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MECHANISMS REGULATING THE P120-CATENIN/KAISO PATHWAY 

 

Publication No._______________ 

Ji Yeon Hong, Ph.D. 

Supervisory Professor: Pierre D. McCrea, Ph.D. 

 

      The Wnt pathways contribute to many processes in cancer and developmental 

biology, with β-catenin being a key canonical component. P120-catenin, which is 

structurally similar to β-catenin, regulates the expression of certain Wnt target 

genes, relieving repression conferred by the POZ/ zinc-finger transcription factor 

Kaiso. In my first project, employing Xenopus embryos and mammalian cell lines, I 

found that the degradation machinery of the canonical Wnt pathway modulates 

p120-catenin protein stability, especially p120 isoform-1, through mechanisms 

shared with β-catenin. Exogenous expression of destruction-complex components 

such as GSK3β or Axin promotes p120-catenin degradation, and consequently, is 

able to rescue developmental phenotypes resulting from p120 over-expression 

during early Xenopus embryonic development. Conversely, as predicted, the in vivo 

depletion of either Axin or GSK3β coordinately increased p120 and β-catenin levels, 

while p120 levels decreased upon LRP5/6 depletion, which are positive modulators 

in the canonical Wnt pathway. At the primary sequence level, I resolved conserved 

GSK3β phosphorylation sites in p120’s (isoform 1) amino-terminal region. Point-

mutagenesis of these residues inhibited the association of destruction complex 

proteins including those involved in ubiquitination, resulting in p120-catenin 
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stabilization. Importantly, we found that two additional p120-catenin family 

members, ARVCF-catenin and δ-catenin, in common with β-catenin and p120, 

associate with Axin, and are degraded in Axin’s presence. Thus, by similar means, 

it appears that canonical Wnt signals coordinately modulate multiple catenin 

proteins having roles in development and conceivably disease states. 

  

 In my second project, I found that the Dyrk1A kinase exhibits a positive effect 

upon p120-catenin levels. That is, unlike the negative regulator GSK3β kinase, a 

candidate screen revealed that Dyrk1A kinase enhances p120-catenin protein 

levels via increased half-life. Dyrk1A is encoded by a gene located within the 

trisomy of chromosome 21, which contributes to mental retardation in Down 

Syndrome patients. I found that Dyrk1A expression results in increased p120 

protein levels, and that Dyrk1A specifically associates with p120 as opposed to 

other p120-catenin family members or β-catenin. Consistently, Dyrk1A depletion in 

mammalian cell lines and Xenopus embryos decreased p120-catenin levels. I 

further confirmed that Dyrk overexpression and knock-down modulates both 

Siamois and Wnt11 gene expression in the expected manner based upon the 

resulting latered levels of p120-catenin. I determined that Dyrk expression rescues 

Kaiso depletion effects (gastrulation failure; increased endogenous Wnt11 

expression), and vice versa. I then identified a putative Dyrk phosphorylation region 

within the N-terminus of p120-catenin, which may also be responsible for Dyrk1A 

association. I went on to make a phosphomimic mutant, which when over-

expressed, had the predicted enhanced capacity to positively modulate endogenous 
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Wnt11 and Siamois expression, and thereby generate gastrulation defects. Given 

that Dyrk1A modulates Siamois expression through stabilization of p120-catenin, I 

further observed that ectopic expression of Dyrk can positively influence β-catenin’s 

capacity to generate ectopic dorsal axes when ventrally expressed in early Xenopus 

embryos. Future work will investigate how Dyrk1A modulates the Wnt signaling 

pathway through p120-catenin, and possibly begin to address how dysfunction of 

Dyrk1A with respect to p120-catenin might relate to aspects of Down syndrome. In 

summary, the second phase of my graduate work appears to have revealed a novel 

aspect of Dyrk1A/p120-catenin action in embryonic development, with a functional 

linkage to canonical Wnt signaling. What I have identified as a “Dyrk1A/p120-

catenin/Kaiso pathway” may conceivably assist in our larger understanding of the 

impact of Dyrk1A dosage imbalance in Down syndrome.  
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Chapter I 

 

Introduction and Background 

 

Wnt signaling pathways  

 

 Wnt signaling pathways are involved in multiple aspects of development and 

tumorigenesis (1-5). The Wnt family of ligands possesses at least 19 members, 

shown to be present in human and mice. Each of the Wnt ligands has unique 

expression patterns, some overlapping, and distinct functions during development. 

The Wnt pathways are roughly categorized into the canonical, and non-canonical 

pathway. Both are initiated by the binding of Wnt ligands to Frizzled receptors. In 

what is defined as canonical Wnt signaling, β-catenin is a key element transmitting 

Wnt signals into the nucleus via high mobility group (HMG) box transcriptional 

repressor LEF/TCF, to activate multiple Wnt target genes (1, 6, 7). Non-canonical 

Wnt signals are defined as other than that of the β-catenin-mediated pathway. Non-

canonical Wnt pathways are mediated through Rho GTPases, Ca2+/PKC or JNK 

(Figure 1). Recent evidence indicates that non-canonical Wnt signals antagonize 

canonical Wnt pathways in certain contexts, although the precise mechanisms are 

still under study (8, 9). Mutations in Wnt pathway components result in varied 

developmental defects and human diseases including cancer.  
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Figure 1. A schematic diagram of selected components of the canonical and 

non-canonical Wnt pathway. Wnt ligands bind to the Frizzled receptor and 

LRP5/6 co-receptor, which recruits Dishevelled (Dvl). Upon activation of Dvl, Axin 

and GSK3β are recruited to the plasma membrane, leading to β-catenin’s 

stabilization and accumulation in the cytoplasm. Increased levels of β-catenin enter 

the nucleus to activate multiple Wnt target genes. The non-canonical Wnt pathways 

include the PCP and Calcium pathways, amongst others. Upon the binding of Wnt 

ligands to Frizzled receptors, activated Dvl  signals through small GTPases and/ or 

C-Jun N-terminal kinase (JNK). Calcium signaling is mediated in part via 

Phospholipase-C (PLC), leading to calcium release and Cam Kinase II (CamKII) 

activation.   
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The regulation of β-catenin’s stability in canonical Wnt signaling 

 

 The metabolic stability of β-catenin is regulated by destruction complex 

components including GSK3β (Glycogen Synthase Kinase-3β), CK1α (Caseine 

Kinase-1α), Axin and APC (Adenomatus polyposis coli) (10-14). In the absence of 

Wnt signals, β-catenin is targeted for phosphorylation by CK1α and GSK3β in 

association with a larger scaffolding complex including Axin and APC. β-catenin is 

then ubiquitinated via β-TrCP (β-transducin repeat-containing protein), a substrate 

recognition / E3 subunit of ubiquitin ligase, resulting in β-catenin’s degradation 

through the ubiquitin-mediated proteasome pathway (15-17). On the other hand, 

when extracellular Wnt ligands bind to the transmembrane receptor:coreceptor 

complex of Fz (Frizzled) and LRP (Low density lipoprotein receptor-Related 

Protein), intracellular Dvl (Dishevelled) becomes activated by unknown mechanisms 

(18-21). Among other possibilities, activated Dsh together with LRP is thought to 

sequester Axin and GSK3β to the inner plasma membrane and inhibit GSK3β’s 

ability to phophorylate β-catenin, thereby promoting β-catenin stabilization (18, 19, 

22-28). This pool of β-catenin responds to additional signals before accessing the 

nucleoplasmic space (29), where β-catenin relieves repression otherwise conferred 

by the HMG (High Mobility Group) proteins LEF (Leukocyte Enhancing Factor) or 

TCF (29-32) (Figure 1). Genes activated by the β-catenin/LEF/TCF complex 

(canonical-Wnt target genes) are numerous, with well-known examples including 

Siamois (Xenopus), as well as c-Myc and Cyclin-D1 (33-36). In addition to the Wnt 
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pathway’s extensive engagement in embryogenesis and adult-tissue homeostasis, 

pathological pathway activation is linked to multiple human diseases such as those 

characterized by bone abnormalities and cancer (37, 38).  

 

P120-catenin subfamily members 

 

 Members of the p120-catenin subfamily include p120-catenin, ARVCF-catenin, 

δ-catenin, p0071, and plakophilin (39, 40) (Figure 2). The p120 subfamily members 

bear limited structural resemblance to the β-catenin subfamily members, β-catenin 

and plakoglobin (γ-catenin). The most obvious similarity is that each contains a 

central Arm (Armadillo) domain comprised of either 9 (p120 and plakophilin 

subfamily members) (41) or 12 (β-catenin & plakoglobin/ γ-catenin) Arm repeats. 

Through such Arm domains, members of each catenin subfamily were first 

observed to bind the cytoplasmic tails of cadherin cell-cell adhesion proteins. 

However, while the p120 subfamily members competitively associate with 

membrane-proximal tail regions where they contribute to cadherin stabilization (42, 

43), β-catenin or plakoglobin bind more distally and confer other attributes to the 

complex, such as indirect cytoskeletal association (44-46). In addition to binding 

and modulating cadherin functions, and engaging in nuclear activities, p120 

subfamily members have now been well recognized to modulate small GTPases, 

such as inhibiting RhoA and activating Rac (39, 47-53). 
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Figure 2. Linear structural representation of catenin family proteins.  Distinct 

from β-catenin, p120-catenin contains 9 repeats within its Armadillo domain. PDZ 

binding motifs exist at the carboxyl-terminal end of p120 subfamily members, except 

p120-catenin itself. This figure was modified/reproduced from a published paper, 

Park et al, BBA, 2007 (39). 
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      In addition to the central Arm domains, which share only modest homology, 

among catenins the amino- or carboxyl-terminal regions bear yet less resemblance  

even within a catenin subfamily. These end domains engage in inter-protein 

associations and also may modulate Arm-domain interaction in an intra-molecular 

manner (30, 54-57). In the context of the canonical Wnt pathway, β-catenin’s amino-

terminal domain is well known to encompass conserved GSK3β and CK1α 

phosphorylation sites that when phosphorylated permit β-TrCP recognition (15-17). 

Thus, this domain participates in determining the extent and activity of β-catenin’s 

cytoplasmic / nuclear signaling pool. In addition, the β-catenin sub-family member 

plakoglobin contains a similarly positioned destruction box, and its protein stability is 

likewise modulated by canonical Wnt signaling (58, 59).  

 

P120-catenin’s nuclear signaling  

 

 Previous work arising from our group and other researchers has outlined a new 

role for p120-catenin in nuclear signaling. One context examined has been p120’s 

response to canonical Wnt signals, where together with β-catenin, p120 modulates 

expression of select Wnt gene targets such as Siamois (Xenopus), Cyclin-D1, and 

Matrilysin (60-62). At such promoters, p120 recognizes and associates with Kaiso, a 

transcriptional repressor of the BTB/POZ zinc-finger family that binds a Kaiso 

consensus sequences (KCS) in DNA (60, 61). Once formed, the p120:Kaiso 

complex is thought to dissociate from the gene promoter. Kaiso-directed gene 

repression is then relieved, and enhanced transcriptional activity ensues (Figure 3). 
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In addition to Kaiso: KCS (DNA) interactions, for which conflicting reports have 

arisen in certain gene contexts (63-65), Kaiso further recognizes methyl-CpG 

islands present in gene control regions that are associated with repressive states 

(66-69). However, at these sites in particular, no indications have yet arisen that 

p120-catenin acts to relieve Kaiso-mediated repression, and furthermore, the 

relationship between Kaiso’s roles at CpG-island versus sequence-specific DNA 

binding sites is still unclear. 

 

 Recent evidence shows that Frodo (Functional regulator of Dishevelled in 

ontogenesis) and the closely related Dapper functionally and physically interact with 

Dsh (70-72), indicating Frodo’s involvement in the Wnt signaling pathway. Frodo 

and Dapper act as positive or negative modulators of the canonical and non-

canonical Wnt pathway in a context dependent manner (70, 73-76). Previous 

investigation from our lab determined a new molecular mechanism of Frodo with 

respect to the p120/Kaiso pathway. In that report, Frodo was shown to promote 

p120’s stabilization upon their association. The depletion of Frodo decreased 

p120’s level in Xenopus embryos, and thereby, some canonical Wnt gene targets of 

p120/Kaiso pathway were affected (those having both TCF/ LEF & Kaiso binding 

sites) (70) (Figure 3). Relating to the identification of potential molecular 

mechanisms that modulate p120’s level, my work shows that upstream Wnt 

pathway components stabilize p120-catenin protein levels, and that Frodo 

selectively associates with, and stabilizes p120-catenin (not β−catenin).  
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Figure 3. A schematic pathway diagram of p120-catenin’s signaling to the 

nucleus. In the presence of Wnt ligands, β-catenin is stabilized by defined 

mechanisms. P120-catenin is stabilized by analogous means as β-catenin (shown 

in my work), and by the association with Frodo. Increased levels of p120 leads to 

the relocalization of the repressor Kaiso from the nucleus to the cytoplasm, 

promoting increased transcription from certain Wnt target genes. 
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 P120-catenin was originally identified as a Src tyrosine kinase substrates. Since 

its amino-terminal domain includes multiple serine/threonine and tyrosine 

phosphorylation sites, this domain may act as a regulatory region (77). The 

phosphorylation of p120-catenin has been proposed to be relevant to the 

association of p120-catenin with cadherin or the stability of cadherin (78-83). 

Despite considerable efforts to understand p120-catenin’s phosphorylation events, 

the relationship of varied kinases to p120’s function in vivo have remained elusive. 

Even the phosphorylation of p120 relating to cadherin function leaves the specific 

phosphorylation sites to be determined. My recent findings have pointed to the role 

of two different kinases in p120’s nuclear function, particularly GSK3β and Dyrk1A. I 

have examined their contributions in the context of functional outcomes in Xenopus 

embryos and mammalian cell lines.  

 

P120-catenin isoforms 

 

 P120 subfamily members can further be distinguished from β-catenin/ 

plakoglobin in that each transcript bears multiple potential translational start sites 

and arises from differential splicing events. These characteristics have added layers 

of regulatory complexity to studies of p120 subfamily proteins (84, 85). Human 

p120-catenin has potentially up to 48 isoforms due to the use of four alternative 

start codons, and RNA-splicing events (Figure 4). Several domains have been 

identified in p120, including coiled-coil domain found only in p120 isoform-1. The 
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regulatory domain, which includes multiple phosphorylation sites, exists in all 

isoforms except isoform-4. P120-catenin is ubiquitously expressed in both adult and 

fetal tissues. However the expression pattern of distinct p120 isoforms varies in 

abundance between cell types and tissues. Its expression pattern was monitored 

employing antibodies that specifically recognize the N-terminal domain of p120 

(6H11) or p120’s C-terminal region (pp120) (85-88). Studies have shown that motile 

cells such as fibroblasts and macrophages preferentially express the longest 

isoforms (p120 isoform-1), while epithelial cells preferentially express short isoforms 

(isoform-3 or -4) that associate with E-cadherin at cell-cell junction. Some non-

adherent cells do not express detectable levels of p120. In human adult and fetal 

tissues, the longest p120 isoform is mainly expressed in brain, heart, liver, lung, 

spleen, small intestine, testis and ovary, while short isoforms are mainly expressed 

in liver, lung, pancreas, colon, small intestine, prostate and ovary, and weakly in 

heart, kidney, spleen and thymus (86). P120-catenin transcripts are also present in 

multiple tumor tissues and cell types, with its pattern differing from the 

corresponding normal tissue. For example, in pancreatic adenocarcinoma and lung 

carcinoma, the level of the long p120 isoform is increased, whereas the level of the 

long isoform is decreased in ovarian carcinoma (85). In Xenopus, there are two 

isoforms identified. The longest isoform is xp120 isoform-1, thought to be analogous 

to human p120 isoform-1. Xp120 isoform-2 is most homologous to human p120 

isoform-3 (89). Recent evidence indicates that p120 isoforms have distinct 

functions, perhaps including functions in tumor invasion and metastasis (84, 87). In 

lung cancer, p120-catenin isoform-1 is highly expressed in the cytoplasm of highly 
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metastatic lung cancer tissues, and it co-localizes with Kaiso in the cytoplasm (90-

92). This suggests that p120-catenin isoform-1 may be associated with more 

aggressive cellular phenotypes. Therefore, defining the molecular mechanisms that 

govern distinct p120-catenin isoforms is likely to contribute to our knowledge on 

catenin biology. 
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Figure 4. Schematic representation of the major p120-catenin isoforms. P120-

catenin has multiple isoforms, in humans up to a theoretical limit of 48 if considering 

the four splicing variants and four alternative translational start sites. This figure was 

modified/reproduced from a published paper, van Hengel, 2007 (87).  
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The molecular mechanisms of Dyrk1A 

 

 Dual-specificity tyrosine-regulated kinase 1A (Dyrk1A) belongs to a novel 

subfamily of protein kinases that engage in autophosphorylation on tyrosine 

residues, while instead phosphorylating serine / threonine residues of other 

substrates (93, 94). In mouse, Dyrk1A-/- null mutants display a general growth 

delay and die during mid-gestation. Mice heterozygous for the mutation (Dyrk1A+/-) 

show decreased neonatal viability and brain size in a region-specific manner, and 

increased neuronal densities in some brain regions (95). Mouse and chick Dyrk1A 

mRNA is expressed in neuroepithelial cells beginning at early CNS stages and is 

asymmetrically distributed during mitoses of neuronal progenitor cells. A series of 

studies have suggested Dyrk1A’s involvement in neuronal differentiation (96-98). 

