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The risk of second malignant neoplasms (SMNs) following prostate radiotherapy is a concern 

due to the large population of survivors and decreasing age at diagnosis. It is known that 

parallel-opposed beam proton therapy carries a lower risk than photon IMRT. However, a 

comparison of SMN risk following proton and photon arc therapies has not previously been 

reported. The purpose of this study was to predict the ratio of excess relative risk (RRR) of 

SMN incidence following proton arc therapy to that after volumetric modulated arc therapy 

(VMAT). Additionally, we investigated the impact of margin size and the effect of risk-

minimized proton beam weighting on predicted RRR. Physician-approved treatment plans were 

created for both modalities for three patients. Therapeutic dose was obtained with differential 

dose-volume histograms from the treatment planning system, and stray dose was estimated 

from the literature or calculated with Monte Carlo simulations. Then, various risk models were 

applied to the total dose. Additional treatment plans were also investigated with varying margin 

size and risk-minimized proton beam weighting. The mean RRR ranged from 0.74 to 0.99, 

depending on risk model. The additional treatment plans revealed that the RRR remained 

approximately constant with varying margin size, and that the predicted RRR was reduced by 

12% using a risk-minimized proton arc therapy planning technique. In conclusion, proton arc 

therapy was found to provide an advantage over VMAT in regard to predicted risk of SMN 
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following prostate radiotherapy. This advantage was independent of margin size and was 

amplified with risk-optimized proton beam weighting.      
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Chapter 1 

Introduction 

 This chapter contains an introduction to prostate cancer (section 1.1) as well as external 

beam photon (section 1.2.1) and proton (section 1.2.2) radiotherapy techniques. The risk of 

second malignant neoplasms from radiation therapy (section 1.3) will be briefly reviewed. 

Finally, the statement of the problem (section 1.4) is followed by the hypothesis and specific 

aims (section 1.5).    

1.1. Prostate Cancer 

 Prostate cancer is a disease with a large incidence and a high survival rate, which translates 

into a substantial population of survivors. It is the most common cancer in men, excluding non-

melanoma skin cancer, with approximately 217,730 new prostate cancer cases diagnosed in the 

United States in 2010 (Jemal et al., 2010). Most cases of prostate cancer are curable; the 

relative 5-year survival rate is nearly 100% and the relative 10-year survival rate is 91% 

(American Cancer Society, 2011). Consequently, as of 2007, there were approximately 2.3 

million prostate cancer survivors in the United States (SEER, 2007).  

 Another factor contributing to the large population of prostate cancer survivors is that men 

are being diagnosed with prostate cancer earlier in life and at an earlier stage of disease 

progression. This is in part due to the development of the prostate-specific antigen (PSA) test, a 

non-invasive blood test which is widely used in assessing a patient‟s risk of prostate cancer 

(American Cancer Society, 2011). The mean age of diagnosis has decreased from 72 years in 

1990 (Quinn and Babb, 2002) to approximately 67 years in 2007 (SEER, 2007). 

 There are multiple effective treatment options for men diagnosed with prostate cancer 

including surgery, hormone therapy, external beam radiation therapy, and low and high dose 
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rate brachytherapy. Active surveillance is also an appropriate option for many men who have 

asymptomatic and slow-growing tumors (American Cancer Society, 2011). The treatment 

strategy for each specific case is determined by the physician and the patient and takes into 

account factors like tumor stage, and the patient‟s age and overall health. 

1.2. External Beam Radiation Therapy 

 External beam radiation therapy (EBRT) is a good treatment option for many patients and is 

a component of approximately one third of all prostate cancer patients‟ therapy (Mettlin et al., 

1997; Virnig et al., 2002). EBRT is, in part, so prevalent due to its effectiveness. D‟Amico et 

al. (1998) reported no statistical difference in biochemical outcomes in patients who were 

treated with radical prostatectomy vs. EBRT for localized prostate cancer. Additionally, EBRT 

has the advantage of being non-invasive and safer than radical prostatectomy for patients with 

lower overall health status by eliminating surgery-specific risks, for example, the risk of 

infection (Culver et al., 1991).  

 However, radiation therapy is not free from risk. Patients can experience acute or late 

effects from radiation due to irradiation of normal tissues. For prostate radiotherapy, acute 

effects can include urinary urgency or incontinence, bowel irritation, and rectal bleeding 

(American Cancer Society, 2011), which usually resolve with time. Some patients experience 

late effects of radiation; for example, patients who survive more than approximately five years 

have an increased risk of developing secondary solid tumor due to radiation exposure (Brenner 

et al., 2000).  

 1.2.1. Photon Therapy 

 Photons have been used for radiation therapy since the early 1900s after Roentgen 

discovered the x-ray in 1895. Many technological advances have improved our ability to 

deliver radiation dose accurately and precisely to tumors and minimize dose to normal tissue. 

Medical megavoltage linear accelerators (linacs), invented in the 1960‟s, provided significant 
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skin sparing compared to lower energy x-ray therapy. Then, in the 1980s, computed 

tomography (CT) imaging made it possible to visualize the target volume on a three-

dimensional (3-D) image. Additionally, it became possible to visualize the dose distribution 

and anatomy in 3-D with treatment planning systems (TPSs). The standard of care then became 

3-D conformal radiation therapy (3DCRT), which refers to radiotherapy that, in addition to 

being planned in 3-D, is shaped in the beam‟s eye view around the target volume to reduce 

dose to normal tissue. These advances facilitated prostate dose escalation from approximately 

65 gray (Gy) to doses in the high 70s of Gy (Thompson, 2007). In the 1990s, intensity 

modulated radiation therapy (IMRT) and image guided radiation therapy (IGRT) became 

available, which provided additional improvement in accurately delivering conformal dose 

distributions. In particular for prostate cancer, Zelefsky et al. (2000) showed that IMRT 

improved coverage of the clinical target volume (CTV), decreased bladder and rectal doses, 

and decreased the incidence of rectal bleeding compared to 3DCRT. 

 The current standard of care for photon EBRT for prostate cancer at The University of 

Texas MD Anderson Cancer Center (MDACC) is IMRT. Linac based IMRT creates conformal 

dose distributions with a multi-leaf collimator (MLC), which modulates the fluence of photons 

across the two-dimensional cross-section of each beam. There are two ways that the MLC can 

operate during the delivery of the treatment beam. The first way is dynamically, also known as 

the sliding window technique, which is achieved by delivering the radiation while the leaves 

move across the field. The second approach is for the beam to turn off while the leaves move to 

the next position, only delivering radiation when the leaves are stationary. This second 

technique is known as step-and-shoot, and is the method implemented at MDACC. Chui et al. 

(2001) and Longobardi et al. (2005) compared the two techniques and found comparable 

dosimetric quality and accuracy between the two (given adequate segments for step-and-shoot, 

approximately 10 per beam). Chui et al. also found that sliding window required approximately 
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20% more monitor units (MUs), but that the overall treatment time was roughly two times 

faster than the step-and-shoot method. 

 The first rotational intensity modulated photon radiotherapy technique, tomotherapy, was 

proposed by Mackie and colleagues and published in 1993 (Mackie et al., 1993). In this 

technique, intensity modulation is accomplished by delivering radiation in slices and setting 

collimating leaves to either fully open or fully closed positions. The first clinical 

implementation of this “slice therapy” was the Peacock
TM

 system (Nomos Corporation, 

Sewickley, PA), which used a MIMiC
TM

 MLC mounted on a linac gantry (Carol, 1994; Carol, 

1995; Mackie, 2006). Treatment was delivered serially, and the treatment couch was advanced 

for the delivery of each adjacent slice. Then, TomoTherapy® Incorporated developed a CT 

scanner type gantry with a linac that rotates and delivers radiation helically while the patient is 

advanced continuously through the bore (Mackie et al., 1999; Yang et al., 1997; Mackie, 

2006). With helical delivery, patient positioning errors were not as critical as with serial 

delivery, where a 1 mm positioning error could cause dose errors of approximately 10-20% 

(Carol et al., 1996; Low and Mutic, 1997). The new technique also significantly reduced the 

treatment time, from the order of 30 minutes for serial delivery (Xia et al., 2000) to a mean 

treatment time of 10.7 minutes for helical delivery (Sterzing et al., 2008).  

 A more recently introduced rotational intensity modulated photon radiotherapy technique, 

which can be administered with a conventional linac, is volumetric modulated arc therapy 

(VMAT). Unlike tomotherapy, an entire volume, instead of a slice, can be irradiated in single 

rotation and with a fixed couch position. The specific method was first published by Otto in 

2008 (Otto, 2008), which expanded on a method proposed and developed by Yu (1995). Both 

dose rate and rotation speed are varied during beam delivery, providing additional degrees of 

freedom in treatment planning. The VMAT optimization algorithm described by Otto was 

implemented in the Eclipse (Varian Medical Systems, Palo Alto, CA) TPS, which 
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approximates an arc as multiple static beams, starting with a low resolution and increasing to 

177 beams as it optimizes, while constraining both the dose rate and the MLC motion to take 

into account the mechanical and radiation limitations of the linac and MLC (Otto, 2008). Our 

institution has treated a small number of patients with VMAT since 2009, including patients 

with prostate cancer. To date, it appears that the main advantage of this technique is shorter 

treatment times while preserving plan quality comparable to IMRT (Kjaer-Kristoffersen et al., 

2009; Zhang et al., 2009; Palma et al., 2008; Bedford and Warrington, 2009). Otto reported 

treatment times between about 1.5 to 3 minutes for one arc. Specifically, delivery time for a 

one-arc nasopharynx VMAT treatment plan was 1.8 minutes, and delivery time for a 

comparable 7-field nasopharynx IMRT plan was 7.1 minutes (Otto, 2008). The experience at 

our institution is that two arcs are required for optimal treatment plans, yielding treatment 

delivery times of approximately three minutes. 

 An undesirable aspect of all EBRT photon radiotherapy techniques is that the patient is also 

exposed to some stray radiation. The sources of this stray radiation are photon leakage from the 

treatment head and MLC leaves, photon scatter from the collimator and the patient, and, above 

approximately 6 MeV, secondary neutrons produced by (γ,n) reactions in the treatment head 

and, to a lesser degree, the patient (Howell et al., 2009; NCRP, 2005). In or near the treatment 

field, scatter is the predominant source of stray radiation, whereas far from the treatment field, 

leakage predominates (Kase et al., 1983; Stovall et al., 1995). Radiation exposures from 

leakage and scatter photons and photoneutrons (for 10 MV photon beams and above) have been 

measured and characterized for conventional therapy (Kase et al., 1983; Stovall et al., 2006), 

IMRT (Kry et al., 2005b; Howell et al., 2006; Wang and Xu, 2008), and tomotherapy (Ramsey 

et al., 2006). Also, Xu et al. (2008) have published a review on the topic. To our knowledge, 

there have not been any reports on leakage and scatter exposures for VMAT. However, some 

studies have implicitly made the assumption that the stray radiation dose from VMAT is 
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equivalent (per MU) to that from IMRT (Palma et al., 2008; Kjaer-Kristoffersen et al., 2009; 

Wolff et al., 2009; Yoo et al., 2010). To date, VMAT has only been used with 6 MV, thus 

secondary neutrons are not a concern. 

 1.2.2. Proton Therapy 

 Robert Wilson proposed the medical use of protons in the treatment of tumors in 1946 

(Wilson, 1946). In his paper, Wilson described the advantageous dosimetric properties of 

protons, namely, how they deposit a large portion of their dose in the last few millimeters of 

their range near the peak of the Bragg curve (Figure 1.1). Beyond their range, determined by 

their initial kinetic energy, the dose falls rapidly to almost zero, thus enabling sparing of the 

tissue distal to the target. 

Proton Bragg Peak 122.5 MeV
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Figure 1.1 – Relative absorbed dose of a simulated Bragg curve from an unmodulated 122.5 

MeV proton beam vs. depth in water.   

 

 The first therapeutic use of proton therapy in humans was for the pituitary gland in 1954 

(Lawrence et al., 1958), then for brain tumors shortly after (Kjellberg et al., 1962; Larsson et 

al., 1963; Kjellberg and Kliman, 1973; Munzenrider and Liebsch, 1999). Later, proton therapy 
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was also extensively used in the treatment of ocular tumors, chordomas, and chondrosarcomas 

(Munzenrider et al., 1980; Suit et al., 1982; Gragoudas, 1986; Munzenrider, 1999).  

 To date, over 67,000 patients have been treated with proton therapy, and there are 

approximately 28 centers in operation world-wide (Particle Therapy Co-Operative Group, 

2010). Of this large population of proton therapy patients, prostate cancer patients are the 

majority (Sisterson, 2005), which have resulted in disease-free survival rates comparable to 

other forms of local therapy and minimal morbidity (Slater et al., 2004; Nihei et al., 2010). 

 Proton therapy dose is prescribed differently than photon therapy dose. Proton beams are 

believed by some to have a slightly higher relative biological effectiveness (RBE) compared to 

photon beams (ICRU, 2007). To attempt to account for these differences, the ICRU 

recommends a generic RBE value of 1.1 and that the dose be prescribed in units of Gy (RBE), 

where DRBE[Gy (RBE)] =  Dabsorbed[Gy]  RBE. This convention is controversial, but is widely 

used.  

 There are two main methods to cover the cross-sectional area of a target volume with a 

proton beam (Chu, 1993). The first method to provide lateral coverage of the target is to spread 

the pencil beam into a larger field. The second method is to “sweep” the pencil beam across the 

target using deflecting magnets. These two modes of delivery are referred to as passive 

scattering and beam scanning (or active scanning), respectively, and passive scattering is far 

more prevalent around the world (Sisterson, 2005).   

 Passive scattering is achieved by spreading the pencil beam of protons into a large, uniform 

field with scattering foils. A double scattering approach was proposed by Koehler et al. (1977) 

and uses a first scatterer to spread the beam, a central beam stop to eliminate the protons in the 

center of the field, and then a second scatterer to further spread the beam to produce a large and 

relatively uniform proton field. This approach was subsequently refined by Gottschalk and 

others and is simple, safe, and versatile (Gottschalk et al., 1991). 
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 It is also necessary to broaden the high dose region over the target volume in depth. A 

proton‟s range is determined by its energy, where a higher energy results in a longer range. 

Therefore, modulating the beam‟s energy will modulate the beam range. One method is to use a 

range modulator wheel (RMW), which has steps of varying thickness of absorbing material to 

modulate the range (Chu, 1993). The RMW rotates quickly through the beam to produce 

multiple Bragg peaks with varying range. The summation of these modulated pristine peaks 

produces a spread-out Bragg peak (SOBP) of a desired width (Figure 1.2). This was proposed 

by Wilson (1946) and implemented by Koehler et al. (1975) at the Harvard Cyclotron 

Laboratory.  

 
Figure 1.2 – Relative absorbed dose from a spread-out Bragg peak, B, of 14.5 cm width 

resulting from the sum of the pristine Bragg curves such as A (Koehler et al., 1975).  The 

depths and magnitudes of the shifted Bragg curves relative to A are denoted by the triangles 

labeled1-17. Reprinted from Nuclear Instruments and Methods, 131, A.M. Koehler, R.J. 

Schneider, J.M. Sisterson, Range modulators for protons and heavy ions, 438, 1975, with 

permission from Elsevier 
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 After a proton beam is spread laterally (cross-field direction) and longitudinally (depth 

direction), further modifications are required to conform the beam to the target volume. Beam-

specific brass apertures are used to collimate the cross-section of the beam to the shape of the 

target (Wagner, 1982). In addition, to conform the distal end of the SOBP to the target, a beam-

specific range compensator is milled to pull the range of the protons back where necessary 

(Wingate et al., 1977; Goitein, 1978; Wagner, 1982; Urie et al., 1984).   

