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Current guidelines for screening mammography recommend different start ages and 

intervals for women with average cancer risk. Longer intervals between mammograms allow 

more time for a tumor to grow, to become symptomatic and clinically detectable, and more 

likely to be at advanced stage. Existing literature on the associations between mammography 

screening frequency and risk of more advanced breast cancer have mixed results. Studies 

have showed that advanced breast cancer costs more to treat, but real-world cost estimates 

following different mammography screening frequencies are unavailable. To fill the gaps, 

this dissertation aimed to quantify the clinical and financial impact following annual versus 

biennial screening.  

Commercial claims database provides rich real-world information on diagnoses, 

medical resources used and the associated costs. To supplement claims database with breast 

cancer stage information, this study first developed and validated an algorithm with 

classification and regression tree method using SEER-Medicare data. The performance was 

measured with sensitivity, specificity, positive predictive value, negative predictive value and 

area under the receiver operating characteristic curve. The algorithm was then applied to The 



 
 

 

MarketScan® Commercial Claims and Encounters Database to estimate breast cancer stage 

at diagnosis.  Incident breast cancer cases identified in the MarketScan database were 

categorized as annual, biennial and non-screeners based on their pre-diagnosis screenings. 

Partial proportional odds model was used to estimate the odds ratio of having more advanced 

breast cancer. Stratified analysis by age was also conducted. For the three screening groups, 

total healthcare costs, insurer costs, and out-of-pocket costs adjusted by generalized linear 

model with gamma distribution and log-link function were reported.  

The staging algorithm had improved performance than others, especially in the 

prediction of non-invasive cases, early stage cancers and metastases. Generally, regular 

screening protects women from more advanced breast cancer. Compared to biennial 

screening, annual screening was associated with a reduced risk of later stage invasive cancers 

for both women in their 40s and older. For health insurance payers, there were cost savings in 

healthcare costs with regular screening, especially for annual screening. Cost reduction was 

more obvious among women aged 40-49. Compared to insurer’s costs, out-of-pocket costs 

borne by patients were minimal. Although this study showed both clinical and financial 

benefits in annual versus biennial screening, the optimal screening frequency should be an 

individual decision weighing both the benefits and harms.  
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BACKGROUND 

Introduction 

In United States, breast cancer is overall the most common cancer and the second 

leading cause of cancer deaths among women (Street, 2019). Mammography, a non-invasive 

screening tool, causes minimal pain as a result of breast compression. Currently, the U.S. 

Preventive Services Task Force (USPSTF) recommends biennial screening mammography 

for average-risk women 50–74 years old and indicates that biennial screening mammography 

for women younger than 50 should be an individual decision, weighting benefits and harm 

(Siu, 2016). However, not all organizations agree. For example, the American Cancer 

Society (ACS) recommends annual mammography for women aged 45–55 (Oeffinger et al., 

2015), while others recommend starting at 40 (Table 1). 

 
Table 1: Summary of mammography screening recommendations by organization. 
 

 

  U.S. 
Preventive 
Services 

Task 
Force 
(2016) 

American 
Cancer 
Society 
(2015) 

American 
College of 

Obstetricians 
and 

Gynecologists 
(2011) 

American 
College of 
Radiology/ 
SBI (2010) 

AMA 
(2012) 

NCCN 
(2016) 

International 
Agency for 
Research on 

Cancer 
(2015) 

American 
College of 
Physicians 

(2015) 

American 
Academy 
of Family 
Physicians 

(2016) 

Start Age 

50 45 40 40 40 40 50 50 50 

40-49 
Individual 
decision 

40-45 
individual 

choice 
    

40-49 
Individual 
decision 

    
40-49 

Individual 
decision 

40-49 
Individual 
decision 

Screening 
Interval Biennial 

50-54 
annual; >55 

annual/ 
biennial 

Annual  Annual Annual Annual N/A Biennial Biennial 
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The conflicting recommendations has created confusion and debate in the public, 

especially for women aged 40-49. Theoretically, early, intense screening would identify 

breast cancer sooner and thereby yield better survival rates and lower treatment costs. 

Randomized, controlled trials and screening program data have shown statistically significant 

mortality reduction among women older than 40 (Alexander et al., 1999; Andersson et al., 

1988; Andersson & Janzon, 1997; Bjurstam et al., 2003; Duffy et al., 2002; Hendrick, Smith, 

Rutledge III, & Smart, 1997; Lennarth Nyström et al., 2002; L Nyström et al., 1993; Tabar, 

Faberberg, Day, & Holmberg, 1987). Although breast cancer incidence in women aged 40–

49 is only half that of women in their 50s, 34% of total life years lost to breast cancer are in 

women diagnosed with breast cancer in their 40s (Moss, 2004). While the screening benefit 

for women aged 40–49 has been established, mammography has higher false-negative and 

false-positive rates for young women with dense breast tissue (Kerlikowske et al., 2013; Siu, 

2016). False-positive rates are also higher in women who have had breast biopsies, family 

history of breast cancer and who currently take estrogen (Elmore et al., 1998; Hubbard et al., 

2011; Marmot et al., 2013). False-positive results can have psychological (stress, anxiety, 

awareness), behavioral (healthcare hyper-utilization) and economic (unnecessary diagnostic 

tests and biopsies) impact (Aro, Absetz, van Elderen, van der Ploeg, & van der Kamp, 2000; 

Stop Age 74 

When life 
expectancy 

is 
< 10 years 

>75 
individual 

choice 

When life 
expectancy 

is 
< 5-7 
years 

When life 
expectancy 

is 
< 10 years 

N/A 70 74 74 
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Barton et al., 2001; Brewer, Salz, & Lillie, 2007; McGovern et al., 2004; Tosteson et al., 

2014). Another known harm is over-diagnosis of noninvasive breast cancers that are unlikely 

to become clinically evident during the patient's lifetime. Therefore, the weighing of benefits 

and harms is important when making recommendations.  

In supplement to RCTs, modeling studies have investigated the long-term effects of 

mammography screening in terms of mortality, life years gained and potential harm.  For 

example, six mathematical models developed by the Cancer Intervention and Surveillance 

Modeling Network of the US National Institutes of Health (NIH) (Mandelblatt et al., 2009) 

evaluated 20 screening strategies in terms of initiation age and screening interval and found 

that biennial screening maintained 81% of the benefit of annual screening in mortality while 

cutting false-positive results by half. Mandelblatt and coworkers also found that beginning 

screening at age 40 gave only a minimal gain in morality but a larger benefit in life years 

gained.  

Still, simulated findings needs confirmation from observational studies. Although 

reduced breast cancer–related mortality is the ultimate goal of mammography, it is not 

always an outcome measure available to researchers. Intermediate measures such as stage at 

diagnosis are therefore useful to evaluate the effect of screening (Day, 1989; Sant et al., 

2003). Treatments, prognosis and survival are largely determined by cancer stage. 

Specifically, breast cancer stage affects the selection and timing of surgery, radiotherapy, and 

chemotherapy, as well as overall and disease-free survival (Woodward et al., 2003). In lieu of 

unethical RCTs, observational studies have been using stage at diagnosis as surrogate 

endpoint to investigate the clinical impact of mammography screening frequencies.  
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By changing the cancer stage distribution, mammography screening frequency also 

has implications on breast cancer treatment costs. The more advanced cancer stage, the 

higher healthcare costs. Cost analysis provides a different perspective to evaluate the benefit 

of mammography screening for women and healthcare payers. Studies have estimated the 

economic burden of breast cancer, including direct and indirect costs in insured and 

underinsured populations. However, only two modeling studies looked at costs associated 

with different mammography screening patterns (Carter, Castro, Kessler, & Erickson, 2005; 

Farley et al., 2015). Therefore, more observational studies are needed to inform the financial 

impact based on real-world data. 

Real-world administrative claims data is well known for the richness in payment 

related diagnoses and the use of medical resources, but is limited in clinical information such 

as cancer stage at diagnosis. To overcome this disadvantage, predictive algorithms are 

developed to infer breast cancer stage at diagnosis based on medical claims.  

 

Literature Review 

Staging Algorithms 

Few researchers have used medical claims data to develop algorithms to predict 

breast cancer stage at diagnosis. Cooper et al. (1999) examined the ICD-9 diagnosis codes in 

Medicare claims and compared the staging with SEER registries (Cooper et al., 1999). They 

found that Medicare alone overestimated the proportion of localized tumors and 

underestimated regional stage disease. For regional breast cancer, the sensitivity and positive 

predictive value (PPV) are 61.6% and 84.6 % respectively; for distant breast cancer, the 
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sensitivity and PPV are 60.2% and 58.4%. Similarly, Chawla et al. (2014) proved the limited 

validity of using ICD-9 codes for secondary malignant neoplasms to specific organs and 

reported the performance for local (sensitivity 98.6%, specificity 43.9%, PPV 78.5%, and 

negative predictive value (NPV) 93.8%), regional (sensitivity 35.3%, specificity 98.4%, PPV 

88.8%, and NPV 80.8%), and distant breast cancer (sensitivity 51%, specificity 98.3%, PPV 

65.8%, and NPV 96.9%) (Chawla et al., 2014). Their study re-emphasized the need to 

validate algorithms using diagnoses, procedures, and drug claims information to identify 

breast cancer stage more accurately. Partridge et al. (2008) identified codes of early versus 

advanced breast cancer in the claims and used a scoring system to classify breast cancer 

cases; their scoring system resulted in many indeterminate cases and was not validated 

(Partridge et al., 2008). Based on the previous work of Cooper, Smith and colleagues (2010) 

used SEER-Medicare data and developed two logistic models: identifying metastatic breast 

cancer (sensitivity 81%, specificity 89%, PPV 24%, and NPV 99%) and distinguishing stages 

I/II (early) breast cancer from stage III (unconditional sensitivity 83%, specificity 78%, PPV 

98%, and NPV 31%) (Smith, Shih, Giordano, Smith, & Buchholz, 2010). Their first model 

significantly overestimated stage IV cases and therefore affected the accuracy of the second 

model. Although Smith et al. reported good performance for the stages I/II model, the 

statistics didn’t adjusted for misclassification in the first model. In addition, the researchers 

only looked at invasive breast cancer, and left DCIS cases out of their study. Also because 

Smith and coworkers (2010) used SEER-Medicare data from 1992–2002, drug information 

was not available for algorithm development. Foley and colleagues (2013) recommended in 

their review that the Smith algorithm be updated with additional codes from Nordstrom and 
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higher cut points be tested to maximize PPV, but they did not conduct validation (Foley, Shi, 

Girvan, Ward, & Lipscomb, 2013). Using a different technique-classification and regression 

tree (CART) models, Nordstrom et al. (2012) tried to identify metastatic breast cancer using 

outpatient electronic medical record (EMR)–linked claims data. They used diagnoses, 

procedures, and drug variables from the claims (Nordstrom, Whyte, Stolar, Mercaldi, & 

Kallich, 2012). The researchers reported sensitivity at 62%, specificity at 97%, PPV at 75%, 

NPV at 95%, and area under the receiver operating characteristic curve (ROC AUC) at 82%. 

There were generalizability concerns because of their study design. For example, they 

applied strict inclusion criteria regarding specialists issuing the diagnosis claim to ensure 

consistent treatment reporting, which may not be applicable in other claims databases. 

Second, they only include claims made within 60 days after diagnosis, and therefore missed 

potential out-of-window predictors. Third, using only outpatient EMR-linked claims data 

missed the opportunity to improve algorithm performance with claims from other points of 

service. Moreover, some variables used in those algorithms were database specific (i.e., EMR 

information may be coded differently than claims). Therefore, the generalizability of 

Nordstrom’s algorithm was limited. Whyte et al. (2015) evaluated generic algorithms (for all 

cancers) and tumor-specific algorithms (breast cancer only) that identified metastatic disease, 

and they tested variations of the algorithms in terms of timing, temporal spacing of claims 

and exclusion of other cancers (Whyte, Engel-Nitz, Teitelbaum, Gomez Rey, & Kallich, 

2015). The researchers found that although the generic algorithm had higher sensitivity due 

to fewer missed patients, its specificity, PPV and NPV were lower compared with tumor-

specific algorithms. Breast cancer–specific algorithms with two breast cancer claims that 
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were more than 30 days apart had the best overall performance. However, the algorithms 

included only inpatient and outpatient claims but no information of medications. In 

conclusion, we found that previous studies emphasized on identifying the stage of invasive 

breast cancer, especially metastatic breast cancer. Only Blumen et al. (2016) tried to identify 

DCIS cases based on NCCN treatment guidelines, but their algorithm was empirical-based 

and not validated (Blumen, Fitch, & Polkus, 2016). As Chawla and colleagues pointed out, 

all diagnoses, procedures, and drug claims should be included when developing algorithms 

(2014).  

Screening Pattern and Stage at Diagnosis 

A longer interval between screening mammograms allows more time for a tumor to 

grow, to become symptomatic and clinically detectable, and therefore, more likely to be at an 

advanced stage. Freedman et al. (2003) reviewed clinical records of women with breast 

cancer and reported that those in their 40s were more likely to have DCIS discovered if they 

underwent annual screening mammography, compared with no or less frequent screening 

(Freedman et al., 2003). Similarly, White et al. (2004) used data from seven mammogram 

registries that participate in the National Cancer Institute–funded Breast Cancer Surveillance 

Consortium (BCSC) and reported the elevated risk of screening biennially versus annually in 

later stage invasive breast cancer in women aged 40–49 (White et al., 2004). However, Goel 

et al. (2007) only found higher probability of being diagnosed with advanced breast cancer 

associated with screening intervals greater than 2.5 years, but not for annual or biennial 

screening (Goel, Littenberg, & Burack, 2007). Concordant with Goel’s findings, updated 

BCSC studies found no such association among women older than 40 (Dittus et al., 2013; 
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Hubbard et al., 2011; Kerlikowske et al., 2013; Miglioretti et al., 2015; O'Meara et al., 2013). 

One major limitation of the BCSC studies was that the registries only have women who 

undergoes regular mammography screening already, which can be a different cohort than the 

general population. Another limitation was the dichotomization of outcomes (favorable vs. 

unfavorable), which left out valuable information with the ordinal nature of cancer stages 0-

IV.  

Screening Pattern and Healthcare Costs 

Very limited evidence exists on the financial impact of mammography screening 

patterns. Farley et al. (2015) used a linear regression model to simulate the effect of 

screening patterns recommended by the USPSTF and American Community Survey (ACS) 

on stage, survival and cost of treatment among African-American women in an urban public 

hospital (Farley et al., 2015). Using breast cancer patients' information obtained from chart 

review, the researchers estimated new times of cancer diagnosis in USPSTF and ACS 

scenarios. Based on that estimation, they calculated the stage at diagnosis and likelihood of 

survival. The average cost of treatment for a given breast cancer stage was used to estimate 

incremental per-patient costs for all screening scenarios. From the healthcare institution's 

perspective, Farley (2015) concluded that following the ACS guidelines would have saved 

$3745 compared with observed data, and saved $5528 compared with USPSTF, respectively. 

The lack of real-world evidence calls for more observational studies in cost analysis. 
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Public Health Significance 

This dissertation updated the breast cancer staging algorithms using diagnoses, 

procedures, drug claims and recommended treatment regimens. With validated breast cancer 

stage estimation, administrative healthcare claims data can be more valuable in 

epidemiologic, health services, and outcomes cancer research. 

This dissertation also re-examined the conflicting findings of BCSC studies, using a 

national insurance claims database, by testing different definitions of screening interval. 

