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Figure 5.9. scrib mutant cells are eliminated when Myc is overexpressed 

in both mutant cells and their neighboring wild-type cells.  

(A-A’’’) Confocal images of mutant clones in a wing disc. scrib mutant clones 

are marked by the absence of GFP and their corresponding twin-spot are 

labeled with 2X GFP expression (green in A and gray in A’). Discs are stained 

for β-Gal to show ex-lacZ expression (red in A and gray in A’). Myc is 

overexpressed by en-Gal4 in the posterior compartment (shown in A’’’). The 

lack of GFP negative cells in both anterior and posterior compartments 

indicates that scrib mutant clones are eliminated while their corresponding twin-

spot can survive and overexpressing Myc in the background does not prevent 

the elimination of scrib mutant clones. 
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Discussion 

Our data show that cell competition between scrib- and wild-type cells 

prevents tumor formation through two cell-to-cell signaling events that each 

regulate the Hippo tumor suppressor pathway, which restrains proliferation and 

promotes apoptosis by antagonizing Yki, through autonomous and non-

autonomous mechanisms (Figure 5.10).  First, cell competition prevents the 

activation of Yki in scrib- cells.  Second, scrib- cells that are not eliminated 

suppress Hippo signaling in neighboring cells, leading to hyperproliferation of 

surrounding cells.  Thus, normal cells effectively suppress the scrib- cells from 

hyperproliferating via activation of the Hippo pathway.  This suppression can be 

circumvented when scrib- mutant cells hyperactivate Ras signaling or 

overexpress Myc. Given the highly conserved functions of Ras and Myc in 

mammals, acquiring mutations that prevent elimination by cell competition may 

be a fundamental event in the formation of tumors.  Moreover, the non-cell-

autonomous mechanisms of the Hippo tumor suppressor pathway that we have 

unveiled have important implications for tumor-stromal interactions in human 

cancers. 

 

            scrib- clones surrounded by wild-type neighbors frequently displayed 

increased levels of ex-lacZ in the dorsal hinge region of wing discs as previously 

reported (Grusche et al., 2010), while ex-lacZ was not significantly affected in 

other regions of eye and wing discs. The hinge region may be a less competitive 
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Figure 5.10. Model of how cell competition acts as a tumor suppressor 

mechanism.  

(Left) In wild-type cells, cells have normal polarity, and Scrib limits the amount 

of Yki activity. (Center) When scrib- cells (red) arise in a disc, they face cell 

competition, which leads to their elimination. In such tissues, the normal cells 

outcompete scrib- cells in a JNK dependent manner. A non-cell-autonomous 

signal is sent to neighboring wild-type cells to elevate Yki activity and promote 

compensatory proliferation. (Right) scrib- cells surrounded by Minute cells do 

not suppress the high levels of active Yki caused by loss of Scrib.  They are not 

eliminated and send a sustained proliferation signal to neighboring cells through 

the Hippo pathway.   
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environment than the wing pouch because this region expresses lower levels of 

Myc, which induces cell competition (Johnston et al., 1999; Moreno and Basler, 

2004; de la Cova et al., 2004; Froldi et al., 2010).  scrib- clones with high ex-

lacZ levels were relatively large and we hypothesize that they did not face 

enough cell competition to engage the tumor-suppression mechanism. Regional 

differences in the wing disc’s ability to remove tumorous clones has been 

previously reported (Froldi et al., 2010). It will be interesting to test whether 

artificially increasing cell competition in the hinge region by overexpressing Myc 

can facilitate the elimination of scrib- mutant cells. 

 

A non-cell-autonomous effect on ex-lacZ was observed around scrib 

mutant cells rescued from elimination. These results demonstrate that 

tumorigenic scrib mutant cells can emit oncogenic signals that change the 

growth properties of their neighbors if they are not efficiently removed by cell 

competition. Thus, the role of cell competition in limiting the cell-autonomous 

growth capacity of scrib mutant cells is only a portion of its tumor-suppressing 

function. Interestingly, scrib mutant cells with depleted JNK signaling still 

activate Yki in neighboring wild-type tissue while a recent study demonstrates 

that activation of JNK signaling can suppress Yki activity non-autonomously 

(Sun and Irvine, 2010). Our data suggest that scrib mutant clones induce Yki 

activity non-autonomously in a JNK independent manner. Further 

understanding of the mechanisms that regulate the Hippo pathway non-
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autonomously and identification of the oncogenic signals emitted by tumorigenic 

scrib mutant cells to cause sustained proliferation in neighboring cells will 

provide insight into the contribution of cellular environments to tumor formation. 

