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      Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the 

western countries. The interaction between CLL cells and the bone marrow stromal 

environment is thought to play a major role in promoting the leukemia cell survival and 

drug resistance. My dissertation works proved a novel biochemical mechanism by which 

the bone marrow stromal cells exert a profound influence on the redox status of primary 

CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh 

leukemia cells isolated from the peripheral blood of CLL patients exhibited two major 

redox alterations when they were cultured alone: a significant decrease in cellular 

glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the 

presence of bone marrow stromal cells, CLL cells restored their redox balance with an 

increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell 

survival. Further study showed that CLL cells were under intrinsic ROS stress and highly 

dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH 

synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting 

substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by 

uptaking the more stable and abundant precursor cystine from the tissue environment and 

convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take 

up extracellular cystine for GSH synthesis due to their low expression of the transporter 
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Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow 

stromal cells effectively took up cystine and reduced it to cysteine for secretion into the 

tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated 

GSH in CLL cells in the presence of bone marrow stromal cells significantly protected 

the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard 

therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this 

protective mechanism by depletion of cellular GSH using a pharmacological approach 

potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic 

action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This 

study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and 

identifies a new therapeutic strategy to overcome drug resistance in vivo.    
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INTRODUCTION 

1.  Role of microenvironment in drug resistance of chronic lymphocytic leukemia   

Chronic lymphocytic leukemia (CLL), the most common adult leukemia in the 

western countries, was last reviewed in the New England Journal of Medicine in 2005 1, 

this review updated new information about CLL based on the understanding of the 

biology and derivation of CLL cells during the past 10 years. Progress in CLL study 

further underlines the role of leukemia microenvironment to support CLL cells survival 

and drug resistance. The current views of CLL point out that, firstly, rather than inherent 

apoptotic defect in the entire mass of leukemia cells, CLL cell accumulation occurs more 

likely because of survival signals delivered from microenvironment to a subset of 

leukemia cells. Secondly, the studies of BCR-triggering capacities 2, 3, surface membrane 

phenotypes 4, telomere lengths 5, gene-expression profiles 6,  and in vivo measurement of 

cell division rates 7, indicate that, CLL is a disease of accumulating B lymphocytes with 

higher proliferation than previously thought. While inducing anti-apoptotic signal, the 

mediators in the leukemia microenvironment also render the CLL cells apoptosis-prone 

following correlating signaling pathway activation 8. The machinery of apoptosis is 

functional in CLL cells 9. To resist apoptosis, CLL cells get “help” from leukemia 

microenvironment to balance the pro- and anti- apoptotic signals in favor of cell survival. 

This hypothesis is well proven by the phenomenon that anti-apoptotic CLL cells in vivo 

quickly go spontaneous apoptosis in vitro, which can be largely prevented by co-

culturing with stromal cells 3. Thirdly, the discovery of new prognostic markers in CLL 

nicely indicates the promoting role of accessory signals from microenvironment. CLL is 

a clinically heterogeneous disease that currently categorized by the mutation status of V 
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genes, expression of ZAP70 and CD38 10-12. Unmutated V genes reflect high antigen 

binding possibility, while ZAP70 and CD38, as the intracellular and surface protein 

respectively, both are involved in signal transduction and activation of CLL cells. CLL 

cells that carry these markers always have unfavorable disease progress and short 

survival. Although the exact functions of these markers are not clear yet, it indicates that 

relatively active CLL cells, which dynamically interact with the leukemia 

microenvironment, are more likely to survive and associated with aggressive disease. 

Fourthly, the residual marrow nodules are the major sites of treatment failure in clinic 13. 

CLL originates in the peripheral lymphoid organs, bone marrow is the major target of 

CLL cells. It has been recognized that the interactions of CLL cells with components of 

bone marrow and lymph node allow the subpopulation of cells to survive initial drug 

treatment, the expansions of these cells further acquire drug resistance and finally cause 

relapse 14. 

In the recent years new therapeutic strategies such as fludarabine-based regimens 

have significantly improved the treatment outcomes for patients with CLL, the most 

common adult leukemia in the United States and Europe 13.  However, failure to 

eliminate the residual leukemia cells that are resistant to drug treatment and the eventual 

reemergence of the leukemia cell population continue to be a major clinical challenge, 

and CLL remain as an incurable disease 13, 15.  Although many anticancer drugs are 

effective in killing CLL cells in vitro, the leukemia cells are much more resistant to drug 

treatment in vivo.  Growing evidence suggests that the bone marrow stroma may provide 

a tissue environment that promotes the survival of CLL cells and render drug resistance 1, 

14.  Patients with CLL often present with bone marrow infiltration 16, 17, and the expansion 
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of the residual CLL cells after drug treatment eventually leads to disease relapse and 

treatment failure.  Thus, understanding the mechanisms by which the tissue 

microenvironment promotes leukemia cell survival and drug resistance is critical for 

developing new therapeutic strategies to specifically abrogate such protective 

mechanisms and effectively eliminate the malignant cells in vivo. 

2. Stromal-leukemia interaction  

The interactions of CLL cells with bone marrow stromal cells through cell-cell 

contact and soluble factors could activate molecular pathways that promote survival and 

drug resistance of CLL cells (Fig. 1).  

 

Figure 1. Stromal-CLL interactions activate molecular 

pathways in CLL cells and promote survival and drug 

resistance of CLL cells.  
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 (1) Cell adhesion mediated survival and drug resistance in CLL cells.  

The adhesion molecule expression pattern of CLL cells is quite complicated. CLL 

cells constitutively express β1 and β2 integrin, together with variable α3, α4, α5 integrins. 

CLL cells have variable expression of lymphocyte function-associated antigen 1 (LFA-

1), very late antigen-4 (VLA-4), inter-cellular adhesion molecule 1 (ICAM-1/CD54), 

ICAM-2 (CD102), ICAM-3 (CD50), and L-selectin (CD62L) 18, 19. CD44 is also detected 

in certain aggressive population 20, 21. Besides mediating migration of CLL cells to their 

niche in bone marrow and secondary lymphoid tissues 18, 22, some of these adhesion 

molecules also protect CLL cells for survival and confer drug resistance through binding 

to their receptors on stromal cells. For example, β1 and β2 integrins on CLL cells acting 

simultaneously mediate binding to ICAM-1 (CD54) and VCAM-1 (CD106) on bone 

marrow stromal cells, and prevent apoptosis of CLL cells correlating with preventing loss 

of Bcl-2 protein expression; while normal B cells cannot be protected by stromal cells 

due to lack of this adhesion pattern 23, 24. An independent group also observed the role of 

β2 integrin in the prevention of apoptosis induction in CLL cells 25.  Moreover, the 

interaction of VLA-4 (α4β1 integrin) on CLL cells with fibronectin produced by stromal 

cells prevents apoptosis and induces resistance to fludarabine, correlating with elevated 

Bcl-2/Bax ratio and Bcl-xL level 26, 27. Another adhesion molecule that might be involved 

in CLL survival is CD44, high CD44 expression was found on an aggressive subtype of 

CLL patients 28. In multiple myeloma cells, CD44 mediates binding to bone marrow 

stromal cells through fibronectin and VCAM-1, CD44/ fibronectin binding upregulates 

p27, activates NFkB and confers cell adhesion-mediated drug resistance of multiple 

myeloma cells 29. Cell adhesion-mediated drug resistance is widely observed in multiple 
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myeloma cells 30-32, it remains to be assessed whether similar molecule pathways are also 

activated in CLL cells. 

(2) Soluble factor mediated survival and drug resistance in CLL cells.  

It is well known that bone marrow stromal cells secrete various cytokines including 

stromal cell-derived factor-1 (SDF-1), IL6, IL4, vascular endothelial growth factor 

(VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor 1 (IGF1), 

granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-

stimulating factor  (GM-CSF), interferon-α, –γ (INF-α, –γ), tumor necrosis factors α 

(TNF α), TNF family members CD40L, B-cell activating factor (BAFF) and a 

proliferation-inducing ligand (APRIL). Protection effect of these cytokines on CLL cells 

have been shown by experiments of specifically adding exogenous cytokines and relevant 

antibodies to CLL cells. For example, exogenous IL4, INF-α and –γ inhibit spontaneous 

apoptosis and promote CLL cells survival in vitro, which are significantly reduced by 

their antibodies 33. The mechanism studies have identified some survival pathways of 

these cytokines. IL4, INF-α, –γ and bFGF prevent apoptosis of CLL cells using a Bcl-2 

dependent pathway 34-39. In addition, IL4 and INF–γ also upregulate the expression of 

inducible nitric oxide synthase (iNOS) in CLL cells and cause endogenous release of NO, 

which contributes to anti-apoptosis through S-nitrosylation thus suppression of caspase 3 

40, 41. STAT1 and 6 might play important role in the cytokine-induced iNOS expression 

40. VEGF is another important stromal cell-derived factor that not only protects CLL cells 

survival but also induces angiogenesis. On one hand, by binding to VEGFR, VEGF 

activates downstream STAT 1 and 3 in CLL cells, and thus upregulates the expressions 

of Mcl-1 and XIAP that enhance apoptotic resistance 42. On the other hand, VEGF as 
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well as bFGF play a central role in angiogenesis. Recently, the role of angiogenesis in 

CLL cells has been recognized to influence disease progression through producing even 

more powerful cytokine interactions among CLL cells, bone marrow stromal cells, and 

endothelial cells 43, 44.  

Besides cytokines, other stromally secreted proteins also have been identified to 

mediate stromal protection in CLL cells. After stromally induced hedgehog signaling 

pathway being reported in lymphoma and multiple myeloma cells, this pathway has also 

been identified in CLL cells co-cultured with stromal cells. Hedgehog protein activates 

its receptor PTC on CLL cells, which then releases Smo. Smo activation leads to 

transcriptional activity of Gli1 and 2 that finally upregulate the expression of Bcl-2 45. 

Wnt is another stromally secreted protein that contributes to anti-apoptosis of CLL 

through binding to Frizzled receptor and activating Wnt/β-catenin signaling 44. 

Especially, Wnt5a can also bind to orphan receptor tyrosine kinase (ROR1), the signature 

surface receptor tyrosine kinase of CLL cells, induces activation of NF-κB 45, the newly 

discovered pair of Wnt5a/ROR1 might enhance the capacity of CLL cells to receive 

survival signals from microenvironment and confer drug resistance.  

In fact, the leukemia microenvironment is complicated. Now people more and more 

agree that the cell adhesion molecules and soluble factors usually talk with each other, 

enhance each other, and collaboratively mediate survival and drug resistance in CLL 

cells.  Moreover, the migration of CLL cells to the bone marrow milieu especially needs 

the crosstalk of integrin and cytokines 18, 22. 

 (3) Other activated survival pathways in CLL cells by unknown mediators from stromal 

cells.  
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There are some other signaling pathways are activated in CLL cells by interacting 

with bone marrow stromal cells, while the mediators from the stromal cells are still 

unknown. For example, the signaling pathway of MKK3/6/ MAPK p38/ MMP9 is 

activated in CLL cells when co-cultured with stromal cells, which induces anti-apoptosis 

and angiogenesis 46. Another upregulated pathway in co-cultured CLL cells is PI3K/NF-

kB, which prevents the downregulation of Bcl-xL expression, induces expression of XIAP 

and FLIPL and finally inhibits caspase3 activation and apoptosis 47. Using DNA 

microarray technology, another group confirmed this pathway by identifying a number of 

genes in PI3K/Akt/NFkB pathway in CLL cells induced by BMSCs. They further proved 

that this pathway mediated upregulation of pro-angiogenic molecules vascular 

endothelial growth factor (VEGF) and osteopontin (OPN) and downregulation of anti-

angiogenic molecules thrombospondin-1 (TSP-1) 48. 

Despite the progress of studying the molecular interaction of stromal cells and CLL 

cells, none of these soluble factors or adhesion moleculars alone or in combination could 

mimic the bone marrow microenvironment, indicating the complicity of the stromal 

environment. A better understanding of the biology of stromal-CLL interaction is 

urgently needed to guide the design new therapeutic strategies.  

3. Oxidative stress of chronic lymphocytic leukemia and glutathione  

Studies of CLL cells including basal superoxide levels, mitochondrial DNA 

mutation, oxidative DNA damage and antioxidant enzyme activities have shown that, 

compared to normal lymphocytes, CLL cells exhibit increased production of reactive 

oxygen species (ROS) and are under oxidative stress 49-52. This has been further proven 

by the fact that CLL cells are quite sensitive to ROS-mediated anticancer agents 49, 52. 
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Moreover, B-CLL cells are more susceptible to H2O2 than normal lymphocytes 53. All 

these indicate that CLL cells are highly dependent on anti-oxidant system to maintain 

redox balance. 

 Glutathione (GSH), the chief nonprotein intracellular sulfhydryl, is the major 

antioxidant that maintains a redox balance in the cellular compartments. Besides 

removing endogenous free radical, increased GSH levels largely affect the efficacy and 

interactions of a variety of antineoplastic interventions. The mechanisms that contribute 

the GSH-mediated drug resistance include: (1) Defense against oxidative stress produced 

by ROS generating drugs. (2) Drug inactivation and alterations in drug transport; (3) 

Increased repair and tolerance of DNA damage; (4) Apoptosis inhibition. 

(1) ROS scavenger: Several anticancer agents currently used for cancer treatment 

have been shown to cause increased cellular ROS generation 54. In cancer cells under 

oxidative stress, overproduction of ROS by those drugs not only lead to irreversible cell 

injury, but also exhaust the capacity of antioxidant defense 55, 56. The electrophilic 

properties of GSH enable it to react with H2O2 nonenzymatically or by the action of 

glutathione peroxidase(GPX), yields GSSG 57. Cancer cells that have high levels of GSH 

are recognized to fulfill the protective function, and survive the exogenous ROS. 

(2) Drug inactivation and alterations in drug transport: GSH is widely recognized to 

protect cells via inactivation and elimination of cytotoxic agents. GSH-drugs adducts may 

form spontaneously or the process may be catalyzed by Glutathione S-transferases 

(GSTs) in a greater rate 58. Glutathione S-conjugates are often more hydrophilic and less 

toxic, they can be transported outside the cells through GS-X pump, an ABC transporter 
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family member coded by MDR gene 59, 60.  Thus, both GST and GS-X pump have 

important roles in GSH-mediated drug resistance 60, 61. 

(3) Increased repair and tolerance of DNA damage: DNA is a well established target 

of antitumor drugs, cells with enhanced ability of DNA repair can survive and gain 

alkylator chemoresistance 62. There’s accumulating evidence indicates that GSH has an 

additionally potential to facilitate DNA repair 63, either through diverting folates to de 

novo purine and pyrimidine synthesis 64, or through formation of less toxic lesions that 

are easily repaired 65, 66. In general, facilitating DNA repair can have an impact in GSH-

mediated resistance. 

(4) Apoptosis inhibition: GSH can significantly affect cell survival. For example, 

cytochrome c induces apoptosis only in its oxidized form, while elevated GSH keeps it in 

an inactive state (reduced form) and thus prevents apoptosis 67. GSH can also inhibit 

apoptosis through mechanisms not directly through modulating ROS levels 68.  For 

instance, glutathionylation of pro-caspase-3 renders it resistance to protolytic cleavage 

and thus prevents caspase activation 69.  In CLL cells, glutathionylation of the anti-

apoptotic protein MCL1 protects it from being cleaved by caspase-3 and thus promotes 

cell survival 52.  A recent study indicated that GSH may promote lymphoid cell survival 

through maintaining intracellular ionic homeostasis 70.  With its nucleophilic nature, GSH 

may conjugate with electrophilic drugs, promote their export from the cells, and thus 

decrease the efficacy of many anticancer drugs 71.  GSH can also reduce the activity of 

oxaliplatin by decreasing the ROS stress induced by the drug 72.  These compelling 

evidences suggest the important role of GSH in cell survival and drug resistance.  

4. Glutathione metabolism 
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GSH concentration in cells reflects the dynamic balance between the rate of GSH 

synthesis, consumption (through multiple functions described above), and efflux 73, 74 

(Fig 2). GSH synthesis is a two-step enzymatic process involving the ligation of 

glutamate with cysteine to form γ-glutamylcysteine catalyzed by γ-glutamylcysteine 

ligase (GCL), and the addition of glycine to the C-terminal of γ-glutamylcysteine 

catalyzed by GSH synthetase (GSHS) to form glutathione tripeptide 73: 

 

Glutamate+ Cysteine         γ-glutamylcysteine +Glycine     GS         GSH 

 

The synthesis of γ-glutamylcysteine is a rate-limiting step catalyzed by the rate limiting 

enzyme γ-glutamylcysteine ligase (GCL) 73. GCL composed of catalytic subunit GCLC 

(heavy-73KD) and modulatory subunit GCLM (light-30KD). Increased expression of the 

GCLC is correlated with elevated GSH levels and drug resistance in tumor cells 74, 75.  