Compared to clinical trials, claims database provide real-world effectiveness of different 

mammography screening intervals. In addition, the financial burden was estimated from the 

perspectives of private insurance payers as well as breast cancer patients who follow 

different mammography screening patterns, which, to my best knowledge, has not been 

studied.   
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Hypothesis, Research Question, Specific Aims or Objectives 

Aim 1: Assess the impact of mammography screening patterns on identifying stage of 

diagnosis among women with breast cancer using estimated staging information in 

commercial claims data. 

Aim 1a: Develop and validate the performance of claim-based algorithms that can 

predict breast cancer stages from claims-based data. 

Aim 1b: Estimate risks of more advanced breast cancer associated with annual and 

biennial screening mammography. 

Hypothesis: Shorter screening interval (annual vs. biennial) detects earlier and more 

treatable breast cancers. 

Aim 2: Assess the financial impact of mammography screening patterns on total healthcare 

costs among women with breast cancer.   
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JOURNAL ARTICLE 

A Claim-Based Algorithm Predicting Breast Cancer Stage at Diagnosis  

Medical Care 

 

Abstract 

Background: Administrative claims databases are important sources for epidemiological, 

healthcare utilization and cost studies. However, the lack of clinical information on cancer 

stages limits the ability to control for confounders in cancer research.  

Objective: To develop and validate a predictive algorithm to identify breast cancer stages 

using treatment information obtained from claims data.  

Research Design: The SEER-Medicare database contains linked “gold standard” cancer 

stages from SEER cancer registries and claims data from Medicare. We built a classification 

tree model based on variables identified through diagnosis, procedure and medication codes 

from inpatient, outpatient, physician and pharmacy claims. 

Subjects: Female fee-for-service patients older than 66 and diagnosed with stage0-IV breast 

cancer between 2008 and 2013 were randomly assigned to training and validation sets. A 

classification tree model was based on variables identified through diagnosis, procedure and 

medication codes from inpatient, outpatient, physician and pharmacy claims. The 

performance of the classification model was measured by sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), and area under the receiver 

operating characteristic curve (AUC). 
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Results: The algorithm identified stage 0 breast cancer with 85% sensitivity, 97% specificity, 

84% PPV, 97% NPV, and 91% AUC; stage I with 83% sensitivity, 75% specificity, 74% 

PPV, 85% NPV, and 79% AUC; stages I/II with 93% sensitivity, 73% specificity, 90% PPV, 

79% NPV, and 83% AUC; stages II/III with 63% sensitivity, 91% specificity, 78% PPV, 

83% NPV, and 77% AUC; stage IV with 79% sensitivity, 99% specificity, 67% PPV, 99% 

NPV, and 89% AUC.  

Conclusions: Our algorithm had excellent predictive power for stage 0 and IV breast cancer, 

and good performance for stage I cases. Stage II and III identification were less successful 

due to the similarities in treatment recommendations. The overall accuracy significantly 

improved with combined estimations of stages I and II, as well as stages II and III.  

 

 

Introduction 

Breast cancer stage at diagnosis is a key predictor of prognosis and survival. 

Generally, non-invasive (stage 0) and early stage invasive breast cancers (stages I and II) 

have better chance of survival than more advanced stage (stage III and IV). For example, the 

5-year breast cancer-specific survival for women with stage I, II and III breast cancers are as 

high as 99.3% (95% CI 99.2%-99.4%), 94.3% (95% CI 93.6%-94.9%),  88.0% (95% CI 

86.8%-89.0%), respectively (Weiss et al., 2018). On the other hand, the 5-year breast cancer-

specific survival for stage IV cases is only 35.5% (95% CI 32.7%-38.3%).  

Breast cancer stage is also widely used as a covariate or as an inclusion and exclusion 

criterion in epidemiologic studies of patients with breast cancer. Administrative medical 
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claims databases, an important source of population-based data, usually lack clinical 

information such as cancer stage. This major disadvantage has limited the use of these 

datasets in retrospective outcome-based oncological research.  

According to the National Comprehensive Cancer Network (NCCN) breast cancer 

treatment guidelines (Gradishar et al., 2018), different treatment patterns are recommended 

based on the Tumor, Node, Metastasis (TNM) staging of breast cancer (Edge & Compton, 

2010). Therefore, it is feasible to predict breast cancer stage at diagnosis based on the 

treatment received. However, predictive models developed based on clinical insight alone 

can have accuracy less than expected due to the similarities in treatment recommendations 

between stages, and potential deviations in clinical practice (Chawla et al., 2014).  

Only a few claim-based algorithms predict invasive breast cancer stage I-IV at 

diagnosis. Cooper et al. (1999) and Chawla et al. (2014) both reported limited validity of 

using ICD-9 diagnosis codes alone in Medicare claims (Chawla et al., 2014; Cooper et al., 

1999). Both studies were developed through the linked Surveillance, Epidemiology and End 

Results (SEER)-Medicare data and used the summary SEER stages as reference standard. 

However, SEER staging is less helpful in informing survival because their definition of 

stages are broader. Based on Cooper’s single predictor models, Smith et al. (2010) expanded 

the models by including other predictors including demographic, tumor and treatment 

characteristics (Smith, Shih, Giordano, Smith, & Buchholz, 2010). Two multinomial logistic 

regression models were developed to first identify stage IV cases from the entire study 

cohort, then separate stage I/II from stage III in the remaining cases. Although the second 

model had decent accuracy, it was conditional on the poorer performance of the first model. 
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Other algorithms were developed to predict more specific breast cancer stage such as 

metastatic breast cancer (Nordstrom, Whyte, Stolar, Mercaldi, & Kallich, 2012; Whyte, 

Engel-Nitz, Teitelbaum, Gomez Rey, & Kallich, 2015), breast cancer bone metastases 

(Sathiakumar et al., 2017), and early vs. advanced stage with positive Estrogen Receptor 

(ER) and negative human epidermal growth factor receptor 2 (HER2) breast cancer (Beachler 

et al., 2019). However, to our knowledge a predictive model for stage 0 breast cancer does 

not exist.  

Previous predictive models developed based on SEER-Medicare data failed to include 

pharmacy claims, which indicates a missed opportunity to improve the accuracy of predicting 

breast cancer stage. From a large pool of candidate variables including diagnosis codes, 

comorbidities, diagnostic and surgical procedures, treatments regimens, and medications, this 

study aims to develop an improved predictive model for breast cancer stage0-IV.  

 

Methods 

Data Sources 

We used the linked SEER-Medicare data to develop and validate an algorithm. 

SEER-Medicare links cancers cases ascertained through participating cancer registries to 

claims data from Medicare for people over 65 years old, representing approximately 26% of 

the US population (Engels et al., 2011). The SEER data contain cancer incidence (month and 

year of diagnosis, tumor stage at diagnosis), treatment and survival (month and year, and 

cause of death) information. The Medicare data include claims for hospital inpatient care, 
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physician and non-institutional providers, outpatient services, prescription medications, home 

health services, hospice care, and Durable Medical Equipment (DME) services.  

 

Cohort Selection 

The initial study cohort includes incidence breast cancer cases diagnosed between 

January 1, 2008 and December 31, 2013 (N=228,223). Individuals were excluded if they 

were males (N=2,118), younger than 66 years old (N=82,780), diagnosed at death or autopsy 

(N=1,081), did not have continuous part A/B enrollment or had HMO enrollment 12 months 

prior and after diagnosis month (N=61,937), had missing or unknown AJCC cancer stage 

(N=2,953), and had no claim in the 24 months study period.  Our final sample size was 

77,273 after applying all inclusion and exclusion criteria.  

 

Study Variables 

Dependent Variable: Stage at Diagnosis 

To ensure the largest sample size with known cancer stage, the adjusted American 

Joint Committee on Cancer (AJCC) 6th edition (SEER) was used consistently to derive breast 

cancer stage at diagnosis as the outcome. The AJCC 6th edition reanalyzes earlier extent of 

disease (EOD) information collected from 1988 to 2003 to fit into the AJCC 6th definitions 

and therefore has fewer missing values.  

Predictor Variables 

The identification of potential predictors were based on a combination of clinical and 

empirical knowledge. A total of 719 potential indicators of extent of cancer diagnosis, 
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screening tests, diagnostic tests, pathology tests, surgery, radiation, chemotherapy, hormonal 

therapy, targeted therapy, hospice services, and comorbidities. The aforementioned indicators 

were identified using International Classification of Diseases, 9th Revision (ICD-9) diagnosis 

codes, ICD-9 procedure codes, Common Procedural Terminology (CPT)/The Healthcare 

Common Procedure Coding System (HCPCS) codes, and National Drug Codes (NDC). We 

searched through inpatient, outpatient, physician, prescription, home health services, hospice 

care and DME claims 12 months before and 10 months after the index diagnosis date for the 

codes used to identify indicators (the study period was selected based on the performance of 

the final algorithms). Each of the variables was measured both as a binary variable (0 or 1) 

and as a continuous variable (counts). For each variable constructed based on ICD-9 

diagnosis codes, the place where it appeared in the diagnosis list (i.e., as primary, secondary 

or principal diagnosis) were recorded. The above mentioned codes used to identify the final 

selected variables are available in appendix table 1. Based on the NCCN Clinical Practice 

Guidelines (Gradishar et al., 2018) for breast cancer, 66 stage specific treatment patterns 

were constructed (Appendix Table 2).  

 

Statistical Analysis 

The full data set of eligible participants were equally and randomly divided into a 

training set and a validation set. A Generalized, Unbiased, Interaction Detection and 

Estimation (GUIDE) machine learning decision-tree algorithm was used to construct the 

classification tree which grouped patients with breast cancer into different stages (Loh, 

2009). GUIDE produces decision trees using a non-parametric technique that combines 
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variables without complex high-order interaction terms. At each node, GUIDE selects the 

most significant predictor variable to make a binary split to minimize the Gini index (Lemon, 

Roy, Clark, Friedmann, & Rakowski, 2003)), which is a measure of the degree of a particular 

variable being wrongly classified when it is randomly chosen. The splitting process is 

repeated until specified minimum observations in each node reached. GUIDE has 3-level 

hierarchical split variable selection rules: first select predictors whose p-value is below 

Bonferroni threshold in chi-square tests. Unselected predictors are paired up and divided into 

several regions that are tested against cancer stage using chi-square tests. Again, most 

significant pair of predictors with p-value below Bonferroni threshold. Predictors not selected 

in the second step are tested for linear split. For each pair of ordinal predictors, apply the first 

split select process to its largest linear discriminant coordinates. Otherwise, select most 

significant predictor from level 1. The classification tree was pruned by penalizing the 

estimated error using the 0 standard error rule based on the subtree size through 10 cross-

validations. Finally, breast cancer stage for each individual in the validation set was 

determined along with their predictor values. Analysis file preparation was performed with 

SAS Enterprise Guide 6.1 (SAS Institute Inc, Cary, NC). Classification matrix was 

constructed showing the predicted and true stages. For each stage, we constructed a 2*2 table 

to compute sensitivity, specificity, PPV, NPV and AUC.  

 

Results 

In 76,898 women there were 17.5% stage 0, 45.8% stage I, 26.1% stage II, 7.6% 

stage III, and 3.0% stage IV cancers as indicated by the adjusted AJCC stage. Patient 
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characteristics by selected variables in the final model and cancer stage are presented in 

Table 1. Selected variables were summarized under diagnosis, work-up tests, breast surgical 

procedures, radiation, chemotherapy and treatment regimen. Non-invasive cases had 

significantly more diagnosis code of carcinoma in situ appeared in their medical claims, and 

much less malignant breast cancer diagnosis codes. Secondary or unspecified lymph node 

neoplasm and axillary lymph node involvement diagnosis was more commonly seen among 

stage III patients. A majority of stage IV patients had metastatic breast cancer and secondary 

neoplasm diagnosis. A history of screening mammography were more common among stage 

0 and stage I patients, consistent with the fact that screening mammography identified more 

non-invasive and early stage breast cancer, while advanced breast cancers were diagnosed 

more based on symptoms. Advanced stage cases received more PET imaging and CT scan 

tests. More sentinel lymph node biopsies were performed on stage I and II patients, while 

axillary lymph node directed surgeries were common for stage I through stage III. Overall, 

the earlier breast cancer stage, the more breast surgeries were performed. On the other hand, 

the later cancer stage, the more chemotherapy treatments were administered.  

Table 2 shows the counts of predicted stages and their true cancer stages, which 

allows the assessment of misclassification. Accuracy measures for each stage were listed in 

Table 3. Our algorithm contains 42 patterns to identify breast cancer stage: 6 for stage 0, 15 

for stage I, 14 for stage II, 4 for stage III, and 3 for stage IV (Appendix table 2). The final 

staging algorithm is provided in Appendix 3. 
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Table 1: Patients' Characteristics of Breast Cancer Cohorts. 
 

 

  SEER AJCC Stage 

Selected Variables Stage 0 Stage I Stage II Stage III Stage IV 

13,447 35,257 20,090 5,809 2,295 
Diagnosis 

Carcinoma in Situ 
Diagnosis 
(Principal), % 

94.2 23.7 17.4 16.3 11.0 

Counts of Carcinoma 
in Situ Diagnosis 
(Primary), Mean (SD) 

6.1 (6.1) 0.6 (1.6) 0.4 (1.4) 0.3 (1.2) 0.3 (1.3) 

Malignant Breast 
Cancer Diagnosis, % 

86.9 98.7 99.0 99.1 98.7 

Counts of Malignant 
Breast Cancer 
Diagnosis (Primary), 
Mean (SD) 

8.7 (8.8) 19.7 (12.4) 24.4 (16.2) 33.4 (19.5) 27.0 (16.8) 

Counts of Malignant 
Breast Cancer 
Diagnosis, Mean (SD) 

10.5 (10.4) 25.0 (15.7) 32.2 (21.4) 45.9 (26.3) 39.7 (23.0) 

Secondary Neoplasm 
Diagnosis, % 

1.4 2.4 5.3 15.9 88.2 

Counts of Secondary 
Neoplasm Diagnosis, 
Mean (SD) 

0.1 (1.3) 0.1 (1.8) 0.3 (2.7) 1.1 (4.7) 17.4 (19.3) 

Secondary or 
Unspecified Lymph 
Node Neoplasm 
Diagnosis 
(Secondary), % 

0.8 2.6 35.5 68.8 30.0 
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Axillary Lymph Node 
Involvement 
Diagnosis 
(Secondary), % 

0.4 2.0 33.5 65.9 25.0 

Counts of Stage IV 
Diagnosis, Mean (SD) 

0.1 (1.4) 0.2 (1.9) 0.4 (2.9) 1.3 (4.9) 17.5 (18.9) 

Work Ups 
Bilateral Screening 
Mammogram 
(CPT/HCPCS), % 

81.1 75.7 48.7 35.0 23.6 

PET Imaging, Skull 
Base to Mid-Thigh, % 

3.2 9.3 22.8 52.1 59.1 

Counts of HER-2 
Testing, Mean (SD) 

2.9 (2.1) 4.9 (2.9) 4.8 (3.1) 4.4 (3.1) 4.3 (3.2) 

Breast Procedure 
Needle Biopsy, % 86.2 90.4 88.2 82.7 73.5 
Sentinel Lymph Node 
Biopsy (BLNB), % 

24.7 74.1 60.6 29.5 9.2 

Surgical Biopsy, % 68.5 86.4 75.3 49.6 22.1 
Axillary Lymph Node 
Directed Surgery 
(CPT/HCPCS), % 

29.4 85.1 85.4 84.0 25.3 

Axillary Lymph Node 
Dissection, % 

30.3 85.8 86.6 85.5 26.1 

Surgery Specimen 
Examination, % 

84.5 62.6 31.5 17.2 7.0 

Lumpectomy, % 84.1 80.6 60.4 34.9 16.0 
Breast-Conserving 
Surgery, % 

84.0 80.3 60.0 34.1 15.3 

Counts of Breast 
Surgery, Mean (SD) 

11.1 (7.4) 11.2 (7.0) 9.1 (7.3) 6.3 (6.4) 2.2 (4.5) 

Chemotherapy   
Any Chemotherapy, % 3.2 12.4 33.5 59.9 58.2 

Taxane-Based 
Chemotherapy, % 

0.4 7.6 26.3 50.1 28.9 
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Treatment Regimen 
Regimen for 
Advanced Breast 
Cancera, % 

0.0 0.3 3.9 26.5 3.4 

a. Mastectomy and Axillary dissection level I/II followed by radiation and chemotherapy. 
 

