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Abstract 

 Proton radiation therapy is gaining popularity because of the unique 

characteristics of its dose distribution, e.g., high dose-gradient at the distal end of the 

percentage-depth-dose curve (known as the Bragg peak). The high dose-gradient offers 

the possibility of delivering high dose to the target while still sparing critical organs 

distal to the target. However, the high dose-gradient is a double-edged sword: a small 

shift of the highly conformal high-dose area can cause the target to be substantially 

under-dosed or the critical organs to be substantially over-dosed. Because of that, large 

margins are required in treatment planning to ensure adequate dose coverage of the 

target, which prevents us from realizing the full potential of proton beams. Therefore, it 

is critical to reduce uncertainties in the proton radiation therapy. 

 One major uncertainty in a proton treatment is the range uncertainty related to 

the estimation of proton stopping power ratio (SPR) distribution inside a patient. The 

SPR distribution inside a patient is required to account for tissue heterogeneities when 

calculating dose distribution inside the patient. In current clinical practice, the SPR 

distribution inside a patient is estimated from the patient’s treatment planning computed 

tomography (CT) images based on the CT number-to-SPR calibration curve. The SPR 
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derived from a single CT number carries large uncertainties in the presence of human 

tissue composition variations, which is the major drawback of the current SPR 

estimation method. We propose to solve this problem by using dual energy CT (DECT) 

and hypothesize that the range uncertainty can be reduced by a factor of two from 

currently used value of 3.5%. 

 A MATLAB program was developed to calculate the electron density ratio 

(EDR) and effective atomic number (EAN) from two CT measurements of the same 

object. An empirical relationship was discovered between mean excitation energies and 

EANs existing in human body tissues. With the MATLAB program and the empirical 

relationship, a DECT-based method was successfully developed to derive SPRs for 

human body tissues (the DECT method). The DECT method is more robust against the 

uncertainties in human tissues compositions than the current single-CT-based method, 

because the DECT method incorporated both density and elemental composition 

information in the SPR estimation. 

 Furthermore, we studied practical limitations of the DECT method. We found 

that the accuracy of the DECT method using conventional kV-kV x-ray pair is 

susceptible to CT number variations, which compromises the theoretical advantage of 

the DECT method. Our solution to this problem is to use a different x-ray pair for the 

DECT. The accuracy of the DECT method using different combinations of x-ray 

energies, i.e., the kV-kV, kV-MV and MV-MV pair, was compared using the measured 

imaging uncertainties for each case. The kV-MV DECT was found to be the most 

robust against CT number variations. In addition, we studied how uncertainties 
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propagate through the DECT calculation, and found general principles of selecting x-

ray pairs for the DECT method to minimize its sensitivity to CT number variations. 

 The uncertainties in SPRs estimated using the kV-MV DECT were analyzed 

further and compared to those using the stoichiometric method. The uncertainties in 

SPR estimation can be divided into five categories according to their origins: the 

inherent uncertainty, the DECT modeling uncertainty, the CT imaging uncertainty, the 

uncertainty in the mean excitation energy, and SPR variation with proton energy. 

Additionally, human body tissues were divided into three tissue groups – low density 

(lung) tissues, soft tissues and bone tissues. The uncertainties were estimated separately 

because their uncertainties were different under each condition. An estimate of the 

composite range uncertainty (2σ) was determined for three tumor sites – prostate, lung, 

and head-and-neck, by combining the uncertainty estimates of all three tissue groups, 

weighted by their proportions along typical beam path for each treatment site.  

