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Catenins have diverse and powerful roles in embryogenesis, homeostasis or 

disease progression, as best exemplified by the well-known beta-catenin. The 

less studied delta-catenin likewise contains a central Armadillo-domain. In 

common with other p120 sub-class members, it acts in a variety of intracellular 

compartments and modulates cadherin stability, small GTPase activities and 

gene transcription. In mammals, delta-catenin exhibits neural specific expression, 

with its knock-out in mice correspondingly producing cognitive defects and 

synaptic dysfunctions.  

 

My work instead employed the amphibian, Xenopus laevis, to explore 

delta-catenin’s physiological functions in a distinct vertebrate system. Initial 

isolation and characterization indicated delta-catenin’s expression in Xenopus. 

Unlike the pattern observed for mammals, delta-catenin was detected in most 

adult Xenopus tissues, although enriched in embryonic structures of neural fate 

as visualized using RNA in-situ hybridization. To determine delta-catenin’s 

requirement in amphibian development, I employed anti-sense morpholinos to 
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knock-down its gene products, finding that delta-catenin depletion results in 

developmental defects in gastrulation, neural crest migration and kidney 

tubulogenesis, phenotypes that were specific based upon rescue experiments. In 

biochemical and cellular assays, delta-catenin knock-down reduced cadherin 

levels and cell adhesion, and impaired activation of RhoA and Rac1, small 

GTPases that regulate actin dynamics and morphogenetic movements. Indeed, 

exogenous C-cadherin, dominant-negative RhoA or dominant-active Rac1, 

significantly rescued delta-catenin depletion. Thus, my results indicate 

delta-catenin’s essential roles in Xenopus development, with contributing 

functional links to cadherins and Rho family small G proteins.  

 

In examining delta-catenin’s nuclear roles, I identified delta-catenin as an 

interacting partner and substrate of the caspase-3 protease, which plays critical 

roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction 

with and sensitivity to caspase-3 was confirmed using assays involving its 

cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell 

lines. The cleavage site, a highly conserved caspase consensus motif (DELD) 

within Armadillo-repeat 6 of delta-catenin, was identified through peptide 

sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal 

(817-1314) fragment each containing about half of the central Armadillo-domain. I 

found that cleavage of delta-catenin both abolishes its association with cadherins, 
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and impairs its ability to modulate small GTPases. Interestingly, the 

carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear 

localization signal that I found is needed to facilitate delta-catenin’s nuclear 

targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast 

two-hybrid screening of a mouse brain cDNA library, resolving and then validating 

its interaction with an uncharacterized KRAB family zinc finger protein I named 

ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may 

associate with DNA as a transcriptional repressor. I further determined that other 

p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind 

ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway 

based upon caspase-3 cleavage of p120 sub-family members, facilitating the 

coordinate modulation of cadherins, small GTPases and nuclear functions.  

 

Together, my work suggested delta-catenin’s essential roles in Xenopus 

development, and has revealed its novel contributions to cell junctions (via 

cadherins), the cytoskeleton (via small G proteins), and the nucleus (via ZIFCAT). 

Future questions include the larger role and gene targets of delta-catenin in the 

nucleus, and identification of upstream signaling events controlling 

delta-catenin’s activities in development or disease progression. 
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Cadherins and catenins 

 

Cadherins are calcium dependent transmembrane glycoproteins best 

known to mediate cell adhesion. Together with catenins, which associate with 

cadherin intracellular potions, and indirectly and dynamically with the actin 

cytoskeleton, cadherins play essential roles to establish adherens junctions and 

participate in the maintenance of tissue architecture or morphogenesis 

(Gumbiner, 2005; Harris and Tepass, 2010; Yap and Kovacs, 2003). Mis-

regulation in adherens junction structure or function are thus associated with 

many pathological processes, including tumor progression and metastasis 

(Jeanes et al., 2008; Reynolds and Carnahan, 2004).  

 

Catenins are related to the Drosophila Armadillo protein, and were first 

isolated in complex with cadherins at cell borders (Gumbiner, 2005; Lien et al., 

2006). All catenins (with the exception of alpha-catenin) contain a central 

Armadillo-domain composed of nine or twelve repeats (each about 42 amino 

acids). Such repeats fold into a super-helix of helices and bear crucial binding 

interfaces for multiple protein interactions including those with cadherins (Huber 

et al., 1997; Xing et al., 2008). Certain catenins encode a carboxyl-terminal PDZ 

(PSD95, DlgA and ZO-1) domain interaction motif and are capable of binding a 

large number of PDZ proteins. Based upon the Armadillo-domain, overall 

sequence similarity and the binding positions on cadherins, the catenin family 

was divided into three sub-families referred to by a representative member: 
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beta-catenin, p120-catenin and plakophilin (Anastasiadis, 2007; Anastasiadis 

and Reynolds, 2001; McCrea and Gu, 2010) (Figure 1). Beta-catenin sub-family 

catenins (beta-catenin or plakoglobin/ gamma-catenin) associate with the 

carboxyl-termini of classical cadherins, while the membrane-proximal region of 

cadherins binds p120-catenin (p120-, delta-, Armadillo Repeat Protein Deleted in 

Velo-Cardio-Facial Syndrome/ ARVCF- and p0071-catenin) and plakophilin-

catenin (plakophilin 1, 2 and 3) sub-family members. Beta-catenin and 

plakoglobin further indirectly associate with the intracellular actin cytoskeletons. 

Through such associations, catenins participate in junctional assembly and 

maintenance, and assist with cadherin dependent morphogenesis.  

 

In addition to cadherin-binding at the cell membrane, catenins transduce 

intracellular signals critical for many cellular, developmental or pathological 

events (McCrea et al., 2009; McCrea and Park, 2007; Reynolds, 2007) (Figure 

2). For example, Wnt ligands associate with the membrane receptor Frizzled 

and co-receptor LRP (Low Density Lipoprotein Receptor Related Protein). Such 

association directs membrane localization of Dishevelled and inactivation of the 

intracellular destruction complex (composed of Glycogen Synthase Kinase 3/ 

GSK3beta, Axin, Adenomatous Polyposis Coli/ APC, etc.), which would 

otherwise basally degrade the signaling pool of beta-catenin. This allows the 

signaling pool of beta-catenin to accumulate in the cytoplasm and enter the 

nucleus. In the nuclear compartment, beta-catenin associates with LEF/ TCF 

(Lymphoid Enhancer Factor/ T Cell Factor) transcription factors and activates  
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 Wnt target genes. Varied downstream outcomes are affected as a result, 

extending for example from pluripotency to terminal differentiation, and from cell 

proliferation to apoptosis (Cadigan and Peifer, 2009; Logan and Nusse, 2004; 

Willert and Jones, 2006).  

 

P120-catenin sub-family 

 

As mentioned earlier, the p120-catenin sub-family (p120-, delta-, ARVCF- 

or p0071-catenin) differs from beta-catenin in having nine characteristically-

spaced Armadillo repeats, and binding the cadherin juxta-membrane region/ 

JMR. P120-catenins do not directly anchor cadherins to actin filaments. Rather, 

they regulate cadherin lateral surface clustering and inhibit cadherin endocytosis 

(Davis et al., 2003; Kowalczyk and Reynolds, 2004). Thus, p120 sub-family 

catenins contribute to cadherin-dependent cell adhesion, polarity and motility, 

and consequently to tissue homeostasis and developmental morphogenesis 

(Figure 2) (Anastasiadis, 2007; Anastasiadis and Reynolds, 2001; McCrea and 

Gu, 2010).  

 

P120 sub-family catenins have some intriguing properties that beta-

catenin lacks. One such prominent activity is the modulation of Rho family small 

G proteins, including RhoA, Rac1 and Cdc42 (Figure 2). Maintaining small 

GTPases in an active/ GTP-bound versus inactive/ GDP-bound is influenced by 

many positive and negative effectors (Bustelo et al., 2007; Popoff and Geny, 
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2009). P120-catenin sub-family catenins associate with certain GEFs (Guanine 

Nucleotide Exchange Factors) (e.g., Vav2), or with GAPs (GTPase Activating 

Proteins) (e.g., p190 Rho GAP), facilitating activation of Rac1 or Cdc42 (Noren 

et al., 2000; Wildenberg et al., 2006). Further, intrinsic GDI (Guanine Nucleotide 

Dissociation Inhibitors) activities of p120-catenin may allow its direct binding to 

RhoA, blocking GDP/ GTP exchange and this resulting in Rho inhibition 

(Anastasiadis et al., 2000; Castano et al., 2007). The downstream effects of Rho 

activation/ inhibition may be context-dependent given that they function in 

multiple cellular capacities. Focusing on cytoskeletal regulation, RhoA activation 

generally leads to ROCK (Rho Associated Protein Kinase) activation, and thus 

the formation of stress fibers and cellular contractility, while activation of Rac1 or 

Cdc42 often results in heightened membrane protrusions such as lamellipodia 

and filopodia, respectively (Hall, 1998; Popoff and Geny, 2009).  

 

The seemingly contrasting role of p120-catenin in cell adhesion versus 

motility has led to the hypothesis of various p120-catenin sub-cellular pools. 

When bound to cadherins at the cell membrane, p120-catenin protects 

cadherins from endocytosis and degradation by lysosomes, thereby enhancing 

cell adhesion. Conversely, when dissociated from cadherins and present in the 

cytoplasm, p120-catenin exhibits more pronounced small GTPase effects, 

associated with motile states. This view is relevant to either physiologic 

scenarios or pathologic contexts. For example, one can envisage an epithelial-

mesenchymal transition (EMT) is promoted upon p120-catenin release from 
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cadherins, resulting in both reduced adhesion and increased motility, thereby 

promoting developmental morphogenesis such as neural crest migration, or 

alternatively, that of primary tumor cells losing cadherin-mediated polarity and 

metastasize distally (Reynolds and Roczniak-Ferguson, 2004; van Hengel and 

van Roy, 2007). 

 

Beyond the presence at cell contacts and in the cytosol, p120-catenins 

have also been observed in the nucleus. In the nuclear compartment, p120-

catenin binds and relieves the transcription repression of Kaiso, a Poxvirus Zinc 

Finger/ POZ zinc finger protein (Daniel, 2007; Iioka et al., 2009; van Roy and 

McCrea, 2005). In common with beta-catenin but employing a different 

mechanism, p120-catenin de-represses select canonical Wnt targets (Siamois 

etc.), whose promoters harbor both LEF/ TCF and Kaiso consensus sites (Kim 

et al., 2004; Park et al., 2006; Park et al., 2005). Intriguingly, recent findings 

indicate that p120 sub-family catenins are metabolically stabilized in response to 

upstream Wnt stimulation. Activation of the canonical Wnt pathway results in 

greater p120-catenin de-repression of Kaiso and associated with gene activation 

(Casagolda et al., 2010; Hong et al., 2010; Oh et al., 2009). 

 

Delta-catenin 

 

Delta-catenin was initially isolated in a search for proteins with homology 

to Plakophilin-1 (Neural Plakophilin Related Armadillo Repeat Protein, NPARP), 
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or in yeast two-hybrid screenings for interacting partners of Presenilin-1 

(CTNND2) (Levesque et al., 1999; Paffenholz and Franke, 1997; Tanahashi and 

Tabira, 1999; Zhou et al., 1997). Characterization of delta-catenin revealed its 

predominant expression in neural tissues of mammalian species, including the 

central nervous system and a number of neuro-secretory tissues (Ho et al., 2000; 

Paffenholz and Franke, 1997). Hemizygous deletion of the human chromosomal 

region (5p) containing delta-catenin is associated with mental retardation in Cri-

du-Chat syndrome, a rare genetic disorder characterized by high-pitched cries, 

mental and growth retardation and distinctive facial features (Medina et al., 

2000). Further more direct evidence regarding delta-catenin’s neural functions 

came from gene targeting studies, wherein its knock-out in mice caused severe 

impairments in brain cognition and abnormal synaptic plasticity (Israely et al., 

2004; Matter et al., 2009).  

 

Delta-catenin binds multiple proteins at neural adherens or synaptic 

junctions (Figure 3). Most of these interactions occur through delta-catenin’s 

central Armadillo-domain or its carboxyl-terminal PDZ binding motif (Arikkath et 

al., 2008; Deguchi et al., 2000; Fujita et al., 2004; Ide et al., 1999; Izawa et al., 

2002; Jones et al., 2002; Kim et al., 2006; Laura et al., 2002; Lu et al., 2002; 

Mackie and Aitken, 2005; Martinez et al., 2003; Munoz et al., 2007; Silverman et 

al., 2007). Although the functions of most such associations remain unclear at 

present, delta-catenin was presumed to contribute scaffolding activities and 

exert roles as a sensor for synaptic functions in neurons (Kosik et al., 2005). 
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As a member of the p120-catenin sub-family, delta-catenin possesses certain 

shared functions with p120-, ARVCF- or p0071-catenin (Hatzfeld, 2005; Kosik et 

al., 2005; McCrea and Park, 2007). Delta-catenin interacts with cadherin juxta-

membrane regions and stabilizes the larger adhesion complex by reducing its 

rate of internalization (Lu et al., 1999; Xiao et al., 2007). In primary hippocampal 

neurons, delta-catenin promotes branching of dendrites and protrusion of spines, 

while similarly in fibroblasts inducing cytoskeletal reorganization and process 

extension (Arikkath et al., 2008; Kim et al., 2002; Lu et al., 2002; Lu et al., 1999). 