 

Table 2: Classification Matrix for Validation Set 
  

  
 

SEER AJCC Stage 

  
 

Stage 0 Stage I Stage II Stage III Stage IV 
 
 

Predicted 
Stage 

Stage 0 5,722 923 138 9 1 
Stage I 898 14,573 4,037 256 57 
Stage II 91 2,026 5,012 1,490 129 
Stage III 4 34 672 971 52 
Stage IV 5 88 176 180 905 

 

Tables 3: Performance Measures by Stage 
  

 
Stage 0 Stage I Stage II Stage III Stage IV 

Sensitivity 85% 83% 50% 33% 79% 
Specificity 97% 75% 87% 98% 99% 
PPV 84% 74% 57% 56% 67% 
NPV 97% 85% 83% 95% 99% 
AUC 91% 79% 68% 66% 89% 

 

 

Discussion 

This study developed and validated a claim-based algorithm which predicts breast 

cancer stages 0-IV using predictive modeling. This algorithm accurately predicts non-

invasive and early invasive breast cancer, with poorer performance on stage II and II.  
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No predictive algorithm has been developed to identify non-invasive stage 0 breast 

cancer. Stage 0 breast cancer is also called carcinoma in situ, which includes three types: 

Ductal carcinoma in situ (DCIS), Lobular carcinoma in situ (LCIS) and Paget disease of the 

nipple. Paget disease is a rare breast cancer in or around the nipple that only accounts less 

than 5% of United States’ breast cancer cases. However, more than 96% of Paget's disease 

cases also have DCIS or invasive cancer in the same breast (Caliskan et al., 2008; Harris, 

Lippman, Osborne, & Morrow, 2012; Kanitakis, 2007). Therefore, mastectomy are the 

standard first treatment for Paget's disease, with breast-conserving surgery and whole breast 

radiation as alternative for patients with Paget's disease alone (Kanitakis, 2007; Kawase et 

al., 2005; Marshall et al., 2003). Although LCIS doesn’t need treatment, having LCIS does 

increase the risk of developing invasive breast cancer. Therefore, surgery and other risk 

reduction hormonal adjuvant therapy may be recommended. DCIS is the most common type 

of non-invasive cancer. However, the treatment of DCIS is highly controversial due to the 

lack of scientific evidence on its risk of progression to invasive cancer (Groen et al., 2017; 

Park & Hwang, 2016). Failing to identify DCIS cases introduces bias into the estimation of 

cancer recurrence, progression and mortality, leading to erroneous conclusions on cost and 

benefits which are important to assess overtreatment. However, DCIS identification using 

medical claims is challenging due to the similarities in treatment recommendations between 

DCIS and stage I breast cancer (Gradishar et al., 2018). Our algorithm misclassified 13.4% of 

stage 0 cases as stage I, potentially the DCIS cases were treated more aggressively. 

Unfortunately, the gold standard DCIS information is not available in SEER-Medicare data, 

which limits our ability to further identify DCIS from other non-invasive breast cancer (LCIS 
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and Paget’s disease). Future algorithm development studies are needed with a more 

appropriate dataset.  

Previously, breast cancer stages I and II were combined as a single category in 

Smith’s model (Smith et al., 2010). They reported sensitivity of 83%, specificity of 78%, 

PPV 98%, and NPV of 31% distinguishing stage I/II (early) breast cancer from stage III, with 

an overall 81.0% AUC. Noted that this model is the second step of a two-stage model, which 

means its performance is conditional on the performance of a previous model. In their first 

model identifying metastatic breast cancer, the PPV is only 24%, which means a significant 

amount of non-metastatic cases were misclassified. However, the information provided in 

their paper is not enough to assess their extent of misclassification. With our algorithm, we 

have 93% sensitivity, 73% specificity, 90% PPV, 80% NPV, and 83% AUC. In other words, 

we successfully identified most of the stage I/II cases and also overestimate them, while the 

Smith’s model underestimated stage I/II cases.  

Looking at stage I and II individually, our algorithm has better performance with 

stage I (sensitivity 83%, specificity 75%, PPV 74%, NPV 84% and AUC 79%). Among the 

true stage II cases, less than half were misclassified as stage I; while among the predicated 

stage II cases, 40.2% of them were true stage I and III cancers. This is not unexpected 

because according to the NCCN guidelines, similar locoregional treatment (surgical and 

systemic adjuvant) is recommended to clinical stage I (T1, N0, M0), IIA/IIB, and stage IIIA 

(T3, N1, M0). The ability to distinguish stage II from stage III cases is also limited with our 

algorithm. More than half of the true cancer were misclassified into stage II category. And 

among the predicted stage III cases, 38.8% were true stage II. This is because the 
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preoperative systemic therapy for stage IIA/B is similar to the locally advanced stage 

IIIA//B/C breast cancers. The similarities in treatment recommendations pose a real 

challenge to predictive models distinguishing stage II and III based on medical claims. If 

stage II and III are combined, the sensitivity is 63%, specificity is 99%, PPV is 78%, NPV is 

83%, and AUC is 77%. The relatively low sensitivity is mainly because of the true stage II 

cases that were misclassified into stage I.  

Algorithms identifying metastatic breast cancer have been more commonly studied. 

Chawla et al. 2014 showed that using ICD-9 diagnosis codes related to regional or distant 

metastases had limited validity (sensitivity 51.0%, specificity 98.3%, and PPV 65.8%) in 

SEER-Medicare data, which was consistent with Cooper’s single predictor. The expanded 

Smith algorithm had improved performance by adding demographic, tumor, and treatment 

characteristics (sensitivity of 81%, specificity 89%, positive PPV 24%, and NPV 99%). Their 

algorithm overestimated metastatic cases, but successfully captured most of the true 

metastatic and non-metastatic cases. Alternatively, Nordstrom and colleagues (2012) 

developed an algorithm to identify metastatic breast cancer cases from an outpatient 

oncology EMR database linked to medical and pharmacy claims data using a classification 

and regression tree. The reported sensitivity is 62%, specificity 97%, PPV 75%, NPV 95%. 

One of the major limitations of their study is the sample size. They included a total of 1385 

breast cancer patients, out of whom 175 were metastatic. Most of the potential cases were 

excluded based on very strict criteria: there must be an oncologist issuing a cancer diagnosis 

within 2 days before or after a patient’s index diagnosis date, and continuously reporting 

claims for 6 months prior and 2 months post the index date. Such a small and highly selective 
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sample size limits the generalizability of their algorithm. Another limitation is they only used 

outpatient medical and pharmacy claims to develop to algorithm, and didn’t include valuable 

information from other claim sources such as inpatient services. Finally, 60 days of follow-

up may be too short to capture enough information to describe treatment patterns for 

metastatic cases. Using a similar classification and regression tree approach, our algorithm 

developed using prescription medication files had a sensitivity of 79%, specificity 99%, PPV 

67%, NPV 99%, and AUC 89%, which had a better balance between identifying as much of 

true cases and misclassification. The most recent breast cancer stage predictive model is the 

two algorithms developed by Beachler et al., (2019) to identify estrogen receptor positive 

(ER+) and human epidermal growth factor negative (HER2−) early and advanced stage 

breast cancer, respectively. In their study, they defined early stages as stage I, II, IIIA, or 

IIIB, while advance stages include stage IIIC or IV. Based on a validation sample of 3184 

ER+ & HER2− early staged and 1436 advanced staged cases, they reported mediocre 

sensitivity (60% vs. 54%) and high PPV (84% vs. 91%) respectively. Their algorithms are 

informing being the first validated models to predict both ER/HER2 status, which is not the 

main focus of our study.  

Sensitivity, specificity, PPV and NPV provide different aspects to measure the 

performance of a predictive algorithm. For example, high sensitivity is needed when the 

researcher’s intent is to capture true cases as many as possible; while high PPV is more 

important when a pure cohort of true cases are needed for analysis. Compared to the 

previously published algorithms using logistic regression that requires calculation of 
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probabilities and selecting cutoff values, our models are easier to use and just need to 

construct a few variables.  

This algorithm development study has important implications for future research. 

First, the CART approach is appropriate for breast cancer stage prediction, and may be 

applied to develop and validate predictive models for other cancer stages. Unlike logistic 

regression models, the final algorithm developed by CART is easier to understand and adopt. 

Second, our algorithm is most useful when applied to commercial claims databases that are 

not linked to clinical information. With the predicted breast cancer stages, more 

epidemiologic and economic studies will become feasible. Third, the prescription medication 

files are very important in improving the model performance, especially the prediction of 

stage IV cases. The main reason to include pharmacy claims is that the treatment of 

metastatic breast cancer is heavily relied on chemotherapy and endocrine therapy with certain 

metastatic agent.  

Some limitations existed in our study. Most importantly, this algorithm is developed 

on an older population and has not been validated in other databases and populations. 

Although medical claims coding practice should not change depending on the age of breast 

cancer patients, researchers should use cautions when applying this algorithm to a different 

age group. Secondly, since multiple years of data has been complied to reach a relatively 

large sample for model development and validation, there may be changes in clinical practice 

patterns over the years, and approval of new medications. Future studies may explore the 

feasibility of building year specific model. Third, in this study we used the date of diagnosis 

from SEER, which is not available in other databases. However, there was nearly 90% 
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agreement within one month between the SEER diagnosis date and the first Medicare claim 

with a cancer diagnosis ((Kind, Virnig, & McBean; Lin & Virgo, 2014). Fourth, we required 

a total of 24 months continuous enrollment (12 months prior and 12 months post the index 

diagnosis), which limited our ability to make prediction for patients with shorter continuous 

enrollment. Finally, the accuracy of our algorithm predictive stage IV cases is limited if 

applied to a breast cancer cohort selected by a validated algorithm (Nattinger, Laud, 

Bajorunaite, Sparapani, & Freeman, 2004) which is widely used to select breast cancer 

incident cases from claims data. The reason is that the Nattinger algorithm requires breast 

surgery for each case identified, which is less common among metastatic breast cancers.   

To our best knowledge, the breast cancer stage predictive algorithms we developed 

and validated are the first attempt to identify stage 0 to stage IV. We expanded the pool of 

potential predictors by including prescriptive medication files and successfully increased the 

model performance. Our algorithms are based on classification tree and thus easy for 

researchers to adapt. 

 

Appendices 

Appendix Table 1: Claims codes to determine selected variables.  

        

Selected 
Variables 

ICD-9 Diagnosis 
Codes 

ICD-9 
Procedure 

Codes 
CPT/HCPCS Codes 

        
        
Carcinoma in 
Situ  233.0     
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Malignant Breast 
Cancer 174     

Secondary 
Neoplasm 197-199     

Secondary or 
Unspecified 
Lymph Node 
Neoplasm  

196     

Axillary Lymph 
Node 
Involvement  

196.3     

Stage IV Cancer 
Indicators 

196.1  196.2  198.0  
198.1  198.82  

198.89   
196.5-196.6 
196.8-196.9 
197.0-197.8 
198.3-198.8 
199.0-199.1 

    

        
Bilateral 
Screening 
Mammogram 

    77063  77067  76092  77057  G0202  
G0203 

PET Imaging, 
Skull Base to 
Mid-Thigh 

    78812  78815   

HER-2 Testing     88342  88360  88361  88365  88271  
88274  88291  88367  88368  83950 

        

Needle Biopsy     

19000  19001  19100  19102  19103  
76095  76360  76393  76942  77031  

88170  88171  10021  10022 
19081-19086 

Sentinel Lymph 
Node Biopsy 
(BLNB) 

    38500  38525 

Surgical Biopsy     19101  19110  19120  19125  19126  
38500  38525  38900  38792 
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Axillary Lymph 
Node Directed 
Surgery 

    
38500  38525  38740  38745  19162  
19200  19220  19240  19302  19305  

19306  19307 

Axillary Lymph 
Node Dissection   

40.3  40.23  
40.51  
85.43-
85.48 

38500  38525  38740  38745  19162  
19200  19220  19240  19302  19305  

19306  19307 

Surgery 
Specimen 
Examination 

    76098 

Lumpectomy   

85.20  
85.21  
85.22  
85.23  
85.25 

19120  19125  19126  19160  19162  
19301  19302 

Breast-
Conserving 
Surgery 

    19110  19112  19120  19125  19160  
19162  19301  19302  19240  19302 

Breast Surgery   

40.3  40.23  
40.51  
85.20  
85.21  
85.22  
85.23  
85.25   
85.41-
85.48 

19110  19112  19120  19125  19160  
19162  19301  19302  19240  19302  
38500  38525  38740  38745  19162  
19200  19220  19240  19302  19305  
19306  19307  19120  19125  19126  
19160  19162  19301  19302  19180  
19182  19200  19220  19240  19303  

19304  19305  19306  19307   
19180-19307 
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Chemotherapy     

G0355  G0359  G0360  G0361  G0362  
Q0083  Q0084  Q0085  J7150  J85  J86  

J87  J8999  J9  J8510  J8515  J8520  
J8521  J8530  J8540  J8560  J8561  J8562  
J8565  J8597  J8600  J8610  J8650  J8700  

J8705  J8999  C9004  C9012  C9020  
C9110  C9127  C9129  C9205  C9207  
C9218  C9233  C9235  C9239  C9240  
C9253  C9259  C9260  C9262  C9265  
C9273  C9276  C9280  C9284  C9287  
C9295  C9296  C9298  C9414  C9415  
C9417  C9418  C9420  C9421  C9422  
C9423  C9424  C9425  C9426  C9427  
C9428  C9429  C9431  C9432  C9433  

C9436  C9437  C9440 
96400-96549 
J9000-J9999 

Q0083-Q0085 
(Exclude J9003  J9035  J8501  J7527  

J8561  J3315  J3487  J3488  J9202  J9240  
J9295  J9306  J9354  J9355  J9395  J9217  

J9218  J9219  J9225  J9226) 

Taxane-Based 
Chemotherapy     J9265  J9264  J9267  C9127  C9431  

J9170  J9171 
        
Regimen for 
Advanced Breast 
Cancera 

      

Radiation V58.0  V66.1  
V67.1 

92.2  92.3  
92.4  92.41   

92.20-
92.29 
92.30-
92.39 
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Chemotherapy 
V58.1  V66.2  
V67.2  E933.1  

E930.7 
99.25 

G0355  G0359  G0360  G0361  G0362  
Q0083  Q0084  Q0085  J7150  J85  J86  

J87  J8999  J9  J8510  J8515  J8520  
J8521  J8530  J8540  J8560  J8561  J8562  
J8565  J8597  J8600  J8610  J8650  J8700  

J8705  J8999  C9004  C9012  C9020  
C9110  C9127  C9129  C9205  C9207  
C9218  C9233  C9235  C9239  C9240  
C9253  C9259  C9260  C9262  C9265  
C9273  C9276  C9280  C9284  C9287  
C9295  C9296  C9298  C9414  C9415  
C9417  C9418  C9420  C9421  C9422  
C9423  C9424  C9425  C9426  C9427  
C9428  C9429  C9431  C9432  C9433  

C9436  C9437  C9440 
96400-96549 
J9000-J9999 

Q0083-Q0085 
(Exclude J9003  J9035  J8501  J7527  

J8561  J3315  J3487  J3488  J9202  J9240  
J9295  J9306  J9354  J9355  J9395  J9217  

J9218  J9219  J9225  J9226) 

Mastectomy   85.41-
85.48 

19180  19182  19200  19220  19240  
19303  19304  19305  19306  19307 

19180-19255 

Axillary Lymph 
Node Dissection 
(ALND) 

  40.3  40.23  
40.51  38740  38745 

a. Mastectomy and Axillary dissection level I/II followed by radiation and chemotherapy. 
 