 

 The human Dyrk1A genes maps to chromosome 21, falling into what is referred 

to as the Down Syndrome critical region (DSCR) 21q22.2 (99). In the fetal brain of 

Down syndrome patients, Dyrk1A is over-expressed and expected to contribute to 

the phenotype induced by trisomy 21(100, 101). Interestingly, Down syndrome is 

known to increase the risk of Alzheimer disease by three-to-five fold. Dyrk1A was 

recently found to phosphorylate the microtubule binding protein tau, a component of 

Alzheimer neurofibrillary tangles. Indeed, hyper-phosphorylation of tau is associated 

with Alzheimer neurofibrillary tangles, and in both Alzheimer and Down syndrome 

patients, Dyrk1A itself further accumulates in such tangles (102-105).  
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 Thus, consistent with being expressed in neural progenitor cells and its 

participation in dendrite differentiation, Dyrk1A is a candidate contributor in both 

Down syndrome and Alzheimer disease. However, despite its implication in human 

genetic disease, the molecular mechanisms underlying the impact of Dyrk1A gene 

dosage imbalance in vivo remain largely unknown.  

 

      Human and rodent Dyrk1A are also highly expressed in the developing heart, 

yet little is known of Dyrk1A’s roles in heart tissue. Intriguingly, relative to the normal 

population, Down syndrome patients have increased chances of having congenital 

heart defects (atrial, atrioventricular or ventricular septal defects, or patent ductus 

arteriosus). One report found that Dyrk1A over-expression inhibits cardiomyocyte 

hypertrophy, while Dyrk1A knockdown or inhibition had the opposing effect (106).  

 

 In brain tissue, p120-catenin appears to regulate dendritic spine and synapse 

development (52). P120-catenin depletion in mouse forebrain resulted in dramatic 

decreases in spine and synapse density. In rat brain, p120-catenin is highly 

expressed and is potentially involved in morphogenetic events and plasticity of the 

CNS (107, 108). In a small-scale screen to identify kinases that positively or 

negatively regulate p120-catenin levels, I uncovered a new relationship between 

Dyrk1A and p120-catenin. In my dissertation, I identify Dyrk1A as a positive 

modulator of p120-catenin in both Xenopus embryos and mammalian cell lines. 

These results suggest that one means by which Dyrk1A participates in 

embryogenesis is through modulation of the Wnt/ p120/ Kaiso pathway, occurring 
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through the stabilization of p120 to relieve Kaiso-mediated repression. These 

findings will conceivably contribute to establishing a new bridge between catenin 

biology, especially p120-catenin, and Down syndrome pathology. Upstream control 

of Dyrk1A remains an area of uncertainty, with questions including if it is responsive 

to Wnt or other ligands. Therefore, more precise examination of the molecular 

mechanisms relating to Dyrk in the content of Wnt signaling resides ahead.  
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Chapter II 

 

Materials and Methods 

 

cDNA constructs 

     Standard recombinant DNA techniques were used to construct pCS2-based 

plasmids harboring Xenopus laevis: Myc-p120-catenin, HA-p120-catenin (49), Myc-

β-catenin, HA-β-catenin, Myc-ARVCF, HA-ARVCF (49), Myc-δ-catenin and HA-δ-

catenin (109). Myc-GSK3β-pXT7 and catalytically inactive mutant (K85R) (S. Sokol, 

Mount Sinai School of Medicine) (110), HA-CK1α-pCS2 (Xi He, Harvard Medical 

School) (111), Myc-Axin-pCS2 (P.S. Klein, U. of Pennsylvania) (12), xWnt8 (S. 

Sokol, Mount Sinai Scholl of Medicine) (112), xWnt11 (R. Keller, University of 

Virginia) (113, 114) and xWnt5a (R. Harland, University of California, Berkley) (115), 

were kindly provided as indicated. GSK3β was subcloned into the pCS2-HA vector 

for co-immunoprecipitation. Generated previously were pCS2 plasmids harboring 

Myc-p120 deletion constructs, Myc-Frodo and HA-Frodo (70). The quadruple p120-

catenin point mutant (S6, S8, S11 & S15 4SA) was generated by PCR 

amplification of HA-p120-catenin (in vector pCS2) as a template with 5’ mutated 

primer as follows: P1204SA-F, 5’-

GGAATTCATGGATGAGCCAGAGGCTGAAGCTCCGGCCGCTATATTGGCCGCA

GTGAGAGCT-3’; P1204SA -R, 5’-
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AAGGCCTGACACGCTGATCTTCAGCATCACCAAGATTCAGTGATCCTCCAGCA

CTTACGGA-3’.  

 

Embryo culture, microinjections, in vitro transcription and antisense 

oligonucleotides 

     Fertilization, embryo culture and microinjections were conducted in accordance 

with a standard methods (49). Embryos were microinjected with capped mRNA 

synthesized in vitro (mMessage mMachine, Ambion). All pCS2-based constructs 

were linearlized by using Not I restriction enzyme prior to in vitro transcription. 

Gastrulation phenotypes, principally failure of blastopore closure, were visually 

scored at embryonic stages 11-12. I employed an xDyrk1A-morpholino (xDyrk1A-

MO), and standard morpholino (STD MO, Gene Tool). xDyrk1A-MO sequences: 5’-

ATGAGACTTGAA AGAGGACGATGCA-3’. 

 

Analysis and Gene Expression Using Real-time RT-PCR 

 

     Total RNA was prepared from stage 10.5 or 11.5 embryos that had been earlier 

injected with morpholino or mRNA. Preparations employed Trizol followed by 

RNase-Free DNase as instructed by Promega (RQ1 RNase-Free DNase). cDNA 

was made using the Superscript first-strand synthesis system (Invitrogen), followed 

by real-time RT-PCR and quantitation (Applied Biosystem, 7500 Real-time PCR). 

Primers for RT-PCR were: Siamois, 5’- CCCAACTTCAGAAGGACCTAGATC-3’ and 

5’-TGGGTAGGGCTGTGTATTTGA-3’; Wnt11, 5’-TGACAGCTGCAACCTCATGT-3’ 
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and 5’-ACAGAGGGCTGTCAGTGCTT-3’; ODC, 5’-CGAGCGGATTATCTATGCA-3’ 

and 5’-GCGTATTTGATCTGGGAAA-3’. 

 

Immunoprecipitation and immunoblot analysis 

 

     Immunoprecipitation and immunoblotting employed monoclonal antibodies 

directed against Myc (9E10), HA (12CA5), p120-catenin (mouse/ human pp120, BD 

Transduction; mouse/ human 6H11, Santa Cruz), and GSK3β (mouse, BD 

Transduction). Polyclonal antibodies included those directed against β-catenin and 

p120-catenin, that were raised in our lab (70).  Antibodies directed against Frodo 

were provided by Dr. Sergei Sokol’s lab, while rabbit polyclonal antibodies directed 

against Dyrk1A were commercially obtained (Abcam). For immunoprecipitations, 

procedures were largely performed as described (49). Whole-embryo lysates were 

prepared using 0.5% Triton X-100 buffer (0.5% Triton X-100, 10 mM HEPES [pH 

7.4], 150 mM NaCl, 2 mM EDTA, 2 mM EGTA), inclusive of a proteinase inhibitor 

cocktail (Sigma). Interference from the IgG heavy chain in immunoblot analyses 

was reduced by employing TrueBlotTM anti-mouse IgG IP Beads, and Mouse 

TrueBlotTM ULTRA:Horseradish Peroxidase (HRP) anti-mouse IgG (eBioscience). 

Embryos were lysed in 0.5% Triton X-100 buffer (20 µl per embryo), in the presence 

of a proteinase inhibitor cocktail (Sigma). After centrifugation (14000 rpm, 20 min), 

the supernatant fraction was denatured in 5x SDS sample buffer (200 mM Tris-Cl 

[pH 6.8], 40% glycerol, 8%SDS, 0.08% Bromophenol Blue), followed by incubation 

at 95°C for 5 min. Half-embryo equivalents were resolved by SDS-PAGE and 
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transferred onto nitrocellulose membranes. Immunoblotting and antibody 

incubations took place in 2% bovine serum albumin-TBST (25 mM Tris-HCl [pH 

7.8], 125 mM NaCl, 0.5% Tween 20). SuperSignal WestPico (Pierce Biotechnology, 

Inc.) reagents were utilized to detect HRP-conjugated secondary antibodies.  

 

Mammalian cell culture and immunofluorescence staining 

 

     HeLa, 293T and MDA-MB-435 cells were purchased from ATCC and maintained 

in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum. MDA-

MB-231 cells were kindly provided by Dihua Yu (UT MD Anderson Cancer Center). 

Using Lipofectamine 2000, cells were transiently co-transfected with DNA 

constructs such as Myc-Kaiso and HA-Dyrk1A. 24 hours after transfection or the 

indicated time after treatment, cells were fixed with 4% PFA (paraformaldehyde) for 

10min, blocked with 5% goat serum in PBS and immunostained with anti-Myc 

antibody (9E10). Fluorescence images (Nikon ECLIPSE E800 microscope) were 

recorded using SPOT advanced software.  

 

Transfection and RNA interference 

 

     siRNA oligonucleotide sequences directed against the transcripts of Axin1&2 or 

LRP5&6 were gathered from published reports (20), and synthesized by Applied 

Biosystems. The proprietary duplex negative control siRNA was purchased from 

Ambion. Duplex oligonulceotides were directed against the target sequences: Axin1 
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5’-GGCGAGAGCCATCTACCG AAA-3’; Axin2 5’-GCAGACGATACTGGACGATCA-

3’; LRP5 5’-CCAACGACCTCACCATTGTCT-3’; and LRP6 5’-

AGACATTGTTCTGCAGTTAGA-3’ ; Dyrk1A-1 5’-TTAAGGATGCTTGATTATGAC-

3’; Dyrk1A-2 5’-AAACTCGAATTCAACCTTATT-3’. siRNA oligonucleotide 

sequences of Dyrk1A were gathered from published reports (116, 117). For 

transfection of siRNA alone into 6-well plates, LipofectamineTM RNAiMax 

(Invitrogen) was employed (50pmol/well). When DNA plasmids were transfected 

along with siRNA, Lipofectamine 2000 (Invitrogen) was used. After transfection and 

incubation for 48-72 hours, cell lysates were collected using M-PER mammalian 

protein extraction reagent (Thermo Fisher Scientific Inc.), and proteins detected by 

immunoblotting. 

  

Pulse-Chase Analysis 

     HeLa-S3 cells were transiently transfected with (HA epitope tagged) pCS2-HA-

p120 or pCS2-HA-p1204SA. After 24 hours, cells were washed and preincubated for 

1 hour with Met/Cys-free DMEM made 10% in FBS. The medium was then replaced 

with fresh Met/Cys-free medium containing 40 µCi/µl of [35S]-Met/Cys, and 

incubated for 1 hour. The cells were washed and incubated in complete medium, 

and 2 mg of cell lysates were immunoprecipitated with anti-HA-7 agarose (Sigma). 

The samples were subjected to 8% SDS-PAGE followed by autoradiography. 

 

In Vitro Kinase Assay 
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     For in vitro kinase assays, flag-tagged p120 N-term wild-type or 4SA-mutant 

(amino acids 1-280), and flag-tagged GSK3β or HA-tagged Dyrk1A wild-type and 

Kinase Dead (KD) were synthesized in vitro (TnT system, Promega). Each p120 

construct was incubated with kinases or kinase-dead enzyme at 30°C for 90 

minutes in the presence of [32P]γ-ATP. Substrate proteins were then 

immunoprecipitated, with isotope labeling resolved by SDS-PAGE/ autoradiography.  
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Chapter III 

 

 

 

Negative regulator of p120-catenin and p120 subfamily members: canonical 

Wnt signals/components modulate p120-catenin isoform-1, ARVCF and δ-catenin 
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Result 

 

(Chapter III) 

 

GSK3β modulates p120-catenin stability 

 

      Given that our prior work suggesting similarities in p120-catenin and β-catenin 

regulation (70), I directly investigated the involvement of established components of 

β-catenin’s destruction machinery in p120 regulation. Studies were initially 

performed to examine the impact of expressing exogenous GSK3β on p120’s level 

in early Xenopus embryos. Based upon our prior findings to show that inhibiting 

GSK3 via LiCl increased endogenous p120-catenin levels, it was speculated that 

GSK3β ectopic expression should decrease p120-catenin levels (70). Indeed, wild-

type GSK3β and CK1α reproducibly reduced the level of Myc-tagged xp120 

isoform-1 (longest isoform; translation beginning at p120’s most upstream ATG 

site), while CK1ε or a kinase-dead form of GSK3β (KD) (negative-control), did not 

have statistically significant impact upon p120 (Figure 5A, and data not shown). 

Unexpectedly, lower as opposed to intermediate or sometimes even high GSK3β 

expression (5 pg versus 10pg, or in some cases 100 pg mRNA), produced modestly 

greater reductions in ectopic or endogenous p120-catenin isoform-1 levels and 

functional consequences in Xenopus embryos (Figure 5A, 5B and 5C), as 

discussed later in relation to other findings (Figure 10 & Discussion). Ectopically 

expressed p120-catenin was employed in these initial studies given that a large 
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proportion of endogenous p120 is bound to cadherin, which as established for β-

catenin, would be expected to exhibit less sensitivity to Wnt-pathway regulation.  

 

      I next tested for a functional relationship between p120 and GSK3β using a 

phenotypic assay in vivo. As predicted, p120-catenin over-expression resulted in 

gastrulation failures in a significant fraction of embryos (49). However, when a 

carefully titrated dose of GSK3β was co-injected with p120, I observed significant 

rescue of the gastrulation phenotypes (Figure 5D; compare the first two bars). 

Kinase-dead GSK3β did not produce such rescue effects (GSK3β KD, negative 

control), while a titrated dose of Axin appeared to have modest rescuing activity.  

To complement over-expression assays, I next used loss-of-function experiments. 

As morpholinos to deplete GSK3 have not been well characterized for work in 

Xenopus, we instead used a proven short-hairpin/ shRNA to block GSK3 function in 

HeLa cells (118). As anticipated, p120-catenin protein levels were elevated upon 

the depletion of endogenous GSK3, as assessed using immunofluorescence 

analysis as well as immunoblotting (Figure 5E). Noteworthy in our 

immunofluorescence images is p120’s increased presence in both the cytoplasmic 

and nuclear compartments, relative to negative control shRNA transfected cells. 

Collectively, these data (Figure 5) propose that p120 is subject to modulation by 

GSK3β. 
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Figure 5. GSK3β modulates p120-catenin protein levels.   