 In recent years, interest in rotational delivery of proton beams has increased. To our 

knowledge, the first appearance of proton arc therapy in the literature was in 1997, when three 

separate groups published studies on the topic. The first publication was a simulation study for 

a Ewing sarcoma treatment (Isacsson et al., 1997), the second publication was a phantom study 

for a chest wall irradiation (Sandison et al., 1997), and the third publication was a patent for a 

method and apparatus for proton arc therapy (Deasy, 1997). Since proton arc therapy‟s 

appearance in the literature, various other papers have been published. Oelfke and Bortfeld 

(2000) reported a factor of 2 – 3 reduction in integral dose to healthy tissue for inverse planned 

proton arc therapy when compared to photon IMRT for a simulation of irradiation of a planar 

circular target. Similarly, Flynn et al. (2007) found the integral dose was lowered by a factor of 

about 2 for proton arc therapy compared to photon IMRT and helical tomotherapy. Sengbusch 

et al. (2009) investigated the energy required to treat patients with proton arc therapy and found 

that, with an AP arc and a PA arc, each subtending 90 degrees, 90% of the patients in their 

study could be treated with a proton kinetic energy of 198 MeV or less. One particular design 

for a compact proton accelerator capable of arc delivery is under commercial development by 

TomoTherapy Incorporated (Madison, Wisconsin) in partnership with Lawrence Livermore 

National Laboratory (Mackie et al., 2007; Caporaso et al., 2008; Chen, 2009). This design 

proposes to use the dielectric wall accelerator technology to achieve a “one room” proton 

therapy delivery system capable of simultaneous scanned beam delivery and gantry rotation.  
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 One of the reasons for this interest in proton arc therapy is the potential improvement in 

conformity that arc therapy could provide. Currently, IMRT rivals proton therapy with regard 

to dose conformity due to the comparatively large number of treatment gantry angles used in 

IMRT (Bortfeld, 2006; Trofimov et al., 2007). However, it is possible that by increasing the 

number of beam angles (or a delivering through an arc) proton therapy could provide 

significantly better conformity than IMRT or VMAT. 

 Theoretically, one can deliver proton arc therapy with current proton gantries using the 

passive scattering technique. For example, the SOBP width can be varied throughout the 

rotation by altering the gating of the beam through different steps of the range modulator 

wheel. Then, the range could be varied by using a robotic wedge energy degrader (Chu, 1993; 

Lu, 2008a, b; Titt et al., 2010; Melancon, 2010), and the shape of the beam could be defined by 

a proton-appropriate MLC (Brahme et al., 1987; Chu, 1993; Bues et al., 2005; Slopsema and 

Kooy, 2006; McDonough and Tinnel, 2007). While many technical aspects of proton arc 

delivery still require research and development, there are no known fundamental obstacles to its 

implementation. 

 One poorly understood aspect of proton arc therapy is the exposure of patients to stray 

radiation. Similar to photon therapy, proton therapy patients are also exposed to stray radiation, 

which originates from neutrons produced in (p, xn) reactions. These neutrons can be produced 

externally by reactions in the treatment unit, or internally by reactions in the patient‟s body. 

Since the spot scanning technique uses magnetic fields to laterally spread the beam instead of 

scattering foils, external neutron production is comparatively small (Schneider et al., 2002). 

However, with optimized design, neutron production in passively scattered proton treatment 

units can be reduced (Tayama et al., 2006a; Taddei et al., 2008; Brenner and Hall, 2008; 

Taddei et al., 2009a), diminishing the advantage of scanning delivery. The neutrons produced 

in the passive scattering technique are dependent on the general construction of the beam 
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nozzle and increases with increasing proton beam energy, increasing SOBP width, increasing 

uncollimated proton field size, and decreasing aperture size (Yan et al., 2002; Mesoloras et al., 

2006; Zheng et al., 2008a; Taddei et al., 2008). Neutron dose values from the literature vary 

dramatically between different facilities, suggesting a strong dependence on delivery technique, 

facility design, and the method of measurement or simulation (a sample of which are plotted in 

Figure 1.3) (Schneider et al., 2002; Yan et al., 2002; Fontenot et al., 2005b; Polf et al., 2005; 

Hall, 2006; Mesoloras et al., 2006; Tayama et al., 2006a; Zheng et al., 2007a; Moyers et al., 

2008b; Wang et al., 2010; Yonai et al., 2010; Zhang et al., 2010; Clasie et al., 2010). These 

values range from 0.025 millisieverts per gray (mSv/Gy) (Mesoloras et al., 2006) to 8.92 

mSv/Gy (Schneider et al., 2002; Hall, 2006).  

 
Figure 1.3 – Stray neutron equivalent dose per therapeutic absorbed dose (H/D) for proton 

beams as a function of distance from proton field edge (Schneider et al., 2002; Yan et al., 2002; 

Fontenot et al., 2005b; Polf et al., 2005; Hall, 2006; Mesoloras et al., 2006; Tayama et al., 

2006a; Zheng et al., 2007a). For comparison, values are also plotted for 6 MV IMRT (navy) 

and 6 MV 4 field CRT (pink) (Hall, 2006).   
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 There have been some stray equivalent dose measurements and simulations specifically for 

proton therapy of the prostate (Wroe et al., 2007; Fontenot et al., 2008; Zheng et al., 2008a; 

Taddei et al., 2008; Wroe et al., 2009; Newhauser et al., 2009b; Yepes et al., 2009). For 

example, Wroe et al. performed measurements at Loma Linda University Medical Center 

(2007) and Massachusetts General Hospital (2009), which ranged from 0.1 mSv/Gy to 10 

mSv/Gy, depending on facility and distance from isocenter. One study from our institution was 

reported by Zheng et al. (2008a), in which the effective dose was found to be 8 mSv/Gy for 

proton therapy of the prostate. Additionally, Fontenot et al. (2008) simulated stray neutron 

doses resulting from a prostate therapy treatment at our institution and found doses ranging 

from 1.9 mSv/Gy to 12.3 mSv/Gy, where dose decreased with increasing distance from 

isocenter. In a similar study, Taddei et al. (2008) found equivalent doses ranging from 1.05 

mSv/Gy to 19.7 mSv/Gy. 

1.3. Risk of Second Malignant Neoplasms from Radiation Therapy 

 Ionizing radiation damages cells, and when damaged cells are not sterilized, they have the 

potential to mutate and become carcinogenic (Preston et al., 2007). Therefore, patients 

receiving radiation therapy are at increased risk for the development of a second primary 

cancer, or second malignant neoplasm (SMN) (NRC, 2006). 

 Epidemiological studies on the risk of SMN incidence following prostate radiotherapy are 

not coherent. Some studies report an increased risk of an SMN, including cancers of the 

bladder and rectum (Brenner et al., 2000; Moon et al., 2006; Kendal et al., 2007). However, 

one study reported an increased risk of bladder cancer but not rectal cancer (Curtis et al., 2006). 

Interestingly, Chrouser et al. (2005) only found an increased risk of bladder cancer in those 

patients who had a prostatectomy prior to radiotherapy, and Pickles and Phillips (2002) found 

an increased risk of bladder cancer in non-irradiated patients but not in irradiated patients. 

While much uncertainty remains regarding risk of SMN following prostate radiotherapy, the 
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absolute risk of incidence of a radiogenic second malignant neoplasm is most likely on the 

order of a percent or two: 0.3% for all patients, and 1.4% for patients who survive at least 10 

years (Brenner et al., 2000). 

 While epidemiological data would be ideal for assessing risks, large follow-up times are 

required and the quality and completeness of dosimetric information is often lacking; therefore, 

it is not feasible to use any single epidemiological study predict patient-specific risk following 

current radiotherapy techniques. In order to predict patient-specific risk of SMN incidence 

following a particular radiotherapy treatment or to compare the predicted risk between different 

treatments, a rigorous, reproducible, and well-understood method is required. First, an accurate 

and complete knowledge of the dose distribution in the organs of interest is needed. Then, the 

relationship between radiation dose and the risk of SMN incidence can be applied to the 

dosimetric information. These methods were previously developed and applied to studies of 

proton therapy and IMRT for prostate cancer (Kry et al., 2005a; Schneider et al., 2007; Taddei 

et al., 2008; Fontenot et al., 2009; Bednarz et al., 2010), but not for arc therapies. The current 

state of knowledge in radiation risk estimation is briefly reviewed below.    

 It is generally accepted that there is a linear-no-threshold (LNT) relationship between 

equivalent doses and risk of cancer between 0 Sv and about 2.5 Sv (NCRP, 1993; NRC, 2006); 

however, the relationship between dose and risk at higher doses is less well understood. At 

higher doses, cell sterilization increases, and the general relationship between dose and risk for 

most tissues most likely lies somewhere between a linear and a linear-exponential model (Hall 

and Wuu, 2003; Sachs and Brenner, 2005; Schneider et al., 2007; Schneider et al., 2006; 

Schneider et al., 2005). 

 Not surprisingly, different tissues have been shown to exhibit different risk relationships 

with dose (Boice et al., 1988; Lindsay et al., 2001; Hall and Wuu, 2003; Dasu and Toma-Dasu, 

2005; Schneider et al., 2005; Sachs and Brenner, 2005) (Figure 1.4).  For example, risk of an 
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SMN in the thyroid has been shown to exhibit a linear-exponential relationship with dose, 

increasing linearly to an inflection point at approximately 20 - 30 Gy, then decreasing at higher 

doses (Thompson et al., 1994; Ron et al., 1995; Sigurdson et al., 2005; Ronckers et al., 2006; 

Bhatti et al., 2010). In stark contrast, the risk of an SMN in the breast has been shown to 

increase linearly to approximately 40 Gy while showing no evidence of decrease at high doses 

(Travis et al., 2003; Travis et al., 2005; Inskip et al., 2009).  

 The dose-risk relationships of the bladder and rectum are of particular interest to this work. 

For the bladder, some evidence indicates that the risk of an SMN may plateau beyond 

approximately 10 Gy (Boice et al., 1988; Neugut et al., 1997; Brenner et al., 2000; Ruben et 

al., 2008). There is less data regarding the rectum, but in a study by Schneider et al. (2005), the 

risk for all organs was assumed to have a linear-exponential relationship to dose, and the organ-

specific exponential term was solved for based on epidemiological data from patients who 

received radiotherapy for Hodgkin‟s disease. Their model for the colon (which includes the 

rectum) has an inflection point at approximately 2 Gy. 
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Figure 1.4 - Summary of the data showing the relationship between risk of second cancer and 

dose from the A-bomb survivors and cancer survivors treated with radiotherapy (Ruben et al., 

2008). Reprinted from the International Journal of Radiation Oncology Biology Physics, 70, 

Jeremy D. Ruben, Sidney Davis, Cherie Evans, Phillip Jones, Frank Gagliardi, Matthew 

Haynes, Alistair Hunter, Risk of Second Malignant Neoplasms following VMAT and Proton 

Arc Therapy for Prostate Cancer, 1532, 2008, with permission from Elsevier. 

 

  Using the risk models from the literature, Fontenot et al. (2009) predicted the risk of 

SMN incidence (including fatal and non-fatal cancers) following both IMRT and proton 

therapy for three prostate cancer patients (of small, medium, and large anatomical stature). 

Specifically, the authors used detailed dosimetric information, including stray dose, and applied 

risk models to calculate the risk to each organ. In order to cover the range of possible dose-

response relationships indicated by the data in the literature, they applied the LNT model 

(NRC, 2006), the linear-exponential model, and the linear-plateau model. Furthermore, they 

investigated high-dose (40 Sv) and low-dose (10 Sv) inflection points for the linear-exponential 

and linear-plateau models, spanning the values reported in the literature. The specific quantities 

they chose to describe risk were the excess relative risk (ERR), where  

                                  1
Population edin Unexpos Rate

Population Exposedin  Rate
ERR ,                                      (1.1) 

and the ratio of excess relative risk (RRR), where  

                                               
IMRT

apyProtonTher

ERR

ERR
RRR .                                                        (1.2) 

They found, for all risk models considered, that the ERR of an SMN was less for proton therapy 

than for IMRT (Fontenot et al., 2009) (Figure 1.5) within the uncertainties of the calculation 

(Fontenot et al., 2010). It was also found that the in-field radiation in the bladder and rectum 

had the largest impact on the ERR. Furthermore, passively scattered (RRR = 0.66) and scanned 

(RRR = 0.56) proton therapies both conferred significantly lower predicted risk of SMN 

incidence than IMRT.  
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Figure 1.5 – The predicted risk of SMN incidence following IMRT and proton therapy of the 

prostate from various risk models (Fontenot et al., 2009). It can be seen that the ERR of an 

SMN following IMRT is consistently higher than following proton therapy, and by 

approximately the same ratio (RRR). Reprinted from the International Journal of Radiation 

Oncology Biology Physics, 74, Jonas D. Fontenot, Andrew K. Lee, Wayne D. Newhauser, Risk 

of Secondary Malignant Neoplasms from Proton Therapy and Intensity-Modulated X-Ray 

Therapy for Early-Stage Prostate Cancer, 621, 2009, with permission from Elsevier.  

 

1.4. Statement of the Problem 

 The risk of SMN incidence following radiotherapy of the prostate is a potentially large 

public health concern due to the large population of survivors. SMN risk has been estimated for 

a few case studies following IMRT and proton therapy (Kry et al., 2005a; Schneider et al., 

2006; Schneider et al., 2007; Taddei et al., 2008; Fontenot et al., 2009; Bednarz et al., 2010); 

however, VMAT and proton arc therapy are nascent and proposed modalities, respectively, 

whose impact on risk of second cancer has not been previously reported. Both are new arc 

modalities which distribute the therapeutic dose in a different way than their static counterparts. 

In particular, while arc delivery achieves very conformal distributions in the target region, it 

spreads lower dose over notably more tissue than static delivery (Kjaer-Kristoffersen et al., 

2009; Zhang et al., 2009). Thus, the effect of the differences between static beam and arc 

delivery on predicted risk is not obvious and requires quantitative investigation. 
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 It is also unknown how the margin size around the clinical target volume (CTV) to create 

the planning target volume (PTV) affects predicted risk of an SMN for VMAT and proton arc 

therapy. The required margin size depends on the internal motion, imaging, immobilization, 

setup uncertainty, and the institution‟s experience (ICRU, 1999, 2007). With better 

immobilization and image guided radiotherapy, margin sizes could be reduced. It is expected 

that the predicted risk of an SMN will decrease with smaller margin sizes. 

1.5. Hypothesis and Specific Aims 

 The hypothesis of this study is that the predicted RRR of SMN incidence in the bladder 

and rectum 10 years following proton arc therapy relative to that following VMAT will be 

less than one for prostate cancer for a typical patient exposed at age 60. 

 This hypothesis was tested through the following three specific aims: 

Specific Aim 1: To predict the RRR of SMN incidence following proton arc therapy compared 

to that following VMAT using calculated dose distributions combined with risk models from 

the literature. 

Specific Aim 2: To investigate the impact of uniform vs. variable beam weighting for proton 

arc therapy based on various host and treatment factors, such as type of second cancer and 

avoidance of a hip prosthesis, on the predicted RRR. 

Specific Aim 3: To examine the sensitivity of the predicted ERR and RRR on the margin size 

around the clinical target volume following proton arc therapy compared to that following 

VMAT. 

General Methodology 

 Three patients were selected for this study. For specific aim 1, treatment plans for both 

VMAT and proton arc therapy were created for each patient, yielding 6 “nominal” treatment 

plans. Then, the risk of SMN incidence was predicted for each treatment plan using three 

different risk models: the linear-no-threshold, linear-exponential, and linear-plateau models. 
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For specific aim 2, variable beam weighting was applied to one of the proton arc plans that was 

created for specific aim 1, and its impact on risk of SMN incidence examined. Finally, for 

specific aim 3, the margins around the CTV were varied, and new treatment plans were created 

for each margin expansion for both VMAT and proton arc therapy. For each new margin plan, 

the risk of an SMN was predicted to investigate the relationship between risk and margin size.

  

 

Chapter 2 

Methods and Materials 

 This chapter describes the methods and materials used in this work, beginning with the 

patient selection and volume contouring (2.1). Then, the methods for treatment planning and 

therapeutic dose determination (2.2) is covered, with details pertaining to VMAT (2.2.1) and 

proton arc therapy (2.2.2). Next, the estimation of stray dose (2.3) is discussed with specifics 

regarding VMAT (2.3.1) and proton arc therapy (2.3.2). Subsequently, the method used to 

predict risk of an SMN is discussed (2.4) with specifics regarding the LNT model (2.4.1) and 

the alternate risk models (2.4.2), followed by an example calculation for each (2.4.3). Finally, 

the methods section concludes with a review of the methods used for statistical analysis (2.4.4) 

and uncertainty analysis (2.4.5), and a summary of the risk calculations performed (2.4.6). 