 

Appendix Table 2: NCCN Recommended Treatment Regimens. 

 
LCIS:  

• Primary treatment 
o Observation 
o bilateral mastectomy  

• Risk reduction/Adjuvant therapy 
o +/- tamoxifen or raloxifene 
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DCIS:  
• Primary treatment 

o Total mastectomy w/o lymph node dissection 
o Total mastectomy w/ OR w/o sentinel node biopsy 
o Lumpectomy w/o lymph node dissection 
o Lumpectomy w/o lymph node dissection + (whole breast) RT 
o Excision + RT 
o Excision only 

• Risk reduction/Adjuvant therapy 
o +/- tamoxifen or raloxifene 

 
Local stage (stage I/II): 
 
Staging: 

• +/- FNA/core biopsy + Axillary dissection level I/II 
• FNA/core biopsy + sentinel node mapping and excision +/- Axillary dissection level 

I/II 
 
Treatment: (sequence is important-endocrine after chemo) 

• Lumpectomy + Axillary dissection level I/II + post or concurrent RT +/- Adjuvant 
chemo 

• Mastectomy + Axillary dissection level I/II +/- Adjuvant chemo  
• Mastectomy + Axillary dissection level I/II + post or concurrent RT +/- Adjuvant 

chemo +/- endocrine (hormone) therapy +/- adjuvant chemo 
• Sentinel lymph node dissection + surgery 
• Axillary lymph node dissection + surgery 
• Surgery + Axillary lymph node dissection 
• Sentinel lymph node dissection + Axillary lymph node dissection 
• Breast conservative surgery + Sentinel lymph node dissection/Axillary lymph node 

dissection + radiation 
• Radiation + surgery 
• Neoadjuvant chemo/hormonal therapy + surgery + radiation 
• Neoadjuvant chemo/hormonal therapy + surgery (no slnb/alnd) + radiation 
• Neoadjuvant chemo/hormonal therapy + surgery + adjuvant chemo/hormonal therapy 

+ radiation 
 
 
Adjuvant Hormonal Therapy: (AI preferred for postmenopausal) 
Pre-menopausal: 
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• Tamoxifen 2-3 yrs/5 yrs +/- ovarian suppression/ablation + Aromatase Inhibitor 
(Anastroze/Lestrozole/Exemestane) 5 yrs 

• Aromatase Inhibitor 5 yrs +/- ovarian suppression/ablation + Aromatase Inhibitor 
(Anastroze/Lestrozole/Exemestane) 5 yrs 

• Tamoxifen 5 yrs only if always premenopausal 
 
Post-menopausal: 

• Aromatase Inhibitor 5 yrs 
• Tamoxifen 2-3 yrs/4.5-6 yrs + Aromatase Inhibitor 

(Anastroze/Lestrozole/Exemestane) 5 yrs 
• Tamoxifen 5 yrs 
• Tamoxifen 10 yrs 

 
Systemic Therapy: 
Breast preserving: (1) Core biopsy +/- FNA   (2) Sentinel lymph node procedure 

• Breast preserving (1) or (2) + neoadjuvant chemo/hormone therapy (>1 lines) +/- 
Axillary staging + mastectomy w/Axillary dissection level I/II +/- more 
individualized chemo + RT 

• Breast preserving (1) or (2) + neoadjuvant chemo/hormone therapy (>1 lines) +/- 
Axillary staging + lumpectomy w/Axillary dissection level I/II +/- more 
individualized chemo + RT 

• Only endocrine systemic therapy 
• The use of tamoxifen/anastrozole 
• HER2+ patient: use trastuzumab 

preoperative systemic therapy w/ trastuzumab 
pertuzumab-containing regimen 

 
 
Advanced Stage_Stage III/IV: 
 

• Mastectomy + Axillary dissection level I/II + RT + chemo 
• Anthracycline-based neoadjuvant chemo +/- tamoxifen + Mastectomy + Axillary 

dissection level I/II + RT + chemo +/- endocrine therapy (tamoxifen, etc.) 
• Anthracycline-based neoadjuvant chemo +/- tamoxifen + lumpectomy + Axillary 

dissection level I/II + RT + chemo +/- endocrine therapy (tamoxifen, etc.) 
• Anthracycline-based neoadjuvant chemo +/- tamoxifen + high dose RT + chemo +/- 

tamoxifen 
• Anthracycline-based neoadjuvant chemo + more systemic chemo 
• Anthracycline-based neoadjuvant chemo + preoperative radiation + Mastectomy + 

Axillary dissection level I/II + RT + chemo +/- endocrine therapy (tamoxifen, etc.) 
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• Anthracycline-based neoadjuvant chemo + preoperative radiation + lumpectomy + 
Axillary dissection level I/II + RT + chemo +/- endocrine therapy (tamoxifen, etc.) 

 
 
Metastatic Stage IV: 
 

• Endocrine therapy (Aromatase Inhibitor OR Antiestrogen) for post-menopausal +/- 
chemo 

• Ovarian ablation/suppression + Aromatase Inhibitor for pre-menopausal +/- chemo 
• Ovarian ablation/suppression + Antiestrogen +/- LHRH agonist for pre-menopausal 

+/- chemo 
• Trastuzumab +/- chemo 
• Chemo 
• [Pertuzumab + Trastuzymab + taxane (preferred)] + [Capecitabine + Lapatinib 

(preferred)] 
• Trastuzumab +/- chemo + Lapatinib 
• Trastuzumab +/- chemo 

 

 

Appendix Table 3: Final Staging Algorithm.  

 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND 
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) = 0 AND  
 (Malignant Breast Cancer Diagnosis) = 0 THEN Predicted Stage = 1; 
 
 IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) = 0 AND  
 (Malignant Breast Cancer Diagnosis) ~=. AND  
 (Lumpectomy) = 0  THEN Predicted Stage = 2; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
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 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) = 0 AND  
 (Malignant Breast Cancer Diagnosis) ~=. AND  
 (Lumpectomy) ~=. AND  
 (Surgery Specimen Examination) = 0 THEN Predicted Stage = 2; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) = 0 AND  
 (Malignant Breast Cancer Diagnosis) ~=. AND  
 (Lumpectomy) ~=. AND  
 (Surgery Specimen Examination) ~= 0 THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) ~= 0 AND  
 (Any Chemotherapy) = 0 AND  
 (Surgery Specimen Examination) = 0 AND  
 (Needle Biopsy) = 0 THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) ~= 0 AND  
 (Any Chemotherapy) = 0 AND  
 (Surgery Specimen Examination) = 0 AND  
 (Needle Biopsy) ~= 0 AND  
 (Breast-Conserving Surgery) = 0 AND  
 ((Counts of Malignant Breast Cancer Diagnosis (Primary)) <= 13 OR (Counts of 
Malignant Breast Cancer Diagnosis (Primary)) =.) THEN  Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) ~= 0 AND  
 (Any Chemotherapy) = 0 AND  
 (Surgery Specimen Examination) = 0 AND  
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 (Needle Biopsy) ~= 0 AND  
 (Breast-Conserving Surgery) = 0 AND  
 (Counts of Malignant Breast Cancer Diagnosis (Primary)) > 13 THEN  Predicted 
Stage = 2; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) ~= 0 AND  
 (Any Chemotherapy) = 0 AND  
 (Surgery Specimen Examination) = 0 AND  
 (Needle Biopsy) ~= 0 AND  
 (Breast-Conserving Surgery) ~= 0  THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) ~= 0 AND  
 (Any Chemotherapy) = 0 AND  
 (Surgery Specimen Examination) ~= 0 THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) = 0 AND  
 (Sentinel Lymph Node Biopsy) ~= 0 AND  
 (Any Chemotherapy) ~= 0 THEN Predicted Stage = 2; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) ~= 0 AND   
 (Taxane-Based Chemotherapy) = 0 THEN Predicted Stage = 1; 
 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) ~= 0 AND   
 (Taxane-Based Chemotherapy) ~= 0 AND  
 (Sentinel Lymph Node Biopsy) = 0 THEN Predicted Stage = 2; 
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IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) ~= 0 AND   
 (Taxane-Based Chemotherapy) ~= 0 AND  
 (Sentinel Lymph Node Biopsy) ~= 0 AND 
 (Surgery Specimen Examination) = 0 THEN Predicted Stage = 2; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) = 0 AND  
 (Bilateral Screening Mammogram (CPT/HCPCS)) ~= 0 AND   
 (Taxane-Based Chemotherapy) ~= 0 AND  
 (Sentinel Lymph Node Biopsy) ~= 0 AND 
 (Surgery Specimen Examination) ~= 0 THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) ~= 0 
AND 
 (Regimen for Advanced Breast Cancer) = 0 AND  
 (Surgical Biopsy) = 0 AND  
 (PET Imaging, Skull Base to Mid-Thigh) = 0 THEN Predicted Stage = 2;  
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) ~= 0 
AND 
 (Regimen for Advanced Breast Cancer) = 0 AND  
 (Surgical Biopsy) = 0 AND  
 (PET Imaging, Skull Base to Mid-Thigh) ~= 0 THEN Predicted Stage = 3;  
  
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) ~= 0 
AND 
 (Regimen for Advanced Breast Cancer) = 0 AND  
 (Surgical Biopsy) ~= 0 THEN Predicted Stage = 2; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) = 0 AND  
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 (Secondary or Unspecified Lymph Node Neoplasm Diagnosis (Secondary)) ~= 0 
AND 
 (Regimen for Advanced Breast Cancer) ~= 0 THEN Predicted Stage = 3; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 (Counts of Carcinoma in Situ Diagnosis (Primary)) <= 2 AND  
 (Axillary Lymph Node Dissection) = 0 AND  
 (Surgery Specimen Examination) = 0 AND  
 (Counts of Malignant Breast Cancer Diagnosis (Primary)) <= 6 THEN Predicted 
Stage = 0;  
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 (Counts of Carcinoma in Situ Diagnosis (Primary)) <= 2 AND  
 (Axillary Lymph Node Dissection) = 0 AND  
 (Surgery Specimen Examination) = 0 AND  
 (Counts of Malignant Breast Cancer Diagnosis (Primary)) > 6 THEN Predicted Stage 
= 1;  
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 (Counts of Carcinoma in Situ Diagnosis (Primary)) <= 2 AND  
 (Axillary Lymph Node Dissection) = 0 AND  
 (Surgery Specimen Examination) ~= 0 THEN Predicted Stage = 0;   
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 (Counts of Carcinoma in Situ Diagnosis (Primary)) <= 2 AND  
 (Axillary Lymph Node Dissection) ~= 0 AND  
 (Counts of Malignant Breast Cancer Diagnosis) <= 10 AND  
 ((Counts of Carcinoma in Situ Diagnosis (Primary)) <= 1 OR (Counts of Carcinoma 
in Situ Diagnosis (Primary)) =.) THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 (Counts of Carcinoma in Situ Diagnosis (Primary)) <= 2 AND  
 (Axillary Lymph Node Dissection) ~= 0 AND  
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 (Counts of Malignant Breast Cancer Diagnosis) <= 10 AND  
 (Counts of Carcinoma in Situ Diagnosis (Primary)) > 1 THEN Predicted Stage = 0; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 (Counts of Carcinoma in Situ Diagnosis (Primary)) <= 2 AND  
 (Axillary Lymph Node Dissection) ~= 0 AND  
 ((Counts of Malignant Breast Cancer Diagnosis) > 10 OR (Counts of Malignant 
Breast Cancer Diagnosis) =.) THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 ((Counts of Carcinoma in Situ Diagnosis (Primary)) > 2 OR (Counts of Carcinoma in 
Situ Diagnosis (Primary)) =.) AND  
 (Axillary Lymph Node Directed Surgery (CPT/HCPCS)) = 0 THEN Predicted Stage 
= 0; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 ((Counts of Carcinoma in Situ Diagnosis (Primary)) > 2 OR (Counts of Carcinoma in 
Situ Diagnosis (Primary)) =.) AND  
 (Axillary Lymph Node Directed Surgery (CPT/HCPCS)) ~= 0 AND  
 ((Counts of Malignant Breast Cancer Diagnosis) <= 15 OR (Counts of Malignant 
Breast Cancer Diagnosis) =.) THEN Predicted Stage = 0; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 ((Counts of Carcinoma in Situ Diagnosis (Primary)) > 2 OR (Counts of Carcinoma in 
Situ Diagnosis (Primary)) =.) AND  
 (Axillary Lymph Node Directed Surgery (CPT/HCPCS)) ~= 0 AND  
 (Counts of Malignant Breast Cancer Diagnosis) > 15 AND  
 (Surgery Specimen Examination) = 0 THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 ((Counts of Carcinoma in Situ Diagnosis (Primary)) > 2 OR (Counts of Carcinoma in 
Situ Diagnosis (Primary)) =.) AND  
 (Axillary Lymph Node Directed Surgery (CPT/HCPCS)) ~= 0 AND  
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 (Counts of Malignant Breast Cancer Diagnosis) > 15 AND  
 (Surgery Specimen Examination) ~= 0 AND  
 ((Counts of Malignant Breast Cancer Diagnosis) <= 25 OR (Counts of Malignant 
Breast Cancer Diagnosis) =.) AND  
 ((Counts of HER-2 Testing) <= 4 OR (Counts of HER-2 Testing) =.) THEN 
Predicted Stage = 0; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 ((Counts of Carcinoma in Situ Diagnosis (Primary)) > 2 OR (Counts of Carcinoma in 
Situ Diagnosis (Primary)) =.) AND  
 (Axillary Lymph Node Directed Surgery (CPT/HCPCS)) ~= 0 AND  
 (Counts of Malignant Breast Cancer Diagnosis) > 15 AND  
 (Surgery Specimen Examination) ~= 0 AND  
 ((Counts of Malignant Breast Cancer Diagnosis) <= 25 OR (Counts of Malignant 
Breast Cancer Diagnosis) =.) AND  
 (Counts of HER-2 Testing) > 4 THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 ((Counts of Carcinoma in Situ Diagnosis (Primary)) > 2 OR (Counts of Carcinoma in 
Situ Diagnosis (Primary)) =.) AND  
 (Axillary Lymph Node Directed Surgery (CPT/HCPCS)) ~= 0 AND  
 (Counts of Malignant Breast Cancer Diagnosis) > 15 AND  
 (Surgery Specimen Examination) ~= 0 AND  
 (Counts of Malignant Breast Cancer Diagnosis) > 25 THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) ~= 0 AND   
 (Surgery Specimen Examination) = 0 AND  
 (Sentinel Lymph Node Biopsy) = 0 THEN Predicted Stage = 3;  
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) ~= 0 AND   
 (Surgery Specimen Examination) = 0 AND  
 (Sentinel Lymph Node Biopsy) ~= 0 THEN Predicted Stage = 2; 
 
IF (Secondary Neoplasm Diagnosis) = 0 AND  
 (Carcinoma in Situ Diagnosis (Principal)) ~= 0 AND  
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 (Axillary Lymph Node Involvement Diagnosis (Secondary)) ~= 0 AND   
 (Surgery Specimen Examination) ~= 0 THEN Predicted Stage = 2; 
 
IF (Secondary Neoplasm Diagnosis) ~= 0 AND  
 (Counts of Breast Surgery) <= 0 THEN Predicted Stage = 4; 
 
IF (Secondary Neoplasm Diagnosis) ~= 0 AND  
 ((Counts of Breast Surgery) > 0 OR (Counts of Breast Surgery) =.) AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 (Surgery Specimen Examination) = 0 AND  
 ((Counts of Secondary Neoplasm Diagnosis) <= 5 OR (Counts of Secondary 
Neoplasm Diagnosis) =.) THEN Predicted Stage = 2; 
 
IF (Secondary Neoplasm Diagnosis) ~= 0 AND  
 ((Counts of Breast Surgery) > 0 OR (Counts of Breast Surgery) =.) AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 (Surgery Specimen Examination) = 0 AND  
 (Counts of Secondary Neoplasm Diagnosis) > 5 THEN Predicted Stage = 4; 
 
IF (Secondary Neoplasm Diagnosis) ~= 0 AND  
 ((Counts of Breast Surgery) > 0 OR (Counts of Breast Surgery) =.) AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) = 0 AND  
 (Surgery Specimen Examination) ~= 0 THEN Predicted Stage = 1; 
 
IF (Secondary Neoplasm Diagnosis) ~= 0 AND  
 ((Counts of Breast Surgery) > 0 OR (Counts of Breast Surgery) =.) AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) ~= 0 AND   
 ((Counts of Stage IV Diagnosis) <= 7 OR (Counts of Stage IV Diagnosis) =.) THEN 
Predicted Stage = 3; 
 
IF (Secondary Neoplasm Diagnosis) ~= 0 AND  
 ((Counts of Breast Surgery) > 0 OR (Counts of Breast Surgery) =.) AND  
 (Axillary Lymph Node Involvement Diagnosis (Secondary)) ~= 0 AND   
 (Counts of Stage IV Diagnosis) > 7 THEN Predicted Stage = 4; 
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Abstract 

Importance— Mixed results exist on the controversial topic of mammography screening 

frequency, especially for women aged 40-49. 