(A)  Myc-p120-catenin mRNA (0.5ng) was microinjected into each blastomere of 2-

cell stage embryos with the indicated levels (in vitro transcribed mRNA) of GSK3β 

kinase, GSK3β kinase-dead mutant (KD), CK1α or CK1ε. Embryos were harvested 

at stages 10-11 for immunoblotting with anti-Myc antibody, with actin serving as an 

internal loading control. The right panel quantities Myc-p120 protein levels 

normalized to actin, using data from four independent experiments.  (B)  Increasing 

total doses of Myc-GSK3β were microinjected into both blastomeres at the 2-cell 

stage. Embryos were collected at late-gastrula stage 12, and endogenous p120-

catenin and β-catenin levels respectively visualized via immunoblotting.  (C)  Gross 

gastrulation effects following exogenous GSK3β expression. Although many direct/ 

indirect GSK3β targets are likely to have been affected, it is interesting that the 

dose-dependent effects on gastrulation mirrored the dose-dependent GSK3β effects 

upon p120 and β-catenin levels in panel (B). (D)  Gastrulation (blastopore closure) 

failure following exogenous p120-catenin expression (0.5 ng mRNA injection), 

versus rescue upon co-expression with GSK3β  mRNA (5 pg), or more partial 

rescue using co-expressed Axin (5pg). (E)  Either Venus-sh-random or Venus sh-

GSK3 and Myc-xp120-catenin were co-transfected into HeLa cells as indicated. 48 

hours after transfection, cells were assayed for Myc-p120 using 

immunofluorescence or immunoblotting (left versus right panels). For 

immunofluorescence, cells were fixed with 4% PFA and probed for Myc-p120 

followed by Texas red-conjugated anti-mouse visualization. For immunoblotting, 

tubulin served as an internal loading control. This figure was modified/reproduced 
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with permission from the Journal of Cell Science (119). 
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P120-catenin is regulated by the ubiquitin-proteasome pathway 

 

      Given β-catenin’s phosphorylation by CK1α/ GSK3β, followed by degradation 

via the proteasomal pathway, I examined whether p120 is regulated in a manner 

similar to that of β-catenin. To better resolve the p120-catenin signaling pool, we 

employed MDA-MB-231 and MDA-MB-435 cells, which are largely E-cadherin 

deficient, in addition to 293T cells, which express E-cadherin. MDA-MB-231, MDA-

MB-435 and 293T cells were incubated with the proteasome inhibitor MG132, and 

endogenous p120 was monitored via immunoblotting. As expected, p120-catenin 

was stabilized by MG132 in a dose-dependent manner in all cell lines tested (Figure 

2A). To detect endogenous p120-catenin, we used two previously characterized 

anti-p120 monoclonal antibodies, pp120 and 6H11 (120). 6H11 is directed against 

an amino-terminal epitope, which selectively resolves the isoform-1 generated from 

the most upstream translational start site. pp120 antibody detects all p120 isoforms, 

because it recognizes a carboxyl-terminal epitope present across most p120 

translation products. In the cell lines employed here, pp120 detects two 

predominantly expressed products thought to be isoforms-1 and -3. Inhibition of the 

proteasome pathway via dose-dependent titration of MG132 elevated p120 isoform-

1 levels in all cell lines tested, with an observable yet lesser impact upon isoform-3, 

as was evident in MDA-435 cells in which E-cadherin is deficient (Figure 6A). 

Further analogous to β-catenin (17), p120 ubiquitination was clearly evident upon its 

co-expression with HA-ubiquitin in HeLa cells. Likewise as expected, being 

dependent upon GSK3β, such p120 ubiquitination dropped when cells were 
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incubated with the GSK inhibitor LiCl (Figure 6B). Since CK1α is a priming kinase 

for GSK3β in the β-catenin degradation pathway, I examined the effect of incubating 

embryos in the presence of the CK1 inhibitor D4476. Consistently, D4476 treatment 

raised expressed p120 levels, as was predicted and clearly observed for β-catenin 

(positive control) (Figure 6E). Consistent with our Xenopus embryo and exogenous 

expression data, endogenous p120 isoform-1’s level in mammalian cells was also 

increased when MDA-435 or 293T cells were exposed to D4476 (Figure 6D). 

Additionally, p120’s sensitivity to GSK3 was supported in pulse-chase data, where 

LiCl or MG132 treatment prolonged the half-life of both endogenous and exogenous 

p120-catenin (Figure 6F and data not shown). 
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Figure 6.  Proteasome mediated degradation appears to modulate p120-

catenin levels.   

(A)  MDA-231, MDA-435 and 293T cells were treated with varying doses of the 

proteasome inhibitor MG132 (0, 2, 5, 10, 25 µM).  After 6 hours, cells were 

harvested for immunoblotting with anti-p120 antibody (6H11 & pp120). (B)  Myc-

p120-catenin was co-transfected into HeLa cells with HA-ubiquitin. After 24 hours, 

cells were treated with LiCl (25mM) for 4 hours to block GSK3β function. Cells were 

harvested and HA-ubiquitinated proteins immunoprecipitated, followed by Myc-p120 

immunoblotting. Endogenous β-catenin was used as a positive ubiquitination 

control.  (D)  MDA-435 and 293T cells were treated with varying doses of the CK1 

inhibitor D4476 (0, 2, 5, 10, 25 µM). P120-catenin was visualized using an antibody 

directed against it (pp120), and endogenous β-catenin served as an endogenous 

positive control.  (E)  Single cells of 2-cell embryos were injected with Myc-p120-

catenin and Myc-β-catenin mRNA (0.1ng mRNA each), and treated for 24 hours 

with varying concentration of the CK1 inhibitor D4476 (10, 50, 200 µM) in the 

presence of Fugene6. Anti-myc-antibody was employed to detect both p120-catenin 

and β-catenin. (F)  HA-p120-catenin was expressed in 293T cells. Following a 1 

hour incubation with 40 µCi/µl of 35S-Met/Cys, cells were treated at the indicated 

times with 0.5% NP-40 lysis buffer. HA-p120 was immunoprecipitated using anti-HA 

antibodies, and resolved by SDS-PAGE followed by autoradiography (band 

densities quantitated using ImageJ). This data is collected from two independent 

experiments. This figure was modified/reproduced with permission from the Journal 

of Cell Science (119). 
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Inhibition of the destruction machinery recruits Kaiso to the cytoplasm 

 

Since expression of exogenous p120 recruits the transcription repressor Kaiso from 

the nucleus to the cytoplasm (60, 121), we next examined whether endogenous 

p120 stabilization correlates with a similar outcome. As predicted, Kaiso relocalized 

to the cytoplasm in the coordinate presence of proteasome inhibitor (MG132) and 

GSK chemical inhibitor (LiCl) (Figure 7A), potentially through known effects upon 

p120 stabilization (Figure 5E&6A). LiCl or MG132 alone produced a reproducible 

but considerably subtler effect on Kaiso’s relocalization, consistent with its lesser 

protection of p120 relative to the combined treatment (data not shown). To ask if 

endogenous Kaiso displays a similar outcome as exogenous Kaiso, I employed 

MDA-435 cells, which express neither E-cadherin RNA nor protein. Endogenous 

Kaiso appears to relocalize from the nucleus to the cytoplasm in MDA-435 cells, 

when employing a monoclonal antibody directed against Kaiso (6F) (Figure 7B). 

Together, the data from Figures (5, 6 & 7) suggest that endogenous p120-catenin is 

subject to some of the same regulatory processes established for β-catenin in the 

context of the canonical Wnt signaling pathway.  
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Figure 7. P120 stabilization via inhibition of the proteasome pathway 

promotes Kaiso’s relocalization.  

(A)  HeLa cells were grown on cover slips, transiently transfected with Myc-Kaiso 

and treated with MG132 (10µM) and LiCl (50µM). Cells were fixed with 4% PFA for 

10 min, blocked with 5% goat serum in PBS and immunostained with anti-Myc 

antibody. (B) MDA-435 cells were treated with MD132 and LiCl as indicated in (A), 

then fixed and immunostained with anti-Kaiso antibody (6F). This figure was 

modified/reproduced with permission from the Journal of Cell Science (119). 
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Association of destruction complex components with p120-catenin 

 

Several in vivo and in vitro reports show that β-catenin associates with Axin, β-

TrCP, GSK3β and CK1α (10, 15, 111). Given that p120-catenin’s levels and 

functions outcome in vivo are modulated by the destruction complex (Figure 5 & 6), 

we assayed if p120 might likewise engage in such associations. Since a significant 

fraction of endogenous p120 is in complex with cadherins at the membrane as 

opposed to being within an accessible signaling pool in the cytoplasm, co-

immunoprecipitations were performed from Xenopus embryo extracts using 

ectopically expressed proteins. We first tested for the association of p120 with 

GSK3β. While weakly apparent in immunoblots, the p120:GSK3β complex was 

reproducibly resolved relative to GSK3β KD, serving as a negative control (Figure 

8A, see also Figure 9B). We next examined Axin, which is known as a scaffolding 

protein, and thus interacts with multiple components of β-catenin’s destruction 

complex. In precipitations conducted in either direction (reverse precipitation not 

shown), Axin interacted with p120 as resolved in immunoblotting (Figure 8B; Kaiso 

negative control). P120 was also detected in complex with CK1α, the priming 

kinase that acts upon β-catenin immediately prior to GSK3β (Figure 8C; Kaiso and 

C-cadherin serving as negative controls). I also resolved association of the E3 

ubiquitin ligase β-TrCP with p120, relative to negative control IgG 

immunoprecipitates (Figure 8D). Given the data presented here with ectopically 

expressed proteins, I finally asked if endogenous p120 associates with endogenous 

GSK3β. Employing established GSK3β, p120 and β-catenin antibodies, I 
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immunoprecipitated endogenous GSK3β and resolved the p120:GSK3β complex in 

293T and MDA-435 cells (Figure 8E). Thus, in an in vivo context, p120-catenin 

directly or indirectly interacts with some of the key proteins known to regulate β-

catenin stability in the canonical Wnt pathway.   
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Figure 8.  P120-catenin associates with destruction complex components.   

(A)  HA-p120-catenin (1ng) was co-injected with either Myc-GSK3β or Myc-GSK3β 

KD (0.5ng) into both blastomeres of 2-cell embryos. Myc-GSK3β 

immunoprecipitates were immunoblotted with anti-HA antibody to detect p120.  (B)  

HA-Axin (0.5ng) was microinjected with Myc-p120-catenin (1ng) or Myc-Kaiso (1ng) 

into both blastomeres of 2-cell embryos, subsequently harvested at gastrulation. 

Anti-HA antibody (Axin) immunoprecipitates were blotted with anti-Myc-antibody to 

detect p120-catenin versus Kaiso (negative control).  (C)  HA-CK1α was injected 

into both blastomere of 2-cell embryos along with Myc-p120, Myc-C-cadherin or 

Myc-Kaiso, and embryos harvested at early-mid gastrulation (stage 10-11). This 

was followed by anti-HA immunoprecipiation (CK1α), and then anti-Myc (p120, or 

negative controls C-cadherin or Kaiso), or anti-HA immunoblotting (CK1α).  (D)  The 

association of Myc-β-TrCP (0.5ng) and HA-p120-catenin (1ng) was resolved using 

methods analogous to those used in (C). (E)  293T and MDA-435 cells were grown 

in 10cm dishes, and lysates immunoprecipitated for endogenous GSK3β (BD 

Transduction). The association of endogenous p120-catenin (6H11) with GSK3β 

was resolved by immunoblotting (β-catenin positive control). This figure was 

modified/reproduced with permission from the Journal of Cell Science (119). 
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P120’s amino-terminal domain associates with GSKβ and CK1α  

 

The amino-terminal domain of β-catenin includes four serine residues 

phosphorylated by CK1α and GKS3β, and thus provides the platform for their 

association (15, 122). As a first step in assessing p120-catenin phosphorylation, we 

searched for potential GSK3β phosphorylation sites. Three evolutionally conserved 

GSK3β phosphorylation residues were identified, with one being amino-terminal and 

two residing in the Armadillo repeat domain. P120’s amino-terminal region 

interestingly harbors a 3DSX3SX2SX3S15 motif comparable to the GSK3β-sensitive 

site existing in β-catenin (Figure 10A) (16). To map p120’s interaction domains with 

GSK3β and CK1α, Hong Ji, one of our lab members, generated a series of p120 

deletion constructs (a-f) (Figure 9A). Using these p120 deletion constructs, I 

performed co-immunoprecipitations from Xenopus embryo extracts after the 

microinjection of those constructs with either GSK3β or CK1α. Constructs 

containing p120’s amino-terminal domain associated with GSK3β (fl, b, c & e), 

whereas p120 constructs lacking this region (a, d & f) did not (Figure 9B). I then 

tested if the p120 deletion mutant lacking the amino-terminal region is ubiquitinated. 

Consistent with the association of p120 amino-terminus with GSK3β, only the 

construct (d) lacking p120’s amino-terminal region were negative for ubiquitination 

(Figure 9C). Based on such findings, I next examined if the CK1α priming kinase of 

β-catenin (primes for GSK3β), associates with the analogous region of p120-

catenin. Employing a similar co-immunoprecipitation strategy, I resolved the 
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interaction between CK1α and p120’s amino-terminal domain (c), but not with a 

p120 mutant construct (d) which lacks this region (Figure 9D). Thus, in keeping with 

our prior findings, this evidence suggests that p120 and β-catenin engage in shared 

protein interactions reflecting their similar biochemical and likely functional 

responses to Wnt signals.  
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Figure 9.  Mapping of p120 association with GSK3β, CK1α and ubiquitin.   

(A)  Myc-tagged p120-catenin deletion constructs (a-f). The table summarizes the 

relative p120-construct:GSK3β association as shown in (B).  (B)  HA-GSK3β (0.5ng 

mRNA) was co-expressed with varying p120-catenin deletion constructs (a-f) 

(0.5ng), followed by HA-GSK3β immunoprecipitation and Myc-construct 

immunoblotting.  (C)  Either Myc-p120-catenin (fl) or Myc-ΔN-p120-catenin 

(construct d) was co-transfected with HA-tagged ubiquitin in HeLa cells. Following 

HA-ubiquitin immunoprecipitation, co-associated (versus not) Myc-p120 constructs 

were visualized via immunoblotting.  (D)  Myc-p120 constructs (fl, c & d) (0.5ng 

mRNA) were co-injected with HA-CK1α (0.5ng) in both blastomeres of 2-cell 

embryos. Gastrula embryo extracts were immunoprecipitated for HA-CK1α and 

blotted for Myc-p120. Right panel, lysate indicates Myc-p120 construct expression. 

This figure was modified/reproduced with permission from the Journal of Cell 

Science (119). 
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P120 point mutant differs in destruction-complex responsiveness 

 

      To evaluate whether the potential GSK3β or CK1α sites identified in p120’s 

amino-domain are in fact relevant to its sensitivity to destruction complex 

components, I designed a p120 compound point mutant in which four serines were 

mutated to alanines (p1204SA/ Ser  Ala: Ser6, Ser8, Ser11, Ser15) (Figure 10A). 

P120-catenin full-length (fl, comparable to p120 isoform-1) versus p1204SA mutant 

were microinjected into Xenopus embryos, and their protein stability was monitored 

with immunoblotting in response to the presence of GSK3β. While p120-fl levels 

were consistently decreased upon GSK3β co-expression (Figure 10B compare 

lanes 1 & 2, see also Figures 1A & 10A), levels of the mutant were in contrast not 

lowered (Figure 10B compare lanes 3 & 4). 