2.1. Patient Selection and Contouring 

 We selected three patients who were previously studied by Fontenot et al. (2009) in a 

comparison of the risk of SMN incidence following IMRT and parallel-opposed beam proton 

therapy for prostate cancer. For their study, patient information was obtained, in accordance 

with an institutional review board protocol, from electronic records of patients who were 

treated at our institution for prostate cancer. A group of 72 patients who were treated in 2007 
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were analyzed in order to identify patients who represented small, medium, and large patients 

of the sample based on the range (90% distal dose fall-off) of the lateral proton beam to cover 

the target volume (prostate, proximal seminal vesicles, and margin). The mean range of the 

lateral beams was 24.7 cm, with a standard deviation of 1.2 cm. The mean range was 

determined to be representative of a “medium” patient, and similarly the mean range plus and 

minus 2σ of the mean range to be representative of a “large” and “small” patient, respectively. 

A summary of the patients who most closely matched the mean, mean plus 2σ, and mean minus 

2σ ranges is presented in Table 2.1.  

Table 2.1 - Patient age at exposure, stage of cancer, and range of the proton beam for the 

selected small, medium and large patients (Fontenot, 2008). 

Patient 

Size 

Patient Age 

at time of 

Treatment 

Adeno-

carcinoma 

stage 

Beam 

Range 

Formula 

Calculated 

Range (cm) 

Small 60 yr T2a Mean - 2σ 22.3 

Medium 56 yr T2a Mean 24.7 

Large 46 yr T1c 
Mean + 

2σ 
27.0 

  

 The same organ and structure contours were used for the photon and proton treatment plans 

for each patient in order to consistently compare the plans. These physician-approved contours 

included the CTV, PTV, prostate, bladder, rectum, seminal vesicles, and femoral heads. In 

addition, bladder wall, rectal wall, and various size additional PTV contours were created. The 

bladder wall and rectal wall thicknesses were defined as 5 mm and 3 mm, respectively (Manieri 

et al., 1998; Huh et al., 2003), using the automatic margin and Boolean operator tools in the 

TPS. Slight manual edits were made when the organ wall was clearly visible and the 

automatically created contour did not match the visible anatomy. The three patients in this 

study were previously treated with proton therapy, and VMAT and proton arc therapy treatment 

plans were retrospectively created for the purpose of this study. At the time of simulation, 
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rectal balloons were used to immobilize the prostate and these immobilization devices were 

visible on the CT images.  

2.2. Treatment Planning and Therapeutic Dose Determination 

 All treatment plans were created using a commercial treatment planning system 

(Eclipse, Varian Medical Systems, Palo Alto, CA). The MDACC clinical dose-volume 

histogram (DVH) constraints (In-house dosimetry guideline, 2009) were used for planning and 

evaluation of all plans (Table 2.2). Two treatment plans were created for each patient for 

specific aim 1, one for each modality, and each of the resulting six nominal treatment plans 

were reviewed, revised as needed, and approved by a board certified radiation oncologist. 

Additional treatment plans were created for specific aims 2 and 3.  

Table 2.2 - Dose volume histogram constraints used for VMAT and proton arc therapy 

planning. „D‟ followed by a subscript number corresponds to the percent volume of the organ 

receiving at least the listed dose constraint, where dose for VMAT is in units of Gy and dose 

for proton arc therapy is in units of Gy (RBE). For example, D20 ≤ 70 means that 20% of the 

volume should receive no more than 70 Gy or Gy (RBE). 
Organ DVH Constraints 

Bladder D20 ≤ 70 Gy or Gy (RBE) 

Rectum 

D60 ≤ 40 Gy or Gy (RBE) 

D50 ≤ 45 Gy or Gy (RBE) 

D40 ≤ 60 Gy or Gy (RBE) 

D20 ≤ 70 Gy or Gy (RBE) 

D15 ≤ 76 Gy or Gy (RBE) 

D5 ≤ 80 Gy or Gy (RBE) 

Femoral Heads D15 ≤ 45 Gy or Gy (RBE) 

 

 For specific aim 1, the PTV was defined for all patients using margins specified by the 

current MDACC standard-of-care, which is referred to as the nominal PTV. The CTV was 
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expanded by 5 mm posteriorly and 7 mm in all other anatomical directions. Then, additional 

PTVs with smaller and larger margins were created for the medium patient for specific aim 3. 

All PTVs were created using the “margin for structure” tool to expand the CTV (Figure 2.1).  

 
Figure 2.1 - Axial (left) and sagittal (right) CT slices showing the prostate (blue), PTV (red), 

the rectum and contents (green), and the bladder and contents (yellow) for the nominal PTV 

(top), a smaller PTV (middle), and a larger PTV (bottom). Notice the decreased amount of 

normal tissue encompassed within the smaller PTV and the increased amount of normal tissue 

encompassed within the larger PTV. 

 

 In this study the majority of the additional PTVs were smaller than the nominal PTV 

because it is likely that future improvements in immobilization and imaging technologies will 
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enable smaller margins, i.e. a reduction from our current nominal PTV margins. We used 

margin expansions ranging from 0 mm (the theoretical limit) to 6 mm posteriorly and 8 mm in 

all other anatomical directions. A detailed list of all PTV margins used in this study can be 

found in Table 2.3.  

Table 2.3 – Variable CTV expansion margins used to create different PTVs and their 

differences from the nominal expansions. “Else” refers to all anatomical directions other than 

posterior. 

Plan 

Index 

Posterior 

Expansion 

(mm) 

Else 

Expansion 

(mm) 

Posterior 

Difference 

from 

Nominal 

(mm) 

Else 

Difference 

from 

Nominal 

(mm) 

 

 

Comment 

- 5 7 0 0 Nominal 

1 0 0 -5 -7 Smallest 

2 0 2 -5 -5  

3 2 4 -3 -3  

4 3 5 -2 -2  

5 4 6 -1 -1  

6 6 8 1 1 Largest 

 

 2.2.1. Volumetric Modulated Arc Therapy 

 The Eclipse TPS (Version 8.6) was used for VMAT planning. Dose was computed with the 

Anisotropic Analytical Algorithm (AAA) (Van Esch et al., 2006) with heterogeneity 

corrections and a 2.5 mm calculation grid. The TPS was commissioned for clinical use at our 

institution (R. M. Howell, pers. comm.). All of the VMAT plans were planned with 6 MV 

photons to a prescribed mean dose of 76 Gy to the PTV in 38 fractions. Then, in accordance 

with the standard-of-care, a normalization was applied to provide coverage of the 76 Gy 

isodose line around the PTV, 96.4% was the largest normalization required, and, in order for 

the prescription dose to be a control in this study, the normalization of 96.4% was applied to all 

plans. The photon absorbed dose in gray is equal to the equivalent dose in sieverts due to a 

radiation weighting factor of 1 for photons (ICRP 1990).  
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 VMAT treatment planning for this study was consistent with the MDACC clinical practice 

(R. M. Howell, pers. comm.). Each treatment plan had two overlapping 220 degree arcs, each 

subtending the angle from 110 to 250 degrees (one clockwise and one counter clockwise arc). 

Two arcs double the possible number of control points and allows a higher degree of 

modulation, and the 60 degree gap minimizes entrance dose to the rectum (Figure 2.2). The 

collimator rotation was set to 30 degrees for the first arc and 330 degrees for the second to 

minimize overlap of inter-leaf leakage from the two arcs. In addition, for beam optimization 

purposes, avoidance structures were used to further conform the dose. For example, constraints 

were applied to a rectal avoidance volume that included the posterior portion of the rectum. 

 
Figure 2.2 – Illustration of the two arcs used for VMAT treatment planning. It can be seen that 

the angle and modulation (orange lines inside yellow field lines, which are visible on the 

counterclockwise arc) spare the rectum (green) of entrance dose. 

 

 For specific aim 1, treatment plans were optimized for the nominal PTV for the small, 

medium, and large patients. For specific aim 3, additional treatment plans were optimized for 

each of the alternate PTVs for the medium patient. The same objectives and constraints were 

used for both the nominal and alternate PTVs (Table 2.3). Therefore, the main difference 

between these treatment plans was the volume of the high-dose region. 

counterclockwise arc counterclockwise arc clockwise arc 
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 2.2.2. Proton Arc Therapy 

 The Eclipse TPS (Version 8.9) was used for proton arc therapy planning. Dose was 

computed with a proton pencil beam algorithm (Schaffner, 2008) with heterogeneity 

corrections and a 2.5 mm calculation grid. The TPS was previously configured and tested for 

proton radiotherapy at our institution (Newhauser et al., 2007b). The prescribed mean dose was 

76 Gy (RBE) to the PTV in 38 fractions. Then, similarly to the VMAT plans (section 2.2.1), all 

plans were normalized to 96.4%, resulting in a mean dose of 78.8 Gy (RBE) to the PTV. 

Treatment planning techniques for photon arc therapies are approximated with static treatment 

beams (Mackie et al., 1993; Yu, 1995; Otto, 2008; Bzdusek et al., 2009). In the same way, we 

approximated proton arc delivery in the TPS with static, discrete treatment beams, each 

representing an arc segment centered at the beam angle (Flynn et al., 2007). 

 In order to determine the number of static proton beams required for a reasonable 

approximation in the treatment planning of arc delivery, treatment plans with 4, 6, 8, 12, 16, 24, 

and 32 equally spaced gantry angles were investigated. Because the dose distribution in a 4-

beam plan with angles of 0, 90, 180 and 270 degrees depended on starting angle for a coarse 

beam resolution, a second 4-beam treatment plan was created with beam angles of 45, 135, 

225, and 315 degrees. The mean doses to the bladder (and contents), bladder wall, rectum (and 

contents), rectal wall, femoral heads, and normal tissue of the pelvis were plotted vs. the 

number of beams to test for dosimetric sensitivity to the choice of beam number in 

approximating arc plans.  

 Based on the results of the above experiment (results are described more fully in section 

3.1.2), we found that sixteen beams were adequate to approximate arc therapy for the purposes 

this study. The sixteen beams were equally spaced at the angles of 22.5, 45, 67.5, 90, 112.5, 

135, 157.5, 180, 202.5, 225, 247.5, 270, 292.5, 315, 337.5, and 360 degrees around the patient, 

where each static beam approximated 22.5 degrees of arc delivery.  
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 Unlike the procedure used for VMAT treatment planning, the PTV was not explicitly used 

to design the proton treatment plans. Instead, margins around the CTV were selected to provide 

conservative coverage, which consequently encompassed the PTV within a high dose region. A 

generic PTV is not suitable as the primary planning volume for proton therapy because it is a 

geometrical concept that assumes the “static dose cloud approximation” (Unkelbach et al., 

2009). Under this approximation, it is assumed that the location in space and shape of the dose 

distribution are virtually unaffected by changes in the anatomy, e.g. setup errors or tumor 

motion. This approximation is appropriate for photon therapy, but not for proton therapy where 

changes in anatomy or positioning could cause range errors (Urie et al., 1984; Zhang et al., 

2007; Lomax, 2008; Unkelbach et al., 2009). The ideal margins around the CTV are 

determined based on factors like beam range, SOBP width, and uncertainties in delivery such 

as motion (Moyers et al., 2001; Moyers and Miller, 2003; ICRU, 2007). A diagram of how 

proton therapy treatment margins are usually defined is shown in Figure 2.3.  
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Figure 2.3 - Margins defined in treatment planning for proton therapy of the prostate. Proximal 

and distal margins are defined as the distance from the CTV to the edge of the SOBP. Lateral 

margins are defined as the distance from the CTV to the lateral field edge The labels anterior 

and posterior could apply to lateral, proximal, or distal margins, depending on beam direction. 

For example, an anterior-posterior beam would have a posterior distal margin at the end of 

range of the beam. The box defined by the SOBP and the field edges is the high-dose region, 

which should at least encompass the PTV.  

 

 For all gantry angles, the margins, border smoothing, and compensator smearing (Urie et 

al., 1984; Urie et al., 1986) were determined based on techniques that were the standard-of-care 

for lateral opposed proton therapy for prostate cancer at MDACC in 2010 (In-house dosimetry 

guideline, 2009). The lateral margin from the CTV was set to 1.7 cm, and reduced by 0.2 cm 

posteriorly to 1.5 cm to provide rectal sparing for the 6 lateral-most beams (67.5, 90, 112.5, 

247.5, 270, and 292.5 degrees). Then, a “test beam” was applied to each field to cover the CTV 

with zero margins, and the SOBP and range of each “test beam” were used to calculate the 

treatment parameters. The distal margins were calculated as 3 mm plus 3.5% of the range, and 
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the proximal margins were calculated as 3 mm plus 3.5% of the range minus the SOBP width 

(Moyers et al., 2001). The border smoothing was set to the typically used standard-of-care 

value of 1 cm. The compensator smearing was found by taking the quadratic sum of 3% of the 

range and the sum of setup and motion uncertainty. Anterior-posterior (AP) and posterior-

anterior (PA) beams are not part of the standard-of-care at our institution. However, it was 

desired to replicate the rectal sparing provided by the 0.2 cm posterior reduction in the lateral 

margins in the AP and PA beams. In order to provide this sparing, 0.2 cm was subtracted from 

the posterior margins of the 6 AP- and PA–most beams (22.5, 157.5, 180, 202.5, 337.5, and 

360 degrees). Then, the margins, border smoothing, and compensator smearing were applied in 

the TPS to calculate the final treatment beams (which resulted in a final range and SOBP for 

each beam). Following this method, treatment plans with uniform beam weighting were created 

for the small, medium, and large patient for specific aim 1, and were defined as the nominal 

proton arc treatment plans for these patients. 

 Specific aim 2 investigated the dosimetric impact of variable beam weighting for the proton 

arc therapy plan for the medium patient. The ERR of SMN incidence attributed to the 

therapeutic dose from each individual beam was determined using an LNT risk model (section 

2.4) and minimized using a gradient search algorithm (Microsoft Office Excel 2003, Microsoft 

Corporation, Redmond, WA). Corresponding contralateral beams (Figure 2.4) had nearly 

identical risk of an SMN due to anatomical symmetry of the pelvis (for example, 45 and 315 

degrees). Because of this symmetry, the risks from contralateral beams were averaged then 

minimized as a pair of right and left beams with equal weights. The objective function to be 

minimized was based on the risk of an SMN of the bladder, rectum, or a combination of the 

two. However, because the AP and PA beams were on the sagittal axis, these two beams did 

not require a contralateral pair. 



   

 28 

 
Figure 2.4 – Illustration of beam pairs. Paired beams are denoted by the same color line. 

Beams were paired because they contributed approximately the same risk of SMN due to the 

symmetry of the pelvis. Because the AP (0/360 degrees) and PA (180 degrees) beams were on 

the sagittal axis, they were not paired.  

 

 Constraints on the optimization ensured that the maximum and minimum weights of each 

beam were within the mechanical and radiation limitations of the treatment unit (Table 2.4). 

The dynamic range of the proton gantry rotation speed was measured to be a factor of 10, 

ranging from 0.1 rpm to 1 rpm. The dynamic range of the dose rate spanned 0.2 Gy/min to 2 

Gy/min. A proton therapy MLC would be required to routinely deliver the proton arc therapy 

plans described in this work, and the maximum MLC leaf speed was estimated from the 

literature to be 3 cm/s (Wijesooriya et al., 2005). The maximum leaf speed required for the 

nominal proton arc treatment plan was determined by measuring the distance from the cranial-

caudal axis at isocenter in 0.5 cm intervals for each aperture, finding the maximum difference 

in distance between consecutive static apertures, then dividing the distance by the minimum 
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time per beam. It was found that the maximum leaf speed required was 0.75 cm/s (ignoring 

acceleration requirements, which were deemed of secondary importance compared to the other 

approximations). Therefore, it was not necessary to explicitly constrain beam weighting based 

on MLC leaf operating characteristics. The treatment time was constrained at 5 minutes or less 

for patient comfort, and facility throughput and efficiency. The constraints in this work were 

estimated for the purpose of theoretically testing the feasibility of proton arc delivery. In 

general, these limitations are facility- and machine-specific. 

Table 2.4 - Constraints placed upon the optimization algorithm to determine beam weighting. 

 

 Sets of optimal beam weights were separately determined for the following objectives: 

minimize the total of risk of an SMN in the bladder and the rectum, the bladder only, and the 

rectum only. The latter two cases are mainly for illustrative purposes, but could have 

hypothetical clinical implications. For example, in the unusual case that a patient has had a 

cystectomy or proctectomy, it would be impossible to induce an SMN in an organ that has been 

removed.  

