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Abstract 

 

   14-3-3σ, a gene upregulated by p53 in response to DNA damage, exists as part of a 

positive-feedback loop which activates p53 and is a human cancer epithelial marker 

downregulated in various cancer types. 14-3-3σ levels are critical for maintaining p53 

activity in response to DNA damage and regulating signal mediator such as Akt. Here, 

we identify Mammalian Constitutive Photomorphogenic 1 (COP1) as a novel E3 ubiquitin 

ligase for targeting 14-3-3σ through proteasome degradation. We show for the first time 

that COP9 signalosome subunit 6 (CSN6) associates with COP1 and is involved in 14-3-

3σ ubiquitin-mediated degradation. Mechanistic studies show that CSN6 expression 

leads to stabilization of COP1 through reducing COP1 self-ubiquitination and 

decelerating COP1’s turnover rate. We also show that CSN6-mediated 14-3-3σ 

ubiquitination is compromised when COP1 is knocked down. Thus, CSN6 mediates 14-

3-3σ ubiquitination through enhancing COP1 stability. Subsequently, we show that CSN6 

causes 14-3-3σ downregulation, thereby activating Akt and promoting cell survival by 

suppressing FOXO, an Akt target, transcriptional activity. Also, CSN6 overexpression 

leads to increased cell growth, transformation and promotes tumorigenicity. Significantly, 

14-3-3σ expression can correct the abnormalities mediated by CSN6 expression. These 

data suggest that the CSN6-COP1 axis is involved in 14-3-3σ degradation, and that 

deregulation of this axis will promote cell growth and tumorigenicity.  
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CHAPTER 1. INTRODUCTION 

   

1.1. COP9 signalosome 6 (CSN6), a multiprotein complex  

   The ubiquitin-proteasome pathway is important for controlling the abundance of 

proteins and plays an essential role in maintaining normal cellular functions. 

Dysregulation of ubiquitin-mediated proteolysis results in the development of a variety of 

human cancers (1). The evolutionarily conserved Constitutive Photomorphogenesis 9 

Signalosome (CSN) was originally identified from plant (Arabidopsis) mutants that mimic 

light-induced seedling development when grown in the dark (2-4). Mammalian COP9 

signalosome contains eight subunits (CSN1-CSN8), which share sequence homology 

with subunits of the ‘lid’ complex of the 26S proteasome (5). Because of the homology, 

the COP9 signalosome has been postulated to play a role in protein degradation. CSN6 

and CSN5 are the only two subunits that contain an MPN (Mpr1p and Pad1p N-terminal) 

domain (6, 7), which will have impact on Cullin-Ring Ligases (CRL) (8, 9). CSN5 has a 

MPN domain containing JAMM (JAB1/MPN/Mov34) or MPN+ motif linked to the 

metalloprotease motif (EXnHXHX10D) that can deneddylate Cullin (9), a process 

important for regulating CRL activity. By comparison, CSN6 is not recognized to have 

JAMM motif and thus its function remain obscure. 

 

1.2. Constitutive Photomorphogenic 1 (COP1), an E3 ubiquitin ligase 

   Mammalian Constitutive Photomorphogenic 1 (COP1) is an evolutionarily conserved E3 

ubiquitin ligase containing RING-finger, coiled-coil, and WD40-repeat domains (10). 

Through association with the COP9 signalosome, COP1 has been identified as a crucial 

mediator to block photomorphogenesis in the dark through the ubiquitinated proteasomal 
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degradation of light-induced transcription factor HY5 (11)(12). In mammalian cells, the 

ubiquitinated targets of COP1 include stress-responsive transcription factors p53 (13) 

and c-JUN (14-16), as well as acetyl-coA carboxylase (17), transducer of regulated 

CREB activity 2 (TORC2, a glucose metabolite regulator) (18) and nucleosome 

remodeling factor MTA1 (19). COP1 is overexpressed in cancers, but whether COP1 

targets any tumor suppressor protein for degradation during tumorigenesis remains 

elusive.  

 

1.3. 14-3-3σ, a tumor suppressor gene 

   The 14-3-3 proteins are a family of evolutionarily conserved regulatory chaperone 

molecules involved in many diverse physiological functions, including signal transduction, 

stress response, apoptosis and cell cycle checkpoint regulation (20, 21). In mammals, the 

14-3-3 family comprises seven isoforms β, ε, γ, ζ, η, σ and τ, which are widely expressed 

in various tissues and exert their biological functions by directly binding to 

phosphoproteins containing the consensus motifs RX(Y/F)XpSXP or RSXpSXP (22). 

Binding by 14-3-3 proteins mediates stability and/or subcellular localization of target 

proteins (23). 14-3-3σ (also known as Stratifin) was originally characterized as a human 

mammary epithelial-specific marker (HME1) (24), and was later found to be an essential 

regulator of apoptosis, cell migration, cell cycle (20, 25) and DNA damage response 

involving p53 and MDM2 (26-28). In contrast to the other 14-3-3 family members, which 

are able to form both homo- and heterodimers, 14-3-3σ can form only homodimers (29). 

This unique characteristic implies that 14-3-3σ has exclusive functions and behaviors. 14-

3-3σ, but not other family members, has been found to be frequently lost or decreased in 

various human cancers (30)(28) and functions as a potential tumor suppressor. In 

response to DNA damage, 14-3-3σ is known to be a p53 downstream target and may 
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serve as a regulator to prevent oxidative and DNA-damage stress-induced mitotic 

checkpoint dysfunction (25, 28). 14-3-3σ also acts as an negative regulator of Akt (31).  

As for its role in cancer, a previous report showed that there is a high frequency of 

hypermethylation at the 14-3-3σ gene locus in breast cancer (32). Posttranscriptional 

regulation such as ubiquitination also regulates 14-3-3σ (33).  Although 14-3-3σ may play 

an important role in protecting cells from DNA damage or cancer, the detailed mechanism 

by which 14-3-3σ is modulated remains not well characterized. 

 

   In this study, we found that CSN6, COP1 and 14-3-3σ interact and we investigated the 

role of the CSN6-COP1 axis in regulating 14-3-3σ stability. Additionally, we found that 

CSN6 induced 14-3-3σ downregulation by enhancing 14-3-3σ ubiquitination, which was 

abrogated when COP1 is knocked down. Further investigation of the underlying 

mechanism revealed that CSN6 physically interacts with COP1 and reduces COP1-

mediated self-ubiquitination, thereby stabilizing COP1.  This in turn reduces COP1-

mediated 14-3-3σ ubiquitination. We previously showed that 14-3-3σ is a negative 

regulator of Akt (31). Subsequently, CSN6 potentiates Akt-mediated FOXO inactivation, 

which results in the transcriptional change of targets regulated by FOXO, thereby 

facilitating cell survival. These data provide insight into how CSN6 overexpression can 

lead to cell growth, transformation, and promote tumorigenicity. Taken together, our 

studies indicate the applicability of employing CSN6-COP1 axis as a therapeutic 

intervention target in cancers.  
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CHAPTER 2. STATEMENT OF OBJECTIVES 

    

Aim 1 : Determine the mechanism of CSN6 mediated 14-3-3σ degradation 

   Our preliminary results show that CSN6 decreases levels of 14-3-3σ. Since CSN6, as 

part of the COP9 signalosome complex, is known to aid E3 ligases in ubiquitination of 

target proteins, ubiquitination of 14-3-3σ is the most likely mechanism. Therefore, I shall 

investigate whether CSN6 increases the ubiquitination of 14-3-3σ. To further clarify the 

mechanism by which CSN6 regulates 14-3-3σ, I shall identify the E3 ligase(s) involved in 

this process.   