 

      In fact, surprisingly, p1204SA’s level was reproducibly increased upon co-

expression with GSK3β in Xenopus embryos. Apparently, a direct or indirect 

protective effect of GSK3β was unmasked in producing the p1204SA mutant. This 

possibility may also have been resolved in the unexpected lesser impact upon p120 

levels/ degradation of intermediate (10pg or in some cases higher) GSK3β levels 

relative to lower (5pg) or higher (100pg) GSK3β levels (Figure 5A & 5B). I 

hypothesize that at intermediate GSK3β levels, wild type p120 may become 

susceptible to direct or indirect GSK3β effects that are protective in nature 

(phosphorylation/ other), whereas lower or higher GSK3β activity largely acts at 

negative-regulatory sites that we resolved. Indeed, other potential but more distal 
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GSK sites have been identified in p120 such as the site just upstream of the Arm 

domain (Ser199 amino-acid) (123). Evidence supporting GSK3’s modification of 

such additional predicted sites was not obvious, however, in our in vitro kinase 

assays (Figure 12, and data not shown). Alternative possibilities include GSK3β 

phosphorylation of LRP5/6, leading to destruction complex inhibition via recruitment 

of either Axin or GSK3β to the membrane, followed by β-catenin stabilization (18, 

19, 24, 25). Whatever the underlying mechanistic explanation, mutation of p120’s 

conserved four amino-terminal serines (p1204SA/ Ser  Ala: Ser6, Ser8, Ser11, 

Ser15) protects p120 from destruction complex-mediated degradation.  

 

      In addition to candidate kinase sites, study of p120’s primary sequence pointed 

to a conserved potential β-TrCP recognition motif, DSEXXS (16, 122). In common 

with β-catenin, this motif resides adjacent to p120’s putative amino-terminal CK1α/ 

GSK3β phosphorylation sites (Figure 10A). Indeed, employing a co-

immunoprecipitation/ immunoblotting approach, the association of p120 with β-TrCP 

was resolved, whereas our phosphorylation mutant p1204SA exhibited significantly 

reduced β-TrCP co-association (Figure 10C, compare lane 2 with lanes 4 and 6). 

These observations are consistent with β-catenin’s known regulation, wherein 

phosphorylation is required for β-TrCP recruitment (15). Given this outcome, I next 

tested if p1204SA would prove less susceptible to ubiquitination relative to wild-type, 

and tested this possibility in HeLa cells. Indeed, while p120 appears to have a 

strong ubiquitination signal, poly-ubiquitination upon p1204SA was greatly reduced. 

Interestingly, mono- or di-ubiquitinated forms showed lesser differences when 
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comparing p120 versus p1204SA (Figure 10D). Consistent with reduced 

ubiquitination, pulse-chase data indicated that p1204SA has a prolonged half-life 

relative to native p120 (approximately 3 versus 1.5 hours) (Figure 10E).  
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Figure 10. Phosphorylation dependent p120-catenin ubiquitination and 

proteasomal degradation. (A)  Cross-species sequence alignment of p120-catenin 

regions harboring conserved predicted GSK3β phosphorylation and ubiquitination 

sites. Highlights shown in each region include conserved serine residues, and a 

DSEXXS motif for β-TrCP recognition.  (B)  HA-p120 (0.3ng mRNA), versus the HA-

p1204SA point mutant (4SA, see Figure 6A, 0.3ng), was co-injected with HA-

GSK3β (0.1ng) into both cells of 2-cell embryos. Gastrula embryo lysates (stages 

11-12) were immunoblotted for the HA-p120 constructs, revealing a differing 

response to GSK3β.  (C)  HA-p120 versus HA-p1204SA (0.5ng) were co-injected 

with Myc-β-TrCP (0.5ng) into one blastomere of 2-cell embryos. Gastrula embryo 

lysates were immunoprecipitated for Myc-β-TrCP and assayed for co-associated 

HA-p120 or HA-P1204SA.  (D)  Myc-p120 or Myc-p1204SA was co-transfected with 

HA-ubiquitin into HeLa cells. HA-ubiquitin was immunoprecipitated and immuno-

blotting used to detect ubiquitinated Myc-p120 versus Myc-p1204SA.  (E)  The half 

lives of HA-p120 versus HA-p1204SA were monitored by pulse-chase analysis. 

Following 1hour pulse-chase with [35S] Met/Cys, HeLa cells transfected with HA-

p120 and HA-p1204SA were harvested at the indicated times, and anti-HA 

immunoprecipitates were resolved by SDS-PAGE and visualized by 

autoradiography (quantitation of band intensities employed Image J, and was 

normalized to the zero time point). This data is representative of two independent 

experiments. This figure was modified/reproduced with permission from the Journal 

of Cell Science (119). 
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Stabilized p120 point mutant exhibits an enhanced impact upon target gene 

expression  

 

      At the functional level, p120-catenin has a number of in vivo activities including 

the capacity to relieve Kaiso-mediated repression of target genes containing 

sequence-specific binding sites (KCS). Given that p1204SA shows an expanded half-

life, we next asked if the transcriptional activity of p1204SA is elevated above that of 

wild-type p120, using Wnt-11 and Siamois as direct endogenous gene readouts 

(62). Employing semi-quantitative RT-PCR (Figure 11A), and real-time PCR (Figure 

11B), I observed induction of Wnt-11 expression by p1204SA (relief of Kaiso-

mediated repression) to a greater extent than wild-type p120-catenin, even though 

p1204SA was reproducibly expressed at lower levels relative to wild-type (Figure 

11B, compare lanes 3 & 4). Furthermore, the p1204SA mutant proved more effective 

in promoting the expression of xSiamois (Figure 11C), another direct p120/ Kaiso 

(as well as β-catenin/ TCF/ LEF) gene target (61). These data indicate that 

stabilized p120 (p1204SA) exhibits more potent gene regulatory outcomes than wild-

type p120-catenin, analogous to the β-catenin context (124, 125). We next 

conducted in vitro kinase assays with p120, CK1 and GSK3β. As occurs for β-

catenin (15), phosphorylation of p120 was faint but reproducible, suggesting it is a 

direct GSK3β/ CK1α target (Figure 12 & data not shown). 
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Figure 11. Stabilized p120-catenin mutant exhibits increased capacity to 

activate target gens. (A)  Myc-GSK3β (5pg mRNA) or Myc-Kaiso (0.25ng) was 

microinjected with HA-p120 versus HA-p1204SA (0.25ng) into one blastomere of 2-

cell embryos. Total mRNA injection loads were equalized using β-galactosidase 

mRNA. Gastrula embryo cDNA (stage 10-12) was subject to RT-PCR to assay 

endogenous xWnt-11 transcript levels. Band intensities are indicated relative to β-

gal control (set at 1), following normalization to the Histone H4 internal loading 

control.  (B)  Myc-Kaiso  or β-gal (negative control) was injected alone (0.25ng), or 

Myc-Kaiso was co-injected with HA-p120 versus HA-p1204SA (0.25ng), into one 

blastomere of 2-cell embryos. Gastrula embryo cDNA was assayed by real-time RT-

PCR for xWnt-11 transcript levels. (C) Across varying doses, the stabilized p1204SA 

mutant increases xSiamois luciferase activity to a greater extent than wild-type 

p120-catenin (p1204SA exhibits greater relief of Kaiso-mediated repression of 

xSiamois). xSiamois luciferase reporter plasmid (0.25ng) was co-injected with the 

indicated amounts of HA-p120 versus HA-p1204SA. Gastrula embryos (stage 12-13, 

eight embryos per condition) were collected to quantities luciferase activity. This 

figure was modified/reproduced with permission from the Journal of Cell Science 

(119). 
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Figure 12. In vitro assay of GSK3β and CK1α kinase activity upon p120 For in 

vitro kinase assays, flag-tagged p120 N-term wild-type or 4SA-mutant (amino 

acids1-280), and flag-tagged GSK3β were synthesized in vitro (TnT system, 

Promega). Each p120 construct was incubated with flag-GSK3β and CK1 (NEB 

P6030) at 30°C for 90 minutes in the presence of [32P]γ-ATP. Substrate proteins 

were then immunoprecipitated, with isotope labeling resolved by SDS-PAGE/ 

autoradiography. Comparing lanes 4 & 6, wild-type p120-catenin is very modestly 

labeled in the presence of GSK3β and CK1, whereas the 4SA mutant shows no 

detectable phosphorylation. This is consistent with modest CK1/ GSK3β labeling 

observed upon β-catenin in vitro (15). Robust GSK3β auto-phosphorylation serves 

as a positive control (lane 3, 4, 5 and 6). This figure was modified/reproduced with 

permission from the Journal of Cell Science (119). 
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Shared mechanisms modulate the metabolic stability of multiple p120-catenin 

sub-family members 

 

      P120-catenin is the prototypical member of the p120-catenin sub-family 

consisting of p120-catenin itself, ARVCF-catenin, δ-catenin and p0071-catenin (39).  

These p120-catenin family members have certain shared features, such as a 

central Armadillo domain (9 repeats as opposed to the 12 in β-catenin/ plakoglobin), 

their interaction with cadherin membrane-proximal regions (β-catenin/ plakoglobin 

instead bind membrane-distal regions), and their modulation of small GTPases (β-

catenin/ plakoglobin apparently lack this functionality). Based upon my findings on 

p120-catenin, I next asked if other p120 sub-family members might associate with 

and respond to destruction complex components of the Wnt pathway. Probing 

Xenopus embryo extracts, I first tested if one of the main components of the 

destruction complex, Axin, had an impact upon ARVCF and δ-catenin levels. 

Serving as positive controls, β-catenin and p120 levels were decreased in the 

presence of Axin (Figure 13A & 14A). Likewise, ARVCF and δ-catenin were 

considerably decreased upon Axin co-expression, whereas negative controls 

(xKazrin and EWS) produced no response to Axin (Figure 13A). I further asked 

whether ARVCF- and δ-catenin interact with Axin, as we demonstrated above for 

p120, and as known to occur for β-catenin. Indeed, in common with p120-catenin 

and β-catenin (positive controls), both ARVCF and δ-catenin associated with Axin, 

relative to negative controls such as xDyrk and xKaiso (Figure 13B & 13C). 

Although full-length δ-catenin exhibited less association with Axin than did β-catenin 
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or p120, shorter forms of δ-catenin, which likely arose from endogenous proteolytic 

processing or incomplete translation, showed strong association with Axin (Figure 

13C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

Figure 13.  Axin promotes the degradation of p120-catenin subfamily 

members. 

(A)  The indicated Myc-tagged p120 sub-family members (1ng mRNA each) were 

co-injected with Myc-Axin (0.1ng) into both blastomere of 2-cell embryos, and 

gastrula embryo lysates were Myc-immunoblotted. HA-Kazrin and HA-EWS (1ng 

each) were co-injected with Myc-Axin (0.5ng) as negative controls for Axin’s effects, 

while Actin and GAPDH served as internal loading controls.  (B)  The HA-tagged 

p120 sub-family members (1ng each) were co-injected with Myc-Axin (1ng) into 

both blastomere of 2-cell embryos. Gastrula (stage 11-12) embryo lysates were 

immunoprecipitated for Myc-Axin, followed by immunoblot for HA-tagged p120 sub-

family catenins. The bottom panel confirms Axin immunopreciptiations. HA-Kaiso 

and HA-Dyrk serve as negative controls.  (C)  HA-Axin was co-injected with either 

Myc-tagged β-catenin or δ-catenin into both blastomere of two-cell embryos. HA-

Axin immunoprecipitates were immunoblotted with anti-Myc antibody to detect β-

catenin or δ-catenin. This figure was modified/reproduced with permission from the 

Journal of Cell Science (119). 
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Canonical Wnt signals modulate p120-catenin  

 

      Generally, β-catenin destruction is inhibited upon activation of the canonical Wnt 

pathway. In addition to more recently reported mechanisms (29), canonical Wnt 

signals activate intracellular Dishevelled and LRP5/6, which block the association of 

β-catenin with the destruction complex by membrane recruitment of the core 

component Axin and GSK3β, followed by LRP phosphorylation by a dual-kinase 

mechanism (18, 19). Membrane recruitment of Axin, together with associated 

GSK3β, permits β-catenin’s release to the cytoplasmic signaling pool by a 

mechanism that remains somewhat unclear. Released β-catenin can then 

accumulate in the cytoplasm and enter the nucleus, facilitating its activation of Wnt 

target genes such as xSiamois, c-Myc and Cyclin-D1. Given that p120’s level is 

diminished by presence of the destruction machinery, I wished to extend this 

mechanism conceptually to p120-catenin. To confirm that Wnt signals promote 

p120 levels due to destruction complex inhibition, I co-injected p120-catenin with 

GSK3β in the presence versus absence of the Wnt8 ligand, one of the typical 

canonical Wnt-ligands in Xenopus ( in some contexts it has non-canonical activity) 

(8, 9). I also assessed the impact of co-expressing Frodo with GSK3β. Although the 

role of Frodo in Wnt signaling remains unclear and somewhat controversial, it 

associates with Dsh and engages in Wnt signaling (72). We earlier reported its 

positive regulation of p120-catenin levels (70). As predicted, expression of Wnt8 or 

Frodo reproducibly protected p120-catenin from the negative effects of GSK3β 

(Figure 14A, compare lanes 5 & 7 with lane 2). Further, in keeping with prior data 
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showing the partial capacity of Axin to rescue developmental phenotypes produced 

by ectopically expressed p120 (Figure 5D), we found that Axin facilitates p120-

catenin’s degradation (Figure 14A, compare lane 3 with 1). In a dose dependent 

manner, Wnt8 countered Axin mediated destruction of p120 (Figure 14C). Frodo 

likewise protected p120 from the negative effects of Axin (Figure 14A, compare lane 

8 with 3), as if also countered co-expressed GSK3β (Figure 14A, compare lane 5 

with 2). At the low levels of GSK3β and Axin exogenously expressed, I was not able 

to monitor the effects upon endogenous β-catenin. However, higher GSK3β 

expression caused endogenous β-catenin’s degradation (Figure 14B). To evaluate 

the protective effects of distinct Wnt ligands, I micro-injected Wnt8, Wnt 11 or 

Wnt5a together with GSK3β and p120-catenin into Xenopus embryos, and then 

monitored p120’s level by immunoblotting. Wnt8 as anticipated inhibited GSK3β-

facilitated destruction of p120 (Figure 14B). Intriguingly, Wnt11 and Wnt5a showed 

subtle protective effects upon p120 as well as β-catenin levels. Wnt8 is generally 

thought to activate the canonical Wnt/ β-catenin pathway, while Wnt11 and Wnt5a 

are portrayed as non-canonical in most contexts. However, Wnt11 and Wnt5a have 

also been shown to activate the canonical pathway in axis formation in Xenopus 

embryos (126, 127). Indeed, upon ectopical expression, p120 and even 

endogenous β-catenin experienced a modest protective benefit when Wnt11 or 

Wnt5a was co-expressed with GSK3β (Figure 11B). As anticipated, relative to Wnt8 

and Wnt11, the non-canonical Wnt5a had lesser capacity to protect HA-p120 from 

the effect of GSK3β (Figure 14B). Due to the complexity of reported Wnt ligand and 

Frizzled receptor effects in Xenopus embryos during axis specification (etc.), I 
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performed a knock-down approach in conjunction with a cell line system to evaluate 

p120-catenin’s response to other Wnt signaling components such as Axin. MDA-

MB-231, HeLa and 293T cells were employed to examine the effect of knocking-

down Axin 1&2 using proven siRNAs (20). Complimenting our over-expression 

experiments conducted in Xenopus embryos, Axin1&2 depletion increased 

endogenous p120-catenin’s stabilization in all tested cell lines, reflecting the role of 

the destruction machinery in p120’s regulation (Figure 14D). Finally, I considered 

existing models wherein canonical pathway activation leads to Dsh- and LRP-

mediated recruitment of Axin to the plasma membrane and degradation of Axin, 

such that β-catenin escapes phosphorylation, ubiquitination and degradation. In 

keeping with this model devised originally for β-catenin, I found that when Wnt8 

expression levels increased, reduced amounts of p120 co-precipitated with Axin 

(Figure 14E). Collectively, our data indicate that p120 and β-catenin are subject to 

similar regulatory mechanisms in response to Wnt signals. 
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Figure 14.  Upstream Wnt pathway components modulate p120-catenin levels.  