 

In summary, we conclude that cell competition is crucial in suppressing 

the tumorigenic capacity of scrib mutant cells and does so by regulating their 

Yki activity. Loss of cell competition results in overproliferation of these 

tumorigenic cells and the production of a JNK-independent signal that 

suppresses Hippo pathway activity in normal cells of the affected tissue. 

Efficient elimination of tumorigenic scrib mutant cells by cell competition 

prevents Yki-fueled overgrowth of mutant cells and prevents them from 

disrupting proliferation control throughout the tissue.  Thus, we have identified a 

novel tumor-suppression mechanism that depends on signaling between 

normal and tumorigenic cells. These data identify evasion of competition as a 

critical step toward malignancy and illustrate a role for wild-type tissue in 

preventing the formation of cancers.   
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6. 1. Conclusions 

My results presented in Chapter 4 identify Crb as a new component of 

the Hippo pathway. We demonstrated that Crb regulates apical-basal polarity 

and growth by using distinct domains of Crb, and thus through different 

mechanisms. Both Crb gain and loss of function cause overgrowth, excess 

proliferation, the induction of Hippo pathway target genes, and interact 

genetically with mutations in known Hippo pathway components. Moreover, Crb 

is required for the localization of Ex to the plasma membrane and is sufficient to 

redistribute Ex through the JM (juxtamembrane motif) of the Crb intracellular 

domain. Taken together, our data place Crb upstream of Ex to regulate the 

activity of Yki and thereby organ growth. This is one of the first demonstrations 

of the regulation of Hippo by apical-basal determinants. 

 
 

The data presented in Chapter 5 demonstrated that cell competition 

suppresses the tumorigenic capacity of scrib mutant cells by regulating their Yki 

activity. Loss of Yki regulation by cell competition results in overproliferation of 

the tumorigenic cells and the production of a signal that suppresses Hippo 

pathway activity in nearby normal cells of the affected tissue, resulting in non-

autonomous as well as autonomous growth. In the normal context, cell 

competition efficiently eliminats scrib mutant cells, thus preventing a 

tumorigenic cascade, and disrupting proliferation caused by Yki-fueled 

overgrowth throughout the tissue. Thus, we have identified a novel tumor-
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suppression mechanism that depends on signaling between normal and 

tumorigenic cells. 

 

6. 2. Biological significance 

My work in Chapter 4 indicates that Crb regulates growth through a 

specific mechanism rather than as a secondary consequence of defects in cell 

polarity. Manipulation of the expression of genes involved in the regulation of 

apical-basal polarity often causes neoplastic tumors in Drosophila imaginal 

discs (Hariharan and Bilder, 2006). For example, overexpression of the apical 

determinant Crb leads to overproliferation in addition to causing defects in cell 

polarity and expansion of apical domain markers to the basolateral domain 

(Humbert et al., 2003; Humbert et al., 2008; Vaccari and Bilder, 2005). Imaginal 

discs that are homozygous mutant for Scrib, Dlg, or Lgl show phenotypes 

similar to discs overexpressing Crb. All of these situations lead to an expansion 

of the apical domain. It has been speculated that an expansion of the apical 

region can cause accumulation and/or mis-trafficking of receptors and 

consequently induce deregulation of many growth controlling signaling 

pathways (Hariharan and Bilder, 2006; Vaccari and Bilder, 2005). Contrary to 

this model, we report that Crb is specifically required to localize Ex to the 

membrane, which in turn regulates Hippo signaling. Moreover, crb mutant cells, 

which have reduced apical membrane size (Hamaratoglu et al., 2009; Izaddoost 

et al., 2002; Pellikka et al., 2002), overproliferate and have deregulation of 
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Hippo signaling. These results demonstrated that the size of the apical 

membrane is not the only cause that accounts for the growth defects in tissues 

altering Crb levels. In summary, our data support a model in which Crb plays a 

direct role in the regulation of growth.  