 An additional special case was considered for specific aim 3. A treatment plan with a set of 

non-uniform beam weights optimized to minimize the risk of second cancers in the bladder and 

rectum was generated for a patient with a prosthetic hip. For this patient, the beams traversing 

through the prosthesis on the ipsilateral side of the patient (67.5, 90, and 112.5 degrees) were 

disallowed due to complications with treating through a large, metal implant including range 

limitations and CT artifacts (Newhauser et al., 2008), then the optimization was performed as 
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before. Due to the asymmetry of the anatomy and limitations on allowed beam angles, beams 

were not mirrored during optimization. 

 A summary of the four optimization objectives for which optimized treatment plans were 

created for specific aim 2 is provided in Table 2.5. 

Table 2.5 – Objectives and constraints for specific aim 2 for which optimal beam weighting 

was found using gradient search optimization. Then, the beam weights were applied to the 

medium patient‟s nominal treatment plan to create risk-minimized plans for each objective.   

 Constraints and Objectives Taken into Account 

Objective Index 
Minimize Risk of 

SMN of Bladder 

Minimize Risk of 

SMN of Rectum 

Forbidden Angles 

[degrees] 

1 Constrained Constrained - 

2 Constrained - - 

3 - Constrained - 

4 Constrained Constrained 67.5, 90, 112.5 

 

 Specific aim 3 investigated the impact of margin size on predicted risk. Therefore, proton 

arc treatment plans were created for the medium patient with varying margins around the CTV, 

each with a corresponding VMAT treatment plan as described in section 2.2.1. However, as 

mentioned previously, there are subtleties regarding the comparison of margins from photon 

and proton plans due to differences in planning procedure (Moyers et al., 2001; Moyers and 

Miller, 2003; ICRU, 2007). Photon plans were directly planned to the PTV, while proton plans 

were planned to the CTV with margins that did not exactly correspond to expansions to a PTV 

(Figure 2.3).  

 As mentioned above, the proton arc plans were not explicitly planned to the PTV. 

Therefore, in order to create plans for specific aim 3, the differences in PTV size from nominal 

(last two columns in Table 2.3) were applied to the nominal proximal, distal, and lateral 

margins around the CTV to produce plans that were appropriate for the different sized PTVs. 

Figure 2.5 illustrates this method, which corresponds to the middle section of the diagram in 

Figure 2.3. The resulting treatment margins and compensator smearing for the treatment plans 

created for specific aim 3 are listed in Tables 2.6 and 2.7.  
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Figure 2.5 - Diagram showing the transformation applied to margins to cover a different sized 

PTV. Here, the PTV below is 3 mm smaller. Therefore, 3 mm is subtracted from all margins to 
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provide the appropriate field size and SOBP to at least encompass the smaller PTV (diagram 

not to scale).  

 

Table 2.6 - Compensator smearing and proximal and distal margins (in cm) from the CTV for 

the proton arc plans. Plan indices correspond to those of the expansions listed in Table 2.3. The 

beams angles are in units of degrees. 

 
 

Table 2.7 - Lateral margins (in cm) from the CTV for the proton arc plans. Plan indices 

correspond to those of the expansion margins listed in Table 2.3. “Rectal Side” refers to the 

posterior margin, which encroaches on the rectum. The beam angles are in units of degrees.  

 
 

2.3. Stray Dose Estimation 

 2.3.1. Volumetric Modulated Arc Therapy 

 Commercial TPSs accurately calculate therapeutic dose (Aspradakis et al., 2003), but 

underestimate stray radiation (Howell et al., 2010a; Howell et al., 2010b). Howell et al. (2010a; 

2010b)  reported that the TPS used in this study underestimated the stray dose by an average of 

40% ± 20% for regions where the reported dose was less that 5% of the prescribed dose. In that 

study, they found that the worst underestimation occurred farthest from the field edge (i.e. very 

low isodose regions).  



   

 33 

 Therefore, in this study, to more accurately approximate stray radiation, we increased the 

doses that were less than 5% of the prescription dose. This was accomplished by multiplying 

the doses in the differential dose-volume histogram (DVH) ranging from 0% to 5% of the 

prescription dose by 1.4. This procedure was conservative in that the average distance from the 

field edge in our study exceeded that reported by Howell et al. Then, the risk was calculated 

using the modified DVH. 

  2.3.2. Proton Arc Therapy 

Because the commercial TPSs for proton therapy do not predict stray neutron dose, an 

in-house Monte Carlo method was used to predict these values. Monte Carlo methods have 

been used in the past to estimate stray doses for proton therapy (Agosteo et al., 1998; Schneider 

et al., 2002; Paganetti et al., 2004; Fontenot et al., 2005a; Polf and Newhauser, 2005; Jiang et 

al., 2005; Herault et al., 2005; Tayama et al., 2006b; Zheng et al., 2007a; Zheng et al., 2007b; 

Zheng et al., 2008b; Moyers et al., 2008a; Zacharatou Jarlskog et al., 2008; Taddei et al., 2008; 

Fontenot et al., 2008; Fontenot et al., 2009; Newhauser et al., 2009a; Taddei et al., 2009b; 

Bednarz et al., 2009; Fontenot et al., 2010; Zhang et al., 2010; Taddei et al., 2010a; Taddei et 

al., 2010b; Taddei et al., 2010c). The Monte Carlo code MCNPX (Monte Carlo N Particle 

eXtended) (Waters et al., 2007; Pelowitz, 2007) has been used extensively by our research 

group (Newhauser et al., 2007b) and was chosen for this work. 

 Monte Carlo simulations were completed to estimate the stray neutron dose for the proton 

arc therapy treatment plan for the medium patient. The process is reviewed here, and further 

details can be found in the literature (Newhauser et al., 2007b; Fontenot et al., 2008; Zheng et 

al., 2008a; Fontenot, 2008). We used an in-house code that converts patient CT and other 

treatment plan information into MCNPX input files, runs MCNPX simulations with version 

2.7c of the code, then converts the output into Digital Imaging and Communications in 

Medicine (DICOM) files that can be re-imported into the TPS for visualization and analysis. 
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For these simulations, the entire proton nozzle was simulated (Newhauser et al., 2007a), and 

the patient CT dataset was used as the voxelized phantom on which the dose was calculated 

using F6 tallies. Once the simulated dose distributions were re-imported in to the TPS, mean 

neutron doses to the bladder wall and rectal wall were computed and recorded.   

 Because neutrons have a different RBE for carcinogenesis than photons, a radiation 

weighting factor must be applied to convert absorbed dose to equivalent dose. The equation 

describing the relationship between absorbed dose and equivalent dose is 

                                                                   DwH R ,                                                     (2.1) 

where H is the equivalent dose, Rw  is the radiation weighting factor for neutrons, and D is the 

absorbed dose. Publication 92 of the International Commission on Radiological Protection 

(ICRP) (2003) recommends a continuous function for the weighting factor of neutrons based on 

neutron energy (Figure 2.6), with a maximum of approximately 20 at 1 MeV.  
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Figure 2.6 - Radiation weighting factor (wR) for neutrons vs. neutron energy (reprinted with 

permission) (ICRP, 2003).  

 Because the neutron spectra incident upon each organ are unique, Rw  values are also 

unique to each organ. These were determined by Fontenot et al. (2008; 2008; 2009) for a 

parallel-opposed proton therapy treatment of the prostate (Table 2.8) for the same three patients 

as studied in this work. In order to be conservative, the largest values of Rw  of the three 

patients were used for all three patients in our study. Because of the uncertainty in determining 

Rw  values (Kellerer et al., 2006; Hall, 2007; Fontenot, 2008; Fontenot et al., 2010), factors of 

0.5, 2, and 5 were applied to the ICRP values for sensitivity analyses (Table 2.8), where a value 

of 5 corresponds to a maximum neutron radiation weighting factor of approximately 100. The 

sensitivity of risk predictions to uncertainty in the radiation weighting factor was evaluated 

using the medium patient‟s nominal treatment plan.  

Table 2.8 – Mean neutron radiation weighting factors for the bladder and rectum for a parallel-

opposed proton therapy treatment of the prostate determined in the work of Fontenot et al. 

(2008; 2008; 2009). For sensitivity analysis, the Rw  values were modulated by factors of 0.5, 2 

and 5. 

Organ 
Rw  0.5* Rw  2* Rw  5* Rw  

Bladder 7.36 3.68 14.72 36.80 

Rectum  6.94 3.47 13.88 34.70 

  

 Then, the total equivalent dose for each dose-bin of the bladder wall and rectal wall from 

a proton therapy treatment for prostate cancer was found with the equation 

                                                  strayabsorbedtotal 1.1 HDH                                             (2.2) 

where Htotal is equal to the total equivalent dose in sieverts for the dose-bin, 1.1 is the 

recommended generic RBE value for protons (section 1.2.2) to convert to Gy (RBE), Dabsorbed is 

the absorbed therapeutic proton dose in gray, and Hstray is the stray equivalent dose (equation 

2.1). 
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 The stray doses for the small and large patients in this study were approximated as the stray 

doses estimated by Fontenot et al (2008) using MCNPX. In their study, the stray dose from 

parallel-opposed beam proton therapy was simulated for the same prostate cancer patients as 

used in this work. The total stray dose from parallel-opposed beam proton therapy of the 

prostate apparently provides a conservative estimate of the total stray dose from proton arc 

therapy of the prostate (Sengbusch et al., 2009). Neutron production increases as proton energy 

increases (Zheng et al., 2008a) and the highest beam energies in a proton arc therapy treatment 

plan occur at the lateral angles. Therefore, the lower energy protons from other angles produce 

fewer neutrons and contribute to a lower overall stray dose. However, the beam arrangement is 

uniformly distributed around the patient for our study, which could produce a different 

distribution of neutrons throughout the body. Despite the discrepancies in the beam 

arrangement, this was determined to be a reasonable estimate of neutron dose for this study.  

2.4. Risk Prediction 

 Unlike previous studies (Taddei et al., 2008; Fontenot et al., 2009), the risk to the bladder 

and rectum were found using organ wall contours instead of the conventional whole organ 

contour, including contents. The motivation behind our choice is that the contents of those 

organs will be excreted from the body and therefore do not have carcinogenic capabilities. 

Consequently, for detailed dosimetric studies predicting carcinogenic risk, it naturally follows 

to delineate organs as solely the organ tissue and to exclude the contents.  

 2.4.1. Linear-No-Threshold Risk Model 

 The BEIR VII report (NRC, 2006) provides a method for predicting risk of radiogenic 

cancers and assumes an LNT relationship of risk of second cancer and dose. The quantity of 

excess relative risk (ERR) was chosen as the metric to express the risk of incidence of an SMN 

for this work. ERR is defined as 
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                                                         1
unexposed

exposed

R

R
ERR ,                                                  (2.3) 

where Rexposed is the rate of the exposed population, Runexposed is the rate of the unexposed 

population. The risk coefficient of 
H

ERR
 (Sv

-1
) is calculated with the following equation: 

                                                 
60

* a
e

H

ERR e

M ,                                             (2.4) 

where e* is equal to the age at exposure in years minus 30 when the age at exposure is less than 

30 years and equal to zero when the age at exposure is greater than 30 years; a is attained age 

(years); M  is the age-specific, and organ-specific instantaneous ERR/Sv value for males; γ 

accounts for the per-decade increase in age at exposure over the range of zero to 30 years, and 

η represents the exponent of attained age (NRC, 2006). From the information in BEIR VII and 

equation 2.4, risk coefficients were derived to be 0.51 ERR/Sv for the colon and 0.40 ERR/Sv 

for the bladder for the three patients studied (Fontenot, 2008). In addition, to separate the 

rectum from the colon, relative mass-fractions from Publication 89 of the ICRP (2002) were 

applied; 0.2 for the rectum and 0.8 for the colon.  

 Then, the ERR for each dose-bin, i, from the differential DVH was found by applying the 

risk coefficient to the equivalent dose of each dose-bin,                 

        ,
TTT
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T
H

ERR
H

V

V

m

m
ERR i

i

i
                                     (2.5) 

where 
T

subregion

m

m
 is the fractional mass of the subregion compared to the total mass of the organ 

(0.2 for the rectum, 1 for the bladder), Vi  is the volume of the dose-bin (cm
3
), VT is total the 
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volume of the tissue (cm
3
), Hi  is the total equivalent dose (Sv) of the dose-bin, and 

TH

ERR
 is 

the tissue-specific risk coefficient derived from the equation 2.4 above (Sv
-1

).  

 Next, the 
i

ERRT  was summed over n dose-bins to find the ERR for a given tissue: 

 

                                                      
n

i
i

ERRERR
1

TT .                                                 (2.6) 

 It should also be noted that, for the LNT model, multiplying the risk coefficient by the 

tissue mean equivalent dose is the same as equation and 2.6 because of the linear relationship 

of risk and dose. This concept is described mathematically in equation 2.7, 
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TT ,                                (2.7) 

where, HT is the mean equivalent dose of the tissue.  

 Finally, the total ERR for the patient was obtained from the sum over m tissue ERRs (m=2 

for our study: bladder and rectum), 

                                                         
m

j
j

ERRERR
1

T .                                                   (2.8) 

 Once the ERR was determined (regardless of risk model), the ratio of excess relative risk 

(RRR) was calculated by 

                                                          
VMAT

ProtonArc

ERR

ERR
RRR .                                                  (2.9)  

According to this definition, an RRR less than one indicates a lower risk of an SMN following 

proton arc therapy and an RRR greater than one indicates a lower risk of an SMN following 

VMAT.                        

 2.4.2. Alternate High Dose Risk Models 
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 The LNT relationship of the BEIR VII report is appropriate to predict radiogenic cancer 

risk for low doses up to a few sieverts (NCRP, 1993; Hall and Wuu, 2003; NRC, 2006), but the 

relationship between dose and risk is less well understood at higher doses. As discussed in 

section 1.3 and following the approach of Fontenot et al. (2008; 2009), the linear-exponential 

and linear-plateau models are proposed alternatives to the LNT model that account for cell 

sterilization. These models decrease or plateau, respectively, beyond a given equivalent dose 

which ranges from approximately 10 Sv to 40 Sv in the literature. The forms of the alternate 

risk models were similar to the work by Schneider et al. (2005; 2006; 2007) and were 

generated and applied by Fontenot et al. (2008; 2009). Both dose levels for inflection of the 

risk models were investigated in this work and will be denoted as the name of the risk model 

with a “-10” or “-40” suffix, e.g., “linear-exponential-10”. 

 The linear-exponential model of ERR for a dose-bin (ERRT)i was calculated with the 

equation, 

                                    iH

i
i

i
eH

H

ERR

V

V

m

m
ERR T
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TTT
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T ,                          (2.10) 

where 

0

TH

ERR
 is the organ-specific LNT risk model from BEIR-VII, Hi is the tissue-specific 

equivalent dose for the dose-bin, and αT is the tissue specific parameter that accounts for cell 

sterilization. Likewise, the linear-plateau excess relative risk for a dose-bin is given by 
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where the variables correspond to those in equation 2.10. The values for 

0

TH

ERR
 and αT for 

the bladder and rectum were computed by Fontenot et al. (2008) and are listed in Table 2.9, 

below. 

Table 2.9 - Risk model parameters for the linear-exponential and linear-plateau models for the 

bladder and rectum in Sv
-1

 (Fontenot, 2008). 
 

Risk Model 

Bladder Rectum 
0

TH

ERR
 αT 

0

TH

ERR
 αT 

Linear-exponential-10 0.49 0.090 0.61 0.090 

Linear-exponential-40 0.46 0.025 0.57 0.025 

Linear-plateau-10 0.51 0.250 0.65 0.250 

Linear-plateau-40 0.47 0.068 0.58 0.068 

 

 Then, the RRRs for the linear-exponential and linear-plateau models were found using the 

same method as for the LNT model. First the ERRdb was summed over all dose-bins (equation 

2.6), then the ERRT was summed over all tissues (equation 2.8), and finally the RRR was found 

by taking the ratio of the ERRProtonArc to ERRVMAT (equation 2.9).  

 To illustrate the behavior of risk as a function of dose, Figures 2.7 and 2.8 plot the predicted 

risk for incidence of SMN in the bladder and rectum, respectively.  
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Figure 2.7 - The LNT, linear-exponential, and linear-plateau risk models used to predict ERR 

of SMN incidence of the bladder (Fontenot et al., 2009). Volume-weighting for the fractional 

volume of a specific dose-bin, 
TV

Vi , has been set to 1 for this figure.  



