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Assessment of Collimator Jaw Optimization in Reducing Normal Tissue Irradiation with 

Intensity Modulated Radiation Therapy 

Sarah Joy, BS 

Supervisory Professor: Peter Balter, Ph.D. 

 

Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated 

radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator 

(MLC) apertures with the accelerator jaws.  

Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck 

patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each 

segment was then renormalized to account for the change in collimator scatter to obtain 

target coverage within 1% of that in the original plan. The new plans were compared to the 

original plans in a commercial radiation treatment planning system (TPS). Reduction in 

normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 

in the cumulative dose-volume histogram for the following structures: total lung minus GTV 

(gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem.  In order 

to validate the accuracy of our beam model, MLC transmission measurements were made 

and compared to those predicted by the TPS.  

Results: The greatest change between the original plan and new plan occurred at lower dose 

levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for 

all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all 

patients. The variation in normal tissue dose reduction was not predictable, and we found no 

clear parameters that indicated which patients would benefit most from jaw tracking.  Our 

TPS model of MLC transmission agreed with measurements with absolute transmission 
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differences of less than 0.1 % and thus uncertainties in the model did not contribute 

significantly to the uncertainty in the dose determination.  

Conclusion: The amount of dose reduction achieved by collimating the jaws around each 

MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.  
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1 Introduction 

 

1.1 Statement of Purpose 

 

      Of all cancers worldwide, lung cancer is the most prevalent and accounts for the most 

deaths as of 2008[1]. Chemoradiation therapy has been shown to effectively control the most 

common type of lung cancer, non-small-cell (NSCLC), but to achieve local control of 90% a 

dose of 80Gy may be required[2]. Currently prescription doses typically remain at or below 

70Gy due to the normal tissue structures surrounding the cancer. In general, the higher the 

prescription dose to the tumor the higher the probability of inducing a normal tissue toxicity 

such as lung pneumonitis, esophagitis, or a decrease in pulmonary function.  

      Intensity Modulated Radiotherapy (IMRT) can provide dose escalation in comparison to 

3D conformal radiotherapy (3DCRT) by increasing conformity of the prescribed dose to the 

target while decreasing normal tissue doses. However, IMRT may still deliver low damaging 

doses to normal tissues outside of the radiation field due in part to leakage and transmission 

through the mulitleaf collimators (MLCs)[3, 4]. It is possible these low doses may be reduced 

on the Varian 2100 platform by moving the jaws to the edge of the MLC aperture for each 

segment of step-and-shoot IMRT. Currently Varian 2100s allow one jaw position for each 

beam, limiting clinical practice to jaw collimation of the maximum MLC aperture in each 

beam. This potential to reduce low doses by jaw tracking each aperture is illustrated in Figure 

1.1 with three segments of a step-and-shoot IMRT beam with fixed jaws positions around the 
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target (red), and then in Figure 1.2, in which the same three segments are shown with the jaw 

tracking method (JTM), blocking transmission to the esophagus (green), heart (pink) and 

other normal tissues. This JTM could be used to decrease the probability of a normal tissue 

toxicity, or be traded off for a higher prescribed dose that could potentially increase local 

control.  

 

 

Figure 1.1 Three segments of original step-and-shoot plan 

 

 

Figure 1.2 Three segments of JTM step-and-shoot plan with jaw tracking 
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1.2 Normal Tissue Toxicities in Thoracic Radiotherapy 

 

      Radiation-induced pneumonitis remains the primary concern for most thoracic treatments 

in which the lung is exposed to the treatment field. Pneumonitis typically occurs three to six 

months following treatment and is characterized by inflammation of the lung due to 

irradiation, resulting in decreased gas exchange [5].The degree of toxicity has been defined 

by many groups but the Southwest Oncology Group (SWOG) scores radiation pneumonitis 

as the following: 

 

Grade 1: Asymptomatic or symptoms not requiring steroids 

Grade 2: Radiographic changes and requiring steroids or diuretics 

Grade 3: Radiographic changes and requiring oxygen 

Grade 4: Radiographic changes and requiring assisted ventilation 

Grade 5: Death 

 

      Graham et al. [6]correlated the incidence of pneumonitis as well as grade with the 

volume of normal lung receiving 20Gy (V20); they found all fatal pneumonitis events to 

occur when V20>34%. This paper serves as one guideline for evaluating the total normal 

lung on a dose-volume-histogram (DVH), and shows that V20 should be below 35% but 

preferably as low as achievable. Mean lung dose has also been correlated with pneumonitis 

[7, 8], but only with incidence of pneumonitis Grade 2 or higher; incidence of the different 

grades were not distinguished.  
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      Another toxicity of concern is radiation esophagitis, in which patients have soreness and 

difficulty swallowing (dysphagia) due to the esophagus inflammation resulting from 

irradiation. This presents acutely two to three weeks following treatment and may potentially 

lead to morbidity from weight loss and dehydration. The two main grading systems for 

toxicity are from the Radiation Therapy Oncology Group (RTOG) and the National Cancer 

Institute Common Toxicity Criteria (NCI-CTC). The NCI-CTC defines their scale as the 

following: 

 

Grade 1: Mild dysphagia but can eat regular diet 

Grade 2: Dysphagia, requiring predominantly pureed, soft, or liquid diet 

Grade 3: Dysphagia, requiring feeding tube, IV hydration, or hyperalimentation 

Grade 4: Complete obstruction (cannot swallow saliva); ulceration with bleeding not induced 

by minor trauma or abrasion or perforation 

 

      The RTOG scoring criteria is very similar to the above, with an additional requirement of 

dehydration or weight loss for Grade 3. The incidence of acute esophagitis for Grade 1 or 

higher has been correlated with V35 [9, 10], it has also been correlated with V50[11]  and 

V60[12] for Grade 2 or higher toxicity.  

 

      Pulmonary function tests are typically done before and after treatment in order to gain a 

more overall sense of lung response to radiotherapy. Testing pulmonary function may 

include evaluation of the patient’s diffusion capacity for carbon monoxide (DLCO) and the 

forced expiratory volume the patients exhales into a spirometer in 1 second(FEV). The test of 
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a patient’s DLCO typically involves the patient blowing out enough air to reach the residual 

volume, then taking a full breath of a gas mixture with a small amount of carbon monoxide. 

The gas is held in the lungs for about 10 seconds and then exhaled and analyzed to find the 

amount of carbon monoxide taken up during the breath hold[13]. Pulmonary function 

remains somewhat difficult to quantify as most patients have impaired function before 

treatment, and some patients see an improvement in pulmonary function after treatment. If 

seen, the improvement in function results from the lung tumor shrinking due to irradiation, 

which allows blood flow through pulmonary vessels that were previously obstructed by the 

tumor[14, 15]. 

      De Jaeger et al. hypothesized that radiation induces damage to alveolar/capillary 

membrane and perfusion weighted lung function metrics may better estimate functional 

outcome[15]. DLCO is not perfusion weighted but may also be an optimal measure as it 

shows a decrease in function after irradiation and is less reliant on tumor related factors than 

FEV [16]. A reduction in pulmonary function has been linked to mean lung dose [17] and has 

also been correlated with low doses (5-20Gy) to the total lung[18, 19]. 

 

      Heart toxicites are another concern in thoracic radiotherapy and may include pericarditis, 

cardiac fibrosis, and coronary artery disease. Pericarditis is an irritation or swelling of the 

pericardium which is a thin double-walled membrane that surrounds the heart; this usually 

results in chest pain. Cardiac fibrosis is a thickening of the heart valves and loss of flexibility 

which could lead to heart dysfunction. Coronary artery disease is a narrowing of the blood 

vessels that supply the heart with blood and oxygen; this could result in a heart attack, heart 
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failure, chest pain or an arrhythmia. It has been generally accepted since the 1950s that more 

than 40Gy to the mediastinum poses a risk for cardiac disease[20]. 

 

      Fibrosis occurs months to years after treatment and may be characterized by reduced 

flexibility and strength, strictures, and possibly pain. It is typically chronic and progressive in 

severity and lung fibrosis has shown to be correlated with similar dosimetric parameters as 

pneumonitis[21]. 