Objective— To evaluate the risk of later-staged disease in women with breast cancer had no 

screening, annual and biennial screening.  

Design—Retrospective observational study from 1999-2013. 

Setting—MarketScan commercial claims database.  

Participants— 65,025 female incident breast cancer cases with continuous enrollment 33 

months prior to and 12 months post the index diagnosis date were identified.   

Exposure— Eligible patients were categorized based on their screening patterns during the 

33 months pre-diagnosis period as non-screeners, annual and biennial screeners.  

Main outcomes and measures— Breast cancer stage 0-IV were predicted by a validated 

algorithm using diagnostic and treatment information from claims.  

Results— Annual screening was associated with less risk of stage IV cancers (Odds ratio 

[OR]=0.63, 95% confidence interval [CI]=0.51-0.77), stage III-IV cancers (OR=0.75, 95% 

CI=0.66-0.82)  and stage II-IV cancers (OR=0.75, 95% CI=0.72-0.78) compared to biennial 

screening. Similar association was observed both among women in their 40s and older. 
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Women older than 50 did not present with more invasive (stage I-IV) than non-invasive 

cancer (stage 0) if received annual rather than biennial screening. 

Conclusions and relevance— Both annual and biennial screening protect women against 

later-staged breast cancer at diagnosis. For women aged 40-64, annual screeners are less 

likely to have later-staged disease then biennial screeners.  

 

Introduction 

Mammography screening has been considered gold standard technique for early 

breast cancer detection, supported by randomized controlled trials ((Gøtzsche & Jørgensen, 

2013; Nelson et al., 2009). Women at average-risk of breast cancer are considered who don’t 

have personal history of breast cancer, previous diagnosis of a high-risk breast lesion, 

BRCA1/2 or other gene mutation related to breast cancer, or no exposure to chest radiation in 

childhood (Oeffinger et al., 2015; Siu, 2016). And the ideal mammography screening interval 

for average risk women has been controversial, according to various screening 

recommendations by governmental organization (Bevers et al., 2018; Lauby-Secretan et al., 

2015; Siu, 2016) and medical societies (Mango, Bryce, Morris, Gianotti, & Pinker, 2018; 

Monticciolo et al., 2017; Oeffinger et al., 2015; Physicians & Physicians, 2012; Wilt, Harris, 

& Qaseem, 2015). In summary, the recommendation discrepancies center on the age of 

starting mammography screening, and the screening interval for women at average risk.  

A longer interval between screening mammograms allows more time for a tumor to 

grow, to become symptomatic and clinically detectable, and therefore, more likely to be at an 

advanced stage. A randomized controlled trial (RCT) found smaller tumor size for breast 
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cancers detected through annual screening compared to triennial screening (The Breast 

Screening Frequency Trial Group, 2002). Annual versus biennial screening has never been 

studied in any RCT up to date. Moreover, the protocol-driven care of RCTs undermines their 

generalizability and doesn’t reflect the real-world pattern mammography screening.  

Empirical studies using real-world data looked at the association between 

mammography screening interval and breast cancer stage at diagnosis. Freedman et al. 

(2003) reviewed clinical records of women with breast cancer and reported that women in 

their 40s were more likely to have DCIS discovered if they had underwent annual screening 

mammography, compared with no or less frequent screening (Freedman et al., 2003). 

Similarly, White et al. (2004) used data from seven participating mammogram registries in 

the National Cancer Institute–funded Breast Cancer Surveillance Consortium (BCSC) and 

reported the elevated risk of screening biennially versus annually in later stage invasive 

breast cancer among women aged 40–49 (White et al., 2004). In a follow-up study with the 

BCSC, Goel et al. (2007) only found higher probability of being diagnosed with advanced 

breast cancer associated with screening intervals greater than 2.5 years, but not for annual or 

biennial screening (Goel, Littenberg, & Burack, 2007).  Concordant with Goel’s findings, 

updated BCSC studies found no such association among women older than 40 (Dittus et al., 

2013; Hubbard et al., 2011; Kerlikowske et al., 2013; Miglioretti et al., 2015; O'Meara et al., 

2013). Although BCSC is a large population-based database, it only consists of women with 

regular screening behavior, and among them only a small proportion developed breast 

cancer. Therefore, the comparison between screeners and non-screener is not available for 

BCSC studies, and small sample size has been one of the limitations (Braithwaite et al., 
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2013; Dittus et al., 2013). Finally, the BCSC studies reported their findings on dichotomized 

cancer outcomes (favorable or not), which may have missed valuable information in specific 

breast cancer stage 0-IV.  

Based on a large population-based database with numerous incident breast cancer 

cases, our study aimed to re-examine the association between the extent of mammography 

screening (i.e., no screening, annual screening and biennial screening) and breast cancer 

stage at diagnosis (stage 0 through stage IV) among women aged 40-64.  

 

Methods 

Data Source 

The MarketScan® Commercial Claims and Encounters Database includes 200 

million employees from approximately 45 large employers and covered by more than 100 

private health insurance companies in the United States. Allowing access to large numbers of 

population over expansive geographic regions, MarketScan has been widely used for 

epidemiological, effectiveness, healthcare utilization and cost research (Sarrazin & 

Rosenthal, 2012). The database contains individual level information on diagnosis codes, 

procedure codes, medication codes, and payments for healthcare utilization.  

Incident breast cancer cases were selected using the Nattinger algorithm ((Nattinger, 

Laud, Bajorunaite, Sparapani, & Freeman, 2004) based on the following criteria: patients 

diagnosed between Jan 1, 1999 and December 31, 2013, continuous enrollment 33 month 

prior and 12 months after the index diagnosis date, females, age at diagnosis between 40-64 

(Figure 1). The index diagnosis date was the first date of definitive breast cancer surgery 
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according to the Nattinger algorithm. We identified claims of screening and diagnostic 

mammography for each patient using Common Procedural Terminology (CPT)/The 

Healthcare Common Procedure Coding System (HCPCS) codes. We then applied the Fenton 

algorithm (Fenton et al., 2014) to exclude mammograms for diagnostic purpose. Three 

groups of screening pattern were defined using the interval(s) between screening 

mammograms with 33 months period before the index diagnosis date: non-screeners had no 

screening record; annual screeners received 2 screening mammograms which were 9-18 

months apart; similarly, biennial screeners had 1 screening mammograms or 2screenings but 

the interval was 19-30 months (Braithwaite et al., 2013; Dittus et al., 2013; Hubbard et al., 

2011; Kerlikowske et al., 2013; O'Meara et al., 2013; White et al., 2004). In sensitivity 

analysis, we applied a more restrictive definition for annual and biennial screeners with 

screening intervals of 11-14 months and 23-26 months, respectively (Miglioretti et al., 2015).  

 

Figure 1: Study flowchart. 
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Measures of Outcome and Covariates  

Due to the lack of clinical information in administrative claims data, breast cancer 

stage was predicted based on the diagnoses, medical procedures, and prescriptive medication 

received by each eligible patient in the 22 months study period (12 months prior and 10 

months post the index diagnosis date) using the validated algorithm developed in the first 

journal article of this dissertation. Based on the validated Fenton algorithm that determined 

the detecting method of an incidence breast cancer, we categorized incidence cases 

diagnosed within one year of the most recent screening mammogram as detected by 

screening (Fenton et al., 2014). We measured primary care utilization as routine health 

management by counting the number of claims with specialty codes for a primary care 

physician and the place of service being outpatient clinic or office (Krause, Ganduglia-

Cazaban, Piller, & Venkataraman) from the 3rd month and back to the 33rd month prior to 

index diagnosis date (30 months in total). The counts of claims were further grouped into 

quantiles. The age at diagnosis of patients was also categorized into 5-year intervals. Patients 

were determined to be post-menopausal if aged 55 or older at diagnosis, ever used fulvestrant 

or aromatase inhibitors (i.e., anastrozole, letrozole, or exemestane) as treatment, ever 

received bilateral oophorectomy, or had an ICD-9 diagnosis code related to postmenopausal 

status (Li et al., 2016; Miglioretti et al., 2015). The patient’s comorbidity was measured 

using the Charlson Comorbidity Index (CCI) (Charlson, Pompei, Ales, & MacKenzie, 1987) 
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using ICD-9 diagnosis and surgical codes from claims 12 months prior to the index diagnosis 

date. In addition, we further categorized CCI scores into 3 classes (0, 1, and >=2).  

 

Statistical Analysis 

Patient characteristics at diagnosis of comparison groups were reported descriptively 

and compared using the chi-square test. We fitted a partial proportional odds model because 

the proportional odds assumption that assuming the same relationship between each pair of 

outcome groups was violated for predictive variables. The analyses were further stratified 

into women in ages 40-49 and 50-64. The data preparation and analyses were performed with 

SAS Enterprise Guide 6.1 (SAS Institute Inc, Cary, NC).  

 

Results 

Patient characteristics by screening group are presented in Table 1. Among 65,025 

patients with breast cancer, 21.5% had no previous screening in the previous 33 months 

before their diagnosis, 38.1% were classified as annual screeners, and 40.4% were considered 

biennial screeners. Using the more restrictive definition of screening intervals, 11,335 

patients were excluded because their screening pattern did not match our definitions. As a 

result, the proportions of biennial and annual screeners decreased (34.6% and 39.4% 

respectively). Compared to the no screening group, biennial screeners were slightly older 

while annual screeners were much older. Among the 3 groups, annual screeners used the 

most primary care, followed by biennial screeners, and finally the non-screeners, which was 

consistent with their screening behavior. Compared to biennial screeners, annual screeners 
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had slightly lower CCI scores. In fact, CCI scores were comparable between women with no 

screening and biennial screening. For screeners, more than half of the cancers were detected 

by screening. Particularly, there were more screening detected cancers among the annual than 

biennial screeners. More women in the annual screening group were post-menopausal 

compared to the other groups. In general, the distribution of variables were similar between 

our primary and the alternative and more restricted definition of screening groups, except the 

proportions of screening detected cancer decreased  more than 10% for both screening 

groups.  

The staging algorithm estimated the majority of breast cancer cases to be stages I and 

II. The overestimation of stages I and II was the result of applying the Nattinger algorithm to 

identify incident breast cancer and the staging algorithm to estimate breast cancer stage at 

diagnosis. The Nattinger algorithm can only identify breast cancer cases who received breast 

surgery. The staging algorithm misclassifies less than half of the true stage II cases as stage I, 

and stage III as stage II. However, we assumed that the misclassification pattern to be the 

same across different screening groups we didn’t expect that patients with different screening 

behavior prior to the diagnosis were treated differently.  

 

Table 1: Patient's characteristics by screening group.    

  Primary Definition of Screening 
Pattern  

Alternative Definition of Screening 
Pattern  

  
No 

Screenin
g 

Biennia
l 

Annua
l 

p-
value 

No 
Screenin

g 

Biennia
l 

Annua
l 

p-
value 

N 13,998 26,272 24,755   13,998 21,133 18,559   
Age, %          
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40-44 13.2 11.0 6.3 

<.000
1 

13.2 12.1 6.0 

<.000
1 

45-49 18.2 17.6 14.7 18.2 17.8 14.2 
50-54 21.8 22.8 22.2 21.8 22.6 21.8 
55-59 23.9 24.8 27.4 23.9 24.5 27.7 
60-64 22.8 23.9 29.4 22.8 23.1 30.2 

Primary Care Visits, %        
0-2 38.5 29.9 20.4 

<.000
1 

38.5 30.7 19.7 
<.000

1 
3-6 25.0 27.4 26.2 25.0 27.1 26.2 
7-10 16.8 19.7 23.4 16.8 19.5 23.5 
>10 19.6 23.0 30.1 19.6 22.7 30.6 

Charlson Comorbidity Index         
0 85.7 84.9 86.1 

<.000
1 

85.7 85.1 86.2 
<.000

1 1 10.9 11.8 11.3 10.9 11.6 11.2 
>=2 3.4 3.3 2.7 3.4 3.4 2.6 

Screening Detected Cancer, %        

Yes 0.0 57.7 65.2 <.000
1 0.0 47.5 52.5 <.000

1 
Post-Menopausal Status, %        

Yes 74.7 75.8 81.7 <.000
1 74.7 74.8 82.2 <.000

1 
Estimated Cancer Stage, %        
Stage 0 2.3 3.4 3.0 

<.000
1 

2.3 3.4 2.9 

<.000
1 

Stage I 34.5 64.9 72.5 34.5 62.3 72.4 
Stage II 51.9 26.4 20.7 51.9 28.6 20.8 
Stage 

III 8.3 4.3 3.2 8.3 4.6 3.3 

Stage 
IV 2.9 1.0 0.6 2.9 1.1 0.6 

 

 

We calculated the odds ratios of stage IV versus stage 0-III, stage III-IV versus stage 

0-II, stage II-IV versus stage 0-I, and stage I-IV versus stage 0 for women diagnosed with 

breast cancer with no screening, annual screening or biennial screening in Table 2. The 
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partial proportional odds models were adjusted for age at diagnosis, primary care visits, CCI 

scores, method of cancer detection, and menopausal status.  

Generally, we found that annual and biennial screening substantially reduced the odds 

of having more advanced stage at diagnosis compared to no screening.  In addition, the 

protective effect of screening against more advanced breast cancer was more considerable for 

later stages. Annual screening did not increase the odds of developing invasive breast cancer 

than no screening. Moreover, neither annual nor biennial screening was associated with 

having invasive versus non-invasive disease when we applied the narrow screening interval 

definitions. Among the regular screeners, more frequent screening decreased the odds of 

having more advanced (stage II and above) cancer. However, no association was observed 

between screening interval and invasive stage I through IV breast cancer. In the cohort 

identified with alternative screening pattern definition, the above associations were 

consistently observed.  