 

Aim 2 : Determine the role of CSN6 in the regulation of 14-3-3σtarget proteins 

   14-3-3σ has several down stream effects which include inhibition of Akt. The role of 

CSN6 in how 14-3-3σ regulates this effect can be determined by changing CSN6 

expression in the presence or absence of 14-3-3σ.   

 

Aim 3 : Determine the biological significance of CSN6-mediated 14-3-3 σ 

degradation  

   Our unpublished data indicate that overexpression of CSN6 increases cell proliferation 

and promotes tumor growth. Since CSN6 downregulates and thus antagonizes the 

activity of 14-3-3σ, I will determine the impact of 14-3-3σ on CSN6-mediated cell 

proliferation and tumor promotion.  
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CHAPTER 3. MATERIALS AND METHODS 

 

3.1. Cell culture and reagents 

   HCT116 p53 −/− cells were provided by Dr. Bert Vogelstein. Human 293T were cultured 

in DMEM/F12 medium supplemented with 10% fetal bovine serum, 100 units/ml penicillin 

G, 100 µg/mlstreptomycin and 0.25 µg/ml amphotericin B. HCT116 cells and U2OS cells 

were maintained in McCoy’s 5A medium supplemented with fetal bovine serum and 

antimicrobials as mentioned above. For transient transfections, cells were transfected 

with DNA using either (Lipofectamine 2000 (Invitrogen), or FuGENE HD (Roche) 

reagents according to protocols of the manufacturers. Antibodies to the following epitopes 

and proteins were purchased from the indicated vendors: Flag (M2 monoclonal antibody, 

Sigma), Tubulin (Sigma), COP1 (Bethyl Laboratories), CSN6 (Biomol), 14-3-3σ (RDI), 

Myc (mouse monoclonal 9E10, Santa Cruz Biotechnology), pAkt (Cell Signaling 

Technology), Akt (Cell Signaling Technology), PARP (Cell Signaling Technology), HA 

(12CA5, Roche) and Actin (Sigma).  

 

3.2. Plasmids 

   pcDNA6-Myc-CSN6 and pcDNA6-Myc-COP1 were constructed in our lab by PCR. 

pCMV5-Flag-14-3-3σ, Ad-β-gal, and Ad-14-3-3σ was previously described (26). Flag-

CSN6 (wt), 1-184 aa and 185-327 aa as well as Flag-14-3-3σ (wt), 1-161 aa and 153-248 

aa were generated using standard PCR cloning methods. HA-Akt and DN-Akt were 

previously described (31). FOXO luciferase reporter gene was used as described (47). 
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3.3. Immunoprecipitation and immunoblotting  

   Total cell lysates were solubilized in lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 

mM EDTA, 0.5% Nonidet P-40, 0.5% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 1 

mM sodium fluoride, 5 mM sodium orthovanadate and 1 µg/ml each of aprotinin, 

leupeptin, and pepstatin) and processed as previously described (20). Lysates were 

immunoprecipitated with indicated antibodies according to standard protocols. Proteins 

were resolved by SDS-PAGE gel and proteins transferred to polyvinylidene difluoride 

membranes (Millipore). Membranes were blocked with 5% nonfat milk for 1 hr at room 

temperature prior to incubation with indicated primary antibodies. Subsequently, 

membranes were washed and incubated for 1 hr at room temperature with peroxidase-

conjugated secondary antibodies (Thermo Scientific). Following several washes, 

chemiluminescent images of immunodetected bands on the membranes were recorded 

on X-ray film using the enhanced chemiluminescence (ECL) system (Roche).  

 

3.4. In vitro binding assay  

   Flag-CSN6 and myc-COP1 were prepared by in vitro transcription and translation using 

the TNT coupled system as previously described (Promega)(20). TNT Proteins were 

mixed and immunoprecipitated with anti-Myc followed by immunoblotting with anti-Flag 

as described. 

 

3.5. In vivo ubiquitination assay  

   HCT116 and U2OS cells were used to detect endogenous COP1 and 14-3-3σ   

ubiquitination.  293T cells were transiently co-transfected with indicated plasmids to 

detect exogenous 14-3-3σ ubiquitination. Forty-eight hours later, cells were treated with 5 
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µg/mL MG132 (Sigma) for 6 hr. Cells were harvested and lysed with lysis buffer (50 mM 

Tris pH 7.5, 150 mM NaCl, 0.5% NP-40, 0.5% Triton X-100 and 5 mM NEM). 

Ubiquitinated COP1 was immunoprecipitated with anti-COP1 (Santa Cruz Biotechnology, 

Inc.) and immunoblotted with anti-HA (Roche). Ubiquitinated 14-3-3σ was 

immunoprecipitated with Flag (M2 monoclonal antibody, Sigma) or anti-14-3-3σ (RDI) and 

immunoblotted with anti-HA (Roche). Protein complexes were then resolved by 10% 

SDS-PAGE to allow observation of the polyubiquitinated COP1 or 14-3-3σ.  

 

3.6. In vitro Ubiquitination Assay 

   For detection of ubiquitinated 14-3-3σ in vitro, purified 14-3-3σ proteins were incubated 

with different combinations of ubiquitin (200 pmol), E1 (2 pmol), E2-UbcH5a/5b (10 pmol), 

in vitro translated COP1 and ATP (2 mM) in a total volume of 50 ìl for 1 h at 37oC. 

Reaction products were resolved with 8% SDS-polyacrylamide gels and probed with anti-

14-3-3σ or anti-GST. His-Ubiquitin (UW 8610), E1 (UW 9410) and E2 (UW 9050) were 

purchased from BioMol International.  

 

3.7. Cell lysates fractionated by Gel filtration  

   HCT116 and U2OS cell lysates were fractionated through Superose 6 column 

(GEHealthcare) equilibrated with lysis buffer at a flow rate of 0.3ml/min. Fractions of 

300μl each were collected and subjected to immunoblot. 