In conclusion, the DECT method holds theoretical advantages in estimating 

SPRs for human tissues over the current single-CT-based method. Using existing 

imaging techniques, the kV-MV DECT approach was capable of reducing the range 

uncertainty from the currently used value of 3.5% to 1.9%-2.3%, but it is short to reach 

our original goal of reducing the range uncertainty by a factor of two. The dominant 

source of uncertainties in the kV-MV DECT was the uncertainties in CT imaging, 

especially in MV CT imaging. Further reduction in beam hardening effect, the impact 

of scatter, out-of-field object etc. would reduce the Hounsfeld Unit variations in CT 

imaging. The kV-MV DECT still has the potential to reduce the range uncertainty 

further.  
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BACKGROUND 

1.1 Proton Radiation Therapy 

1.1.1 Brief History 

Protons were discovered by Ernest Rutherford in 1919 (Rutherford, 1919). In 

1946, Robert Wilson proposed to use protons to treat deep-seated tumors, taking 

advantage of protons’ unique dose-deposition characteristics (Wilson, 1946). In 1955, 

the first patient was treated with proton beams at the Lawrence Berkeley Laboratory 

(Lawrence et al., 1958). In the following 35 years, the progress in proton radiation 

therapy was slow. During this period, patients could only receive proton treatments at 

few research facilities, e.g., the Harvard Cyclotron Laboratory. Nevertheless, the 

accumulated clinical results confirmed the efficacy of proton radiation therapy. In 1990, 

the Loma Linda University Medical Center opened the first hospital-based proton 

treatment facility (Slater et al., 1992), which started a new era of proton radiation 

therapy. Since then, approximately 30 proton facilities have been built worldwide, and 

another 24 proton facilities will be built in the next decade, according to the Particle 

Therapy Co-Operative Group (PTCOG). 

1.1.2 Proton Interactions 

 Protons experience four major interactions when passing through a medium: 

Coulomb interactions with atomic nuclei and orbiting electrons, elastic and inelastic 

interactions with atomic nuclei (Lomax, 2009). The Coulomb interactions with orbiting 

electrons occur much more frequently than the other three interactions. Although 
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occurring less frequently, the other three interactions have important consequences as 

well, e.g., degrading the pristine Bragg peak, generating secondary particles, etc. 

 The Coulomb interaction between a proton and an electron is essentially the 

electrostatic interaction between two electrically charged particles, which is a long 

range interaction. A proton loses only a small amount of energy for every interaction 

with an electron, because the proton has a much larger mass than the electron. It is 

based on this fact that the continuous-slowing-down-approximation (CSDA) algorithm 

can be used to estimate the range of protons in a medium. The energy loss over a unit 

distance, known as the stopping power, is inversely proportional to the square of the 

proton velocity. Because of the inverse square relationship, the deposited dose (energy) 

by protons increases substantially toward the end of the proton range, as the proton 

velocity becomes close to zero. This explains the “Bragg peak” seen at the distal end of 

the proton percentage-depth-dose (PDD) curve. 

 The Coulomb interaction between a proton and a nucleus is similar to that 

between a proton and an electron, except that the proton undergoes a much greater 

deflection from the Coulomb interaction with the nucleus because of the larger mass of 

the nucleus. Protons experience numerous such interactions as they penetrate through a 

medium, known as “multiple Coulomb scattering (MCS).” It is the major cause of 

deflection and lateral broadening of proton beams. 

Elastic and inelastic interactions occur when protons hit target nuclei directly. 

One significant consequence of these two interactions on the incident protons is that 

about 1% of the incident protons are ‘lost’ from the beam for every centimeter of 

penetration of water (Lomax, 2009). In other words, about 20% of the incident protons 
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are removed due to the nuclear interactions before reaching the depth of the Bragg peak, 

for a proton beam with a range of 20 cm water-equivalent-thickness (WET) in water. 

Consequently, the measured Bragg peak is lower than the ideal Bragg peak expected 

from energy loss alone. In addition, inelastic interactions can generate secondary 

particles, e.g., secondary neutrons. Secondary neutrons pose additional risk to normal 

tissues because of their long range and high “relative biological effectiveness (RBE)” 

(Hall, 2006). The effective radiation dose due to secondary neutrons generated in proton 

therapies has been studied extensively in the past few years (Polf and Newhauser, 2005; 

Hall, 2006; Gottschalk, 2006; Anferov, 2010; Zheng et al., 2009; Perez-Andjar et al., 

2009). Inelastic interactions can also generate short-lived isotopes, such as positron 

emitters,
 15

O and 
11

C. Currently, active research is being done to test if the distribution 

of these two isotopes can be used for in vivo verification of proton beam delivery and 

range (Parodi et al., 2007; Knopf et al., 2008; Knopf et al., 2011; Finger and Chin, 

2011).  