 

      A correlation has been found between the volume of tissue receiving low doses and the 

incidence of a secondary cancer, and that low dose volumes are greater for IMRT compared 

to conventional radiotherapy [22]. The increased low dose volumes from IMRT are due to 

increased head leakage, monitor units (MUs) and MLC transmission [23, 24]. Integral dose is 

defined as the total energy absorbed per unit density for a structure, and is calculated as in 

Equation 1.1.  

 

Equation 1.1        

 

 

 

      Equation 1 gives the integral dose for a structure as the mean dose for the structure 

multiplied by the volume of the structure; most commonly it is defined over all structures for 

a patient or for normal tissue, which is taken to be all structures minus the PTV. Integral dose 

may offer a parameter to judge risk of secondary cancer as it describes mean dose to the 
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patient overall. It has been shown that IMRT either reduces or keeps the integral dose 

constant compared to 3DCRT[25, 26] in part due to a reduction in scattered radiation from 

smaller field sizes. It may be that collimating the jaw to each segment could further reduce 

integral dose by reducing the head transmission and leakage which would be associated with 

a decrease in probability of a secondary cancer. 

 

      For the dose-limiting toxicities mentioned, there are other factors to consider when 

evaluating a patient for incidence such as age, gender, and whether the patient is a smoker or 

on chemotherapy; the dosimetric parameters most related to this work are summarized above 

and in section 1.5. 

 

1.3 Intensity Modulated Radiation Therapy (IMRT) 

 

      Intensity Modulated Radiation Therapy has become a part of standard of care in many 

services today. The idea behind IMRT is to deliver nonuniform fluences to the target to better 

shape the dose distribution so that more conformity to the target is achieved. As conformity 

improves, normal tissue doses near the target decrease and in turn a higher dose to the target 

may be deliverable; therefore IMRT treatments frequently contain escalated doses to the 

target compared to 3DCRT. 

 

      IMRT planning involves inverse planning, in which the user specifies dose constraints to 

important structures in an effort to provide adequate tumor coverage while maintaining 

reasonable normal tissue doses. The planning system divides a beam up into segments, each 



 8 

of which has a different MLC shape and weight, and an iterative optimization outputs a plan 

based on the input parameters and dose constraints the user selected. The optimization 

utilizes a cost function which is a measure of the quality of the plan. Often the cost function 

is the root mean square difference between the desired dose and the realized dose which is 

iteratively minimized.Once an optimized solution is reached, a beam will have segments of 

different MLC shape and weights, the composite of which gives a nonuniform fluence 

pattern [27]. This research focuses on step-and-shoot IMRT which involves several segments 

or subfields of a beam, each of which have a particular MLC shape; during treatment one 

segment is formed, radiation is delivered for a certain number of monitor units and then the 

beam is turned off while the MLC takes the shape of the next segment.  

 

      With lung cancer, IMRT has been shown to reduce the risk of pneumonitis while 

maintaining local control [3, 4, 28]; however with dose escalation in IMRT comes increased 

transmission through the MLCs which contribute low doses to a larger volume. 

 

1.4 Varian Linear Accelerators 

 

      MD Anderson’s radiation oncology division largely operates with Varian linear 

accelerators (linacs) as opposed to Siemens or Elekta linacs. Figure 1.3 shows a typical 

Varian linac with an inside look at the structure of the head of the machine.  
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Figure 1.3 Varian 2100 Linac Linear Accelerator  

 

 

      As this project involves using the jaws of the linac to backup the MLCs, it is worth 

exploring how the construction of the Varian treatment head compares to those in other 

manufacturer’s linear accelerators. Linear accelerators all include a primary collimator 

located high up in the head of the linac that shapes the beam with appropriate geometry right 

after the electrons hit the x-ray target or electron scattering foil. After passing through the 

primary collimator, the beam passes through a flattening filter or electron absorption foil 

followed by an ionization chamber. After this comes the secondary collimation (movable 

jaws) which consist of an upper (y-jaws) and a lower set (x-jaws) on Varian accelerators. 
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These thick jaws attenuate 99.9% of the primary beam and move along a curved path to 

follow the divergence of the beam. Varian machines have MLC banks under the x jaws as a 

tertiary collimator which allows the addition of MLC capabilities to an existing proven linac. 

On the downside, this configuration adds bulk and shortens the distance to mechanical 

isocenter creating longer distances for MLC travel and less clearance space between the linac 

head and patient. A penalty of this tertiary configuration is increased MLC transmission.  

      Elekta linacs replace the upper jaws with the MLCs instead of adding them below the 

lower jaws. Elekta includes a ‘backup jaw’ which is a thinner jaw which acts only to backup 

the MLCs. The advantage to this structure is the ability to make a more compact linac head; 

the MLCs are closer to the source and do not have to travel as far, and therefore can be made 

smaller. The disadvantage of this configuration is the greater leaf magnification projected at 

isocenter which requires tighter motion tolerances as well as a large geometric penumbra 

from the MLC. 

     Siemens machines replace the lower jaws with MLCs and do not have a backup jaw like 

the Elekta machines. One major difference between Siemens and other manufacturer’s 

designs is that they have a flat MLC leaf end that is double focused, meaning the MLC ends 

follow the beam geometry in both the x and y directions. This is different from Elekta and 

Varian leaf ends, which follow the beam geometry in one direction perpendicular to leaf 

motion (single focused), and move in a single plane perpendicular to the beam’s central axis. 

Single focused leaves are rounded at the end to decrease the variation in attenuation of the 

beam with leaf position. Siemens double focused MLCs move in an arc similar to the jaw 

motion, following a spherical surface centered on the central axis. This allows greater leaf 

position accuracy and narrower penumbra but is more difficult to control and design 
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mechanically[29, 30]. As Siemens and Elekta both use the MLC in replacement of a jaw, the 

collimator output factor is determined by the jaw and the MLC whereas in Varian, the 

collimator output factor is determined by both the upper and lower jaws and not by the MLC. 

1.5 Low Doses in Thoracic Cancers 

 

      Though typical dosimetric parameters related to normal tissue toxicities in thoracic 

cancers may be at relatively high doses, some recent research has led to concern over lower 

doses also inducing toxicities. The low dose range studied was from 0-20Gy over a large 

volume, the parameters looked at include the volumes of heart and lung doses receiving a 

particular low dose.  

      Taylor, et al reviewed cardiac disease for breast cancer patients and indicated an 

increased risk of heart toxicity from radiation therapy for those patients whose heart volume 

receiving between 0 and 5Gy was large[31]. 

      Two studies looking at treatment related pneumonitis also found results indicating that 

the volume of normal lung receiving 5Gy was significantly correlated to occurrence of this 

toxicity. One paper [32] looked at non-small cell lung cancer (NSCLC) patients who 

underwent 3DCRT concurrently with chemotherapy; those who had pneumonitis that needed 

oxygen (Grade 3 according to the scale listed) or worse were correlated with clinical and 

dosimetric parameters. It was found that relative volume of normal lung, that being total lung 

minus GTV (gross tumor volume), getting 5Gy was associated with an increased risk of 

developing pneumonitis. Patients with V5 less than or equal to 42% were significantly less 

likely to have an incidence that was Grade 3 or higher. The other study focused on IMRT 

plans for mesothelioma patients who had extrapleural pneumonectomies and found a 10% 
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incidence of pneumonitis for patients with a mean lung dose of less than or equal to 15Gy. It 

was also found that most patients who developed pneumonitis had a V5 above 81% but had 

V20 less than 20%. V5 was investigated for prior patients and the majority of them had a V5 

of greater than 90%; it was suggested this parameter may have been largely contributing to 

pulmonary toxicity seen with those patients[19]. The overall results of these two studies 

indicate that V5 may predict incidence of radiation pneumonitis.  

      Gopal [18] analyzed pulmonary toxicity in NSCLC patients undergoing concurrent 

chemoradiation with amifostine and found a sharp decrease in diffusion capacity at a dose of 

13Gy.  

      Lee et al [33] found a correlation between pulmonary complications in esophageal 

patients treated with chemoradiation, and irradiating greater than 40% of lung volume with 

10Gy. 

      In the way of thoracic cancers, low doses may be more harmful than previously thought 

and volume constraints on these doses would benefit thoracic patients. 