 

3.8. Quantitative PCR  

   Primers for real-time quantitative PCR of CSN6 (5’-GCACAGACAAGTTCAAGA; 5’- 

GTGATGGTGCCGAGGTAG), COP1 (5’- CTGCAACGGGCTCATCAACT; 5’- 

GGCCACATTTTGTCATGTATGCT), 14-3-3σ (5’-CTCTCCTGCGAAGAGCGAAAC; 5’-
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CCTCGTTGCTTTTCTGCTCAA) 14-3-3σ target genes— BTG (5’-

CGACAGCTGCAGACCTTCAG; 5’-GGTTGATGCGAATACAACGGTA), FOXO1 (5’-

GTCAAGAGCGTGCCCTACTTC; 5’-CTTGCCACCCTCTGGATTGAG), BCL6 (5’-

AGCCCATAAAACGGTCCTCAT; 5’-GAGGATGCAGAATCCCTCAG), BCLxL (5’-

AAGCGGTCCCGTGGATAGA; 5’-TCCGGTATTCGCAGAAGTCC) and GAPDH (5’-

AAGGTGAAGGTCGGAGTCAAC; 5’-GAGTTAAAAGCAGCCCTGGTG) were as 

referenced in Primer Bank (http://pga.mgh.harvard.edu/primerbank/). Quantitative PCR 

amplification of GAPDH was used for normalization. Total RNAs were extracted from cells 

using Trizol (Invitrogen); 1 µg RNA was used for producing cDNA by iScript cDNA 

Synthesis Kit (Bio-Rad). Quantitative real-time PCR analyses were performed using iQ 

SYBR Green Super mix (Bio-Rad, 170-8882) and the iCycler iQ Real-time PCR detection 

system.  

 

3.9. Luciferase assay 

   A FOXO luciferase reporter gene containing a FOXO transcription factor binding site 

was co-transfected with the pCMV-Myc-CSN6, pCMV-Flag-14-3-3σ or DN-Akt expressing 

vectors into 293T or HCT116 cells. Luciferase activity was assayed with the dual 

luciferase assay system (Promega) according to the manufacturer’s instructions. 

 

3.10. FACS Analysis for apoptosis assay 

   Apoptosis was determined by two-color analysis using propidium iodide (PI) and FITC-

conjugated anti-Annexin V (BD Pharmingen, USA) according to the manufacturer’s 

instructions. Cells were harvested and washed three times with PBS then cells were 

stained with PI and FITC-conjugated anti-Annexin V and analyzed with a FACScalibur 

flow cytometer. 

http://pga.mgh.harvard.edu/primerbank/�
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3.11. Generation of stable transfectants 

   For generation of Myc-CSN6 overexpression stable transfectants, HCT116 and U2OS 

cells were transfected with either PCDNA6 or PCDNA6-Myc-CSN6 plasmids by 

electroporation (Amaxa). Forty-eight hours later, cells were selected in 8µg/ml Blasticidin 

containing culture medium for 2 weeks. For generation of CSN6 knock-down stable cell 

lines, HCT116 and U2OS cells were infected by lentiviral shRNA transduction particles 

(Sigma, NM_006833 COPS6 MISSION shRNA lentiviral transduction particles) containing 

either control shRNA or CSN6 shRNA. After infection, cells were selected with 2µg/ml 

Puromycin for two weeks.  

 

3.12. Soft agar colony formation 

   10,000 cells were mixed in 0.35% agarose/complete media were plated on 0.7% 

agarose/complete media (bottom) layer and grown for 8 weeks. Colonies were stained 

with 0.5 mg/ml p-iodonitrotetrazolium violet (Sigma) and were counted under a light 

microscope (Olympus IX70). Each experiment was done at least two times in triplicate 

wells. 

 

3.13. Foci formation 

   1000, 2000 or 3000 cells were plated in 6-well plates and then incubated for 7−10 days. 

Cells were stained with 0.005% crystal violet to visualize the colonies growing in each 

well. 

 

3.14. MTT assay 

   Vector control or CSN6-expressing cells were infected with Ad-β-gal (MOI = 100) or Ad-
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HA-14-3-3σ (MOI =100). Cells were plated at 3000 cells/well in 96-well plates and grew in 

the continued presence of selective antibiotics. Cells were counted every day using a 

colorimetric 5 mg/ml MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

for 3 hrs. Following MTT incubation, cells were lysed in 200 µL of 100% DMSO (Fisher). 

Samples were then analyzed using a spectrophotomer to measure the optical density at 

570 nm. 

 

3.15. Xenograft experiment  

   Four to six week-old female athymic (nu/nu) mice (Experimental Radiation Oncology, M. 

D. Anderson Cancer Center, Houston, TX, USA) were housed in AAALAC-approved 

barrier facilities with food and water ad libitum and maintained in the animal facility at The 

University of Texas M. D. Anderson Cancer Center. Mice were divided into different 

groups. CSN6-expressing cells infected with Ad-β-gal (MOI = 100) or Ad-14-3-3σ (MOI 

=100) were harvested and injected into the flank of each mouse. Tumor volumes were 

measured and recorded from day 8 after injection. At the end of the experiment, the mice 

were euthanized with CO2 and the tumors were removed and weighed. 
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CHAPTER 4. RESULTS 

 

4.1. CSN6 associates with 14-3-3σ  

 

   Others have characterized proteins that associate with the CSN complex (34)(35), and 

many more remain to be identified. In Fig. 3A we show that CSN6 and 14-3-3σ coelute by 

gel filtration. This led us to the hypothesis that 14-3-3σ and CSN6 may associate in 

complex. Coimmunoprecipitation experiments. indeed shows their in vivo interaction (Fig. 

1). We then mapped CSN6 binding region on14-3-3σ. The results showed that CSN6 

binds to the C-terminus of 14-3-3σ (aa 153-248), but not the N-terminus (aa 1-161 

containing dimerization domain) (Fig. 2). We also mapped 14-3-3σ binding region on 

CSN6 in vitro. A GST-pull-down assay suggests that the N-terminus of CSN6 was 

responsible for binding 14-3-3σ. (Fig. 3). These results demonstrate that the N-terminal 

region of CSN6 binds to the C-terminal region of 14-3-3σ. 
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Figure 1. CSN6 interacts with 14-3-3σ in vivo. 

 

Interaction of endogenous CSN6 with endogenous 14-3-3σ. Lysates of HCT116 cells 

were prepared and equal amounts of cell lysates were immunoprecipitated with indicated 

antibodies followed by immunoblotting with indicated antbibodies. 
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                                                                                   Figure 1                                                                                   
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Figure 2. Mapping of 14-3-3σ domain interaction with CSN6.   

 

Mapping of CSN6 binding domains on 14-3-3σ. Myc-CSN6 and Flag-14-3-3σ (aa 1-248), 

N-terminus (aa 1-161) or C-terminus (aa 153-248) was co-transfected into 293T cells. 