These effects rely mainly upon delta-catenin’s direct or indirect associations with 

small GTPases and/ or their downstream effectors (Abu-Elneel et al., 2008; Kim 

et al., 2007; Kim et al., 2008a; Kim et al., 2008b; Martinez et al., 2003). Aside 

from its roles at the adherens junction of plasma membrane, and in the 

cytoplasm with small GTPases, delta-catenin is intriguingly also present within 

the nuclei of certain tissues. For example, delta-catenin binds Kaiso in the 

nucleus of neural-muscular junctions and activates the transcription of Rapsyn, 

which participates in anchoring and stabilizing the nicotinic acetylcholine 

receptor at synaptic sites (Rodova et al., 2004).  

 

From the perspective of human disease, delta-catenin is over-expressed 

in prostate, lung and breast carcinomas, with the relationship to prostate cancer 

being best established (Burger et al., 2002; Kim et al., 2008c; Lu et al., 2005; Lu 

et al., 2008; Wang et al., 2008; Zhang et al., 2010b). Prostate adenocarcinoma 

is the most prevalent non-cutaneous cancer and the second leading cause of 
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cancer-related death of US males. Aberrant high-expression of delta-catenin in 

prostate cancer is associated with a decrease in E-cadherin protein levels (Lu et 

al., 2005). Further studies indicate that delta-catenin is capable of promoting 

expansion of prostate adenocarcinoma cells; while conversely, its haplo-

insufficiency impaired pathological angiogenesis and reduced tumor growth 

(DeBusk et al., 2010; Zeng et al., 2009). Although delta-catenin’s relationship to 

tumorigenesis is just beginning to be investigated, its conjectured nuclear 

activities is likely to be pursued by workers in the field, given that in gene 

profiling studies, delta-catenin over-expression results in altered transcription of 

survival and cell cycle regulators (Lu, 2010; Zeng et al., 2009). 

 

Caspases 

 

Apoptosis or programmed cell death is a physiologically controlled 

process of cell suicide. Activated caspases cleave specific cellular substrates at 

defined motifs, with dying cells presenting characteristic morphological features 

(Kumar, 2007; Lockshin and Zakeri, 2007). It has been long appreciated that 

caspases have many roles apart from apoptosis, such as in immune defense, 

proliferation, fate determination, terminal differentiation, cell migration and 

neuro-degeneration, etc. In tumorigenesis, apoptosis pathways are often active 

in attempts to remove defective cells. Loss of caspase activity is associated with 

unchecked cell proliferation and the progression of cancer. However, caspases 

have also been observed to be aberrantly activated while promoting cancer 
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progression and metastasis. The mechanisms by which caspases exert these 

‘non-traditional’ functions are still under active investigation, yet likely relate to 

their temporally, spatially and quantitatively controlled enzymatic activations 

(Feinstein-Rotkopf and Arama, 2009; Kuranaga and Miura, 2007). 

 

Interestingly, many cadherins and catenins are targeted by caspases, 

yielding varied downstream outcomes (Brancolini et al., 1997; Cirillo et al., 2008; 

Dusek et al., 2006; Herren et al., 1998; Hunter et al., 2001; Kessler and Muller, 

2009; Ling et al., 2001; Senthivinayagam et al., 2009; Steinhusen et al., 2000; 

Steinhusen et al., 2001; Weiske and Huber, 2005). Although the underlining 

mechanisms and consequences of cadherin and catenin proteolysis remain 

under study, with regards to epithelial apoptosis, the dismantling of cell-cell 

contacts likely assists dying cells in detaching themselves, and/ or in being 

removed by surrounding or recruited scavenger cells (Ferber et al., 2008; 

McCusker and Alfandari, 2009; Parisiadou et al., 2004; Suzanne and Steller, 

2009; Zheng et al., 2009). Given that adherens junctions are dynamic structures, 

as made evident in development and wound repair (etc.), this regulated 

proteolysis of catenins may permit rapid junctional (as well as small GTPases) 

responses to upstream signaling events, with the generated catenin fragments 

conceivably having further gene regulatory activities (Steinhusen et al., 2000). 
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KRAB zinc finger proteins 

 

KRAB (Kruppel-Associated Box) zinc finger proteins comprise the largest 

sub-family of zinc finger transcription factors and are present only in tetrapod 

vertebrates. Such proteins feature a carboxyl-terminal C2H2 type zinc finger 

region that binds DNA (and proteins), and an amino-terminal KRAB motif 

associating with transcriptional cofactors such as KAP1 (KRAB Associated 

Protein 1) to modulate gene repression (Groner et al., 2010; O'Geen et al., 

2007). Although the functions of most family members have not been well 

studied, a few examples suggested they contribute to transcriptional repression 

at RNA polymerase I, II, and III promoters, binding and splicing of RNA, and 

control of nucleolus function. As such, KRAB zinc finger proteins exert a wide 

variety of functions in cell differentiation, cell proliferation, apoptosis, and 

neoplastic transformation (Looman et al., 2002; Urrutia, 2003).  
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Part I:  Developmental characterization of delta-catenin in Xenopus laevis 

 

Summary: Earlier work in mouse indicated that delta-catenin knock-out 

affected synaptic functions leading to deficits in learning and memory, but 

otherwise few effects on embryonic development. To explore delta-catenin’s 

physiological functions in a distinct vertebrate system, I employed the amphibian 

Xenopus laevis (African clawed frog). The Xenopus system is recognized for its 

experimental advantages in developmental and cell biology, including rapid 

external embryonic development, large embryos to facilitate microinjections, an 

established fate-map, the capability to work with explants ex vivo, and the ability 

to address mechanistic hypotheses via rescue analysis (Sive et al., 2000). As 

Part I of my dissertation, I report the isolation and characterization of Xenopus 

delta-catenin. I found that delta-catenin is regularly transcribed in Xenopus 

embryos, with at least three alternatively-spliced forms. Consistent with p120-

catenin, there exist a number of alternative translation start sites for delta-

catenin, suggesting structural and functional complexity. Unlike the neural-

restricted expression of mammalian orthologs, delta-catenin is detected in most 

adult Xenopus tissues, although is enriched in neural structures when evaluated 

using in-situ hybridization. In addition to the fraction that binds cadherins, delta-

catenin displays non-plasma membrane pools that may be implicated in 

cytoplasmic and/ or nuclear functions.  

 

To determine delta-catenin’s functions in amphibian development, I 
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employed anti-sense morpholino oligos to knock-down its gene products. Delta-

catenin depletion caused developmental defects in gastrulation, neural crest 

migration and kidney tubulogenesis, phenotypes that were specific based upon 

rescue experiments. Delta-catenin depletion phenotypes in gastrulation were 

further enhanced by co-depletion of p120-catenin. Conversely, defects were 

significantly rescued by p120-catenin, suggesting roles shared by these catenins. 

In biochemical assays, delta-catenin knock-down reduced cadherin levels and 

cell adhesion and impaired activation of RhoA and Rac1, small GTPases that 

regulate actin dynamics and morphogenetic movements. As expected, C-

cadherin, dominant-negative RhoA (N19) or dominant-active Rac1 (V12) 

significantly rescued delta-catenin depletion. Collectively, my experiments 

indicate that delta-catenin plays an essential role in amphibian development, 

with contributing functional links to cadherins and Rho family small G proteins. 

 

Xenopus delta-catenin cDNA isolation 

 

To isolate the cDNA for Xenopus delta-catenin, I performed Rapid 

Amplification of cDNA Ends/ RACE PCR employing total RNA extracted from 

adult Xenopus brain. In conjunction, I referred to the available Xenopus 

sequence resources from the Ensembl genome, Xenbase and Xenopus 

Developmental Biology database/ XDB. PCR products of full-length delta-catenin 

migrating at the predicted size were resolved on agarose gels, purified and 

ligated into the cloning vector (Invitrogen). Approximately thirty potential delta-
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catenin clones were sequenced. The longest cDNA isolated contains 3942 base 

pairs and encodes 1314 amino acids (predicted molecular weight of 144 kDa). 

Xenopus delta-catenin shows strong sequence homology (90%) with 

mammalian (human or mouse) orthologs. In common with p120-catenin, I 

identified four conserved methionines, which may serve as alternative translation 

start sites (Figure 4, marked with asterisks).  

 

Furthermore, alignment of all sequenced clones identified three sequence 

elements (A, B and C) of Xenopus delta-catenin that were recognized in 

mammals. Conversely, mouse delta-catenin contains a splicing variant (D) that I 

did not identify in Xenopus (Kawamura et al., 1999). These variants are likely to 

result from alternative splicing, since they occur precisely within predicted exon 

junctions (Figure 4). Consistent with other p120 sub-family members, the 

multiple predicted translation initiation sites and alternative splicing events would 

be expected to generate multiple protein isoforms of delta-catenin in Xenopus, 

possibly having distinct functional attributes (Paredes et al., 2007; Yanagisawa 

et al., 2008). Figure 5 illustrates the phylogenetic tree of delta-catenin and its 

major potential protein isoforms. In Figure 6, I employed the Jpred program to 

predict the structural outcomes of delta-catenin splicing variants. Element A is 

located towards the amino-terminus of delta-catenin, and when examined in 

silico as an isolated unit, is predicted to form a helical structure. Splicing variants 

B and C are located towards delta-catenin’s carboxyl-terminus and potentially 
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encode for beta-sheet structures. When the 50 amino acids of either side 

(upstream and downstream) were included in the analysis, splice variant A is 

predicted to form alpha-helix spanning about 20 amino acids. In conjunction with 

delta-catenin’s Armadillo-domain, these secondary structures may contribute to 

its higher-order topology and protein interactions.  

 

Delta-catenin temporal expression in Xenopus embryos 

 

To assess delta-catenin’s temporal expression pattern, I performed semi-

quantitative RT-PCR with total RNA extracted from Xenopus embryos at select 

stages. Delta-catenin transcripts are deposited maternally in oocytes (stage 0), 

and expressed throughout early embryonic development. Variants of A (a and 

a’), B (b and b’), and C (c and c’) were detected. Expression of short forms of B 

(b’) and C (c’) were increased during and following neurulation, suggesting their 

possible distinct functions later in development (Figure 7). 

 

 To establish the profile of delta-catenin protein, I raised a polyclonal 

antibody against its amino-terminal residues 83-521. The purified antibody 

reacted with a delta-catenin isoform from embryo extracts migrating at 

approximately 100 kDa (Figure 8). Using immune-depletion and cadherin co-

immuno-precipitation strategies, this reactivity was indicated to be authentic 

delta-catenin. I further tested commercial delta-catenin antibodies directed 

against the carboxyl-terminal amino acids 1229-1247 of mouse delta-catenin  
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(corresponds to amino acids 1297-1314 of the Xenopus ortholog, Sigma-Aldrich 

or Abcam). These antibodies mainly detected a doublet that migrates at 

approximately 100 kDa, with additional bands appearing at 130 kDa and 160 

kDa depending on the experimental samples/ stages probed (Figure 8). Thus 

consistent with its temporal profile of mRNA transcripts, delta-catenin protein 

was apparent during Xenopus embryogenesis, suggesting that it may have 

functions during amphibian development.  

 

Xenopus delta-catenin spatial characterization 

 

To examine the spatial profile of delta-catenin at the transcript level, I 

performed whole mount in-situ RNA hybridization. Delta-catenin anti-sense RNA 

probe was labeled with digoxigenin and detected transcripts enriched in the 

ectoderm of blastula and gastrula embryos (Figure 9, panel A, B, C and D). 

During neurulation (Panel E), the anterior region and dorsal neural tube 

displayed delta-catenin signals, with embryos at tadpole stages showing more 

distinctive staining in tissues of neural ectodermal and neural crest, including 

brain, eye and ear vesicles, branchial arches, spinal cord and somites (derived 

from mesoderm) (panel F, G and H). Panel I, J, K and L are section views of 

embryos from corresponding stages. Embryos hybridized in parallel using sense 

probe served as negative controls, wherein no significant signals were detected 

(panel M, N and O). The broad expression of Xenopus delta-catenin relative to 

the near brain-exclusive pattern of mammalian delta-catenins prompted me to 
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verify my findings using other approaches. Here I applied semi-quantitative RT-

PCR and tested select tissues of adult Xenopus, which reproducibly showed the 

presence of delta-catenin transcripts (splicing variants c and c’) in brain, nerve, 

muscle (mesoderm) and skin (surface ectoderm) (Figure 10A).  