Another important rate-limiting factor in GSH synthesis is the availability of the 

substrate cysteine. Unlike glutamate, cysteine concentration in cells approximates the Km 

value of GCLC 76 (Table 1), indicating that the speed of GSH synthesis cannot reach 

maximal and highly depend on  cellular concentration of cysteine. Cysteine is a 

conditionally essential amino acid which can be synthesized from methionine only in 

certain tissues such as liver via the transsulfuration pathway 77, but many tissues 

including lymphoid cells have little capacity to synthesize cysteine due to a defect in 

transsulfuration 78.  Thus, their main source of cysteine is the uptake of extracellular 

cysteine or cystine through specific transporters 79-81. Cysteine is transported by the 

ubiquitously expressed ASC transporter (Na+-dependent) as well as the Na+-independent 
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transporters 82, while cystine is mainly transported by Xc-, which is limited expressed, 

and can be rapidly reduced to cysteine for GSH synthesis once inside the cells 83-87. 

Paradoxically, in plasma, cystine presents at 100-200 μM concentrations, while cysteine 

only exists at a much lower level in the range of 10-20 μM due to oxidation to cystine 

easily 88 (Fig. 3).The limited cysteine in plasma seems not enough for GSH synthesis in 

those cancer cells that are under oxidative stress but lack of expression of cystine 

transporter Xc-. Therefore, activated cysteine uptake, increased cysteine concentration in 

the microenvironment, and regained of cystine transport activity will influence GSH 

levels as well as drug resistance 89-93.  

In addition, cells can also re-use cysteine from GSH through the γ-glutamyl cycle 

catalyzed by γ-glutamyl transpeptidase (GGT) 94. GGT is an enzyme on the outer surface 

of plasma membrane, it catalyzes the transfer of the the γ -glutamyl group of GSH to 

acceptors. Cysteine is the most active acceptors. Cysteinylglycine, formed in the 

transpeptidation reaction, is split by dipeptidases to cysteine and glycine, and then 

cysteine can be re-used.  The γ -glutamatyl-amino acids formed by transpeptidation are 

substrates of γ -glutamyl cyclotransferase, which converts them into 5-oxoproline and the 

corresponding amino acids. Finally, conversion of 5-oxoproline to glutamate is catalyzed 

by 5-oxoprolinase. In this case, the glutamate can be reused.  

GSH is readily oxidized to GSSG non-enzymatically or catalytically by glutathione 

peroxidase (GPX), GSSG efflux from cells contributes to the loss of cellular GSH 95. 

Oxidative stress may cause changes in the GSH redox state and increase the rate of 

GSSG release from cells 96. Moreover, exportation of the GSH-electrophiles conjugated 
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products (catalyzed by GSH S-transferase---GST) results in an irreversible loss of GSH 

95.  
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Figure 2. GSH biochemistry. aa, amino acids; x, molecules 

that bind GSH forming conjugates; ROS, reactive oxygen 

species; (1) GGT; (2) γ -glutamyl amino acid (γ -Glu-aa) 

transporter; (3) dipeptidases; (4) Cyst(e)ine transporters; (5) γ -

Glu-cyclotransferase; (6) 5-oxoprolinase; (7) GCS; (8) GSHS; 

(9) GPx; (10) GR; (11) transhydrogenases; (12) GSTs; (13) 

GSSG efflux; (14) conjugated product efflux  
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Table 1. Km value of γ-glutamylcysteine ligase catalytic 

subunit (GCLC) and cellular concentration of glutamate 

and cysteine (adapted from Richman, P. G., Meister, A., J Biol 

Chem1975 1975. 250(4): p. 1422-6.) 

 

 

 

 

 

Figure 3. Cystine and cysteine transportation in cells. 
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5. Glutathione and chronic lymphocytic leukemia     

       CLL cells are under intrinsic oxidative stress as compared to normal lymphocytes 49-

51, and are quite sensitive to ROS-mediated anticancer agents 49, 52. Therefore, CLL cells 

are highly dependent on the most abundant antioxidant GSH to maintain cellular redox 

balance. Moreover, GSH plays important role in blocking apoptosis of CLL cells. In CLL 

cells, Glutathionylation of the anti-apoptotic protein MCL1 protects it from being cleaved 

by caspase-3 and thus promotes cell survival 52. Furthermore, GSH, as discussed above, 

causes drug resistance of CLL cells, which is the major reason of relapse and treatment 

failure.  

      In CLL cells, while GSH is so important, CLL cells seem not be able to maintain 

GSH by itself. An interesting report showed that, when CLL cells were cultured in vitro, 

there was a significantly rapid decrease in cellular GSH concomitant with spontaneous 

apoptosis of CLL cells 97. The rapid GSH depletion was not observed with the T cells 

from CLL patients or with either B or T cells from normal subjects indicating that this 

phenomenon is unique to CLL cells. It would be important to study why CLL cells fail to 

maintain GSH in vitro and go spontaneous apoptosis quickly, and how the in vivo 

leukemia microenvironment maintain the GSH level of CLL cells thus support the cells 

for survival.  
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STATEMENT OF OBJECTIVES 

CLL is the most common adult leukemia in the western countries and is currently 

incurable 15. Growing evidence suggests that the bone marrow stroma may provide a 

tissue environment that promotes the survival of CLL cells and render drug resistance 1, 

14. Several molecules have been identified to be involved in the interaction of bone 

marrow stromal cells and CLL cells, such as adhesion molecules β1 and β2 integrins on 

the CLL cell surface 23, and the stromal-produced CD40L 98, IL-4 34, INF-α 35, INF–γ 36, 

bFGF 37, SDF-1 99, BAFF 100, APRIL 100, hedgehog-related molecules 45. However, bone 

marrow microenvironment induced drug resistance and relapse is still a major clinical 

problem 13. New therapeutic strategies are urgently needed, and there will most likely 

result from a better understanding of the biology of stromal-leukemia interaction. 

Recent technological developments have allowed global analyses of biochemical 

alterations in cancer, and enabled the discovery of the potential roles of low-molecular-

weight metabolites in cancer development 101, 102. Studies suggest that stromal cells may 

interact with cancer cells at the biochemical levels 103-107. In CLL, it remains largely 

unknown how the stromal cells may affect leukemia cells metabolically and promote 

their survival and drug resistance.  

Among those small molecules, glutathione (GSH) plays a unique role in CLL. CLL 

cells are intrinsically under high oxidative stress compared to the normal lymphocytes 49-

51, and are highly sensitive to agents that cause further ROS stress 49, 52. The elevated 

ROS in CLL cells renders them more dependent on antioxidants GSH to maintain redox 

balance. However, CLL cells, but not normal lymphocytes, fail to maintain GSH level in 

vitro concomitant with high level of spontaneous apoptosis in culture. In contrast, CLL 
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cells are known to have a prolonged survival time in vivo and are less prone to apoptosis 

compared to normal lymphocytes when they reside within the tissue environment in vivo 

108.  

These observations, together with the important role of GSH in maintaining redox 

balance and promoting cell survival, led me to hypothesize that the stromal tissue 

environment affect the GSH metabolism in CLL cells and thus influence their survival 

and apoptotic response to drug treatment. Based on the hypothesis, experiments have 

been performed to achieve the following three specific aims: 

 

• Aim 1: Test the important role of GSH in microenvironment-mediated 

protection of CLL cells.   

 

• Aim2: Examine the mechanisms by which stromal cells regulate intracellular 

GSH levels in CLL cells and protect CLL cells from spontaneous and drug-

induced cell death.  

 

• Aim 3: Determine the feasibility and significance of targeting the 

mechanisms of microenvironment mediated GSH upregulation and protection 

in CLL cells as an effective way to kill CLL cells and circumvent drug 

resistance. 

 

        The major goal of this study is to test the hypothesis using a co-culture system in 

which the possible biochemical communications between primary leukemia cells isolated 
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from CLL patients and bone marrow stromal cells was investigated, and the subsequent 

changes in GSH, cell viability, and drug sensitivity were evaluated.  This study reveals a 

novel biochemical mechanism that mediates the interaction between the bone marrow 

stromal cells and leukemia cells through enhancing glutathione synthesis to promote CLL 

cell survival and drug resistance. Importantly, I have identified a pharmacological 

approach that can effectively abolish this protective mechanism and sensitize CLL cells 

to standard drug treatment in the presence of stromal cells. The new mechanistic insights 

gained from this study provide a biochemical basis for developing new therapeutic 

strategy to overcome CLL drug resistance in vivo.   
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EXPERIMENTAL MODEL AND METHODS 

1. Experimental model 

Unlike other types of leukemia, there are no available valid cell lines for studying 

CLL. Fortunately, through collaboration with hematologists in MD Anderson cancer 

hospital, I have access to obtain blood from clinical patients with CLL. To test my 

hypothesis, I used an in vitro co-culture model that primary CLL cells isolated from 

samples of patient peripheral blood, were cocultured with a human bone marrow stromal 

cell line HS5, a HPV16 E6/E7 immortalized cell line, or StromaNKtert, a hTERT 

immortalized cell line, or with a mice immortalized cell line KUSA-H. The ratio of 

stromal cells and CLL cells is 1:20. This model is used to mimic the interaction of CLL 

cells with bone marrow microenvironment and study the mechanism of drug resistance.  

2. Reagents and antibodies 

9-β-D-arabinofuranosyl-2-fluoro-adenine (F-ara-A), Oxaliplatin, and β-phenylethyl 

isothiocyanate (PEITC) for toxicity assay; N-acetylcysteine (NAC), Cysteine, Cystine, 2-

mercaptolethanol (2-ME) (all from Sigma-Aldrich) for cellular redox modulation; Serine, 

α-methylamino-isobutyric acid (MeAIB), Sulfasalazine (all from Sigma-Aldrich), and 

(S)-4-carboxyphenylglycine (Ellisville, MO) for transporter inhibition; Glutathione assay 

kit (Cayman Chemical Co.) for GSH detection; siRNA (Invitrogen) for xCT knockdown; 

Human cytokine array kit (R&D System) for cytokine detection in culture medium; CM-

H2DCF-DA (Invitrogen) for hydrogen peroxide detection; CM-FDA (Invitrogen) for thiol 

detection;  Annexin V-FITC (BD Biosciences), propidium iodide (PI) (Sigma-Aldrich) 

for apoptosis assay; 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) (Sigma-Aldrich) for 

medium thiol detection; [14C]-cystine (PerkinElmer) for uptake assay; Cystine-free 
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PRMI 1640 (Mediatech) and dialyzed FBS (Thermo Scientific HyClone) for cystine 

starvation assay. The following antibodies were used for immunoblotting analyses using 

standard Western blotting procedures: GCLC (Santa Cruz Biotechnology), SLC7A11 

(Novus Biologicals), Actin (Sigma-Aldrich).  

3. Cell lines and primary CLL cells 

The human bone marrow stromal cell line HS5 immortalized by E6/E7 109, was 

obtained from the American Type Culture Collection. Human bone marrow stromal cell 

line StromaNKtert immortalized by hTERT 110 and the murine bone marrow stromal cell 

line KUSA-H1111 were cultured in RPMI 1640 medium supplemented with 10% fetal 

bovine serum as described previously 112.  Primary CLL cells were obtained from the 

peripheral blood of patients diagnosed as B-CLL according to National Cancer Institute 

Criteria 113. Proper informed consents under a research protocol approved by the 

Institutional Review Board of M. D. Anderson Cancer Center were obtained from all 

patients in accordance with the Declaration of Helsinki before blood sample collection.  

In all experiments, CLL cells were isolated from blood samples by density gradient 

centrifugation 114 and incubated in RPMI 1640 medium supplemented with 10% fetal 

bovine serum and penicillin (100 U/mL) + streptomycin (100ug/mL) overnight before 

experiments. 

4. Cell viability assays  

To determine the effect of bone marrow stromal cells and conditioned medium on 

CLL cells against drug- and stress-induced apoptosis, HS5 (5x104 cells/mL), 

StromaNKtert (4x104 cells/mL), and KUSA-H1 (1x104 cells/mL) were seeded in 24-well 

plates and allowed to adhere and grow overnight before addition of CLL cells.  The 
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stromal conditioned medium was prepared from HS5 cells culture (in RPMI 1640+10% 

FBS for 5 days), clarified by centrifugation, and used immediately.  CLL cells were 

isolated from blood samples and incubated overnight, and then transferred to 24-well 

plates with or without pre-seeded stromal cell layer or stromal conditioned medium.  For 

co-culture in a transwell system (Corning, NY), CLL cells were seeded in the top 

chambers, which were inserted into the bottom wells with pre-seeded stromal cells.  After 

co-culture for 1 day, CLL cells were treated with various compounds (F-ara-A, 

oxaliplatin, PEITC, H2O2) under conditions indicated in the figure legends.  To block 

cystine uptake by the stromal cells, (S)-4-carboxyphenylglycine (Ellisville, MO) or 

Sulfasalazine (Sigma) was added at the beginning of the stromal cell seeding. Cell 

viability was determined by flow cytometry after double-staining with Annexin V (BD 

Biosciences, San Jose, CA) and PI as described 115.  All assays were repeated at least 

three times using primary CLL cells from different patient samples.  

5. Flow cytometric analysis of cellular ROS and thiol contents 

After cultured under the indicated conditions, CLL cells (1x106 cells/ml) were 

transferred to 24-well plate and incubated with 1 μM CM-H2DCF-DA (Invitrogen, 

Carlsbad, CA) in regular culture medium for 60 min at 37 °C in the dark. Stained cells 

were rinsed twice with PBS and analyzed immediately by flow cytometry using a 

FACSCalibur equipped with CellQuest Pro software. To determine cellular thiol 

contents, CLL cells (1x106 cells/ml) were collected and washed in PBS, and stained with 

0.5 μM CMFDA (Invitrogen, Carlsbad, CA) in PBS for 15 minutes at room temperature 

in the dark, followed by flow cytometry analysis. ROS levels in viable cells were 
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determined by FSC/SSC gating as described previously (Campas et al., 2003; Pepper et 

al., 2001). 

6. Separation stromal conditioned medium into high molecular weight and low 

molecular weight components 

HS5 stromal cells were cultured in RPMI1640 medium with 10% FBS until 80% 

confluence. The cells were washed twice with serum-free RPMI 1640, and then cultured 

in serum-free medium for 3 days.  The conditioned medium was harvested, cleared by 

centrifugation, and then loaded to the reservoir chamber of the Amicon Ultra-15 

centrifugal filter unit with molecular weight cut-off of 3-kDa (Millipore corporation, 

Billerica, MA). The tube was centrifuged at 4000x g at 4°C for 15min.  The concentrated 

liquid remaining in the upper reservoir (HMW fraction) was collected and reconstituted 

with serum-free medium to same volume before centrifugation. The components that 

passed the filter were collected as LMW fraction.  Both fractions were used immediately 

after preparation.  

7. Western blot analysis 

Cell lysates were prepared and equal amounts of protein were electrophoresed on 

SDS-PAGE gels using standard conditions. The proteins were transferred to 

nitrocellulose membranes, which were probed with the following antibodies: GCLC 

(Santa Cruz Biotechnology, Santa Cruz, CA); xCT (Novus Biologicals, Littleton, CO); 

actin (Sigma-Aldrich, St Louis, MO). Protein bands were visualized by 

chemiluminescent detection. 

8. Assessment of requirements for exogenous cystine 
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Bone marrow stromal cells (HS5, StromaNKtert, or KUSA-H1) was plated and 

allowed to adhere for overnight as indicated in the figure legends.  CLL cells were 

isolated from blood samples and incubated overnight.  The culture medium of both cells 

was removed, followed by a rinse with warm PBS.  CLL cells were then resuspended in 

cystine-free RPMI 1640 (Mediatech, Manassas, VA) supplemented with 10% dialyzed 

FBS (Thermo Scientific HyClone, Logan, Utah) and added to the culture dish containing 

pre-washed HS5 stromal cells. Various concentrations of cystine (5-200 μM), 2-

mercaptoethanol (20 μM), and their combination were added to the culture as indicated in 

the figure legends.  Cellular GSH and cell viability were measured as described above.  

9. Assessment of cystine and cysteine uptake  

To measure cystine uptake, CLL and HS5 cells alone or in co-culture were incubated 

in fresh cystine-free RPMI 1640 supplemented with dialyzed 10% FBS.  [14C]-cystine 

(PerkinElmer, Waltham, MA) was at (0.2 μCi/ml) and incubated for 4-6 h as indicated. 

The cells were washed twice with cold PBS.  Cell pellets were resuspended in 200 μL 

PBS, lysed with 3 mL scintillation fluid, and radioactivity was measured by a Beckman 

liquid scintillation counter.  To measure cysteine uptake, [14C]-Cysteine was first 

generated by reduction of [14C]-cystine using 5 mM 2-mercaptoethanol (37°C, 15 min) 

in a test tube with minimum volume, and then add to the cell culture.  [14C]-Cysteine 

uptake was measured in the same way as described above. All experiments were 

performed in triplicates.  

