database (as detailed in Chapter II). This data example aimed to 

analyze the relationship between vasopressor choice and mortality in patients with non-

traumatic aneurysmal subarachnoid hemorrhage (SAH). We begin by loading the required 

packages and reading in the SAH data.  

 

> library(GPSCDF) 
> library(twang) 
> library(tableone) 
 
> ehr<- read.csv(file="EHR_pre_treat_merged_counts.csv",            
+             header=TRUE, sep=",") 
 
> dim(ehr)  
  
[1] 2417 275 
 
  

The EHR dataset contains records for 2,417 patients with complete data for all 273 

pretreatment variables (demographics and medication variables). Variables were selected for 

inclusion into the GPS vector using L1-penalized generalized linear models (GLM Lasso) 

(Mee Young and Hastie, 2007). This procedure was conducted in order to identify the 

significant confounders associated with the choice of vasopressor treatments. After utilizing 

GLM Lasso, 170 variables were selected and entered into a GBM model in order to derive 
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subject specific GPS vectors. After the GPS vector is calculated for each subject, each 

ordering of the GPS vector can be created. 

 
> length(x_1) 
 
[1] 170 
 
> xtlm<- paste(x_1,collapse="+" ) 
 
> tmodpaste<- as.formula(paste("as.factor(VASPRESOR_Class)~",         
+     xtlm, sep ="")) 
 
> #GBM model  
> ps1<- mnps(tmodpaste, data=ehr, estimand="ATE",verbose =          
+            FALSE, stop.method = c("es.mean"), n.trees=6000) 
 
 
> #Order: 1-2-3 
> pscores1<-cbind(ps1$psList$`1`$ps$es.mean.ATE,                    
+         ps1$psList$`2`$ps$es.mean.ATE,                
+                 ps1$psList$`3`$ps$es.mean.ATE) 
> pscoresnorm1<- pscores1/rowSums(pscores1) 
 
> #Order: 1-3-2 
> pscores2<-cbind(ps1$psList$`1`$ps$es.mean.ATE,                    
+         ps1$psList$`3`$ps$es.mean.ATE,                
+                 ps1$psList$`2`$ps$es.mean.ATE) 
> pscoresnorm2<- pscores2/rowSums(pscores2) 
 
> #Order: 2-1-3 
> pscores3<-cbind(ps1$psList$`2`$ps$es.mean.ATE,                    
+         ps1$psList$`1`$ps$es.mean.ATE,                
+                 ps1$psList$`3`$ps$es.mean.ATE) 
> pscoresnorm2<- pscores2/rowSums(pscores2) 
 
> #Order: 2-3-1 
> pscores4<-cbind(ps1$psList$`2`$ps$es.mean.ATE,                    
+         ps1$psList$`3`$ps$es.mean.ATE,                
+                 ps1$psList$`1`$ps$es.mean.ATE) 
> pscoresnorm4<- pscores4/rowSums(pscores4) 
 
> #Order: 3-1-2 
> pscores5<-cbind(ps1$psList$`3`$ps$es.mean.ATE,                    
+         ps1$psList$`1`$ps$es.mean.ATE,                
+                 ps1$psList$`2`$ps$es.mean.ATE) 
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> pscoresnorm5<- pscores5/rowSums(pscores5) 
 
> #Order: 3-2-1 
> pscores6<-cbind(ps1$psList$`3`$ps$es.mean.ATE,                    
+         ps1$psList$`2`$ps$es.mean.ATE,                
+                 ps1$psList$`1`$ps$es.mean.ATE) 
> pscoresnorm6<- pscores6/rowSums(pscores6) 
 
 

4.3.1 Obtaining the Scalar Balancing Score 

 The function GPSCDF is called by the following, with the arguments described 

below: 

> gpscdf.ehr <- GPSCDF(pscores = pscoresnorm1, data = ehr,          
+    trt = ehr$VASPRESOR_Class, greedy = TRUE,          
+    stratify = TRUE, multinomial = TRUE) 
 