 

Following the same strategy, I explored the spatial profile of delta-catenin 

proteins using immuno-blotting analysis. Intriguingly, the amino-terminal 

antibody (against Xenopus amino acids 83-521) reacted with three isoforms 

(160, 130 and 100 kDa) from adult Xenopus tissues. The 130 and 100 kDa 

isoforms were present in all tissue extracts, while the 160 kDa band appeared to 

be brain-specific. In contrast, the delta-catenin carboxyl-terminal antibody 

(against Xenopus amino acids 1297-1314) detected only the two higher bands in 

brain using regular film exposures. When exposed longer, the 100 kDa band in 

brain and the 130 kDa band in muscle and liver were also seen (Figure 10B). 

The differing patterns seen upon use of amino- versus carboxyl-directed delta-

catenin antibodies presumably result from distinct immune-reactivities. Differing 

post-translational modifications of delta-catenin isoforms may affect antibody 

recognition. Further complexity may come from the alternative splicing events of 

delta-catenin’s amino- and carboxyl-terminal (and Armadillo) domains, with the 

amino-region likely to have additional alternative translations. Regardless of the 

underlying basis, my results indicate that delta-catenin is expressed in most 

adult Xenopus tissues at the transcript and protein levels, and that in developing 

animals it is most evident in tissues/ organs of neural derivation.  
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Delta-catenin sub-cellular localization in Xenopus embryos 

 

Earlier work on p120-catenin has indicated diverse functions in differing 

sub-cellular compartments (Anastasiadis, 2007; McCrea and Gu, 2010; 

Reynolds, 2007). This includes binding to the juxta-membrane region of 

cadherins at cell contacts, interactions with small GTPases in the cytoplasm, 

and regulation of gene transcription in the nucleus. To validate the association of 

endogenous delta-catenin with classical cadherins, I performed co-immuno-

precipitations from gastrula (stage 12) embryo lysates. Immuno-precipitates of 

delta-catenin antibody included C-cadherin, which is the principal cadherin 

isotype at early cleavage stages (Figure 11A). Given delta-catenin’s wider 

expression in Xenopus tissues, I wished to test its interaction with E-cadherin 

(epithelial enriched), and N-cadherin which is concentrated in neural tissues 

(Figure 11B and 11C). As assessed from neurula (stage 15)/ tailbud (stage 22) 

stage embryo extracts, both cadherins associate with delta-catenin, further 

suggesting that Xenopus delta-catenin is present within cadherin complexes 

existing within cleaving blastomeres of the blastula stage, epithelial layers and 

neural tissues at neurula stages. 

 

To determine delta-catenin’s sub-cellular localization, I applied the 

established method of membrane fractionation in early stage embryos (Fagotto 

and Gumbiner, 1994). Extracts of gastrulating embryos were separated into 

membrane and non-plasma membrane crude fractions, and subjected to  
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immuno-blotting analysis with antibodies directed against select proteins (Figure 

12). Endogenous delta-catenin was apparently predominantly localized within 

the non-membrane pool including cytosolic and nuclear components. Compared 

to beta-catenin (approximately 40%), a larger proportion (about 70%) of delta-

catenin did not associate with the membrane fraction (bound to cadherins). My 

results are thus consistent with the possibility that delta-catenin regulates 

cytosolic and/ or nuclear processes, in addition to membrane/ cadherin 

dependent events during Xenopus embryogenesis. 

 

Delta-catenin anti-sense morpholinos 

 

Given that the characterization of delta-catenin suggested its potential 

requirement during amphibian embryogenesis, I began to address its 

developmental roles. For this purpose, I employed an anti-sense morpholino 

oligo strategy to disrupt protein expression (loss-of-function approach). As 

Xenopus delta-catenin is putatively translated from multiple distinct initiation 

sites (see also Figure 4), I avoided use of the traditional morpholinos directed to 

block translation initiation. Instead, I employed the splicing type of morpholinos 

that interfere with pre-RNA splicing, with the predictable outcome of disrupting 

the protein coding frame and causing pre-mature termination (Draper et al., 

2001; Nutt et al., 2001). I chose to target exon 6 of delta-catenin since its frame 

shift would generate the smallest possible protein products. I first acquired the 

sequence of intron 5 and exon 6 from tadpole stage genomic DNA by PCR 
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amplification and direct DNA sequencing. Delta-catenin morpholino-6 (MO-6) 

was indicated to perturb splicing between intron 5 and exon 6. Delta-catenin-

MO-6 was injected into single-cell embryos and I used RT-PCR to assay its 

efficacy at later stages (Figure 13A). When harvested at blastula stages, injected 

embryos produced a smaller PCR product consistent with the expected 

alteration of RNA splicing (skipping of exon 6), which was confirmed by DNA 

sequencing. Next I used oligos matching more downstream sequences (d, see 

also Figure 7), finding no sign of alterations in delta-catenin DNA transcription or 

mRNA stability. Following the same strategy, I chose intron 8- exon 9 junction 

and designed another splice junction morpholino (delta-catenin MO-9), which 

was predicted to disrupt protein products originating from all translational start 

sites (Figure 13B). Delta-catenin MO-9 activated cryptic splicing sites and 

caused exon 9 skipping as well as additional partial skipping of exon 8 (’) and 

10(’’). When evaluated at the protein level through immuno-blotting, both 

morpholino 6 and 9 reproducibly reduced delta-catenin intensities, with no 

obvious effects on a nonspecific cross-reacting band (labeled with asterisks), or 

upon actin (Figure 14).  

 

Delta-catenin depletion results in developmental phenotypes in 

gastrulation, neural crest migration and kidney tubulogenesis 

 

To evaluate the effects of delta-catenin depletion, I injected the above 

morpholinos into early stage cleaving embryos. Those embryos underwent  
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cleavage and blastula stages with no noticeable phenotypes. However at  

gastrulation, injected embryos displayed significant delays in blastopore closure, 

and endodermal protrusions in certain experimental contexts (Figure 15). Based 

upon external observation, many embryos seemed to recover and complete 

gastrulation. However, most MO-9 injected embryos were developmentally 

arrested and died during later tailbud/ tadpole stages. I then employed 

biochemical assays to assess the effects of delta-catenin depletion on cell 

proliferation (antibody staining of phospho-histone H3, Millipore) or apoptosis 

(antibody staining of active caspase-3, BD Pharmingen), but my results were not 

conclusive. It remained possible that delta-catenin knock-down produces effects 

upon cell death that are below my detection methods when tested at early 

developmental stages (gastrulation), but is ongoing and ultimately results in 

more significant tissue necrosis at later stages (tailbud/ tadpole). Such effects 

may also come from as yet unexamined processes, for example, the largely 

uncharacterized functions of delta-catenin in the nucleus. It is noteworthy that 

many surviving tadpoles from MO-6 injections showed abnormalities including 

reduced anterior-posterior axes and gut malformations, which may have resulted 

from underlying earlier gastrulation defects.  

 

Since delta-catenin knock-down affected blastopore closure, a 

morphogenetic process dependent on the proper orientation of cell intercalation 

processes (Keller, 2005; Keller et al., 2003; Solnica-Krezel, 2006), I investigated 

whether convergence-extension movements could be affected. I thus excised 
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dorsal mesodermal explants that are capable of recapitulating ex vivo the 

morphogenesis observed in vivo (explants assay). Note that delta-catenin 

depleted explants did not generate significant defects in elongation when 

compared with the controls (Figure 16A). Among other possibilities, reduction of 

delta-catenin functions may affect directed cell re-arrangements of more ventral 

or medial tissues (not examined in my study), or alternatively, the coordination of 

cell/ tissue movements. Next I followed an established method and scored delta-

catenin knock-down embryos for their convergence-extension in vivo (Kim et al., 

2004) (Figure 16B). In this assay, I injected delta-catenin MO-6 and an Alexa 

488 fluorescent tracer into equatorial regions of four-cell stage embryos. At 

approximately Xenopus stage 11 (mid-gastrula stage), the aspect ratios 

(measured as ratios of length- to- width) of fluorescence intensity within dorsal 

zones/ DMZ were assessed. Again no significant differences were observed. 

Thus, my results indicate that while delta-catenin is crucial for normal 

gastrulation and later developmental events, its depletion may not significantly 

perturb convergent extension movements in the dorsal mesodermal 

compartment.  

 

Given earlier studies that p120-catenin depletion in presumptive neural 

ectoderm results in eye and craniofacial defects (Ciesiolka et al., 2004), I sought 

to examine such potential effects following delta-catenin morpholinos (6 and 9) 

through targeted injections. Delta-catenin knock-down in the dorsal-animal 

blastomeres of eight-cell stage embryos likewise perturbed eye and craniofacial 



 38

development as evident in later tadpoles (Figure 17). As exogenously expressed 

delta-catenin partially rescued such phenotypes, the specificity of these loss-of-

function effects was indicated. Next, I used Alcian blue staining to more clearly 

evaluate craniofacial abnormalities. As shown in Figure 18A, depletion of delta-

catenin caused under-development of both the ceratohyal and ceratobranchial 

cartilages, cell lineages that originate from neural crest. It is thus conceivable 

that delta-catenin may play a role in this cell population. Indeed, whole mount in-

situ RNA hybridization employing neural crest markers (Slug, etc.) illustrated that 

delta-catenin depletion impaired neural crest migration when examined at 

neurulation stage 18 (Figure 18B).  

 

Following the same strategy, I injected delta-catenin morpholinos into 

ventral-vegetal blastomeres of early stage embryos, and employed 3G8 whole 

mount antibody staining to evaluate pronephric kidney tubulogenesis of tadpoles. 

3G8 is a well-established antibody that recognizes pronephric tubules and 

nephrostomes (Lyons et al., 2009; Vize et al., 1995). It appeared that delta-

catenin depletion resulted in impaired tubulogenesis and was associated with 

the edematous status (collection of fluids) of superficial tissues (Figure 19).  

 

Delta-catenin depletions are rescued with delta- or p120-catenin 

 

To test the specificity of my obtained phenotypes and to examine delta-

catenin’s functional relationship with select catenins, I employed a rescue  
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strategy by scoring for blastopore closure (completion of gastrulation). A full-

length delta-catenin RNA (resistant to splice junction morpholinos) effectively 

rescued phenotypes and supported the specificity of knock-down. As I 

mentioned earlier that p120 sub-family proteins share certain attributes, I further 

examined whether p120-catenin could rescue delta-catenin depletion. Indeed, 

p120-catenin repeatedly displayed significant rescuing activity (Figure 20B), 

while as expected the more distantly related beta-catenin did not (Figure 21B). 

Moreover, when morpholinos of delta- and p120-catenin were injected at sub-

phenotypic (titrated) doses, combined depletion of delta- and p120-catenin 

produced more pronounced effects than either alone (Figure 20A). Thus these 

results were consistent with the literature and my findings in that delta- and 

p120-catenin might share some roles during Xenopus gastrulation, although it is 

important to note that endogenous level of either catenin is not sufficient to 

compensate for/ rescue depletion of the other.  

 

To begin to identify regions of delta-catenin required to rescue delta-

catenin depletion, I tested the rescuing capacity of a delta-catenin RNA 

beginning at the most downstream putative translation start site (Methionine434) 

finding that it displayed rescuing activity comparable to the full-length construct 

(Figure 21A). Likewise, a delta-catenin mutant missing the carboxyl-terminal 

PDZ binding motif (delta-catenin ΔPDZ) successfully rescued blastopore closure 

defects (Figure 21B). These results suggest that the observed gastrulation delay 

phenotypes more likely resulted from the loss of Armadillo- and/ or carboxyl-
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terminal regions, rather than delta-catenin’s amino-terminal 433 amino acid 

residues or its PDZ motif (four amino acids). Consistent with this speculation, 

delta-catenin’s amino-terminal region containing amino acids 1- 500 (NT 

construct) displayed little rescuing ability (Figure 21B). The Armadillo-domain of 

delta-catenin in isolation (delta-catenin ARM) also failed to generate statistically 

significant rescue effects, suggesting that the Armadillo-domain is necessary but 

not sufficient. In Figure 21C, various delta-catenin constructs are illustrated 

along with their capacity to rescue blastopore closure. 

 

As was the case for depletion, over-expression of delta-catenin perturbed 

gastrulation (causing delays in blastopore closure) in a dose-dependent manner 

(Figure 22). Thus, similar to other p120-catenin sub-family members, it appears 

that delta-catenin levels must be kept within a defined range to execute normal 

embryogenesis.  