 

Our data in Chapter 5 identify competitive cell-cell interaction as a tumor 

suppressor mechanism and illustrate a role for wild-type tissue in preventing the 

formation of cancers.  This work broadens our understanding of the early steps 

in oncogenesis and the interaction between wild-type cells and mutant cells. My 

results demonstrated that the presence of cell competition regulates a growth 

control pathway to limit neoplastic tumor growth. Thus, I identified novel tumor 

prevention machinery mediated by cell-cell interaction. My data support the 

multiple hit theory of tumor formation (Ashley, 1969) and identify evasion of 

competition as a critical step toward malignancy.  

 

6. 3. Remaining questions and future directions  

The strong phenotype induced by Crb overexpression cannot simply be 

explained by the loss of Ex. For example, ex mutants do not exhibit many extra 

interommatidial cells in pupal retina while Crb overexpressing tissues do (my 

unpublished data and Robinson et al., 2010). Identifying the binding proteins of 

Crb will provide insights regarding this observation. Given that the JM, a FERM 

domain interacting motif, is important for the growth phenotypes induced by Crb 
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overexpression, a FERM-domain containing protein other than Ex and Mer may 

be required for Crb mediated growth regulation. To investigate this, we can 

utilize the lethality induced by overexpressing high level of Crb as a screening 

phenotype. Because heterozygosity for yki rescued the lethality caused by 

overgrowth, reducing the expression level of FERM domain-containing proteins 

that are functionally downstream of Crb to cause overproliferation may also 

rescue the lethality caused by Crb overexpression. In addition to mutant alleles, 

UAS-RNAi lines and Exelixis deficiency lines can be used to reduce the 

expression level of FERM domain-containing proteins and test their ability to 

alleviate the overgrowth phenotypes of Crb overexpression.  Upon testing 37 

UAS-RNAi lines that are targeting 22 different FERM domain-containing 

proteins in Drosophila (Tepass, 2009), I discovered that coexpressing 2 UAS-

RNAi lines that target Pez, a protein tyrosine phosphatase, can rescue Crb 

induced lethality. In addition, two Exelixis deficiency lines that have disrupted 

regions containing Pez can also rescue Crb induced lethality. Given that the 

center of the Hippo pathway is a kinase cascade, it is likely that a phosphatase 

plays a critical role to inactivate the pathway. Further characterization of Pez 

mutant phenotypes will be required to define the mechanisms by which it 

influences Crb signaling and whether or not it is a Hippo pathway member.    

 

Alternatively, a genetic screen for dominant modifiers of Crb 

overexpression would be useful and complementary, especially to identify 
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negative regulators of the pathway. Mutations in negative regulators of the 

Hippo pathway are likely to result in reduced organ size, but this phenotype 

could also be caused by mutations in any genes that are required for cell 

viability and unrelated to growth control. Since the common phenotypes of 

those negative regulators are shared by many other genes, it would make them 

difficult to be discovered by phenotype driven screens.  Presumably, this is one 

of the main reasons why more positive regulators in the Hippo pathway have 

been identified than negative ones and most of the known negative regulators 

of Hippo signaling have been found by chance or by biochemical approaches. 

Therefore, a genome-wide dominant modifier screen of Crb overexpression 

provides an efficient strategy for the identification of novel negative regulatory 

inputs into the Hippo pathway. 

 

In Chapter 5, we have shown that cell competition is able to act as a 

tumor suppressor mechanism and functions as a quality control process to 

remove abnormal cells. This suggests the following questions:  

-  What is the cell competition signal? 

-  How is the cell competition signal initiated in response to the    

   scrib mutant cells? 

- How does the cell competition signal function to eliminate the   

  tumorigenic scrib mutant cells? 
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An active surveillance process may exist in normal tissues to recognize 

and to remove any dysfunctional cells. Alternatively, a signal could be 

generated in abnormal cells, such as scrib mutant cells, and trigger cell 

competition. To investigate how the cell competition signal is generated can be 

challenging, because this competitive cell-cell interaction is an action mutually 

dependent on two cell populations. The fact that cell competition alters cell 

growth ability makes it difficult to distinguish between causes and 

consequences of cell competition. It would be useful to have a cell competition 

marker or read-out to monitor Lose/Win status and allow for further analysis of 

different genetic manipulations or conditions. 