1.1.3 Delivery Techniques 

There are two main types of proton delivery techniques in general: the passive 

scattering technique and the spot scanning technique (Smith, 2009). In the passive 

scattering technique, the lateral spread of proton beams is achieved by use of scattering 

devices. Collimators are used to achieve conformity of the radiation field and lateral 

extension of the targets in the beam’s-eye-view (BEV). In the longitudinal direction, a 

so-called spread-out-Bragg peak (SOBP) is generated by using range modulator wheels 

(RMW), wheels of varying thickness rotating through the beam and thus producing an 

oscillating energy absorber. Conformality of the proton dose with the target volume in 
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the beam direction is achieved by using a range compensator, in order to account for 

tissue heterogeneities along the beam path, target surface changes, etc. One drawback of 

the passive scattering technique is that the SOBP may extend into normal tissues 

proximal to the target, because the size of the SOBP is determined by the largest extent 

of the target volume along the beam direction.  

For the spot scanning technique, the target volume is scanned by individual 

Bragg peaks of proton beams exiting the delivery nozzle with individual energies and 

directions. The beam direction is manipulated by varying the field strength of steering 

magnets, while the range in the patient is manipulated by changing the energy of the 

proton beam. In general, the spot scanning technique offers more flexibility, and thus 

promises superior dose conformity compared to the passive scattering technique. Highly 

localized dose distributions may be achieved by the proton treatments delivered with the 

spot scanning technique, especially the so-called intensity modulated proton therapy 

(IMPT). However, high dose conformity also means high sensitivity to uncertainties, 

especially the uncertainties in proton range calculations and the uncertainties introduced 

by intra-fractional patient motion.  

1.1.4 Treatment Planning Systems 

 Most proton treatment planning systems use analytical pencil beam algorithms 

to calculate proton dose distributions in patients (Smith, 2009). The advantage of the 

pencil beam algorithms is their fast calculation speed. Its disadvantage is that they are 

associated with sizable uncertainties under some conditions, e.g., in the proximity of 

tissue interfaces, in heterogeneous materials, etc. Those uncertainties can be reduced by 

using Monte Carlo simulations for proton dose calculations. Several Monte Carlo-based 
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treatment planning systems have been developed for the proton therapy, but they are not 

used routinely for clinical cases because Monte Carlo calculations are generally 

computational expensive. In the near future, Monte Carlo proton dose calculations may 

be used more routinely with rapid advances in computer technologies.  

Both the pencil beam and Monte Carlo dose calculations use patient CT images 

to account for tissue heterogeneities. The pencil beam algorithms need the proton SPR 

distribution inside a patient for dose calculation, which is normally derived from patient 

treatment planning CT images according to the calibration curve linking CT numbers 

and SPRs. Monte Carlo dose calculations need both densities and elemental 

compositions to determine cross sections (Schneider et al., 2000) and stopping powers. 

Mass densities can be easily derived from CT numbers from the CT number-to-density 

calibration curve. Various methods have been proposed to correlate CT numbers with 

elemental weights of human tissues (DeMarco et al., 1998; Du Plessis et al., 1998; 

Schneider et al., 2000). In general, the range of CT numbers is divided into various bins. 

For each bin, a constant set of elemental composition was assigned (Jiang et al., 2007). 