The main argument of the GPSCDF function is pscores which indicates the ordering of 

the GPS vector to be used to create 𝑎𝑎� , the single scalar balancing score that dictates the shape 

of the CDF. Other key arguments include data, which indicates the name of the dataset to 

attach 𝑎𝑎�; stratify, which instructs the function to create strata based on the calculated 𝑎𝑎�; 

optimal and greedy, which produce either optimal or greedy matches based on 𝑎𝑎�, 

respectively; ordinal and multinomial, which indicate if matches are selected from 

either ordinal or multinomial treatments, respectively. The below procedure calculates 𝑎𝑎� and 

additionally creates greedy matches and strata based on the GPSCDF balancing score 

obtained from the initial ordering of the GPS vector. The multinomial option was specified to 

ensure matches are based on the absolute difference of 𝑎𝑎�. 
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 A key component of using the GPS-CDF method for multinomial treatments 

propensity scoring is selecting the ordering of the GPS vector that creates the best balance in 

the data. We do this by selecting the ordering that minimizes the standardized mean 

difference (SMD) within matches. 

 
> SMDdat <- gpscdf.ehr$grddata 
> SMDdat$trtc <- 0 
 
> for(i in 1:(dim(SMDdat)[1]/2)){ 
> matchpair<-SMDdat[which(SMDdat$grdmatch==i),] 
> matchpair<-matchpair[order(matchpair$VASPRESOR_Class),] 
> trtc<-paste(matchpair[1,4],matchpair[2,4],sep="") 
> 
> SMDdat$trtc[i]<-trtc 
> SMDdat$trtc[i+dim(SMDdat)[1]/2]<-trtc 
> } 
> mvars=paste(x_1, sep="" ) 
> fvars=paste(x_1[c(-1)]) 
> MatchTab12<- CreateTableOne(vars=mvars, factorVars = fvars,       
+       strata=c("VASPRESOR_Class"),       
+      data=SMDdat[which(SMDdat$trtc==12),], test=F) 
> SMDMatch12<-abs(ExtractSmd(MatchTab12)) 
> SMD12<-mean(SMDMatch12) 
 
> MatchTab13<- CreateTableOne(vars=mvars, factorVars = fvars,       
+       strata=c("VASPRESOR_Class"),                                     
+      data=SMDdat[which(SMDdat$trtc==13),], test=F) 
> SMDMatch13<-abs(ExtractSmd(MatchTab13)) 
> SMD13<-mean(SMDMatch13) 
 
> MatchTab23<- CreateTableOne(vars=mvars, factorVars = fvars,       
+      strata=c("VASPRESOR_Class"),            
+      data=SMDdat[which(SMDdat$trtc==23),], test=F) 
> SMDMatch23<-abs(ExtractSmd(MatchTab23)) 
> SMD23<-mean(SMDMatch23) 
 
> averageSMD<-(SMD12+SMD13+SMD23)/3 
> averageSMD 
 
[1] 0.1115303 
 
 



 
 

114 
 

 As shown above, the overall SMD from the initial ordering of the GPS is 

0.1115303. This SMD procedure is further applied to each additional ordering of the GPS 

vector to determine the ordering which creates matches that minimizes the SMD among all 

covariates.  

 
> averageSMD 
 
      1-2-3     1-3-2      2-1-3     2-3-1    3-1-2     3-2-1 
1 0.1115303 0.1132709 0.09815014 0.1151472 0.088769 0.1201286 
 
 
 Based on these results, the fifth ordering of the GPS vector (i.e. 3-1-2) produced 

greedy matches which minimizes the SMD and is therefore retained for the outcome analysis. 

A similar procedure can be conducted to select the ordering which minimizes SMD among 

strata.  