(A)  Co-injection of Frodo or Wnt8 counter the effectiveness of Myc-GSK3β (5 pg) or 

Myc-Axin (0.1 ng) to reduce HA-p120 (0.5 ng) levels. Embryos expressing up to two 

exogenous constructs (as noted) in addition to HA-p120 were harvested at 

gastrulation and corresponding lysates immunoblotted with anti-HA antibody to 

detect p120. Actin was used as an internal loading control. Total mRNA injection 

loads were equalized using β-galactosidase.  (B)  Exogenous Wnts (0.5 ng of Wnt8, 

Wnt11 or Wnt5a mRNA) were co-injected with both HA-GSK3β (0.1ng) and HA-

p120 (0.25ng) into both blastomere of 2-cell embryos. At stage 12, Wnt protection 

(versus not) from GSK3β impact upon HA-p120 was assessed by immunoblot. Actin 

served as an internal loading control.  (C)  An increasing dose of Wnt8 mRNA was 

co-injected with both HA-p120 (0.5ng) and Myc-Axin (0.5ng) into two blastomeres of 

2-cell embryos that were later collected at gastrulation (stage 11, with 20 embryos 

per condition). P120-catenin’s protein levels were assessed by immunoblotting.  (D)  

MDA-MB-231, HeLa and 293T cells were transfected with siRNAs directed against 

Axin1&2 (50pmol), as indicated, for 48 hours. Endogenous p120-catenin levels 

were monitored via anti-p120 immunoblotting (6H11). Each experiment was 

repeated at least three times. (E)  HA-p120 and Myc-Axin were co-injected into both 

blastomeres of 2-cell stage embryos with the indicated amount of Wnt 8 ligand (0, 

0.05 and 0.5ng). Gastrula stage embryos were harvested for immunoprecipitation/ 

immunoblotting. Myc-Axin immunoprecipitates were immunoblotted with anti-HA 

antibody to detect the association of p120 with Axin. This figure was 

modified/reproduced with from the permission Journal of Cell Science (119). 
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The inhibition of upstream Wnt components reduces the level of p120-catenin 

isoform-1 

 

      I further tested the effect of knocking down LRP5&6. Being positive modulators 

of canonical Wnt signaling, I would expect that the knock down of LRP5&6 to 

produce an impact opposite to Axin depletion. I employed a previously 

characterized siRNA directed against LRP5&6 and confirmed its activity against 

exogenous LRP5&6 (Figure 15A) (20), and indeed found that p120 levels were 

diminished upon LRP5&6 depletion in MDA-MB-435 and HeLa cells (Figure 

15B&C). Intriguingly, the pp120 antibody, which detects the C-terminal region of 

p120, and thus detects most p120-catenin isoforms, revealed that the longer 

isoform of p120-catenin, presumably p120-catenin isoform-1, was more responsive 

to LRP5&6 depletion. Since isoform-2 and higher initiate translation at a primary 

sequence position following p120’s destruction motif, this endogenous data appears 

to support the view that p120’s most amino-terminal region, present in isoform-1, is 

required for its regulation by the Wnt pathway. This view was additionally supported 

via use of proteasome and CK1 inhibitors (D4476), which resulted in increased 

p120 isoform-1 levels (Figure 6). Consistently, lesser effects on isoform-3 were 

resolved upon proteasome (MG132) or CK1 inhibition (Figure 6A&6D). Although 

p120 isoform-3 showed a lesser response to inhibition of the upstream Wnt pathway 

or the destruction complex, it still exhibited some response to Wnt signaling in the 

endogenous context. I thus assayed further possible for differences between p120 

isoforms using exogenous constructs. I transfected full-length xp120 (similar to 
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human isoform-1) or an N-terminal deletion mutant (ΔNp120; similar to human 

isoform-4) into 293T cells. Based upon RNA expression, prior reports indicate 

occurrence of two Xenopus p120 isoforms (iso1 similar to hp120 isoform-1; and 

iso2 similar to hp120 isoform-3) upon RNA expression. However, the Xenopus iso2 

(similar to hp120 isoform-3) is not yet functionally characterized, while Xenopus 

isoforms similar to hp120 isoform-2 or -4 are not yet reported. As noted earlier, 

ΔNp120 lacks the amino-terminal destruction box modulated by the Wnt pathway as 

well as another potential GSK phosphorylation site (S199). ΔNp120 also associate 

with neither GSK or CK1 (Figure 9B&D), nor evidence of ubiquitination (Figure 9C). 

Thus, while human isoforms-3 and -4 are functionally distinct (84, 128), we largely 

used ΔNp120 (Xenopus surrogate isoform-4) to compare Wnt pathway responses 

with isoform-1. Relative to Xenopus isoform-1 (full-length), ΔNp120 did not respond 

to CK1 or proteasome inhibition (Figure 15D). To complement our Xenopus 

experiments, I compared mouse isoform-1 versus -3 upon GSK3 inhibition using 

another agent, BIO (inhibition of GSK), in 293T cells. Isoform-1 became modestly 

but reproducibly stabilized, whereas isoform-3 appeared unresponsive upon BIO 

treatment (Figure 15E). Inhibition of CK1 reproducibly showed a modest response 

by isoform-1, but not by isoform-3 (Figure 15E). Collectively, our data point to the 

view that p120 and β-catenin, and likely additional p120 subfamily members, share 

regulatory mechanisms responsive to Wnt signaling activity. Further, with respect to 

p120, it is isoform-1 that is most clearly modulated, consistent with its capacity to 

associate with destruction complex components and to be phosphorylated by 

CK1/GSK3β. 
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Figure 15. P120-catenin isoform-1 is most responsive to canonical Wnt 

signals. (A)  HeLa cells were transiently transfected with siRNA for LRP5 or LRP6 

(50pmol), along with either Myc-tagged LRP5 or LRP6, and effects assessed via 

Myc-immunoblot.  (B)  MDA-435 cells were seeded in 6-well plates followed by 

transfection with LRP5&6 siRNAs. The effect of LRP5&6 depletion on p120-catenin 

was monitored using distinct antibodies directed against p120 (pp120 or 6H11). The 

asterisk indicates a non-specific band serving as an additional negative control.  (C)  

The stability of p120-catenin in HeLa cells was resolved as described for (B).  (D)  

Myc-p120 full-length (isoform-1) or ΔN-p120 were transiently transfected into 293T 

cells for 24 hours, followed by MG132 or D4476 treatment (6 hours) at the indicated 

doses. The levels of p120 were monitored via Myc-immunoblot.  (E)  293T cells 

were transiently transfected with mouse p120 isoform-1A or -3A. P120-catenin 

isoforms were monitored in the presence of BIO or D4476 (6 hours), employing anti-

Myc antibody. This figure was modified/reproduced with permission from the 

Journal of Cell Science (119). 
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The amino-terminal portion of p120-catenin is critical for its functional activity 

 

      Given that ΔNp120 (similar to hp120 isoform-4) and mp120 isoform-3 appears 

to be less responsive to the Wnt pathway (Figure 15D&E), I next questioned how 

this isoform selectivity acts in whole Xenopus embryos. While we had previously 

tested only Xenopus isoform-1 expression in Xenopus, there are at least two (likely 

more) Xenopus isoforms (89). Since this second Xenopus isoform is not yet isolated 

(equivalent to human isoform-3), we compared Xenopus p120-catenin isoform-1 

with an xp120 amino-terminal deletion construct similar in structure to human p120 

isoform-4 (ΔN-p120; removal of amino acids 1-341). ΔN-p120 lacks the amino-

terminal destruction motif, so it was initially expected to be more stable and to 

increase target-gene expression more robustly than Xenopus p120 isoform-1 (more 

effective at relieving Kaiso-mediated repression of target genes). While it exhibited 

higher protein expression levels as anticipated (Figure 16A), our preliminary results 

indicate that ΔN-p120 does not produce gastrulation failures above negative-control 

levels, and further, it exhibits less impact than p120 isoform-1 upon Siamois and 

Wnt11 gene expression (Figure 16B&C). P120 has multiple roles that extend to the 

modulation of RhoA and Rac (48-50), and as supported by recently published work 

(84, 129), we were reminded that ΔN-p120 expression may have produced lesser 

gastrulation phenotypes due to its reduced capacity to regulate small GTPases. 

Further, ΔN-p120’s reduced activation of Wnt-11 expression (weaker relief of Kaiso-

mediated repression of Wnt-11; functional underpinnings are unclear) would be 

expected to result in lesser ectopic activation of PCP signaling (62). We speculate 
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that under physiologic conditions, p120 isoform-1 plays more prominent roles in cell 

and morphogenic (eg. gastrulation) movements than shorter isoforms. 
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Figure 16. The amino-terminal region of p120-catenin isoform-1 contributes to 

its functional developmental effects in Xenopus embryos. (A)  mRNA encoding 

β-galactosidase (2 ng) (negative control), Myc-p120 (2 ng) or Myc-ΔN-p120 mRNA 

(0.5 ng) were injected into one-cell stage embryos, harvested at gastrula stage 10.5 

and Myc immunoblotted. Actin serves as a loading/ negative control.  (B) 

Gastrulation failures, scored grossly at embryonic stage 12, following expression of 

full-length versus DN-p120. The gray bar indicates the fraction of partial gastrulation 

failure, while the black bar reflects complete gastrulation failure.  (C)  β-

galactosidase (negative control) (2ng), Myc-p120 (2ng) or Myc-ΔN p120 (0.5 ng) 

were injected into one-cell embryos. Gastrula-stage (91) cDNA was assayed by 

real-time RT-PCR to assess the levels of xWnt-11 or xSiamois transcripts. 

Unexpectedly, ΔN-p120 did not produce greater gastrulation failures relative to full-

length p120. 
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Frodo has a selective impact upon p120-catenin 

 

      Our previous work showed that p120-catenin binds and is stabilized by the 

intracellular protein Frodo, allowing the p120-catenin/ Kaiso pathway to modulate 

certain Wnt target genes (70). We thus tested if Frodo depletion might also have an 

impact upon β-catenin, but found that while p120 levels became lowered as 

expected, β-catenin levels were maintained (Figure 17A). This was consistent with 

our subsequent finding that Frodo does not appear to bind β-catenin, in contrast to 

its known interaction with p120, suggesting that the selective role of Frodo in 

regulating the canonical Wnt pathway may occur specifically through p120-catenin 

(Figure 17B).  
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Figure 17. Frodo associates with and stabilizes p120- but not β-catenin.  

(A)  Either HA-p120-catenin (0.25 ng) or Myc-β-catenin mRNA (0.25 ng) were co-

injected with Frodo morpholino (10 ng, versus STD-MO/ negative control), into both 

blastomeres of 2-cell embryos. Embryos were harvested at stage 11-12 for 

immunoblotting with anti-Myc (β-catenin) or anti-HA antibody (p120). Actin serves 

as a loading/ negative control. (B)  Either Myc-β-catenin (0.5ng) or Myc-p120-

catenin (0.5ng) was co-injected with HA-Frodo (0.5ng) into both blastomere of 

embryos at the 2-cell stage. Embryos were harvested at early-mid gastrula stages 

(10-11) and lysates immuno-precipitated for HA-Frodo followed by Western blotting 

to test for Myc-p120-catenin or Myc-β-catenin association (anti-HA antibody was 

used to detect HA-Frodo). This figure was modified/reproduced with permission 

from the Journal of Cell Science (119). 
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Dapper, a close relative of Frodo, were previously reported to have an impact upon 

p120-catenin’s stability (70). We thus tested whether Dapper has an impact upon 

other p120 subfamily members. Strikingly, the depletion of Dapper in early Xenopus 

embryos dramatically reduced the level of ectopically expressed δ-catenin and 

Kaiso, as well as p120-catenin (positive control), suggesting its larger role in 

modulating p120 subfamily biology (Figure 18). In summary, our results indicate that 

components of the destruction complex known to act upon β-catenin are further 

involved in regulating the level of p120 sub-family catenins, and that Frodo has a 

more obvious impact upon the p120- than the β-catenin trajectory of the Wnt 

pathway. I speculate that there may be additional currently unknown, but selective 

modulators of the p120 subfamily, that allows for distinct catenin outputs (e.g. gene 

regulation) in response to activation by different Wnt ligand on Wnt receptors.   
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Figure 18. Dapper appears to modulate p120-catenin subfamily members. 

Either Myc-p120-catenin (0.25 ng), Myc-Kaiso or Myc-δ-catenin mRNA (0.25 ng) 

were co-injected with Dapper morpholino (10 ng, versus STD-MO/ negative control), 

into both blastomeres of 2-cell embryos. Embryos were harvested at stage 11-12 for 

immunoblotting with anti-Myc (β-catenin) or anti-HA antibody (p120).  
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Discussion 

 

(Chapter III) 

 

The canonical Wnt pathway has been viewed as having β-catenin as the primary 

signal transduction mediator in response to Wnt pathway activation. While 

plakoglobin/ γ-catenin, a member of the β-catenin sub-family, has been involved in 

context-dependent Wnt gene regulation (58, 130), little emphasis has been directed 

towards the possible roles of p120-catenin subfamily members. 

 

P120 isoform-1 protein levels are subject to destruction complex regulation 

      Previous study from our group has pointed to the regulation of p120’s level in 

response to the canonical Wnt signaling pathway via Frodo, resulting in the 

modulation of certain Wnt/ β-catenin target genes harboring both Kaiso- and TCF-

binding sites (61, 70). Based upon our prior findings, I hypothesized that additional 

pathway components of the Wnt pathway might act upon p120-catenin, prompting 

us to address potential mechanisms. In my first graduate work, I found that multiple 

protein components involved with β-catenin’s destruction, also facilitate p120-

catenin degradation - with the prime examples being Axin and GSK3β. Employing 

mapping studies with several deletion constructs, the amino-terminal region of 

p120-catenin was determined to be responsible for rendering sensitivity to, and for 

association with, destruction complex components (CK1α and GSK3β). Importantly, 
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I found that the degradation mechanism applies mainly to p120 isoform-1, which 

encompasses amino-terminal GSK3 and CK1 sites that are not present in isoforms 

arising from more carboxyl-terminal translational initiations. I next mutated four 

potential phospho-residues (Serine) predicted to harbor a CK1α/ GSK3β consensus 

region and β-TrCP sites similar to that of β-catenin. In contrast to wild type, the 

levels of this mutant construct when co-expressed with GSK3β were no longer 

lowered. I further identified that the p120 point-mutant lost most of its capacity to 

associate with β-TrCP and was largely free of ubiquitination. Expanding the 

molecular mechanisms acting upon β-catenin’s stability to p120-catenin, I tested if 

upstream components of the canonical Wnt pathway such as certain Wnt ligands 

and LRP5&6, in addition to the little-understood component Frodo, produce 

protective effects upon p120. While a core component of the destruction complex, 

Axin, negatively modulates p120 in both Xenopus and cell line systems, the 

upstream Wnt component, LRP5&6 protected p120 isoform-1 from degradation, 

likely through recruiting the destruction complex to the plasma membrane to enable 

its inactivation. My results point to the view that p120 protein levels are modulated 

via mechanisms analogous to β-catenin in vivo.  Interestingly, other members of 

p120-catenin-subfamily, namely δ-catenin and ARVCF-catenin, were also 

responsive (apparent substrates) of the destruction complex. While I did not 

examine these latter catenins in depth, I note that in common with β-catenin and 

p120, each contains a number of conserved potential GSK3β sites. Indeed, 

independent evidence from the laboratory of K. Kim supports δ-catenin’s 

responsiveness to GSK3β and ubiquitination (131). In their work, GSK3 depletion 
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(via siRNA) or chemical inhibition increased δ-catenin’s levels. Consistent with my 

findings centered upon p120, δ-catenin likewise became ubiquitinated in the 

presence of MG132, with ubiquitination being reduced upon GSK inhibition. 

Mutation of a potential GSK3 phosphorylation site (Thr1078 residue) resulted in less 

ubiquitination, although interestingly, the site was located in δ-catenin’s carboxyl as 

opposed to the amino-terminal region of p120-catenin. Together with our data here 

and that earlier published (132), I envisage that the destruction complex of the 

canonical Wnt pathway modulates multiple members of the catenin family, with 

these catenins forming a Wnt responsive network extending considerably beyond β-

catenin alone. 