 

Recently, Moreno’s group has shown that upon cell competition induced 

by Myc overexpression, the expression levels of flower and sparc are elevated 

transcriptionally and post-transciptionally in loser wild-type cells (Portela et al., 

2010; Rhiner et al., 2010). Flower is a transmembrane protein that mediates the 

Lose/Win decision during cell competition (Rhiner et al., 2010; Yao et al., 2009), 

while Sparc is a secreted glycoprotein that protects losers from being eliminated 

(Portela et al., 2010). It has been proposed that Sparc is induced in loser cells 

generated in different competitive cell-cell interactions and thus can be a 

marker for cell competition (Portela et al., 2010). However, it is not known 

whether Sparc is also upregulated in scrib mutant clones. Investigating whether 

the induction of flower and sparc are associated and/or required for scrib 
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dependent cell competition will shed light on the cell competition mechanism 

and provide valuable information to determine their potential as reliable markers 

of cell competition for further studies.  

 

Engulfment has also been shown to play a role in cell competition. Cells 

with mutations in engulfment genes fail to eliminate Minute cells. To test 

whether the elimination of scrib mutant cells relies on the engulfment 

mechanism, we can test whether scrib mutant cells are engulfed by neighboring 

cells and whether diminished engulfment ability of neighboring cells can prevent 

scrib mutant cells from elimination. Moreover, it will be interesting to investigate 

whether cell competition uses the same mechanism to remove different types of 

abnormal cells and whether the growth potential of scrib mutant cells and the 

deregulation of Hippo signaling in those cells also depends on engulfment. 

 

Another biological process that is altered in scrib mutant cells 

surrounded by wild-type cells is endocytosis. It has been shown that scrib 

mutant cells surrounded by normal cells have enhanced endocytosis while scrib 

mutant cells in a homotypic situation may have endocytic activity that is lower or 

similar to wild-type cells (Igaki et al., 2009). The enhanced endocytosis defect in 

loser scrib mutant cells leads to the accumulation of JNK ligand, Egr, in 

endosomes (Igaki et al., 2009). Blocking endocytosis by overexpressing the 

dominant negative form of Rab5 (Rab5DN) results in phenotypes resembling 
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those of blocking JNK in scrib mutant cells (Igaki et al., 2009). Interestingly, 

promoting endocytosis by overexpressing full length Rab5 is able to rescue the 

loser phenotype of tkv mutant cells (Moreno et al., 2002). Also, mutations that 

cause defects in endocytosis are known to induce non-autonomous proliferation 

in neighboring tissue and have been implicated in growth regulation (Herz et al., 

2006; Lu and Bilder, 2005; Moberg et al., 2005; Thompson et al., 2005; Vaccari 

and Bilder, 2005; Wucherpfennig et al., 2003). It will be interesting to explore 

the role of endocytic trafficking in cell competition and the regulation of the 

Hippo pathway. Specifically, it will be interesting to test whether the endocytosis 

defects in scrib mutant cells are responsible for the non-autonomous induction 

of Hippo target gene expression. For example, increasing or decreasing 

endocytosis by overexpression or knock down of endocytic genes in scrib 

mutant cells could be used to test whether manipulation of endocytic trafficking 

can prevent the non-cell-autonomous effects on Hippo target gene expression. 