   

 42 

 
Figure 2.8 - The LNT, linear-exponential, and linear-plateau risk models used to predict ERR 

of SMN incidence of the rectum (Fontenot et al., 2009). Volume-weighting for the fractional 

volume of a specific dose-bin, 
TV

Vi , has been set to 1 for this figure.  It can be seen that, 

partially due to the 0.2 mass-weight for the rectum, the ERR per Sv is less for the rectum than 

for the bladder. 

 

 2.4.3. Example Risk Calculations 

 To clarify the process of risk calculation, an example for both the LNT and an alternate risk 

model are provided below. First, the risk of an SMN of the bladder (wall) for the medium 

patient following VMAT was found using the LNT model. In this case, the mean dose to the 

bladder wall was 16.8 Sv (see sections 3.1.1 and 3.2.1), and the organ-specific, patient-specific 

risk coefficient for the bladder was 0.4 Sv
-1

 (section 2.4.1). Therefore, following equation 2.7, 

the LNT ERR for the bladder was given by 

                                                     7.64.08.16 1SvSv .                                             (2.12) 
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  The second example calculation, shown below, describes the prediction of the risk of 

SMN incidence in the rectum (wall) for the medium patient following proton arc therapy for 

the linear-exponential-10 risk model. The differential DVH for the tissue of interest was 

required for this calculation, and was exported from the treatment planning system into a 

spreadsheet. A graph of the differential DVH for the rectal wall was shown below in dark blue 

in Figure 2.9. After the differential DVH was obtained, the stray dose was added to every dose-

bin. Then, equation 2.10 was applied to each dose-bin to obtain the differential excess relative 

risk contributed by each dose-bin (Figure 2.9).  

 
Figure 2.9 - Calculated differential DVH and (ERRT)i for the rectum for the nominal proton arc 

therapy plan for the medium patient.  

 

Finally, the differential risks were summed to yield the total risk for the tissue. Combining 

equations 2.6 and 2.10, this process can be expressed as 

                              19.061.0
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where the sum was over all dose-bins, the 0.2 weighting factor is the 
T

subregion

m

m
 for the rectum, 

Vi  is the volume of the dose-bin in cm
3
, 33 is the VT of the rectal wall in cm

3
, 0.61 is the 

0

TH

ERR
for the linear-exponential-10 model for the rectum (Sv

-1
), Hi  is the equivalent dose for 

the dose-bin (Sv), and 0.09 is αT for the rectum (Sv
-1

) (Table 2.9).  

 

 2.4.4. Statistical Analysis 

 Due to time constraints on the length of this thesis project, the sample size for this work 

was limited to three patients. Despite the limited sample size, two statistical tests were chosen 

to compare the proton arc therapy and VMAT risk estimates: the sign test and the t-test 

(Rosner, 2006). The objectives of the tests in this work were mainly educational. However, 

these tests would be appropriate for a larger sample size, e.g., a future work. The software 

package StatXact® version 7.0 from Cytel Studio (Cambridge, MA) was used for both 

statistical tests. 

 The sign test is a nonparametric test that determines whether two samples are from the 

same distribution but ignores the magnitude of the differences, which makes it insensitive to 

outliers. Because of the small sample size, the exact sign test was performed. For our purposes, 

the quantity of interest was RRR and the value of interest was one (meaning equal risk 

following proton arc therapy and VMAT), and each RRR was defined as “+” if it was greater 

than one and “–“ if was less than one. The null hypothesis was H0: P(+) ≥ P(–) and the alternate 

hypothesis was H1: P(+) < P(–), where P(±) is the probability of a + or –, respectively. The test 

statistic T is found, which is the total number of –‟s (RRR < 1). Then, n was defined to be the 

total number of +‟s and –‟s, excluding ties. Next, t is found using the equation 

                                                           2

1

2

1
nwnt ,                                               (2.14) 



   

 45 

where wα is the 95
th

 percentile of the w distribution for a one-sided significance level (α) of 

0.05 (α is also the probability of a falsely rejecting the null hypothesis). Finally, H0 was 

rejected at the level of α if T is greater than or equal to n-t (Conover, 1980). 

 The t-test is a parametric test that determines whether the mean of a sample distribution is 

the same as the population mean. It should be noted that the t-test assumes a t-distribution for 

the sample mean, which may not be assumable for a sample size of three, given the underlying 

distribution of ERR. Regardless of the small sample size, it was decided that performing the t-

test was of pedagogical value. In this case, to test null hypothesis H0: RRR ≥ 1 vs. the alternate 

hypothesis:  H1: RRR < 1, with a one-sided significance level α of 0.05, the test statistic t was 

computed (Rosner, 2006) according to 

                                                                   

n
s

x
t 0 ,                                                     (2.15) 

where x is the sample mean (RRR), μ0 is the expected or population mean (1), s is the sample 

standard deviation, and n is the sample size. The null hypothesis was rejected if t < tn-1,1-α, 

where tn-1,1-α is the 5
th

 percentile of the t distribution with n-1 degrees of freedom for a one-

sided test. 

 2.4.5. Uncertainty Analysis 

 In order to estimate the uncertainty associated with the prediction of the mean RRR, error 

propagation was performed. A derivation of the formula for uncertainty in RRR for a patient 

was reported by Fontenot et al. (2008; 2010) and was adapted for this work. One of the 

differences in our formula is that the uncertainty in therapeutic and stray dose for VMAT 

(analogous to IMRT in the work of Fontenot et al.) was combined into one factor due the 

method utilized for stray dose estimation. Another difference is that there is a term for the 

uncertainty in the Rw  added in quadrature. Additionally, our error propagation is explicitly for 
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the mean RRR, in order to incorporate the covariance from the correlations between the 

modalities.  Finally, it was found that the uncertainty in risk model was asymmetric when the 

LNT model was assumed as the baseline risk model. Therefore, a term for uncertainty in the 

risk model was added in quadrature, but only to the negative side. This resulted in an 

asymmetrical overall relative uncertainty in the mean RRR:       
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In this formula, 
RRR

RRR  is the relative uncertainty in the mean RRR, and the quantity σ 

represents one standard deviation (therefore a 68% confidence interval). The outermost sum is 

over the 3 patients (p), and the inner sums are over the two tissues (T) - the bladder and the 

rectum. The subscript V denotes VMAT and the subscript P denotes proton arc therapy. 1ERR  
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is the excess relative risk from primary radiation, 
1

1

D

D
 is the relative uncertainty in the 

therapeutic dose from the treatment planning system for proton arc therapy and the total 

uncertainty in the VMAT dose, 2ERR is the excess relative risk from the stray radiation, 

2

2

D

D
 is the relative uncertainty in the stray dose, and TERR  is the total excess relative risk 

for a given tissue. The 
1

1

D

D
 from the VMAT plan was estimated using the quadratic sum of 

the relative uncertainty in the therapeutic dose from the treatment planning system and the 

uncertainty in the stray dose correction method (section 3.2.1). The two terms 

Rw

RRR

RRR
and 

RM

RRR

RRR
are the relative uncertainty in the mean RRR contributed from the uncertainty in the 

Rw  and risk model, respectively. Both of these quantities were determined with a sensitivity 

analysis to evaluate their effect on RRR, which is why they are relative to RRR and added in 

quadrature to the rest of the equation. 

Rw

RRR

RRR
 was estimated by assuming the 95% 

confidence interval of the Rw  was 0.5* Rw  to 5* Rw  (Table 2.8) for each patient and dividing 

the range in resulting mean RRR by 2 to find 2σ. Then, 2σ was divided by 2 to obtain the 

numerator in the uncertainty term. 

RM

RRR

RRR
 only contributed to the negative overall 

uncertainty term (2.16b). This term was also found with a sensitivity analysis, where the range 

in mean RRR values from the risk models studied in this work was assumed to be one σ of the 

distribution of RRR from uncertainty in the risk model. The last term accounts for the 
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covariance, which, in this case, reduces the relative uncertainty in the mean RRR because 

correlations in the error of the terms used in the calculation of the mean RRR. The covariance 

was calculated using the equation: 

                        i
i

i
iPV

PP

n

i

VVERRERR ERRERRERRERR
n 1

1
,                     (2.17) 

where n is the number of patients (3 for this study), and ERR  denotes the mean value (Taylor, 

1982).  

 In addition to propagating the uncertainty for the mean RRR, the uncertainty was 

propagated for two specific cases. First, the uncertainty was propagated for each patient 

individually according to the equations: 
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where the variables correspond to equations 2.16a and 2.16b, but are for each patient instead of 

the mean. Second, the uncertainty was propagated for the mean RRR (according to equations 

2.16a and 2.16b) without the 

2

Rw

RRR

RRR
and the covariance term. 
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 2.4.6. Summary of Risk Calculations 

 In order to clarify and summarize the methods for this work, the various combinations of 

variables studied are organized below in Tables 2.10 and 2.11. 

Table 2.10 - Summary of variables and their corresponding specific aim. 

Goal 
Patient 

Model 
Risk Model 

Modality 

Studied 

Proton 

Arc Beam 

Weighting 

Spec. 

Aim 

Baseline 

LNT RRR 

Estimate 

Small Linear-no-threshold 
VMAT and 

Proton Arc 
Uniform 1 Medium Linear-no-threshold 

Large Linear-no-threshold 

Sensitivity of 

RRR to Risk 

Model 

Small, 

Med, and 

Large 

Linear-exponential-10 

VMAT and 

Proton Arc 
Uniform 1 

Small, 

Med, and 

Large 

Linear-exponential-40 

Small, 

Med, and 

Large 

Linear-plateau-10 

Small, 

Med, and 

Large 

Linear-plateau-40 

Sensitivity of 

RRR to 

Neutron Rw  

Medium Linear-no-threshold Proton Arc Uniform 1 

Sensitivity of 

RRR to 

Beam 

Weighting 

Medium Linear-no-threshold Proton Arc 

 

Non-

uniform 

2 

Sensitivity of 

RRR to 

Margin Size 

Medium 

Linear-no-threshold 

VMAT and 

Proton Arc 
Uniform 3 

Linear-exponential-10 

Linear-exponential-40 

Linear-plateau-10 

Linear-plateau-40 

 

Table 2.11 - Summary of the source of stray doses for the proton arc therapy treatment plans. 

Patient Model Specific Aim 
Source of Neutron Dose 

Estimate 

Small 1 Fontenot et al. (2008) 

Medium 1, 2 and 3 Simulations from this work 

Large 1 Fontenot et al. (2008) 
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Chapter 3 

Results 

 The results from this work are presented in this chapter. First, the treatment plans and 

therapeutic dose determination will be presented (section 3.1). Specifically, details of the 

VMAT (section 3.1.1) and proton arc (section 3.1.2) treatment plans are presented, followed by 

dose-volume histogram comparisons in section 3.1.3. Next, the results of the stray dose 

determination are presented (section 3.2). Finally, section 3.3 presents the predicted ERR values 

for VMAT and proton arc therapy, the RRR of the two modalities, the statistical analysis 

(section 3.3.1), and the uncertainty analysis (section 3.3.2).  

3.1. Therapeutic Dose Distributions 

 3.1.1. Volumetric Modulated Arc Therapy 

 The VMAT treatment plans created for specific aim 1 are presented below. Figure 3.1 

shows the therapeutic dose using a colorwash scale ranging from 10 Gy (blue) to 80 Gy (red). 

The prescribed dose for each patient was 76 Gy (normalized to 78.8 Gy to the mean of the 

PTV; section 2.2.1), and the MUs required for the small, medium and large patients‟ treatment 

plans were 669, 962, and 920, respectively. For the small patient, the maximum dose was 

located in the PTV in the right seminal vesicle and was 107.9%. The maximum dose for the 

medium patient was located in the left, inferior, posterior portion of the PTV and was 108.8%. 

For the large patient, the maximum dose was located in the PTV in the left seminal vesicle and 

was 108.0%. The minimum, mean, and maximum doses to the CTV, PTV, rectum (and 

contents), rectal wall, bladder (and contents), and bladder wall for these treatment plans are 

presented in Table 3.1, below. In general, the low dose was distributed over a large amount of 

healthy tissue, but the high dose was conformed to the PTV. A high dose gradient existed in the 

rectum, which was desirable to minimize toxicities and satisfy the DVH constraints (Table 2.2).  
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Figure 3.1 - Axial (left) and sagittal (right) CT slices of the small (top), medium (middle), and 

large (bottom) patients‟ VMAT treatment plans showing a colorwash of the dose distribution 

from 10 Gy to 80 Gy. The CTV is shown in cyan, the PTV in white, the bladder in yellow, and 

the rectum in green. The 30 Gy isodose level is represented by cyan. 

 

 

Table 3.1 - Minimum, mean, and maximum therapeutic doses for the CTV, PTV, rectum and 

contents, rectal wall, bladder and contents, and bladder wall for the small, medium, and large 

patients for the VMAT treatment plans with nominal margins for specific aim 1. 
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 The VMAT treatment plans created for specific aim 3 with various size margins around 

the CTV are shown below in Figure 3.2. It can be seen that as the margins from the CTV 

increase, the high-dose area (red) increases to cover the larger PTV and the medium dose (30 

Gy) (cyan) extends further into the rectum. The effect of margin size on dose to the bladder 

wall and rectal wall is presented in Table 3.2 and graphed in Figure 3.3 below, where it can be 

seen that mean doses to the bladder wall and rectal wall increase as margin size increases.

 However, maximum and minimum doses remain relatively constant with increasing 

margin size. This is because the bladder wall and rectal wall are already receiving very close to 

the maximum dose for the plan. Therefore, as the high dose encroaches further into the organs, 

the mean dose increases while the maximum dose remains fairly stable. Similarly, the 
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minimum dose to the organs remains relatively constant because it is determined by the dose 

far from the target, which is not significantly affected by the size of the high dose region.   

 
Figure 3.2 – Axial images of a sampling of the VMAT treatment plans with varying margin 

size around the CTV. Plan indices correspond to those in Table 2.3, where the margins increase 

as the plan index increases. The CTV is shown in cyan, the PTV in white, and the rectum in 

green. Close-up views of the central region including the CTV, PTV and rectum are inset. 

 

Table 3.2 - Minimum, mean and maximum doses to the bladder wall and rectal wall for VMAT 

as a function of margin size around the CTV. Plan indices correspond to Table 2.3, where plan 

1 has the smallest expansion and plan 6 has the largest expansion. As expected, mean doses to 

both the bladder wall and rectal wall increase as margin size increases. 
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Figure 3.3 – Therapeutic mean absorbed dose to the bladder wall and rectal wall as a function 

of “else” margin size around the CTV to create the PTV for the VMAT treatment plans for 

specific aim 3. Posterior margins are 2 mm less than those graphed, except for 0 mm “else” 

expansion, where the posterior margin is also 0 mm. Margin sizes correspond to Table 2.3. The 

nominal expansion is 7 mm in the “else” anatomical directions. As expected, mean dose 

increases with margin size. 

 

 3.1.2 Proton Arc Therapy 

 The proton arc therapy treatment plans with varying number of treatment beams are 

presented below. The mean doses to the bladder (and contents), bladder wall, rectum (and 

contents), rectal wall, femoral heads, and normal tissues were plotted vs. the number of 

treatment beams. Figure 3.4 demonstrates the weak dependence of mean dose on number of 

beams beyond 8 beams. The risk of second cancer of the bladder and rectum was also 

calculated for these treatment plans (method described in section 2.4), which also shows a weak 

dependence on number of beams (Figure 3.5). Because of the smooth shape of the isodose lines 

produced with the 16-field plan (Figure 3.6), we approximated all arc dose distributions using 

16 static fields.  
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Figure 3.4 – Calculated mean dose (DT) vs. the number of equally spaced and uniformly 

weighted treatment beams (n). Little variation is observed beyond 8 beams. 

 

 
Figure 3.5 – Predicted excess relative risk (ERR) of a second malignant neoplasm in the 

bladder and rectum vs. number of equally spaced and uniformly weighted beam angles, n, for 

two different risk models. The linear-no-threshold (LNT) model is the least dependent on the 
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distribution of dose in a volume, and the linear-exponential-10 (Lexp10) is the most dependent 

on the distribution of dose. A weak dependence on the number of beams was observed.  