Cell lysates were immunoprecipitated with anti-Flag and immunoblotted with anti-Myc.  
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                                                                                   Figure 2 
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Figure 3. Mapping of the 14-3-3σ binding region within CSN6.   

 

Mapping of 14-3-3σ binding domains on CSN6. Flag-CSN6 (aa 1-327), N-terminal (aa 1-

184) or C-terminal (aa 185-327) were transfected into 293T cells. Cell lysates were 

subjected to GST-14-3-3σ pull-down (PD) and immunoblotted with anti-Flag antibody. 
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                                                                                   Figure 3 
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4.2. CSN6 negatively regulates 14-3-3σ protein stability  

 

4.2.1 CSN6 down-regulates 14-3-3σ at the post-transcriptional level 

   Because CSN6 interacts with 14-3-3σ, we reasoned that CSN6 has some biological 

impact on 14-3-3σ. The 14-3-3σ levels were elevated when cells were infected with 

CSN6-shRNA virus to perform CSN6 knockdown (Fig. 4A, left). Exogenous expression of 

CSN6 also downregulated 14-3-3 σ expression (Fig. 4A, right) in a dose-dependent 

manner (Fig. 4B). CSN6-mediated 14-3-3σ downregulation was suppressed by MG132, a 

proteasome inhibitor, suggesting the involvement of 26S proteasome. (Fig. 5). The mRNA 

levels of 14-3-3σ were not affected by CSN6 overexpression or knockdown in a real-time 

quantitative PCR analysis (Fig. 6), suggesting that CSN6 downregulates 14-3-3σ at the 

post-transcriptional level. 

 

4.2.2 CSN6 increases 14-3-3σ polyubiquitination 

   To investigate if CSN6 can destabilize 14-3-3σ at the protein level we performed a 

turnover rate experiment. Indeed, CSN6 knockdown can reduce the turnover rate of 14-3-

3σ in the presence of the de novo protein synthesis inhibitor, cycloheximide (Fig. 7A). 

Consistently, overexpression of CSN6 increases turnover rate of 14-3-3σ (Fig. 7B). 

Further, we found that CSN6 increased the endogenous ubiquitination level of 14-3-3σ 

(while CSN6 knockdown reduced the endogenous ubiquitination level of 14-3-3σ (Fig. 8 

top). Also, increasing amounts of CSN6 shRNA antagonized poly-ubiquitination of 

transfected 14-3-3σ in a dose-dependent manner (Fig. 8 bottom).   

 

4.2.3 Downregulation of 14-3-3σ by CSN6 is not dependent on p53  expression  
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   Since 14-3-3σ is regulated by p53 (25), at issue is whether CSN6-mediated 14-3-3σ 

downregulation involves p53. We compared 14-3-3σ protein levels in HCT116 p53 -/- 

cells infected with CSN6 shRNA virus or control shRNA virus and found that 14-3-3σ 

protein levels were still higher in HCT116 p53 -/- cells knocked down for CSN6 versus 

control virus (Fig. 9). This result suggests that downregulation of 14-3-3σ by CSN6 is not 

dependent on p53 expression. 
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Figure 4. CSN6 reduces the steady-state expression levels of 14-3-3σ.  

 

A. 14-3-3σ protein level is upregulated when endogenous CSN6 expression is inhibited 

with shRNA (left). Lysates of HCT116 cells infected with either CSN6 shRNA or control 

shRNA were immunoblotted with anti-14-3-3σ, CSN6 or Actin antibodies. 14-3-3σ protein 

level was downregulated in CSN6 overexpressing cells (right). Lysates of Myc-CSN6 

overexpressing HCT116 stable transfectants and vector control transfectants were 

immunoblotted with anti-14-3-3σ, CSN6, or Actin antibodies.  

 

B. Ectopic expression of CSN6 reduces 14-3-3σ expression. 293T cells were co-

transfected with the indicated expression vectors. Equal amounts of protein from cell 

lysates were immunoblotted with anti-Flag, Myc, or Actin antibodies. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

21 

 

                                                                                   Figure 4 
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Figure 5. CSN6 down-regulates 14-3-3σ through 26S proteasome pathway.    

 

293T cells were co-transfected with the indicated plasmids. Cells were treated with or 

without proteasome inhibitor MG132 before collecting lysates. Lysates were 

immunoblotted with anti-Flag or Tubulin antibodies. 
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                                                                                   Figure 5 
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Figure 6. CSN6 down-regulates 14-3-3σ at the post-transcriptional level.  

  

A. mRNA levels of 14-3-3σ are not affected by overexpression of CSN6. Real-time 

quantitative PCR analysis of 14-3-3σ in 293T cells transfected with or without Myc-CSN6 

showed no obvious difference in 14-3-3σ mRNA levels. 

 

B. mRNA levels of 14-3-3σ are not affected by knockdown of CSN6 expression. Real-

time quantitative PCR analysis of 14-3-3σ in HCT116 cells infected with CSN6 shRNA or 

control shRNA showed no obvious difference in 14-3-3σ mRNA levels. 
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                                                                                   Figure 6 
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Figure 7. CSN6 increases 14-3-3σ turnover rate.    

 

A. HCT116 cells infected with either lentiviral CSN6 shRNA or control shRNA were 

treated with cycloheximide (CHX) (100 µg/ml) for the indicated times. Cell lysates were 

immunoblotted with anti-14-3-3σ, CSN6, or Actin antibodies. Integrated OD values of 

bands at each time point were measured using a densitometer. Levels of 14-3-3σ at time 

zero were set at 100%. Remaining 14-3-3σ is indicated graphically (right). 

  

B. 293T cells were co-transfected with the indicated expression vectors. Forty-eight hours 

after transfection, the cells were treated with cycloheximide (CHX) (100 µg/ml) for the 

indicated times. Cell lysates were immunoblotted with anti-Flag, Myc, or Actin antibodies. 

Integrated OD values of bands at each time point were measured using a densitometer.  

Levels of 14-3-3σ at time zero were set at 100%. 14-3-3σ remaining is indicated 

graphically.  
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                                                                                   Figure 7 
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Figure 8. CSN6 increases 14-3-3σ poly-ubiquitination.    

 

CSN6 increases endogenous 14-3-3σ polyubiquitination (top). Indicated or transfected 

cells were treated with MG132 for four hours before harvesting.  Polyubiquitinated 14-3-

3σ was immunoprecipitated with anti-14-3-3σ and immunoblotted with anti-HA. Equal 

amounts of cell lysates were immunoblotted with anti-CSN6 or Actin.  

 

Knockdown of CSN6 reduces poly-ubiquitination of exogenous 14-3-3σ (bottom). 293T 

cells were co-transfected with indicated plasmids and increasing amounts of CSN6 

shRNA. Cells were treated with MG132 for four hours before harvesting.  