1.1.5 Range Uncertainties 

The strength of the proton radiation therapy is its capability of delivering highly 

conformal dose to the target while still sparing critical organs distal to the target, which 

is vulnerable to uncertainties (Unkelbach et al., 2009). Various uncertainties exist in 

proton therapies, such as range uncertainties related to patient SPR estimation and tissue 

heterogeneities, setup uncertainties, patient motion and so on (Lomax, 2008a, b). In 

order to realize the full potential of proton beams, those uncertainties need to be 
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minimized. As one of the most important uncertainties, the range uncertainty may 

compromise the quality of proton treatments seriously. 

Current treatment planning systems need patient SPR information to calculate 

water equivalent path lengths (WELs), based on which the proton range in the patient is 

determined. Currently, the SPR distribution inside a patient is derived from the patient’s 

treatment planning CT images. There are two main sources of uncertainties in SPRs 

estimated from CT numbers: CT imaging uncertainties due to random noise or image 

artifacts, and the uncertainties in SPR conversion from CT numbers (Schaffner and 

Pedroni, 1998; Flampouri et al., 2007; Jäkel and Reiss, 2007). In current clinical 

practice, the range uncertainties due to these two sources are accounted for by adding 

3.5% of the radiological path length as a margin at the proximal and distal end of the 

target volume (Moyers et al., 2001; Moyers et al., 2009). A large margin will inevitably 

increase the treatment volume, resulting in higher doses to normal tissues near the target. 

The goal of this study is to reduce this margin by using DECT to estimate the SPR 

distribution in patients. The range uncertainties due to complex tissue heterogeneities 

can be reduced by using Monte Carlo dose calculations. 

 Setup uncertainties and patient motions can also degrade proton dose 

distributions severely. For example, a patient shift can cause a shift of dose distributions 

of individual beams, which may cause the overall dose distribution in the clinical target 

volume (CTV) to be inhomogeneous. Another example is that the WET along the beam 

path can change due to setup errors and/or patient motion, e.g., when a high density 

object such as metal inserts moves into the beam path. That may cause substantial 

changes in the dose distribution of a single beam. For passive-scattering proton 
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therapies, these uncertainties are accounted for by a method called “compensator 

smearing” (Urie et al., 1984). For scanning beams, which do not use range 

compensators, new methods such as probabilistic treatment planning and beam-specific 

PTV (bsPTV) have been proposed to reduce the impact of those uncertainties 

(Unkelbach et al., 2009). 

 

1.2 CT Imaging  

The CT image dataset of an object of interest is essentially a 3-dimentional 

representation of the object’s photon linear attenuation coefficients, which is 

reconstructed based on the x-ray projections of the same object from different angles. 

The first CT scanner was installed for clinical use in 1972 (Kalender, 2006). Since then, 

the CT imaging has become the most important imaging modality, which is used mainly 

for diagnostic purposes. In radiation therapies, patient CT images are mainly used for 

contouring the target and critical structures, and providing attenuation information 

required for dose calculations. 

1.2.1 Artifacts  

In CT imaging, the term ‘artifact’ is used when there are systematic differences 

between the measured attenuation coefficients from CT images and their true values 

(Barrett and Keat, 2004; Hsieh, 2003). Compared to the conventional projection 

imaging, the CT imaging is naturally more prone to artifacts because of its complicated 

reconstruction process, involving numerous independent measurements from the 

detector array. CT image artifacts arise from the discrepancies between the models 

assumed in the reconstruction algorithms and actual CT data formation process 
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(Williamson et al., 2002). CT artifacts are usually manifested in streaking, shading, 

rings, and distortion. Based on the origins of artifacts, they can be grouped into four 

categories: physics-based artifacts, patient-based artifacts, scanner-based artifacts and 

reconstruction-based artifacts. The physics-based artifacts include artifacts due to beam 

hardening, partial volume, photon starvation, under-sampling, etc. The patient-related 

artifacts include artifacts due to patient motion, incomplete projections when a part of 

the patient falls outside the scan field of view, etc. The scanner-based artifacts include 

ring artifacts due to imperfect calibration of the detectors. The reconstruction-based 

artifacts include cone beam artifacts, stair step artifacts, zebra artifacts, etc. Among all 

artifacts, the distortions caused by beam hardening, partial volume and patient’s motion 

have the largest impact to proton treatment planning, which will be introduced with 

more details in the following paragraphs.   