 

Delta-catenin depletion impairs cadherin-dependent adhesive functions 

 

To explore mechanisms underlying delta-catenin’s depletion phenotypes, 

I examined cadherin levels and cell adhesive functions using biochemical 

approaches. Immuno-blotting repeatedly detected reductions in C (cleavage)-, E 

(epithelial)- and N (neural)-cadherin levels following delta-catenin morpholino 

injections. In comparison, other catenins including p120- and beta-catenin, or 

the loading control actin, were not significantly changed (Figure 23A). Next I  
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accessed cadherin-dependent cell adhesion in Xenopus embryos using animal 

cap dissociation and re-aggregation assays. In embryos injected with delta-

catenin MO-9, cell adhesion was reduced when measured using either of these 

methods (Figure 23C). To quantify such effects, I applied an in vitro adhesion 

experiment. Here I coated glass coverslips with the purified ectoderm of mouse 

E-cadherin (recombinant peptide, Sigma-Aldrich), or with the extracellular matrix 

component fibronectin (Sigma-Aldrich, negative control), and incubated the 

coverslips with dissociated ectodermal cells from control versus delta-catenin 

depleted embryos. The percentage of cells remaining after buffer washing was 

calculated as a rough measurement of adhesive strength. While I noticed some 

reductions in cadherin heteromeric interactions (presumably reduced interaction 

of endogenous C- with exogenous E-cadherin) in the condition of delta-catenin 

depletion, changes were not seen upon fibronectin association (endogenous 

integrin with exogenous fibronectin) (Figure 23B).  

 

Next I asked whether such reductions in cadherin-mediated adhesion 

might contribute to the developmental defects resulting from delta-catenin 

knock-down. I addressed this through depletion-rescue assays, testing whether 

ectopically-expressed cadherins could rescue delta-catenin depletion. As 

expected, C-cadherin (major isotype in early Xenopus stages) displayed a 

significant capacity to rescue blastopore closure defects (Figure 24). I further 

wished to address the relevance of the delta-catenin: cadherin interaction by 

evaluating the capacity of a mutant C-cadherin to perform rescues. As 



 51

mentioned earlier, p120-catenin sub-family catenins bind to the juxta-membrane 

regions of cadherins. A triple-point (AAA) mutation of E-cadherin in this region 

was reported to abolish the interaction with p120-catenin in mammalian cell lines 

(Maeda et al., 2006). Yet in Xenopus embryos, unpublished results from McCrea 

Laboratory indicated that the corresponding C-cadherin AAA mutant retained 

some association with ARVCF-catenin (another member of the p120-catenin 

sub-family). Thus, the cadherin AAA mutant may not be an ideal reagent to 

address this question. Instead, I constructed a delta-catenin deletion mutant 

(ΔARM1-5) which is missing Armadillo repeats 1-5. Evaluated by co-immuno-

precipitation tests from Xenopus extracts, ΔARM1-5 failed to interact with 

endogenous C-cadherin (Figure 25A). However, ΔARM1-5 largely preserved the 

capability to modulate Rho and Rac functions, which were measured through 

RhoA and Rac1 pull-down assays in HeLa cells. Here in common with full-length 

delta-catenin, ΔARM1-5 inhibits RhoA while activating Rac1 (Figure 25B and 

25C). Supporting the above biochemical assays, ΔARM1-5 transfection in neuro-

2a neuroblastoma cells resulted in the formation of neurite-like structures as 

seen for the full-length protein. Such effects are generally expected to result 

from Rho and Rac modulation (Figure 26). It is important to note that ΔARM1-5 

showed only weak rescue effects compared to the full-length construct (Figure 

24). Thus, my results are consistent with the significance of the delta-catenin: 

cadherin association in Xenopus gastrulation. In this regard, delta-catenin 

protein knock-down via antisense morpholino oligos appears to lessen cadherin 

levels and impair cell adhesion, leading to the defects of embryogenesis.  
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Depletion of delta-catenin perturbs Rho and Rac activities 

 

Rho family small G proteins are important regulators of actin dynamics, 

and based on earlier work, likely interact with delta-catenin in mediating some of 

its downstream effects (Abu-Elneel et al., 2008; DeBusk et al., 2010; Kim et al., 

2008a; Martinez et al., 2003). To examine whether Rho responds to delta-

catenin depletion in Xenopus embryos, I measured active RhoA (GTP-bound) 

levels using total RhoA protein as the control. Remarkably, I observed a 

significant Rho activation in Xenopus extracts following delta-catenin depletion 

(Figure 27A). To test whether such changes might be relevant to the observed 

developmental defects upon delta-catenin depletion, I again employed a rescue 

strategy wherein dominant-negative RhoA (RhoA N19, titrated) was co-injected 

with delta-catenin MO-6. I repeatedly observed a significant rescue using this 

form of RhoA, whereas as a negative control, no rescue was achieved from 

constitutively-active RhoA (RhoA V14) (Figure 27C). Given multiple reports 

regarding Rac1 activation by p120 sub-family members including delta-catenin 

(Ciesiolka et al., 2004; Elia et al., 2006; Fang et al., 2004; Grosheva et al., 2001; 

Hou et al., 2006; Wildenberg et al., 2006), I then tested Rac activation using a 

similar pull-down assay. As expected, I resolved modest inhibition of Rac1 in 

Xenopus extracts (Figure 27B). Pointing to the functional relevance, a dominant-

active form of Rac1 (Rac1 V12) significantly rescued gastrulation defects 

following delta-catenin depletion, whereas a dominant-active Cdc42 did not 

(Cdc42 V12, used as a negative control) (Figure 27C). Thus, my results are in 
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line with other studies of cell lines and animals and supported models that delta-

catenin depletion in Xenopus activates RhoA functions, while repressing Rac1. 
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Part II: Exploring the roles of delta-catenin in the nucleus 

 

Summary: Delta-catenin is an Armadillo protein of p120-catenin sub-

family capable of modulating cadherin stability, small GTPase activity and 

nuclear transcription. In part II of my dissertation work, I identified delta-catenin 

as a substrate of the caspase-3 protease, which plays essential roles in 

apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with 

caspase-3 was confirmed using cleavage assays conducted in vitro, in Xenopus 

apoptotic extracts and in cell line chemically induced contexts. The cleavage site, 

a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 

of delta-catenin, was identified through peptide sequencing. Cleavage thus 

generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each 

containing about half of the central Armadillo-domain. I found that cleavage of 

delta-catenin both abolishes its association with cadherins, and impairs its ability 

to modulate small GTPases. Interestingly, the carboxyl-terminal fragment 817-

1314 possesses a conserved putative nuclear localization signal that may 

facilitate delta-catenin’s nuclear targeting in defined contexts. To probe for novel 

nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a 

mouse brain cDNA library, resolving and then validating delta-catenin’s 

interaction with an uncharacterized KRAB family zinc finger protein ZIFCAT. My 

results indicate that ZIFCAT is nuclear, and suggest that it may associate with 

DNA as a transcriptional repressor. I further determined that other p120 sub-

family catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. 
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My findings potentially reveal a simple yet novel signaling pathway based upon 

caspase-3 cleavage of p120-catenin sub-family members, facilitating the 

coordinate modulation of cadherins, small GTPases and nuclear functions. 

 

Delta-catenin is a novel caspase-3 substrate 

 

Yeast two-hybrid screening of a human embryonic stem cell cDNA 

expression library pointed to delta-catenin as a potential substrate of 

constitutively-active caspase-3 (mcasp3rev), which was employed as bait 

(Dejosez et al., 2008; Fujita et al., 2008). Mcasp3rev spontaneously folds into its 

active conformation and binds target proteins but no longer cleaves them owing 

to a C163S substitution.  

 

To begin to test this interaction’s validity, I employed a classic in vitro 

assay wherein delta-catenin was mixed with recombinant active caspase-3. 

Delta-catenin had been biotin-labeled on lysine residues, ensuring that all major 

fragments could be visualized through streptavidin-HRP immuno-blotting 

(Promega Transcend Non-Radioactive Translation Detection System). 

Remarkably, I observed significant cleavage at a low caspase-3 dose (10ng), 

with complete cleavage occurring at higher doses (50ng) (Figure 28A). To map 

the region necessary for caspase-3 binding and cleavage, I collected additional 

delta-catenin constructs and tested them using the same assay. Figure 28B 

summarizes their responses to caspase-3 in vitro. The Armadillo-domain of 
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delta-catenin, and more specifically repeats 6-10, appeared to be the region of 

caspase-3 recognition.  

 

Next, I used an established in vivo-derived assay of caspase function 

(Kornbluth and Evans, 2001). Apoptotic extracts harvested from Xenopus eggs 

were incubated with the bacterially expressed entire Armadillo-domain of delta-

catenin, which became markedly cleaved and apparently further metabolized 

(Figure 29A). Notably, addition of DEVD-CHO (Calbiochem), a specific inhibitor 

for caspase-3 and 7, completely abolished this cleavage in apoptotic Xenopus 

extracts. To examine endogenous delta-catenin cleavage in mammalian cells, I 

screened six glioblastoma stem cell lines, finding one (GSC11) that expressed 

delta-catenin at significant levels. Four independent antibodies confirmed delta-

catenin migrating on SDS-PAGE as a ~150 kDa doublet (calculated molecular 

weight 133 kDa). Delta-catenin was cleaved following the incubation of GSC11 

cells with Puromycin, a protein synthesis inhibitor and established apoptotic 

inducer (Figure 29B). Such in vivo cleavage was likewise observed for Met434 

delta-catenin, expressed exogenously in 293T cells (see also Figure 38). These 

findings together suggest that caspase-3 may be the predominant enzyme 

responsible for initial delta-catenin cleavage during apoptotic or potentially non-

apoptotic events. 
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Caspase-3 cleaves delta-catenin at DELD816 consensus motif 

 

To identify the tetra-peptide motif for caspase-3 targeting, I performed in 

vitro cleavage as noted above, using the Armadillo-domain of delta-catenin 

purified from E. coli. Cleavage was confirmed by coomassie blue staining 

(Figure 30A). A separate gel with equal loading was blotted onto a PVDF 

membrane, the peptide band was excised, and the first 10 amino-terminal 

residues were sequenced (Genomics and Proteomics Core Laboratory, Baylor 

College of Medicine). Figure 30B illustrates the ‘GLLCADNNGK’ sequencing 

result, which in turn pointed to the upstream tetra-peptide motif ‘DELD816’, a 

typical caspase-3 consensus site. Residue ‘D816’ likely represents position ‘P1’, 

the key amino acid for caspase-3 binding, after which peptide bond cleavage 

occurs. Upstream amino acids ‘D’, ‘E’ and ‘L’ would then respectively represent 

the ‘P4’ ‘P3’ ‘P2’ residues, each contributing to caspase-3 recognition and 

association (Solary et al., 1998). It is notable that this caspase-3 site of delta-

catenin is highly conserved across species (Figure 30B).  

 

To verify the significance of D816, I carried out site-directed mutagenesis, 

converting native D (aspartate) to E (glutamate), an amino acid that resembles 

aspartate in the chemical nature yet is resistant to caspase cleavage. 

Remarkably, the D816E mutant completely blocked caspase-3 cleavage in vitro 

compared to the wild-type delta-catenin (an asterisk in Figure 31 marks the 

cleavage product of wild-type delta-catenin). Intriguingly, the p120- and ARVCF-
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catenins also contain conserved predicted caspase-3 consensus sites within 

their Armadillo-domains. These additional catenins are likewise sensitive to 

caspase-3 in vitro, suggesting that caspase-3 regulation of p120-catenin sub-

family members may be a general phenomenon (Figure 32).  

 

Collectively, my in vitro and in vivo data strongly suggest that delta-

catenin is a novel substrate of caspase-3 and is cleaved after the DELD816 

motif. 

 

Cleavage of delta-catenin abolishes cadherin binding 

 

To probe for potential physiological relevance, I sub-cloned the two delta-

catenin fragments formed as a result of caspase-3 cleavage, and examined their 

ability to bind cadherin in vitro and in live cells. Hereafter I designate ‘1-816’ to 

refer to the amino-terminal fragment (Xenopus delta-catenin amino acids 1-816), 

and ‘817-1314’ to refer to the carboxyl-terminal fragment (Xenopus delta-catenin 

amino acids 817-1314). As expected, and employed as a positive control, full-

length delta-catenin bound C-cadherin when translated and tested in vitro. In 

contrast, neither 1-816 nor 817-1314 displayed comparable immuno-blot signals, 

suggesting that both these fragments had greatly reduced capacities to bind 

cadherin (Figure 33A).  