10. Analysis of glutathione (GSH) in cell extracts and in culture medium 

GSH was measured using an assay kit from Cayman Chemical (Ann Arbor, MI), 

based on the enzymatic recycling catalyzed by glutathione reductase and the reaction of 
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GSH with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) to produce a yellow colored 

product, which can be quantified by a spectrometer. After CLL cells were cultured under 

various experimental conditions, they were collected, sonicated, de-proteinated, and 

assayed for GSH according to the procedures recommended by the manufacture. The 

culture medium was cleared by centrifugation, deproteinated, and subjected to the same 

GSH assay. GSH concentrations were calculated using the standard curve generated in 

parallel experiments. To avoid the influence of other thiol in medium, both the end-point 

method and kinetic methods were used for analysis. For the endpoint method, GSH 

concentration was calculated from the reading of a 25-min reaction. For the kinetic 

method, the slopes of the absorbance changes (at 405 nm) were obtained for a range of 

standard GSH concentrations to generate a standard curve (Slops vs concentrations). The 

GSH concentrations in the tested samples were calculated from their respective slopes in 

reference to the standard curve. Data were obtained from triplicate measurements. To 

determine the minimum detection limit of the assay to test GSH in cell culture medium, 

various concentrations of standard GSH was added to RPMI medium containing 10% 

FBS and processed for detection of GSH using the kinetic method described above. 

11.  Determinations of thiol concentration in the culture medium 

HS5 (5x 104 cells/mL), StromaNKtert (4x 104 cells/mL), and KUSA-H1 (1x 105 

cells/mL) cells were plated in T75 flasks and allowed to adhere overnight. CLL cells 

were isolated from blood samples and also incubated in regular RPMI medium (1x 106 

cells/mL) overnight. The old medium of each culture was replaced with fresh medium. At 

the indicated time intervals, 300 μL medium was removed, clarified by centrifugation, 

and mixed with 100 μL of 15% sulfosalicylic acid. The precipitates were removed by 
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centrifugation (7000 rpm, 15min), and the supernatant was neutralized with 200 μL 0.6 N 

NaOH and mixed rapidly with 600 μL buffer containing 0.2 M potassium phosphate and 

10 mM EDTA, pH 8.0. Thiol contents were measured by reaction with freshly prepared 

DTNB (Sigma-Aldrich, St Louis, MO) at a concentration of 0.4 mM. Each sample was 

assayed in triplicate. Absorbance at 412 nm was measured after 5-min incubation in dark, 

and the increase in absorbance was determined. The acid-soluble thiol concentration was 

calculated using cysteine as a reference standard. Medium alone without cells was 

incubated in parallel at the same time as a control. Data were obtained from triplicate 

measurements. 

12. Determination of oxygen effect on CLL cell viability 

Primary leukemia cells were isolated from the blood samples of CLL patients, 

incubated overnight in RPMI medium, and transferred to 24-well plates with or without 

pre-seeded stromal cells. The samples were incubated in ambient oxygen (21%) or 

hypoxia (5%, 2%) for 24 h, then the cells were treated with F-ara-A (20 μM) or 

oxaliplatin (20 μM) for 48 h. Cell viability was determined by flow cytometry after 

double-staining with annexin-V/PI. Hypoxia culture conditions were created by 

incubating cells in a sealed modular incubator chamber (Billups-Rothenberg, Del Mar, 

CA) flushed with a gas mixture containing 5% or 2% oxygen and 5% carbon dioxide, 

balanced with nitrogen. 

13. Cytokine array  

Secreted cytokines were detected using the human cytokine array panel A from R&D 

systems (Minneapolis, MN). CLL cells and HS5 stromal cells were cultured alone or co-

cultured for 3 days. Cell culture supernatants were collected and particulates were 
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removed by centrifugation and assayed immediately according to the procedures 

recommended by the manufacture. Medium alone was examined as control. 

14. MALDI-TOF mass spectrometry analysis 

MALDI-TOF/TOF-MS/MS experiments were performed on a MALDI TOF-TOF 

Mass Spectrometer (Applied Biosystems 4700, Foster City, CA). HS5 stromal cell 

conditioned medium were diluted 1:100 in α-cyano-4-hydroxyl cinnamic acid (a-CHC) 

(10 mg/mL in 50:50 acetonitrile:water; 0.1% trifluoracetic acid final concentration) or 

dihydroxybenzoic acid (DHB) by mixing 50% volume of 10 mg/mL dihydroxybenzoic 

acid (DHB) in acetonitrile and 50% volume of 0.1% trifluoroacetic acid (TFA) in water, 

and spotted on the MALDI target, and allowed to dry before analysis. MS experiments 

were acquired using the reflectron settings in the positive mode. MS spectra were 

summed from 1000 to 10 000 laser shots.  

15. ESI-MS/MS analysis 

Pure cysteine prepared in water and stromal cell conditioned medium were injected to 

mass spectrometry. Mass spectrometry was carried out in positive ion mode on a linear 

ion trap mass spectrometer, using a nanoelectrospray source for direct infusion of 

samples by static nanospray with isolation width as m/z 1.0, and acquisition time as 0-8 

min. Electrospray voltage was 1 kV. Static nanoelectrospray needles were from Proxeon 

Biosciences (Denmark).  

16. NMR analysis of low-molecular-weight metabolites in cells and culture medium 

To measure possible changes in cystine, cysteine, and other small metabolites in the 

cell culture medium, the stromal conditioned medium and fresh medium were collected 

and sent to Chenomx Inc (Edmonton, Canada) for NMR analysis. All samples were 
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filtered using the Nanosep 3K Omega microcentrifuge filter tubes (Pall Corporation, NY, 

USA) with a 3-kDa molecular weight cut-off to remove macromolecules. The filter units 

were washed 3 times with distilled water before use. Samples were adjusted to 630 μL to 

ensure adequate volume for NMR acquisition, and mixed with an internal standard 

solution (Chenomx Lot# 01-28-09-01, contains 4.4729 mM DSS, 0.2 %w/v NaN3, 10 

mM DFTMP in D2O) that allows metabolite quantification. Mixed solution was then 

transferred to a 5 mm NMR tube (New Era Enterprises Inc., NJ, USA) for data 

acquisition. All metabolite concentrations obtained were adjusted by using appropriate 

factors to account for the above dilutions. Spectra were acquired on an 800 MHz Varian 

INOVA spectrometer equipped with a Z-gradient HCN 5mm cold-probe (Varian Inc., 

CA, USA). Spectra were processed and CNX files were generated using the Processor 

module in Chenomx NMR Suite 6.0 software (Chenomx, Edmonton, Alberta, Canada). 

Spectra were zero filled to 64k points and Fourier transformed. Spectral phasing was 

performed on the spectra along with baseline correction (Chang et al., 2007). Metabolites 

were identified and quantified with targeted profiling approach using the Profiler and 

Library Manager modules in the same software which contained 297 metabolites and 54 

typical plasma based metabolites (Weljie et al., 2006). Minimum detection limit was 

approximately 2 μM. 

17. Analysis of Cysteine by LC-MS/MS on the Triple-Quadrupole Mass 

Spectrometer 

        The chromatography was performed on a Zorbax SB-C18 Rapid Resolution HD 

column, 3.0 x 100 mm, 1.8 micron particle size from Agilent. Buffers used were as 

follows: A was 0.5% formic acid, 0.3% heptafluorobutyric acid in HPLC-grade water 
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(Burdick and Jackson); B was 0.5% formic acid, 0.3% heptafluorobutyric acid in HPLC-

grade (Burdick and Jackson) acetonitrile. The separation was conducted at 0.4 mL/min 

with an initial hold until 1 min (elapsed time) at 2% B, a linear gradient to 40% B until 5 

min, a ramp (0.1 min) to 90% B, hold for 1 min, then return ramp to 2% B. The stop time 

was 8 min. This gradient was used for both quantitative runs and the full-scan MS/MS 

confirmation of identity analysis. Under these conditions Cysteine eluted at 3.3 minutes, 

Cystine eluted at 4.2 minutes. 

Sample preparation. Samples were diluted 10:1 in A buffer prior to injection. Standard 

concentrations are reported as the concentrations prior to this dilution.   

Confirmation of identity. The singly-charged, protonated Cysteine ion (MH+) was 

selected for fragmentation in an injection of the standard solution at 1 μM concentration, 

and also for the sample injection. The full-scan fragment spectra were collected at a 

fragmentor voltage of 72 and collision energy of 15.  

Mass spectrometer conditions for quantitation. The following transitions and conditions 

were used for Cysteine: 122  59, CE 22, Frag 72; 122  76 (qualifier), CE 10, Frag 72.  

Cysteine quantitation. The equation from the standard curve from 0.1 μM to 10 μM was 

used to calculate the concentrations of Cys in all samples. These samples were analyzed 

in triplicate.  

18. RNA interference 

HS5 stromal cells were transfected with nonspecific, xCT RNA interference (RNAi; 

final concentrations, 20, 40, 100 nM) using Lipofectamine TM 2000 transfection according 

to the manufacturer's instructions (Invitrogen). The cells were then incubated in 24 well 

plates for 72 h prior to Western blot for xCT expression. The special designed Stealth 
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RANiTM siRNA duplex oligo-ribonucleotides were purchased from Invitrogen. The RNA 

sequences for xCT were as follows: (siRNA set 1) sense, 5'-AGA UAA AUC AGC CCA 

GCA ACU GCC A-3', antisense, 5'-UCC CAG UUG CUG GGC UGA UUU AUC U-3'; 

(siRNA set 2) sense 5'-AUU AUG AGG AGU UCC ACC CAG ACU C-3', antisense, 5'-

GAG UCU GGG UGG AAC UCC UCA UAA U-3'; (siRNA set 3) sense, 5'-UAA UGA 

GAA AUU UCC CAG UAG CCG C-3', antisense, 5'-UAA UGA GAA AUU UCC CAG 

UAG CCG C-3'; RNAi with the same GC content as siRNA pools was used as a negative 

control.  

19. Statistical analyses 

All experiments were done in CLL cells from at least three different patient samples, and 

with stromal cells from three separate culture flasks.  Statistical significance was 

analyzed by the Student’s t-test, and the p values of < 0.05 were considered statistically 

significant.  Bar graphs and plots were generated using the Prizm software (GraphPad, 

San Diego, CA).  
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RESULTS 

1. Bone marrow stromal cells protect CLL cells from spontaneous and drug-induced 

apoptosis.  

Chronic lymphocytic leukemia (CLL) B cells are characterized as a defect in 

apoptosis and exhibit prolonged survival in vivo, the accumulation of CLL cells 

eventually causes the bone marrow to fail and weakens the immune system. However, 

when recovered from peripheral blood from CLL patient and cultured in vitro, these anti-

apoptotic CLL cells rapidly undergo spontaneous apoptosis, suggesting that the selective 

survival advantage enjoyed by CLL cells is not autonomous but likely manipulated by the 

in vivo microenvironment. To test this possibility, I employed an in vitro co-culture 

system including primary CLL cells isolated from peripheral blood of CLL patients, and 

a human bone marrow stromal cell line HS5, which was established by immortalizing of 

long-term bone marrow cultures (LTBMC) of human by human papolloma virus E6/E7 

genes 109. As shown in Fig 4A, CLL cells cultured alone in vitro exhibited substantial 

spontaneous apoptosis (41%) within 3 days, the presence of HS5 stromal in co-culture 

significantly enhanced CLL cell viability to 89%. I also tested the long term protective 

effect of stromal cells by continuously switching CLL cells to new flask with or without a 

layer of stromal cells to avoid the effect of nurse-like cell. Similar protective effect was 

also observed in a long-term (3 weeks) co-culture (Fig 4B). The ability of stromal cells to 

enhance CLL cell viability was consistently observed when the cells were cultured under 

ambient oxygen (21%) or under hypoxic conditions (2-5% O2) in all 4 cases of CLL 

samples tested (Fig 5), suggesting that this protective effect was the consequence of 

stromal-CLL cell interaction, not due to the artificial effect of the oxygen environment. 
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Altogether, these data suggest that bone marrow stromal cells protect CLL cells from 

spontaneous apoptosis in vitro both for short term and long term.  

Fludarabine and oxaliplatin are currently used in clinical treatment of CLL. I then 

tested the effect of stromal cell on drug resistance of CLL cells. CLL cells isolated from 

peripheral blood of CLL patients were cultured with HS5 stromal cells for 1 day, and 

then treated with 20 μM F-ara-A (the active form of fludarabine) or 20 μM oxaliplatin for 

another 2 days. Apoptosis was detected by flow cytometry after staining with Annexin 

V/PI. As shown in Fig 6A-B, the presence of HS5 stromal cells significantly decreased 

cells death that occurred either spontaneously or induced by F-ara-A or oxaliplatin. 

Stromal-induced drug resistance in CLL cell was also confirmed in different co-culture 

systems with other two bone marrow stromal cell lines: StromaNKtert, which was 

established by immortalizing of long-term bone marrow cultures (LTBMC) of human by 

by human telomerase reverse transcriptase (hTERT) containing also exogene MFG-tsT-

IRES-neo 110; and KUSA-H1, a spontaneous immortalized cell line from long-term bone 

marrow cultures (LTBMC) of C3H/He mouse 111. These two bone marrow stromal cell 

lines are kindly provided by Dr. Burger. Similar to HS5, both StromaNKtert and KUSA-

H1 stromal cells protected CLL cell from spontaneous and drug-induced apoptosis (Fig 

7A). Interestingly, compared to HS5 stromal cells that protected CLL cells for relative 

survival around 80% against drug treatment (Fig 7A), StromaNKtert and KUSA-H1 

showed enhanced protection of CLL cells with around 90-100% relative survival (Fig 

7B), indicating that certain protective mechanisms might be missing in HS5 stromal cells.  
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Figure 4. Bone marrow stromal cells promote CLL cell 

short-term and long-term survival in culture. (A) 

Comparison of viability of CLL cells isolated from a patient 

blood sample and cultured in vitro alone or with a layer of HS5 

stromal cell for 3 days. Cell viability was assessed by Annexin-

V/PI double staining on day 3. The numbers indicate the % of 

viable cells (annexin-V/PI double negative); (B) Comparison 

of long-term survival of CLL cells with or without HS5 stromal 

cells. CLL cells were transferred to new stromal layer when 

HS5 cells reached confluence. CLL cells alone were 

transferred to new flask in the same fashion to minimize the 

influence of nurse-like cells attached to the flask. Cell viability 

was assessed by Annexin-V/PI double staining. Figure displays 

phase-contrast photomicrophraphs that depict the morphologic 

appearance of CLL cells cultured alone or co-cultured with a 

layer of HS5 stromal cells. Cells were imaged in medium using 

a phase-contrast microscope with a 10X objective lens. Images 

were captured with a Nikon digital camera with the use of 

Camera Control Pro software (Nikon); when necessary, Adobe 

Photoshop 9.0 (Adobe Systems) was used for image 

processing. Photographs and flow cytometry analysis were 

performed on day 21. 
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Figure 5. Effect of oxygen levels on CLL cell viability in the 

presence and absence of bone marrow stromal cells.   

Primary CLL cells isolated from the blood samples of 4 CLL 

patients were incubated with bone marrow stromal cells 

(KUAS-H1) for 3 day, and cell viability was assessed by 

annexin-V/PI double staining. The bar graph showed the 

mean±SD of the 4 patient samples. *, p<0.05 (CLL alone vs 

co-culture with stromal cells).  
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Figure 6. Protection of CLL cells by bone marrow stromal 

HS5 cells in the presence or absence of F-ara-A (20 μM) or 

oxaliplatin (20 μM). (A) CLL cells were pre-cultured with 

HS5 cells for 24 h, followed by drug exposure for 48 h. Cell 

viability was measured by annexin-V/PI double staining. 