 

Table 2. Multivariable associations of mammography screening pattern with breast cancer 
stage at diagnosis. 

    Primary Definition of Screening Pattern  Primary Definition of Screening Pattern  

    OR 95% Confidence Interval P-
value OR 95% Confidence Interval P-

value 

Stage IV vs. Stage 0-III 

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.333 ( 0.271 , 0.409 ) <.0001 0.32 ( 0.255 , 0.403 ) <.0001 

Biennial 
vs.  
No 

Screening 

0.529 ( 0.445 , 0.629 ) <.0001 0.542 ( 0.454 , 0.647 ) <.0001 
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Annual 
vs. Biennial 0.629 ( 0.514 , 0.77 )   0.591 ( 0.472 , 0.741 )   

Age 

40-44 Reference Reference 

45-49 1.234 ( 0.932 , 1.634 ) 0.1426 1.248 ( 0.936 , 1.664 ) 0.131 

50-54 1.297 ( 0.99 , 1.7 ) 0.0588 1.289 ( 0.976 , 1.702 ) 0.0733 

55-59 1.104 ( 0.828 , 1.473 ) 0.4998 1.161 ( 0.863 , 1.561 ) 0.323 

60-64 0.963 ( 0.718 , 1.294 ) 0.8043 0.975 ( 0.719 , 1.322 ) 0.8681 

Primary Care 
Visits 

0-2 Reference Reference 

3-6 1.009 ( 0.966 , 1.054 ) 0.6857 0.997 ( 0.951 , 1.046 ) 0.9155 

7-10 0.982 ( 0.936 , 1.03 ) 0.4474 0.957 ( 0.909 , 1.007 ) 0.093 

>10 0.982 ( 0.938 , 1.028 ) 0.4363 0.955 ( 0.909 , 1.004 ) 0.07 

Screening Detected  
vs.  

Symptomatic Cancer 
0.384 ( 0.315 , 0.47 ) <.0001 0.428 ( 0.344 , 0.534 ) <.0001 

Post- 
vs.  

Pre-Menopausal 
1.23 ( 1.011 , 1.496 ) 0.0387 1.185 ( 0.967 , 1.452 ) 0.1025 

Charlson 
Comorbidity 

Index  

0 Reference Reference 

1 1.389 ( 1.138 , 1.696 ) 0.0012 1.403 ( 1.14 , 1.728 ) 0.0014 

>=2 1.943 ( 1.434 , 2.634 ) <.0001 1.936 ( 1.408 , 2.664 ) <.0001 
                  

Stage III-IV vs. Stage 0-II 

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.467 ( 0.425 , 0.514 ) <.0001 0.47 ( 0.424 , 0.522 ) <.0001 

Biennial 
vs.  
No 

Screening 

0.619 ( 0.57 , 0.673 ) <.0001 0.642 ( 0.589 , 0.699 ) <.0001 

Annual 
vs. Biennial 0.754 ( 0.662 , 0.821 )   0.733 ( 0.666 , 0.807 )   

Age 

40-44 Reference Reference 

45-49 0.982 ( 0.869 , 1.11 ) 0.7701 0.971 ( 0.854 , 1.105 ) 0.6583 

50-54 0.898 ( 0.796 , 1.012 ) 0.0779 0.911 ( 0.803 , 1.033 ) 0.1446 

55-59 0.715 ( 0.629 , 0.812 ) <.0001 0.75 ( 0.656 , 0.858 ) <.0001 
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60-64 0.622 ( 0.546 , 0.709 ) <.0001 0.653 ( 0.569 , 0.75 ) <.0001 

Primary Care 
Visits 

0-2 Reference Reference 

3-6 1.009 ( 0.966 , 1.054 ) 0.6857 0.997 ( 0.951 , 1.046 ) 0.9155 

7-10 0.982 ( 0.936 , 1.03 ) 0.4474 0.957 ( 0.909 , 1.007 ) 0.093 

>10 0.982 ( 0.638 , 1.028 ) 0.4363 0.955 ( 0.909 , 1.004 ) 0.07 

Screening Detected  
vs.  

Symptomatic Cancer 
0.525 ( 0.483 , 0.571 ) <.0001 0.535 ( 0.487 , 0.587 ) <.0001 

Post- 
vs.  

Pre-Menopausal 
1.412 ( 1.288 , 1.549 ) <.0001 1.359 ( 1.232 , 1.498 ) <.0001 

Charlson 
Comorbidity 

Index  

0 Reference Reference 

1 1.288 ( 1.166 , 1.421 ) <.0001 1.296 ( 1.166 , 1.439 ) <.0001 

>=2 1.491 ( 1.261 , 1.763 ) <.0001 1.525 ( 1.279 , 1.818 ) <.0001 
                  

Stage II-IV vs. Stage 0-I 

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.334 ( 0.317 , 0.351 ) <.0001 0.341 ( 0.323 , 0.361 ) <.0001 

Biennial 
vs.  
No 

Screening 

0.444 ( 0.423 , 0.465 ) <.0001 0.476 ( 0.543 , 0.5 ) <.0001 

Annual 
vs. Biennial 0.753 ( 0.723 , 0.784 )   0.717 ( 0.685 , 0.751 )   

Age 

40-44 Reference Reference 

45-49 0.896 ( 0.838 , 0.959 ) 0.0015 0.884 ( 0.822 , 0.95 ) 0.0008 

50-54 0.737 ( 0.69 , 0.788 ) <.0001 0.731 ( 0.681 , 0.785 ) <.0001 

55-59 0.608 ( 0.567 , 0.653 ) <.0001 0.609 ( 0.564 , 0.75 ) <.0001 

60-64 0.558 ( 0.519 , 0.599 ) <.0001 0.558 ( 0.517 , 0.603 ) <.0001 

Primary Care 
Visits 

0-2 Reference Reference 

3-6 1.009 ( 0.966 , 1.054 ) 0.6857 0.997 ( 0.951 , 1.046 ) 0.9155 

7-10 0.982 ( 0.936 , 1.03 ) 0.4474 0.957 ( 0.909 , 1.007 ) 0.093 

>10 0.982 ( 0.938 , 1.028 ) 0.4363 0.955 ( 0.909 , 1.004 ) 0.07 

Screening Detected  
vs.  

Symptomatic Cancer 
0.4 ( 0.385 , 0.417 ) <.0001 0.391 ( 0.374 , 0.409 ) <.0001 
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Post- 
vs.  

Pre-Menopausal 
1.607 ( 1.528 , 1.69 ) <.0001 1.603 ( 1.518 , 1.693 ) <.0001 

Charlson 
Comorbidity 

Index  

0                

1 1.153 ( 1.092 , 1.217 ) <.0001 1.173 ( 1.105 , 1.245 ) <.0001 

>=2 1.152 ( 1.044 , 1.271 ) 0.005 1.175 ( 1.056 , 1.307 ) 0.0032 
                  

Stage I-IV vs. Stage 0                

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.962 ( 0.825 , 1.123 ) 0.6262 0.988 ( 0.838 , 1.165 ) 0.8874 

Biennial 
vs.  
No 

Screening 

0.885 ( 0.763 , 1.026 ) 0.1059 0.853 ( 0.733 , 0.993 ) 0.0406 

Annual 
vs. Biennial 1.087 ( 0.984 , 1.202 )   1.158 ( 1.032 , 1.3 )   

Age 

40-44 Reference Reference 

45-49 1.26 ( 1.077 , 1.475 ) 0.004 1.207 ( 1.016 , 1.435 ) 0.0322 

50-54 1.187 ( 1.016 , 1.386 ) 0.0303 1.154 ( 0.972 , 1.368 ) 0.1011 

55-59 1.046 ( 0.87 , 1.258 ) 0.6319 0.969 ( 0.79 , 1.188 ) 0.7635 

60-64 1.25 ( 1.034 , 1.51 ) 0.0209 1.203 ( 0.974 , 1.486 ) 0.0859 

Primary Care 
Visits 

0-2 Reference Reference 

3-6 1.009 ( 0.966 , 1.054 ) 0.6857 0.997 ( 0.951 , 1.046 ) 0.9155 

7-10 0.982 ( 0.936 , 1.03 ) 0.4474 0.957 ( 0.909 , 1.007 ) 0.093 

>10 0.982 ( 0.938 , 1.028 ) 0.4363 0.955 ( 0.909 , 1.004 ) 0.07 

Screening Detected  
vs.  

Symptomatic Cancer 
0.655 ( 0.588 , 0.729 ) <.0001 0.674 ( 0.598 , 0.759 ) <.0001 

Post- 
vs.  

Pre-Menopausal 
2.238 ( 1.967 , 2.545 ) <.0001 2.327 ( 2.015 , 2.688 ) <.0001 

Charlson 
Comorbidity 

Index  

0 Reference Reference 

1 0.973 ( 0.841 , 1.125 ) 0.7122 0.9 ( 0.769 , 1.055 ) 0.1944 

>=2 1.717 ( 1.211 , 2.436 ) 0.0024 1.666 ( 1.133 , 2.45 ) 0.0095 
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Stratification by age revealed additional patterns (Table 3). Among women in their 

40s, annual screeners were more likely to have invasive breast cancer than biennial screeners. 

Additionally, with narrow screening intervals, the advantage of annual over biennial 

screening in avoiding stage II and IV cancers was no longer significant. However, the odds 

of being diagnosed with stage II-IV cancer was still smaller with annual screening compared 

to biennial screening. The findings from women aged 50-64 years were similar to the main 

model, since they consisted of two thirds of our study cohort.  

 

Table 3. Multivariable associations of mammography screening pattern with breast cancer 
stage at diagnosis by age. 

    Primary Definition of Screening Pattern  Primary Definition of Screening Pattern  

    OR 95% Confidence Interval P-value OR 95% Confidence Interval P-value 

Age 40-49 

Stage IV vs. Stage 0-III 

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.306 ( 0.196 , 0.479 ) <.0001 0.365 ( 0.227 , 0.588 ) <.0001 

Biennial 
vs.  
No 

Screening 

0.614 ( 0.445 , 0.847 ) 0.003 0.641 ( 0.461 , 0.89 ) 0.0025 

Annual 
vs. Biennial 0.498 ( 0.325 , 0.765 )   0.57 ( 0.359 , 0.905 )   

Stage III-IV vs. Stage 0-II 

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.505 ( 0.422 , 0.604 ) <.0001 0.534 ( 0.437 , 0.652 ) <.0001 
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Biennial 
vs.  
No 

Screening 

0.693 ( 0.599 , 0.803 ) 0.0006 0.726 ( 0.626 , 0.843 ) 0.0079 

Annual 
vs. Biennial 0.728 ( 0.62 , 0.855 )   0.735 ( 0.611 , 0.885 )   

Stage II-IV vs. Stage 0-I                           

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.311 ( 0.282 , 0.343 ) <.0001 0.317 ( 0.285 , 0.353 ) <.0001 

Biennial 
vs.  
No 

Screening 

0.424 ( 0.388 , 0.463 ) <.0001 0.454 ( 0.415 , 0.497 ) <.0001 

Annual 
vs. Biennial 0.733 ( 0.677 , 0.794 )   0.699 ( 0.638 , 0.766 )   

Stage I-IV vs. Stage 0                           

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.945 ( 0.72 , 1.243 ) 0.6909 0.908 ( 0.678 , 1.216 ) 0.5178 

Biennial 
vs.  
No 

Screening 

0.774 ( 0.602 , 0.995 ) 0.0455 0.707 ( 0.549 , 0.912 ) 0.0075 

Annual 
vs. Biennial 1.222 ( 1.022 , 1.463 )   1.284 ( 1.042 , 1.582 )   

Age 50-64 
Stage IV vs. Stage 0-III                           

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.337 ( 0.267 , 0.425 ) <.0001 0.31 ( 0.239 , 0.403 ) <.0001 

Biennial 
vs.  
No 

Screening 

0.493 ( 0.401 , 0.606 ) <.0001 0.504 ( 0.407 , 0.624 ) <.0001 

Annual 
vs. Biennial 0.684 ( 0.543 , 0.862 )   0.615 ( 0.474 , 0.798 )   

Stage III-IV vs. Stage 0-II                           
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Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.446 ( 0.399 , 0.5 ) <.0001 0.443 ( 0.392 , 0.502 ) <.0001 

Biennial 
vs.  
No 

Screening 

0.581 ( 0.524 , 0.644 ) <.0001 0.6 ( 0.54 , 0.667 ) <.0001 

Annual 
vs. Biennial 0.768 ( 0.695 , 0.85 )   0.739 ( 0.66 , 0.828 )   

                  
Stage II-IV vs. Stage 0-I                           

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.344 ( 0.324 , 0.366 ) <.0001 0.352 ( 0.33 , 0.375 ) <.0001 

Biennial 
vs.  
No 

Screening 

0.453 ( 0.428 , 0.48 ) <.0001 0.487 ( 0.459 , 0.517 ) <.0001 

Annual 
vs. Biennial 0.76 ( 0.725 , 0.796 )   0.722 ( 0.685 , 0.761 )   

Stage I-IV vs. Stage 0                           

Screening 
Pattern 

Annual 
vs.  
No 

Screening 

0.966 ( 0.801 , 1.165 ) 0.7162 1.018 ( 0.833 , 1.244 ) 0.8591 

Biennial 
vs.  
No 

Screening 

0.954 ( 0.794 , 1.148 ) 0.62 0.948 ( 0.783 , 1.147 ) 0.5811 

Annual 
vs. Biennial 1.012 ( 0.896 , 1.143 )   1.075 ( 0.933 , 1.238 )   

 

Discussion 

This observational study found substantial protective effects against being diagnosed 

with more advanced breast cancer with regular and more frequent mammography screening. 

However, those associations were not significant when comparing the odds of having 
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invasive cancer and non-invasive cancer except for the subgroup analysis among women 

aged 40-49.  

In supplement to previous studies among women older than 65 (Badgwell et al., 

2008; Galit, Green, & Lital, 2007; McCarthy et al., 2000; Vyas, Madhavan, & 

Sambamoorthi, 2014), we found that regular and more frequent mammography screening 

were associated with earlier cancer stage for women aged 40-64. However, the BCSC studies 

conducted including women in the younger age showed mixed results. The first BCSC 

finding (White et al., 2004) of the elevated risk of later stage invasive breast cancer 

associated with biennially versus annually was no longer statistically significant in the later 

BCSC studies (Dittus et al., 2013; Hubbard et al., 2011; Kerlikowske et al., 2013; Miglioretti 

et al., 2015; O'Meara et al., 2013). However, the similar trend observed in the later studies 

cannot rule out that the small number of incident cancers led to the broad confidence interval 

of their estimates (Hubbard et al., 2011). The BCSC studies first identified women with use 

of screening mammography, then followed them up for breast cancer development, which 

only yield a few thousands of incident breast cancer cases. Unlike the BCSC study design, 

our study started with women with incident breast cancer, and worked backwards to identify 

their mammography screening pattern. Therefore, our study cohort included over 60,000 

incident breast cancer cases from 14 years of data, which explained our clinically significant 

findings between annual versus no screening, biennial versus no screening, and also annual 

versus biennial screening. Another feature of the BCSC cohort was that it included primarily 

more health conscious women receiving screening mammography in community practice. 
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Therefore, the BCSC database was not suitable to study the risk of later breast cancer stage 

comparing regular screeners to non-screeners.  