> strataSMD 
 
      1-2-3     1-3-2     2-1-3     2-3-1     3-1-2     3-2-1 
1 0.1518437 0.1626902 0.1550208 0.1631293 0.1531595 0.1568014 
 
 

Based on these results, the initial ordering of the GPS vector (i.e. 1-2-3) produced 

strata with the minimum SMD and should be retained for outcome analyses.  

 
 
4.3.2 Outcome Analyses  

 The orderings of the GPS vector that produce matches and strata with the best 

covariate balance are retained for outcome analyses. As the outcome of interest within the 

EHR dataset is mortality (i.e. a binary variable), conditional logistic regression models are 

used in order to obtain ATE estimates. The below procedure is used to obtain the effect 
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estimates from the greedy matched data based on the selected ordering of the GPS vector. A 

similar procedure may be conducted in order to obtain ATE estimates using the selected 

stratified data.  

 
> dat <- gpscdf.ehr$grddata 
 
> #Phenylephrine As reference 
> dat$VASPRESOR_Class_2 <- relevel(as.factor(dat$VASPRESOR_Class),  
+      ref = "2") 
         
> model1<- clogit(Mortality~ as.factor(VASPRESOR_Class_2)+          
+     AGE_IN_YEARS  + RACE + MARITAL_STATUS + GENDER +  
+     strata(grdmatch), data=dat) 
 
> coefs1<-summary(model1)$coefficients[,1] 
> secoef1<-summary(model1)$coefficients[,3] 
 
 
> #Norepinephrine As reference 
> dat$VASPRESOR_Class_3 <- relevel(as.factor(dat$VASPRESOR_Class),  
+      ref = "3") 
         
> model2<- clogit(Mortality~ as.factor(VASPRESOR_Class_3)+          
+     AGE_IN_YEARS  + RACE + MARITAL_STATUS + GENDER +  
+     strata(grdmatch), data=dat) 
 
> coefs2<-summary(model2)$coefficients[1,1] 
> secoef2<-summary(model2)$coefficients[1,3] 
 
 
> #Dopamine vs Phenylephrine: 
> OR12<-exp(coefs1[1]) 
> LCL12<-exp(coefs1[1]-qnorm(.975)*secoef1[1]) 
> UCL12<-exp(coefs1[1]+qnorm(.975)*secoef1[1]) 
 
> OR12 
as.factor(VASPRESOR_Class_2)1  
                      1.52918  
> LCL12 
as.factor(VASPRESOR_Class_2)1  
                     1.114712  
> UCL12 
as.factor(VASPRESOR_Class_2)1  
                     2.097755 
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> #Norepinephrine vs Phenylephrine: 
> OR32<-exp(coefs1[2]) 
> LCL32<-exp(coefs1[2]-qnorm(.975)*secoef1[2]) 
> UCL32<-exp(coefs1[2]+qnorm(.975)*secoef1[2]) 
 
> OR32 
as.factor(VASPRESOR_Class_2)3  
                     1.408009  
> LCL32 
as.factor(VASPRESOR_Class_2)3  
                    0.9984772  
> UCL32 
as.factor(VASPRESOR_Class_2)3  
                     1.985512 
 
> #Dopamine vs Norepinephrine: 
> OR13<-exp(coefs2) 
> LCL13<-exp(coefs2-qnorm(.975)*secoef2) 
> UCL13<-exp(coefs2+qnorm(.975)*secoef2) 
 
> OR13 
[1] 1.086059 
> LCL13 
[1] 0.7911163 
> UCL13 
[1] 1.490961 
 
 
 The ATE estimates obtain above are identical to those detailed in Chapter II (Table 

2.2). These results show that phenylephrine is superior to dopamine in relation to mortality in 

patients with non-traumatic SAH, but the comparison between phenylephrine and 

norepinephrine remains unclear.    