 
 

A more detailed study of how cell competition is initiated and executed to 

ensure proper growth regulation and eliminate tumorigenic cells will doubtless 

be of great importance. A molecular understanding of the mechanism by which 

tumorigenic cells are eliminated may require the identification of genes that 

provide a critical tumor suppressing function without displaying a phenotype as 

a single mutant. One possible avenue of research would be to screen for 

mutations that are required for the elimination of scrib mutant cells, but do not 
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affect the viability of normal cells. The amenability and availability of 

sophisticated clonal analysis tools in Drosophila would enable elegant and 

direct methods to screen for these genes. The crossing scheme of a potential 

EMS screen for the identification of these genes is shown in Figure 6.1. This 

screen will allow us to identify genes that fail to eliminate scrib mutant cells 

without causing cell death in neighboring cells. These genes will be likely 

targets for mutation during the early stages of oncogenesis and our work 

provides a window into identifying and understanding a new class of tumor 

suppressors. The identification and characterization of such genes would 

further our knowledge of tumor formation mechanisms and present additional 

opportunity to advance our study of cancer prevention.  
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                                      EMS 
 
               yw ;  ;    <82B                    X              ey-flp ;  ;    <82B, ubi-GFP      
                ¬          <82B                                                            TM6B 
      
      
          
              (select flies without obvious phenotypes) 
     
 
   F1    _ey-flp     ;  ;    <82B, *                   X     ey-flp  ; ;  <82B, scrib2, ubi-GFP   
              yw or ¬          <82B, ubi-GFP                 “ or ¬                  TM6B 
 
 
      
        (screen for phenotypes of more scrib mutant cells) 
 
   F2 
           ey-flp ;  ;    <82B,  *                          X    ey-flp ;  ;  <82B, scrib2, ubi-GFP 
             ¬             <82B, scrib2, ubi-GFP                                     TM6B 
  
      
  
          
   
 
                      eyflp ;  ;       <82B,  *         Balanced Stock 
                                           TM6B        
 
 
 

Figure 6.1.  
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Figure 6.1 Crossing scheme to identify genes potentially required for 

initiating or executing cell competition 

Male flies bearing FRT82B are mutagenized with EMS and crossed to females 

containing ey-flp, FRT82B, and ubi-GFP. The F1 progeny without any obvious 

abnormal phenotypes are selected and crossed to flies containing ey-flp, 

FRT82B, ubi-GFP and scrib2. In the F2 generation, progeny are screened for 

phenotypes that may represent the failure of elimination of scrib mutant cells. 

The selected flies are backcrossed to confirm the phenotypes and establish 

stocks. Mutations that cause no obvious phenotypes in F1 indicate they are not 

required for cell viability and important developmental processes, so therefore 

the next generation (F2) animals that contain a mutation exhibit phenotypes that 

are dependent on the presence of scrib2 mutant.  
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Appendix 
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Drosophila Genotypes  

Figure 4.1. 

A:  y w 

B: C765-Gal4/ UAS-Crbintra 

D: dpp-Gal4, UAS-GFP/ + 

E: UAS-CrbFL/ + ; dpp-Gal4, UAS-GFP/ + 

F: ex697/ + ; dpp-Gal4, UAS-GFP/ + 

G: UAS-CrbFL/ ex697 ; dpp-Gal4, UAS-GFP/ + 

 

Figure 4.2. 

A: y w, ey-Flp/ +; FRT82B, Minute(3), ubi-GFP/ FRT82B 

B: y w, ey-Flp/ +; FRT82B, Minute(3), ubi-GFP/ FRT82B, crb11A22 

C: y w, ubx-Flp/ +; FRT82B, Minute(3), ubi-GFP/ FRT82B 

D: y w, ubx-Flp/ +; FRT82B, Minute(3), ubi-GFP/ FRT82B, crb11A22 

E: y w, hs-Flp;FRT82B, ubi-GFP/ FRT82B, crb11A22 

F: y w, hs-Flp; ex697/ +; FRT82B, Minute(3),  ubi-GFP/ FRT82B, crb11A22 
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Figure 4.3. 

A: y w, hs-Flp; ey-Gal4,GMR-Gal4/ +; FRT82B, ubi-GFP/ FRT82B, crb11A22 

B: y w, hs-Flp; ey-Gal4,GMR-Gal4/ UAS-merRNAi; FRT82B, ubi-GFP/    

        FRT82B, crb11A22 

C:  w 

D: nub-Gal4/ UAS-CrbRNAi 

E: nub-Gal4/ UAS-D 

F: nub-Gal4/ UAS-D, UAS-CrbRNAi 

G: nub-Gal4/ UAS-Crbintra 

H: ykiB5/ +; nub-Gal4/ UAS-Crbintra 

I: UAS-Crbintra/ ex697; hh-Gal4, UAS-GFP/ + 

J: ex697/ +; hh-Gal4, UAS-GFP/ UAS-ykiRNAi  

K: UAS-Crbintra/ ex697; hh-Gal4, UAS-GFP/ UAS-ykiRNAi 

 

Figure 4.5. 