Modern CT scanners normally use poly-energetic x-ray beams for scanning. The 

beam will become ‘harder’ as it penetrates through an object, because lower energy 

photons have higher attenuation coefficients and thus are removed from the incident 

beam more quickly. This effect is known as the beam hardening effect. The CT 

reconstruction algorithm usually does not consider the spectrum change along the beam 

path, which may lead to artifacts such as the so-called cupping artifact. It refers to the 

observation that the CT number at the periphery is higher than that at the center in CT 

images of a homogeneous object. As a result, the linear attenuation coefficients at the 

center are under-estimated, while those at the periphery are over-estimated. Dark 

streaking artifacts occurring between dense objects are also caused by under-estimation 

for similar reasons as the cupping artifacts: the beam passing through the dense objects 
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is harder than the one assumed in the reconstruction algorithm. The metal artifact, i.e., 

dark area around metal objects, is caused by such an effect as well. Various methods 

have been used to minimize artifacts caused by the beam hardening effect, such as extra 

filtration, calibration correction and software-based correction (Barrett and Keat, 2004). 

Metallic external filters are placed between the x-ray source and patients to remove low 

energy x-ray components. In addition, a shaped, so-called bowtie filter is used to harden 

the beam at the edge so that the beam at the edge will have comparable hardness as the 

beam at the center. The calibration correction involves calibrating the CT scanner with 

water phantoms of different diameters, in order to correct the beam hardening for body 

parts of different sizes. The software-based correction methods usually involve iterative 

reconstructions to mitigate the beam hardening in the reconstruction process. Although 

minimized by the correction methods, the beam hardening artifact cannot be completely 

removed. The beam hardening artifact is actually one major contributor to the CT 

imaging uncertainties and thus the range uncertainties (Moyers et al., 2009). 

In treatment planning CT images, the typical dimension of a CT voxel is about 1 

mm (x-axis) by 1 mm (y-axis) by 2-5mm (z-axis). Partial volume averaging happens for 

voxels containing more than one material. For those voxels, especially the voxels 

containing both lung tissues and bone tissues, there exist large uncertainties in the 

estimated SPRs, because the tissue compositions in those voxels can be substantially 

different from any ‘reference’ human tissue used in the calibration process (Yang et al., 

2010). 

Patient motion normally results in shades and streaks in CT images. Voluntary 

motions may be prevented by auditory instructions, while certain involuntary motions 
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such as heart beating cannot be avoided. Various methods have been developed to 

minimize motion artifacts such as cardiac gating, software corrections, etc. In addition, 

various 4-dimensional (4D) CT techniques have been introduced into the treatment 

planning process to improve the accuracy of contours and dose calculations, e.g., for 

thoracic cancer patients (Rietzel et al., 2005; Keall et al., 2005; Underberg et al., 2004). 

1.2.2 Dual Energy Computed Tomography (DECT) 

In a DECT scan, the object of interest is scanned by two x-ray beams with 

different energy spectra. The x-ray beams with different energy spectra are normally 

generated by varying the tube voltage or external filtration. As mentioned before, CT 

voxel values are direct measures of photon linear attenuation coefficients, which are 

dominated by photoelectric interactions and Compton interactions. These two 

interactions vary differently with photon energy and material effective atomic numbers. 

Because of that, the CT voxel values of the same object measured at two different 

energies can be used to extract additional information of the object. 