 

      Intriguingly, an independent group recently reported p120-catenin’s involvement 

in canonical Wnt signaling in a manner distinct from what we resolved (53). In their 

report, p120 was found to promote Dishevelled phosphorylation through p120’s 

interaction with CK1ε and E-cadherin in response to canonical Wnt ligand. This was 

shown to increase β-catenin stability. This study complements our own, since 

cadherin-dissociated p120 (perhaps more than one isoform) would represent a 

distinct signaling-pool origin, whereas that which I describe arises from Wnt-

pathway inhibition of the destruction complex, which exhibits selectivity towards 

isoform-1. In all cases, my collective work supports the concept that p120-catenin 

participates in canonical Wnt signaling (Figure 19).  
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Figure 19. Model of the Wnt/p120/Kaiso signaling module in relation to Wnt 

signaling activation. (A)  In the absence of Wnt ligands, p120-catenin as well as β-

catenin are degraded by the destruction complex via the proteasome-mediated 

pathway. Thus, target genes are repressed more efficiently by TCF/LEF and Kaiso 

transcriptional repressors. (B)  In the presence of Wnt activation, Wnt ligands 

associate with transmembrane proteins including LRP5/6 and Frizzled(s). Wnt 

activation enables Dishevelled (Dsh) to recruit Axin and GSK3β to the plasma 

membrane, which allows for β-catenin and p120-catenin stabilization. Stabilized β-

catenin is more likely enter the nucleus to relieve repression conferred by TCF/LEF. 

Concurrently, stabilized p120-catenin recruits Kaiso from the nucleus to the 

cytoplasm by an unknown mechanism, presumably via p120’s entering the nucleus 

to dissociate Kaiso from DNA. This results in de-repression of Kaiso target genes, 

some of which are shared with TCF/LEF. This figure was adapted/modified from a 

published paper, Park et al, Dev Cell, 2006 (70). 
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      Although our results indicate p120 (likely also ARVCF- and δ-catenin) 

responsiveness to canonical Wnt pathway components/ signals, central questions 

remain to be addressed. First is the issue of why, in addition to β-catenin, p120 and 

other sub-family members would be coordinately regulated. In the case of p120-

catenin, evidence is accumulating to show that p120 acts in combination with β-

catenin at shared and developmentally significant gene promoters, such as 

Xenopus Siamois and to a lesser extent Wnt11. In the case of Siamois, for 

example, gene activation occurs to an additively larger extent when β-catenin’s de-

repression of TCF/ LEF occurs in combination with p120-mediated de-repression of 

the Kaiso transcriptional repressor (61, 62). Thus, the Wnt/ p120-catenin and Wnt/ 

β-catenin pathways could be required for coordinate regulation of Wnt signaling in 

context dependent manners. Future study is required, especially as an independent 

group has questioned if Siamois and Wnt11 are gene targets of Kaiso (63, 65), 

Another independent study has supported the responsiveness of Siamois to Kaiso 

depletion in the presence of weak Wnt pathway stimulation (64). Whatever the 

outcome of this discussion, my data here while directed towards upstream p120 

regulation, continue to be consistent with Siamois and Wnt11 gene responsiveness 

to p120 and Kaiso (Figure 11). I thus expect that the Wnt/p120-catenin pathway, 

and possibly the Wnt/ ARVCF and Wnt/ δ-catenin pathways, act in parallel with the 

Wnt/β-catenin signaling trajectory to modulate certain canonical Wnt gene targets 

(or cytoplasmic downstream effectors) in context dependent manners. Interestingly, 

δ-catenin has also been reported to modulate Kaiso function at gene promoters 

(133, 134), and ARVCF appears present in some cell/ tissue nuclei (135). While 
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there is no prior report on the function of ARVCF in the nucleus, we have recently 

resolved its interaction with Kazrin, a structurally novel and incompletely 

characterized cortical/ junctional protein, which shuttles into the nucleus (136-138). 

Collectively, a coordinate response of catenins could be imagined to lead a 

networked gene regulatory readout downstream of Wnt signals. With respect to 

potential upstream modulators of catenins, Frodo and the closely related Dapper, 

which are known to functionally and physically interact with Dishevelled, will need to 

be evaluated in the Wnt/p120 pathway context. Frodo and Dapper appear to 

positively or negatively modulate Wnt signals in context-dependent manners (71, 

72, 139, 140). In this study, I could not resolve a β-catenin:Frodo complex, although 

I confirmed the expected interaction of p120-catenin:Frodo (70). Since Frodo binds 

Dishevelled, we conjecture that Frodo exhibits some selectivity for the p120 

signaling trajectory in upstream Wnt contexts, and that analogous but presently 

undefined proteins may work together with Dishevelled to regulate the trajectory of 

other catenins, especially p120-catenin subfamily members. Intriguingly, my data 

presented here indicates that the depletion of Dapper diminished δ-catenin’s levels 

in addition to p120. This suggests the possibility of Dapper being a more general 

modulator of the Wnt pathway. 

 

      As noted earlier, the initial p120-catenin transcript (pre-RNA) is subject to inter- 

and intra-exonic splicing events that allow for the generation of multiple isoforms of 

p120, as does the presence and use of four alternative translation start sites in 

humans (87). Recent evidence indicates that differing isoforms confer distinct or 
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even opposing functions, with regard to cell adhesion and invasion (84, 92, 141). 

P120 isoform-1, transcribed from the first translational start site, includes the 

destruction motif subject to Wnt-pathway regulation, and correspondingly is more 

responsive to LRP5&6 depletion, or the inhibition of proteasomes, GSK3 or CK1. In 

the context of exogenous p120 isoforms, isoform-1 was considerably more sensitive 

than p120 isoform-3 or an N-terminal deletion mutant of p120, ΔNp120 (latter similar 

to human isoform-4). Endogenous Xenopus isoforms equivalent to human isoform-2 

and -4 have not yet been reported/ characterized. However, in certain mammalian 

cell lines, I observed an additional response of isoform-3, which might conceivably 

arise from its association with isoform-1, indirect effects upon the cadherin-catenin 

complex, or the existence of additional destruction motifs within p120. Although 

exogenous isoform-3 and ΔNp120 (similar to human isoform-4) produced similarly 

absent or mild responses to the inhibition of GSK, CK1 or the proteasome, these 

isoforms have distinctive features, including their most apparent intracellular 

distributions (128).  Relative of other p120 isoforms, expression of isoform-1 is 

associated with cells having mesenchymal characteristics, and includes epithelial 

cells that have undergone progression towards invasive and transformed cell states 

(84). I thus envisage that regulatory events determining the choice of translational 

initiation sites would provide another layer of control for p120’s responsiveness to 

canonical Wnt signals. At present, little is known concerning how a particular 

translational initiation site in the p120 transcript is selected, or similarly, what 

governs the differential splicing decisions of the p120 transcript, which together 

produce multiple p120 isoforms.  
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      Besides its nuclear functions, p120 sub-family members play additional key 

roles at cell-cell junctions and other locations, modulating cadherin stability and 

trafficking (120, 142, 143), as well as regulating small GTPases (eg. inhibiting RhoA 

and activating Rac) (see Introduction). Thus, in considering the potential outcome of 

Wnt signaling upon p120 sub-family members, we must include possible effects that 

are not transcriptional in nature, but rather represent more immediate effects upon 

cell adhesion, motility or cytoskeletal activity. 
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Chapter IV 

 

 

 

Signaling components having positive impact upon p120-catenin levels: 

Down-syndrome related kinase Dyrk1A acts upon the p120/Kaiso trajectory of the 

Wnt signaling pathway 
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Results 

 

(Chapter IV) 

 

Dyrk1A has an essential role in early embryonic development 

 

      To gain insight into the mechanisms by which p120-catenin is regulated, I 

performed a small-scale kinase screen. Varied kinases were transfected into 293T 

cells, and p120 levels monitored by immunoblotting (data not shown). Dyrk1A was 

selected due to its robust impact on p120-catenin levels (see below). Although 

mammalian Dyrk1A has been examined in embryonic development, Xenopus 

Dyrk1A had yet to be evaluated. To address the molecular relationship of p120-

catenin with Dyrk1A, I designed a morpholino to deplete Dyrk1A in Xenopus 

embryos. The characterization of the Dyrk1A morpholino is summarized in Figure 

20. Employing an antibody directed against mouse, rabbit and human Dyrk1A, 

endogenous Dyrk1A was detected in Xenopus embryo extracts. The level of Dyrk1A 

was diminished in the presence of the Dyrk1A morpholino, suggesting specificity of 

the Dyrk1A antibody and morpholino (Figure 20 A&B). Given that the mouse knock-

out of Dyrk1A is embryonic lethal (144), it was expected that Dyrk1A depletion 

would result in severe defects during embryonic development. Indeed, Dyrk1A 

depletion resulted in gastrulation failure at stage 12 in a significant fraction of 

embryos (Figure 20C). Since Dyrk1A is a candidate gene for some of the 
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neurobiological alterations observed in Down syndrome, I microinjected Dyrk1A 

morpholino into the dorsal region of embryos at the 4-cell stage. Intriguingly, Dyrk1A 

depletion in the dorsal-animal region resulted in embryos bearing kinks or shortened 

axes (a and b), small heads (a and b), skin fragility (c and data not shown), and very 

interestingly, developmental arrest (c) at neurulation stages (Stage 19-20) (Figure 

21A). These phenotypes were reproducibly observed. Although the detailed 

functions of Dyrk1A in early embryonic development requires further evaluation, 

these data indicate that Dyrk1A has pivotal roles in amphibian development 

consistent with knock-out or over-expression phenotypes defined in mouse, rat and 

Drosophila.  
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Figure 20. The characterization of Dyrk1A morpholino (A)  Dyrk1A antisense 

morpholino was designed to overlap the translational start site, and was 

microinjected into 1-cell stage embryos. Endogenous Dyrk1A was detected with 

polyclonoal Dyrk1A antibody (Abcam). Actin serves as a negative control. (B)  

Increasing total doses of Dyrk1A morpholino were microinjected into Xenopus 

embryos, and embryos harvested at late-gastrula stage 12. Endogenous p120-

catenin, β-catenin, C-cadherin and actin levels were respectively visualized via 

immunoblotting. (C)  Gross gastrulation effects following Dyrk1A depletion. In a 

dose dependent manner, Dyrk1A depletion resulted in gastrulation failure. This data 

reflects combined results from three independent experiments. 
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Figure 21. Dyrk1A is essential to early embryonic development. (A) Dyrk1A 

morpholino was microinjected at the indicated levels into each dorsal-animal 

blastomere of 4-cell stage embryos. Embryos were monitored from stage 15-38 to 

score for gross developmental defects. Data from two independent experiments are 

represented in (B).  
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Dyrk1A expression specifically increases p120-catenin protein levels 

 

      To validate Dyrk1A’s effects in vivo, in vitro transcribed mRNA encoding HA-

tagged xDyrk1A1 or 1A2 were co-injected with that for HA-p120 into Xenopus early 

embryos. Co-expression of either Dyrk1A1 or 1A2 with p120 resulted in heightened 

p120 protein levels (Figure 22A). This was in contrast to Dyrk1A Kinase Dead (KD), 

which had no such effect (Figure 22B). Human Dyrk1A is encoded within the Down 

Syndrome Critical (DSC) chromosomal region, which with increased gene copy 

number contributes to human phenotypes including cognitive deficits (99, 145-147). 

P120-catenin is likewise tied to brain cognitive functions, with gene knock-out 

pointing to roles in dendritic spine and synapse formation (52, 148), and potentially, 

morphogenetic events and plasticity of the CNS (107, 108). Consistent with our 

Xenopus data, Dyrk1A transfected into 293T cells increased endogenous p120-

catenin levels, while β-catenin remained unaffected (Figure 22C). Likewise, we 

determined that depletion of Dyrk1A, through the use of two independent Dyrk1A 

siRNAs, strikingly lowered endogenous p120 but not β-catenin levels (Figure 22D). 

Previous reports from our lab and others have shown that p120-catenin relieves 

Kaiso-mediated repression of certain Wnt target genes such as Siamois and Wnt-11 

(61, 62, 119). Upon binding, p120 is thought to somehow displace or compete Kaiso 

from its sequence specific sites (KCS), and facilitate Kaiso’s departure from the 

nucleus. We thus tested whether Dyrk1A expression likewise recruits Kaiso from 

the nucleus. Consistent with a model where Dyrk1A stabilizes p120-catenin and is 

positively involved in p120/Kaiso pathway function, exogenous Dyrk1A expression 
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resulted in a significantly greater proportion of Kaiso appearing in the cytoplasm 

(Figure 22E).  
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Figure 22.  Dyrk1A modulates p120-catenin levels and the intracellular 

localization of Kaiso  (A)  Either Dyrk1A1 or 1A2 was co-injected with HA-tagged 

p120-catenin (0.25 ng) into Xenopus embryos at the 1-cell stage, followed by 

immunoblotting for HA-p120 or actin (negative control). (B)  HA-p120 (0.25ng) was 

microinjected into in 1-cell Xenopus embryos with wild-type or Kinase Dead (KD) 

Dyrk1A. Embryos were harvested at early gastrula stages (10-11) and 

immunoblotted for HA-p120, with actin serving as an internal loading control. (C)  

Increasing doses of HA-tagged Dyrk1A were transfected into 293T cells, and 

endogenous p120, β-catenin and GAPDH monitored via immunoblotting. (D)  293T 

cells were transfected with one or both Dyrk1A siRNAs (50 pmol), as indicated, for 

48 hours. Endogenous p120-catenin, β-catenin, Dyrk1A and GAPDH levels were 

monitored via immunoblotting (pp120, BD Transduction; Dyrk1A, ab71464, Abcam). 

The experiments were repeated three or more times. (E)  HeLa cells were grown on 

glass cover slips, and transiently transfected with Myc-Kaiso or Myc-Kaiso plus HA-

Dyrk1A as indicated. Cells were fixed with 4% PFA for 10 min, blocked with 5% 

goat serum in PBS and immunostained with anti-Myc antibody. 
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Association of Dyrk1A with p120-catenin 

 

      Given the effect of Dyrk1A on p120, we next examined whether Dyrk1A 

interacts with p120-catenin. A Dyrk:p120 association was modestly but reproducibly 

resolved (lane 6, Figure 23A), in contrast to C-Cadherin or β-catenin that did not co-

precipitate (negative control lanes 2 & 10). Since p120-catenin belongs to the p120-

subfamily, other members such as ARVCF- and δ-catenin were examined. 

Interestingly, only p120 associated with Dyrk1A (lane 3, Figure 23B), suggesting 

that Dyrk1A might be a selective modulator of the p120/ Kaiso trajectory of the Wnt 

pathway. To assess the interaction of endogenous Dyrk1A with endogenous p120, 

we immunoprecipitated endogenous Dyrk1A from 293T-cell extracts, and resolved 

p120 (lane 2, Figure 23C). Interestingly, an association of Dyrk1A with Kaiso, 

presumably bridged through p120-catenin, was resolved when HA-Dyrk1A was 

immunoprecipitated from Xenopus embryo extracts (lane 3, Figure 23D). To map 

p120’s interaction region with Dyrk1A, we expressed p120 deletion constructs (a-f) 

generated previously (119), and performed co-immunoprecipitations. Full-length (fl), 

but more prominently the isolated amino-terminal region of p120 (c) associated with 

Dyrk1A (lane 2, Figure 23E), while p120 constructs lacking this region (d&f), did not. 

These results indicate that the Dyrk1A kinase is capable of associating with p120’s 

N-terminal region, presumably accounting for Dyrk1A’s noted impact upon p120 

protein levels (Figure 22). 
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Figure 23.  Association of Dyrk1A with p120-catenin 

(A)  Embryos were injected with HA-Dyrk1A and harvested at early gastrula (stage 

10.5). Lysates were immunoprecipitated for HA-Dyrk1A, and the association with 

endogenous p120-catenin resolved by immunoblotting. β-catenin and C-cadherin 

served as negative controls. (B)   HA-Dyrk1A (0.5ng) was co-injected with Myc-

tagged β-catenin, C-cadherin, p120-catenin, ARVCF or δ-catenin (1ng) into both 

blastomeres of 2-cell embryos. HA-Dyrk1A immunoprecipitates were immunoblotted 

with anti-Myc antibody to detect co-associating proteins. (C)  Endogenous Dyrk1A 

was immunoprecipitated from 293T cells, and endogenous p120 monitored using 

anti-p120 antibody (6H11). Asterisk indicates prospective Dyrk bands. (D)   HA-

Dyrk1A was co-injected with Myc-p120 or Myc-Kaiso into early Xenopus embryos. 