      

1.6 Jaw Collimation to MLC Aperture 

 

      The amount of normal tissue dose reduction from backing up the MLC with the jaw is 

uncertain for clinical plans. Some work has been done looking at the differences between 

dosimetric parameters for fields defined by the jaws only, MLC only and combined MLC 

and jaw. Kehwar et al. [34] measured the PDD (percent depth dose) curves, cross plane 

profiles and dose rate for each of the fields mentioned above and found that the dose rate in 

air was higher for MLC and jaw for 6MV and higher for MLC only for 15MV and there was 
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little difference between the MLC and jaw field and the jaw only field. For PDDs the surface 

dose and buildup was decreased for MLC and jaw fields compared to MLC only and jaw 

only fields, and there was no significant difference between the MLC only, jaw only and 

MLC and jaw fields for profiles and penumbra. This work was done with a Varian Millenium 

80-leaf system. A similar study [35]done with a Varian 120–leaf system found that dose rate 

was higher in a solid water phantom for the MLC only field and that there was no significant 

difference in dose rate between the MLC and jaw field and jaw only field. The surface and 

buildup dose was also higher for the MLC only field with no significant difference in the 

PDD beyond the depth of maximum dose (dmax). The profile width and penumbra were 

larger for the MLC only field.  

      Another study [36]looked at dose at dmax for different MLC field sizes each with various 

jaw sizes, all normalized to dose at dmax for a 10x10 field set by the jaws; the maximum 

change in output was 5% and occurred when the jaws were at their maximum field size and 

the MLCs were at their smallest size. 

      These studies give an idea of the benefit that could be wrought from using fields with the 

jaws pulled in close to the MLC, but they don’t apply directly to treatment plans. Tobler et al 

[37] used the BrainLAB treatment planning system to compare dose profiles for fields whose 

jaw sizes were at their maximum setting to those at smaller field sizes. The profiles for the 

larger field sizes extend out to further off-axis distances and show a higher amount of dose 

getting through for the same micro-multileaf collimator field size. The percent volume 

covered by different isodose levels for single isocenter patient plans were compared for plans 

with jaws at the maximum setting to plans with the jaws brought in flush with the micro-

MLC tips for each field. For the patient with the smallest field defined by the micro-MLCs, 
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the maximum difference occurred for the smaller isodose levels, up to 60% difference in the 

volume covered. Another paper found less of an improvement with three prostate patient 

plans looking at differences between a jaw setting 5mm outside the MLC in the x-direction 

and 3mm outside the MLC in the y direction, and one that is optimized the cover the rectal 

wall with the collimator angle changed from 180 degrees and jaws pulled in flush with the 

edge of the MLC tips. The study found the volume of rectal wall receiving 60Gy had a 3%, 

4.7% and 9.6% reduction with the jaw optimization[38]. 

      Schmidhalter et al [39]explored the possibility of collimating the MLC aperture with the 

jaws for dynamic academic and clinical cases. For clinical cases they chose a prostate and 

head and neck plan and only brought in the x jaws with a 5mm margin from the edge of the 

most open MLC. The prostate plan was a five field IMRT plan and measurements were taken 

with film for 6 and 15MV at a depth of 5cm in a solid water phantom at 100cm SSD (source 

to surface distance) and a gantry angle of zero degrees. The head and neck plan had the same 

parameters and measurements except it was an eight field plan. Gamma analysis was done on 

all films using 3%/3mm criteria[40] and all values were less than 1. For the prostate plan the 

volume body minus PTV was reduced by 1.7% with the optimized jaw plan with the total 

MU increased by 2.6% for coverage. The head and neck plan volume body minus PTV was 

reduced by about 1.5% and the total MU increased 2.8%. Both plans had a small decrease in 

doses to some of the organs at risk, the largest difference being in the head and neck plan, 7% 

decrease in the DVH of myelon.  

 

1.7 Hypothesis and Specific Aims 
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      Closing the jaws of the linear accelerator in around the MLC aperture for each segment 

of step-and-shoot IMRT could provide a decrease in the larger volumes of normal tissues 

receiving low doses; but the question of whether the volumes receiving low doses could be 

reduced significantly by using this method remains unanswered. 

 

      The hypothesis of this study was: The volume of lung receiving 20 Gy can be reduced by 

greater than 10% by using the linac jaws to tightly collimate each aperture of the MLC in 

step-and-shoot IMRT. 

 

The specific aims of this study were: 

- To determine a method of implementing tight collimation around the MLC aperture on a 

segment-by-segment basis in the treatment planning system and in treatment delivery. 

 

- To select thoracic patients undergoing radiotherapy using step-and-shoot IMRT and modify 

the clinical plan to have the jaws track each segment and compare the calculated doses 

between the clinical and jaw plans. 

 

-To verify the accuracy of the treatment planning system by measuring MLC and jaw 

transmission and comparing to calculations. 

 



 16 

2  Materials and Methods 

  2.1 Varian MLC Characteristics 

 

      The MLC system used for this project has 120 leaves (Millennium 120, Varian 

Associates, Pala Alto, CA) which includes 60 pairs of tungsten leaves. The leaf dimensions 

given here are all optical projections at isocenter, where the distance from the center of the 

leaf to isocenter is approximately 49cm. The leaf widths for the first and last leaf pairs are 

1.4cm, widths for the second through tenth pairs and the fifty first through fifty ninth pairs 

are 1cm, and all the central pairs are 0.5cm in width. The leaves sit on a carriage split into 

two banks each holding 60 leaves; the carriage can move the MLCs linearly or rotate them. 

The most a leaf can extend beyond the most retracted leaf is 15cm; if the field is larger than 

that, options are to split the field or to linearly move the MLC carriage. The leaf effective 

shielding length is 15cm and the average transmission across all leaves is about 2% with 

interleaf transmission peaks of 2-3%, about 1% additional interleaf transmission. The 

transmission with the jaws backing the leaves should be less than 0.5% according to the 

manufacturer [41]; as low as 0.1% transmission has been measured [42].  

      MLC transmission may vary slightly under different sections of the MLC; most 

commonly the average is taken, but to be more accurate both intraleaf and interleaf 

transmission values may be given. Intraleaf transmission refers to photons passing through 

the entire height of the leaf while interleaf transmission refers to photons passing between 

leaves, through the tongue and groove (Figure 2.1). The tongue and groove is meant to 

reduce interleaf transmission by providing some attenuation at each point between leaves. 

LoSasso has reported MLC transmission values between 1.7 and 2.7%, the latter being 
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interleaf transmission, consistent with Varian’s specifications and measurements done at MD 

Anderson.  

 

 

Figure 2.1 Tongue and groove width model 

 

      Leaf end penumbra was studied and the added transmission due to the rounded end was 

found to be equivalent to increasing the field size of a focused collimator by 1mm on each 

side[43]. Varian has two correction files to correct leaf positions, one generic to all 

Millennium MLC and the other has the following adjustable parameters: skewness of each 

leaf bank, gap width and centerline offset. Skewness of the MLC carriage refers to how 

shifted the MLCs are from alignment with the jaw. Centerline offset refers to the carriage’s 

distance from the central axis; both MLC banks should be symmetrical about the central axis. 

The gap width refers to the nonzero opening between closed leaves which prevents leaf 

collision. Gap width for the central leaves was found to be slightly larger than that for the 

peripheral when measured with a feeler gage for several Varian linacs with no clear reason 

why, while it was found that transmission varies with gantry angle only minimally [43]. 
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2.2 Pinnacle Collimation Modeling 

 

      The commercial radiation treatment planning system (Pinnacle
3
, v m.n, Philips Medical 

Systems, Milpitsa CA)  models the rounded leaf end as a circle with a radius that outlines the 

leaf end and that has a center near the center of the leaf (Figure 2.2); the typical radius for 

Varian machines is 8cm[44]. Pinnacle uses this model to compute the differential attenuation 

determined by the thickness of the leaf end along each ray line.  

 

Figure 2.2 Pinnacle model of rounded leaf end 

 

      The tongue and groove effect is modeled by entering a width of the tongue and groove 

that most closely matches the measured profiles; Figure 2.1 shows the tongue and groove for 

two MLCs and the defined width. The tongue and groove tries to minimize leakage between 

leaves but the overall thickness the beam goes through is reduced from the leaf thickness, 

leading to about 1% higher interleaf than intraleaf transmission. In Pinnacle, the user may 

add a value for this additional interleaf leakage to the average MLC transmission value; the 

system does not take into account increased measured transmission with increased field size. 