Representative dot plots of a CLL patient sample are shown; 

the numbers indicates the % of viable cells (annexin-V/PI 

double negative). (B) The mean ± SEM of 7 separate 

experiments using patient samples. *, p<0.05 (CLL cultured 

alone vs co-cultured with stromal cells). 
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Figure 7. Protection of CLL cells by bone marrow stromal  

cells StromalNKtert and KUSA-H1 (A), and HS5 (B) in the 

presence or absence of F-ara-A (20 μM) or oxaliplatin (20 

μM). CLL cells were pre-cultured with 

HS5/StromaNKtert/KUSA-H1 cells for 24 h, followed by drug 

exposure for 48 h. Cell viability was measured by annexin-

V/PI double staining. The mean ± SEM of 3 separate 

experiments using patient samples were shown. *, p<0.05 

(CLL cultured alone vs co-cultured with stromal cells). 
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2. Bone marrow stromal cells promote GSH synthesis in CLL cells and relieve their 

ROS stress 

Previous studies showed that CLL cells are under intrinsic oxidative stress 49, 113 and 

exhibit high spontaneous apoptosis with rapid GSH depletion in vitro but have a 

prolonged survival time in vivo 98, 114. These observations prompted me to test the 

hypothesis that the stromal microenvironment in vivo might promote GSH synthesis in 

CLL cells and enhance their ability to keep redox balance and remain viable. When the 

cellular GSH in CLL cells cultured alone or co-cultured with HS5 stromal cells was 

measured, I observed a striking difference. CLL cells cultured alone showed a time-

dependent decrease in cellular GSH, whereas GSH in CLL cells co-cultured with HS5 

were maintained at a high level (Fig 8). Comparison of GSH levels in 35 CLL patient 

samples cultured for 3 days with or without HS5 stromal cells showed that the GSH 

levels were about 7-fold higher in CLL cells co-cultured with the bone marrow stromal 

cells (Fig 9A).  Detail data analysis revealed that 33 out of the 35 CLL patient samples 

exhibited more than 100% increase in cellular GSH levels in the presence of HS5, with 

the majority of cellular GSH in the range of 1.5-4 nmole/107 cells (Fig 9B).  In the 

absence of stromal cells, the majority of CLL cells had GSH contents of less than 0.5 

nmole/107 cells on day 3, and 10 out of the 35 samples had less than 0.2nmole 

GSH/107cells.  

Because GSH is a key antioxidant in the cells, I tested whether the presence of HS5 

stromal cells could relieve the oxidative stress in CLL cells. Cellular ROS levels and thiol 

contents (as an indication of cellular GSH levels) were measured by flow cytometry 

using the fluorescence probes DCF-DA and CMFDA, respectively, as described 
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previously 52, 115, 116.  I showed that CLL cells isolated from 20 different CLL patient co-

cultured with HS5 stromal cells had a significantly lower ROS (Fig 10A) and a higher 

cellular thiol content (Fig 10B) at day 3. This observation is consistent with the increased 

GSH content in CLL cells with a layer of stromal cells. Moreover, this change in redox 

status rendered the CLL cells highly resistant to exogenous oxidative stress imposed by 

H2O2. As shown in Fig 11, exposure of primary CLL cells from 3 patient samples to 100 

μM H2O2 caused massive cell death (70-90%) when the leukemia cells were cultured 

alone, while the presence of HS5 cells consistently protected CLL cells from the 

cytotoxic effect of exogenous H2O2 in all three cases.  

To evaluate if the ability of bone marrow stromal cells to increase GSH contents and 

reduce ROS levels in CLL cells was a general phenomenon or only specific to HS5 cells, 

I tested two other bone marrow stromal cell lines StromaNKtert and KUSA-H1 for their 

ability to enhance GSH synthesis and reduce oxidative stress in CLL cells in the co-

culture system. As shown in Fig 12, all these bone marrow stromal cells were able to 

significantly increase GSH in all cases of primary CLL cells from 6 different CLL 

patients. Consistently, flow cytometry analysis of cellular ROS and thiols content also 

showed that all three bone marrow stromal cells decreased ROS contents and enhanced 

the cellular thiol levels in CLL cells (Figs 13A-B). 
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Figure 8. Bone marrow stromal cells maintain GSH level in 

CLL cell. CLL cells isolated from 3 different patients were 

single- or co-cultured with HS5 stromal cells. CLL cells with 

or without a layer of stromal cells were collected at 6, 12, 24, 

48h. GSH levels in CLL cells at various time points were 

analyzed altogether. The chart shows the time course of GSH 

contents in CLL cells cultured alone or with HS5 stromal cells. 
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Figure 9.  Enhancement of GSH synthesis in CLL cells by 

HS5 stromal cells. (A) Comparison of cellular GSH levels 

after 72 h in culture alone or with HS5 stromal cells. The bar 

graph shows mean ±SEM of 35 different CLL samples (***, 

p<0.001). (B) Each bar shows the mean (±SEM) of the GSH 

concentration in each CLL sample measured in triplicates (n= 

35 different CLL samples; the “*” symbols for patients #9, #18, 

#30, and #32 indicate that GSH was undetectable in these CLL 

samples (cultured alone). 
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Figure 10. Alteration of redox status of CLL cells in the 

presence of bone marrow stromal cell. Determination of 

cellular ROS and thiol contents in CLL cells cultured alone or 

with HS5 stromal cells. Fluorescent probes DCF-DA and 

CMFDA were used to detect cellular ROS levels (A) and total 

thiol levels (B) respectively by flow cytometric analysis.  

Representative histograms and quantitative comparison of 

mean values from 20 different CLL samples are shown (*, p< 

0.05; **, p<0.01). 
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Figure 11. Bone marrow stromal cells protect CLL cells 

from spontaneous apoptosis and cell death induced by 

H2O2 (100 μM). CLL cells isolated from 3 different patients 

were single- or co-cultured with HS5 stromal cells for 2 days 

and treated with 100 μM H2O2 for overnight. Cell viability was 

measured by annexin V-PI staining. The number in each dot 

blot indicates the average % of viable cells (annexin-V/PI 

double negative) from experiments using 3 different CLL 

samples.  
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Figure 12. Enhancement of GSH synthesis in CLL cells by 

bone marrow stromal cells. CLL cell were isolated from 

peripheral blood of patients and cultured alone or with a layer 

of different bone marrow stromal cells (HS5, StromaNKtert, 

KUSA-H1). GSH levels in CLL cells were analyzed at day 3. 

Each bar shows the mean±SEM of the GSH contents in 6 

different CLL samples measured in triplicates.  
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Figure 13. Bone marrow stromal cells decrease cellular 

ROS and increase total thiol in CLL cells. (A) Comparison 

of cellular ROS in CLL cells after a 3-day culture alone or with 

a layer of HS5, StromaNKtert, and KUSA-H1 stromal cells. 

Cellular ROS were detected by flow cytometry using 1 μM 

DCF-DA. Representative histograms and the means ±SEM of 4 

separate experiments with different CLL samples are shown 

(***, p<0.001). (B) Comparison of total cellular thiols in CLL 

cells after a 3-day culture alone or with HS5, StromaNKtert, 

and KUSA-H1 stromal cells.  Total cellular thiols were 

detected by flow cytometry using 0.5 µM CMFDA as a probe.  

Representative histograms (left panel) and the means±SEM of 

4 separate experiments with 4 different CLL samples are 

shown (*, p<0.05; **, p<0.01).  
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3. GSH plays a key role in mediating stromal protection of CLL cells from 

spontaneous- and drug-induced apoptosis. 

      After showing that bone marrow stromal cells maintained GSH level in CLL cells, the 

role of GSH in mediating stromal protection of CLL cells from apoptosis was then tested 

in the co-culture system with or without drug incubation. Because GSH is the most 

abundant antioxidant involved in cell survival and drug resistance 95, 116, I then tested 

whether the high level of GSH in CLL cells conferred by HS5 stromal cells was 

important for their survival. CLL cells in suspension culture were incubated in the 

following 3 conditions: (1) CLL cells alone in standard RPMI media, (2) with a layer of 

HS5 cells, (3) with glutathione (GSH) or its precursor N-acetylcysteine (NAC) without 

stromal cells. The structures of GSH and NAC are shown in Fig 14A-B. Cell death was 

monitored at various time intervals by annexin-V/PI staining.  As shown in Fig 15A, 

CLL cells cultured alone exhibited a time-dependent loss of viability, with spontaneous 

apoptosis reaching as high as 70% on day 10.  In contrast, co-culture with HS5 stromal 

cells significantly enhanced CLL cell survival with only a loss of 20% viability on day 

10.  Importantly, supplement of the NAC also effectively prevented apoptosis in CLL 

cells in the absence of stromal cells (Fig 15A), suggesting that the increase in GSH by 

NAC supplement was sufficient to enhance cell survival. NAC also protected CLL cells 

from oxaliplatin-induced cytotoxicity (Fig 15B).  The ability of GSH to promote CLL 

cell viability was further demonstrated in a separate experiment using CLL cells from 3 

independent patient blood samples, which showed massive spontaneous apoptosis 14 

days after being cultured in vitro alone, but remained largely viable when the culture 

medium was supplemented with 2 mM GSH without stromal cells (Fig 16). Analysis of 
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cellular GSH showed that CLL cells cultured alone without NAC/GSH supplements lost 

80% of their cellular GSH in 3 days and lost almost all GSH in 7 days, while the presence 

of NAC (1 mM) or GSH (2 mM) enabled CLL cells to maintain cellular GSH in the 

absence of stromal cells (Fig 17). The effect of different concentrations of NAC and GSH 

on long term survival of CLL cells was also tested. As shown in Fig 18A-B, 20 μM NAC 

or GSH failed to protect CLL cells and 200 μM NAC or GSH have some limited 

protective effect in CLL cells within 14 days. However, only higher concentrations of 

NAC (2mM) or GSH (2mM) exerted strong protection in CLL cells within 18 days, 

indicating that only nonphysical concentrations of GSH could protect CLL cells from 

spontaneous apoptosis for long term. The important role of GSH in mediating stromal 

protection of CLL cells was further demonstrated by induction of CLL cell death in the 

presence of stromal cells through pharmacological depletion of GSH using β-phenylethyl 

isothiocyanate (PEITC), a natural compound capable of rapidly depriving cellular 

glutathione 52, 117.  The structure of PEITC is shown in Fig 14C. As shown in Fig 19, 

PEITC (5 μM) significantly decreased the GSH content in CLL cells co-cultured with 

HS5 stromal cells, which would otherwise cause a significant increase of GSH in CLL 

cells without PEITC.  Depletion of GSH by 5 μM PEITC was toxic to CLL cells and 

significantly enhanced the cytotoxicity of F-ara-A or oxaliplatin in the presence of HS5 

(Fig 20).  In the absence of PEITC, HS5 stromal cells enhanced the viability of CLL cells 

exposed to F-ara-A or oxaliplatin, consistent with Fig 6.  
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Figure 14. Structure of glutathione (GSH) (A), N-

acetylcysteine (NAC) (B), and β-phenylethyl isothiocyanate 

(PEITC) (C).  
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Figure 15. N-acetylcysteine (NAC) and bone marrow 

stromal cells protect CLL cells from spontaneous and drug-

induced apoptosis. (A) Increase of CLL cell viability by HS5 

stromal cells or exogenous NAC. CLL cells were cultured 

alone, with HS5 cells, or with 1mM NAC for the indicated 

times. Cell viability was measured by flow cytometry analysis. 

n= 3 different CLL samples for each conditions. (B) 

Comparison of the ability of N-acetylcysteine and bone 

marrow stromal cells to protect CLL cells from spontaneous 

and drug-induced apoptosis. CLL cells were cultured alone, 

with 1 mM N-acetylcysteine (NAC, a metabolic precursor of 

GSH), or with bone marrow stromal cells (HS5) in the 

presence or absence of oxaliplatin (20 µM) for 48h. Cell 

viability was measured by annexin-V/PI staining.  The number 

in each dot blot indicates % of viable cells (annexin-V/PI 

double negative).  
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Figure 16. Effective protection of CLL cells by exogenous 

GSH in the culture medium without stromal cells. CLL cells 

were cultured in medium with or without GSH (2mM) for 14 d, 

and cell viability was measured by flow cytometry after 

staining with Annexin V and PI. 
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Figure 17. Effect of NAC (1 mM, 3 days) or GSH (2 mM, 7 

days) on GSH levels in CLL cells cultured without stromal 

cells.  CLL cells were incubated with 1 mM NAC for 3 days 

(A) or 2 mM GSH for 7 days (B) in the absence of stromal 

cells.  At the end of the incubation, cell extracts were analyzed 

for GSH. CLL cells cultured without NAC and GSH were used 

as the control for comparison. Each bar represents mean SD of 

three separate measurements. 
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Figure 18. The effect of various doses of N-acetylcysteine 

(NAC) and glutathione (GSH) on the survival of CLL cells. 

CLL cells isolated from peripheral blood of CLL patients were 

cultured alone or with 20 μM, 200 μM, 2mM NAC (A), or with 

20 μM, 200 μM, 2mM NAC (B) for indicated times. Cell 

viability was measured by flow cytometry analysis. n=3 

different CLL samples fro each conditions.  
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Figure 19. β-phenylethyl isothiocyanate (PEITC) depletes 

cellular thiols in CLL cells cultured alone or with HS5 

stromal cells. CLL cells were cultured alone or with a layer of 

HS5 stromal cells for 3 days and treated with 5 μM PETIC for 

5h. Fluorescent probes CMFDA was used to detect cellular 

total thiol level by flow cytometric analysis.   
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Figure 20. Enhancement of cytotoxicity of F-ara-A and 

oxaliplatin by PETIC in the presence of HS5 stromal cells. 

CLL cells were cultured alone or with a layer of HS5 stromal 

cells for 1 day, and then treated with 20 μM F-ara-A, 20 μM 

oxaliplatin for another 48 hours, 5 μM PEITC for 5 hours, or 

their combination as indicated. Cell viability was measured by 

flow cytometry analysis after staining with annexin V/PI. The 

representative dot plot is shown. The number in each dot blot 

indicates % of viable cells (annexin V/PI double negative). 
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4. Soluble factor derived from bone marrow stromal cells enhance GSH synthesis in 

CLL cells and promotes cell survival.  

 Since GSH seemed to play a major role in mediating stromal protection of CLL 

cells, I next investigated how the bone marrow stromal cells maintain GSH at a high level 

in CLL cells. First, I used a transwell co-culture system in which CLL cells were cultured 

within an insert chamber with a microporous membrane that prevented the direct contact 

between CLL cells and the stromal cells in the outer chamber, but allowed the exchange 

of soluble factors between the two compartments (Fig 21A). As shown in Fig 21B, co-

culture of CLL cells with HS5 stromal cells in the transwell system showed a significant 

protective effect against cell death induced by F-ara-A (20 μM), oxaliplatin (20 μM), or 

H2O2 (100 μM). This protective effect was similar to that observed in direct co-culture 

without a membrane separation of the two cell types, suggesting that the protective effect 

was largely mediated by the soluble factors in the medium. Such protective effect was 

consistently observed using two other bone marrow stromal cell lines (StromaNKtert and 

KUSA-H1) in similar co-culture settings (Fig 22). Interestingly, with StromaNktert and 

KUSA-H1, the protective effect in the direct co-culture without membrane separation 

appeared greater than that observed in the transwell system, suggesting that the direct 

contact between stromal and CLL cells also contributed to the overall protective effect 

(Fig 22). Previous I showed that the overall protective effect of StromaNKtert and 

KUSA-H1 were higher than HS5 stromal cells (Fig 7). It is likely that cell contact 

mediated protection is missing in co-culture system with HS5 stromal cells but exist in 

those with StromaNKtert or KUSA-H1. The morphology of CLL cells cultured with 

different stromal cells was quite different. When co-cultured with HS5 stromal cells, CLL 
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cells easily formed clusters and flowed in the medium (Fig 23). However, with a layer of 

StromaNKtert or KUSA-H1, CLL cells attached to the stromal cell layer without forming 

clusters (Fig 23). There are two possible reasons for no cell contact between CLL cells 

and HS5 stromal cells. Firstly, HS5 stromal cells might miss certain adhesion molecules 

on the cell surface; secondly, some soluble forms of adhesion molecules might be 

secreted by HS5 cells that bind to CLL cells thus block the interaction with cell surface 

forms of adhesion molecules, such as sICAM-1, which was detected by cytokine array in 

the HS5 cell-conditioned medium (Fig 25). 

 The ability of soluble stromal factor to protect CLL cells was further confirmed 

using the conditioned medium from the HS5 stromal cell culture. The cell-free 

conditioned medium (CM) increased GSH in CLL cells and enhanced their survival in 

culture without stromal cells (Fig 24).   
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Figure 21. Protection of CLL cells against spontaneous and 

drug-induced apoptosis by HS5 stromal cells.  (A) 

Comparison of drug-induced loss of cell viability in CLL cells 

cultured alone or with a layer of HS5 stromal cells in the 

presence or absence of a micropore membrane (filter) (B), 

which separated CLL cells from the stromal cells but allow the 

diffusion of soluble factors. After pre-incubation, the cells were 

treated with F-ara-A (20 μM, 48 h), oxaliplatin (20 μM, 48 h), 

or H2O2 (100 μM, 24 h). Cell viability was assessed by 

annexin-V/PI staining. * indicates p<0.05 compared to the 

sample without stromal cells.  

 

 

 

 

 

 



 - 75 -

A 

 

                   

B 

 

             

 

 

CLL cells 

Stromal cells 

F-ara-A Oxaliplatin H2O2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

CLL alone
CLL + HS5
CLL + HS5 with filter

R
el

at
iv

e 
ce

ll 
su

rv
iv

al

* 
* 

*
*

*
*

n=3 n=3n=12 



 - 76 -

               

    

 

Figure 22. Protection of CLL cells against spontaneous and 

drug-induced apoptosis by StromaNKtert and KUSA-H1 

stromal cells.  Comparison of drug-induced loss of cell 

viability in CLL cells cultured alone or with a layer of 

StramaNKtert or KUSA-H1 cells in the presence or absence of 

a micropore membrane (filter), which separated CLL cells 

from the stromal cells but allow the diffusion of soluble factors. 