Polyubiquitinated 14-3-3σ was immunoprecipitated with anti-Flag and immunoblotted with 

anti-HA. Equal amounts of cell lysates were immunoblotted with anti-CSN6 or Actin 

antibodies. 
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                                                                                   Figure 8 
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Figure 9. Downregulation of 14-3-3σ by CSN6 is not dependent on p53 expression.  

 

HCT116 p53 -/- cells were infected with either CSN6 shRNA or luciferase shRNA. Equal 

amounts of cell lysates were immunoblotted with anti-14-3-3σ, CSN6, or Actin antibodies. 
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                                                                                   Figure 9 
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4.3. CSN6 regulates 14-3-3σ protein stability through E3 ubiquitin ligase COP1 

 

4.3.1 Gel filtration and elution profiles analysis of CSN6, COP1 and 14-3-3σ  

   The COP9 signalosome (CSN) and COP1 are required for the dark-dependent 

degradation of the transcription factor HY5 (12), a positive regulator of 

photomorphogenesis in plants.  Although CSN is required for proper functioning of COP1, 

a direct interaction between CSN and COP1 has not been characterized. To investigate 

this possible direct interaction, we analyzed HCT116 and U2OS cell lysates separated 

with gel filtration columns. Lysate fractions were analyzed by SDS-PAGE and 

immunoblotting. Fig. 10 shows that COP1, CSN6, and 14-3-3σ are present in the 

fractions corresponding to the molecular size of the COP9 holocomplex (between 400-

693 kDa), suggesting the interaction of COP1 and 14-3-3σ with the COP9 signalosome. 

These observations led us to investigate the functional relevance of the interaction of 

CSN6 and COP1.   

 

4.3.2 CSN6 interacts with COP1 and elevates the steady-state protein levels of COP1 at 

the post-transcriptional level 

   Fig. 11 shows that CSN6 associates with COP1 endogenously as assayed by co-ip and 

an In vitro binding assay confirms that CSN6 directly binds to COP1. To address the 

significance of the CSN6 and COP1 interaction, we examined the impact of CSN6 on 

COP1 levels and noted that the steady-state level of COP1 increased when CSN6 was 

overexpressed (Fig. 12A). The mRNA levels of COP1 were not affected by CSN6 

expression in a real-time quantitative PCR analysis (Fig. 12B), suggesting that CSN6 up-

regulates COP1 at the post-transcriptional level.   
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4.3.3 CSN6 reduces poly-ubiquitination of COP1 

   Further, the turnover rate of endogenous COP1 was reduced in CSN6 overexpressing 

cells in a cycloheximide chase assay (Fig. 13). We also examined the effect of CSN6 on 

COP1 ubiquitination. As expected, polyubiquitinated COP1 was reduced in CSN6 

overexpressing cells compared with control cells (Fig. 14). Taken together, these findings 

demonstrate that CSN6 increases COP1 stability through inhibition of ubiquitin-mediated 

COP1 proteasomal degradation.  
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Figure 10. Gel filtration and elution profiles analysis of CSN6, COP1 and 14-3-3σ.  

 

The distributions of CSN6, 14-3-3σ, and COP1 were analyzed by gel filtration 

chromatography. Immunoblots of the fractions for indicated proteins are shown in both 

HCT116 (A) and U2OS (B) cells. Molecular weight markers are indicated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

35 

 

                                                                                 Figure 10 
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Figure 11. CSN6 interacts with COP1. 

 

A. Endogenous COP1 interacts with endogenous CSN6. Lysates of U2OS cells were 

prepared and equal amounts of cell lysates immunoprecipitated with either  rabbit IgG or 

anti-COP1 antibodies followed by immunoblotting with anti-CSN6 antibody (left panel).   

 

B. COP1 is shown to interact with CSN6 in vitro (right panels). Myc-COP1 and Flag-

CSN6 cDNAs were transcribed and translated in vitro. COP1 and CSN6 proteins were 

incubated overnight and immunoprecipitated with anti-Myc followed by immunoblotting 

with anti-Flag.  
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                                                                                  Figure 11 
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Figure 12. Overexpression of CSN6 elevates the steady-state protein levels of 

COP1 at the post-transcriptional level. 

 

A. Lysates of Myc-CSN6 overexpressing U2OS stable transfectants or vector control 

transfectants were immunoblotted with anti-COP1, CSN6, or Actin antibodies.   

 

B. mRNA levels of COP1 are not affected by overexpression of CSN6. Real-time 

quantitative PCR analysis of COP1 in Myc-CSN6 overexpressing U2OS stable 

transfectants or vector control transfectants showed no obvious difference in COP1 

mRNA levels. 
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                                                                                 Figure 12 
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Figure 13. CSN6 decreases COP1 turnover rate.  

 

Myc-CSN6 overexpressing U2OS stable transfectants and vector control transfectants 

were treated with cycloheximide (CHX) (100 µg/ml) for indicated times. Cell lysates were 

immunoblotted with anti-COP1, Myc, or Actin antibodies. Integrated OD values of bands 

at each time point were measured using a densitometer. Levels of COP1 at time zero 

wwere set at 100%. COP1 remaining is indicated graphically. 
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                                                                                 Figure 13 
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Figure 14. CSN6 reduces poly-ubiquitination of COP1.   

 

Myc-CSN6 overexpressing U2OS stable transfectants or vector control transfectants 

were transfected with HA-Ubiquitin. Cells were treated with MG132 four hours before 

harvesting. Polyubiquitinated COP1 was immunoprecipitated with anti-COP1 and 

immunoblotted with anti-HA antibodies. Equal amounts of cell lysates were 

immunoblotted with anti-CSN6 or Actin antibodies. 
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                                                                                 Figure 14 

 

 

 

 

 

 

 

 

 

 

 



 

 

44 

 

4.4. COP1 is required for CSN6-mediated 14-3-3σ degradation 

 

4.4.1 COP1 interacts with 14-3-3σ and Knockdown of COP1 expression reduces poly-

ubiquitination of 14-3-3σ 

   Given that CSN6 associates with COP1 and that COP1 coelutes with 14-3-3σ in gel 

filtration assays (Fig. 10), we reasoned that COP1 could be involved in CSN6-mediated 

14-3-3σ ubiquitination. Indeed, 14-3-3σ was able to associate with COP1 endogenously 

as assayed by co-ip (Fig. 15). Increasing amounts of COP1 shRNA also increased 

steady-state levels of 14-3-3σ (Fig. 16A). Consistently, COP1 shRNA reduced the 

turnover rate of 14-3-3σ in 293T cells (Fig. 17) and COP1 shRNA reduced 

polyubiquitinated 14-3-3σ levels in a dose-dependent manner (Fig. 18). 