[45] 
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2.3 Patients 

 

      We evaluated plans for 10 thoracic, 3 head and neck, and 3 pediatric patients. All patients 

in this study were enrolled in an institutional review board-approved retrospective data 

collection protocol (2005-0574).Thoracic patients were evaluated as low doses to the lung 

are a justification against IMRT, head and neck plans were evaluated due to the high level of 

modulation, and pediatric plans were evaluated for potential reduction in integral dose as this 

may reduce secondary malignancies. Patients who had relatively large treatment volumes 

were chosen with the idea that more normal tissue would be collimated by the jaws when 

pulled in to the MLC aperture. The clinically used plan for each patient was taken to be the 

original plan and every plan used 6 MV photons only. The Jaw Tracking Method (JTM) was 

implemented for each patient in a new plan. Table 2.1 summarizes some of the patient 

parameters and the following 16 pictures (Figures 2.3-2.18) of each patient are to give an 

idea of the shape and size of the target. All original jaw positions are listed as (X, Y) per 

beam. 

 

Patient 

 

Area treated Original 

segments/beam 

Total original 

segments 

Total beams 

in JTM plan  

Thoracic 1 

 

Distal esophagus (8,9,7,9,6,6,8,7) 60 86 

Original Jaw Positions (X,Y)  

 (15, 18.2)(14.3,18)(13.2,17.9)(16.1,14.9)(15.5,19)(16.1,18.9)(16.1,18.8)(15.3,18.5) 

Thoracic 2 Hila+mediastinum (10,9,7,10,11,12,11) 70 76 
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Original Jaw Positions (10.3,11.1)(9.5,11.2)(9.9,11.1)(10.3,11)(10.9,10.7)(10.3,10.6)(11.1,11) 

Thoracic 3 Bronchus/lung (10,11,11,11,8,8) 59 92 

Original Jaw Positions (14.4,14.4)(13.1,15.9)(13.4,16.8)(13.6,16.6)(14.1,16.6)(14.7,16.6) 

Thoracic 4 Middistal esophagus (10,9,8,8,10,9,7,9,10) 80 104 

Original Jaw Positions  

(12.8,21.7)(12.5,22)(12.6,16.9)(15.4,21.5)(12.3,10.9)(13,10.8)(15.4,21.4)(14.5,21.6)(12.9,12.8) 

Thoracic 5 Mediastinum/lung (12,14,7,12,12,14) 71 75 

Original Jaw Positions (13,10)(12.5,10.5)(10.5,10.5)(10,10.5)(12,10)(13.5,9.5) 

Thoracic 6 Hilum/mediastinum (13,11,13,14,12,14) 77 105 

Original Jaw Positions (10.5,15)(12.5,18.5)(12.5,14.5)(12.5,17.5)(12,19)(10.5,13) 

Thoracic 7 Lung/mediastinum (8,8,9,8,8,9,9,8,7,6,6) 86 97 

Original Jaw Positions  

(11.2,11)(12.7,11.5)(13.5,12)(15,12)(12.7,11.5)(12.4,12)(12.3,12)(14,12)(11.5,12.5)(12.1,14)(10.

5,12.5) 

 

Thoracic 8 Esophagus (12,15,12,11,9,11) 70 83 

Original Jaw Positions (13.5,16.5)(12.5,16.5)(11,16.5)(13,16.5)(14,16.5)(14,16.5) 

Thoracic 9 Hilar mass+nodes (7,6,3,3,4,5,8,10,8,7,9) 70 97 

Original Jaw Positions 

(9,16.8)(9,8.2)(9.3,8.5)(9.4,8.3)(9.8,8.2)(9.5,8.4)(9.7,14.8)(9.8,15.5)(10,12.9)(9.2,16.8)(10.9,13.4

) 

Thoracic 10 Mediastinal nodes (7,11,12,16,11,7,10,8) 82 105 

Original Jaw Positions 
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(8.9,12.8)(9.3,13.4)(8.2,12.9)(8,10.5)(8.1,10.2)(9.1,11.3)(8.9,12.9)(8.6,13.4) 

HN 1 Oral tongue bed (12,11,11,11,11,11,11,1

0,11) 

100+3static 

beams 

154+3static 

Original Jaw Positions  

(10,18.4)(10,18.4)(10,18.6)(10,18.3)(10,17.8)(10,19.9)(10,18.2)(10,18.6)(10,18.3) 

HN 2 Base of tongue (9,10,11,13,10,11,8,10,

10) 

92+3static 

beams 

131+3 static 

Original Jaw Positions 

(10.6,12)(10.8,12)(11,14)(11,12.8)(11,11.9)(11,13.1)(10.8,12.8)(10.5,13)(10.3,11.9) 

HN 3 Tonsil (11,12,8,11,12,10,8,12,

10) 

94+4 static 

beams 

146+4 static 

Original Jaw Positions (11,15)(11,17)(11,16.5)(11,15)(11,14.5)(11,16.5)(11,17)(11,15.5)(11,15) 

Pediatric 1 Lung (9,7,7,7,6,3,9) 48 70 

Original Jaw Positions 

(16.4,15.6)(16.5,15.5)(16.5,14.8)(16.5,14.3)(16.3,13.5)(15.9,13.9)(15.4,15.2) 

Pediatric 2 Liver metastasis (11,9,8,9,13,10) 60 86 

Original Jaw Positions (14,14.7)(15,14.7)(17.8,14.6)(20.8,14.5)(20.5,14.4)(18.2,14.2) 

Pediatric 3 Adrenal Abdomen (8,15,11,9,8,9,10) 70 79 

Original Jaw Positions (9.2,11.5)(8.9,11.4)(10.3,11.3)(10.8,11.3)(9.6,11.3)(10.1,11.5)(9.9,12.8) 

Table 2.1 Patient Parameters 
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Figure 2.3 Patient Thoracic 1 with target in blue and original isodose lines 

 

Figure 2.4 Patient Thoracic 2 with target in blue and original isodose lines 

 

Figure 2.5 Patient Thoracic 3 with target in pink and original isodose lines 
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Figure 2.6 Patient Thoracic 4 with the target in blue and original isodose lines 

 

Figure 2.7 Patient Thoracic 5 with the target in blue and original isodose lines 

 

Figure 2.8 Patient Thoracic 6 with target in blue and original isodose lines 

 

Figure 2.9 Patient Thoracic 7 with target in blue and original isodose lines 
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Figure 2.10 Patient Thoracic 8 with target in blue and original isodose lines 

 

Figure 2.11 Patient Thoracic 9 with target in blue and original isodose lines 

 

Figure 2.12 Patient Thoracic 10 with target in blue and original isodose lines 
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Figure 2.13 Patient Head and Neck 1 with target in red and blue and the original 

isodose lines 

 

Figure 2.14 Patient Head and Neck 2 with the target in red and the original isodose 

lines 

 

Figure 2.15 Patient Head and Neck 3 with target in red and original isodose lines 
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Figure 2.16 Patient Pediatric 1 with target in blue and original isodose lines 

 

Figure 2.17 Patient Pediatric 2 with target in blue and original isodose lines 

 

Figure 2.18 Patient Pediatric 3 with target in blue and original isodose lines 

 

2.4 Treatment Plans 
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      In order to create the JTM plan, each patient was moved to our research Pinnacle system. 

Pinnacle is organized into patients, plans and trials; each patient may have more than one 

plan and each plan has one or more trials. The trials within each plan share CT datasets and 

contours but not beams or prescriptions, allowing the user to strive for a better dose 

distribution with the ability to retain the original and easily compare various trials. For this 

reason a second trial was created in the patient’s clinical plan to implement jaw tracking. It 

should be noted that each trial in Pinnacle is actually a different treatment plan and we will 

refer to trials as plans throughout this document. During the process of acquiring patient 

plans, an upgrade to version 9 of Pinnacle took place and as a result some patients were 

originally planned in version 8, however all JTM and original (clinical) plans were calculated 

using version 9 for proper comparison though there should be no difference between the 

collapsed cone convolution for each version[46]. We also created a special Pinnacle model of 

the Varian 2100 to accommodate our JTM plan’s small fields by adding collimator scatter 

factors below 4 cm
2
; the scatter factors for larger fields remained the same for original and 

JTM plans. These small field collimator scatter factors were measured by an MD Anderson 

physicist as part of an ongoing project exploring small field parameters, using a 0.01cc ion 

chamber with brass buildup[47].  