After pre-incubation, the cells were treated with F-ara-A (20 

mM, 48 h), oxaliplatin (20 mM, 48 h), or H2O2 (100 mM, 24 h). 

Cell viability was assessed by annexin-V/PI staining. * 

indicates p<0.05 compared to the sample without stromal cells. 
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Figure 23. Phenotype of CLL cells alone or co-cultured 

with bone marrow stromal cells (HS5, StromaNKtert, 

KUSA-H1). Figure displays phase-contrast photomicrophraphs 

that depict the morphologic appearance of CLL cells cultured 

alone or co-cultured with a layer of stromal cells. Cells were 

imaged in medium using a phase-contrast microscope with a 

10X objective lens. Images were captured with a Nikon digital 

camera with the use of Camera Control Pro software (Nikon); 

when necessary, Adobe Photoshop 9.0 (Adobe Systems) was 

used for image processing. 
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Figure 24. Soluble factor of HS5 stromal cells maintains 

GSH level of CLL cells and protects CLL cells from 

spontaneous apoptosis. (A) Comparison of GSH levels in 

CLL cells after cultured in regular medium or in HS5-

conditioned medium (HS5-CM) for 72 h. *, p<0.05. (B) 

Annexin V-PI assay of CLL cell viability after culture in 

regular medium or in HS5-conditioned medium for 1 or 7 days. 

The number in each dot blot indicates % of viable cells 

(annexin-V/PI double negative). 
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5. The low-molecular-weight fraction of the stromal medium enhances GSH 

synthesis in CLL cells and promotes cell survival. 

I next investigated what was (were) the effective factor(s) in the conditioned medium 

of stromal cells. In light of the reports that cytokines and growth factors secreted by the 

accessory cells of tumor microenvironment protect leukemia cells for survival and confer 

drug resistance 14, firstly I measured the relative levels of the cytokines and chemokines 

secreted in the conditioned medium of single CLL cell cultures, single HS5 cell cultures 

and CLL/HS5 cell co-cultures respectively, by using the Human Cytokine Array Panel A 

(R&D Systems). Using this technology, the relative levels of up to 36 cytokines in a 

single sample can be profiled simultaneously (C5a, CD40 Ligand, G-CSF, GM-CSF, 

GROα, I-309, sICAM-1, IFN-γ, IL-1α, IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, 

IL-12 p70, IL-13, IL-16, IL-17, IL-17E, IL-23, IL-27, IL-32α, IP-10, I-TAC, MCP-1, 

MIF, MIP-1α, MIP-1β, Serpin E1, RANTES, SDF-1, TNF-α, sTREM-1). Cultured alone, 

CLL cells secreted MIF (GIF, DER6) (Fig 25B), while HS5 cells secreted a variety of 

cytokines that are listed in Fig 25. Notably, no difference of cytokine secreting pattern 

was detected by this array in the medium of single HS5 cell cultures and CLL/HS5 cell 

co-cultures (Fig 25C, D). This observation indicated that no specific cytokines included 

in this array were secreted in response to CLL and HS5 cell interactions. 

Because bone marrow stromal cells may release various factors including high 

molecular weight matrix factors, cytokines, growth factors, and low molecular weight 

amino acids and lipids 109, 117-120, to not miss the other possibilities, I separated the soluble 

factors in the HS5-conditioned medium into high-molecular-weight (HMW) and low-

molecular-weight (LMW) fractions using the Amicon centrifugal filter devices with a 3-
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kDa molecular cutoff, and tested their effect on CLL survival in the presence of drug 

incubation.  Surprisingly, cytotoxicity analysis showed that it was the LMW fraction (< 3 

kD) that provided most of the protective effect against drug-induced apoptosis, whereas 

the HMW fraction showed little protective activity (Fig 26). Consistently, incubation of 

CLL cells with LMW fraction helped the maintenance of cellular GSH pool at a high 

level (2.2 nmole/107 cells), similar to the GSH content in CLL cells cultured with 

unfiltered HS5-conditioned medium (Fig 27).  In contrast, CLL cells cultured in regular 

medium showed a severe loss of GSH during the 3-day incubation, and the HMW faction 

of HS5-conditioned medium provided minimum protection against GSH loss (Fig 27).  

These data together suggest that a LMW component(s) of less than 3 kDa might play a 

key role in mediating the protective effect.   

Since GSH is a small peptide (MW = 0.307 kDa) that can readily pass through the 

filter, I tested if HS5 stromal cells might secrete GSH into the medium for uptake by 

CLL.  First, I used a common assay (the “end-point” method) to measure GSH and other 

reactive thiols in the medium of CLL culture with or without HS5.  The results showed 

that HS5 significantly increased the thiol contents in the culture medium as well as in the 

CLL cells (Fig 28).  However, since the end-point method utilized the Ellman’s reaction 

to detect total free thiols including GSH, it became important to test if the stromal-

induced elevation of thiol signals was due to elevated GSH or an increase in other LMW 

thiols such as cyteine.  Thus, I used the kinetic method to specifically quantify GSH 

signal.  As shown in Fig 29A (top panel), the slop of the kinetic reaction driven by GSH 

in the cell extracts of CLL cells co-cultured with HS5 was significantly higher than that 

of CLL cells cultured alone, confirming the increase of cellular GSH under co-culture 
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conditions. Fig 29B shows the quantitative data of three independent measurements of 

GSH in CLL cell extracts. The presence of stromal cells enhanced GSH levels in CLL 

cells by 4-5 folds. The kinetic method did not detect a significant GSH signal in the CLL 

culture medium or in the co-culture medium, as evidenced by the flat curves (Fig 29A, 

lower panel).  These data suggest that the increased thiol signal in the stromal medium 

detected by the end-point method was not GSH, and was due to the presence of other low 

molecular weight thiols. 

Using various concentrations of standard GSH in the medium, I determined that the 

minimum detection limit of this GSH assay was 0.3 μM. To detect GSH in the stromal 

conditioned medium, I increased the density of stromal cells and reduced the culture 

medium volume so that the cell/medium ratio increased by 2-4 folds. Under these 

conditions, GSH in the stromal conditioned medium could be detected (Fig 30).  After 

normalization by the cell/medium ratio, the GSH levels in the stromal medium of normal 

cell density were 0.22 μM, 0.29μM, and 0.32μM for HS5, NKtert, and KUSA-H1 

cells, respectively. Interestingly, such low concentrations of GSH were not sufficient to 

promote CLL cell viability, as evidenced by the failure of 2μM GSH to enhance CLL 

cell survival in the absence of stromal cells (Fig 31A). Interestingly, low concentrations 

of GSH (2-10μM) in the medium did not promote GSH synthesis in CLL cells, while 

higher concentrations (100-2000μM) of exogenous GSH substantially enhanced the 

cellular GSH contents in CLL cells (Fig 31B). This was consistent with the observation 

that high concentration of exogenous GSH in the medium could promote CLL survival 

(Fig 18).          
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The above observations suggest that direct release of GSH into the medium by HS5 

cells was unlikely the major mechanism by which the stromal cells enhanced GSH in 

CLL cells. I then tested if the stromal cells could indirectly promote GSH synthesis in 

CLL cells. GSH is synthesized by two sequential reactions catalyzed by γ-

glutamylcysteine liganse (GCL) and glutathione synthetase (GS).  The rate-limiting 

enzyme GCL is a heterodimer consisting of GCLC (catalytic) and GCLM (modulating) 

subunits, with the catalytic subunit GCLC being the rate-limiting component. Western 

blot analysis showed that the expression of GCLC was readily detectable in CLL cells, 

and that the presence of bone marrow stromal cells did not increase the expression of 

GCLC in 16 different CLL patient samples (Fig 32), suggesting that this rate-limiting 

enzyme was unlikely to be involved in stromal promotion of GSH synthesis in CLL cells.  
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Figure 25. Cytokine array of conditioned medium from 

CLL cells, HS5 stromal cells, and CLL cells co-cultured 

with HS5 stromal cells. Secreted cytokines were detected 

using Human Cytokine Array Panel A from R&D systems 

(Minneapolis, MN). CLL cells and HS5 stromal cells were 

cultured alone or co-cultured for 3 days. Cell culture 

supernatants were collected and particulates were removed by 

centrifugation and assayed immediately according to the 

procedures recommended by the manufacture. Medium alone 

was examined as control. 

A: Medium alone, RPMI 1640, 10% FBS. 

B: Conditioned medium from CLL cell cultures on day3, cell 

density was 1X106 cells/ml. 

C: Conditioned medium from HS5 cell cultures on day3, cell 

density was 1.8X105 cells/ml. 

D: Conditioned medium from CLL and HS5 cell co-culture on 

day3. 
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Figure 26. The low-molecular-weight fraction of stromal-

conditioned medium promotes CLL cells survival. HS5 

stromal cells were cultured until 80% confluence and switched 

to serum-free medium for 3 days. The conditioned medium was 

harvested, cleared by centrifugation, and then loaded to the 

reservoir chamber of the Amicon Ultra-15 centrifugal filter unit 

with molecular weight cut-off of 3-kDa (Millipore corporation, 

Billerica, MA). The tube was centrifuged at 4000x g at 4°C for 

15min. The concentrated liquid remaining in the upper 

reservoir (high-molecular-weight fraction) was collected and 

reconstituted with serum-free medium to same volume before 

centrifugation. The components that passed the filter were 

collected as low-molecular-weight fraction. Both fractions 

were used to culture CLL cells immediately to test their effect 

on the viability CLL cells exposed to oxaliplatin (20 μM, 48 h). 

Cell viability was measured by flow cytomotry with annexin-

V/PI staining. 

 

 

 

 



 - 89 -

 

 

 

                    

 

 

 

 

 

 

 

   Membrane  
  (3KD pore) 

CLL 
alone 

HS5-CM  
         (Unfiltered) 

    Control  Oxaliplatin 

86% 

87% 

86% 

86% 

42% 

62% 

32% 

67% 

      Annexin V 

     CM-HMW 

    CM-LMW 

    HS5-CM 

PI 



 - 90 -

 

 

 

 

 

Figure 27. The low-molecular-weight fraction of stromal-

conditioned medium enhances GSH synthesis in CLL cells. 

Serum-free HS5 cell conditioned medium was prepared sorted 

intro high-molecular-weight fraction and low-molecular-weight 

fraction by the same method described in Figure 23. Both 

fractions were used to culture CLL cells immediately. GSH 

levels in CLL cells cultured in different fractions of stromal-

conditioned medium were examined on day 3. Each bar shows 

mean ±SEM of 3 experiments using 3 different CLL samples. 
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Figure 28. Determination of thiol by end-point method. 

Comparison of thiol levels in CLL cells or in the medium 

cultured with or without HS5 stromal cells for 72 h. The end-

point method was used to measure thiol levels as described in 

Methods. Bar graphs of mean ±SEM from 3 experiments with 

3 different CLL samples are shown (**, p < 0.01; ***, p < 

0.001).  
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Figure 29. Determination of thiol by Kinetic method. (A) 

Kinetic measurement of GSH contents in CLL cells (upper 

panel) and in culture medium (lower panel) under the same 

culture conditions as in Fig 24. The slops reflect the kinetic 

reactions driven by GSH. (B) Quantitative comparison of GSH 

levels in CLL cells and in medium cultured with or without 

HS5 cells for 72 h. GSH concentration was determined by 

kinetic method.    Each bar shows the mean ±SEM of 3 

experiments using different CLL samples (**, p < 0.01; O, 

undetectable). 
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Figure 30. GSH contents in the conditioned medium of 

bone marrow stromal cells. GSH levels in the stromal 

conditioned medium from HS5, Nktert, and KUSA-H1 stromal 

cells.  The panel on the left shows the standard curve of this 

assay.  The conditioned medium was obtained under high cell 

density culture conditions as described in the text, and the 

normalized GSH levels in the culture medium under normal 

cell density were calculated using the corresponding 

cell/medium ratio for each cell line.  
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Figure 31. The effect of exogenous GSH on CLL cell 

viability.  (A) Exogenous GSH at a low concentration (2 μM) 

did not promote CLL cell viability in culture without stromal 

cells. CLL cells were incubated with 2 μM GSH. Cell viability 

was assessed by annexin-V/PI staining. The number in each dot 

blot indicates % of viable cells (annexin-V/PI double negative). 

(B) Effect of various concentrations of GSH in the culture 

medium on the cellular GSH contents in CLL cells. CLL cells 

were incubated with 2 μM, 10 μM, 50 μM, 100 μM, 500 μM, 

1mM, 2mM GSH. Cellular GSH levels in CLL cells were 

measured on day 3. (n=3 patient sample) 
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Figure 32. Comparison of GCLC expression in CLL cells 

with or without bone marrow stromal cells. CLL cells 

isolated from peripheral blood of CLL patients were cultured 

alone or co-cultured with a layer of HS5 stromal cells for 3 

days. CLL cells were removed from the stromal cells layer by 

gently shaking the flask and collecting CLL cells in the 

supernatant. Expression of GCLC in CLL cells from 16 patient 

samples in single culture (S, CLL alone) or in co-culture (C) 

with HS5 stromal cells were detected by western blot. Cell 

lysates were prepared and equal amounts of protein were 

electrophoresed on SDS-PAGE gels using standard conditions.  

The proteins were transferred to nitrocellulose membranes, 

which were probed with the following antibodies: GCLC; 

actin. Protein bands were visualized by chemiluminescent 

detection. 
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6. Generation of cysteine in the microenvironment by bone marrow stromal cells is 

critical to enhance GSH synthesis in CLL cells and promote their survival. 

Among the three precursor amino acids (glutamate, cysteine, glycine) for GSH 

synthesis, the thiol-containing cysteine is chemically unstable and exists at a lower 

concentration than glutamate and glycine 116, and thus is a rate-limiting substrate for GSH 

synthesis. Because the HS5 stromal medium contained no detectable GSH (Fig 29A-B), I 

speculated that the LMW component in the stromal medium that enhanced GSH 

synthesis in CLL cells might be cysteine. To test this possibility, I first measured the 

LMW thiols in the acid-soluble extracts (to eliminate protein) of the culture medium from 

CLL or stromal cells (HS5, StromaNKtert, KUSA-H1), and showed that the medium 

contained only a trace amount of thiol before incubation with cells, and that there was a 

time-dependent increase in acid-soluble thiol concentrations in the stromal cell culture 

media (Fig 33), suggesting that all three bone marrow stromal cell lines were able to 

release LMW thiols, which were  likely cysteine.  

         In order to detect cysteine in cell culture medium, two quick detection methods 

without derivatization were used. Firstly I performed the matrix-assisted laser 

desorption/ionization-time of flight mass spectrometer (MALDI-TOF MS) with the help 

of Dr. Hawke, the director of the proteomics facility in MD Anderson Cancer Center. 

Different matrices, such as dihydroxy- benzoic acid (DHB) and α-cyano-4-

hydroxycinnamic acid (α-CHC) were tested after mixed with stromal cell conditioned 

medium with various ratios (1/10, 1/100, and 1/1000). It was found that the ratio of 1 to 

100 was good for the crystallization of samples. However, the background noise of 

matrix in the low m/z area was too strong and covered the peak of cysteine. MALDI-TOF 
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mass spectrametry is good for analyzing protein which has high molecular weight that 

can avoid the background signal of matrix, but it is not a good method to detect small 

molecules like amino acid. Then I used electrospray ionization tandem mass spectrometry 

(ESI-MS/MS) to examine cysteine in culture medium by direct sample injection. 

Preliminary test by using pure cysteine showed that the transition pair of cysteine is 

122/105, 76. By monitoring this transition pair, I found that the detection limit of pure 

cysteine prepared in water is 4 μM at the elution time of 3.5min (Fig 34A). However, 

when stromal cell conditioned medium was injected, no absorbance was detected around 

3.5min (Fig 34B). Interestingly, cysteine signal was undetectable either when pure 

cysteine was prepared in regular culture medium. Since cell culture medium contains 

high concentration of salt, it is very likely that the salt in medium influences the 

ionization process and detection. 

I then collected the stromal cell culture medium for metabolic profile analysis by 

NMR (Chenomx Inc. Edmonton, Canada), and showed that cystine was decreased in the 

stromal culture medium, indicating its utilization by the bone marrow stromal cells (Fig 

35A).  No cysteine signal was detectable by NMR analysis under this assay conditions 

(minimum detection limit was 2 μM) due to the instability of this compound in the 

medium during shipment, storage, and the required de-protein processing before NMR 

analysis (Fig 35B).   