 

Changing from wider screening intervals to classify women as annual or biennial 

screener to narrower ones (9-18 months vs. 11-14 for annual screening; 19-30 months vs. 23-

26 biennial screening) didn’t affect the conclusions. The intention of using alternative 

definitions was to evaluate a subgroup of women who were more closely adhere to the 

screening schedule. Consistent with the most recent BCSC study, our findings did not change 

with the definitions of screening intervals.  

Our study found that women aged 40-49 would still benefit from regular and more 

intense mammography screening, which was in contrast to other BCSC studies (Hubbard et 

al., 2011; Miglioretti et al., 2015). However, Kerlikowske et al. (2013) did find increased risk 

of advanced-stage breast cancer among women with extremely dense breasts receive biennial 

instead of annual screening.  

One interesting finding in our stratified analyses by age was the reversed effect of that 

annual screeners were more likely to be diagnosed with invasive versus non-invasive cancers 

than biennial screeners among women aged 40-49. This might be the result of missing 

confounders in our model. For example, women in their 40s might have self-selected to have 

more frequent screening because they were at higher risk of breast cancer. Unfortunately, 

with medical claims data, one is unable to accurately identify the risk breast cancer of 

patients based on genetic testing results and childhood chest radiation. Another possibility is 
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that we only find the association by chance, which explains the wide confidence interval 

close to 1.  

Our findings are subject to several limitations. Due to the lack of clinical information 

in the commercial medical claims database, we have to predict breast cancer stage at 

diagnosis based on a validated algorithm using information extracted from claims including 

diagnosis codes, diagnostic and surgical procedures, treatment regimens and prescriptive 

medication. The algorithm has high accuracy predicting stage 0 and I cancers. However, it 

has less accuracy distinguishing stage II from stage I cases, as well as stage III from stage II 

because of the similarities in the treatment recommendations from the NCCN guidelines 

(Bevers et al., 2018). Therefore, the predicted disease stages are expected to be skewed 

towards stage I and II, as what we have seen in our stage distributions. However, we assume 

that the predicting error is systematic that similar misclassification is expected in every 

screening group. Because it is reasonable to believe that the medical practice of breast cancer 

diagnosis and treatment, as well as claims documentation don’t change with a patient’s 

previous mammography screening behavior.  

The generalizability of our study is limited because of the eligibility criteria we use to 

select our study cohort. First, incident breast cancer cases are identified using Nattinger 

algorithm, which requires breast directed surgery to be eligible. Our study cohort therefore 

are missing a portion of non-invasive and metastatic cancers because they are not candidate 

for surgery. Second, continuous enrollment of 45 months is one of our eligibility criteria, 

which means patients need to be stably employed for almost 4 years. The fact that 
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commercial claims database consists of individuals covered by private insurance makes our 

findings less generalizable to population with low socioeconomic status.  

Another limitation is, factors such as body mass index (BMI), race/ethnicity, and 

family history of cancer can potentially confound our results. Previous studies have identified 

elevated risk of more advanced stage associated with biennial versus annual screening among 

Hispanic women aged 50-74 years, Asian women aged 40-49 (O’Meara et al., 2013), 

premenopausal women (Miglioretti et al., 2015), premenopausal obese women (Dittus et al., 

2013), and women with extremely dense breast (Kerlikowske et al., 2013). As a secondary 

analysis of a retrospective cohort using administrative claims data, lacking of clinical 

information has always been a limitation. However, considering the magnitude of association 

found in our study, it is unlikely that the difference in risk can be fully explained by BMI, 

race/ethnicity, and family history.  

Although our analyses have shown substantial benefits of regular and more frequent 

against more advanced breast cancer, the decision about the appropriate screening interval 

should be an individual after weighting associated benefits and harms. Other factors for 

consideration include false-positive mammograms, diagnostic tests and surgical procedures, 

costs and psychological anxiety. Ideally, our findings should be further confirmed with 

another large population-based commercial claims database linked with verified clinical 

information.  

 

Conclusion 



 
 

64 
 

Women with regular and more intense mammography screening (annual vs. biennial) 

are less likely to be diagnosed at later disease stage for women younger or older than 50. In 

the absence of head to head RCT comparing annual to biennial screening, one important use 

of our results is in decision models that predict the effectiveness or cost-effectiveness of 

various screening strategies (Mandelblatt et al., 2009; O'Donoghue, Eklund, Ozanne, & 

Esserman, 2014; Schousboe, Kerlikowske, Loh, & Cummings, 2011; Stout et al., 2014; Van 

Ravesteyn et al., 2012). The results of current study add to the evidence of the potential 

benefits and harms of mammography screening. Our findings can also help healthcare 

professionals in guideline development, decision makers and advocate groups in screening 

campaign planning, and women in decision making on screening intervals.  
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Commercially Insured Women Aged 40-64 

Health Affairs 

 

Abstract 

Mammography screening saves lives, but the appropriate screening interval for 

younger women remains controversial. Little is known about the financial burden borne by 

health plan payers and women with breast cancer. From the perspective of insurers and 

patients, our study provides dollar estimates of healthcare costs from patients with different 

screening behavior (annual, biennial and none) identified 33 months before cancer diagnosis 

based on the MarketScan commercial claims database in the years 1999-2014. A generalized 

linear model was used to adjust for potential confounders. The first-year healthcare costs 

from payer’s perspective for no screening, annual screening and biennial screening were 

$117,317, $99,615, and $103,364, respectively. And the out-of-pocket costs paid by patients 

were $7,237, $6,660, and $6,569. The reported estimates appear to be much higher than 

previously documented. For health plan payers, there are cost savings associated with regular 

and more frequent screening. For patients, regular screening reduces out-of-pocket costs but 

the difference under different screening intervals is minimal. While regular mammography 

screening substantially reduces healthcare costs, the decision of annual versus biennial 

screening should be based on individual weighing of the benefits and harms.  
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Introduction 

Breast cancer is the most common cancer and second leading cause of cancer death 

among women in the United States (Street 2019). Over the years of 1989 to 2016, the female 

breast cancer mortality has been decreasing steadily due to early detection (Howlader et al., 

2019). Screening mammography is considered the gold standard in breast cancer detection. 

Controversially, large organizations like the US Preventive Services Task Force (USPSTF) 

and the American Cancer Society (ACS) endorse different mammography screening intervals 

for average-risk women, based on different interpretations on the existing evidences: the 

USPSTF suggests biennial screening (Siu, 2016), while the ACS recommended annual 

screening for women ages 40-54 and biennial screening for women older than 55 (Oeffinger 

(Oeffinger et al., 2015). In line with the controversies, the Affordable Care Act requires that 

all new health insurance plans to fully cover the costs mammography screening for women 

older than 40 every 1-2 years with no deductibles or copayments or otherwise share costs 

since 2010 (Cassidy, 2010). So far, there is no real-world evidence revealing the financial 

implications for both insurance payers and breast cancer patients following annual or biennial 

screening recommendations.   

Multiple simulation models have been built to predict the cost, effectiveness, and 

cost-effectiveness of different breast cancer screening strategies (Lindfors & Rosenquist, 

1995; Rosenquist & Lindfors, 1998; Stout et al., 2014). With the modeling approach, the 

short- or long-term per patient healthcare costs were predicted based on the number of breast 

cancer cases detected, and the corresponding treatment costs by stage. These estimations 
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were mainly based on various modeling assumptions and may not represent of the real-world 

financial burdens. Moreover, most of the modeling studies were conducted from a societal or 

healthcare payer perspective, but rarely from a patient’s perspective. Farley et al. (2015) 

reported the observed healthcare costs by stage using Medicaid claims data linked to the 

Georgia Comprehensive Cancer Registry (Farley et al., 2015). They also simulated the cost 

of treatment under the USPSTF and ACS screening guidelines respectively and compared the 

observed cost to the simulated ones. Their findings suggested that per patient healthcare costs 

under the ACS guidelines was lower than the observations ($4,171), while the USPSTF 

scenario resulted in a higher cost than observed ($2,188). However, their cost estimation was 

based on a limited sample of 274 African-America female breast cancer patients from the 

Georgia Cancer Registry, which restricted the generalizability of their findings. In addition, 

the use of the Georgia Medicaid claims data only informed the costs of breast cancer 

treatment incurred to the state-level Medicaid program covering low-income and 

disadvantaged population.  

The objective of this study was to estimate the per patient healthcare costs in the 

initial and continuing treatment phases of incident breast cancer associated with different 

mammography screening intervals, from a large U.S. commercial insurance claims database. 

The real-world cost estimates-as opposed to model simulated numbers-provide more realistic 

evidence to help health insurance, healthcare providers, employees, and healthcare 

organizations to advocate and promote more appropriate mammography screening.  

 

Methods 
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Data Source and Study Population 

In this retrospective case-control study, the MarketScan® Commercial Claims and 

Encounters and Medicare Supplemental and Coordination of Benefits Database was used to 

identify the study population and perform cost analyses. This study was based on all 

healthcare costs because we took the perspective of healthcare payers. The MarketScan 

claims database includes de-identified employees, spouses and dependents in employer-

sponsored private insurance in the U.S., tracked across healthcare systems. With over 300 

employers and 40 health plans, the MarketScan claims database contains fully paid and 

adjudicated service level claims for 150 million unique persons. The claims database 

captures information on enrollment, healthcare utilization and expenditures for prescription 

drugs and outpatient and inpatient encounters. This claims and encounters database contains 

detailed tables of enrollment information, inpatient admissions, facility information, inpatient 

and outpatient services, outpatient pharmaceutical claims, aggregated populations 

information, and annual enrollment summaries. Therefore, the MarketScan database enables 

the analysis of real-world treatment patterns and costs. The analysis of this de-identified 

database was exempt from institutional human subjects review.  

From the MarketScan database, we selected female breast cancer incident cases of 

women older than 40 at time of diagnosis between the years of 1/1/1999-10/1/2014 using a 

modified algorithm (Nattinger, Laud, Bajorunaite, Sparapani, & Freeman, 2004). According 

to the algorithm, the index diagnosis date for each case was defined as the date of first breast 

cancer surgery. Eligible women should be continuously enrolled in health insurance plan 33 



 
 

72 
 

months before and until 12 months after diagnosis index date to allow observation of biennial 

screening (30 months) plus diagnosis period (3 months), and to capture all healthcare costs.  

 

Figure 1: Study flowchart. 

 

 

Eligible women after inclusion/exclusion criteria were categorized based on their 

mammography screening behavior before breast cancer diagnosis. Screening mammography 

was identified and distinguished from diagnostic mammography using a 3-step claims-based 

algorithm (Fenton et al., 2014). The algorithm is expected to identify screening 

mammograms with 97.1% sensitivity, 69.4% specificity, and a positive predictive value of 

94.9%. The categories of screening pattern were defined as follows: non-screeners had 0 

mammogram in the 33 months before the index diagnosis date; annual screeners had 2 

screening mammograms in 33 months from the index diagnosis date, which are 9-18 months 

apart; biennial screeners had 1 screening mammogram 33 months from the index diagnosis 
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date, or have 2 screening mammograms in 33 months from the index diagnosis date, which 

are 19-30 months apart.  

 

Costs Estimation and Statistical Analysis 

Baseline characteristics were compared among the 3 groups of breast cancer incident 

cases based on screening pattern. The primary outcomes were the mean model-adjusted 

healthcare costs among the 3 groups in the 3 months prior to the index date and 1 year after 

(27 months in total) discussed in the following paragraph. We included the costs 3 months 

before the index date to cover any possible neoadjuvant therapy before definitive breast 

surgery. The healthcare costs in our study were assessed from 3 different perspectives: 

insurance payer perspective (insurer costs), patient perspective (out-of-pocket costs), and 

payer plus patient perspective (allowed amounts). The total amounts paid by health insurance 

plans were the main outcome of interest because these numbers were the most accurate in 

commercial administrative claims data. In addition, we reported the total allowed amounts 

payable to providers includes payments from the health insurance plans, patients, and any 

other sources. Out-of-pocket costs were payments made by patients that included copayment, 

coinsurance and deductibles.  

We measured and included the following variables as covariates: age at diagnosis, 

type of insurance plan, employment status, geographic area, the Charlson Comorbidity Index 

(CCI) score (Charlson, Pompei, Ales, & MacKenzie, 1987), psychiatric diagnostic groups 

(PDG) score (Ashcraft et al., 1989), counts of primary care visits in the past year, whether 

cancer was screening detected, and menopausal status. Incident cancer cases following a 
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screening mammography less than a year were considered screening detected by a validated 

algorithm (Fenton et al., 2016). Women older than 55 years, who used fulvestrant or 

aromatase inhibitors treatment, had bilateral oophorectomy or an International Classification 

of Diseases  (ICD)-9 diagnosis code related to postmenopausal status were considered post-

menopausal (Li et al., 2016; Miglioretti et al., 2015).  

The 3 types of healthcare costs were adjusted by different generalized linear models 

with log-link function and gamma distribution (Glick, Doshi, Sonnad, & Polsky, 2014). 

Akaike Information Criterion (AIC) value (Akaike, 1981) was used to find the best fit of 

model. All healthcare costs were inflated to 2018 US dollars using the Medical Care 

component of the U.S. Bureau of Labor Statistics Consumer Price Index (CPI) 

(www.bls.gov; accessed September 30, 2019). The model adjusted costs were reported by 3 

screening groups, and further stratified by age groups 40-49 and 50-64. 

 

Results 

We identified 13,998 non-screeners, 24,755 annual screeners, and 26,272 biennial 

screeners (Table 1). On average, annual screeners were older, post-menopausal at diagnosis, 

with more cancer detected by screening mammography, had more primary visits but the 

lowest pre-diagnosis healthcare costs. Biennial screeners had the highest proportion of full 

time employees, followed by annual screener and then non-screeners. Overall, more than half 

of the patients were covered by a preferred provider organization. Highest percentage of 

patients resided in the East North Central region (Illinois, Indiana, Michigan, Ohio, and 

http://www.bls.gov/
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Wisconsin) and South Atlantic region (Delaware, Maryland, Virginia, West Virginia, North 

Carolina, South Carolina, Georgia, Florida, and the District of Columbia).  

 

Table 1: Patient's characteristics by screening group. 

  Primary Definition of Screening 
Pattern  

  No 
Screening Annual Biennial p-

value 

N 13,998 24,755 26,272   
Enrollment duration, months    

Mean 50.8 46.3 47.6 <.0001 

SD 35.5 31.1 32.6 
Age at Diagnosis, years     

Mean 53.2 55.0 53.7 <.0001 SD 6.8 6.1 6.6 
Charlson Comorbidity Index     

Mean 0.2 0.2 0.2 <.0001 SD 0.6 0.5 0.6 
Psychiatric diagnostic groups scores   

Mean 0.1 0.1 0.1 <.0001 SD 0.4 0.4 0.5 
Primary Care Visits, counts    

Mean 6.3 8.5 7.1 <.0001 SD 8.1 8.0 7.5 
Screening Detected Cancer, %    

Yes 0.0 65.2 57.7 <.0001 
Post-Menopausal Status, %    

Yes 74.7 81.7 75.8 <.0001 
Health insurance plan type, %    

Comprehensive 9.7 7.2 7.4 
<.0001 

EPO/unknown 1.1 1.0 1.2 
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HMO/POS with 
capitation/ 

POS 
26.6 27.5 30.9 

PPO 57.7 56.8 54.2 

CDHP/HDHP 4.9 7.6 6.3 

Employment status, %     

Active full time 47.2 49.1 51.9 

<.0001 

Active part time 
or seasonal 0.8 1.0 1.0 

Retired 21.2 23.6 20.7 

COBRA 
beneficiary 
(continue)/ 
long-term 
disability/ 
surviving 

spouse/dependent 

1.4 0.9 1.0 

Other/unknown 29.4 25.5 25.4 

Geographic area (division), %    

New England 3.3 6.3 5.1 

<.0001 

Middle Atlantic 9.7 8.7 8.4 

East North 
Central 19.4 21.0 20.0 

West North 
Central 3.7 5.1 4.2 

South Atlantic 27.7 21.9 22.5 

East South 
Central 11.0 9.9 9.2 

West South 
Central 8.9 8.5 8.2 
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Mountain 3.5 4.2 4.5 

Pacific/missing 12.8 14.4 17.8 

 

Table 2 presents the model adjusted costs if the first year after the diagnosis by 

screening group and age group. Consistently, the allowed amounts, insurer costs and out-of-

pocket costs per patient are highest in the no screening group, followed by biennial screening 

group, and finally the annual screening group. Despite the differences in groups, only the 

difference (around $10,000) between non- and annual screeners in total allowed amounts was 

statistically significant (p-values in table 3). Insurer costs for non-screeners were 

significantly higher than biennial and annual screeners. But the small difference between the 

screening groups was not significant. For out-of-pocket costs, annual screeners spent less 

than biennial and non-screeners.  