     Creating the JTM plan began with copying each original beam once for each control point 

(segment) in that beam. For example if there were six beams in the original plan and each 

had five control points then there would be 30 beams in the JTM plan for that original beam. 

Control points were then deleted so that each beam represented one of the original control 

points. For example, if beam one of the original plan had five control points then beams one 
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through five of the JTM plan each represent those control points and their respective MLC 

shapes. 

      The process of converting the original beams with segments into a beam per segment was 

done using Pinnacle scripting. Pinnacle scripts were also used to generate ASCII files of the 

original jaw positions and MUs per control point. Once there was a beam in the JTM plan for 

each control point, the treatment plan was exported as a DICOM (Digital Imaging and 

Communications in Medicine) file into MATLAB and a script was used to create a new file 

with locations of each beam’s MLC positions. This file was then called in another MATLAB 

script that sorted each beam’s MLC positions and put them each into an array that mimicked 

the way Pinnacle presents them. When viewing the MLC positions in Pinnacle, there are two 

columns with a left (X1) and a right (X2) bank of 60 pairs of leaves, with the cell giving the 

X position and a leftmost column indicating which leaf pair has that X position. This 

information is given as if looking from the Beam’s Eye View (BEV) with the collimator at 

zero degrees.  

      Each set of MLC positions was then written to a file for the variable ‘MLC’ which 

included all the beam’s MLC positions. This file was imported into another script to find 

which beams have multiple apertures; in order to fully employ jaw tracking, copies of beams 

with multiple apertures were made so that each beam in the JTM plan corresponds to one 

MLC aperture in the original plan. The beams with multiple apertures found were copied in 

Pinnacle and MLC positions were changed so that only one aperture would exist per beam. 

These copied beams were recorded to identify which segments of the original plan had 

copies. Figure 2.19 shows one beam in the original clinical plan with multiple apertures and 
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Figure 2.20 shows the resulting three beams in the JTM plan, each with one aperture from 

Figure 2.19.  

 

 

Figure 2.19 Original segment with three apertures: beam 2 control point 1 

 

 

Figure 2.20 JTM plan with beam 8, beam 84 and beam 103 each with one MLC 

aperture with jaws pulled in 

 

      The DICOM file was exported again for the new MLC positions and the process was 

repeated with the exception of the last script that finds MLC apertures. There were two 
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MATLAB scripts to find the new jaw positions for each beam based on the MLC positions; 

one yields each beam’s jaw position by finding the most open leaf in each direction and 

adding 2mm, and the other script writes this to a file that is in Pinnacle script language. This 

file was then transferred to a Pinnacle script and ran so that each beam’s X and Y jaws were 

pulled 2mm outside the edge of each aperture. The 2mm margin was chosen because the 

maximum uncertainty in jaw position is 1mm and in each leaf position is 0.1mm, so this total 

uncertainty was rounded up for ease of practice. Each beam was visually verified to have jaw 

collimation of 2mm. 

      We determined the MU for each beam in the JTM plan by taking the MU for the 

corresponding segment from the original plan and rescaling it by the ratio of the collimator 

scatter factor (Sc) for the original plan to that of the JTM plan based on the original and new 

jaw sizes (Equation 2.1).This was done to maintain the original weighting per segment 

however due to uncertainties in the Sc, this was not adequate and another renormalization 

was applied to maintain target coverage.  

Equation 2.1         

 

      For copied beams from multiple aperture segments, the monitor units of the original 

beam containing all the apertures were applied in Equation 2. The ratio of their scatter factors 

differed because the new jaw positions were different for each aperture, so each beam’s final 

MUs for that one original segment is different.  

      A MATLAB script performed the monitor unit scaling by first importing the jaw sizes for 

the JTM and original plans and the MUs. The equivalent square was found for all the jaw 

sizes and used to interpolate a Sc value. The new MUs for each beam were written to a file as 
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a Pinnacle script, then inserted into a Pinnacle script to assign the proper monitor units to 

each beam.    

      The collapsed cone convolution[48] was used as the dose algorithm for both JTM and 

original plans and the prescription in the JTM plans were changed to total MUs as opposed to 

Gray per fraction in order to match the assigned Mus. Decimal monitor units were also 

allowed in our Pinnacle model in an effort to be as accurate with the scaling as possible; 

however this cannot be delivered through the standard Varian interface without the Varian 

Research Toolbox. After rescaling the MUs, the target coverage was still insufficient so the 

prescription was renormalized to deliver a dose within 1% of the original plan. Figure 2.21 

demonstrates the overall process in converting original clinical plans to JTM plans. 
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Figure 2.21 Flowchart of process of converting original plan to JTM plan 
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2.5 Off axis-output factors 

      The uncertainty in our Sc may be from our use of central axis measurements; many fields 

are off axis and this was not taken into account in our scaling and therefore may explain our 

need to renormalize further. We investigated this effect by calculating off axis output factors 

in Pinnacle for field sizes 2x2, 3x3, 5x5 and 8x8 by normalizing the dose at off axis points to 

a dose for 10x10 on central axis, then dividing out the off axis factor. Equation 2.2 

demonstrates this for a field size a x b at a distance r off axis.  

 

Equation 2.2            

 

 

 

2.6 MLC and Jaw Transmission Measurements 

 

      Measurements of MLC transmission were performed to validate the accuracy of 

Pinnacle’s modeling. Calculations were first executed in Pinnacle then measurements were 

carried out on a Varian 2100 linac. In Pinnacle, a numerically created water phantom was 

used as the planning CT dataset and two regions of interest (ROI) were placed within it on 

the central axis to simulate the 0.6cc ion chamber used; one at 1.5cm (dmax) and 5 cm depth.  

A density override was also performed on the entire water phantom to change from water to 

polymethyl methacrylate PMMA which was actually used for measurements. Six beams were 

made, three of them open fields of sizes 5x5, 10x10 and 12x12 and the other three with the 
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jaws at the same position but with the MLC covering the beam opening. The MLC gap was 

moved under the jaw at an X2 position of 7cm except for the 5x5 field which was placed at 

an X2 of 5cm; this was to ensure that the dosimetric leaf gap did not affect our 

measurements. For each field size with and without MLC the average dose for each ROI was 

taken at depths of 1.5cm (approximate depth of maximum dose for 6MV) and 5cm depth 

from the surface of the water phantom, SSD (source to surface distance) 100cm. 

      A typical segment in JTM plans was calculated in Pinnacle for a MLC aperture of 2cm by 

1cm located 4cm away from the central axis, while the jaws were set at 12 x 12 cm
2 
field size 

(Figure 2.22). For comparison to the JTM plans, the MLC aperture was collimated to 2mm 

except for the X1 jaw which was limited to 2cm across central axis (Figure 2.23).  

 

Figure 2.22 Aperture case with jaws out 

Average dose to ROIs at 1.5cm and 5cm depths used to find the combination of transmission 

and scatter in this situation with jaws set to 12 x12 cm
2 

field size and an MLC aperture 
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Figure 2.23 Aperture case with jaws in 

Average dose to ROIs at 1.5cm and 5cm depths used to find transmission with jaws 

collimating an MLC aperture to a margin of 2mm to simulate our jaw method; note the X1 

jaw is limited to 2cm over central axis and cannot be pulled in to 2mm around the MLC 

opening. 

 

      For all linac measurements, a 0.6cc PTW ion chamber was used in PMMA at depths of 

approximately 1.5cm and 5cm with SSD 100cm. The collimator remained at 0 degrees and 

the chamber was positioned towards the gantry so that the active length would average 

transmission across several leaves. Each situation was measured with enough measurements 

to ensure no trend in charge accumulated formed.  

 

3 Results 

3.1 Treatment Plans 
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      Figures 3.1-3.16 below display each patient’s dose-volume-histogram (DVH) and the 

corresponding Tables 3.1-3.16 show the volumes receiving doses of 5Gy, 10Gy, and 20Gy 

for the original and JTM plans and the reduction achieved with the JTM plan. The tables 

displaying head and neck results (Tables 3.11-3.13) also display maximum doses for 

brainstem and cord and average doses for left and right parotids along with corresponding 

percent reductions with the JTM plans; this was added as these are parameters looked at 

when reviewing clinical plans. For thoracic patients the colors in the DVH are as follows: 

Red = spinal cord, bright green = esophagus, dark blue = Total lung minus GTV, pink = 

heart, light blue = right lung, dark green = left lung, yellow = liver, light blue = PTV, CTV = 

yellow, GTV = dark red.  