Embryos were harvested at gastrulation (stage 12), and lysates immunoprecipitated 

for HA-Dyrk1A.  Anti-Myc or -HA immunoblotting was used to test association of β-

catenin, p120-catenin or Kaiso. (E)  Depiction of Myc-p120-catenin deletion 

constructs (a-f). Panels to the right show immunoblotting of the Myc-p120-catenin 

constructs (a-f; 0.5 ng mRNA), co-precipitating (versus not) with co-injected HA-

Dyrk1A1 (0.5 ng mRNA).  

 

 

 

 

 

 



102 

 

 

 

 

 

 

 



103 

Acting through p120-catenin, Dyrk1A relieves Kaiso repressor activity  

 

      At the functional level, p120-catenin has a number of in vivo activities including 

the capacity to relieve Kaiso-mediated repression of target genes containing 

sequence-specific Kaiso consensus sites (KCS). Given that Dyrk1A associates with, 

and by some mechanism results in increased p120 protein levels (we expect via 

kinase-mediated stabilization, Figure 22B & see below), we tested if Dyrk1A 

expression has an impact upon established endogenous p120/ Kaiso target genes 

such as Wnt11 and Siamois. Indeed, as reflected via real-time PCR, the expression 

of exogenous Dyrk1A in early Xenopus embryos (resulting in p120 stabilization and 

thus relief of Kaiso-mediated repression) enhanced Wnt-11 and Siamois gene 

transcription  (Figure 24B). Complementing such over-expression data, the 

morpholino-directed knock-down of Dyrk1A dramatically decreased both Wnt11 and 

Siamois expression (Figure 24A). A previous report from our lab showed that the 

Kaiso repressor is required for Xenopus gastrulation, with its depletion or over-

expression resulting in respectively heightened or lowered expression of Wnt11, 

and thus failed gastrulation movements (62). Based upon such findings, we tested if 

Kaiso over-expression phenotypes could be rescued via co-expression of Dyrk1A. 

As anticipated, exogenous Kaiso alone resulted in significant gastrulation-failure. 

However, when Kaiso was co-expressed with a minimal amount of Dyrk1A 

(previously titrated to exhibit little phenotypic consequence alone), significant 

rescues were observed (Figure 24C&D). Consistent with such phenotypic rescues, 

real-time PCR showed at the molecular level that exogenous Dyrk1A relieved gene 
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repression due to exogenous Kaiso acting upon Wnt11 and Siamois (Figure 24E).  

To further test the functional link between Dyrk1A and Kaiso (presumably taking 

place via p120-catenin), we conversely made note of the fact that exogenous 

Dyrk1A produces gastrulation delays in Xenopus embryos (data not shown). Thus, 

we next tested if exogenous expression of Kaiso, the down-stream component, 

could rescue Dyrk1A gastrulation delays. Although gastrulation delays produced by 

Dyrk1A were subtle, I observed significant rescues with the appropriately titrated 

expression of Kaiso (Figure 25A). Gene expression data upon Wnt11 and Siamois 

likewise supported our model of the functional role of Dyrk1A on the p120/ Kaiso 

pathway (Figure 25B). We next tested if p120 over-expression could interfere with 

Kaiso’s rescue of Dyrk1 expression. Indeed, the co-injection of p120-catenin with 

Kaiso and Dyrk1A re-elevated the level of gastrulation failures, as well as the level 

of Wnt11 and Siamois (Figure 25C). These data suggest that Dyrk1A transmits an 

apparently significant fraction of its biological activity through the p120/Kaiso 

pathway. 

 

 

 

 

 

 

 

 



105 

Figure 24.  Dyrk1A modulates p120/ Kaiso-dependent gene expression 

(A)  The indicated amounts of Dyrk1A morpholino were injected into embryos at the 

1-cell stage. Gastrula cDNA was assayed by real-time  RT-PCR for Wnt11 and 

Siamois transcript levels. Gene expression levels were normalized to ODC 

(ornithine decarboxylase). (B)  Dyrk1A (5pg) was injected into embryos at the 1-cell 

stage. cDNA was isolated from gastrulation stage embryo lysates and analyzed by 

real-time PCR for Wnt11 and Siamois transcript levels, normalized to ODC. (C&D)  

Gastrulation (blastopore closure) failures followed the expression of Kaiso (0.5ng), 

whereas the co-expression of Dyrk1A (5pg or 10pg), partially rescued Kaiso’s 

effects. (E)  Under similar experimental conditions, gastrula cDNA was assayed by 

real-time RT-PCR for Wnt11 and Siamois transcript levels, normalized to ODC (right 

panel).  
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Figure 25. P120/Kaiso pathway rescues Dyrk1A-mediated effect in Xenopus 

embryos (A)  Kaiso expression rescues the gastrulation delays resulting from 

Dyrk1A expression (left panels). (B)  At the molecular level, Wnt11 and Siamois 

transcript levels reflect the rescue effected by Kaiso. (C)  Gastrulation failures 

resulting from Dyrk1A expression are rescued by co-expression of Kaiso. The co-

expression of a third component, p120-catenin, once again results in increased 

gastrulation failures, presumably in part by relieving the repression/ rescue 

conferred by Kaiso. 
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xDyrk1A over-expression facilitates canonical Wnt signaling 

 

       Previously, our group determined that exogenous Kaiso represses canonical 

Wnt signaling as evaluated using a classic in vivo assay, the suppression of ectopic 

β-catenin-dependent axis duplication (61). Given that Dyrk1A stabilizes p120-

catenin, that in turn transcriptionally modulates a key gene product involved in axis 

specification, Siamois, we tested if Dyrk1A has an impact upon β-catenin-mediated 

axis duplication. By co-injecting mRNA encoding Dyrk1A and β-catenin into one cell 

of 4-cell (as opposed to 1-cell) embryos (ventral-vegetal region), we largely avoided 

gastrulation delays or failures resulting from Dyrk1A over-expression. As predicted, 

co-expression of Dyrk1A with an intentionally modest (almost sub-phenotypic) dose 

of β-catenin enhanced secondary axis formation in a dose-dependent manner 

(Figure 26A). Kinase-dead Dyrk1A did not produce such effects (Dyrk1A KD, 

negative control).  
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Figure 26.  Dyrk1A’s involvement in the canonical Wnt pathway (A)  Duplicate 

axis formation following the expression of a sub-maximal dose of β-catenin, is 

enhanced upon the co-expression of the indicated doses of Dyrk1A, as evaluated in 

tailbud embryos (stage 27-29). Kinase-dead (KD) Dyrk1A serves as a negative 

control.  
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Phospho-mimic mutant of p120 enhances target gene expression 

 

      As a first step in assessing the mechanism of Dryk1A’s effects, we searched for 

potential Dyrk phosphorylation sites in p120. Consistent with our earlier 

Dyrk1A:p120 association results (Figure 23), one evolutionary conserved Dyrk1A 

phosphorylation site was resolved in the amino-terminal region of p120. This 

45RVSP48 motif was comparable to the Dyrk canonical consensus (RPX(S/T)P; Fig. 

27A), satisfying the requirement of proline-directed kinases for a proline 

immediately trailing a serine/ threonine residue and the requirement of arginine for 

substrate recognition (149). To approximate the impact of Dyrk1A phosphorylation 

at this site, we generated a phospho-mimic point mutant (p120-T47D). P120-catenin 

wild-type versus p120-T47D was expressed in Xenopus embryos (Fig. 27B). As 

wild-type p120 over-expression relieves Kaiso-mediated gene repression and thus 

contributes to failed gastrulation (p120 effects upon small-GTPases also contribute 

to the observed phenotypes), we suspected that p120-T47D might be yet more 

active in relieving Kaiso-mediated repression, possibly resulting from its increased 

protein levels. As expected, p120-T47D proved more effective than wild-type in 

promoting expression of the known p120/ Kaiso gene targets Siamois and Wnt11 

(Fig. 27C). Correspondingly, p120-T47D produced greater levels of gastrulation 

failure than corresponding doses of wild-type (Fig. 27D). The half-life of p120 wild-

type (WT) versus the p120-T47D mutant was then tested in the presence of 

cyclohexamide (CHX; Fig. 27E). As anticipated, p120-T47D exhibited a notably 

prolonged half-life. To assess if threonine 47 of p120 is directly phosphorylated by 
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Dyrk1A, we conducted an in vitro kinase assay using the amino-terminal region of 

p120 versus the same region of p120-T47D. Phosphorylation by Dyrk1A of p120 

was faint but reproducible, and did not appear upon p120-T47D, nor when kinase-

dead Dyrk1A was employed (Figure 28). These data together suggest that p120-

catenin phosphorylation by Dyrk1A is direct, and that such modification is relevant 

to its functional role in embryonic development.  
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Figure 27.  Phosphorylation-dependent Dyrk1A in embryonic development 

(A)  Cross-species p120-catenin sequence alignment of the conserved predicted 

Dyrk1A phosphorylation-site region (red box). (B)  Expression of HA-p120 wild-type, 

versus the phospho-mimic mutant (T47D), was detected via immuno-blotting of 

Xenopus embryo lysates. (C)  P120 wild-type (WT), or the p120 point-mutant 

(T47D), were injected into Xenopus embryos at the 1-cell stage, followed later by 

cDNA isolation and real-time PCR, to monitor increased Wnt11 and Siamois 

transcript levels. (D)  Gastrulation failures were more severe in embryos expressing 

p120-T47D relative to p120-WT. (E) HA-p120 WT or T47D was expressed in HeLa 

cells. Cells transfected with each construct were treated with cyclohexamide (CHX) 

for the times indicated. Each HA-tagged construct was detected via immuno-blotting 

of the corresponding cell extracts (right panel), followed by densitometer 

quantitation of the band intensities (left panel). These data were collected from two 

independent experiments. 
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Figure 28. Dyrk1A phosphorylation of p120 in vitro.  An amino-terminal region of 

xp120-catenin (flag-tagged wild-type or T47D mutant; amino acids 1-280) (Hong et 

al., J Cell Sci 2010), or full-length xDyrk1A (HA-tagged wild-type or kinase dead), 

were each in vitro transcribed and translated using a reticulocyte lysates system 

(Promega, L4611). Kinase (Dyrk1A) and substrate (xp120-catenin) were incubated 

for 30 minutes at 30°C as indicated in kinase reaction buffer (10 mM Hepes, pH 7.5, 

50 mM NaCl, 10 mM MgCl2, 10mM MnCl2, 1 mM EGTA, 1 mM dithiothreitol, 5 µM 

ATP, 10 mM NaF and 1 mM Na3VO4), along with 10 µCi γ-32P-ATP. Samples were 

then immunoprecipitated for 1 hour at 4°C with anti-FLAG-M2 magnetic beads 

(Sigma) in the presence of 0.5% NP-40 Buffer (25mM HEPES pH 7.5, 150mM KCl, 

0.5% NP-40, 1.5mM MgCl2, 10% glycerol, 5mM β-mercaptoethanol). The 

precipitates were washed 3x and the samples then subjected to SDS-PAGE/ 

autoradiography. Anti-HA antibody (3F10) and anti-flag antibody (M2) were 

employed to detect Dyrk1A and p120-catenin, respectively.  
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Discussion 

 

(Chapter IV) 

 

      In summary, I report here that the Down-syndrome related kinase, Dyrk1A, 

associates with p120-catenin. This results in kinase-dependent increases in p120 

levels, which in turn has an impact upon certain Wnt/ p120/ Kaiso target genes such 

as Wnt11 and Siamois. I show that exogenous Kaiso expression rescues the effect 

of Dyrk1A on target genes, suggesting that Dyrk1A transmits signals through the 

p120/ Kaiso trajectory of the Wnt signaling pathway. The data presented here 

provides new thoughts regarding Dyrk1A in development and perhaps disease.  

 

Dyrk1A in the canonical Wnt signaling pathway 

 

Although Dyrk1A is recognized as a critical component of Down syndrome 

pathology, molecular analysis of Dyrk1A is at an early stage. There is accumulating 

evidence regarding the substrates of Dyrk1A, for example, including caspase-9, 

ASF (Alternative splicing factor), Tau, HPV16E7 and p53 (104, 150-154). 

Substrates have shown variable responses, in some instances being destabilized in 

conjunction with GSK3β activity, while in others showing increased or unchanged 

levels. Until now, to our knowledge, there has been no prior reports indicating a 

functional relationship linking Dyrk1A with the Wnt/ p120/ Kaiso pathway. Likewise, 
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knowledge gaps exist concerning upstream signals relevant to Dyrk1A activity. 

Intriguingly, a previous report from our lab identified Frodo as an upstream binding-

mate and modulator of p120-catenin, but not of β-catenin (70, 119). The depletion of 

Frodo decreases p120’s levels, seemingly similar to the depletion effect of Dyrk1A. 

Thus, in the context of addressing p120 levels, and thereby the p120/ Kaiso 

signaling trajectory, Frodo and Dyrk1A might functionally interact. Based upon these 

interactions between Frodo, Dyrk1A and p120, one conceivable model is that Frodo 

acts as a scaffold to recruit Dyrk1A and p120, resulting in p120’s increased level. 

Some of such accumulated 120 might then enter the nucleus to assist in recruiting 

Kaiso back to the cytoplasm, thereby de-repressing/ activating certain Wnt target 

genes such as Siamois and Wnt11 by (Figure 29A). Dyrk1A mainly localizes in the 

nucleus, while p120-catenin localizes largely to the cytoplasm. Thus, another 

potential model is that Frodo might promote p120’s shuttling into the nucleus to be 

phosphorylated by Dyrk1A, with the resulting increased level of p120 re-localizing 

Kaiso from the nucleus to the cytoplasm (Figure 29B). Further study will increase 

our knowledge of the p120/Kaiso trajectory of the canonical Wnt signaling pathway.  
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Figure 29.  Potential models of Dyrk1A/ p120/ Kaiso signaling in the context of 

the Wnt pathway. (A) The first model hypothesizes that Frodo acts as a scaffolding 

protein. In the presence of Wnt ligand, Frodo is activated by unknown mechanisms 

and recruits p120 and Dyrk1A to enable their close association and the 

phosphorylation of p120. Phosphorylated/ stabilized p120 enters the nucleus and 

assists in trans-locating the Kaiso repressor from the nucleus to the cytoplasm, 

resulting in gene activation. (B) Given that Dyrk1A mainly localizes to the nucleus, 

p120-catenin might interact with Dyrk1A in the nucleus, as a result of p120 entry in 

complex with Frodo. P120-catenin would then become phosphorylated by nuclear 

Dyrk1A, bind Kaiso and shuttle with Kaiso to the cytoplasm to result in gene target 

de-repression. 
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      Recently, in Xenopus, another member of the DYRK family of protein kinases, 

Hipk2 was found to promote Wnt signaling via phosphorylation and relief of TCF3 

repression of ventral target gene (155). Hipk2 has also been implicated in 

phosphorylation of β-catenin (156). It is possible that canonical Wnt signals reside 

upstream of Dyrk1A within the (Frodo)/ p120/ Kaiso trajectory, just as we and others 

recently revealed is the case for p120, and likely for ARVCF- and δ-catenin (60, 61, 

70, 119, 157, 158). Dyrk1A is a dual specificity protein kinase, which auto-

phosphorylates on tyrosine residues, and phosphorylates other substrates on 

serine/threonine residues. The activation loop is characterized by a conserved YXY 

sequence whose tyrosine residues have been found phosphorylated in vivo (159). 

Upstream or regulatory signaling components such as phosphatases have not yet 

been identified. Given that Dyrk modulates certain downstream Wnt target genes 

through the p120/Kaiso trajectory, upstream Wnt components might be involved in 

Dyrk1A auto-phosphorylaton/activation . Future studies will be needed to define 

upstream components of the Dyrk/p120/Kaiso pathway, possibly including Wnt 

ligands.  