 

 
Figure 3.6 - Isodose lines of the 6, 8, 12, and 16-beam treatment plans, showing the 45 Gy 

(RBE) (orange), 30 Gy (RBE) (cyan), and 20 Gy (RBE) (yellow) isodose lines, revealing a 

significant smoothing with increasing number of beams. 16 beams produced extremely smooth 

isodose lines. The CTV is shown in cyan, the PTV in white, and the rectum in green. 

 

 The proton arc therapy treatment plans created for specific aim 1 are presented below. 

Figure 3.7 shows the therapeutic dose using a colorwash scale ranging from 10 Gy (RBE) to 80 

Gy (RBE). For the small patient, the maximum dose was located in the PTV in the seminal 

vesicles and was 106.6%. The maximum dose to the medium patient was in the PTV in the 

bladder wall and was 105.5%. For the large patient, the maximum dose was within the CTV 

and was 105.6%. The minimum, mean, and maximum doses to the CTV, PTV, rectum (and 

contents), rectal wall, bladder (and contents), and bladder wall for these treatment plans are 

presented in Table 3.3, below. It can be seen that the low dose region encompasses a smaller 

overall volume than the VMAT plans (Figure 3.1). On average, proton arc therapy reduced the 

volume of normal tissue exposed to doses between 10 and 30 Gy or Gy (RBE) by 73%. The 
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high dose region is very conformal, but because proton treatment beams are typically designed 

with larger margins, the high dose region is slightly larger in the proton arc therapy plans than 

in the VMAT plans. Specifically, the small, medium, and large patients‟ irradiated volumes 

(volume receiving at least 76 Gy or Gy (RBE)) were 106, 156 and 159 cm
3
, respectively, for 

proton arc therapy, and 89, 138 and 135 cm
3
, respectively, for VMAT. 

 

 
Figure 3.7 - Axial (left) and sagittal (right) CT images of the small (top), medium (middle), 

and large (bottom) patients‟ proton arc treatment plans showing a colorwash of the dose 

distribution from 10 Gy (RBE) to 80 Gy (RBE). The CTV is shown in cyan, the PTV in white, 
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the bladder in yellow, and the rectum in green. The 30 Gy (RBE) isodose level is represented 

by cyan. 

 

 

Table 3.3 - Minimum, mean, and maximum therapeutic doses for the CTV, PTV, rectum and 

contents, rectal wall, bladder and contents, and bladder wall for the small, medium, and large 

patient for the proton arc therapy treatment plans with uniform beam weighting and nominal 

margins for specific aim 1. 

 
 

 The first set of proton arc therapy treatment plans created using non-uniform beam weights 

(specific aim 2) is shown below in Figure 3.8 (optimization objectives 1, 2, and 3 from Table 

2.5, respectively). The beam angles found through optimization to minimize the combined risk 

of second cancer of the bladder and rectum were 90 and 270 degrees, a 2-field lateral-opposed 

treatment with equal beam weighting. The beam angles that minimized the risk of second 

cancer of the bladder only were posterior oblique beams at 157.5 and 202.5 degrees with equal 

weighting. The beam angles that minimized the risk of second cancer of the rectum only were 
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anterior oblique beams at 45 and 315 degrees with equal weighting. The minimum, mean, and 

maximum doses to the bladder wall and rectal wall from these treatment plans are listed in 

Table 3.4.  

 
Figure 3.8 - Proton arc therapy treatment plans with SMN risk-minimized beam weighting for 

combined bladder and rectum (A, 90 and 270 degrees with 1:1 weighting), bladder only (B, 

157.5 and 202.5 degrees with 1:1 weighting), and rectum only (C, 45 and 315 degrees with 1:1 

weighting).  

 

 Another goal of specific aim 2 was to determine the optimal beam weighting for a patient 

with a prosthetic hip (objective 4 from Table 2.5). The resulting treatment plans are shown in 

Figure 3.9 below. The plan labeled “prosthetic hip plan 1” utilized 270 and 292.5 degree beams 

with weighting of 1.94:1, respectively. This plan minimized the risk of SMN incidence in the 

bladder and rectum, but deposited an unacceptable amount of dose in the healthy femoral head: 

15% of the right femoral head received at least 64.8 Gy (RBE). The clinical objective for the 

femoral heads is that 15% of the structure should receive no more than 45 Gy (RBE). A second 

treatment plan, “prosthetic hip plan 2”, shown on the right in Figure 3.9) utilized 270 and 157.5 

degree beams with weighting of 1.94:1, respectively, and met the clinical DVH constraints for 

the femoral head, bladder, and rectum. The minimum, mean, and maximum doses to the 

bladder wall, rectal wall, and femoral head from these treatment plans are listed in Table 3.4.     
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Figure 3.9 - Proton arc therapy treatment plans with SMN risk-minimized beam weighting for 

combined bladder and rectum with a prosthetic hip. The figure on the left shows “Prosthetic 

Hip Plan 1”, with the angles of 270 and 292.5 degrees and weights of 1.94:1, respectively. The 

figure on the right shows “Prosthetic Hip Plan 2”, with angles of 270 and 157.5 degrees and 

weights of 1.94:1, respectively. Notice the reduction in high dose to the right femoral head in 

prosthetic hip plan 2. 

 

Table 3.4 - Minimum, mean and maximum doses to the bladder wall and rectal wall from 

various risk-optimized proton arc therapy treatment plans.  

 
 

 The proton arc therapy treatment plans with varying margins created for specific aim 3 

are shown below in Figure 3.10. Similar to the VMAT plans, as the margins from the CTV 

increase, the red high-dose region increases to cover the larger PTV and the cyan region of 

medium dose (30 Gy (RBE)) extends further into the rectum. The dose to the bladder wall and 

rectal wall are presented for each treatment plan in Table 3.5 and graphed in Figure 3.11 below, 

where it can be seen that doses to the bladder wall and rectal wall increase as margin size 

increases. Similar to the VMAT plans for specific aim 3, the minimum and maximum doses to 

the bladder wall and rectal wall are relatively insensitive to margin size (section 3.1.1). 
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Figure 3.10 – Axial CT images of a sample of the proton arc treatment plans with varying 

margins from the CTV. Plan indices correspond to Tables 2.6 and 2.7, where the margins 

increase with plan index. The margins listed on the figure correspond to the margins from the 

CTV to create the PTV. Lateral, distal and proximal margins around the CTV can be found in 

Tables 2.6 and 2.7. The CTV is shown in cyan, the PTV in white, and the rectum in green. The 

colorwash scale is from 10 Gy (RBE) to 80 Gy (RBE). Close-up views of the central region 

including the CTV, PTV and rectum are inset. 

 

Table 3.5 - Minimum, mean and maximum doses to the bladder wall and rectal wall for proton 

arc therapy as a function of margin size around the CTV. Plan indices correspond to Tables 2.6 

and 2.7, where plan 1 has the smallest margin and plan 6 has the largest margin. 
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Figure 3.11 – Therapeutic mean dose to the bladder wall and rectal wall as a function of “else” 

margin size around the CTV to created the PTV for the proton arc therapy treatment plans for 

specific aim 3. Posterior margins are 2 mm less than those graphed, except for the 0 mm “else” 

expansion, where the posterior margin is also 0 mm. Plan indices and margin sizes correspond 

to Tables 2.6 and 2.7. The nominal expansion is 7 mm “else.” As expected, dose increased with 

margin size. 

  

 3.1.3. Dose-Volume Histogram Comparisons 

 Since DVHs are traditionally plotted for the whole organ (including the contents), we 

plotted the difference between the traditional whole organ contour and the organ wall contour 

in Figures 3.12 and 3.13, below. In general, the organ wall curves are slightly higher, indicating 

a larger percentage of the organ receiving a given dose. 
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Figure 3.12 - Cumulative dose-volume histogram for the medium patient for VMAT (black; 

Gy) and uniformly weighted proton arc therapy (red; Gy (RBE)) nominal treatment plans 

created for specific aim 1 showing the difference between therapeutic absorbed dose to the 

bladder (and contents) and bladder wall. The bladder wall curves are consistently higher than 

the bladder curves. 

 

 

 
Figure 3.13 - Cumulative dose-volume histogram for the medium patient for the VMAT 

(black; Gy) and uniformly weighted proton arc therapy (red; Gy (RBE)) nominal treatment 

plans created for specific aim 1 showing the difference between therapeutic absorbed dose to 
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the rectum (and contents) and rectal wall. In general, the rectal wall curves are higher than the 

rectum curves.  

 

 Figures 3.14 and 3.15 display the bladder wall and rectal wall DVHs, respectively, for the 

VMAT and proton arc therapy treatment plans created for specific aim 1. The results from all 

three patients are plotted together. The only obvious dependence on patient size is that the large 

patient doses are the highest in all cases. All of the DVH constraints were satisfied for all plans 

shown in Figures 3.14 and 3.15 and are quantitatively presented in Table 3.6.    

 

 
Figure 3.14 - Bladder wall cumulative dose-volume histogram for the small, medium, and 

large patients‟ nominal treatment plans for VMAT (black; Gy) and uniformly weighted proton 

arc therapy (red; Gy (RBE)) for specific aim 1.  
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Figure 3.15 - Rectal wall cumulative dose-volume histogram for the small, medium, and large 

patients‟ nominal treatment plans for VMAT (black; Gy) and uniformly weighted proton arc 

therapy (red; Gy (RBE)) for specific aim 1.  

 

Table 3.6 - DVH constraints and results for the bladder and rectum for the small, medium, and 

large patient treatment plans for specific aim 1 (uniformly weighted proton arc therapy). The 

results are shown for the bladder and rectum volumes (including contents) for consistency with 

clinically used DVH constraints. All DVH constraints were met.      

 
 

 For specific aim 2, treatment plans were created to investigate the effect of proton beam 

weighting on the risk of SMN incidence for proton arc therapy. Figures 3.16 through 3.20 

display the DVHs for the bladder wall and rectal wall for the various optimized proton arc 
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therapy plans compared to the nominal (uniformly weighted) proton arc therapy plan created 

for specific aim 1. Specifically, Figure 3.16 shows the resulting DVH from the risk-optimized 

plan where the combined risk of second cancer incidence of the bladder and rectum was 

minimized. Then, Figures 3.17 and 3.18 correspond to the treatment plans where the risk of 

second cancer of the bladder only and second rectal cancer only, respectively, were minimized. 

Finally, the DVHs for the treatment plans for the special case of a patient with a prosthetic hip 

are shown in Figures 3.19 (prosthetic hip plan 1) and 3.20 (prosthetic hip plan 2). The DVH for 

the right femoral head is also plotted for the prosthetic hip plans, since it is of particular 

concern. The quantitative DVH constraints and results for the bladder and rectum are listed in 

Table 3.7. All DVH constraints for the bladder and rectum were met, except for the rectal 

constraints shown in red for the bladder-only optimized treatment plan.   

 

 
Figure 3.16 - Cumulative dose-volume histogram for the SMN risk-minimized (bladder and 

rectum) beam weighted treatment plan (solid line) for the bladder wall (orange) and rectal wall 

(green) for proton arc therapy compared to the nominal equally-weighted treatment plan 

(dashed line). 
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Figure 3.17 - Cumulative dose-volume histogram for the SMN risk-minimized (bladder only) 

beam weighted treatment plan (solid line) for the bladder wall (orange) and rectal wall (green) 

for proton arc therapy compared to the nominal equally-weighted treatment plan (dashed line). 

 

 
Figure 3.18 - Cumulative dose-volume histogram for the SMN risk-minimized (rectum only) 

beam weighted treatment plan (solid line) for the bladder wall (orange) and rectal wall (green) 

for proton arc therapy compared to the nominal equally-weighted treatment plan (dashed line). 
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Figure 3.19 - Cumulative dose-volume histogram for the proton arc therapy prosthetic hip plan 

1 (solid line) and the nominal uniformly weighted proton arc therapy plan from specific aim 1 

(dashed line). The beam weighting was optimized to minimize the combined risk of second 

cancer of the bladder and rectum. 

 

 
Figure 3.20 - Cumulative dose-volume histogram for the proton arc therapy prosthetic hip plan 

2 (solid line) and the nominal uniformly weighted proton arc therapy plan from specific aim 1 

(dashed line). The beam weighting was optimized to minimize the combined risk of second 

cancer of the bladder and rectum. 
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Table 3.7 - DVH constraints and results for the bladder and rectum for the treatment plans 

created for specific aim 2 with non-uniform (risk-minimized) beam weighting. The results are 

shown for the bladder and rectum volumes (including contents) for consistency with traditional 

DVH constraints. All DVH constraints were met, except the rectal constraints shown in red for 

the bladder-only optimized plan (50%, 40% and 20% volume constraints).      

 
 

 Figures 3.21 through 3.24 show the cumulative DVHs for the treatment plans created for 

specific aim 3 where the margin size around the CTV was varied. The bladder wall and rectal 

wall DVHs are shown for the VMAT treatment plans in Figures 3.21 and 3.22, respectively, 

and the proton arc therapy treatment plans in Figures 3.23 and 3.24, respectively. It can be seen 

that the DVH curve is higher as the treatment margin increases, indicating a larger volume 

receiving a given dose. All of the DVH constraints used in the planning process were met for 

the VMAT and proton arc therapy plans and are listed in Tables 3.8 and 3.9, respectively.  
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Figure 3.21 - Cumulative dose-volume histogram for the bladder wall for the VMAT treatment 

plans for specific aim 3. The margin size around the CTV increased with plan index, revealing 

the positive relationship between volume irradiated and margin size. 

 

 
Figure 3.22 - Cumulative dose-volume histogram for the rectal wall for the VMAT treatment 

plans for specific aim 3. The margin around the CTV increased with plan index, revealing the 

positive relationship between volume irradiated and margin size. 

 

Table 3.8 - DVH constraints and results for the bladder and rectum for the VMAT treatment 

plans with varying margin size. The results are shown for the bladder and rectum volumes 

(including contents) for consistency with traditional DVH constraints. All DVH constraints 

were met. In general, dose increased with plan index (and margin size).      
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Figure 3.23 - Cumulative dose-volume histogram for the bladder wall for the uniformly 

weighted proton arc therapy treatment plans for specific aim 3. The margin size around the 

CTV increased with plan index, revealing the positive relationship between volume irradiated 

and margin size. 
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Figure 3.24 - Cumulative dose-volume histogram for the rectal wall for the uniformly weighted 

proton arc therapy treatment plans for specific aim 3. The margin around the CTV increased 

with plan index, revealing the positive relationship between volume irradiated and margin size. 

 

Table 3.9 - DVH constraints and results for the bladder and rectum for the proton arc therapy 

treatment plans with varying margin size. The results are shown for the bladder and rectum 

volumes (including contents) for consistency with traditional DVH constraints. All DVH 

constraints were met. In general, dose increased with plan index (and margin size) increases.      

 
 

3.2 Stray Dose Determination 

 3.2.1 Volumetric Modulated Arc Therapy Stray Dose 

  The contribution of stray dose (from leakage and scatter photons) for the VMAT 

treatment plans was estimated by introducing a correction to out-of-field region (outside the 5% 

isodose surface calculated by the TPS) where the TPS underestimates stray radiation (Howell et 
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al., 2010a; Howell et al., 2010b). The nominal correction was defined as a 40% increase 

applied to the out-of-field dose portion differential DVH for the bladder wall and rectal wall. 

The effect of this stray dose estimation is shown in Table 3.10. The largest impact of the 40% 

increase on the mean dose was seen in the bladder wall of the medium patient: a difference of 

0.43 Gy. Additionally, the lower and upper bounds of the corrected mean dose were found by 

increasing the out-of-field dose by 20% and 60%, respectively (Howell et al., 2010a; Howell et 

al., 2010b). Then, the percent error in the corrected mean dose was found by dividing the 

difference in the upper bound and lower bound mean doses by two, dividing that by the 

nominally corrected mean dose, and multiplying by 100. The resulting errors in mean dose 

ranged from 0.1% to 1.3%, depending on the patient and the organ (see last row in Table 3.10). 

The nominal, corrected differential DVH was used for the risk calculations, described in 

section 3.3, and the maximum percent error was used in the uncertainty analysis, described in 

section 3.3.2.   