 

 

PTV

CTV
GTV
Total Lung

Esophagus
Heart

Cord
Liver
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Figure 3.1 Patient Thoracic 1 DVH with JTM plan in dashed lines 

Original New %V diff

Total Lung V5 62.63 59.27 3.36

V10 39.27 37.30 1.97

V20 22.03 21.37 0.66

Heart V5 100.00 100.00 0.00

V10 98.74 97.91 0.82

V20 74.99 71.54 3.45

Esophagus V5 61.98 62.66 -0.68

V10 57.77 57.77 0.00

V20 55.64 54.61 1.03

Cord V5 44.17 43.49 0.68

V10 40.74 40.48 0.26

V20 38.80 38.47 0.32

Liver V5 62.01 61.67 0.33

V10 33.92 33.48 0.44

V20 14.14 14.06 0.08  

Table 3.1 Patient Thoracic 1 results 
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Figure 3.2 Patient Thoracic 2 DVH with JTM plan in dashed lines 

Original New %V diff

Total Lung V5 42.31 41.47 0.84

V10 31.13 30.68 0.45

V20 19.43 19.26 0.17

Heart V5 25.67 25.25 0.42

V10 15.43 14.98 0.45

V20 7.42 7.14 0.28

Esophagus V5 49.87 49.72 0.15

V10 46.83 46.72 0.11

V20 43.97 43.81 0.15

Cord V5 34.59 34.48 0.11

V10 31.82 31.56 0.26

V20 28.47 28.29 0.17  

Table 3.2 Patient Thoracic 2 results 

 

Figure 3.3 Patient Thoracic 3 DVH 
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Original New %V diff

Total Lung V5 53.61 52.43 1.18

V10 36.51 35.76 0.75

V20 29.30 28.79 0.51

Heart V5 77.68 81.98 -4.30

V10 29.03 28.62 0.42

V20 8.80 8.13 0.67

Esophagus V5 61.20 58.49 2.71

V10 43.09 40.69 2.40

V20 10.03 8.52 1.51

Cord V5 93.56 89.30 4.26

V10 81.96 81.37 0.59

V20 56.39 53.91 2.48

Liver V5 19.89 19.03 0.86

V10 15.06 13.11 1.95

V20 6.61 6.04 0.57  

Table 3.3 Patient Thoracic 3 results 

 

Figure 3.4 Patient Thoracic 4 DVH 
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Original New %V diff

Total Lung V5 64.35 60.25 4.10

V10 43.69 42.30 1.39

V20 22.75 22.05 0.70

Heart V5 100.00 100.00 0.00

V10 94.14 92.89 1.25

V20 60.08 59.52 0.55

Esophagus V5 59.22 58.37 0.85

V10 51.97 51.46 0.51

V20 46.56 45.95 0.61

Cord V5 53.07 52.79 0.28

V10 50.19 49.89 0.30

V20 47.28 47.15 0.13

Liver V5 79.91 79.48 0.43

V10 61.43 60.96 0.47

V20 39.51 39.09 0.43  

Table 3.4 Patient Thoracic 4 results 

 

Figure 3.5 Patient Thoracic 5 DVH 
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Original New %V diff

Total Lung V5 31.86 30.18 1.68

V10 19.93 19.24 0.69

V20 15.38 15.12 0.26

Heart V5 0.05 0.01 0.05

V10 0.00 0.00 0.00

V20 0.00 0.00 0.00

Esophagus V5 42.49 41.37 1.12

V10 37.56 35.87 1.68

V20 27.58 26.98 0.60

Cord V5 31.91 31.02 0.89

V10 28.45 27.90 0.55

V20 22.00 21.66 0.34  

Table 3.5 Patient Thoracic 5 results 

 

Figure 3.6 Patient Thoracic 6 DVH 
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Original New %V diff

Total Lung V5 45.32 42.41 2.91

V10 31.20 30.10 1.11

V20 23.35 22.79 0.56

Heart V5 72.57 66.31 6.26

V10 50.33 47.71 2.62

V20 34.05 33.31 0.74

Esophagus V5 52.13 50.32 1.81

V10 44.53 42.65 1.89

V20 33.16 32.57 0.59

Cord V5 29.11 28.53 0.58

V10 22.15 21.18 0.97

V20 17.04 16.90 0.14  

Table 3.6 Patient Thoracic 6 results 

 

Figure 3.7 Patient Thoracic 7 DVH 
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Original New %V diff

Total Lung V5 56.95 56.01 0.94

V10 42.66 41.92 0.74

V20 28.89 28.43 0.46

Heart V5 51.12 49.33 1.79

V10 38.68 37.68 1.00

V20 29.54 28.96 0.58

Esophagus V5 59.14 58.72 0.42

V10 54.44 54.39 0.05

V20 51.83 51.83 0.00

Cord V5 34.53 34.54 -0.01

V10 32.13 32.11 0.02

V20 29.07 29.04 0.02  

Table 3.7 Patient Thoracic 7 results 

 

Figure 3.8 Patient Thoracic 8 DVH 
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Table 3.8 Patient Thoracic 8 results 

 

Figure 3.9 Patient Thoracic 9 DVH 

Original New %V diff

Total Lung V5 39.04 37.72 1.33

V10 24.41 23.52 0.89

V20 13.47 13.13 0.34

Heart V5 97.47 95.66 1.81

V10 76.49 73.61 2.88

V20 34.49 32.97 1.52

Esophagus V5 32.13 32.09 0.04

V10 30.72 30.68 0.04

V20 29.70 29.68 0.02

Cord V5 52.84 52.04 0.80

V10 49.95 49.61 0.34

V20 46.67 46.46 0.21

Liver V5 66.69 65.82 0.87

V10 43.61 43.39 0.22

V20 16.14 16.01 0.13
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Original New %V diff

Total Lung V5 62.73 60.83 1.90

V10 45.76 44.54 1.22

V20 32.09 31.25 0.84

Heart V5 56.06 54.97 1.09

V10 40.45 39.21 1.25

V20 18.81 17.98 0.83

Esophagus V5 58.94 58.61 0.34

V10 55.01 54.99 0.02

V20 50.15 50.44 -0.30

Cord V5 36.53 36.50 0.03

V10 33.61 33.61 0.00

V20 30.92 30.92 0.00  

Table 3.9 Patient Thoracic 9 results 

 

Figure 3.10 Patient Thoracic 10 DVH 
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Original New %V diff

Total Lung V5 53.00 51.19 1.81

V10 31.90 30.70 1.20

V20 11.89 11.34 0.55

Heart V5 39.90 38.34 1.56

V10 29.34 27.89 1.45

V20 15.09 13.93 1.16

Esophagus V5 41.39 40.10 1.28

V10 36.17 35.82 0.34

V20 31.37 31.20 0.17

Cord V5 41.66 40.99 0.68

V10 36.61 35.92 0.69

V20 15.30 8.97 6.33  

Table 3.10 Patient Thoracic 10 results 

 

Figure 3.11 Patient Head and Neck 1 DVH 
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For this patient the colors in the DVH are as follows: brainstem = black, right parotid = 

lavender, left parotid = orange, spinal cord = blue, right cochlea = dark green, left cochlea = 

purple, and the target = red 

Original New %Diff

Brainstem V5 25.11 25.1 0

V10 19.11 21.8 -2.66

V20 16.56 16.6 -0.07

(cGy) Max 3523.00 3431 2.61

Rt parotid V5 98.94 98.9 0.07

V10 94.93 94.6 0.28

V20 88.38 88 0.40

(cGy) Average 4243.50 4174 1.65

Lt parotid V5 96.99 80.3 16.69

V10 61.00 55.1 5.94

V20 42.41 40.8 1.62

(cGy) Average 2117.70 1975 6.74

Cord V5 92.26 92.3 0.00

V10 77.36 90.6 -13.24

V20 68.14 85.7 -17.55

(cGy) Max 3876.00 3180 17.96  

Table 3.11 Patient Head and Neck 1 results 
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Figure 3.12 Patient Head and Neck 2 DVH 