 

Next, I in vitro transcribed these cDNA constructs into capped mRNAs 
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and injected them into one-cell stage Xenopus embryos, a classic approach 

used to test interactions with endogenous (or exogenous) proteins in vivo. 

Repeatedly, I observed a positive association between full-length delta-catenin 

with endogenous C-cadherin, a major cadherin mediating blastomere adhesion 

during early embryonic cleavage stages. Neither 1-816 nor 817-1314 produced 

a specific signal when compared to the IgG negative control pull-downs (Figure 

33B). These results suggest that caspase-3 cleavage of delta-catenin (and likely 

of p120- and ARVCF-catenins), prevents its association with cadherins. Given 

the recognized protective effects of bound p120-catenin sub-family members on 

cadherin stability, this may contribute to the known reduction of cadherin function 

following caspase activation. 

 

Cleaved delta-catenin fragments are impaired in Rho and Rac modulation 

 

Rho and Rac are Ras-family small G proteins that critically mediate actin 

dynamics and tissue morphogenesis (Hall, 1998; Heasman and Ridley, 2008). A 

prominent function of p120-catenin sub-family catenins, including delta-catenin, 

is their direct or indirect association and modulation of small GTPases, affecting 

their GTP- (active) versus GDP-bound (inactive) states (Anastasiadis, 2007; Keil 

et al., 2007). To test if the impact of delta-catenin upon Rho and Rac is affected 

upon caspase cleavage, I compared full-length versus 1-816 or 817-1314 

(cleaved) delta-catenin, evaluating Rho or Rac activity using RBD or PBD pull-

down assays, respectively. Consistent with other reports (Abu-Elneel et al., 2008; 
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DeBusk et al., 2010; Gu et al., 2009; Martinez et al., 2003), expression of full-

length delta-catenin in HeLa cells inhibited RhoA while partially activating Rac1 

(Figure 34A and 34B). Both 1-816 and 817-1314, in contrast, failed to alter RhoA 

activity. With respect to Rac1, 1-816 as anticipated lacked stimulatory or other 

effects, while unexpectedly, 817-1314 reproducibly displayed inhibitory, possibly 

dominant negative effects (Figure 34B). These results suggest that caspase-3 

cleavage of delta-catenin reduces or alters delta-catenin’s modulation of small 

GTPases, likely coincident and possibly in coordination with effects upon 

cadherin functions. 

 

An NLS within delta-catenin’s Armadillo-repeat 6 enhances 817-1314 

nuclear localization 

 

The 817-1314 fragment resulting from caspase-3 cleavage contains an 

‘WGKKKKKKKSQ’ sequence element previously demonstrated to possess 

nuclear localization activity (Lu et al., 1999) (see also Figure 4 and Figure 30B). 

To test if this putative NLS might contribute to 817-1314’s nuclear entry, epitope-

tagged delta-catenin constructs were transiently expressed in various cell types, 

and this was followed by confocal immuno-fluorescence visualization. As shown 

in Figure 35 using 293T cells, full-length delta-catenin appeared concentrated 

near cell-cell borders, with residual staining in the cytoplasm. Lacking the ability 

to bind cadherin, 1-816 was instead more diffusely localized in the cytosol. 

Likewise in contrast to full-length, but also differing from 1-816, prominent  
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localization to nuclei was observed for 817-1314, with additional cytosolic 

presence. Results from MDA-MB-435 melanoma cells (Figure 36), MDA-MB-231 

breast cancer cells and Neuro-2a neuroblastoma cells were consistent with 

observations from 293T cells.  

 

To test if the nuclear localization of 817-1314 required the NLS, I removed 

an amino-terminal region of 28 amino acid residues that included the 

‘WGKKKKKKKSQ’ element. When compared with 817-1314, removal of the NLS 

placed a much greater proportion of the resulting construct in the cytoplasm 

(Figure 35 and Figure 36). Next, I employed biochemical fractionation to better 

quantify their intracellular distribution. Shown in Figure 37, a prominent portion of 

817-1314 localized to the nuclear fraction (57% of 100%), as distinguished from 

full-length delta-catenin (18%), 1-816 (15%) or 817-1314ΔNLS (11%). Similar 

results were obtained for 817-1314 in 293T cells subject to Puromycin-induced 

cell death (Figure 38). Thus, the resolved caspase-3 cleavage of delta-catenin 

generates a fragment (817-1314) that becomes enriched in the nucleus, leaving 

open the possibility that 817-1314 has nuclear roles. 

 

Delta-catenin had no detectable effect upon chemical-induced apoptosis 

 

Considering that caspase-3 is best known as an ‘executioner’ caspase in 

the apoptotic cascade, one could imagine that delta-catenin may exert effects 

within cell death programs. Indeed, in independent work, exogenous delta-
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catenin expression resulted in limited cell death in NIH 3T3 cells (Kim et al., 

2000). Conversely, however, delta-catenin has been reported to have pro-

survival activities in prostate adenocarcinoma cells (Zeng et al., 2009), and 

elicited feedback suppression of Pax6-induced apoptosis in HeLa cells (Lu et al.).  

 

In the present study I employed a cell death ELISA method (Roche), but 

did not observe significant increases or decreases in chromatin breakage upon 

delta-catenin expression (Figure 39). Likewise, neither full-length delta-catenin, 

nor the D816E, 1-816 or 817-1314 constructs, protected HeLa cells from 

Staurosporine- or Puromycin-induced apoptosis (Figure 40). Thus, pro-survival 

or apoptotic effects may be context dependent, or their detection may require a 

more sensitive assay to reach a definitive conclusion regarding delta-catenin’s 

role in apoptosis. 

 

ZIFCAT is a novel KRAB zinc finger protein associating with delta-catenin 

and ARVCF 

 

The localization of 817-1314 encouraged me to test for potential functions 

of delta-catenin in the nucleus. Using Xenopus delta-catenin as bait, I performed 

a second yeast two-hybrid screen, this time employing an adult mouse brain 

cDNA library (Hybrigenics, Inc.). Since full-length delta-catenin exhibited auto-

activation, I chose a delta-catenin construct deleted of its amino-terminus (intact  
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Armadillo and carboxyl-terminal domains). A total of 159 clones were obtained 

representing 27 distinct potential interactions, including known associations with 

cadherins and Erbin (internal positive controls) (Figure 41). My screen was not 

saturating given that additional known interactions were not resolved. Intriguingly, 

the best-rated interaction (Hybrigenics, Inc.) included 11 independent clones 

encoding a novel KRAB (Kruppel Associated Box) zinc finger protein 

(2610008E11Rik).  

 

KRAB zinc finger proteins feature a carboxyl-terminal zinc finger region 

that binds DNA, and an amino-terminal KRAB motif associating with 

transcriptional cofactors (Looman et al., 2002). To be memorable as well as 

easily vocalized, I termed the resolved novel protein ZIFCAT (ZInc Finger protein 

associating with CATenins). Figure 42 displays the phylogenetic tree of ZIFCAT 

across select species. As deduced from the 11 yeast two-hybrid ZIFCAT clones 

obtained, the minimal interacting sequence with delta-catenin included zinc 

finger repeats 6-8 (Figure 43). Intriguingly, ZIFCAT was once again resolved in a 

parallel yeast two-hybrid screen aimed to identify novel ARVCF-catenin 

interactions (Hybrigenics, Inc.). Based simply on the yeast two-hybrid clones 

resolved, the minimal ZIFCAT interacting sequence associating with ARVCF 

likewise appears to include a similar (perhaps larger) zinc finger region. Thus, 

ZIFCAT was suggested to employ its zinc finger domain to bind delta- and 

ARVCF-catenin, the same region that might be anticipated to bind DNA. 
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To test the resolved yeast two-hybrid interactions, I performed in vitro binding 

assays as described earlier. Full-length delta-catenin bound to ZIFCAT in vitro. 

817-1314, which is generated by caspase-3 cleavage and displays nuclear 

localization, also bound ZIFCAT (Figure 44A). I failed, in contrast, to observe a 

positive association of ZIFCAT with either 1-816, with the isolated Armadillo-

domain of delta-catenin, or with delta-catenin’s amino-terminal domain. I then 

confirmed the in vitro interaction between ARVCF and ZIFCAT following a similar 

strategy, but using ARVCF fused to maltose binding protein/ MBP and purified 

from E. coli. Lacking antibodies against endogenous ZIFCAT, I next sought to 

resolve an interaction in vivo with full-length delta-catenin. This proved 

challenging, for while ZIFCAT is predominantly nuclear (see also Figure 46A), 

the majority of full-length delta-catenin or ARVCF remains at cell-cell contacts in 

complex with cadherins, or cadherin-free within the cytoplasm, where it acts 

upon small GTPases. Given that my evidence pointed to a potential nuclear role 

of 817-1314, I co-transfected 817-1314 with ZIFCAT. As anticipated, co-immuno-

precipitation from 293T nuclear fractions clearly confirmed the association of 

817-1314 with ZIFCAT (Figure 44B). I further wished to test for an in vivo 

association of ARVCF-catenin with ZIFCAT. Not knowing the precise caspase-3 

cleavage site(s) within ARVCF, or its validated endogenous NLS, I employed a 

different strategy, fusing an amino-terminal ectopic NLS to full-length ARVCF. 

This notably increased ARVCF’s presence in the nucleus, and allowed us to 

resolve an association with ZIFCAT (Figure 45). My results together indicate that 

two distinct p120-catenin sub-family members, delta- and ARVCF-catenin, each 
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associate with ZIFCAT. Under physiologic circumstances involving caspase-3, I 

conjecture that a resulting fragment (such as 817-1314) is more likely to enter 

the nucleus and associate with ZIFCAT than the corresponding full-length 

catenin. 

 

ZIFCAT associates with chromosomal DNA, and may act as a 

transcriptional repressor 

 

To gain further insight of ZIFCAT, I examined its sub-cellular localization. 

As expected, HA-tagged ZIFCAT localized strongly to the nuclei of HeLa or 293T 

cells (Figure 46A). I next tested if ZIFCAT associates with genomic DNA in vitro, 

using an established assay (Hosking et al., 2007). Here, full-length ZIFCAT, or a 

ZIFCAT construct lacking the amino-terminal 169 residues including the KRAB 

domain (ZIFCAT-ZF), was co-incubated with cellulose-conjugated genomic DNA 

purified from calf thymus (Sigma-Aldrich). Both constructs associated with the 

genomic DNA, while in contrast, this association was largely lost when the 

carboxyl-terminus 497 residues including the zinc finger region of ZIFCAT was 

removed (ZIFCAT∆ZF) (Figure 46B). My data are thus consistent with the 

possibility that ZIFCAT associates directly or indirectly with DNA through its zinc 

finger repeats, and speculatively, exerts gene regulatory functions via KRAB 

domain co-factors such as KAP1 (KRAB associated protein 1) (Urrutia, 2003). 

 

As an initial test of whether ZIFCAT might modulate gene transcription, I 



 86

utilized the Gal4-UAS-luciferase system, wherein constructs of ZIFCAT were 

fused to the DNA binding domain/ DBD of Gal4, and their activity tested by co-

transfection in HeLa or 293T cells, followed by luciferase assay. In this artificial 

setting, Gal4DBD mediates an interaction with the UAS sequence element 

present on the reporter construct, thereby bringing ZIFCAT into close proximity 

with the promoter governing luciferase activity. Repression was reproducibly 

observed with Gal4DBD-ZIFCAT, or the Gal4DBD-ZIFCAT∆ZF mutant lacking 

the carboxyl-terminus 497 residues including the zinc finger region (Figure 47). 

Such effects were not observed for Gal4DBD alone, or for HA-tagged ZIFCAT 

(negative controls). My results suggest a model where ZIFCAT gene activity may 

depend upon the zinc finger region for DNA association, and the amino-terminal 

region (likely the KRAB domain) for recruitment of transcriptional co-factors/ co-

repressors. 

 

Finally, to probe for a functional interplay between ZIFCAT and delta-

catenin (or ARVCF-catenin) in the context of this Gal4-UAS-luciferase system, I 

co-expressed delta-catenin (or ARVCF-catenin) with Gal4DBD-ZIFCAT. As seen 

in Figure 48, no significant changes followed such co-expression. This was 

perhaps to be expected, since my data had already indicated that delta- as well 

as ARVCF-catenin bind the zinc finger region of ZIFCAT, whereas the Gal4DBD-

ZIFCAT construct no longer requires this domain for DNA association (imparted 

instead by the Gal4DBD fusion). In vivo, I speculate that nuclear delta- or 

ARVCF-catenin, or more likely caspase-3 fragments such as 817-1314, 



 87

displaces ZIFCAT from its presently unknown consensus binding sites in 

promoter/ enhancer DNA, relieving ZIFCAT mediated gene repression. 
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Part I:  Developmental characterization of Xenopus delta-catenin 

 

Delta-catenin is a member of the p120 sub-family of Armadillo proteins 

able to modulate various activities, including those involving the cadherin 

complex, the actin cytoskeleton and intracellular signaling. As for the beta-

catenin sub-family, altered expression of p120 sub-family catenins have been 

correlated with human pathologies including cancer progression and genetic 

disorders (McCrea and Park, 2007; Reynolds and Roczniak-Ferguson, 2004; 

van Hengel and van Roy, 2007; van Roy and McCrea, 2005). 