        Luckily, MD Anderson bought a new LC-MS/MS system with a bigger C18 column 

with enhanced retention capacity. Based on the previous experience, the working model 

was proven finally. Stromal cell-conditioned medium was collected, cleared by 

centrifugation, and diluted 10:1 in buffer prior injection. By comparing the full scan of 
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MSMS of 122 ion (cysteine ion), the fingerprint of the daughter ions of the stromal cell-

conditioned medium was exact the same with that of the authentic cysteine (Fig 36A), 

indicating that cysteine was detected in stromal cell-conditioned medium. This ionization 

pattern was not observed in control medium. The equation from the standard curve from 

0.1 μM to 10 μM was used to calculate the concentrations of cysteine in the samples (Fig 

36B). These samples were analyzed in triplicate. The result showed that cysteine 

concentration in control medium was low (0.25 μM), however, cysteine appeared in 

stromal cell-conditioned medium at a concentrations of 10-40 μM (Fig. 36C), which 

indicating that the protein-free thiol secreted by stromal cells was cysteine.  

To further investigate the role of stromal-secreted cysteine in CLL survival and GSH 

synthesis, I tested the effect of exogenous cysteine in primary CLL cell culture without 

bone marrow stromal cells.  Due to its instability, cysteine was added to the culture 

medium every 24 h for 3 days. Exogenous cysteine (50 μM) substantially increased the 

GSH content in CLL cells to a level comparable to that observed in CLL cells co-cultured 

with stromal cells (HS5), and 200 μM cysteine led to a significantly higher GSH (Fig 

37). The exogenous cysteine promoted resistance to apoptosis induced by F-ara-A and 

oxaliplatin (Fig 38).  Since the human plasma contains 10-20 μM cysteine121, 122 which 

reflects the steady-state levels of cysteine constantly produced by the stromal cells and 

oxidized extracellularly, I tested the long-term effect of such physiological concentrations 

of cysteine on CLL viability. As shown in Fig 39, daily addition of 10 μM of cysteine 

was able to enhance CLL viability (from 4% to 34%) without drug treatment but did not 

prevent drug-induced cell death. Higher concentrations (20-200 μM) of cysteine 
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exhibited further protection of CLL cell viability and also promoted drug resistance in a 

concentration-dependent manner.  

In contrast, the presence of 200 μM cystine in the regular RPMI medium failed to 

maintain GSH level in CLL cells without HS5 (Fig 37, CLL alone), suggesting that only 

cysteine could be utilized by CLL cells. Chemical conversion of cystine to cysteine by 

adding the strong reducing agent 2-mercaptoethanol (2-ME, 20 μM) to the culture 

medium (Fig 40A) effectively increased GSH content in CLL cells (a 10-fold increase) 

without stromal cells (Fig 40B), further confirming the important role of cysteine. In cell 

viability study, CLL cells lost their viability in regular culture medium without 2-ME, 

and addition of 20 μM 2-ME conferred a striking protective effect that kept the majority 

of CLL cells viable for 3 weeks (Fig 41A). The importance of such chemical conversion 

was further demonstrated in a separate experiment, where 2-ME failed to protect CLL 

cells in the cystine-free medium (Fig 41B), indicating that cystine was required to be 

reduced to cysteine by 2-ME to provide the protective effect. The protective effect of 2-

ME on B cell survival has been known for a long time, but the mechanism is still unclear. 

In this study, I found that the chemical conversion from cystine to cysteine by 2-ME is 

critical for 2-ME to protect B cells. Consistently, exogenous 2-ME provided significant 

protection against drug-induced apoptosis in CLL cells exposed to F-ara-A or oxaliplatin 

in regular culture medium containing 200 μM cystine (Fig 42). 
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Figure 33. Release of acid-soluble thiols into extracellular 

environment by 3 lines of bone marrow stromal cells (HS5, 

StromaNKtert, and KUSA-H1). The stromal cultures were 

replenished with fresh medium, and at the indicated time points 

aliquots of medium were removed, clarified by centrifugation, 

and extracted with sulfosalicylic acid to remove protein and 

neutralized with NaOH. Thiol contents were measured by 

reaction with freshly prepared DTNB by measuring absorbance 

at 412nm. Each sample was assayed in triplicate. The acid-

soluble thiol concentration was calculated using cysteine as a 

reference standard. Medium alone without cells was incubated 

in parallel at the same time as a control. Each data point was 

the mean ±SEM of 3 separate experiments.  
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Figure 34. Electrospray ionization tandem mass 

spectrometry (ESI-MS/MS) analysis of standard cysteine 

and cysteine in HS5 stromal cell conditioned medium. Pure 

cysteine prepared in water (A) and stromal cell conditioned 

medium (B) were injected to mass spectrometry. Mass 

spectrometry was carried out in positive ion mode on a linear 

ion trap mass spectrometer, using a nanoelectrospray source for 

direct infusion of samples by static nanospray with isolation 

width as m/z 1.0, and acquisition time as 0-8 min. Electrospray 

voltage was 1 kV. Static nanoelectrospray needles were from 

Proxeon Biosciences.  
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Figure 35. NMR analysis of cystine and cysteine in HS5 

stromal conditioned medium and control medium. The HS5 

stromal conditioned medium (HS5-CM) and control medium 

(without cell culture) were collected and sent to Chenomx Inc 

(Edmonton, Canada) for NMR analysis.  The media were 

deproteinated before analysis by 1H NMR spectroscopy. (A) 

Cystine signature profile and spectra line of the control 

medium (upper panel) and HS5-CM (lower panel). (B) 

Standard cysteine signature profile (green) and the spectra line 

of the control medium (black) and HS5-CM (blue).  Segments 

of the spectra containing the clusters of cystine or cysteine are 

shown. There were no detectable spectra patterns of the control 

medium or stromal conditioned medium that match with the 

standard cysteine spectra profile, indicating a loss of cysteine 

to the level below the detection limit (2 mM) in the samples 

due to the instability of the compound. 
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Figure 36. Analysis of Cysteine by LC-MS/MS on the 

Triple-Quadrupole Mass Spectrometer. (A) Full scan of 

MSMS of 122 ion of authentic cysteine and stromal cell-

conditioned medium. Conditioned medium was diluted 10:1 in 

buffer prior injection. The singly-charged, protonated Cysteine 

ion (MH+) was selected for fragmentation in an injection of the 

standard solution at 1μM concentration, and also for the sample 

injection.  (B) Standard curve of cysteine. The equation from 

the standard curve from 0.1 μM to 10 μM was used to calculate 

the concentrations of cysteine in the samples. (C) Cysteine 

concentration in control medium and stromal cell-conditioned 

medium. These samples were analyzed in triplicate. 
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Figure 37. Extracellular cysteine enhanced CLL cellular 

GSH contents. CLL cells were isolated from peripheral blood 

of CLL patient and daily supplemented with 50-200 μM 

cysteine. CLL cells cultured alone or with a layer of HS5 

stromal cells were used as controls for comparison. GSH assay 

was performed on day 3. Each bar represents mean ±SEM of 4 

separate experiments (**, p<0.01; ***, p<0.001). 
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Figure 38. Extracellular cysteine conferred drug resistance 

to CLL cells. Cells were isolated from peripheral blood of 

CLL patient and cultured alone, with cysteine (50-200 μM, 

added daily), or with HS5 stromal cells for 24 h, then treated 

with 20 μM F-ara-A or 20 μM oxaliplatin for another 48 h, and 

analyzed for cell viability by flow cytometry after staining with 

annexin V and PI. The total incubation time was 3 days. Each 

bar represents mean ± SEM of 3 separate experiments (*, 

p<0.05). 
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Figure 39. Effect of various concentrations of cysteine on 

CLL cell survival and drug sensitivity cultured without 

stromal cells. Fresh isolated CLL cells were incubated with 10, 

20, 50, 100 μM cysteine. Cysteine was added daily 

continuously for 7 days and treated with 20 μM F-ara-A or 20 

μM oxaliplatin for another 2 days. Cell viability was measured 

by flow cytometry analysis after staining with annexin V and 

PI on day 9. The representative dot plot was shown. The 

number in each dot blot indicates % of viable cells (annexin-

V/PI double negative).   
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Figure 40. Conversion of extracellular cystine to cysteine by 

2-mercaptolethanol (2-ME) enhances GSH synthesis in 

CLL cells. (A) Chemical reduction of cystine to cysteine by 2-

ME. (B) CLL cells were isolated from peripheral blood of CLL 

patient and cultured alone or with the supplementation of 20 

μM 2-ME. Cellular GSH level was detected on day 3. (***, 

p<0.001, n= 3 different CLL samples). 
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Figure 41. 2-mercaptolethanol (2-ME) protects CLL cells 

for survival in vitro in the presence of cystine. (A) 

Conversion of cystine to cysteine in the culture medium by 2-

ME (20 μM) promoted CLL cell long-term survival in culture 

with regular RPMI medium (containing 200 μM cystine). Cell 

viability was measured by flow cytometry analysis after 

staining with annexin V and PI. CLL cells were imaged in 

medium using a phase-contrast microscope with a 10X 

objective lens. Images were captured with a Nikon digital 

camera with the use of Camera Control Pro software (Nikon); 

when necessary, Adobe Photoshop 9.0 (Adobe Systems) was 

used for image processing. Flow cytometry and photographs 

were performed on day 20. (B) 2-ME failed to protect CLL 

cells in cystine-free medium. 
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Figure 42. Conversion of cystine to cysteine by 2-

mercaptolethanol in culture medium confers drug 

resistance to CLL cells. CLL cells were isolated from 

peripheral blood of CLL patient and cultured alone, with 2-

mercaptolethanl (2-ME, 20 µM), or with HS5 stromal cells for 

24 h, and then treated with F-ara-A (20 µM) or oxaliplatin (20 

µM) for another 48 h. cell viability was analyzed by flow 

cytometry after double staining with annexin-V/PI. Each bar 

represents mean±SEM of 3 separate experiments using 3 

different CLL patient samples (*, p<0.05; **, p<0.01).   
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7. Biochemical pathway between bone marrow stromal cells and CLL cells. 

I then investigated why CLL cells were highly dependent on cysteine in the medium 

to maintain GSH synthesis and cell survival. It is known that most cells are incapable of 

synthesizing cysteine and they obtain the GSH precursor by the uptake of extracellular 

cysteine and cystine through specific transporters 79-81. Because cysteine is unstable, the 

stable cystine is the dominant precursor in the culture medium and in plasma, and is 

transported into the cells by a transporter known as Xc-. Within the cells, cystine is 

reduced to cysteine for GSH synthesis. The facts that extracellular cystine did not 

enhance GSH level in CLL cells and failed to protect them in the absence of stromal cells 

or 2-ME led us to postulate that CLL cells might not be able to take up cystine.  I first 

tested the ability of CLL cells to utilize extracellular cystine in comparison with bone 

marrow stromal cells.  Western blot analysis showed that the expression of xCT, the 

active subunit of cystine transporter Xc- 84, was highly expressed in the HS5 stromal cells 

but was dramatically diminished in CLL cells (Fig 43). I also analyzed the xCT mRNA 

expression levels in CLL cells and normal lymphocytes using the National Center for 

Biotechnology Information gene expression omnibus database (ID: GDS1454) that 

contained microarray data from 100 CLL patient samples and 11 healthy control samples 

121, and found that CLL cells expressed a significantly lower xCT than normal 

lymphocytes in this data set (p<0.001). 

Functional analyses were performed to further compare the ability of CLL cells and 

bone marrow stromal cells to take up extracellular cystine, using radioactive [14C]-cystine 

as the substrate for quantitative measurement. As shown in Fig 44, CLL cells exhibited 

little uptake of [14C]-cystine, whereas HS5 were highly effective in taking up [14C]-
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cystine, consistent with their high expression of Xc- transporter (Fig 43). Importantly, 

conversion [14C]-cystine to [14C]-cysteine by 2-mercaptolethanol significantly increased 

the uptake of the radioactive substrate (15-fold increase) by CLL cells in culture (Fig 45).  

Because HS5 cells expressed a high level of cystine transporter and exhibited efficient 

uptake of [14C]-cystine whereas CLL cells could only import [14C]-cysteine, I tested if the 

stromal cells could promote GSH synthesis in CLL cells by converting cystine to cysteine 

for CLL cells. CLL cells cultured alone or co-cultured with HS5 cells were incubated 

with the same amount of [14C]-cystine, and the radioactive uptake in the CLL cells was 

determined after the leukemia cells in suspension were separated from HS5 stromal cells. 

As shown in Fig 46, there was a highly significant increase in the uptake the radioactive 

material by CLL cells in the presence of HS5, despite a consumption and retention of 

[14C]-cystine by the stromal cells. Western blot analysis showed that co-culture with HS5 

did not alter the expression of xCT transporter in CLL cells (Fig 47), excluding the 

possibility that the increased uptake of the radioactive material in CLL cells might be due 

to elevated expression of the transporter. To further confirm the important role of 

extracellular cystine in maintaining cell viability in the co-culture system, I incubated 

CLL cells with HS5 cells in a cystine-free medium, and showed that the absence of 

cystine in culture medium abolished the ability of HS5 cells to promote GSH synthesis in 

CLL cells (Fig 48), and abrogated the protective effect of HS5 cells on CLL survival in 

the presence of F-ara-A or oxaliplatin (Fig 49).  Together these data indicate that CLL 

cells have low ability to take up cystine due to low expression of Xc- transporter, and that 

bone marrow stromal cells promoted GSH synthesis in CLL cells by taking up cystine 

and converting it to transportable cysteine for CLL cells. 
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However, when HS5 cells were cultured without cystine for 3 days, they lost 

viability and became detached from the culture dish (Fig 50), suggesting that cystine is 

an essential thiol source to maintain stromal cell survival.  Similarly, when other two 

stromal cell lines (StromaNKtert and KUSA-H1) were cultured without cystine, they also 

lost they viability in 3 days (Fig 51). Addition of 5 μM cystine was able to support the 

survival of the stromal cells and moderately promote CLL cell viability in co-culture.  

Higher concentrations of cystine (50-200 μM) significantly promoted the viability of both 

stromal and CLL cells, even in the presence of 20 μM of F-ara-A or oxaliplatin (Fig 51).  

Although the lost of stromal cell viability in the absence of cystine seemed to complicate 

the data interpretation, the ability of exogenous cysteine to protect CLL cells without 

stromal cells (Fig 39) strongly suggest that the protective effect was mediated by 

cysteine.  Obviously, the viable stromal cells were needed to convert cystine to cysteine 

when the culture medium only contained cystine.  
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Figure 43. Expression of the cystine transporter xCT in 

HS5 stromal cells and primary CLL cells.  Cell lysates of 

HS5 stromal cells and CLL cells (n=10) were prepared and 

equal amounts of protein were electrophoresed on SDS-PAGE 

gels using standard conditions. The proteins were transferred to 

nitrocellulose membranes, which were probed with the 

following antibodies: xCT and actin. Protein bands were 

visualized by chemiluminescent detection. 

 

                      

 

 

 

 

 

 

 

 

 

 



 - 131 -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       1     2      3      4       5      6     7       8      9     10 
xCT 

β -Actin 

CLL patient samples 

Strom
al 

H
S5 cells 



 - 132 -

 

 

 

 

 

Figure 44. Comparison of [14C] cystine uptake by HS5 

stromal cells and CLL cells. Isolated CLL cells and HS5 

stromal cells were incubated in fresh cystine-free RPMI 1640 

supplemented with dialyzed 10% FBS, respectivley. [14C]-

cystine (PerkinElmer, Waltham, MA) was at (0.2 μCi/ml) and 

incubated for 4 hours. The cells were washed twice with cold 

PBS.  Cell pellets were resuspended in 200 μL PBS, lysed with 

3 mL scintillation fluid, and radioactivity was measured by a 

Beckman liquid scintillation counter. Bar graph of mean ±SEM 

of 3 separate experiments using CLL cells from 3 different 

patients is shown (***, p<0.001).  
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Figure 45. Comparison of uptake of cystine and cysteine by 

CLL cells. CLL were incubated in fresh cystine-free RPMI 

1640 supplemented with dialyzed 10% FBS.  [14C]-cystine 

and [14C]-cysteine were at (0.2 μCi/ml) and incubated for 4 

hours. The cells were washed twice with cold PBS.  Cell 

pellets were resuspended in 200 μL PBS, lysed with 3 mL 

scintillation fluid, and radioactivity was measured by a 

Beckman liquid scintillation counter. [14C]-Cysteine was 

generated by reduction of [14C]-cystine using 5 mM 2-

mercaptoethanol (37°C, 15 min). Bar graph of mean ±SEM of 

3 separate experiments using CLL cells from 3 different 

patients is shown (***, p<0.001).  
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Figure 46. Increased radioactive uptake of CLL cells in the 

presence of HS5 stromal cells. CLL cultured alone or with 

HS5 stromal cells were incubated in fresh cystine-free RPMI 

1640 supplemented with dialyzed 10% FBS.  [14C]-cystine 

(PerkinElmer, Waltham, MA) was at (0.2 μCi/ml) and 

incubated for 6 h. The cells were washed twice with cold PBS.  