 

4.4 Conclusion 

The package detailed here may be freely downloaded and easily adapted for various 

research projects that present with either ordinal or multinomial treatments. We have 
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presented an example that shows the ease of which GPS-CDF can be applied to a large data 

set, and outline key considerations when using the GPSCDF package to estimate either the 

average treatment effect, or the average treatment effect among the treated.  
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CHAPTER V 

 

Conclusions and Future Work 

 

5.1 Conclusion 

Propensity score methods are used to make causal inference in non-randomized 

observational studies. The goal of these methods is to create covariate balance among 

treatment groups, thereby mimicking randomized control trails. Although there are countless 

methods and techniques to implement propensity scoring when presented with binary 

treatments, extensions to multinomial and continuous treatments are under-studied. The work 

presented here fills significant gaps within the propensity score literature by introducing two 

novel methodologies that remove imbalance due to confounding in observational studies with 

either multinomial or continuous treatments. 

As discussed in Chapter I and II, current multinomial propensity score methods do 

not have the same flexibility as the scalar value derived in binary treatment settings. 

Therefore, the goal of Aim 1 was to develop a novel methodology of propensity score 

analysis that derives a single scalar balancing score for multinomial treatments. The proposed 

method, the GPS-CDF method, accurately maps the GPS vector, produced by either 

parametric or non-parametric models, to a scalar value that can be used to match or stratify 

subjects. The utility of the GPS-CDF method, when presented with multinomial treatments, 

was assessed via simulation and through application using an electronic health records data 
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set. The flexibility and application of the GPS-CDF method provides researchers with a new 

option, more relatable to standard binary propensity score techniques, when conducting 

multinomial treatment propensity scoring.  

Current methods for conducting propensity score analysis in the presence of 

continuous treatments, as detailed in Chapter I and III, rely on weighting. Although these 

methods are not inappropriate, they do not always produce accurate effect estimates due to 

extreme weights. The goal of Aim 2 was to develop a novel method of propensity score 

analysis for continuous treatments that does not rely on weighting. Both the GPS-CDF and 

npGPS-CDF methods were derived to stratify subjects, based on pre-treatment confounders, 

in order to create covariate balance in the presence of continuous treatments. Simulations as 

well as an application to the MATCh data showed that these newly developed stratification 

methods, GPS-CDF and npGPS-CDF, performed better than standard continuous treatment 

propensity score weighting methods. Our novel methodologies allow researchers to conduct 

propensity score analyses without utilizing weighting, in both parametric (GPS-CDF) and 

nonparametric (npGPS-CDF) frameworks, when presented with continuous treatments.    

Finally, Aim 3 provides an R package to implement the multinomial (and ordinal) 

GPS-CDF method detailed in Chapter II. Although the multinomial GPS-CDF method is 

straightforward to implement in practice, few researchers, especially those with non-

computational backgrounds, will take the time to implement the method for themselves. 

Therefore, having a standard R package available that implements the novel GPS-CDF 

method will hopefully allow more robust propensity score analyses by researchers, when 

presented with multiple treatments.  
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The overall strength of this research is the novelty of the proposed methods. 

Currently, methods of implementing multinomial and continuous treatment propensity 

scoring are not as well developed or studied as those for standard binary propensity scoring. 

Aim 1 and 2 provided new multiple treatment propensity score methodologies and further 

tested these novel methods in simulation. Each simulation contained multiple treatment and 

outcome scenarios that were representative of real data. These detailed simulations ensure 

that the methodologies developed in Aim 1 and 2 will translate well to real data applications. 

Furthermore, when our novel methodologies were applied to real data applications (i.e. an 

EHR data set, and the MATCh study), they out performed current standard methods in terms 

of achieved covariate balance. Furthermore, the utility of any new methodology is directly 

related to the ease at which it can be implemented. Therefore, the R package developed in 

Aim 3 will hopefully lead researchers to use of the GPS-CDF method in practice.  