Table 3.10 - Effect of the stray dose estimation method on the mean dose of the bladder wall 

and rectal wall for each patient. The maximum difference between the nominal corrected value 

and the uncorrected value was seen in the bladder wall of the medium patient: a difference of 

0.43 Gy. The maximum percent error, 1.3%, was used in the uncertainty analysis described in 

sections 2.4.5 and 3.3.2.   
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 3.2.2 Proton Arc Therapy Stray Dose 

 The stray dose from proton arc therapy was calculated using Monte Carlo simulations for 

the medium patient and estimated from the literature (Fontenot, 2008; Fontenot et al., 2008) for 

the small and large patients. The calculated and estimated stray doses are listed below in Table 

3.11. The stray rectal dose calculated in this work for the medium patient was slightly higher 

than the estimated dose from the work of Fontenot et al., most likely due to the posterior 

component of the arc delivery, which was not accounted for in the estimations from the 

literature. Another difference in the methodology from the work of Fontenot et al. is that their 

values were obtained using 2 cm diameter receptors at the location of the organ in a phantom, 

where our work used the mean dose calculated from the organ wall DVH. 

 

Table 3.11 - Stray equivalent doses for the bladder and rectum (and therefore the bladder wall 

and rectal wall) for the small, medium and large patients for the whole proton arc therapy 

treatment calculated in MCNPX and estimated from Fontenot et al. (2008). 

Structure 

 

Small Patient 

Stray Dose [Sv] 
Medium Patient Stray Dose [Sv] 

Large Patient 

Stray Dose [Sv] 

Estimated from 

literature 

Estimated from 

literature 

Our  MCNPX 

calculations 
Estimate from 

literature 

Bladder 0.82 0.97 0.96 1.06 

Rectum 0.61 0.76 1.13 0.88 

 

3.3 Risk Prediction 

 The predicted risk of SMN incidence following VMAT and proton arc therapy for prostate 

cancer at the exposed age of 60 years and the attainted age of 70 years is presented below. 

Table 3.12 lists the predicted ERR (sum of bladder and rectum) for the nominal treatment plans 

created for specific aim 1 (uniformly weighted for proton arc therapy), and Figure 3.25 shows a 

histogram of this data for the medium patient. Additionally, the RRRs (ratios of ERRP Arc to 

ERRVMAT), are reported in Table 3.13 and plotted in Figure 3.26. For all risk models, the mean 
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ERR of all three patients following proton arc therapy was less than that following VMAT, 

yielding RRRs of less than one.  

Table 3.12 – Predicted excess relative risk of SMN incidence of the bladder and rectum for the 

nominal VMAT and proton arc therapy („P Arc‟) treatment plans for prostate cancer for the 

linear-no-threshold, linear-exponential, and the linear-plateau risk models for specific aim 1. 

The linear-exponential and linear-plateau models had inflection points at 10 Sv and 40 Sv. Risk 

was calculated for the small, medium, and large patients, as well as the mean of the three. This 

data is shown in histogram form in Figures 3.25 and 3.26. 

 
  

 

 

 

 

 
Figure 3.25 - The predicted excess relative risk of SMN incidence in the bladder and rectum 

for the medium patient following VMAT and uniformly weighted proton arc therapy for the 
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linear-no-threshold model, linear-exponential model with the inflection point at 10 Sv and 40 

Sv, respectively, and the linear-plateau model with the inflection point at 10 Sv and 40 Sv, 

respectively.   

 

 

Table 3.13 – The ratio of excess relative risk (RRR) following uniformly weighted proton arc 

therapy relative to the risk following VMAT for specific aim 1. An RRR (ERRP Arc/ERRVMAT) 

value less than one indicates a lower risk of SMN incidence following proton arc therapy.  

 
 

 
Figure 3.26 – The ratio of excess relative risk of SMN incidence (ERRP Arc/ERRVMAT) following 

uniformly weighted proton arc therapy relative to that following VMAT for the small, medium 

and large patient for the linear-no-threshold model, linear-exponential model with the inflection 

point at 10 Sv and 40 Sv, respectively, and the linear-plateau model with the inflection point at 

10 Sv and 40 Sv, respectively.  

 

 

 For specific aim 2, the risk following proton arc therapy with optimized non-uniform beam 

weighting was investigated. First, in order for the optimization algorithm to be able to minimize 

the risk, the risk contributed by each beam angle (or mirrored pair) had to be determined. Table 

3.14 and Figure 3.27 show the ERR calculated with the LNT model at each beam angle (or 
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mirrored pair) from therapeutic radiation assuming unit weighting for each. Then, the 

appropriate relative beam weighting to minimize the risk of SMN incidence of the bladder and 

rectum, bladder only, and rectum only (Table 3.15) was determined. Additionally, optimal 

weighting was found to minimize the risk of SMN incidence of the bladder and rectum for the 

scenario of a patient with a prosthetic hip (Table 3.16). The results of specific aim 2 are 

summarized and compared to specific aim 1 in Figure 3.28, below. 

Table 3.14 - The predicted LNT ERR of SMN incidence for the medium patient contributed by 

each proton beam or beam pair (therapeutic dose only). These reported risks are for each beam 

(or pair) as if it were 100% of the treatment. The beam angles listed are in degrees and refer to 

the left (L) and corresponding right (R) mirrored beams, respectively. 
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Figure 3.27 - The predicted LNT excess relative risk of SMN incidence for each proton beam 

or beam pair (therapeutic dose only). These reported risks are for each beam or beam pair 

normalized as if it were 100% of the treatment. It can be seen that there is a minimum in total 

risk for the 90 degree and 270 degree beam pair. 

 

Table 3.15 – The non-uniform relative proton beam weights found by the optimization 

algorithm and the resulting LNT excess relative risk (ERR) (risk from stray dose included) for 

plans optimized to minimize risk of SMN incidence in the bladder and rectum, bladder only, 

and rectum only for specific aim 2. The third to last row (Sum: ERRPArc) is the total ERR for the 

treatment. The second to last row is the ERR following the same (medium) patient‟s VMAT 

treatment plan from specific aim 1 (Table 3.12). The last row (RRR) is the ratio of ERRPArc to 

ERRVMAT. 
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Table 3.16 - The non-uniform beam weights found by the optimization algorithm and the 

resulting LNT risk (ERR) (risk from stray dose included) for the two prosthetic hip plans for 

specific aim 2. The third to last row (Sum: ERRPArc) is the total ERR for the treatment. The 

second to last row is the ERR following the same (medium) patient‟s VMAT treatment plan 

from specific aim 1 (Table 3.12). The last row (RRR) is the ratio of ERRPArc to ERRVMAT. 
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Figure 3.28 – The ratio of excess relative risk (RRR) of SMN incidence (ERRP Arc/ERRVMAT)  

following proton arc therapy relative to that following VMAT for the medium patient for the 

linear-no-threshold model. The RRRs from the proton arc therapy plans with non-uniform beam 

weighting optimized for objectives 1, 2, 3 and 4 (Table 2.5) are compared to the RRR from 

uniformly weighted proton arc therapy from specific aim 1   

 

 Specific aim 3 was designed to investigate the effect of margin size around the CTV to 

create the PTV on the predicted risk of SMN incidence following prostate radiotherapies. The 

predicted risk of SMN incidence in the bladder and rectum following VMAT and uniformly 

weighted proton arc therapy with varying margins for the medium patient is graphed below in 

Figures 3.29 through 3.31. First, Figure 3.29 shows the ERR of SMN incidence of the bladder, 

rectum, and the combination of the two organs calculated with the LNT model. It can be seen 

that the risk of SMN incidence in the bladder is higher than for the rectum and that risk 

increases as margin size increases for both. Then, the combined ERR of SMN incidence in the 

bladder and rectum for the LNT, linear-exponential, and linear-plateau models for VMAT and 

proton arc therapy is plotted in Figure 3.30. As expected, the linear-exponential and linear-

plateau prediction of ERR is less than for LNT. Finally, the RRR of SMN (ratio of ERRP Arc to 

ERRVMAT) is plotted in Figure 3.31. The LNT RRR is highest, around 1 (range: 1.00 – 1.08), 

showing little difference between the two modalities and a potential slight advantage for 

VMAT. The linear-exponential-10 RRR yielded the lowest RRR, 0.66, showing the largest 

advantage for proton arc therapy. As seen before in specific aim 1, all alternative risk models 

indicated an advantage for proton arc therapy with RRRs ranging from 0.66 to 0.93. While ERR 

generally increases with increasing margin size (within our bounds of 0 mm to 8 mm), a strong 

relationship between RRR and margin size was not observed.     
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Figure 3.29 – The predicted LNT excess relative risk of SMN incidence of the bladder and 

rectum and the combination of the two for the medium patient vs. the “else” margin around the 

CTV to create the PTV for VMAT and uniformly weighted proton arc therapy. The nominal 

expansion is 7 mm “else.” Posterior margins are 2 mm less than those graphed, except for 0 

mm “else” expansion, where the posterior margin is also 0 mm.  

 

Figure 3.30 – The predicted excess relative risk (RRR) of SMN incidence (combined bladder 

and rectum) for VMAT and uniformly weighted proton arc therapy for the medium patient for 

the linear-no-threshold model, linear-exponential model, and linear-plateau model vs. the “else” 

margin around the CTV to create the PTV. The nominal expansion is 7 mm “else.” Posterior 
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margins are 2 mm less than those graphed, except for 0 mm “else” expansion, where the 

posterior margin is also 0 mm. The linear-exponential and linear-plateau models have inflection 

points at 10 Sv and 40 Sv.  

 

 
Figure 3.31 – The predicted ratio of excess relative risk (RRR) of SMN incidence (combined 

bladder and rectum) for the medium patient for the linear-no-threshold model, linear-

exponential model, and linear-plateau model vs. the “else” margin around the CTV to create the 

PTV. The nominal expansion is 7 mm “else.” Posterior margins are 2 mm less than those 

graphed, except for 0 mm “else” expansion, where the posterior margin is also 0 mm. The 

linear-exponential and linear-plateau models have inflection points at 10 Sv and 40 Sv.  

 

 3.3.1 Statistical Analysis 

 The statistical analysis was performed to test the RRR values from specific aim 1 against 

the value of 1 (small sample size, n=3). When the sign test was conducted, the null hypothesis 

that P(+) ≥ P(–) (the probability of RRR > 1 being greater than or equal to the probability of 

RRR < 1) was rejected for all alternate risk models, but could not be rejected for the LNT 

model. Table 3.17 shows the p-values for the sign test for the different risk models, where red 

indicates a fail (p > 0.05; could not reject null hypothesis) and green indicates a pass (p < 0.05; 

rejected null hypothesis). 
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Table 3.17 - The results of the sign test which compared the RRR to 1. Red indicates a fail, 

where the null hypothesis that the P(+)≥P(–) cannot be rejected. Green indicates a pass, where 

the null hypothesis can be rejected, i.e. the RRR is significantly less than 1. 

 
 

 The t-test yielded similar results: the null hypothesis that the mean RRR  ≥ 1 was rejected 

for the alternate risk models, but could not be rejected for the LNT model. Table 3.18 shows 

the p-values for the t-test for all of the risk models, where red indicates a fail (p > 0.05; could 

not reject null hypothesis) and green indicates a pass (p < 0.05; rejected null hypothesis). 

Table 3.18 - The results of the t-test which compared the RRR to 1. Red indicates a fail, where 

the null hypothesis that the RRR ≥ 1 cannot be rejected. Green indicates a pass, where the null 

hypothesis can be rejected, i.e. the RRR is significantly less than 1. 

 
 

 3.3.2 Uncertainty Analysis 

 

 The uncertainty was estimated using propagation of the uncertainties of the components of 

the risk calculation (equations 2.16a and 2.16b). The uncertainty in the therapeutic absorbed 

dose from proton therapy was estimated to be 5% from the work of Giebeler et al. (2009). Two 

uncertainties contributed to the total uncertainty in the corrected VMAT dose: the uncertainty 

in the TPS VMAT dose (2% (Fontenot, 2008)) and the relative uncertainty in the correction 

method for VMAT (1.3% (section 3.2.1)). Therefore, the quadrature sum of 2% and 1.3% was 

used for the uncertainty in the corrected VMAT dose, 

V

D

D1

1 . The relative uncertainty in the 
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neutron dose from statistical fluctuations was found with a quadrature sum of the relative 

uncertainties of the neutron dose from each beam in the region of the bladder and rectum. The 

Rw

RRR

RRR
 and 

RM

RRR

RRR
 values were determined with sensitivity analysis, for which the 

results are listed in Tables 3.19 and 3.20, respectively.  Then, the covariance term was found to 

account for the effect of correlations in the data on the uncertainty. In this study, it was a 

negative term, which reduced the overall uncertainty. The absolute value of the covariance term 

was found to be 3.5% using equation 2.17 and the last term in equation 2.16. The final 

uncertainty in the mean RRR was asymmetric and calculated to be +1.2% and -22.7%. All 

uncertainty values are listed in Table 3.20 below. 

Table 3.19 – The mean LNT ERRs for uniformly weighted proton arc therapy and respective 

RRRs. As a sensitivity test, the mean radiation weighting factor for neutrons was varied by 

factors ranging from 0.5 to 5. The denominator for the mean RRR calculation (last row) is the 

LNT ERR for VMAT for each patient (Table 3.12).        

 
 

Table 3.20 – Assumed and calculated relative uncertainties for the error propagation and the 

resulting total uncertainty (equations 2.16a and b). The total uncertainties (positive and 

negative) are also reported in absolute terms of RRR (in parentheses). One σ corresponds to the 

68% confidence interval. 

Term Description Value [%] 

P

D

D1

1  

Uncertainty in therapeutic 

absorbed dose from proton 

arc therapy 

(TPS) 

5.0 

V

D

D1

1  
Uncertainty in dose from 

VMAT (corrected TPS: see 

section 3.2.1) 

2.4 

P

D

D2

2  

Statistical uncertainty in 

stray absorbed dose from 

proton arc therapy 

(Monte Carlo) 

< 1.0 
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Rw

RRR

RRR
 

Uncertainty contributed from 

Rw  

4.7 

RM

RRR

RRR
 

Uncertainty contributed from 

the risk model 
26.2 

PV

ERRERR

ERRERR

PV2  
Covariance term for VMAT 

and Proton Arc Therapy 
-3.5 

RRR

RRR  
Total positive uncertainty in 

mean RRR 
1.2 (0.01) 

RRR

RRR  
Total negative uncertainty in 

mean RRR 
22.7 (0.22) 

   

 In addition, the uncertainty was propagated for each patient individually, which can be seen 

as the error bars in Figure 3.32. 

 
Figure 3.32 – The predicted LNT RRRs for the small, medium and large patients (treatment 

plans from specific aim 1). The error bars correspond to the uncertainty propagated according 

to equations 2.18a and 2.18b. 

 

 Finally, uncertainty was also propagated for the mean RRR without the term that accounts 

for uncertainty in Rw . Then, the mean RRR was plotted vs. Rw  with error bars that correspond 

to the uncertainty in all factors except Rw  (Figure 3.33). 
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Figure 3.33 – Mean RRRs (Table 3.19; treatment plans from specific aim 1) vs. varying Rw  

with error bars that include all uncertainties considered, except those in Rw . 

 

 

Chapter 4 

Discussion and Conclusion 

 This chapter begins with a summary of the outcome of the specific aims (section 4.1) and a 

comparison with existing literature (section 4.2). Then, the implications and significance 

(section 4.3), strengths (section 4.4), and limitations (section 4.5) of this work are discussed. 

Finally, possible future work is mentioned (section 4.6) and the conclusions are stated (section 

4.7).  

4.1 Outcome of the Specific Aims 

 4.1.1 Outcome of Specific Aim 1 

 The goal of specific aim 1 was to predict the RRR of SMN incidence of the bladder and 

rectum following uniformly weighted proton arc therapy relative to that following VMAT 

using calculated dose distributions and risk models. Specifically, the LNT risk model was used 

to predict a baseline RRR, and the linear-exponential and the linear-plateau risk modes were 
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applied to estimate the impact on RRR from non-linearities in the risk model at high doses. The 

mean RRR for the LNT risk model was 0.99 (+ 0.01 or - 0.22; Table 3.20), which was shown to 

be not statistically different from 1. The reason for this similarity in LNT risk was that the 

mean doses to the bladder wall and rectal wall were comparable for both modalities. However, 

the distribution of the dose was more concentrated for proton arc therapy, which resulted in 

predicted RRRs that were statistically less than 1 for the other risk models. The mean RRRs 

were 0.74, 0.86, 0.84, and 0.91 for the linear-exponential-10 and -40, and linear-plateau-10 and 

-40 models, respectively. These results are 8% to 25% lower than the RRR obtained with the 

LNT model.   