A: UAS-Crbintra/ ex697 ; dpp-Gal4, UAS-GFP/ + 

B: UAS-CrbintraDJM/ ex697 ; dpp-Gal4, UAS-GFP/ + 

C: UAS-CrbintraDPBM/ ex697 ; dpp-Gal4, UAS-GFP/ + 

D: UAS-CrbintraDJ,DP/ ex697 ; dpp-Gal4, UAS-GFP/ + 

 

Figure 4.6. 
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A: diap1-GFP/ + ; dpp-Gal4/ + 

B: diap1-GFP/ UAS-CrbFL ; dpp-Gal4/ + 

C: diap1-GFP/ UAS-Crbintra; dpp-Gal4/ + 

D: diap1-GFP/ UAS-CrbintraDJM; dpp-Gal4/ + 

E: diap1-GFP/ CrbintraDPBM; dpp-Gal4/ + 

F: diap1-GFP/ UAS-CrbintraDJ,DP; dpp-Gal4/ + 

Figure 4.7. 

A: en-Gal4/ + ; Gal80ts/ + 

B: en-Gal4/ UAS-CrbFL ; Gal80ts/ + 

C: en-Gal4/ UAS-Crbintra; Gal80ts/ + 

D: en-Gal4/ UAS-CrbintraDJM; Gal80ts/ + 

E: en-Gal4/ CrbintraDPBM; Gal80ts/ + 

F: en-Gal4/ UAS-CrbintraDJ,DP; Gal80ts/ + 

 

Figure 4.8. 

A: y w, hs-Flp/ +; FRT40A, ubi-GFP/ FRT40A, fat422  

B: y w, hs-Flp/ +; FRT40A, ubi-GFP/ FRT40A, exe1  

C: FRT19A, ubi-GFP/ FRT19A, mer4; ; hs-Flp/ + 

 

Figure 4.9. 

A,B: y w, hs-Flp; ; FRT82B, ubi-GFP/ FRT82B, crb11A22 

C: y w, hs-Flp; ; FRT82B, , Minute(3),  ubi-GFP/ FRT82B, crb11A22 
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D: y w, hs-Flp/ +; FRT40A, ubi-GFP/ FRT40A, exe1  

E,F: y w, hs-Flp; ; FRT82B, ubi-GFP/ FRT82B, crb11A22 

G,I: Gal80ts/ UAS-Crbintra; hh-Gal4/ + 

H,J: Gal80ts/ UAS-CrbintraDJM; hh-Gal4/ + 

 

 

Figure 4.10. 

A,B: y w, hs-Flp; ; FRT82B, ubi-GFP/ FRT82B, crb11A22 

C: y w, hs-Flp; dGC13/ dGC13 ; FRT82B, ubi-GFP/ FRT82B, crb11A22 

D: y w, hs-Flp; nub-Gal4/ UAS-D; FRT82B, ubi-GFP/ FRT82B, crb11A22 

 

Figure 5.1. 

A:  y w, ey-Flp/ +; act>y+>GAL4, UAS-GFP/ +; FRT82B, tub-GAL80/ FRT82B 

B:  y w, ey-Flp/ +; act>y+>GAL4, UAS-GFP / +; FRT82B, tub-GAL80/ FRT82B,  

     scrib2 

C: y w, ey-Flp/ w, UAS-bskDN; act>y+>GAL4, UAS-GFP/ +; FRT82B, tub- 

    GAL80/ FRT82B, scrib2 

D: y w, ey-Flp/ +; act>y+>GAL4, UAS-GFP/ UAS-p35; FRT82B, tub-GAL80/  

    FRT82B, scrib2 

E: y w, hs-Flp; FRT82B, ubi-GFP/ FRT82B 

F: y w, hs-Flp; FRT82B, ubi-GFP/ FRT82B, scrib2 

G: y w, hs-Flp; egr1/ egr1, ex697; FRT82B, ubi-GFP/ FRT82B, scrib2 
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H: y w, hs-Flp; FRT82B, Minute(3), ubi-GFP/ FRT82B, scrib2 

I: y w, hs-Flp; egr1/ egr1, ex697; FRT82B, ubi-GFP/ FRT82B 

J: y w, hs-Flp; FRT82B, Minute(3), ubi-GFP/ FRT82B 

 

Figure 5.2. 