 

Table 2: Model Adjusted Health Care Costs by Group in the First Year After the Index 
Date* 
  No Screening   Biennial Screening   Annual Screening     

Cost 
Estimate 

Mean   (SD)   Mean   (SD)   Mean   (SD)   P-value 

          All Age Groups                 

Total 
Allowed 
Amounts 

168,786 ( 4,739 ) 165,814 ( 3,435 ) 157,950 ( 3,612 ) 0.0027 

Insurer 
Costs 

128,921 ( 3,060 ) 118,496 ( 2,167 ) 113,254 ( 2,226 ) <.0001 

Out-of-
pocket 
Costs 

7,101 ( 203 ) 6,687 ( 147 ) 6,178 ( 146 ) <.0001 

          Age 40-49                 
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Total 
Allowed 
Amounts 

193,103 ( 10,940 ) 177,505 ( 8,742 ) 151,975 ( 8,675 ) 0.0079 

Insurer 
Costs 

145,235 ( 7,203 ) 131,066 ( 5,709 ) 114,517 ( 5,790 ) 0.0011 

Out-of-
pocket 
Costs 

7,403 ( 447 ) 7,140 ( 368 ) 6,064 ( 370 ) 0.0629 

          Age 50-64                 

Total 
Allowed 
Amounts 

162,910 ( 5,871 ) 155,023 ( 3,882 ) 154,648 ( 3,993 ) 0.0027 

Insurer 
Costs 

126,181 ( 3,785 ) 114,255 ( 2,419 ) 110,012 ( 2,418 ) <.0001 

Out-of-
pocket 
Costs 

7,081 ( 255 ) 6,622 ( 169 ) 6,006 ( 157 ) <.0001 

*Values in table are mean costs per patient in U.S. dollars adjusted using the 2018 Consumer Price Index. 
 

Stratified analyses showed substantial differences between age groups. Generally, 

younger women (40-49 years old) had higher costs than older women (50-64 years old). 

Additionally, we observed that the differences between age groups decreased with more 

intense screening. In other words, more frequent screening closed up the gaps between age 

groups. Noted that the total allowed amounts per patient among younger annual screeners 

were less than the older ones. Although we did not observed the same pattern for insurer 

costs and out-of-pocket costs, the differences among annual screeners between age groups 

were much smaller than biennial and non-screeners.  

For the total allowed amounts and insurer costs, the savings from screenings were 

larger in younger women. Annual screening saved much more than biennial screening in 
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younger women when compared to non-screeners. On the other hand, the savings from 

annual and biennial screening were similar among older women.  

Cost ratios were also reported in table 3 because relative costs were likely to be more 

stable than absolute costs across different populations. Cost ratios can be easily interpreted as 

a ratio of adjusted costs between two groups. In addition, a ratio informs the incremental 

aspect of the cost analysis. The results showed that for all age groups, both annual and 

biennial screening saved costs for insurance payers. Especially, annual screening 

significantly reduced total allowed amounts, insurer costs, and out-of-pocket costs when 

compared to no screening. However, when comparing annual to biennial screening, the cost 

reduction was only marginally significant for insurers. After we stratified the analysis by age 

group, annual screening significantly reduced healthcare costs for both insurance payers and 

women aged 40-49 compared to biennial screening. On the other hand, costs for younger 

biennial screeners were not significantly different from non-screeners. Consistently, annual 

screeners had less out-of-pocket costs than biennial and non-screeners across age groups.  
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Table 3: Estimated Cost Ratios for Mean Costs in the First Year after the Index Date*. 

 

 

               

Cost 
Estimate

Mean 95% CI P-value Mean 95% CI P-value Mean 95% CI P-value

All Age Groups
Total 
Allowed 
Amounts

0.95 ( 0.89 , 1.01 ) 0.1256 0.94 ( 0.88 , 1.00 ) 0.0454 0.98 ( 0.93 , 1.04 ) 0.5346

Insurer 
Costs

0.92 ( 0.87 , 0.97 ) 0.0019 0.88 ( 0.83 , 0.93 ) <.0001 0.96 ( 0.91 , 1.00 ) 0.0531

Out-of-
pocket 
Costs

0.94 ( 0.88 , 1.00 ) 0.0693 0.87 ( 0.81 , 0.93 ) <.0001 0.92 ( 0.87 , 0.98 ) 0.0057

Age 40-49
Total 
Allowed 
Amounts

0.92 ( 0.81 , 1.05 ) 0.2104 0.79 ( 0.68 , 0.91 ) 0.0011 0.86 ( 0.75 , 0.98 ) 0.0207

Insurer 
Costs

0.90 ( 0.80 , 1.01 ) 0.0808 0.79 ( 0.69 , 0.89 ) 0.0002 0.87 ( 0.78 , 0.98 ) 0.0226

Out-of-
pocket 
Costs

0.96 ( 0.84 , 1.11 ) 0.6117 0.82 ( 0.70 , 0.96 ) 0.0109 0.85 ( 0.74 , 0.98 ) 0.0218

Age 50-64
Total 
Allowed 
Amounts

0.95 ( 0.88 , 1.03 ) 0.2232 0.95 ( 0.88 , 1.03 ) 0.2062 1.00 ( 0.94 , 1.06 ) 0.9392

Insurer 
Costs

0.91 ( 0.85 , 0.97 ) 0.0034 0.87 ( 0.82 , 0.93 ) <.0001 0.96 ( 0.91 , 1.01 ) 0.1566

Out-of-
pocket 
Costs

0.94 ( 0.86 , 1.01 ) 0.1028 0.85 ( 0.78 , 0.92 ) <.0001 0.91 ( 0.85 , 0.97 ) 0.0025

*Values in table are mean costs per patient in U.S. dollars adjusted using the 2018 Consumer Price Index.

Biennial Screening
vs.

No Screening

Annual Screening
vs.

No Screening

Annual Screening
vs.

Biennial Screening



 
 

81 
 

Discussion 

To the best of our knowledge, total healthcare costs has not been reported by 

mammography screening frequency from real-world data. The savings in total healthcare 

costs of patients with breast cancer following regular mammography screening is substantial 

compared to no screening to the healthcare payers. On the other hand, the amounts of savings 

from more frequent screening (annual vs. biennial) is much smaller. The differences in 

financial burden of patients with and without screening are minimal (out-of-pocket costs less 

than $1,000 in the first 2 years). And no statistically significant cost saving in out-of-pocket 

costs is found between annual and biennial screening.  

We find higher financial burden to patients among advanced than early stage cases. 

However, patients with no screening mammography only paid a relatively small amount out-

of-pocket (less than $1,000 in the first 2 years). Very limited evidence is available on the 

financial burden of patients diagnosed with breast cancer. In a small sample of older patients 

with non-metastatic breast cancer, 40% of them self-reported the out-of-pocket costs related 

to breast cancer below $500; 25% of the patients spent $500-$2,000; and 28% reported spent 

between $2,001 and $10,000. Patients spent more than $10,000 only accounted for 7% (Jagsi 

et al., 2014). In our study, the median out-of-pocket costs is $5,572 in the no screening 

group, $5,318 in the annual screening group, and $5,095 in the biennial screening group in 

the first year after diagnosis. Overall, the reported out-of-pocket costs in our study are much 

higher than previously reported even after adjustment for inflation. Potential explanation is 

that the patients recruited in the prior study were diagnosed between year 2005 and 2007. 

Surveying patients a long time from their diagnosis may lead to recall bias when reporting 
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out-of-pocket costs. Using medical claims data, our study captures payments from patients to 

the providers with higher accuracy.  

Although we have seen treatment costs reduction in annual versus biennial screening 

groups, other costs need to be considered. For example, the cost of diagnostic workups 

following false-positive mammograms can be as high as $766-$852 per beneficiary 

according to a published study (Ong & Mandl, 2015). Since false-positive mammography are 

more common among women in their 40s (Armstrong, Moye, Williams, Berlin, & Reynolds, 

2007; Carney et al., 2003; Elmore et al., 1998), the accumulated costs in population level can 

be large for annual versus biennial screening, and therefore outweigh the savings in all 

healthcare costs. However, studies have shown that there are multiple approaches to reduce 

false-positive rates such as the use of more advanced digital breast tomosynthesis (Ciatto et 

al., 2013; Haas et al., 2013) and screening women with dense breasts using ultrasound 

(Drukteinis, Mooney, Flowers, & Gatenby, 2013).  A study also reported that women who 

screened previously reduced by at least half the incidence of false-positive result (Kleit & 

Ruiz, 2003).  

In addition, the cost attributed to overdiagnosis can be substantial. Overdiagnosis 

refers to screening detected cancers that are never destined to cause symptoms or result in 

death. For breast cancers that grow and progress slowly, treatments may be unnecessary and 

harmful (Woloshin & Schwartz, 2010). Ong & Mandl (2015) estimated the annual national 

costs of overdiagnosis ranging from 0.5 billion to more than 1.5 billion using published 

national overdiagnosis rates. Future study is needed to evaluate whether the cost savings 

associated with annual screening still exists when considering the costs of overdiagnosis.  
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Besides financial consequences, the harms of mammography screening also include 

psychological effects following false-positive mammograms. According to a systematic 

review (Bond et al., 2013), women with false-positive results had elevated stress because of 

diagnostic procedures and were less likely to return for next screening, and therefore more 

likely to have interval cancer. Therefore, decisions regarding screening should be based on 

individual’s weighing of benefits and harms.  

 

Limitations 

There are some limitations to be considered when interpreting our results. First, we 

used the Nattinger algorithm to identify incident breast cancer cases which requires definitive 

breast surgery. Therefore, our results only show the estimates and trend of healthcare costs 

among patients who were previously treated with surgery. In addition, the MarketScan data 

only comprised claims for individuals younger than 65 years old. Although our results can 

only be generalized to younger women with breast cancer, this population is the main interest 

in our study. As mentioned earlier, the controversy around the frequency of mammography 

centers around women aged 40-49. Therefore, this database is appropriate for our research 

objectives. Third, this study only reported total allowed amounts, insurer costs and out-of-

pocket costs in the first year after the diagnosis. We chose to look the initial phase of breast 

cancer because the highest healthcare costs occurred during the first year after the diagnosis 

and the last year of life. Existing evidence showed that the annualized mean net costs of care 

in the initial year was 10 times more the continuing phase (Mariotto, Robin Yabroff, Shao, 

Feuer, & Brown, 2011). Moreover, unlike Medicare beneficiaries, the enrollees of 
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commercial healthcare plans have much shorter continuous enrollment. Therefore, estimating 

healthcare costs in the first year after diagnosis is appropriate to quantify the difference 

among women who had annual, biennial or none mammography screening before their 

cancer diagnosis. Finally, this cost analysis was based on total healthcare costs instead of 

breast cancer attributable costs. Since this study was conducted from an all healthcare payers’ 

perspective, total healthcare costs were considered more relevant to the payers. It is intuitive 

that later breast cancer stage drives not only costs associated with breast cancer treatment, 

but also other healthcare costs which are part of payers’ responsibility as well. Therefore, the 

estimates of total healthcare costs can better inform payers the financial burden following 

different mammography screening patterns.  

 

Conclusion 

Our study shows that commercial healthcare payers can save substantially in breast 

cancer treatment costs if women are regularly screened between age 40 and 65. In addition, 

there will be extra savings if women opt for annual versus biennial screening. From the 

perspective of patients, the difference between annual and biennial screening is negligible. 

From insurance payer’s perspective, there is financial incentives to promote regular 

mammography screening because of the large cost savings. While the savings of annual over 

biennial is much smaller, the payers need to decide whether the cost of false-positive recalls 

and overdiagnosis can be offset. From the patient’s perspective, there is limited financial 

incentive according to the cost sharing mechanism under commercial health plans. Although 
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regular mammography screening is strongly recommended, the decision on screening 

frequency should be based on individual perceptions of the benefits and harms of screening.  
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CONCLUSION 

An improved breast cancer staging algorithm based on medical claims data was 

developed and validated. This algorithm supplements claims data with clinical stage 

information, which expands the use of claims data in epidemiological studies. To my best 

knowledge, this is the first attempt to identify stage 0 cases from invasive cancers. As a one-

step solution, this algorithm is able to predict stages 0-IV at once. Unlike other logistic 

models, this algorithm is based on CART method and easy for researchers to understand and 

adapt. Overall, the algorithm has very good predictive power for early stages as well as 

metastases because of the large pool of potential predictors from diagnoses, procedures and 

medication use. Noted that this algorithm was developed and validated in SEER-Medicare 

population, therefore the generalizability was limited considering the differences in treatment 

practice among older compared to younger patients. The use of SEER diagnosis month and 

year as index also raises concerns about the inconsistencies between the SEER and the 

Medicare diagnoses, although 90% of the SEER diagnosis time falls within a month of the 

first Medicare claim with a cancer diagnosis (CMS website; Lin & Virgo 2014). This 

algorithm was developed using multiple years of breast cancer cases and associated medical 

claims. The changes in clinical practice and the approval of new therapies over the years 

should be also noted. This algorithm requires a total of 22 months of continuous enrollment 

to capture needed information and therefore is not applicable for patients with shorter 

enrollment period. When this staging algorithm is applied to a pre-selected population (e.g. 

incident breast cancer cases selected by the Nattinger algorithm), the accuracy will be 



 
 

90 
 

affected because of the other selection criteria used. As the next step, a similar algorithm 

development study should be conducted using a claims database linked with clinical 

information that consists of women younger than 65.  

With the estimated staging information, protective effect against more advanced 

breast cancer is found among women who screen regularly and on annual basis. The inverse 

association exists for women in their 40s and also for older women. The findings contribute 

to the mixed literature on whether women aged 40-64 benefit from annual screening. 

Although only estimated staging information is available, the use of different cut points to 

dichotomize cancer stages take into consideration of the uncertainty around the stage 

estimation. This association is only applicable for commercially insured women with at least 

45 months of continuous enrollment. Another study with “gold standard” staging information 

is needed to confirm the findings among women younger than 65.  

Finally, this dissertation reports real-world healthcare costs, insurer costs, and out-of-

pocket costs by mammography screening pattern. There are substantial cost savings for 

insurers with regular and annual screenings in particular. The savings are larger for women 

aged 40-49 than older women. Overall younger women have higher costs, but more frequent 

screening reduces the difference between age groups. On the other hand, patient only save 

marginally from more intense screening. This costing study only reports total healthcare 

costs instead of breast cancer associated costs because all healthcare costs are insurer’s 

responsibilities from the payer’s perspective. Given the limited scope of the costs borne by 

women, future studies are needed to better capture the other indirect and productivity costs 

under different mammography screening pattern.   
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