 4.1.2 Outcome of Specific Aim 2  

 The goal of specific aim 2 was to investigate the effect on RRR of optimized proton beam 

weighting. Various host and treatment factors were considered, such as type of second cancer 

and avoidance of a hip prosthesis on the predicted risk following proton arc therapy. When the 

sum of LNT risk of SMN incidence in the bladder and rectum was minimized for proton arc 

therapy, the optimization yielded two lateral arc beams, resulting in an RRR of 0.87, compared 

to the RRR of 1.06 for uniformly weighted proton arc therapy. When the LNT risk of SMN 

incidence in the bladder or rectum alone was minimized, the predicted RRRs were 1.02 and 

1.07, respectively. Then, the constraint to avoid beams that passed through a prosthetic hip was 

applied while the risk of SMN incidence in the bladder and rectum combined was minimized, 

resulting in an RRR of 0.93.  

 The results of this specific aim show that optimized (non-uniform) beam weighting for 

proton arc therapy can significantly lower the predicted RRR of SMN incidence. As expected, 

the lowest RRR was achieved when the combined risk of SMN incidence in the bladder and 

rectum was minimized for the proton arc therapy plan. Another interesting result from this 
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specific aim is the optimal beam orientation to minimize risk of SMN incidence for a patient 

with a contralateral prosthetic hip while sparing the healthy femoral head.     

 4.1.3 Outcome of Specific Aim 3  

 The goal of specific aim 3 was to examine the sensitivity of the predicted risk of SMN 

incidence on the size of the expansion margin around the CTV following both proton arc 

therapy and VMAT. Using the LNT model, the ERR was found to vary between 6.83 and 10.07 

for proton arc therapy and 6.55 and 9.52 for VMAT, where risk increased with increasing 

margin size. The lowest ERR of SMN incidence was for the linear-exponential-10 model, 

which was found to vary between 0.88 and 0.90 for proton arc therapy and 1.28 and 1.32 for 

VMAT. In general, the ERR values calculated with the linear-exponential and linear-plateau 

risk models were less sensitive to margin size. Moreover, the RRR of SMN incidence was 

virtually independent of margin size for all risk models, with an average of 1.04, 0.69, 0.88, 

0.81 and 0.90 for the LNT, linear-exponential-10 and -40, and linear-plateau-10 and -40 

models, respectively.          

 4.2 Comparison with Existing Literature 

 The study most similar to this work is by Fontenot et al. (2009). In their study, the ERRs of 

SMN incidence in the bladder, rectum, and various out-of-field organs were calculated for the 

same three patients following parallel-opposed beam proton therapy and compared with 

corresponding ERRs following 6 MV IMRT. Additionally, they calculated the RRR for the 

medium patient with the same alternate risk models used in this work. They found the average 

RRR for all three patients to be 0.68 for the LNT model, and the RRR for the medium patient to 

be 0.66, 0.69, 0.69, 0.60, and 0.62 for the LNT, linear-exponential-10 and -40, and linear-

plateau-10 and -40 models, respectively. When only the colon and bladder are included in their 

calculation, the RRR for the medium patient becomes 0.65, 0.62, 0.64, 0.57, and 0.59 for the 

LNT, linear-exponential-10 and -40, and linear-plateau-10 and -40 models, respectively.  
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 The largest numerical difference between RRR predictions from the work of Fontenot et al. 

and this work was for the case of the LNT model: 0.66 vs. 1.06, respectively. An obvious 

source of this difference is that Fontenot et al. studied static-beam therapies, where we 

considered arc therapies. In our study, we found the ERR for equally-weighted 360 degree 

proton arc therapy to be considerably higher than for parallel-opposed beam proton therapy: 

11.51 vs. 7.97. This lower value for parallel-opposed beams compares fairly well to the ERR 

reported by Fontenot et al. for the bladder and colon of 6.24; however, there are other subtleties 

that account for the remaining discrepancy. First, Fontenot et al. used the whole organ volume 

(including contents), while we used the organ wall (excluding contents). We showed that this 

can have a significant impact on the mean organ dose, and therefore the LNT ERR. For 

example, in our study, the mean doses (therapeutic radiation only) to the bladder (and contents) 

and bladder wall from a parallel-opposed beam treatment were 9.34 Gy (RBE) and 13.40 Gy 

(RBE), respectively. Second, the mean dose to the target was slightly lower in the study by 

Fontenot et al. When their treatment plan was normalized to the same mean target dose as 

prescribed in our study, their mean doses to the bladder and bladder wall were 9.19 Gy (RBE) 

and 13.16 Gy (RBE), respectively, which agree very well with those from our study (listed 

above). To illustrate how this affects the risk, a table of the LNT ERR of SMN incidence in the 

bladder (and contents), bladder wall, rectum (and contents), and rectal wall from therapeutic 

dose is shown below (Table 4.1) for the two studies (normalized to the same target dose).  

Table 4.1 - The therapeutic dose component of ERR for the treatment plans in this study (LR) 

and the study by Fontenot et al. (2009) (JF) calculated with the LNT model for the bladder (and 

contents), bladder wall, rectum (and contents), and rectal wall. Note the increase in risk when 

the organ walls were used instead of the whole organ. For the proton plans (last three columns) 

„2 beam‟ refers to a parallel-opposed proton beam treatment for prostate (accomplished with 

weighting for the proton arc plan), where „Uniform‟ refers to the 360 degree, uniformly 

weighted proton arc treatment plan. While the „2 beam‟ proton plans have comparable risk, the 

„Uniform‟ proton arc treatment plan has higher risk.  
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Therefore, when differences in planning technique (arc plans vs. static beam plans, prescription 

dose) and volume contouring (wall volumes vs. whole organ volumes including contents) are 

considered, our results agree well with those from Fontenot et al.  

  Schneider et al. (2007) also published a study that is relevant to this work. In their study, 

the whole-body secondary cancer risk of spot-scanned proton radiotherapy relative to 6 MV 

IMRT was found to be 0.49, 0.50, and 0.51 for the LNT, linear-exponential, and linear-plateau 

models, respectively. Because of the spot-scanning delivery, dose from external neutrons was 

minor, in contrast to our work, where it comprises approximately one third of the neutron dose. 

However, the contribution of external neutron dose to the total risk was minimal: 

approximately 2%. Another difference in their study is that they did not do tissue-specific risk 

calculations; they estimated risk to a “whole-body” contour. Despite the differences in the 

methods, our results are remarkably consistent with the results from Schneider et al.   

 This study is not consistent with the work of Dasu et al. (2011). They predicted the risk of 

second cancers in the bladder and rectum following 3DCRT of the prostate for “narrow” 

margins (4 mm in the posterior direction, 6 mm in other directions) and “wide” margins (10 

mm in the posterior direction, 15 mm in other directions) around the CTV. They predicted risk 

using a model based on the single-dose competition model proposed by UNSCEAR (1993), 

which is similar to the linear-exponential model in our work. They found that the risk decreased 

with larger margins, whereas we found that risk either remained approximately constant 
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(linear-exponential-10) or increased slightly (linear-exponential-40) with margin size (Figure 

3.30). However, there are a few major differences in our studies. First, the risk model used by 

Dasu et al. peaks at about 4 Gy, where ours peaked at either 10 or 40 Gy (Gy is equivalent to 

Sv for photons). Second, the distribution of dose for 3DCRT treatment plans could be 

significantly different from the distribution of dose for our VMAT and proton arc therapy 

treatment plans. Finally, the “wide” margins used in their work were considerably larger than 

the largest margins investigated in our work (10 mm vs. 6 mm in the posterior direction, and 15 

mm vs. 8 mm in other directions, respectively). It is possible that these differences account for 

the discrepancy in the results between the two studies.                             

4.3 Implications and Significance of this Study 

 Due to the large population of patients who receive prostate radiotherapy, even a small 

increase or decrease in risk of cancer due to radiation exposure could have a significant impact 

on public health. Therefore, risk of SMN incidence following treatment should be considered, 

along with many factors, in the clinical and policy decision making. The significance of this 

work is that it characterizes the risk of SMN incidence following two types of radiotherapy for 

prostate cancer: VMAT and proton arc therapy.  

 Previous to this work, the risks of SMNs following radiation arc therapies using VMAT and 

proton arc therapy were unknown. In this work, the ERR and RRR for the two modalities were 

characterized for the two modalities for a variety of host and treatment factors: patient size, 

proton arc therapy beam weighting, mean neutron radiation weighting factor, risk model, and 

margin size.  

 Another finding of this work was the ideal proton beam arrangement to minimize the risk of 

SMN in the bladder and rectum for a patient with a prosthetic hip. It is possible that this finding 

could be one factor in the choice of beam angles for such patients.  
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 In addition, this study found that two lateral-opposed proton beams is the ideal arrangement 

to minimize the risk of second cancers of the bladder and rectum following prostate 

radiotherapy. This result is encouraging in regard to statically delivered proton therapy, because 

it strengthens the rationale for the beam arrangement in the current standard-of-care used for 

treating for prostate cancer. However, it is something that should be taken into consideration in 

the development of proton arc therapy. Therefore, an implication of this finding is that it would 

be advantageous for a proton arc therapy machine, which has been proposed but not yet built, 

to have the capability to deliver this type of lateral-opposed treatment, e.g. static or near-static 

beam delivery capacity. 

4.4 Strengths of this Study 

 This study has several noteworthy strengths. First, to our knowledge, this was the first study 

to explicitly and algorithmically minimize the risk of second cancer by varying proton beam 

weights. Others have investigated minimizing risk through choice of treatment modality 

(Miralbell et al., 2002; Mu et al., 2005; Schneider et al., 2006; Fontenot et al., 2009; 

Newhauser et al., 2009a; Bednarz et al., 2010) or optimizing treatment plans for uncertainties 

(Pflugfelder et al., 2008; Unkelbach et al., 2009) or RBE (Wilkens and Oelfke, 2005), but this 

was the first study to specifically optimize treatment plans to minimize the risk of second 

cancers. This method could be expanded upon and applied to other treatment sites. In the 

future, minimizing a patient‟s risk for developing a second cancer could be one of the many 

factors in personalized cancer radiotherapy.  

 Additionally, our study was the first to estimate the risk of SMN incidence following 

VMAT for prostate cancer. Surprisingly, we found the risk of SMN in the bladder and rectum 

following VMAT to be lower than following IMRT. This result is of particular interest due to 

the recent expansion of VMAT and because of the ubiquity of photon-based external beam 

radiotherapy for prostate cancer.  
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 Another strength of this study was the level of detail of the dose determination and risk 

estimation. Differential DVHs were exported from the TPS for the bladder and rectum, 

excluding the contents, and stray dose was estimated or calculated where possible. Then, age-, 

sex-, and organ-specific parameters were obtained from BEIR VII, used to estimate the LNT 

risk, and modulated to model cell sterilization with the linear-exponential and linear-plateau 

risk models. 

 Finally, the uncertainty analysis was a strength of this work. Other similar works mention 

the uncertainties associated with risk predictions (Kry et al., 2005a; Schneider et al., 2007; 

Bednarz et al., 2010) but did not report a full uncertainty propagation. In this work, we 

extended and adapted the uncertainty analysis of Fontenot et al. (2008; 2010) and included 

uncertainties in the dose (both therapeutic and stray), the neutron radiation weighting factor, 

and the risk model.      

4.5 Limitations of this Study 

 There are several limitations of this study. First, only the risk of SMNs of the bladder and 

rectum were considered. This is not a serious limitation, however, because doses to the bladder 

and rectum account for the vast majority of the risk (Fontenot et al., 2009); the risks of SMN 

incidence in the bone marrow, skin, and out-of-field organs, which were not included in this 

study, are of lesser importance.   

 Moreover, the metric used in this work to express risk of SMN, ERR, has limitations of its 

own. ERR is an instantaneous quantity, describing the excess relative risk at a given point in 

time. In this work, the ERR at 10 years post-treatment was chosen as a meaningful surrogate for 

the lifetime ERR for the purposes of estimating RRR, giving the typical age of prostate cancer 

patients. Therefore, this is not a major limitation of this work. 

 Additionally, only three patients were studied in this work. While a strong dependence on 

patient-specific differences (patient size, internal anatomy) was not observed in this work, the 
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sample size was small. Studying a larger patient population would elucidate the dosimetric 

impact of inter-patient anatomical differences, and might make it possible to see a larger, 

statistically significant difference in the predicted mean RRR value.    

 Another limitation of this study was that risk-optimized treatment planning was not 

explicitly available for VMAT. However, the inverse planning method used for all of the 

VMAT treatment plans was conceptually and functionally similar to the risk-optimized 

planning method utilized for the proton arc therapy treatment plans for specific aim 2. Both 

optimization methods minimized the dose to organs of interest: e.g. the bladder and/or rectum. 

The VMAT inverse planning system accomplished this with a cost function that was based on 

DVH objectives and constraints for the organs of interest. The risk-minimized proton arc 

therapy treatment planning method also minimized dose to the bladder and rectum with a cost 

function, which was based on mean organ dose. Because of these similarities, we believe that 

the comparison between the modalities was reasonable. For future work, it would be interesting 

to investigate risk-optimized planning for VMAT.  

 Furthermore, range compensators were used to create distal conformity for the proton arc 

treatment plans in this study. If this technique was implemented using passive scattering, 

different range compensators could not be used for each beam. Either one generic range 

compensator could be used, or none at all. However, the goal of this study was to investigate 

the risk of SMN incidence following proton arc therapy in general, not to address all of the 

design challenges of implementing proton arc therapy on a passively scattered system. 

Additionally, if scanned beam delivery was used for proton arc therapy, which has its own 

engineering challenges, range compensators would not be necessary for distal conformity.    

 The final noteworthy limitation is that variations in the dose distribution (beyond those 

observed in our sample) were not considered in the uncertainty analysis of RRR. The dose 

distribution for both modalities could be affected by uncertainty in the beam calibration, setup 
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errors, varying field size, and differences in anatomy. In particular, the dose distribution for 

proton arc therapy could also be affected by the beam range, SOBP width, and the air gap.  

4.6 Future Work 

  Treatment-specific measurements to validate the stray dose that was estimated and 

simulated for this work would lend additional confidence to their accuracy. Due to the 

difficulty of detecting high-energy neutrons, the stray dose from proton arc therapy would have 

to be measured with a special detector like an extended Bonner Sphere system (Howell, 2009) 

or a WENDI-II (Olsher and McLean, 2008). Additionally, stray dose from VMAT has not been 

explicitly characterized. Even though extensive stray dose measurements have been made for 

IMRT (Kry et al., 2005b; Howell et al., 2006), verifying that the stray doses between the two 

modalities are equivalent would be valuable.        

 This work focused on SMNs of the bladder and rectum. For a more complete representation 

of the risk of SMN incidence following radiotherapy, the risk calculations could be expanded to 

include bone marrow, skin, and other out-of-field organs. However, the BEIR VII report does 

not include specific risk prediction information for skin, and excludes non-melanoma skin 

cancers. Therefore, another reference would be required for the inclusion of skin, for example, 

Publication 60 of the ICRP (1991). Also, our patient CT datasets did not span the entire body, 

so additional whole-body phantoms would be necessary for the Monte Carlo simulations. 

 Finally, this work could be expanded to other treatment sites and patient populations. A 

different treatment location yields different doses to organs, thus producing a different risk 

profile. A different patient population would have a different risk of second cancer based on 

age at exposure and life expectancy. For example, children treated with radiation have an 

increased risk of cancer due to increased radiosensitivity (ICRP, 1991) and the potential for a 

longer life expectancy post treatment. Because of these factors, it would be particularly 
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meaningful to study and minimize the predicted risk of second cancers following radiotherapy 

for pediatric patients. 

4.7 Conclusions 

 Proton arc therapy significantly reduces the predicted risk of incidence of radiogenic second 

malignant neoplasms (SMNs) in the bladder and rectum following prostate radiotherapy 

compared to VMAT when predicted with the linear-exponential and linear-plateau risk models. 

On the other hand, no significant difference was seen between the modalities when the risk was 

predicted with the linear-no-threshold (LNT) model. When the beam weighting for proton arc 

therapy was optimized to minimize the LNT risk of SMN incidence, a reduction of risk was 

observed compared to VMAT: RRR was reduced from 1.06 to 0.87. Additionally, it was found 

that while excess relative risk (ERR) of SMN incidence increased with PTV margin size for 

both modalities, the ratio of excess relative risk (RRR) between the two modalities was virtually 

independent of margin size.  
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