There are limitations within the current work that should be acknowledged. Both 

simulation studies conducted within Aim 1 and 2 only considered four different data 

scenarios. Thus, the results detailed in Chapters II and III could differ under different 

modeling assumptions. Additionally, the multinomial GPS-CDF method detailed in Chapter 

II only utilized one non-parametric method, GBM. Therefore, it is unclear if other non-

parametric methods of deriving the GPS vector will produce better balance and outcome 

estimates when used in tangent with the GPS-CDF method. Finally, the continuous GPS-

CDF method detailed in Chapter III assumed normal distributions when bootstrapping/re-

sampling subject specific covariate distributions. Other distributions, including the T-

distribution or non-parametric distributions, may lead to more accurate balancing strata.     
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 There are still many avenues for future research into propensity score methodologies 

for multiple treatments. As indicated above, other non-parametric machine learning 

techniques should be tested and examined to find a methodology that most accurately derives 

the GPS vector for multinomial treatments. Additionally, as our method was able to 

accurately derive effect estimates when presented with three treatment groups, the 

multinomial GPS-CDF method may be extended to genetic applications when analyzing SNP 

data. Furthermore, through our work, it appears that stratification methods may outperform 

weighting methods within the continuous treatment setting. Therefore, other stratification 

techniques may be derived and tested in the continuous treatment setting. For example, 

stratification based on the predicted value derived from the CBGPS method may prove more 

accurate than stratification based on a linear model. Overall, propensity scoring is a growing 

tool for researchers to implement when working with observational data. It is up to subject 

specific researchers to determine which method creates the optimal balance in their data. 

Future propensity score research should continue to evaluate the merit and application of the 

GPS-CDF methodologies when working with multinomial and continuous treatments.  
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Appendices 

Appendix A.  Supplemental Figures  

Supplemental Figure 1. Distribution of the ATE for each method under each scenario 

between treatment 1 and treatment 2. The true ATE value of 0.7 is included as the dotted 

horizontal line.   
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Supplemental Figure 2. Distribution of the ATE for each method under each scenario 

between treatment 2 and treatment 3. The true ATE value of -0.3 is included as the dotted 

horizontal line.   
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Supplemental Figure 3. Graphical representation of the CDF mapping produced by the GPS-

CDF method under 3, 4, 6, and 10 multinomial treatment group scenarios, respectively.   
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Appendix B.  Code for implementation of GPS-CDF method using R software  

 
#####################################################   
# R Function to create Generalized Propensity Score #  
#      Cumulative Distribution Function (GPS-CDF)   #   
#####################################################  
 
 
GPSCDF<-function(pscores=NULL, data=NULL, trt=NULL, stratify=FALSE, nstrat=5, 

optimal=FALSE, greedy=FALSE, ordinal=FALSE, multinomial=FALSE, 
caliper=NULL){ 

 
  if(is.null(stratify)){ 
    stratify<- FALSE 
  } 
 
  if(is.null(optimal)){ 
    optimal <- FALSE 
  } 
 
  if(is.null(greedy)){ 
    greedy <- FALSE 
  } 
 
  N<-dim(pscores)[1] # Number of subjects 
  size<-dim(pscores)[2] # Number of treatments 
 
  cpscores<-t(apply(pscores[,], 1,cumsum)) 
  Z<- seq(1, dim(pscores)[2], by=1) 
 
  if(sum(pscores)/N == 1){ 
 
    Znorm<-sort(unique(Z))/max(unique(Z)) 
    ppar<-rep(0,N) 
 
    for( i in 1:N){ 
      y<-cpscores[i,] 
      mod<-stats::nls(y~I(Znorm^exp(power)), control = stats::nls.control(maxiter = 