Experiments with the DECT started in the late 1970s around the time when the 

CT scanner was invented (Millner et al., 1979; Di Chiro et al., 1979; Genant and Boyd, 

1977). However, the DECT did not make its way to wide clinical applications at that 

time, because of large uncertainties in CT numbers, low spatial resolution and long scan 

durations of early CT scanners (Kelcz et al., 1979). In addition, x-ray tubes at that time 

could not provide sufficient currents at low voltage to achieve a comparable output of 

quanta as that at high voltage (Kelcz et al., 1979). For those reasons, bone densitometry 

was the only dual energy application widely used. Some other useful dual energy 

applications, such as quantifying fat tissue (Svendsen et al., 1993), detecting 
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calcifications in pulmonary nodules (Fraser et al., 1986; Cann et al., 1982) and so on, 

were only used occasionally. Recent advances in CT technologies and image processing 

tools, such as the introduction of the dual source CT scanner and the fast electronics, 

allowed the DECT to gain popularity in clinical applications. 

The DECT modality has several clinical applications in diagnostic imaging, e.g., 

material decomposition (differentiation), energy-selective reconstruction, beam 

hardening correction, extraction of effective atomic number information, and 

attenuation correction in positron emission tomography (PET) (Coleman and Sinclair, 

1985; Alvarez and MacOvski, 1976; Liu et al., 2009; Noh et al., 2009; Rutherford et al., 

1976). One important clinical application of the DECT is generating material-selective 

images from material decomposition (Primak et al., 2009; Tran et al., 2009; De Cecco 

et al., 2010). The material-selective images can be used to enhance the display of 

vessels containing contrast material without displaying structures containing calcium, to 

differentiate contrast materials from other high-density material, and to differentiate 

body tissues without injecting contrast agents (Johnson et al., 2007). There are two 

major decomposition methods – the image-based decomposition method and the raw 

data-based decomposition method (Maaβ et al., 2009). In the image-based 

decomposition method, CT images with material-selective information are determined 

by linear combinations of the post-reconstructed CT images (Brooks, 1977; Granton et 

al., 2008). The raw data-based decomposition method uses a decomposition function to 

process the raw projection data from both CT scans into material-selective raw data 

first, which are then reconstructed into material-selective images (Alvarez and Seppi, 

1979). The raw data-based decomposition method achieves better image quality in 
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general, but it requires the raw data to be matched, i.e., both x-ray beams need to go 

through the same path lines. This requirement may not be easily satisfied in some 

situations, e.g., when using a dual-source DECT scanner. 

Recently, several therapy applications based on the DECT were proposed. 

Torikoshi et al. (2003) proposed to use the DECT to estimate electron density 

distributions in patients, which was used for treatment planning for charged-particle 

radiation therapies. They claimed to be able to achieve 1% accuracy in electron density 

estimations by using the DECT. However, their DECT utilized mono-energetic x-rays 

generated by a synchrotron, which is not widely available. Bazalova et al. (2008) 

suggested using additional elemental composition information from DECT scans to 

improve tissue segmentation, which is needed in Monte Carlo dose calculations. 

Williamson et al. (2006) proposed to use the DECT to estimate photon cross sections 

for brachytherapy treatment planning. 

 

1.3 Methods of Deriving Proton Stopping Power Ratio (SPR) 

1.3.1 CT Number-to-SPR Calibration Curve 

In current proton clinics, patient SPR distributions are normally derived from 

patient treatment planning CT images based on the linear relationships between CT 

numbers and SPRs (Fig. 1). These linear relationships are also known as the CT 

number-to-SPR calibration curve, which is specific for each treatment planning CT 

scanner. The accuracy of the calibration curve is important to the accuracy of dose 

calculations. 
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Various methods have been proposed to determine a CT number-to-SPR 

calibration curve. The most straightforward method is scanning a set of tissue 

substitutes of known mass densities and elemental compositions and plotting their 

measured CT numbers against their SPRs. However, human tissue equivalent materials 

are not truly tissue equivalent. Schneider et al. (1996) from the Paul Scherrer Institute 