A: y w, hs-Flp; FRT82B, ubi-GFP/ FRT82B 

B: y w, hs-Flp; FRT82B, ubi-GFP/ FRT82B, scrib2 

C: y w, hs-Flp; egr1/ egr1, ex697; FRT82B, ubi-GFP/ FRT82B, scrib2 

D: y w, hs-Flp; FRT82B, Minute(3), ubi-GFP/ FRT82B, scrib2 

 

Figure 5.3. 

A,B: y w, hs-Flp; egr1/ egr1, ex697; FRT82B, ubi-GFP/ FRT82B, scrib2 

 

Figure 5.4. 

A: y w, hs-Flp; ex697/ +; FRT82B, ubi-GFP/ FRT82B  

B,C: y w, hs-Flp; egr1/ egr1, ex697; FRT82B, ubi-GFP/ FRT82B, scrib2 

D: y w, hs-Flp; egr1/ egr1, ex697; FRT82B, ubi-GFP/ FRT82B 

E,F: y w, hs-Flp; ex697/ +; FRT82B, ubi-GFP/ FRT82B, scrib2 

G: y w, hs-Flp; ex697/ +; FRT82B, Minute(3), ubi-GFP/ FRT82B, scrib2 

H: y w, hs-Flp; ex697/ +; FRT82B, Minute(3), ubi-GFP/ FRT82B 

 

Figure 5.5. 
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A: y w, ey-Flp/ w,UAS-bskDN; act>y+>GAL4, UAS-GFP/ +; FRT82B, tub-GAL80/  

          FRT82B, scrib2 

B: y w, ey-Flp/ w,UAS-bskDN; act>y+>GAL4, UAS-GFP/ UAS-wts; FRT82B, tub- 

    GAL80/ FRT82B, scrib2 

C: y w, ey-Flp/ +; act>y+>GAL4, UAS-GFP/ UAS-Yki; FRT82B, tub-GAL80/  

      FRT82B, scrib2 

D:  y w, ey-Flp/ +; act>y+>GAL4, UAS-GFP/ +; FRT82B, tub-GAL80/ FRT82B,  

    scrib2, wtsx1 

 

Figure 5.6. 

A-D:  y w, hs-Flp, tub-GAL4, UAS-GFP/ +; ex697/ UAS-RasV12; FRT82B, tub- 

         GAL80/ FRT82B, scrib2 

E,F:  y w, hs-Flp; ex697/ +; FRT82B, Minute(3), ubi-GFP/ FRT82B, scrib2 

G-J:  y w, hs-Flp, tub-GAL4, UAS-GFP/ w, UAS-bskDN; ex697/ +; FRT82B, tub- 

        GAL80/ FRT82B, scrib2 

 

Figure 5.7. 

A:  y w, hs-Flp, tub-GAL4, UAS-GFP/ +; ex697/ UAS-RasV12; FRT82B, tub- 

         GAL80/ FRT82B 

B:  y w, hs-Flp, tub-GAL4, UAS-GFP/ w, UAS-bskDN; ex697/ +; FRT82B, tub- 

         GAL80/ FRT82B 
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Figure 5.8. 

A,C:  y w, hs-Flp, tub-GAL4, UAS-GFP/ +; ex697/ +; FRT82B, tub-GAL80/ UAS- 

         Myc, FRT82B, scrib2  

B,D:  y w, hs-Flp, tub-GAL4, UAS-GFP/ +; ex697/ +; FRT82B, tub-GAL80/ UAS- 

        Myc, FRT82B  

          

Figure 5.9. 

A: y w, hs-Flp; ex697, en-Gal4/ +; FRT82B, ubi-GFP/ UAS-Myc, FRT82B, scrib2  
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