150, tol = 1e-05, minFactor = 1/1024,printEval = FALSE, warnOnly = TRUE), 
start = list(power = 0),trace = F) 

      parm<-summary(mod)$coefficients[1] 
 
      mod<-stats::nls(y~I(Znorm^exp(power)), control = stats::nls.control(maxiter = 

150, tol = 1e-05, minFactor = 1/1024,printEval = FALSE, warnOnly = TRUE), 
start =list(power =parm),trace = F) 

      parm<-summary(mod)$coefficients[1] 
 
      ppar[i] <- parm 
 
    } 
 
    if (!is.null(data)){ 
      data$a<- ppar 
      data2<- data 
    } 
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    #Set up Stratification 
    if(stratify==TRUE){ 
      strata<-dplyr::ntile(ppar, n=nstrat) 
 
      if (!is.null(data)){ 
        data$strata<-strata 
      } 
 
    } else{ 
      strata<- NULL 
      nstrat<- NULL} 
 
 
    #Set up Optimal Matching 
    if(optimal==TRUE){ 
 
      if (is.null(data)){ 
        stop('Specify a dataframe to attach matches') 
      } else{ 
 
        if (is.null(trt)){ 
          stop('Specify a treatment variable to proceed with matching') 
        } else{ 
 
          if (ordinal==FALSE & multinomial==FALSE){ 
            stop('Specify Ordinal or Multinomial treatments') 
          } else{ 
 
 
          # Set up matching score 
          epsilon=1e-5 
          deltamat<-matrix(0,nrow=N,ncol=N) 
          deltamat2<-matrix(0,nrow=N,ncol=N) 
 
          # Loops to set up delta matrix 
          if(ordinal==TRUE){ 
            for(i in 1:N){ 
              deltamat[i,]<-((ppar[i]-ppar)^2+epsilon)/((trt[i]-trt)^2) 
            } 
          } 
 
          if(multinomial==TRUE){ 
            for(i in 1:N){ 
              for(k in 1:N){ 
                if(trt[i]==trt[k]){deltamat[i,k]<-999} else{ 
                  deltamat[i,k]<- abs((ppar[i]-ppar[k]))} 
              } 
            } 
          } 
 
 
          for(i in 1:N){ 
            deltamat2[i,]<-abs((ppar[i]-ppar)) 
          } 
 
          #Get rid of Inf and put in 999999 
          deltamat[!is.finite(deltamat)]<-99 
          diag(deltamat)<-99 



 
 

128 
 

 
# Derigs algorithm only works with integers so we can multiply all 
distances # by 10,000 to get accuracy to 4 decimal places 

          deltamatint<-deltamat*100000 
 
          # Use distancematrix function to reform so we can do NBP matching 
          suppressWarnings(distmat<-nbpMatching::distancematrix(deltamatint)) 
 
          # Set up matches 
          invisible(utils::capture.output(matchset<-

nbpMatching::nonbimatch(distmat))) 
 
          #Remove row if N is odd 
          matches1<-matchset$halves[ grep("ghost", matchset$halves$Group2.ID, 

invert = TRUE) , ] 
          matches<- matches1[ grep("ghost", matches1$Group1.ID, invert = TRUE) , ] 
 
          #Find distances of matches 
          matchmat<-matrix(NA, nrow=round(dim(matches)[1]), ncol=3) 
          for(i in 1:dim(matches)[1]){ 
            pair<-matches[i,c(2,4)] 
            value<- deltamat2[pair[1,1],pair[1,2]] 
 
            matchmat[i,1]<-pair[1,1] 
            matchmat[i,2]<-pair[1,2] 
            matchmat[i,3]<-value 
          } 
 
          npairs<-dim(matchmat)[1] 
 
          #Calculate Average Total Distance of Matched Pairs 
          optdistance<- sum(matchmat[,3])/npairs 
 
          data$optmatch<-0 
          # Attach matches to data 
          for(i in 1:dim(data)[1]){ 
            data$optmatch[matches[i,2]]<-i 
            data$optmatch[matches[i,4]]<-i 
          } 
          optmatch<-data$optmatch 
 