 

4.4.2 Knockdown of COP1 expression in CSN6 overexpressing cells increases 14-3-3σ 

expression through reducing CSN6-mediated poly-ubiquitination of 14-3-3σ 

   COP1 shRNA also increased endogenous levels of 14-3-3σ in HCT116 cells (Fig. 16B) 

and the mRNA levels of 14-3-3σ were not significantly affected by COP1 shRNA, 

suggesting that COP1 shRNA upregulates 14-3-3σ at the post-transcriptional level (Fig. 

16C). In light of the observation that CSN6 stabilized COP1 and negatively regulated 14-

3-3σ, we further evaluated the impact of COP1 on CSN6-mediated 14-3-3σ poly-

ubiquitination. We found that increasing amounts of COP1 shRNA in HCT116 cells 

overexpressing CSN6 led to increased 14-3-3σ steady-state expression (Fig. 19A). 

Levels of CSN6-mediated 14-3-3σ poly-ubiquitination were also compromised by 

increasing amounts of COP1 shRNA (Fig. 19B).   
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4.4.3 COP1 induces the ubiquitination of 14-3-3σ in an in vitro ubiquitination assay   

   As expected, COP1 also efficiently increased the ubiquitination level of 14-3-3σ in an in 

vitro ubiquitination assay (Fig. 20). These results suggested that COP1 is a novel E3 

ligase for 14-3-3σ whose ubiquitination is also mediated by CSN6. 
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Figure 15. COP1 interacts with 14-3-3σ in vivo. 

 

Endogenous COP1 interacts with endogenous 14-3-3σ. Lysates of HCT116 cells were 

prepared and equal amounts of cell lysates immunoprecipitated with either mouse IgG or 

14-3-3σ followed by immunoblotting with anti-COP1 antibody.  
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                                                                                 Figure 15 
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Figure 16. Knockdown of COP1 expression elevates the steady-state levels of 14-3-

3σ at the post-transcriptional level. 

 

A. 14-3-3σ protein level is upregulated when endogenous COP1 expression is inhibited 

with shRNA. 293T cells were co-transfected with indicated plasmids and increasing 

amounts of COP1 shRNA. Equal amounts of cell lysates were immunoblotted with anti-

Flag, COP1, or Actin antibodies. 

 

B. 14-3-3σ protein level was upregulated when endogenous CSN6 expression was 

inhibited by shRNA. Lysates of HCT116 cells transfected with increasing amounts of 

CSN6 shRNA were immunoblotted with anti-14-3-3σ, COP1, or Actin antibodies.   

 

C. mRNA levels of 14-3-3σ are not significantly affected by knockdown of COP1 

expression. Real-time quantitative PCR analysis of 14-3-3σ in HCT116 cells transfected 

with COP1 shRNA or control shRNA showed no significant difference in 14-3-3σ mRNA 

levels. 
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                                                                                 Figure 16 
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Figure 17. Knockdown of COP1 expression reduces 14-3-3σ turnover rate.   

 

293T cells were transfected with the indicated expression vectors. Forty-eight hours after 

transfection, the cells were treated with cycloheximide (CHX) (100 µg/ml) for the 

indicated times. Cell lysates were immunoblotted with anti-Flag, COP1, or Actin 

antibodies. Integrated OD values of bands at each time point were measured using a 

densitometer. The level of 14-3-3σ at time zero was set at 100%. 14-3-3σ remaining is 

indicated graphically.  
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                                                                                 Figure 17 
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Figure 18. Knockdown of COP1 expression reduces poly-ubiquitination of 14-3-3σ.  

 

293T cells were co-transfected with indicated plasmids and increasing amounts of COP1 

shRNA. Cells were treated with MG132 four hours before harvest, and polyubiquitinated 

14-3-3σ immunoprecipitated with anti-Flag followed by immunoblotting with anti-HA. 

Equal amounts of cell lysates were immunoblotted with anti-COP1 or Actin antibodies. 
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                                                                                 Figure 18 
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Figure 19. Knockdown of COP1 expression in CSN6 overexpressing cells 

increases 14-3-3σ expression through reducing CSN6-mediated poly-ubiquitination 

of 14-3-3σ. 

 

A. Knockdown of COP1 expression in CSN6 overexpressing cells increases the steady-

state expression of 14-3-3σ. Lysates of Myc-CSN6 overexpressing HCT116 cells 

transfected with increasing amounts of COP1 shRNA were immunoblotted with anti-14-3-

3σ, COP1, or Actin antibodies.   

 

B. Knockdown of COP1 expression in CSN6 overexpressing cells reduced the poly-

ubiquitination of 14-3-3σ. Myc-CSN6 overexpressing HCT116 cells were co-transfected 

with indicated plasmids and increasing amounts of COP1 shRNA. Cells were treated with 

MG132 four hours before harvest. Polyubiquitinated 14-3-3σ was immunoprecipitated 

with anti-14-3-3σ and immunoblotted with anti-HA antibodies. Equal amounts of cell 

lysates were immunoblotted with anti-COP1 or Actin antibodies. 
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                                                                                 Figure 19 
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Figure 20. COP1 induces the ubiquitination of 14-3-3σ in an in vitro ubiquitination 

assay.   

 

GST-14-3-3σ was incubated with or without Myc-COP1 which was prepared with in vitro 

translation (TNT) in the presence of E1, E2, His-Ubiquitin and ATP as indicated. 

Ubiquitinated 14-3-3σ  was detected by immunoblotting with anti-14-3-3σ or anti-GST 

antibodies. 
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                                                                                 Figure 20 
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4.5. CSN6-14-3-3σ axis regulates Akt-mediated cell survival and FOXO 

transcriptional activity  

 

4.5.1 CSN6 has impact on Akt activity 

   Akt has been implicated in the control of cell survival. For example, mice with targeted 

disruption of the akt1 gene are more sensitive to apoptosis-inducing stimuli (36). Because 

14-3-3σ suppresses Akt activity (31), we first examined whether knockdown of CSN6 

could suppress Akt activity and inhibit Akt-mediated cell survival. To address this, we 

used U2OS cells infected with CSN6 shRNA virus or control virus and found that Akt 

activity was suppressed when CSN6 was knocked down versus control (Fig. 21A) as 

indicated by reduced phosphorylation of Akt at Serine 473. In order to determine whether 

lower Akt activity in CSN6 knockdown cells leads to apoptosis, cells were analyzed for 

Annexin V staining at day 4 after serum starvation. Knockdown of CSN6 demonstrated 

significant increases in both early apoptotic (Annexin V staining 41.9%, at right bottom 

quadrant) and late apoptotic cells (Annexin V staining 13.6% at right upper quadrant) 

compared to control cells (18.0% and 5.4%, respectively) (Fig. 21B). Cells were also co-

transfected with constitutively active Akt (HA tagged-Akt) or treated with LY294002 (PI3K 

inhibitor). As expected, LY294002 have added the impact on shCSN6-mediated 

apoptosis in the absence of serum (Fig. 21B). In contrast, the exogenous HA tagged-Akt 

prevented the potentiation of CSN6 shRNA in serum starvation-mediated cell death (Fig. 