 

In Part I of my dissertation, I examined delta-catenin in Xenopus laevis 

(African clawed frog), using knock-down as opposed to genetic approaches. My 

isolation and characterization of delta-catenin in Xenopus resolved three 

alternative RNA splicing events not previously reported. The shorter b’ and c’ 

variants have increased expression in later stages, while the A variants (a and a’) 

were more uniformly present across development. When I translated these 

spliced elements into peptide sequences, I could not identify (BLAST in PubMed) 

similar sequences in the human or mouse genome database, suggesting that 

these splicing variants may be amphibian specific.  

 

Compared to the neural restricted pattern of mouse delta-catenin 

transcripts (Ho et al., 2000), I found that delta-catenin mRNA and protein are 

readily detected across all Xenopus embryonic stages and in adulthood, and 
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likely contribute to development and/ or tissue maintenance. While RNA in-situ 

analysis of whole mount embryos indicated enrichment of delta-catenin mRNA in 

the neural ectoderm and its derivatives, differences existed in adult frog tissues. 

The 160 kDa delta-catenin isoform migrated at a position consistent with that 

calculated from the cloned delta-catenin cDNA. Given that this isoform displayed 

a brain-specific pattern, it may provide distinctive functions in neural tissues. The 

other two isoforms (130 and 100 kDa), may originate from alternative protein 

translation and/ or splicing, possibly in combination with post-translational 

modifications (enzymatic cleavage, phosphorylation, etc.). Such modifications 

and their underlying functional significance will require future investigation. In 

contrast to adult tissues, I had initial difficulty detecting the longer 160 and 130 

kDa isoforms in embryo extracts. Nonetheless, I ultimately confirmed their 

presence using immuno-precipitation followed by immuno-blotting approaches 

and a number of delta-catenin antibodies. Interestingly, antibodies directed 

against delta-catenin’s most amino-terminal region failed to recognize the 

shortest (100 kDa) isoform, indicating that it may arise from a downstream 

translational initiation (such as Methionine434), or from proteolytic cleavages at 

amino-terminus.  

 

To determine delta-catenin’s in vivo functions, I designed anti-sense 

morpholino oligos to perturb normal splicing of pre-RNA, causing frame-shifts 

and pre-mature termination of protein translation. With two distinct morpholinos 

(MO-6 and MO-9), this approach produced consistent outcomes.  The 
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phenotypic effects were indicated to be specific based upon a number of rescue 

experiments. Delta-catenin MO-9, directed against the intron 8-exon 9 junction, 

displayed greatest efficacy. In common with MO-6, it perturbed blastopore 

closure during gastrulation, which is a delicate process of mesoderm involution 

in response to multiple signaling events and mechanical forces (such as 

convergent extension morphogenesis) (Keller, 2005; Wallingford et al., 2002). I 

applied two assays including Keller open face explants and fluorescent tracer 

analysis within dorsal tissues, but failed to identify an apparent reduction of 

convergence-extension movements. It is possible that the assays I employed 

largely measure intercalation of superficial cells, but not deeper cell movements 

where delta-catenin may act. Indeed, in bisected embryos, exposed dorsal head 

mesoderm displayed lessened association with the blastocoel roof, with such 

defects perhaps contributing to aberrant tissue movements during blastopore 

closure. Alternatively, delta-catenin knock-down may affect convergent extension 

of more lateral or ventral tissues, or the coordination between these processes. 

Further, given the complexity of gastrulation, disruption of other morphogenetic 

events may produce similar effects to those observed in my experiments.  

 

To explore biochemical mechanisms by which loss of delta-catenin leads 

to perturbed gastrulation, I generated a delta-catenin ΔARM1-5 construct that 

when expressed fails to interact with endogenous C-cadherin yet retains the 

capacity to modulate small GTPase activities. Given that ΔARM1-5 exhibited 

little rescuing effects compared to full-length delta-catenin, the gastrulation 
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phenotypes may have arisen in significant part from reduced cadherin-based 

adhesion and/ or downstream signaling. As exogenously expressed Rho or Rac 

could rescue delta-catenin knock-down, they are likely to be involved. Indeed, 

Rho family GTPases have well-documented roles in coordinated cell movements 

including gastrulation (Anastasiadis, 2007; Ridley, 2001a; Ridley, 2001b). In 

migrating cells, Rho is localized predominantly to stress fibers and focal 

adhesion complexes, which are dissipated upon cell motility. Rac promotes actin 

polymerization at the cell periphery and provides the driving force for protrusive 

activities (lamellipodia), while Cdc42 has been indicated to define the migratory 

polarity by directing localization of Rac-dependent protrusions. Gastrulation 

involves several distinct types of cell movements, including presumptive head 

mesoderm migration, epiboly, endoderm rotation, and convergent extension 

(Keller, 2005; Keller et al., 2003). In the best-studied convergent extension 

process, cells polarize and elongate along the medio-lateral axis and intercalate 

towards the midline leading to the extension of the anterior-posterior axis. Work 

in Xenopus and Zebrafish has established the roles of non-canonical Wnt 

signaling and Rho family GTPases (Habas et al., 2003; Habas et al., 2001; 

Heisenberg et al., 2000; Liu et al., 2008). Wnt-11, the prototypal non-canonical 

ligand, complexes with Frizzled 7 membrane receptor and activates Dishevelled, 

Daam1 and subsequent downstream RhoA and Rho-associated kinase. Rac1 

activation in contrast does not require Daam1 and results in the activation of 

JNK (JUN N-terminal kinase). Thus parallel Rho and Rac activations are 

essential to complete convergent extension in gastrulation. Other studies have 
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further indicated that small GTPases reside downstream and functionally interact 

with cadherins (Charrasse et al., 2007; Charrasse et al., 2002; Fukuyama et al., 

2006; Goodwin et al., 2003; Johnson et al., 2004; Lampugnani et al., 2002; 

Morishita et al., 2001; Nelson and Chen, 2003; Semina et al., 2009; Yap and 

Kovacs, 2003). Thus, their re-introduction in the context of rescue experiments 

may restore needed downstream signals, possibly in part compensating for the 

reduction in cadherin functions (Braga and Yap, 2005). Regardless of the 

mechanism, the gross effects I observe following delta-catenin depletion support 

its essential role in Xenopus embryogenesis.  

 

The requirement for delta-catenin in amphibian development, however, 

did not agree with the milder effects seen upon its knock-out in mice. In 

mammals, delta-catenin is largely restricted to the central nervous system, with 

a whole-body knock-out producing learning deficits and altered synaptic function 

(Israely et al., 2004; Matter et al., 2009). Also observed was a reduction in N-

cadherin levels, and small G proteins may have been consequently affected, 

leading to altered synaptic junctions as well as neuronal morphology (Bamji, 

2005; Kosik et al., 2005). Given that delta-catenin was reported to associate with 

the transcriptional repressor Kaiso (Rodova et al., 2004), it may further regulate 

gene programs essential for neuronal functions.  

 

One possible explanation of the phenotypic differences is that the formal 

targeting strategy employed for mouse knock-out might have generated an 
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amino-terminal fragment retaining partial activity (not a complete null). Indeed, 

this truncated delta-catenin fragment migrated at approximately 50 kDa and was 

detected through immuno-blotting of mouse brain extracts (Israely et al., 2004). 

In Xenopus, morpholino 9 of delta-catenin is likewise predicted to generate an 

amino-terminal fragment of similar size. However, this fragment was not seen in 

immuno-blots probed with delta-catenin antibodies that readily recognize similar 

protein fragments if artificially expressed in vitro. Thus, such a fragment could be 

targeted for rapid degradation in Xenopus embryos.  

 

An alternative possibility is that during evolution, other catenins in 

mammals assumed the roles that are maintained by delta-catenin in amphibians. 

In this case, this transition would have occurred while delta-catenin remained the 

primordial member of the p120-catenin sub-family, showing the highest similarity 

to the single family member in Drosophila (p120-catenin) and in C. elegans 

(JAC-1) (Carnahan et al., 2010). Interestingly, the invertebrate p120-catenin 

appears to be dispensable when disrupted in laboratory contexts (Myster et al., 

2003; Pettitt et al., 2003), although one study has differed and indicated it to be 

essential (Magie et al., 2002).  

 

A final possibility comes from differences in the experimental approaches 

by which loss-of-function was achieved in mice versus Xenopus. Although the 

morpholinos I used were effective and specific as noted earlier, knock-down in 

Xenopus embryos are generally partial, as I observed for delta-catenin. However, 
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it is expected that an acute knock-down might have a more profound impact 

than the corresponding constitutive knock-out carried out at an earlier 

developmental stage, as the latter may provide a more suitable environment for 

functional compensation to arise. Thus, although the phenotypic outcomes I 

observed may be different from those reported in the knock-out mouse, my 

results clearly point to a requirement for delta-catenin in embryonic development.  

 

In summary, my study is the first to uncover an essential role for delta-

catenin in amphibian development, as well as supplying in vivo evidence of 

delta-catenin’s functional interplay with cadherins and small GTPases. 

Perturbation of other delta-catenin interactions may further be contributory to the 

phenotypes, including delta-catenin’s putative yet largely uncharacterized roles 

in nuclear gene regulation.  
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Part II: Exploring the roles of delta-catenin in the nucleus 

 

The means by which biological signals produce coordinate effects in 

varying cellular compartments is relevant to many developmental and 

pathological processes, often involving events that take place at the plasma 

membrane, cytoplasm and in the nucleus. Canonical Wnt signaling, for example, 

generally occurs upon Wnt-ligand binding to cell surface receptors (e.g. Frizzled, 

Lrp5/ 6), facilitating Dishevelled mediated inhibition of beta-catenin’s destruction 

complex (composed of Axin, GSK-3beta and APC, etc.). This results in beta-

catenin’s cytoplasmic and ultimately nuclear accumulation, and thus activation of 

canonical Wnt/ beta-catenin target genes (Logan and Nusse, 2004). The 

membrane-spanning Notch receptors, on the other hand, are protease-cleaved 

upon the binding of ligands such as Delta or Jagged, such that the intracellular 

potion of Notch is liberated to enter the nucleus, associate with the CSL 

transcription factor complex (CBF1/ Su(H)/ Lag-1), and modulate specific gene 

targets (Artavanis-Tsakonas et al., 1999). Both the Wnt and Notch pathways 

participate in multiple developmental/ cellular processes, and when abnormally 

regulated, contribute to many human disorders including cancer. 

 

Apoptosis or programmed cell death is a physiologically controlled 

process of cell suicide. Activated caspases cleave specific cellular substrates, 

with dying cells presenting characteristic molecular and morphological features 

(Kumar, 2007; Lockshin and Zakeri, 2007). Caspase deployment and apoptotic 
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death programs are critical during embryonic development including Xenopus 

metamorphosis (Coen et al., 2007; Du Pasquier et al., 2006; Tseng et al., 2007). 

It has been long appreciated that caspases have many roles apart from 

apoptosis, such as in immune defense, proliferation, fate determination, terminal 

differentiation, cell migration and neuro-degeneration (Appleby and Modak, 1977; 

Arama et al., 2003; Arama et al., 2007; Bassnett and Mataic, 1997; Carlile et al., 

2004; Gabet et al., 2010; Ishizaki et al., 1998; Kolbus et al., 2002; Lee et al., 

2001; Muro et al., 2006; Zermati et al., 2001). The mechanisms by which 

caspases exert these non-apoptotic functions are still under active investigation, 

yet likely relate to their temporally, spatially or quantitatively controlled enzymatic 

activations (Feinstein-Rotkopf and Arama, 2009; Kuranaga and Miura, 2007). 

 

In Part II of my study, I presented data that delta-catenin is a novel 

substrate of caspase-3. Delta-catenin interacts with caspase-3 as resolved from 

yeast two-hybrid screening, and is cleaved by caspase-3 in vitro and in apoptotic 

cell extracts. This response may be conserved across the p120 sub-family of 

catenin proteins, since p120-catenin also showed sensitivity to caspase-3 in vitro.  