For this patient the colors in the DVH are as follows: brainstem = orange, spinal cord = 

brown, left parotid = light blue, right parotid = pink, right cochlea = dark green, left cochlea 

= purple, and the target = red.  
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Original New %Diff

Brainstem V5 46.05 48.70 -2.65

V10 33.55 34.71 -1.17

V20 20.03 20.88 -0.85

(cGy) Max 3390 3540 -4.42

Rt parotid V5 100.00 99.69 0.31

V10 82.90 76.31 6.59

V20 47.14 45.02 2.12

(cGy) Average 2506.1 2508.2 -0.08

Lt parotid V5 100.00 100.00 0.00

V10 100.00 100.00 0.00

V20 97.76 97.04 0.72

(cGy) Average 5532.9 5622.1 -1.61

Cord V5 100.00 99.11 0.89

V10 99.11 93.67 5.44

V20 89.22 88.88 0.35

(cGy) Max 3830 3850 -0.52  

Table 3.12 Patient Head and Neck 2 results 
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Figure 3.13 Patient Head and Neck 3 DVH 

For this patient the colors in the DVH are as follows: right parotid = pink, left parotid = light 

blue, spinal cord = orange, brainstem = black, right cochlea = dark green, left cochlea = 

purple, and the target = red. 
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Original New %Diff

Brainstem V5 64.61 64.88 -0.27

V10 55.74 55.74 0.00

V20 41.47 44.03 -2.56

(cGy) Max 4718 4657 1.29

Rt parotid V5 100.00 99.26 0.74

V10 87.76 82.74 5.02

V20 65.05 63.07 1.98

(cGy) Average 3260.6 3160.7 3.06

Lt parotid V5 100.00 100.00 0.00

V10 86.05 79.37 6.68

V20 48.48 46.01 2.47

(cGy) Average 2310 2219.4 3.92

Cord V5 93.60 93.66 -0.06

V10 80.74 80.97 -0.23

V20 75.60 76.00 -0.40

(cGy) Max 4266 4212 1.27  

Table 3.13 Patient Head and Neck 3 results 
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Figure 3.14 Patient Pediatric 1 DVH 

For this patient the colors in the DVH are as follows: spinal cord = red, total lung minus 

GTV = blue, esophagus = green, heart = pink, and the target = light blue. 

Original New %V diff

Total Lung V5 45.73 45.05 0.69

V10 32.15 31.84 0.31

V20 25.30 27.61 -2.32

Heart V5 81.69 86.44 -4.76

V10 58.01 59.07 -1.06

V20 33.99 33.97 0.02

Esophagus V5 67.24 68.29 -1.05

V10 58.53 60.43 -1.90

V20 39.72 39.69 0.03

Cord V5 45.77 44.63 1.14

V10 42.80 42.24 0.56

V20 21.43 18.61 2.82  
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Esophagus
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Cord
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Table 3.14 Patient Pediatric 1 results 

 

Figure 3.15 Patient Pediatric 2 DVH 

For this patient the colors in the DVH are as follows: liver minus GTV = yellow, heart = 

pink, esophagus = green, spinal cord = red, total lung = blue, and the target = light blue. 
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Original New %V diff

Total Lung V5 45.35 42.35 3.00

V10 32.30 31.52 0.78

V20 23.73 23.29 0.45

Heart V5 91.91 86.72 5.19

V10 71.05 69.19 1.86

V20 32.81 31.94 0.86

Esophagus V5 50.48 50.18 0.30

V10 43.03 40.00 3.03

V20 25.09 23.76 1.33

Cord V5 63.75 61.29 2.45

V10 49.06 47.63 1.43

V20 21.89 21.52 0.37

Liver V5 74.91 73.83 1.08

V10 67.52 66.29 1.24

V20 52.63 51.69 0.94  

Table 3.15 Patient Pediatric 2 results 
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Figure 3.16 Patient Pediatric 3 DVH 

For this patient the colors in the DVH are as follows: spinal cord = red, total lung = dark 

blue, heart = pink, liver = yellow, left kidney = orange, right kidney = blue and the target = 

light blue. 

Original New %V diff

Total Lung V5 29.47 28.79 0.68

V10 13.79 13.60 0.19

V20 5.45 5.36 0.09

Heart V5 39.69 39.15 0.54

V10 27.06 26.75 0.30

V20 2.89 2.72 0.17

Liver V5 98.60 98.53 0.07

V10 80.99 79.18 1.81

V20 16.37 16.08 0.29

Lt Kidney V5 100.00 100.00 0.00

V10 79.35 78.46 0.89

V20 13.15 13.10 0.06

Rt Kidney V5 100.00 100.00 0.00

V10 100.00 100.00 0.00

V20 64.07 63.67 0.40  

Table 3.16 Patient Pediatric 3 results 

      Below is Table 3.17 which lists each patient and their respective integral dose reduction 

with the JTM plan compared to the original plan. The first column shows the integral dose 

difference using the structure external in Equation 1.1 which encompasses all other contours. 

The second column shows the integral dose difference using the structure external minus 

target in Equation 1.1.  Figure 3.17 shows an axial view of the isodose distribution for 

original and JTM plans for patient T 10. One limitation of this jaw method is the physical 

limitation of the X jaws to only over travel the central axis by 2cm and the Y jaws to only 

over travel the central axis by 10cm. A number of segments did not have an X jaw 
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collimating one side of the MLC aperture to 2mm because of this limitation; Table 3.18 

attempts to quantify how this limitation affected each patient. 

 

 

% Difference Integral Dose  

T 1 
1.86 2.39 

 
T 5 

3.25 3.99 

 
T 9 

1.84 2.07 

 
HN 3 

1.74 1.94 

 

T 2 
1.73 1.96 

 
T 6 

3.82 4.37 

 
T 10 

2.99 3.33 

 
Ped 1 

-0.18 0.46 

 

T 3 
1.88 2.63 

 
T 7 

1.08 1.47 

 
HN 1 

1.33 1.7 

 
Ped 2 

1.53 2.65 

 

T 4 
1.39 1.74 

 
T 8 

1.85 2.16 

 
HN 2 

-1.09 -1.03 

 
Ped 3 

0.70 1.00 

 

Table 3.17 Integral Dose Differences 

 Each patient’s integral dose reduction from the original plan; values given are percent 

differences between the original and JTM plan’s integral dose. First column uses external 

structure, second column uses external minus target structure. 
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Figure 3.17 Original and JTM isodose distributions 

Original plan (left) versus JTM plan (right) isodose distribution for patient T 10 

 

% Beams Jaw Limited of the Total JTM Beams 

T 1 14.0 T 5 16.0 T 9 3.2 HN 3 23.3 

T 2 14.5 T 6 16.2 T 10 4.8 Ped 1 21.4 

T 3 16.3 T 7 12.4 HN 1 21.4 Ped 2 19.8 

T 4 10.6 T 8 1.2 HN 2 18.3 Ped 3 15.2 

 

Table 3.18 Percentage of beams in each patient’s JTM plan that experience a jaw 

limitation and therefore cannot completely collimated the MLC aperture to a margin of 

2mm  

 

       As some target DVHs show either the original or JTM plan with a higher dose going to a 

smaller volume, maximum dose was evaluated between the two plans. Table 3.19 lists all 

patients and their respective percent difference in maximum dose in going from the original 

plan to the JTM plan. All original and JTM plan maximum doses were located within the 

target. 

 

%  Difference in Max Dose 

T 1 -0.38 T 5 -0.47 T 9 0.44 HN 3 0.29 

T 2 -0.18 T 6 -0.65 T 10 -0.12 Ped 1 -5.63 

T 3 -0.97 T 7 -2.39 HN 1 -3.07 Ped 2 1.74 
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T 4 -1.61 T 8 -0.66 HN 2 -6.88 Ped 3 -0.77 

Table 3.19 Percent difference between original and JTM plan maximum doses 

3.2 Off-axis output factors 

      We determined off-axis output factors using Pinnacle (Figure 3.18). We found that the 

output factors decrease as the field is moved further from the central axis, and that this effect 

was larger for larger field sizes.  
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Figure 3.18 Calculated off axis output factors for various field sizes 
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3.3 Measurements 

 

      Table 3.20 shows the transmission measurement results for a depth of 1.5cm comparing 

percent transmitted for each field combination for Pinnacle and our actual measurements. 