Cell pellets were resuspended in 200 μL PBS, lysed with 3 mL 

scintillation fluid, and radioactivity was measured by a 

Beckman liquid scintillation counter. Bar graph of mean ±SEM 

of 3 separate experiments using CLL cells from 3 different 

patients is shown (***, p<0.001). 

 

 

 

 

 

 

 

 



 - 137 -

 

 

 

 

 

                                

 

 

 

                   

 

 

 

 

0

100

200

300

400

[1
4C

] u
pt

ak
e,

 c
m

p/
10

6 ce
lls

*** 

CLL 
alone

CLL + 
stromal 

CLL  

+Radioactive Cystine 

Radioactive Cystine 

CLL  

HS5 



 - 138 -

 

 

 

Figure 47. No change in expression of xCT in CLL cells co-

cultured with HS5 stromal cells. CLL cells were cultured 

alone or with HS5 stromal cells for 3 days. Cell lysates of CLL 

cells (n=13) were prepared and equal amounts of protein were 

electrophoresed on SDS-PAGE gels using standard conditions. 

The proteins were transferred to nitrocellulose membranes, 

which were probed with the following antibodies: xCT (Novus 

Biologicals, Littleton, CO); actin (Sigma-Aldrich, St Louis, 

MO). Protein bands were visualized by chemiluminescent 

detection. The upper panel shows the representative western 

blot results, and the lower panel shows the quantitation of xCT 

band density of 13 CLL samples, using β-actin expression in 

the same sample as the internal control (mean ±SD, p=0.951; S, 

single culture of CLL cells alone; C, co-cultured with stromal 

cells). 
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Figure 48. Extracellular cystine is required for stromal cells 

to enhance GSH synthesis in CLL cells. HS5 stromal cells 

was plated allowed to adhere for overnight and then the culture 

medium was removed, followed by a rinse with warm PBS. 

CLL cells were resuspended in cystine-free RPMI 1640 

supplemented with 10% dialyzed FBS and added to the culture 

dish containing pre-washed HS5 stromal cells. 200 μM cystine 

was added to the single culture and cocultures as indicated. 

Cellular GSH level of CLL cells was measured on day 3. (n=3 

patient samples; *, p<0.05; **, p<0.01). 
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Figure 49. Stromal cells fail to protect CLL cells from 

drug-induced apoptosis in the absence of cystine. HS5 

stromal cells was plated allowed to adhere for overnight and 

then the culture medium was removed, followed by a rinse 

with warm PBS. CLL cells were resuspended in cystine-free 

RPMI 1640 supplemented with 10% dialyzed FBS and added 

to the culture dish containing pre-washed HS5 stromal cells. 

200 μM cystine was added to the single culture  and cocultures 

as indicated. CLL cells were cultured alone or with a layer of 

HS5 stromal cells for 1 day and then incubated with 20 μM F-

ara-A or 20 μM oxaliplatin for another 2 days. Cell viability 

was assessed by flow cytometry after annexin-V/PI staining 

(n=3 patient samples; *, p<0.05). 

 

 

 

 

 



 - 143 -

 

 

 

         

 

 

 

 

 

 

F-ara-A Oxaliplatin
0.0

0.2

0.4

0.6

0.8

1.0

CLL alone
CLL+HS5
CLL+HS5 without cystine

R
el

at
iv

e 
ce

ll s
ur

vi
va

l * *
* *



 - 144 -

 

 

 

 

Figure 50. Cell morphology and GSH contents of HS5 

stromal cells in the presence and absence cystine.  Most of 

HS5 cells lost viability and detached from the culture dish on 

day 3, and cellular GSH could not be determined due to loss of 

cells (indicated by *). HS5 stromal cells was plated allowed to 

adhere for overnight and then the culture medium was removed, 

followed by a rinse with warm PBS and incubated in medium 

with or with 200 μM cystine. HS5 cells were imaged in 

medium using a phase-contrast microscope with a 10X 

objective lens. Images were captured with a Nikon digital 

camera with the use of Camera Control Pro software (Nikon); 

when necessary, Adobe Photoshop 9.0 (Adobe Systems) was 

used for image processing. GSH assay and photographs were 

performed on day 4. 
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Figure 51. Cystine-dependent protection of CLL cells by 

bone marrow stromal cells.  The indicated concentrations of 

cystine were incubated with CLL cells alone or in co-culture 

with stromal cells (Nktert or KUSA-H1) for 24 h. The cells 

were then treated with F-ara-A (20 mM) or oxaliplatin (20 μ

M) for additional 48 h, and CLL cell viability was measured by 

flow cytometry analysis. The morphology of the stromal cells 

cultured with the indicated concentrations of cystine is also 

shown. Without stromal cells, the percent of viable CLL cells 

on day 3 was 50% without drug treatment, 22% with 20 μM 

F-ara-A treatment, and 13% with 20 μ M oxaliplatin 

incubation.  
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8. Targeting the biochemical pathway to circumvent drug resistance.  

Since enhancement of GSH synthesis in CLL cells seemed to be a key biochemical 

mechanism by which bone marrow stromal cells promoted leukemia cell survival and 

drug resistance, I reasoned that abrogation of this protective mechanism would sensitize 

the leukemia cells to drug treatment in the stromal environment. One way to abolish this 

stromal protection mechanism would be to inhibit the cystine transporter Xc- to reduce 

their uptake of cystine so that its conversion to cysteine would be decreased. To avoid the 

non-specific impact of chemical inhibitors on cell viability, I used two different inhibitors 

of Xc- ((S)-4-carboxyphenylglycine 84 and sulfasalazine 122) with a careful dose-titration 

to determine the concentrations that did not cause significant cytotoxicity, and then tested 

if such non-toxic concentrations of Xc- inhibitors could abrogate the stromal protective 

effect on CLL cells. As shown in Fig 52, HS5 cells reduced the sensitivity of CLL cells 

to F-ara-A or oxaliplatin, and addition of a subtoxic concentration of (S)-4-

carboxyphenylglycine (500 μM) led to a substantial increase in F-ara-A or oxaliplatin-

induced cytotoxicity, comparable to the cytotoxicity observed in CLL cells without 

stromal protection.  Similar effect was consistently observed in a separate experiment 

using a different CLL patient sample co-cultured with another bone marrow cell line 

KUSA-H1. Fig 53 shows that S-4-carboxyphenylglycine abolished the protective effect 

of KUSA-H1 stromal cells in a concentration-dependent manner, which is consistent with 

the result shown in Fig 52, where HS5 stromal cells were tested in a similar fashion using 

a different CLL patient sample. The ability of another cystine transporter inhibitor 

sulfasalazine (300 μM) to enhance drug-induced cytotoxicity was also observed in CLL 

cells co-cultured with stromal cells (Fig 54).  I have also attempted to knockdown xCT 
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expression in the stromal cells by siRNA as an additional method to evaluate the role of 

Xc-.  I tested 3 sets of xCT siRNA (from Invitrogen), but none of the siRNA was able to 

abolish xCT expression in the bone marrow stromal cells (Fig 55).  I did not pursue this 

method further due to such technical difficulty.  However, the important role of stromal 

Xc- in cystine uptake for conversion to cysteine to protect CLL cells is strongly 

supported by 3 lines of evidence: (1) two different Xc- inhibitors consistently abolished 

the stromal protection of CLL cells, (2) removal of cystine from the culture medium 

abrogated the ability of stromal cells to protect CLL cells, and (3) this protective effect 

could be rescued by adding exogenous cysteine (Figs 39).  

Interestingly, suppression of the cysteine transporter ASC using a high concentration 

of serine (5 mM) as a competitive inhibitor induced only a moderate decrease of GSH in 

CLL cells (from 0.7 nmol/107 cells to 0.42 nmol/107 cells) during a 3-day co-culture with 

stromal cells (Fig 56A) and did not significantly affect their sensitivity to drug treatment 

(Fig 56B).  These data suggest that in addition to ASC, CLL cells might also have other 

cysteine transporters such as Na+-independent transporters (system-L), which could not 

be inhibited by serine 82, 123 (Table 2). The combination of cysteine competitors of ASC 

(serine, 5mM) and transporter A (a-methylamino-isobutyric acid (MeAIB)) still failed to 

circumvent drug resistance of CLL cells with stromal cells (Fig 57), indicating that there 

may be several cysteine transporters on CLL cells that responsible for cysteine uptake. 

This also explains why CLL cells have strong ability to uptake cysteine. I also tested 

another strategy to abrogate the stromal-mediated GSH protection of CLL cells by 

disabling the GSH antioxidant system in the cells. β-phenylethyl isothiocyanate (PEITC), 

a natural compound that can cause depletion of GSH and inhibition of glutathione 
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peroxidase 52, was used for this purpose.  As shown in Figs 58-59, 5 μM PEITC, which 

by itself caused a depletion of GSH in CLL cells 52, induced about 50% loss of CLL cell 

viability, and substantially enhanced the cytotoxicity of F-ara-A (n = 30 samples) and of 

oxaliplatin (n=10) in CLL cells in the presence of HS5 stromal cells. I also examined the 

combinative effect of PEITC and F-ara-A or oxaliplatin on CLL cells in the presence of 

two other bone marrow stromal cell lines (StromaNKtert and KUSA-H1), and showed 

PEITC at 5 μM was also able to enhance the cytotoxic effect of F-ara-A or oxaliplatin 

(Fig 60).  However, this concentration of PEITC was not as effective as that observed in 

the experiments with HS5, probably due to greater ability of StromaNKtert and KUSA-

H1 to release cysteine into the medium compared to HS5 (Fig 33).  When the 

concentration of PEITC was increased to 10 μM, this compound was highly effective in 

killing CLL cells, causing a loss of 72% and 54% cell viability in the presence of 

StromaNktert or KUSA-H1 cells, respectively (Fig 61).  Combination of 10 μM PEITC 

and 20 μM oxaliplatin exhibited striking synergistic effect against CLL cells in the 

presence of StromaNKtert or KUSA-H1 stromal cells, leading to massive killing of CLL 

cells by more than 80% (Fig 61). 

The loss of p53 in CLL cells due to deletion of chromosome 17p is known to confer 

significant resistance to standard chemotherapeutic agents 124, 125. Indeed, primary CLL 

cells isolated from a patient with 17p deletion were highly resistance to F-ara-A and 

oxaliplatin regardless of bone marrow stromal cells (Fig 62).  However, 10 μM PEITC 

was able to kill approximately 50% of the p53- CLL cells in the presence of KUSA-H1 

stromal cells, and its combination with oxaliplatin was highly effective, resulting in more 

than additive cell killing with more than 80% loss of CLL cell viability (Fig 62). These 
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data together suggest that abrogation of the GSH antioxidant system is a potentially 

effective strategy to abolish the stromal protection of CLL cells in vivo. 
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Figure 52. Sensitization of CLL cells to F-ara-A and 

oxaliplatin in the presence of stromal cells by inhibition of 

cystine transport. CLL and HS5 cells in co-culture were first 

incubated with (S)-4-carboxyphenylglycine (S-4-CPG, 500 μM) 

for 24 h to inhibit cystine transport, and then exposed to F-ara-

A (20 μM) or oxaliplatin (20 μM) for 48 h.  Cell viability was 

analyzed by annexin-V/PI assay.  Representative dot plots are 

shown with % viable cells (annexin V and PI double negative) 

indicated. 
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Figure 53. Abrogation of the stromal protective effect on 

CLL cells by the Xc- inhibitor (S)-4-carboxyphenylglycine 

(S-4-CPG).  CLL cells and stromal cells (KUSA-H1) in co-

culture were first incubated with S-4-CPG (200, 500, and 1000 

μM) for 24 h to inhibit cystine transport, and then exposed to 

F-ara-A (20 μM) or oxaliplatin (20 μM) for 48 h.  Cell viability 

was analyzed by annexin-V/PI assay.  The number in each 

panel indicates % of viable cells (annexin V and PI double 

negative).   
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Figure 54.  Sensitization of CLL cells to F-ara-A and 

oxaliplatin by inhibition of cystine transport in the 

presence of stromal cells.  CLL and stromal (KUSA-H1) cells 

in co-culture were first incubated with sulfasalazine (SAS, 300 

µM) for 24 h to inhibit cystine transport, and then exposed to 

F-ara-A (20 µM) or oxaliplatin (20 µM) for 48 h. Cell viability 

was analyzed by flow cytometry after double staining with 

annexin-V and PI. Representative dot plots are shown with % 

viable cells (annexin V and PI double negative) indicated. 
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Figure 55. Unsuccessful knockdown of xCT expression by 

siRNA in bone marrow stromal cells.  HS5 stromal cells 

were transfected with nonspecific, xCT RNA interference 

(RNAi; final concentrations, 20, 40, 100 nM) using 

Lipofectamine TM 2000 transfection according to the 

manufacturer's instructions. The cells were then incubated in 24 

well plates for 72 h prior to Western blot for xCT expression. 

RNAi with the same GC content as siRNA pools was used as a 

negative control.  
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Figure 56. The effect of serine on GSH level and drug 

resistance of CLL cells in the presence of HS5 stromal cells. 

(A) Comparison of cellular GSH level of CLL cells cultured 

alone and co-cultured with HS5 stromal cells in the presence or 

absence of exogenous serine. Serine was added at the 

beginning of co-culture. GSH assay was preformed on day 3. 

(B) Serine has no effect on drug resistance of CLL cells co-

cultured with HS5 stromal cell. CLL and HS5 stromal cells in 

co-culture were first incubated with 5mM serine, and then 

exposed to F-ara-A (20 µM) or oxaliplatin (20 µM) for 48 h. 

Cell viability was analyzed by flow cytometry after double 

staining with annexin-V and PI. Representative dot plots are 

shown with % viable cells (annexin V and PI double negative) 

indicated. 
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Table 2. Amino acid transport systems of mammalian cells. 

Transmembrane amino acid transport is catalysed by a number 

of discrete systems. C: cysteine (Adapted from: Hyde R, Taylor 

PM, Hundal HS. The Biochemical journal 2003; 373: 1-18). 
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Figure 57. The combination of inhibitors of ASC and 

transporter A fails to circumvent drug resistance of CLL 

cells in the presence of HS5 stromal cell. CLL and HS5 

stromal cells in co-culture were first incubated with 5mM 

serine and 5mM a-methylamino-isobutyric acid (MeAIB), and 

then exposed to F-ara-A (20 µM) or oxaliplatin (20 µM) for 48 

h. Cell viability was analyzed by flow cytometry after double 

staining with annexin-V and PI. Representative dot plots are 

shown with % viable cells (annexin V and PI double negative) 

indicated. 
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Figure 58. Enhancement of cytotoxicity by the GSH-

depleting agent PEITC in CLL cells co-cultured with 

stromal cells.  CLL cells were cultured alone or with a layer of 

HS5 stromal cells for 1 day, and then treated with 20 μM F-

ara-A, 20 μM oxaliplatin for another 48 hours, 5 μM PEITC for 

5 hours, or their combination as indicated. Cell viability was 

measured by flow cytometry analysis after staining with 

annexin V/PI. The representative dot plot is shown. The 

number in each dot blot indicates % of viable cells (annexin 

V/PI double negative). 
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Figure 59. Effect of PEITC (5 μM) on CLL cell viability 

cultured alone or with HS5 cells in the presence or absence 

of F-ara-A or oxaliplatin. CLL cells were cultured alone or 

with a layer of HS5 stromal cells for 1 day, and then treated 

with 20 μM F-ara-A, 20 μM oxaliplatin for another 48 hours, 5 

μM PEITC for 5 hours, or their combination as indicated. Cell 

viability was measured by flow cytometry analysis after 

staining with annexin V/PI. The bar graph shows the mean 

±SEM of separate experiments using multiple CLL patient 

samples. 
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Figure 60. Effect of PEITC (5 μM) on CLL cell viability 

cultured alone or with StromaNktert (A) or KUSA-H1 (B) 

stromal cells in the presence or absence of F-ara-A or 

oxaliplatin. CLL cells were cultured alone or with a layer of 

StromaNKtert or KUSA-H1 stromal cells for 1 day, and then 

treated with 20 μM F-ara-A, 20 μM oxaliplatin for another 48 

hours, 5 μM PEITC for 5 hours, or their combination as 

indicated. Cell viability was measured by flow cytometry 

analysis after staining with annexin V/PI. The bar graph shows 

the mean ±SEM of separate experiments using 6 different CLL 

samples.   
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Figure 61. Synergistic effect of PETIC (10 μM) and 

oxaliplatin (20 μM) in killing CLL cells co-cultured with 

StromaNktert or KUSA-H1 stromal cells. CLL cells were 

cultured alone or with a layer of KUSA-H1 stromal cells for 1 

day, and then treated with 20 μM F-ara-A, 20 μM oxaliplatin 

for another 48 hours, 10 μM PEITC for 5 hours, or their 

combination as indicated. Cell viability was measured by flow 

cytometry analysis after staining with annexin V/PI. The 

representative dot plot is shown. The number in each dot blot 

indicates % of viable cells (annexin V/PI double negative). 
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Figure 62. PEITC (10 μM) was effective in killing CLL cells 

with p53 deletion (17p-) and enhance the activity of F-ara-

A (20 μM) or oxaliplatin (20 μM) in the presence of stromal 

cells (KUSA-H1). CLL cells were cultured alone or with a 

layer of KUSA-H1 stromal cells for 1 day, and then treated 

with 20 μM F-ara-A, 20 μM oxaliplatin for another 48 hours, 5 

μM PEITC for 5 hours, or their combination as indicated. Cell 

viability was measured by flow cytometry analysis after 

staining with annexin V/PI. The representative dot plot is 

shown. The number in each dot blot indicates % of viable cells 

(annexin V/PI double negative). 
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DISCUSSION 

1. Stromal-mediated GSH upregulation in CLL cells maintains redox balance and 

promotes survival.  