21B), suggesting that the CSN6-Akt axis is involved in cell survival. Also, cells were 

serum starved and analyzed for the presence of the cleaved form of PARP, an apoptosis 

marker. CSN6 knockdown cells showed more PARP cleavage compared with control 

cells (Fig. 21C). Taken together, these results suggest that knockdown of CSN6 resulted 
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in enhanced apoptotic cell death when the cells were cultured in serum free medium and 

that loss of cell viability was likely to be due to the suppression of Akt activity.  

 

4.5.2 CSN6 suppresses FOXO target gene expression 

   Akt has been reported to suppress FOXO transcriptional activity through 

phosphorylation (37, 38). Since CSN6 downregulates 14-3-3σ expression and thus 

enhances Akt activity, we next examined the impact of CSN6 on the Akt-mediated 

suppression of FOXO transcriptional activity. As expected, Akt activity in CSN6 

overexpressing HCT116 cells was higher than in control cells (Fig. 22A). We then 

examined the target gene expression of FOXO transcription factors under the condition of 

CSN6 overexpression. In Fig. 22B we show that FOXO transcriptional targets, such as 

BTG, FOXO1 and BCL6, were decreased in HCT116 CSN6-overexpressing cells (Fig. 

22B). Consistently, BCL-xL, which is repressed by BCL6, was upregulated in CSN6 

overexpressing HCT116 cells reflecting the impact of CSN6-mediated suppression of 

BCL6 (Fig. 22B).   

 

4.5.3 14-3-3σ and DN-Akt antagonizes CSN6-mediated FOXO transcriptional activity  

   To demonstrate the link between CSN6, 14-3-3σ, Akt and FOXO, we analyzed the 

functional link by employing a FOXO-responsive luciferase reporter gene assay. We 

found that CSN6 expression impaired FOXO transcriptional activity (Fig. 23), and this 

effect was reversed by increased expression of Flag-14-3-3σ or DN-Akt (Fig. 23). Taken 

together, overexpression of CSN6 leads to downregulation of 14-3-3σ, which in turn 

activates Akt kinase, resulting in the suppression of FOXO transcriptional activity.       
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Figure 21. CSN6 has impact on Akt activity.  

 

A. Knockdown of CSN6 expression suppresses Akt activity. Lysates of U2OS cells 

infected with either CSN6 shRNA or control shRNA were immunoblotted with anti-

phospho-Akt, Akt, 14-3-3σ, CSN6, or Actin antibodies.   

 

B. Knockdown of CSN6 accelerates apoptosis induced by serum starvation. U2OS cells 

infected with either CSN6 shRNA or control shRNA were transfected with either empty 

vector or HA-Akt. Cells were cultured in 0% FBS containing either DMSO or 10 µM of 

LY294002 (LY) for four days.  Binding of Annexin V and uptake of propidium iodide were 

analyzed by flow cytometry. Left panel, representative analysis of apoptotic cells. The 

lower left quadrant contains the viable population of cells, the lower right quadrant 

contains early apoptotic cells, the upper left quadrant contains necrotic cells and the 

upper right quadrant contains late apoptotic cells.  The mean of three data sets was taken 

and the values shown from the corresponding quadrant (right panel).  

 

C. Knockdown of CSN6 expression leads to PARP cleavage. U2OS cells infected with 

either CSN6 shRNA or control shRNA were cultured in 0% FBS for indicated times. Cell 

lysates were immunoblotted with anti-PARP or anti-Actin antibodies.   
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                                                                                 Figure 21 
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Figure 22. CSN6 suppresses FOXO target gene expression. 

 

A. Overexpression of CSN6 enhances Akt activity. Lysates of Myc-CSN6 overexpressing 

HCT116 stable transfectants or vector control transfectants were immunoblotted with anti-

phospho-Akt, Akt, CSN6, or Actin antibodies.   

 

B. CSN6 suppresses FOXO target gene expression. mRNA levels of the indicated FOXO 

target genes were determined by quantitative RT-PCR in HCT116 cells stably expressing 

either Myc-CSN6 or vector control.  
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                                                                                 Figure 22 
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Figure 23. 14-3-3σ and DN-Akt antagonizes CSN6-mediated FOXO transcriptional 

repression. 

 

HCT116 (A) and 293T (B) cells were co-transfected with a FOXO-responsive luciferase 

reporter and the indicated expression vectors. Relative luciferase activity is shown as a 

bar graph. 
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                                                                                 Figure 23 
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4.6. CSN6-14-3-3σ axis regulates cell growth and tumorigenicity. 
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4.6.1 14-3-3σ inhibits CSN6-mediated cell proliferation 

   Since CSN6 downregulates and thus antagonizes the activity of 14-3-3σ, we reasoned 

that CSN6 would have a role in cell proliferation and anchorage-independent growth. In 

Fig. 24 we show that indeed CSN6 overexpression facilitates cell growth. Since CSN6 

can mediate 14-3-3σ inhibition, we sought to examine the growth effect of expressing 14-

3-3σ in terms of cell proliferation, foci formation, and anchorage-independence in CSN6-

overexpressing cells.  We found that CSN6 overexpressing HCT116 cells infected with 

Ad-14-3-3σ showed inhibition of cell proliferation, foci formation, and anchorage-

independent growth when compared with the Ad-β-gal control (Fig. 24).  

 

4.6.2 14-3-3σ suppresses tumorigenesis of CSN6-overexpressing cells 

   Our unpublished data indicate that overexpression of CSN6 promotes tumor growth 

(39).  Because 14-3-3σ suppresses CSN6-mediated cell proliferation and anchorage-

independent growth, we next examined the impact of 14-3-3σ on CSN6-mediated tumor 

promotion. We observed that xenografted tumor volume was significantly decreased in 

Ad-14-3-3σ-treated mice compared with Ad-β-gal-treated mice (Fig. 25A). Further, the 

average excised tumor weight per mouse in the Ad-β-gal-treated group (507 mg) was 

higher than in the Ad-14-3-3σ-treated group (310 mg) (Fig. 25B). Tumors obtained from 

this study were fixed, embedded in paraffin, and sections were examined. 

Immunohistochemistry staining indicated that cell proliferation marker, Ki67, was reduced 

in tumors from Ad-14-3-3σ-treated mice when compared with the control group, while the 

signal intensity of apoptotic marker, cleaved Caspase 3, was increased in the Ad-14-3-

3σ-treated group when compared with the Ad-β-gal-treated group (Fig. 25D). Together, 

these data illustrate that the COP9 signalosome subunit 6-14-3-3σ axis is deregulated 

when CSN6 is overexpressed, and this promotes cell growth and tumorigenicity. 
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Significantly, 14-3-3σ expression can correct the abnormalities mediated by CSN6 

expression.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 24. 14-3-3σ inhibits CSN6-mediated cell proliferation.   
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A. Myc-CSN6 overexpressing HCT116 stable transfectants and vector control 

transfectants were plated in 96-well plates and the number of live cells estimated by MTT 

assay every day for a total of 3 days (left, top panel). Results are expressed as  OD570. 