Table 3.21 shows the same but at a depth of 5cm. The Aperture jaws out refers to Figure 2.22 

and the Aperture jaws in refers to Figure 2.23 in the Methods section; both are normalized to 

open. The absolute difference is taken as the percent measured transmission minus the 

percent calculated transmission. 

 

Transmission Measured (%) Pinnacle (%) Absolute Difference 

5x5 1.48 1.68 -0.20 

10x10 1.53 1.60 -0.07 

12x12 1.57 1.59 -0.02 

Aperture jaws out 1.69 1.62 0.07 

Aperture jaws in 0.08 0.03 0.05 

 

Table 3.20 Transmission measurements and Pinnacle Calculations 

Measured and Pinnacle estimate of transmission at 1.5cm depth for fields with MLC and 

jaws at 12x12, 10x10 and 5x5; transmission also for the aperture case with jaws at 12x12 

normalized to open field and the aperture case with jaws pulled in normalized to open field 

and finally the aperture case with jaws in normalized to jaws out at 12x12. The absolute 
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difference is taken as the percent measured transmission minus the percent calculated 

transmission. 

 

 

Transmission Measured (%) Pinnacle (%) Absolute Difference 

5x5 1.51 1.68 -0.17 

10x10 1.55 1.60 -0.05 

12x12 1.59 1.59 0 

Aperture jaws out 1.72 1.66 0.06 

Aperture jaws in 0.14 0.07 0.08 

 

Table 3.21 Transmission measurements and Pinnacle Calculations 

Measured and Pinnacle estimate of transmission at 5cm depth for fields with MLC and jaws 

at 12x12, 10x10 and 5x5; transmission for the aperture case with jaws at 12x12 normalized to 

open field and the aperture case with jaws pulled in normalized to open field and finally the 

aperture case with jaws in normalized to jaws out at 12x12. The absolute difference is taken 

as the percent measured transmission minus the percent calculated transmission. 
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4 Discussion 

 

      The results in section 3.1 demonstrate an overall reduction in normal tissue dose for the 

JTM plans compared to the original plans, albeit a small reduction for most tissues. Most 

patients had less than a 2% improvement in V5, V10 and V20 for their normal tissues. The 

greatest improvement of lung V5 and V20 were 4.10% and 0.84% respectively. The most 

volume reduction pertaining to 5, 10 or 20Gy for a normal tissue structure across all patients 

was 16.69% of a left parotid and the least improvement was -17.55% of the spinal cord; both 

maximum and minimum improvements occurred for head and neck patient 1. Generally for 

all structures and patients V5 showed the largest improvement and V20 the least 

improvement. There was no uniform shift in DVH curves indicating improvement across a 

single structure was well varied for V5, V10 and V20, and no uniform shift across all normal 

tissue structure DVH curves for a single patient indicating a patient may experience more 

sparing for one structure over another. Some patients had a particular normal tissue improve 

to a greater extent than others with the JTM plan, and no correlation between improvement 

and parameters such as normal tissue volume or location of target was found. Studying the 

isodose distributions for the original and JTM plans in combination with BEVs gives an 

understanding of why certain structures demonstrate more of an improvement than others for 

a particular patient.  There was also no clear parameter to identify which patients would 

benefit most. Integral dose generally decreased for each patient but not by a substantial 

margin or in a predictable manner.  

      Some patient structures displayed a negative response with the JTM plan indicating that 

the 5Gy, 10Gy or 20Gy line expanded and covered more normal tissue. This result was 
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unexpected as the JTM plans should be reducing MLC transmission and thus normal tissue 

dose. However, due to the simultaneous reduction in target dose the JTM plans had to be 

renormalized to maintain proper target coverage. Upon further investigation, it was found 

that the prescription and maximum dose (as seen in Table 3.19) of the JTM plans were much 

higher than that of the original plans. The increase in select normal tissue volumes receiving 

5Gy, 10Gy or 20Gy was a result of the renormalization; we increased the amount of open 

field radiation for each segment which in some cases pushed the isodose lines to encompass 

more normal tissue volume. This was visually verified for each patient experiencing a 

negative improvement by comparing the original and JTM plan isodose lines and then 

viewing the BEVs. The off axis output factors in Figure 3.18 demonstrate a decrease with off 

axis distance on the order of our renormalization (2-3%), so this offers a plausible 

explanation for the renormalization. 

      Our measurements of MLC transmission show that Pinnacle gives a higher transmission 

but only a 0.2% absolute difference. The Pinnacle model for MLC transmission has a fixed 

value of 1.6% regardless of the MLC area exposed to primary beam while the output 

increases for increasing field sizes explaining the increase in transmission with decreasing 

field size. Our measurements showed an increase in MLC transmission with increasing field 

size which is expected as the larger the field size the more MLC scatter contributes to our 

measurement point. Pinnacle does not model MLC scatter at all, so we do not see this effect 

in the calculations. 

      The aperture measurements display higher values than Pinnacle indicating that Pinnacle 

underestimates phantom scatter, but by an unsubstantial amount. The difference between our 

measurements and Pinnacle calculations for the aperture situations was less than 0.1% and 
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thus uncertainties in the model did not contribute significantly to the uncertainty in the dose 

determination. Pinnacle models jaw and MLC transmission and scatter based on extended 

profiles measured at commissioning; the model gives a value for MLC and jaw transmission 

which may be altered in order to better match Pinnacle’s model with the measured profiles. 

Therefore these factors in Pinnacle are essentially correction factors that increase agreement 

between the measured data and the model. This offers a reason why Pinnacle underestimates 

phantom scatter. 

 

5 Conclusion 

      In this study, the linac jaws (secondary collimators) were closely collimated to the edge 

of each MLC aperture in step-and-shoot IMRT plans and the cumulative dose volume 

histogram information of the JTM plan was compared to the original clinical plans. Integral 

dose and maximum dose where also compared for the plans as integral dose is correlated to 

secondary malignancies and maximum dose quantified our increase in primary beam. 

Transmission measurements were also performed to validate the accuracy of using the 

treatment planning system Pinnacle for these dose calculations.  

      Ten thoracic, three head and neck and three pediatric clinically approved plans were 

taken and converted to plans in which each MLC aperture was surrounded by the linac jaws 

by a 2mm margin. This was done by making each aperture a beam and then scaling the 

monitor units by the appropriate collimator scatter factors to account for the change in jaw 

size while maintaining the original dose weighting of each segment.  

      We found that in general patients experienced an overall small dose reduction with the 

JTM plans compared to the original clinical plans. Generally the improvement in the JTM 
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plans was below 2%, with the greatest lung improvement in V5 and V20, 4.1% and 0.84% 

respectively. This means the 5 and 20Gy lines contracted with the JTM plan, reducing the 

lung volume covered by the 5 and 20Gy lines by 4.1% and 0.84% respectively. Integral dose 

generally decreased minimally for the JTM plans, typically under 2%.  

     Transmission through the MLC for different field sizes was measured and calculated as 

well as MLC and jaw transmission for an aperture situation. The results indicate that the 

uncertainty in Pinnacle’s model did not contribute significantly to the dose determination in 

this research. 

      The hypothesis of this study was: The volume of lung receiving 20 Gy can be reduced by 

greater than 10% by using the linac jaws to tightly collimate each aperture of the MLC in 

step-and-shoot IMRT. 

      Based on the results of this study, the volume of lung receiving 20Gy cannot be reduced 

by greater than 10% by collimating each MLC aperture in step-and-shoot IMRT plans. Only 

one patient of the 16 explored experienced an improvement of that magnitude. The 

improvements with the JTM plans were unpredictable making it difficult to select patients 

that benefit the most from the jaw tracking. The JTM plans take extra time to create and our 

method of enabling jaw tracking will lengthen the treatment time for patients; with current 

Varian 2100 linear accelerators, the cost benefit ratio of clinically using this method is too 

high. Perhaps with the advent of new technologies such as Varian TrueBeam, that allow jaw 

tracking on a segment by segment basis, the clinical implementation of this method may be 

considered as the process will at least be somewhat easier. The results may also show more 

improvement with this as the jaw tracking will be included into the IMRT optimization.  
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