        CLL is the most common adult leukemia characterized by abnormal accumulation of 

functionally defective B-lymphocytes in the blood, bone marrow, spleen, and other 

organs, and eventually leads to functional failure and patient death 1, 113, 126. The 

accumulation of CLL cells in vivo is due in part to a prolonged CLL cell survival or 

reduced apoptosis 108. Paradoxically, CLL cells are known to have high levels of 

oxidative stress 49, 52, 127 and often exhibit spontaneous apoptosis in vitro under regular 

culture conditions 128. These observations suggest that the tissue environment may 

promote CLL cell survival in vivo. Certain soluble stromal factors and the direct cell-cell 

contact between CLL and stromal cells have been suggested to contribute to CLL cell 

survival and drug resistance 99, 129, 130. However, at the biochemical level, how stromal 

cells communicate with CLL cells to promote their survival largely remains unknown.  

          Compared to normal lymphocytes, CLL cells exhibit increased production of 

reactive oxygen species (ROS) and are under oxidative stress 49-51. This has been further 

proven by the fact that CLL cells are quite sensitive to ROS-mediated anticancer agents 

49, 52. Moreover, B-CLL cells are more susceptible to H2O2 than normal lymphocytes 53. 

All these indicate that CLL cells are highly dependent on anti-oxidant system to maintain 

redox balance. Glutathione (GSH), the chief non-protein intracellular sulfhydryl, is the 

major antioxidant that maintains a redox balance in the cellular compartments. Besides 

removing endogenous free radical, increased GSH levels largely affect the efficacy and 

interactions of a variety of antineoplastic interventions. While GSH is so important, CLL 
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cells seem not be able to maintain GSH by itself. An interesting report showed that, when 

CLL cells were cultured in vitro, there was a significantly rapid decrease in cellular GSH 

concomitant with spontaneous apoptosis of CLL cells 97. The rapid GSH depletion was 

not observed with the T cells from CLL patients or with either B or T cells from normal 

subjects indicating that this phenomenon is unique to CLL cells. In this study, I also 

found that CLL cells depleted cellular GSH quickly within 3 days. Interestingly, CLL 

maintained GSH level in the presence of a layer of bone marrow stromal cells (Figs 8-9). 

This is accompanied by decreased ROS level, enhanced cell survival, and resistance to 

exogenous ROS stress (Figs 10-11). All these data suggest that the in vivo 

microenvironment could enhance GSH level in CLL cells thus maintain redox balance of 

CLL cells and protect cells from spontaneous apoptosis.  

        GSH is the most abundant antioxidant involved in not only redox balance but also 

cell survival and drug resistance 71, 73. Increasing GSH in CLL cells by either GSH or its 

precursor NAC protects CLL cells for a long term survival in vitro without stromal cells 

(Figs 15-16); while decreasing GSH in CLL cells co-cultured with stromal cells by 

PEITC circumvents microenvironment-induced drug resistance (Fig 20). All these 

suggest that stromal-upregulated GSH in CLL cells plays a key role in mediating stromal 

protection of CLL cells from spontaneous and drug-induced apoptosis.    

2. The low-molecular-weight fraction of the stromal medium is the survival factor. 

      The interaction of cancer cells with stromal cells is mediated by cell contact and 

soluble factors. In my study, I found that the HS5 stromal cells increased GSH in CLL 

cells and protected CLL cells for survival regardless of cell contact (Fig 21), suggesting 

that the stromal-secreted soluble factors mediate GSH upregulation in CLL cells. 
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However, this study does not exclude the protective role of cell contact in CLL cells. In 

other co-culture systems including bone marrow stromal cell lines StromaNKtert or 

KUSA-H1, I observed enhanced protective effect in the direct co-culture of stromal cells 

and CLL cells (Fig 22). It is likely that HS5 stromal cells lack certain adhesion 

molecules, or secrete soluble form of adhesion molecules that block cell adhesion 

mediated by cell surface form of that adhesion molecules. The greater protection 

enhanced by cell contact suggests that the direct contact between stromal and CLL cells 

also contribute to the overall protective effect of stromal cells. The important role of 

soluble factor is further confirmed using the conditioned medium from HS5 stromal cell 

culture (Fig 24).  

        Stromal cells secrete a variety of soluble factors. Firstly I examined the relative 

levels of the cytokines and chemokines secreted in the conditioned medium of stromal 

cells. It has been known that the cell interaction could induce tremendous change of 

secreted cytokines and chemokines 131. However, I did not observe any difference of 

secreting pattern in the medium of single HS5 cell cultures and CLL/HS5 cell co-

cultures. By sorting stromal conditioned medium to high molecular weight fraction 

including cytokines, chemokines, etc. and low molecular weight fraction including amino 

acid, lipid, etc., interestingly, I found that it was the low molecular weight fraction that 

contributed to the maintenance of cellular GSH pool and protected CLL cells from 

spontaneous and drug-induced apoptosis (Figs 26-27). Failure to detect GSH in the 

culture medium of stromal cells indicates that the low molecular weight mediator is not 

GSH, and direct release of GSH into the medium by HS5 stromal cells was unlikely the 

major mechanism by which the stromal cells enhanced GSH in CLL cells. Undetectable 
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GSH in medium also suggests that the difference of GSH level in CLL cells with and 

without stromal cells was not due to difference of GSH depletion but caused by the 

difference of GSH synthesis. GSH synthesis is a two-step enzymatic process involving 

the ligation of glutamate with cysteine to form γ-glutamylcysteine and the addition of 

glycine to the C-terminal of γ -glutamylcysteine to form glutathione tripeptide.  The 

synthesis of γ -glutamylcysteine is a rate-limiting step catalyzed by γ-glutamylcysteine 

ligase (GCL) 116.  Increased expression of the catalytic subunit (GCLC) is correlated with 

elevated GSH levels and drug resistance in tumor cells 74, 75.  Another important rate-

limiting factor in GSH synthesis is the availability of the substrate cysteine, whose 

cellular concentration approximates the Km value of GCLC 76.  My study showed that 

GCLC expression was readily detected in CLL cells, and that the presence of stromal 

cells did not enhance the enzyme expression (Fig 32).  Thus GCLC expression is unlikely 

a limiting factor in CLL cells, and the stroma-induced increase in GSH synthesis was not 

due to an up-regulation of this enzyme expression.  

3. Generation of cysteine in the microenvironment by bone marrow stromal cells is 

critical to promote GSH synthesis and survival of CLL cells.  

To maintain cellular GSH homeostasis and redox balance, the availability of the 

rate-limiting substrate cysteine is critical for GSH synthesis. Cysteine is a conditionally 

essential amino acid which can be synthesized from methionine only in certain tissues 

such as liver via the transsulfuration pathway 77, but many tissues including lymphoid 

cells have little capacity to synthesize cysteine due to a defect in transsulfuration 78.  

Thus, their main source of cysteine is the uptake of extracellular cysteine or cystine 

through specific transporters 81-83. Cysteine is transported by the ubiquitously expressed 
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ASC transporter (Na+-dependent) as well as the Na+-independent transporters 82, while 

cystine is mainly transported by Xc- and can be rapidly reduced to cysteine for GSH 

synthesis once inside the cells 85-88. In addition, cells can also re-use cysteine from GSH 

through the γ-glutamyl cycle catalyzed by γ-glutamyl transpeptidase (GGT).  However, 

CLL cells are known to have low GGT activity 132, and may not be able to effectively 

utilize extracellular GSH.  Indeed, Fig 18 showed that GSH under mini-molar range 

could not effectively protect CLL cells for survival. Due to their limited ability to take up 

cystine and to re-use GSH, CLL cells would mainly depend on the uptake of cysteine 

from extracellular environment for GSH synthesis.  In plasma, cystine presents at 100-

200 μM concentrations, while cysteine only exists at a much lower level in the range of 

10-20 μM 88.  The low concentrations of cysteine in plasma reflect the dynamic balance 

between its constant generation from the tissue cells and oxidation extracellularly.  

Interestingly, 10 μM of cysteine could enhance CLL viability in the absence of drug 

treatment (Fig 39). This may explain why CLL cells have a relatively long survival time 

in the blood circulation. Higher concentrations of cysteine (20-200 μM) exhibited further 

protection of CLL cells and promoted drug resistance in a concentration-dependent 

manner (Fig 39). Thus, it is possible that when CLL cells are in a close proximity to the 

bone marrow stromal cells in vivo, the high local concentrations of cysteine near the 

stromal cells would provide strong protection for the leukemia cells leading to drug 

resistance. 

Due to the chemical nature of cysteine, this thiol-containing compound was unstable 

in medium and could be detected only when the stromal culture medium was processed 

freshly and analyzed immediately (Fig 33).  However, the cysteine signal lost after the 
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samples were stored and shipped for NMR analysis (Fig 35). Nevertheless, multiple lines 

of evidence strongly support the critical role of cysteine from the stromal cells to enhance 

GSH synthesis in CLL cells and promote their survival. (1) CLL cells cultured in vitro 

lost GSH rapidly and exhibited high spontaneous apoptosis in the absence of stromal 

cells; the low-molecular-weight (<3 kDa) portion of the stromal conditioned medium 

could restore GSH in CLL cells and increase their survival. (2) Addition of exogenous 

cysteine, cystine + 2-ME (to generate cysteine), or N-acetylcysteine to the CLL culture 

could significantly increase GSH synthesis in CLL cells and promote their viability 

without stromal cells. (3) Primary CLL cells showed an effective uptake of [14C]-cysteine 

but not [14C]-cystine, while the stromal cells could effectively take up both.  In CLL cells 

cultured with [14C]-cystine, the presence of stromal cells significantly enhanced the 

uptake of the radioactive material by CLL cells, suggesting that it was the stromal cells 

that converted [14C]-cystine to [14C]-cysteine for the CLL cells. (4) Cystine was required 

to maintain stromal viability and promote CLL GSH synthesis and drug resistance. (5) 

Stromal cells did not enhance the expression of xCT transporter in CLL cells, indicating 

that stromal cells did not promote cystine uptake by CLL cells via Xc-. This is consistent 

with the conclusion that stromal cells convert cystine to cysteine for CLL cells.  

4. Biochemical pathway between bone marrow stromal cells and CLL cells.  

While the role of GSH in promoting cancer cell survival and drug resistance has 

long been recognized 52, 63, 95, 133, the ability of bone marrow stromal cells to enhance 

GSH synthesis in CLL cells by providing cysteine as a critical substrate represents a 

previously unrecognized metabolic communication between the stromal cells and the 

leukemia cells. My study revealed a novel biochemical mechanism by which the bone 
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marrow stromal cells upregulate a major antioxidant system in CLL cells to maintain 

redox balance, and thus promote the leukemia cell survival. As illustrated in Fig 63, this 

biochemical pathway involves the uptake of stable cystine by the bone marrow stromal 

cells, the conversion of cystine to cysteine and its release to the microenvironment, and 

the uptake of cysteine by CLL cells for GSH synthesis to promote cell viability and drug 

resistance.  Several important factors underscore the critical need for this biochemical 

pathway to protect CLL cells.  The high intrinsic oxidative stress in CLL cells renders 

them highly dependent on GSH to maintain redox balance 52, but they have limited ability 

in the uptake of cystine as the GSH precursor due to the low expression of cystine 

transporter Xc-.  Although cysteine can be transported by CLL cells, this compound is 

unstable in extracellular environment.  The bone marrow stromal cells expressed a high 

level of Xc- transporter and were able to effectively take up cystine, which could then be 

converted to cysteine for use by CLL cells.  It is possible that other tissue cells in vivo 

with high Xc- expression might also take up cystine and convert it to cysteine for GSH 

synthesis in CLL cells, and thus might protect the leukemia cells in a similar fashion as 

bone marrow stromal cells.  

Interestingly, it has been observed that normal lymphocytes have low cystine 

uptake capability 134 and that macrophages can release cysteine to support the growth of 

lymphocytes 135. However, the underlying mechanism remains unclear. My finding that 

CLL cells express low Xc- transporter provides an important molecular explanation for 

the low cystine uptake in CLL cells, and suggests that the leukemia cells and normal 

lymphocytes may share certain biological properties that are intrinsic to the lymphoid 

lineage.   
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Figure 63.  Proposed model for biochemical mechanism by 

which stromal cells enhance GSH synthesis in CLL cells and 

promote their survival, and strategies to overcome stromal-

induced drug resistance. CLL cells express low level of cystine 

transporter Xc- and have limited ability to use the extracellular 

cystine for GSH synthesis.  Although cysteine can be transported 

by CLL cells, this compound is unstable in extracellular 

environment. The bone marrow stromal cells expressed a high 

level of Xc- transporter, effectively take up cystine, and convert it 

to cysteine, which is released back to the extracellular environment 

for use by CLL cells to synthesize GSH and promote cell survival 

and drug resistance. Cysteine can be transported by both Na+-

dependent and Na+-independent transporters. The ubiquitous Na+-

dependent transporter ASC is shown here. 
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5. Targeting the biochemical pathway to circumvent drug resistance.  

Furthermore, I showed that the reliance of CLL cells on stromal cells for GSH 

synthesis could be exploited for therapeutic purpose by abolishing this protective 

mechanism to achieve effective killing of CLL cells in stromal environment. One 

prominent biochemical feature of CLL cells is their high ROS production 49, 52, 127.  Such 

intrinsic ROS stress renders the CLL cells highly dependent on GSH to maintain redox 

balance and thus critically rely on stromal cells to provide cysteine for GSH synthesis.  

As such, abolishing this stromal protective mechanism may represent a new therapeutic 

strategy targeting the Achilles heel of CLL cells. Indeed, my results from the proof-of-

principle study using (S)-4-carboxyphenylglycine ((S)-4-CPG) to interrupt the 

cystine→cysteine→GSH flow or phenethyl isothiocyanate (PEITC) to abolish the GSH 

system suggest that such therapeutic approach can be effective in abrogating the stromal 

protection on CLL cells (Fig 64). Further evaluation of this biochemical intervention 

strategy in experimental systems and in clinical settings is important for the development 

of effective therapy to overcome drug resistance in vivo. 
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Figure 63. Targeting the biochemical pathway between 

stromal cells and CLL cells by (S)-4-CPG and PETIC. 

Inhibition of Xc- transporter by (S)-4-carboxyphenylglycine 

(S-4-CPG) or depletion of GSH by PEITC would abolish this 

biochemical protective mechanism, and increase the sensitivity 

of CLL cells to drug treatment in stromal microenvironment.  

Since CLL cells are under elevated intrinsic oxidative stress 

and more rely on GSH for survival, abrogation of the GSH 

mechanism would preferentially impact the leukemia cells and 

have high therapeutic selectivity (see text for detail).   
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6. Summary and conclusions.  

      Tissue stromal cells interact with leukemia cells and profoundly affect their viability 

and drug response through yet undefined mechanisms. Here I show a biochemical 

mechanism by which bone marrow stromal cells modulate the redox status of chronic 

lymphocytic leukemia (CLL) cells and promote cellular survival and drug resistance. 

CLL cells from patients exhibit limited ability to transport cystine for glutathione (GSH) 

synthesis due to low expression of the Xc- transporter, while stromal cells effectively 

import cystine and convert it to cysteine, which is released into the microenvironment for 

uptake by CLL cells to enhance GSH synthesis. The elevated GSH protects leukemia 

cells from drug-induced cytotoxicity. Disabling this protective mechanism significantly 

sensitizes CLL cells to drug treatment in the stromal environment. 

     CLL is the most common adult leukemia in the western countries and is currently 

incurable due in part to drug resistance and the persistence of residual leukemia cells after 

chemotherapy leading to disease relapse. This study reveals a novel biochemical 

mechanism that mediates the interaction between the bone marrow stromal cells and 

leukemia cells through enhancing GSH synthesis to promote CLL cell survival and drug 

resistance. Importantly, I have identified pharmacological approaches that can effectively 

abolish this protective mechanism and sensitize CLL cells to standard drug treatment in 

the presence of stromal cells. The new mechanistic insights gained from this study 

provide a biochemical basis for developing new therapeutic strategy to overcome CLL 

drug resistance in vivo.  
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