Myc-CSN6 overexpressing HCT116 cells were infected with Ad-β-gal or Ad-HA-14-3-3σ 

(leftbottom panel). Error bars represent 95% confidence intervals. 14-3-3σ antagonizes 

CSN6-mediated foci formation.   

 

B. Myc-CSN6 overexpressing HCT116 stable transfectants and vector control 

transfectants were analyzed for foci formation (Middle, top). Myc-CSN6 overexpressing 

HCT116 cells infected with Ad-β-gal or Ad-HA-14-3-3σ were plated at low density and 

allowed to form foci (middle, bottom).   

 

C. Myc-CSN6 overexpressing HCT116 stable transfectants, vector control transfectants 

or Myc-CSN6 overexpressing HCT116 cells infected with Ad-β-gal or Ad-HA-14-3-3σ 

were analyzed for soft agar colony formation (right, top). Average numbers of colonies 

per field were scored.  Error bars represent 95% confidence intervals. 

 

 

 

 

 

 

 

                                                                                 Figure 24 
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Figure 25. 14-3-3σ suppresses tumorigenesis of CSN6-overexpressing cells.   
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A. Myc-CSN6 overexpressing HCT116 stable transfectants were infected with Ad-14-3-3σ 

or Ad-β-gal. Cells were harvested and subcutaneously injected into the flank of female 

nude mice. Tumor volumes were monitored for 31 days. Tumor growth curves are shown 

(left); error bars represent 95% confidence intervals.   

 

B. C. Tumors were exised at the end of the study and tumor weights from each group 

measured (B). Error bars represent 95% confidence intervals. Representative tumors 

from each group (C). 

 

D. Tumor sections were stained with anti-Ki67 and anti-cleaved Caspase 3. Percentage 

positive signal is plotted as a bar graph. Error bars represent 95% confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                 Figure 25 
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Figure 26. Model of the impact of the CSN6-COP1 axis in regulating 14-3-3σ 
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signaling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                 Figure 26 
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CHAPTER 5. DISCUSSION 
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   In mammalian cells, COP1 regulates various cellular targets, including stress-

responsive transcription factors, p53 tumor suppressor (13), c-JUN (14-16), acetyl-coA 

carboxylase (17), TORC2  (18), MVP (40) and nucleosome remodeling factor MTA1 (19), 

suggesting its versatile functions. Many COP1 associated proteins remain to be 

characterized.  In this study, our results indicate that COP1 binds and is a novel E3 ligase 

for 14-3-3σ. 

   The known proteins interacting with 14-3-3σ, include Cdk’s (20, 41), p53 (26) and Efp 

(estrogen inducible finger protein) (42), and all play important roles in tumorigenesis. We 

find here that CSN6 is a new 14-3-3σ-associating protein (Fig. 1) and is important in 

promoting cancer growth (Fig. 25) through its binding and degradation of 14-3-3σ (Fig. 8).  

We further determined that CSN6 regulates 14-3-3σ posttransccriptionally by enhancing 

14-3-3σ ubiquitination. CSN6 does not have the conserved RING or HECT domains 

found in well-characterized E3 ligases. Therefore, at issue is how CSN6 causes 14-3-3σ 

downregulation. Thus we searched for potential ligases that could associate with the 

COP9 signalosome and found that the COP1 E3 ligase is a potential candidate. It is 

wothwhile to point out that as an E3 ligase for p53, COP1 drives the ubiquitination and 

proteasomal degradation of p53, thereby maintaining low steady-state levels of p53 in 

unstressed cells (43). In this way, COP1 may antagonize the activity of positive p53 

regulators such as 14-3-3σ, which can stabilize p53 by reducing p53 ubiquitination level. 

Also, COP1 is downregulated in response to DNA damage (44), while 14-3-3σ protein 

level is elevated by DNA damage (25). Together, it is conceivable that COP1 and 14-3-3σ 

may have a functional relationship. Indeed, we observed for the first time that CSN6 

recruits RING containing COP1 to degrade 14-3-3σ. This is based on the observation that 
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CSN6-mediated 14-3-3σ degradation is compromised when COP1 is knocked down with 

shRNA. Importantly, CSN6 not only associates with COP1 but also prevents COP1’s self-

ubiquitination, adding yet another layer of regulation.  

   Although Efp, another RING containing protein, was previously characterized as an E3 

ligase for 14-3-3σ (42), it remains to be studied whether CSN6 also recruits Efp to 

degrade 14-3-3σ. Interestingly, Efp has another activity and seems to serve as an E3 

ligase to add ISG15 (15 Kd protein encoded by an interferon stimulated gene) for 14-3-

3σ-ISGylation (33, 45), but the role of this type of modification in terms of 14-3-3σ protein 

degradation remains unclear. We previously showed that 14-3-3σ is a negative regulator 

of Akt (31). Consistent with this, we found that CSN6 can downregulate the expression of 

14-3-3σ and lead to Akt activation. The observation that CSN6 increases the activity of 

Akt (Fig. 21) is very intriguing. This is the first discovery that links the COP9 signalosome 

with Akt activation. We have shown that CSN6 is involved in 14-3-3σ-mediated Akt 

inhibition, which in turn antagonizes FOXO-meditated transcriptional activity for pro-

apoptotic genes (Fig. 22, 23). Our mechanistic studies of CSN6-mediated 14-3-3σ 

downregulation explains how CSN6 can activate Akt in our proposed model (Fig. 26). 

This study shows that CSN6 positively regulates Akt and promotes Akt-mediated cell 

survival to prevent apoptosis. Clearly, the CSN6-Akt link will be an important molecular 

target for rational cancer therapy. Our primary breast cancer studies showed that CSN6 is 

amplified in 75% of primary breast cancers (39). Also, COP1 and 14-3-3σ inversely 

correlate in primary pancreatic and breast cancer (46). Together, it demonstrates that the 

CSN6-COP1-14-3-3σ-axis is deregulated in cancer. Here, we show that adenoviral gene 

delivery of 14-3-3σ can inhibit tumorigenicity mediated by CSN6 activity in cancer models 

(Fig. 25). Also, similar results were observed in that 14-3-3σ can compromise 
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tumorigenicity mediated by COP1 activity in xenograft cancer models (46). In conclusion, 

since both CSN6 and COP1 are involved in degrading 14-3-3σ, promoting cell survival 

and increasing tumorigenicity, targeting the CSN6-COP1 axis may be a useful therapeutic 

strategy for cancer intervention. 
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