 

Considering the best known role of caspase-3 as an ‘executioner’ in the 

apoptotic pathway, one could imagine that delta-catenin may be involved in cell 

death programs. In earlier work, exogenous delta-catenin expression resulted in 

limited cell death in NIH 3T3 cells (Kim et al., 2000). Conversely, however, delta-

catenin has been reported to have pro-survival activities in prostate 
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adenocarcinoma cells (Zeng et al., 2009), and elicited feedback suppression of 

Pax6-induced apoptosis in HeLa cells (Zhang et al., 2010a). In the present study 

I employed a cell death ELISA assay, but did not observe significant increase or 

decrease in chromatin breakage upon delta-catenin expression. Likewise, delta-

catenin did not protect HeLa cells from Staurosporine- or Puromycin-induced 

apoptosis. As mentioned earlier, these pro-survival/ -apoptotic effects may be 

context dependent. Although Xenopus and murine delta-catenin are highly 

homologous (~90% identity), sequence divergences do exist, as might 

alternative splicing events. Further, I employed Staurosporine and Puromycin as 

potent general cell death inducers, whereas Pax6 expression would likely have 

more defined apoptotic roles. Ultimately, more sensitive gain/ loss of function 

assays in additional systems may be required to reach a definitive conclusion 

regarding delta-catenin’s role in apoptosis. 

 

The caspase-3 cleavage of delta-catenin potentially abolishes its binding 

to cadherins since the resulting fragments failed to co-immuno-precipitate with 

C-cadherin when expressed in vitro or in vivo. In GSC11 cells, where an 

antibody directed against delta-catenin’s carboxyl-terminal region reproducibly 

detected the presence of 817-1314 (especially upon apoptosis induction), I failed 

to observe 1-816, employing amino-terminal directed antibodies from three 

different sources. Thus, 1-816 appears to be rapidly metabolically degraded 

following its generation. In that classic cadherins and some catenins are 

targeted during apoptotic events (Brancolini et al., 1997; Cirillo et al., 2008; 
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Dusek et al., 2006; Herren et al., 1998; Hunter et al., 2001; Kessler and Muller, 

2009; Ling et al., 2001; Senthivinayagam et al., 2009; Steinhusen et al., 2000; 

Steinhusen et al., 2001; Weiske and Huber, 2005), delta-catenin’s cleavage in 

this context may assist in orchestrating the disassembly of adherens junctions, 

where cadherins are known to be endocytosed following the disassociation of 

p120-catenin sub-family members. Additionally, as noted earlier, since caspases 

further participate in non-apoptotic processes, such modulation of cadherin 

levels and functions may instead have other physiologic outcomes, such as 

transitions to less adhesive and more motile cell phenotypes. 

 

Another recognized role of p120 sub-family catenins is their modulation of 

small GTPases (Anastasiadis, 2007; Keil et al., 2007; Yanagisawa et al., 2008). 

In my experimental setting, delta-catenin lost the ability to inhibit RhoA following 

its cleavage, with neither 1-816 nor 817-1314 exhibiting inhibitory activity. 

Regarding Rac1, while 1-816 and 817-1314 displayed no stimulatory activity in 

contrast to that of full-length delta-catenin, 817-1314 exhibited partial inhibitory 

effects. Rho and Rac contribute to a myriad of cellular processes, prominently 

including cytoskeletal organization and function (Heasman and Ridley, 2008). It 

is thus conceivable that caspase-3 cleavage of delta-catenin, likely in concert 

with that of other p120 sub-family members, is relevant to cell morphological 

changes in both apoptotic and non-apoptotic settings. 

 

Caspase-3 cleaves Armadillo-repeat 6 of delta-catenin. Since delta-
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catenin’s NLS resides only 18 amino acids downstream of this cleavage site, it 

may become more exposed, and possibly account for the observed stronger 

nuclear localization of 817-1314 relative to full-length delta-catenin. Interestingly, 

an earlier report indicated delta-catenin’s localization to the nuclear compartment 

of C2C12 myoblasts following treatment with the nuclear export inhibitor 

Leptomycin B (Rodova et al., 2004). Other potential means of modulating delta-

catenin’s nuclear entry exist. As I and others have indicated, signaling pools of 

p120-catenin sub-family members, including delta-catenin, appear to be subject 

to canonical Wnt signals or the pathway’s destruction complex (Bareiss et al., ; 

Hong et al., ; Oh et al., 2009; Park et al., 2006). For p120 itself (and possibly 

delta-catenin), this has an impact upon its nuclear presence/ activity in a manner 

analogous to the key signal transducer beta-catenin. Intriguingly, the Wnt11 

ligand was recently reported to activate caspases in cardiomyocytes, resulting in 

suppression of beta-catenin signaling and cardiac differentiation (Abdul-Ghani 

and Megeney, 2008). Thus, differing Wnt ligands or contexts may conceivably 

have distinctive effects on p120-catenin sub-family members, wherein certain 

Wnts (or contexts) lead to catenin stabilization with consequent effects, while 

other Wnt ligands or contexts may employ caspases to generate catenin 

fragments capable of executing nuclear or other roles.  

 

My current study indicates that 817-1314, corresponding to a caspase-3 

cleavage product, is efficiently enriched in the nucleus. I also found that delta-

catenin (and 817-1314) binds to a novel zinc finger protein, ZIFCAT, present in 
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the nuclear compartment. KRAB family zinc finger proteins such as ZIFCAT 

make up a family of several hundred members, with the functions of most still to 

be determined. Yet, based on published studies, these proteins share features 

including the presence of multiple zinc finger repeats within their carboxyl-termini 

that directly bind DNA, and in my particular case with ZIFCAT, also delta-catenin. 

The amino-terminal KRAB domain in turn recruits cofactors such as KAP1, to 

modulate gene transcription (Looman et al., 2002; Urrutia, 2003). 

 

Intriguingly, I further resolved the binding of ZIFCAT to ARVCF-catenin. 

My in vitro and in vivo binding assays authenticated ZIFCAT’s interaction with 

delta-catenin and ARVCF. I have not yet tested whether this interaction extends 

to p120-catenin, or less likely beta-catenin, which belongs to a related but more 

distant catenin sub-family. If ZIFCAT is later found to bind p120 itself, it would be 

the third gene regulatory protein (after Kaiso and Glis2) to bind p120 (Daniel, 

2007; Hosking et al., 2007). 

 

My initial characterization of ZIFCAT indicates that it is enriched in nuclei, 

binds to genomic DNA in vitro and represses UAS-luciferase expression when 

fused to Gal4DBD. Neither delta-catenin nor ARVCF had an impact upon 

ZIFCAT (Gal4-UAS) mediated reporter repression, likely because I showed that 

delta-catenin binds the zinc finger region of ZIFCAT, which bears little relevance 

in the artificial context employed (DNA binding being mediated via the Gal4DBD). 

In vivo, it is conceivable that delta-catenin (and/ or ARVCF, etc.) may interfere 
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with ZIFCAT binding to DNA, resulting in gene de-repression (activation).  

 

The recent intriguing work by (Abdul-Ghani et al., 2011) reported the 

Wnt11 activation of caspase activity leading to beta-catenin cleavage and the 

differentiation of cardiomyocytes. The cross-talk between components of the 

canonical Wnt pathway and apoptotic cascade has been long appreciated. For 

example, beta-catenin and APC are targeted by caspases, respectively leading 

to suppression or activation of Wnt signaling (Qian et al., 2007; 

Senthivinayagam et al., 2009; Steinhusen et al., 2000; Webb et al., 1999). 

Conversely, GSK3beta and APC were indicated to augment caspase activation 

and promote apoptosis (Chen et al., 2003; Yun et al., 2009). Wnt11 is generally 

recognized as a ligand for the non-canonical Wnt/ PCP (Plannar Cell Polarity) 

pathway, leading to Rho/ Rac activation and directional mitotic divisions or cell 

movements (Heisenberg et al., 2000; Tada et al., 2002), although one study in 

Xenopus has indicated its role as a canonical Wnt transducer (Tao et al., 2005). 

In cardiomyocytes, caspase activations did not elicit significant cell death, rather 

they suppressed beta-catenin signaling which otherwise must be maintained to 

keep cells in a progenitor state.  

 

The exact mechanism regarding caspase-3/ 8 activation by Wnt11 is 

currently being pursued, with certain existing evidence pointing to the 

involvement of Frizzled receptors. Frizzled are membrane proteins belonging to 

the family of G protein coupled receptors (GPCRs). They can activate 
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heterotrimeric G proteins and initiate a multitude of intracellular signaling 

pathways, such as PKC activation (Salazar et al., 2007; Schulte and Bryja, 2007). 

The activation of certain GPCRs results in intracellular changes including the 

activation of caspase-3 (Adams et al., 2000; Revankar et al., 2004). Additionally, 

Frizzled receptors may engage caspase activity by directly associating with 

membrane components of the classic death receptor pathway (Fernando and 

Megeney, 2007; Senthivinayagam et al., 2009). Alternatively, given the wide 

variety of cytoskeletal or signaling events that are modulated by small GTPases, 

which reside downstream of the non-canonical Wnt pathway initiated through 

Wnt11, their involvement can also be envisaged. As one might expect, there 

were multiple reports regarding that dysregulation of Rho/ Rac resulting in 

caspase activations and cell damage (He and Baldwin, 2008; He et al., 2008; 

Iguchi et al., 2009; Le et al., 2005). Regardless of the underlining mechanism, 

this study (Abdul-Ghani et al., 2011) was the first to identify an essential role of 

Wnts in activating caspases in a non-apoptotic setting.  

 

Given that in my studies delta-catenin and other p120 sub-family 

members are targeted by caspase-3, and are regulated by Wnt signals as 

reported in independent publications (Hong et al., 2010; Oh et al., 2009; Park et 

al., 2006), it would be interesting to examine the functional significance of p120 

sub-family catenins in contexts independent of cell death. Once cleaved by 

caspase-3, I speculate that a delta-catenin fragment such as 817-1314 couples 

with ZIFCAT to alter transcriptional profiles, leading to events such as 
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differentiation of embryonic progenitors, where the caspase/ delta-catenin 

interaction was identified (Dejosez et al., 2008; Fujita et al., 2008). Or, that 

similarly, a partial p120-catenin product from caspase cleavage has greater 

activity de-repressing Kaiso at certain well-defined gene promoters.  

 

Another essential future work is to identify the DNA element(s) that 

ZIFCAT binds, so as to allow the testing of such models in vivo and in vitro. For 

example, one could employ genome-wide Chromatin Immuno-Precipitation 

(ChIP-seq) coupled with Solexa massively parallel DNA sequencing to identify 

the endogenous gene targets of ZIFCAT. Additionally, ChIP-seqs can also be 

performed for the p120 sub-family catenins. Given the limited distributions of 

delta-catenin across mammalian tissues, C2C12 myoblasts might serve as 

model wherein delta-catenin is expressed and apparently localized to the 

nuclear compartment (Rodova et al., 2004). Alternatively, CWR22Rv-1 prostate 

adenocarcinoma cells could be of advantages given its high delta-catenin mis-

expression (Lu et al., 2005; Zeng et al., 2009). Although their direct binding to 

DNA is not suggested by the current models (Daniel, 2007; van Roy and McCrea, 

2005), delta-catenin and other p120 sub-family members might indirectly 

complex with chromatin through transcription and other nuclear cofactors. One 

could thus identify shared gene targets and the micro-environments wherein 

functions of one catenin might be shared by that of another. Alternatively, it 

would be informative to discover a unique set of candidate genes that are 

modulated by one single such member. A comparison between gene profiles of 
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delta-catenin and ZIFCAT will also be crucial to reach an understanding of the 

nuclear activities of delta-catenin (and/ or ARVCF, etc.) in conjunction with 

ZIFCAT (or that with other transcription factors such as Kaiso).  

 

Collectively, my work may have revealed a novel signaling cascade 

triggered by caspase-3 cleavage of p120-catenin sub-family members, 

facilitating the coordinate modulation of cadherin, small GTPases and nuclear 

functions. 
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CHAPTER IV 

 

MATERIALS AND METHODS 
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DNA cloning 

 

5’ RACE was employed to obtain delta-catenin 5’ UTR (Untranslated 

Regions) of Xenopus laevis, according to the manufacture’s protocol (5’/ 3’ 

RACE kit, Roche). Delta-catenin cDNA was acquired by high fidelity PCR, and a 

cDNA pool reverse transcribed from adult Xenopus brain RNA. To generate 

expression constructs for the subsequent making of in vitro transcribed RNAs or 

for transfections in mammalian cell lines, PCR approaches were used to put 

restriction enzyme sites into both 5’ and 3’ ends of parental inserts. PCR 

products were then directionally sub-cloned into various vectors, fusing epitope-

tags to their amino- or carboxyl-termini followed by DNA sequence confirmation. 

Mutagenesis of delta-catenin D816 to E816 was performed using the 

manufacturer’s protocol (Quickchange site-directed mutagenesis kit, Stratagene).  