 

      Likewise as noted, it also remains to be determined whether Dyrk1A, through 

p120, regulates small GTPases such as RhoA and Rac, perhaps thereby regulating 

spine and synapse formation in the developing brain. Given that Dyrk1A dosage 

imbalance is correlated with Down Syndrome, study of Dyrk1A-mediated effects 

upon p120-catenin, and thereby upon nuclear Wnt-target genes and cytoplasmic 

small-GTPases, warrants further examination in brain development.  Understanding 
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such functional interactions may assist in addressing Dyrk1A’s contributions to 

Down syndrome, possibly for example, via effects upon p120-catenin and thus Wnt 

signaling in CNS development.  
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Chapter V 

 

Significance and Future Directions 

 

 

 P120-catenin was originally identified as a preferred Src substrate (160). A 

number of studies have focused upon p120’s phosphorylation within its amino-

terminal regulatory domain (77). Since p120 becomes phosphorylated in 

mammalian cell lines and its phosphorylation is relevant to its binding to cadherin 

and thus cadherin stability, the identification of kinases that modulate p120-

catenin’s function or levels have been sought.  

 

 In this regard, my principal advancements were made in three areas. First, I 

reveal two different molecular mechanisms wherein p120 stability is regulated. 

These mechanisms are mediated through phosphorylation conferred by 

GSK3β, CK1α or Dyrk1A. Second, I provide evidence that additional members of 

the p120-catenin sub-family, ARVCF-catenin and δ-catenin, are further subjected to 

modulation by the destruction complex. Third, I found that p120 isoform-1 among 

multiple isoforms is more responsive to the Wnt pathway. Thus, in the future, p120 

isoforms will require careful examination in both developmental and tumorigenesis 

contexts. To achieve a better understanding of the p120 / Kaiso pathway in the 

context of canonical Wnt signals, further studies are required as discussed here.  
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[Molecular mechanisms regulating p120-catenin] 

 

The broad impact of Wnt signaling on other catenin family members 

 

 As mentioned earlier, other p120 subfamily members such as ARVCF-catenin 

and δ-catenin were found to associate with Axin, a scaffolding component of the 

destruction machinery. The protein levels of these additional p120 subfamily 

members were likewise responsive to the presence of destruction complex 

components. Based upon findings illustrated in Chapter III, it may be beneficial to 

identify conserved destruction motifs within further p120 subfamily members, which 

presumably become phosphorylated by GKS3β or other kinases to initiate 

degradation. Based upon alignment data and in silico analysis employing programs 

to predict phosphorylation sites, (NetPhospho and GPS2.1), I have found that 

ARVCF, δ-catenin and plakophilin have conserved sequences predicted to be 

phosphorylated by GSK3β and CK1α (Figure 30). One potential GSK 

phosphorylation region, that in turn contains a predicted β-TrCP binding site, was 

identified in the C-terminal end of human, mouse, Xenopus, Zebrafish and cow 

plakophilin-3. Interestingly, two serines in this region were mutated to alanines in 

Xenopus and Zebrafish, leaving open the possibility of differences in the plakophilin-

3 Wnt response of mammals and amphibians. Another conserved potential GSK 

sites were found in the amino-terminal region of pkp-3, but without an integrated β-

TrCP binding site. Each potential GSK3β, CK1α phosphorylation site in ARVCF- 

and δ-catenin is illustrated in Figure 30. Future study of the molecular mechanisms 
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regulating p120 subfamily members will contribute to our larger understanding of 

the canonical Wnt pathway, as will the identification of downstream gene targets of 

ARVCF-catenin, δ-catenin or the plakophilins (desmosomal catenins). 
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Figure 30. Cross-species sequence alignment of the region of p120-catenin 

subfamily members harboring conserved predicted GSK3β phosphorylation 

and β-TrCP binding sites. In plakophilin-3, the red box includes conserved 

potential GSK3β sites, and a DSEXXS motif consistent with the possibility of being 

a β-TrCP binding site. 
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What selective signaling entities act upon particular p120-catenin subfamily 

members? 

 

 During my graduate study, I found that upstream Wnt components modulate the 

p120/Kaiso pathway by inhibiting the destruction complex in a manner similar to that 

used in regulating β-catenin. In our group’s earlier report, we showed that Frodo 

stabilizes p120, thereby assisting in the transmission of Wnt/ p120/ Kaiso signals to 

downstream target genes upon Wnt stimulation. My findings here suggest that 

Frodo acts upon p120-catenin, but not (or less so) upon β-catenin. For example, 

immuno-precipitations from Xenopus embryo extracts revealed the existence of a 

Frodo:p120 complex, while a Frodo:β-catenin complex was not resolved. 

Furthermore, Frodo depletion only diminished p120’s levels, whereas β-catenin 

levels remained steady, suggesting a selective role of Frodo downstream of 

canonical Wnt signals. It is thus conceivable that there exist other currently 

unknown proteins that confer a form of selectivity for facilitating canonical Wnt 

signals to particular p120-catenin family members. If more such molecules are 

identified, another layer of complexity of canonical Wnt signaling will be revealed. 

For example, in my hands, Dapper, which is structurally similar to Frodo, appears to 

have a protective impact upon δ-catenin as well as p120-catenin (Figure 18). This 

suggests that Dapper might modulate catenins in response to Wnt signals as does 

Frodo. Since Dishevelled is a focal point in the transmission of both canonical- and 

non-canonical-Wnt signals, the context dependent modulation of β-catenin versus 
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p120 subfamily members may further involve “choices” made at the level of 

Dishevelled.  

 

      As mentioned earlier, a number of Wnt ligands and Frizzled receptors exist (19 

& 13 in mammals, respectively). Different combination of Wnt:Frizzled complexes 

have distinct roles in development. For example, xWnt5a is often characterized as a 

non-canonical Wnt ligand. However, in the presence of hFz5, Wnt5a can induce an 

ectopic Spemann organizer and axis duplication in Xenopus embryos, well 

established properties reflecting canonical activity (161). Upon the association of 

Wnt ligand with the Frizzled receptor, Dishevelled becomes localized to the plasma 

membrane, associating with Frizzled. Given that Frodo binds Dishevelled and 

apparently assists in transmitting canonical Wnt signals to the p120/ Kaiso trajectory, 

I envisage that different Wnt:Frizzled combinations may recruit distinct modulators 

(Frodo, Dapper or others), with these modulators selecting one or another catenin 

family member in a context dependent manner. Over-expression or knock-down of 

Wnt ligand or Frizzled receptor components could be employed to test if we can 

identify differential effects upon the level of β-catenin, p120-catenin or other p120 

subfamily members. Once endogenous gene targets of the differing catenins 

become known, they may also serve as reporters for the activity of differing Wnt 

ligand:receptor combinations, to again address the hypothetical differential effects 

upon distinct p120 subfamily members. 
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      With regards to the second part of my graduate work focused upon Dyrk1A, 

recent reports by others show that the kinases Hipk1 and Hipk2 contribute to Wnt 

signaling in certain embryonic context, either positively or negatively affecting β-

catenin levels (156, 162, 163). For example, in early ventral tissue of Xenopus, it 

was shown that Hipk2 is recruited by a β-catenin-mediated mechanism to the TCF 

complex, leading to TCF phosphorylation and dissociation from target gene 

promoters (155). Interestingly, although I did not observe p120 levels altered upon 

Hipk2 expression in mammalian cells, Hipk2 was also identified in yeast two-hybrid 

screening as a binding partner of the p120 modulator Frodo (personal 

communication from Dr. Sergei Y. Sokol). Dyrk family members include Dyrk1, 2, 3, 

and Hipk1, 2. Interestingly, our group previously reported that Frodo depletion 

diminished p120 levels, as I have observed upon Dyrk1A depletion. Thus, it is 

conceivable that Dyrk1A might act upon p120’s level through phosphorylation of 

Frodo or an association with Frodo. Upon study of Frodo’s primary sequence 

(GPS2.1 software), I resolved multiple potential Dyrk1A phosphorylation sites. Thus, 

I envisage that Dyrk1A either phosphorylates p120-catenin or Frodo, and that 

phosphorylation recruits Frodo to the Dyrk1A / p120 complex, stabilizing p120-

catenin. Intriguingly, one of the predicted Dyrk phosphorylation sites in Frodo is 

conserved in Dapper, suggesting this could be a critical site for both proteins. 

Another possibility is that Frodo serves as a scaffold to recruit Dyrk1A to p120-

catenin. Being similar in structure to Frodo, Dapper is another candidate that may 

participate in the Dyrk/ p120 pathway. Since Frodo associates with Dishevelled, 

acts upon the p120/ Kaiso pathway and modulates small GTPases, it is germane to 
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examine the potential role of Dyrk1A in these same processes. These data may 

provide the research community with new insights on the molecular mechanisms of 

Dyrk1A and its role in development or pathologies including Down syndrome. 

 

Does Dyrk1A modulate Cadherin or small GTPases through p120? 

 

 Intriguingly, I found that ventral expression of p120-catenin with Dyrk1A results 

in skin fragility in Xenopus embryos (Figure 25). Embryos at stage 26 displayed 

impaired skin integrity potentially due to an effect upon cadherin-mediated adhesion 

and/ or upon small GTPases such as RhoA and Rac. Microinjection of either p120 

or Dyrk1A alone did not confer these phenotypes. Based upon p120’s positive role 

in the stabilization of cadherin and its modulation of small GTPases, I envisage that 

Dyrk1A acts through p120 to regulate either cadherin stability and/ or small 

GTPases. Dissociation/ association tests using cells derived from Xenopus embryo 

animal caps will be employed to test if Dyrk1A has an impact upon p120’s 

regulation of small GTPases and cadherin. In mammalian cells, exogenous p120 is 

known to induce branching phenotypes via the modulation of small GTPases. 

Interestingly, Dryk1A expression in 293T cells results in a branching morphology 

similar to that seen following expression of p120-catenin. Thus, Dyrk1A depletion or 

over-expression will be employed to test Dyrk1A’s involvement in modulating small 

GTPases through the elevation of p120 levels. This study may additionally provide 

some information regarding how the Dyrk/ p120 pathway conceivably contributes to 

Down syndrome pathology. 
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Figure 31. Skin fragility results from co-injection of Dyrk1A with p120 

(A) Myc-p120-catenin was co-injected with either β-gal or Dyrk1A into the ventral-

vegetal region of 4-cell stage embryos. Skin defects were observed at stage 26, 

when the images were taken. 
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[ P120-catenin in cancer and development ] 

 

P120-catenin isoforms in development and cancer  

 

     P120-catenin has multiple isoforms and its expression and localization varies 

depending on tissues and cell types. The ablation of p120-catenin in mouse 

intestine, skin, salivary gland and enamel resulted in severe developmental defects 

(51, 164-167). Interestingly, p120 isoform-1 is present during rat brain development, 

with its expression decreasing in adult brain. P120 isoform-1 is rich in the cortex, 

cerebellum, the olfactory bulb and the hippocampus (107). The spatial-temporal 

expression of p120-catenin isoforms in most tissues is not yet defined. Thus, the 

expression pattern of p120-catenin isoforms having distinct functions need to be 

evaluated. Furthermore, to investigate the roles of distinct p120 isoforms during 

development, rescue of p120 knock-down in Xenopus embryos would seem a 

reasonable approach.  

 

      P120 misexpression is associated with multiple cancer types and poor 

prognosis of several cancer. P120 variables include its total level of expression, 

intracellular localization and the relative ratios of its expressed isoforms. For 

example, p120 isoform-1 over-expression is evident in several lung cancers and 

breast cancer, correlating with poor prognosis and lymph node metastasis, poor 

differentiation, histological type and high TNM stage (92, 168). In stark contrast to 

metastatic lymph nodes wherein p120 isoform-1’s level is high, in normal lung, p120 
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isoform-1 expression is very low. Additionally, cytoplasmic Kaiso co-localization with 

p120 was discovered in metastatic lung cancer lesions, fitting with p120’s known 

capacity to displace Kaiso from gene promoters and sequester it in the cytoplasm 

(hence relieving Kaiso-mediated gene repression, resulting in the transcription of 

multiple downstream genes, most of which are unknown) (91). Although it is unclear 

which p120 isoform(s) is primarily responsible for Kaiso relocalization in cancer, I 

hypothesize that p120-catenin, especially isoform-1 is a contributing modulator of 

Wnt signaling (and possibly also small GTPases) in cancer metastasis. One recent 

study in breast cancer showed that a long p120 isoform (presumably isoform-1) was 

present in the nucleus of invasive ductal and lobular carcinomas. Together with 

studies in lung cancer, I envisage that the canonical Wnt pathway may relay signals 

through p120 isoform-1 that are relevant to cancer metastasis. Although 

considerable work has been committed to the role of p120-catenin in cancer, there 

remain mixed ideas of how the varying isoforms regulate tumor progression (87, 

169-172). P120-catenin’s role in cancer has primarily been studied with regard to E-

cadherin stability, and to a lesser extent, small GTPase activity. P120-catenin was 

known to stabilize cadherin, inhibit Rho and activate Rac. Our recently published 

work together with that of others points to a new possibility, wherein the relationship 

between the Wnt pathway and p120 nuclear functions needs future evaluation.  

 

      Future study includes generating an antibody against active (unphosphorylated 

destruction box) p120 isoform-1, to detect the presence of stabilized p120 isoform-1 

in cancer tissues, especially in lung and breast cancer tissues given that p120 
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isoform-1 is highly expressed in this pathologic context. Using this antibody, the 

expression levels and intracellular localization of active p120 isoform-1 will be 

assessed, together with that of additional Wnt pathway components using 

immunohistochemistry. To begin to address the role of p120 isoform-1 in cancer 

metastasis where it is present at elevated levels, cancer cell lines will be selectively 

depleted with siRNA for p120 isoform-1. Then, assays relevant to aggressive cell 

characteristics will be undertaken, such as measures of cell motility and invasion. 

These experiments will provide valuable information on p120 isoform-1 from the 

perspective of Wnt signaling and gene target activation.  

 

Dyrk/ p120/ Kaiso in neural development 

 

 In rat brain development, p120-catenin is distributed at the plasma membrane 

(cell:cell junctions) and within the cytoplasm, suggesting a possible role of p120 in 

neural development. P120 is co-localized with a subset of synapses in cultured 

hippocampus neurons (107). In mouse forebrain, the depletion of p120-catenin 

reduced spine and synapse densities (52). Additionally, ectopically expressed p120 

resulted in a branching phenotype in mammalian cell lines, roughly resembling 

neurite outgrowths (173). Interestingly, my preliminary evidence indicates that 

Dyrk1A promotes p120’s branching phenotype (data not shown). Given that the 

branching phenotype was employed as an assay to uncover p120’s relationship to 

small-GTPases in prior studies by others, this assay can also be applied to study of 

p120’s roles in neuronal development. Appearing consistent with such p120 
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involvement, the p120 binding partner Kaiso, a POZ / zinc finger transcriptional 

repressor, is expressed strongly in brain, eye, spinal cord, and brancial arches 

during Xenopus embryonic development. It is thus conceivable that the 

Dyrk1A/p120/Kaiso pathway might participate neuronal development and 

differentiation. Because Dyrk1A is likely to be associated with Down syndrome, the 

study of this pathway in neuronal function and differentiation may provide valuable 

information on our larger understanding of Down syndrome and p120-catenin in 

brain development.  

 

 Understanding the molecular mechanisms of Dyrk1A is at early stage. There are 

several Dyrk1A substrates identified such as p53 and tau, and from my work, p120-

catenin. However, there are no prior findings relating to upstream regulators of 

Dyrk1A. As alluded to above, Dyrk1A appears to participate in modulation of the 

Wnt/ p120-catenin pathway in development, and is thus perhaps itself regulated by 

more upstream events in Wnt signaling, such as those immediately following Wnt-

ligand: receptor interactions. Future study will include testing upstream candidates 

that may impinge on Dyrk1A/ p120 pathway activity.   
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