          } 
        } 
      } 
    } else{ 
      optmatch<- NULL 
      optdistance<- NULL} 
 
 
    #Set up Greedy Matching 
    if(greedy==TRUE){ 
 
      if (is.null(data)){ 
        stop('Specify a dataframe to attach matches') 
      } else{ 
 
        if (is.null(trt)){ 
          stop('Specify a treatment variable to proceed with matching') 
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        } else{ 
 
          if (ordinal==FALSE & multinomial==FALSE){ 
            stop('Specify Ordinal or Multinomial treatments') 
          } else{ 
 
          # Set up matching score 
          epsilon=1e-5 
          deltamat<-matrix(0,nrow=N,ncol=N) 
          deltamat2<-matrix(0,nrow=N,ncol=N) 
 
          #Set Caliper 
          if (is.null(caliper)){ 
            caliper<-.25*stats::sd(ppar) 
          } 
 
          # Loops to set up delta matrix 
          if(ordinal==TRUE){ 
            for(i in 1:N){ 
              deltamat[i,]<-((ppar[i]-ppar)^2+epsilon)/((trt[i]-trt)^2) 
            } 
          } 
 
          if(multinomial==TRUE){ 
            for(i in 1:N){ 
              for(k in 1:N){ 
                if(trt[i]==trt[k]){deltamat[i,k]<-999} else{ 
                  deltamat[i,k]<- abs((ppar[i]-ppar[k]))} 
              } 
            } 
          } 
 
 
          for(i in 1:N){ 
            deltamat2[i,]<-abs((ppar[i]-ppar)) 
          } 
 
          #Get rid of Inf and put in 999 
          deltamat[!is.finite(deltamat)]<-999 
          diag(deltamat)<-999 
 
          # Use Greedy matching to get matches 
          # Set up matches 
 
          # Set up holding for matches 
          matchmat<-matrix(NA, nrow=round(dim(deltamat)[1]/2), ncol=3) 
 
          #Replace matched pairs with maximum of delta matrix so it wont be used 

again 
          repnum<-max(deltamat) 
 
          i<-0 
          while(min(deltamat) < caliper){ 
            i<-i+1 
            inds = which(deltamat== min(deltamat), arr.ind=TRUE) 
            value= deltamat2[inds[1,1],inds[1,2]] 
 
            pair<-inds[1,1:2] 
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            matchmat[i,1:2]<-pair 
            matchmat[i,3]<-value 
 
            deltamat[pair,]<-repnum 
            deltamat[,pair]<-repnum 
 
          } 
 
          matchmat<-matchmat[is.na(matchmat[,1])==F,] 
 
          npairs<-dim(matchmat)[1] 
 
          #Calculate Average Total Distance of Matched Pairs 
          grdydistance<- sum(matchmat[,3])/npairs 
 
          # Attach matches to data 
          data2<- data2[matchmat,] 
 
          data2$grdmatch<-0 
          for(j in 1:(dim(data2)[1]/2)){ 
            data2$grdmatch[j]<-j 
            data2$grdmatch[j+dim(data2)[1]/2]<-j 
          } 
          grdmatch<-data2$grdmatch 
          grddata<-data2 
 
          } 
        } 
      } 
    } else{ 
      caliper<- NULL 
      grdmatch<- NULL 
      grddata<- NULL 
      grdydistance<-NULL} 
 
 
  } else{ 
    stop('Pscores must add to 1') 
  } 
 
 
  returnlist<-list(ppar=ppar, data=data, nstrat=nstrat, strata=strata, 

optmatch=optmatch, optdistance=optdistance, caliper=caliper, 
grddata=grddata, grdmatch=grdmatch, grdydistance=grdydistance, NULL=NULL) 

  returnlistfinal<- returnlist[-which(sapply(returnlist, is.null))] 
  return(returnlistfinal) 
 
}  
 
######################## 
# END GPS-CDF Function # 
######################## 
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