 

Antibodies and chemicals  

 

Antibodies direct against Xenopus delta-catenin were generated against 

its recombinant amino-terminal domain (amino acids 83-521, tagged with 

histidines), and affinity-purified from rabbit serum. Additional antibodies reacting 

with various regions of delta-catenin were obtained commercially from BD 

Biosciences, Abcam, Millipore or Sigma-Aldrich. C-cadherin, p120- and beta-

catenin antibodies were developed in earlier studies. Other antibodies are listed 

as follows: actin, Sigma-Aldrich; GAPDH, Santa Cruz Biotechnology; E-cadherin, 
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BD Transduction Laboratories; N-cadherin, Calbiochem; RhoA, Santa Cruz 

Biotechnology; Rac1, Millipore or BD Pharmingen; Myc- or HA-epitope, 

Developmental Studies Hybridoma Bank or Sigma-Aldrich; GST, Developmental 

Studies Hybridoma Bank; Alexa-Fluor conjugated secondary antibodies, 

Invitrogen. 

 

Chemicals used in this study are as have listed: mouse E-cadherin 

extracellular domain and fibronectin, Sigma-Aldrich; apoptosis inducer 

Puromycin and Staurosporine, Calbiochem; recombinant active caspase-3, BD 

Pharmingen; cellulose-conjugated calf thymus genomic DNA, Sigma-Aldrich; 

and Alcian blue dye, Sigma-Aldrich. 

 

Cell culture, transfection and luciferase assays 

 

Cell lines (293T, HeLa, Neuro-2a, MDA-MB-435, etc.) were cultured 

following standard mammalian protocols and maintained in complete medium 

(DMEM, 10% FBS and antibiotic additives). Glioblastoma stem cells were grown 

in suspension to form neurospheres, or as monolayers on laminin-coated 

surfaces while being maintained in neurobasal medium (DMEM/ F12, B27, with 

10ng/ ml each of EGF and bFGF).  

 

Transient protein expression was achieved by transfecting plated cells 

with selected DNA constructs according to the manufacturer’s instructions 
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(Lipofectamine 2000, Invitrogen or FuGene 6, Roche Applied Science) and 

cultured for a minimum of 24 hours prior to following procedures. Luciferase 

assays were performed according to the Promega Dual-Luciferase Reporter 

Assay protocol, employing Renilla as a transfection control. 

 

Yeast two-hybrid screening 

 

Yeast two-hybrid screening using Xenopus delta-catenin deleted of its 

amino-terminus (intact Armadillo and carboxyl-terminal domains) as bait was 

performed by Hybrigenics, Inc. as a collaboration, employing an adult mouse 

brain cDNA library. 

 

PCR oligos and morpholinos 

 

RNA extraction, reverse transcription and PCR followed standard 

procedures. PCR oligos used to characterize delta-catenin alternative splicing 

are as follows: A: 5'-GAT CGG GTG TAT CAG AAG CCA C-3', 5'-CCT TCT 

GGT GGG ATA GCT GGT-3'; B: 5'-GTA GTA AAG GCA GCG TCT CAG-3', 5'-

AGG GGT ACC ATA GGA ATT CC-3'; C: 5'-GAA CAC ACG TCT AGG AAA G-

3', 5'-AAG TTC ACT ATA GGG ACG AGC AG-3'; D: 5'-CAG ATC CAC CAA 

AAG GAA TA-3', 5'-ATG GCA GTA ACA GTG TCA TC-3'; Histone H4: 5’-CGG 

GAT AAC ATT CAG GGT A-3’, 5’-TCC ATG GCG GTA ACT GTC-3’. DNA 

oligos employed to determine delta-catenin morpholino efficiencies were as 
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follows: F1: 5’-ATG GCC AAA AAG ACA TAG AGG ATG-3’; R1: 5'-TTG ATG 

AAT ACT GGA AAG ACC-3'; R2: 5’-CCT CAC AAT CAC ATG CTG CCT CCC 

AGT C-3’; F4: 5'-GTC CCT GAT TTT TAA GAG TG-3'; R4: 5'-AAG GGA ACT 

GAT GCT GTA AC-3'. 

 

Intron 5 and 8, and exon 6 and 9 sequences of Xenopus delta-catenin 

were obtained using a high fidelity PCR system and Xenopus tadpole genomic 

DNA. Delta-catenin splice junction type morpholinos (delta-catenin MO-6 5’-GTA 

CTT GTC CAC TTA CTT GAC TGT A-3’ and delta-catenin MO-9 5’-GCT ACG 

ACA GGA AAG TAG GGA CAA A-3’), and a control morpholino (5’-CCT CTT 

ACC TCA GTT ACA ATT TAT A-3’), were acquired from Gene Tools. P120-

catenin and Kaiso morpholino oligos were designed in earlier studies of McCrea 

Laboratory (Fang et al., 2004; Kim et al., 2004). 

 

Co-immuno-precipitation and immuno-blotting 

 

Standard procedures were applied for immuno-precipitations from whole 

cell/ embryo extracts or from diluted nuclear fractions, followed by SDS-PAGE 

and immuno-blotting. Streptavidin-HRP was obtained from Promega and 

employed to detect biotin labeled proteins. Immuno-blot band densities following 

scanning were quantified using AlphaEaseFC 6 or ImageJ 1.38x software. 
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Caspase-3 cleavage and apoptotic assays 

 

Selected cDNA constructs were transcribed/ translated in vitro using the 

TnT high-yield wheat germ protein expression system. Transcend tRNA was 

added into certain experimental reactions to non-radioactively (Biotin) label 

lysine residues of translated proteins. Following translation, 5 ul of the reaction 

mix was incubated with recombinant caspase-3 at 37 degree for 1 hour.  

Apoptotic extracts were isolated from Xenopus eggs using published protocols 

(Deming and Kornbluth, 2006), and incubated with the Armadillo-domain of 

delta-catenin purified from E. coli (GST tagged), for the indicated periods at 

room temperature. Cleavage products were resolved by immuno-blotting using 

GST antibody.  

 

For cell death induction of mammalian cells, Puromycin or Staurosporine 

was added to culture medium at the final concentrations of 0.5 and 20ng/ ul, 

respectively. Cytosolic nucleosomes resulting from DNA breakage were 

quantified using an ELISA-based cell death detection kit following the 

manufacturer’s protocol (Roche Applied Science). 

 

Manipulation of Xenopus embryos and microinjection 

 

Expression constructs were linearized by Not I restriction enzyme 

digestions and purified by phenol-chloroform extraction. Capped RNAs were 
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thus generated in vitro using these templates in conjunction with the 

mMESSAGE SP6 kit (Ambion). Intactness of RNA was verified through standard 

agarose gel electrophoresis. Induction of female Xenopus laevis, in vitro 

fertilization of eggs, and embryo injections were carried out according to 

standard methods (Sive et al., 2000). Typically, morpholinos or RNA constructs 

were injected into animal cells of early stage embryos. Embryos were kept in 

0.1x MMR containing 50 ug/ ml gentamycin antibiotics at 18 degree until desired 

stages. The volume of injections was 20 nl at the single-cell stage, 10 nl/ cell at 

the two-cell stage or plus with the doses as follows: 80 ng for delta-catenin and 

control morpholinos; 20 ng for titrated (sub-phenotypic) dose of delta-catenin 

morpholinos; 40 ng for p120-catenin morpholino; 10 ng for titrated (sub-

phenotypic) dose of p120-catenin morpholino; 250 pg for full-length delta-catenin, 

M434 delta-catenin, ΔPDZ and ΔARM1-5 RNA constructs; 500pg for delta-

catenin NT and Armadillo (ARM) constructs; 100 pg for p120-catenin and C-

cadherin RNAs; 200 pg for beta-catenin RNA, 50 pg for RhoA N19 (dominant-

negative) and RhoA V14 RNAs, 5 pg for Rac1 V12 and Cdc42 V12 RNAs. 

Embryonic phenotypes were scored using a standard binocular dissecting 

microscope from Zeiss.  

 

For explants assay, delta-catenin or control morpholinos were injected 

into equatorial regions of dorsal blastomeres at the four-cell stage. Dorsal 

marginal zones were manually excised at the mid-gastrula stage and cultured in 

vitro as open-face Keller explants until control embryonic stage 15. 
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Cell dissociation, re-aggregation and in vitro adhesion assays 

 

For assay of cell dissociation and re-aggregation, naive ectoderm tissue 

fragments (animal caps) from mid-gastrula stage embryos were isolated and 

maintained in calcium free 0.6x MMR buffer (achieved through EGTA chelating) 

until the cells dissociated. Cells were then supplied with 1 mM of Ca2+ and Mg2+. 

Dissociation and re-aggregation were timed to evaluate cell adhesive strength in 

control versus delta-catenin depletion conditions.  

 

E-cadherin and integrin in vitro adhesion assays followed published 

procedures, with modifications. Lab-Tek Chamber Slides were first coated with 

either mouse E-cadherin extracellular domain or fibronectin, and blocked with 

1% BSA. Disassociated blastomeres (triplicates of two animal caps per condition) 

were allowed to attach for one hour at 16 degree. Chambers were then inverted 

(to allow cells to separate from the glass slides by gravity) and washed for the 

indicated times on a rotary shaker. The aggregation state of cells before or after 

washing was recorded by digital photography and Adobe Photoshop CS3.  

 

Immuno-fluorescence and antibody staining 

 

Immuno-fluorescence antibody staining of mammalian cells on coverslips 

was performed using standard methods, employing 4% para-formaldehyde 

(Electron Microscopy Sciences) as fixative. Similar procedures were followed 
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when staining actin filaments with phalloidin conjugated with Alexa Fluor488 

(Molecular Probes). For Xenopus immuno-fluorescence, late blastula stage 

embryos were fixed in MEMFA, blocked in 20% goat serum and incubated with 

the indicated antibodies. Following the final wash, ectoderm tissues were 

manually isolated as animal caps and mounted on glass slides. All confocal 

images were acquired using an Olympus IX-70 inverted microscope equipped 

with the Olympus Fluoview FV500 software.  

 

In vitro DNA association assay 

 

ZIFCAT’s association with genomic DNA in vitro was tested by 

established methods (Hosking et al., 2007). In brief, ZIFCAT expression 

constructs were translated using the TnT system, and mixed for 1 hour at 4° C in 

an optimized buffer with cellulose-conjugated calf thymus genomic DNA. After 

extensive washing of the cellulose-DNA-protein complex, associated proteins 

were eluted, resolved on SDS-PAGE and detected by immuno-blotting. 

 

Rho and Rac activation assays 

 

Rho activation was measured according to the manufacture’s instructions 

(Upstate Rho Activation Assay Kit). In summary, embryo extracts were prepared 

using the provided buffer (Mg2+ Lysis/ Wash Buffer), incubated with agarose-

coated Rhotekin RBD (Rhotekin Binding Domain) at 4 degree, pelleted by 
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centrifugation, gently washed and followed by immuno-blot detection of RhoA. 

Active Rac1 levels were determined using similar methods, except that the Rac-

GTP binding domain of Pak was used for the pull-downs, and total Rac1 was 

employed as the normalization control. When measuring Rho and Rac activities 

in mammalian cells, extra preparative steps involved: 24 hours post-transfection, 

complete medium was withdrawn and substituted with DMEM containing 0.1% 

FBS, and cells starved for 16 hours to minimize non-specific serum effects. For 

Rho assays, cells were further treated with lysophosphatidic acid/ LPA for 5 

minutes to enhance basal Rho levels.  

 

Fractionation methods 

 

Membrane-cytosolic fractionation of Xenopus embryos was carried out 

according to published methods (Fagotto and Gumbiner, 1994). Nuclear-

cytosolic fractionation of 293T or HeLa cells also followed published protocols 

(Schreiber et al., 1989). 

 

Alcian blue staining 

 

For craniofacial cartilage staining, Xenopus embryos were fixed with 95% 

ethanol and incubated in Alcian blue solution. Following staining, embryos were 

washed extensively and treated with KOH. The skin was surgically removed in 

certain experiments to expose the interior structures prior to photography. 
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Whole mount RNA in-situ hybridization 

 

Procedures of in-situ RNA hybridization of whole mount embryos were 

conducted as reported (Sive et al., 2000). Digoxigenin-labeled sense and anti-

sense RNA probes were made from linearized DNA templates (DIG RNA 

Labeling Kit, Roche). In the final color reaction steps, NBT/ BCIP (Roche) served 

as the substrate for alkaline phosphatase reactions. To better visualize internal 

in situ signals, embryos were embedded in paraffin and sectioned into 10mm 

slices using a Leica computerized rotary microtome.  

 

Biostatistics 

 

The statistical significance of various experiments was evaluated using 

SigmaPlot with error bars representing standard deviations. P values from t-tests 

that were less than 0.05 were deemed significant, while more than 0.05 were 

considered insignificant. 
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