(PSI) pointed out that the calibration curves determined based on tissue substitutes are 

sensitive to the selection of tissue substitutes used for the calibration. They proposed a 

new method to solve this problem, i.e., the stoichiometric calibration method. In their 

method, the CT measurements of tissue substitutes are not directly used to determine 

the calibration curve. Instead, they are used to determine a set of CT modeling 

parameters first, which are then used to calculate the ‘predicted’ CT numbers of human 

body tissues. The calibration curve is finally determined from the ‘predicted’ CT 

numbers of human body tissues. Later, another group from Japan proposed a new 

calibration method, which is based on a poly-binary tissue model (Kanematsu et al., 

2003). They claimed that their new method is capable of achieving similar accuracy as 

the stoichiometric method but does not require complicated calculations. Currently, the 

calibration method used most widely in proton clinics is still the stoichiometric 

calibration method. 
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Figure 1. An example CT number-to-SPR calibration curve. The proton SPR is derived from the 

CT number. 

 

1.3.2 Proton CT  

Proton beams can also be used to scan patients to generate 3D images, similar to 

the conventional photon CT. The image voxel value is a direct measure of the proton 

SPR. In theory, the direct SPR measurement by proton CT should yield higher accuracy 

than that derived from photon CT images. 

The idea of proton CT has been around for some time (Cormack, 1963, 1964; 

Cormack and Koehler, 1976; Hanson et al., 1981), but its development is still in early 

phase because of the technical challenges. One major difficulty for reconstructing 

proton CT images is the numerous small-angle scatterings due to Coulomb interactions, 

which pose an inherent limit on the spatial resolution that can be achieved by proton CT 

(Li et al., 2006). In order to reduce the blurring effect, a detecting device capable of 

single proton tracking is needed. Currently, there are two major collaborations actively 
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working on the development of proton CT: one involves several institutions in the 

United States such as the Santa Cruz Institute of Particle Physics (SCIPP), the Loma 

Linda University Medical Center (LLUMC) and the Northern Illinois University (NIU), 

and the other involves two Italian institutions, the University of Florence and the 

University of Catania. The first collaboration group is currently in the development of a 

prototype of proton CT capable of imaging head-size objects based on existing detectors 

(Talamonti et al., 2010). The second collaboration group, also known as Italian PRIMA 

(PRoton IMAging), is currently developing prototypes capable of carrying out two 

dimensional projections (Civinini et al., 2010; Sipala et al., 2010; Menichelli et al., 

2010). Another practical difficulty for proton CT now is that proton beams used in 

current clinics do not have energy high enough to penetrate the whole patient body. 

 

1.4 Degeneracy Issue in the SPR Estimation 

As known, the SPR and the CT number measures two different physical 

properties. Although both quantities are dominated by the electron density ratio (EDR), 

the elemental composition also matters. Because of that, there is no true one-to-one 

correspondence between CT numbers and the SPRs. As seen in Fig. 2, human tissues 

with similar CT numbers can have different SPRs. In the mean time, human tissues with 

different CT numbers can also have similar SPRs. Because of the degeneracy issue, 

there exist inherent uncertainties in SPRs estimated from a single CT number. Our 

preliminary study showed that the inherent uncertainty is the dominant contributing 

factor to the uncertainties in SPR estimation in current practice, which needs to be 

reduced in order to reduce the total uncertainty. 
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Figure 2. Demonstration of the degeneracy issue in SPR estimation based on the calibration 

curve. The skin and thyroid have close CT numbers but have very different SPRs. Another four 

human tissues (in the small red circle) have different CT numbers but have close SPRs. In either 

case, the uncertainties arise in SPRs estimated based on a single CT number and the calibration 

curve.  

 

The degeneracy issue makes current SPR estimation method susceptible to 

human tissue composition variations. For example in Fig. 3, the mandible with the 

published density and elemental composition falls on the calibration curve perfectly, so 

negligible error (uncertainty) exists in its estimated SPR. However, if one mandible has 

a density of 5% different from the published value, it does not fall on the calibration 

curve any more. Thus, a non-negligible error arises in its estimated SPR. If the calcium 

percentage is different, a bigger difference arises. The increase of calcium percentage 

cause the CT number to increase substantially because of its higher atomic number (Z) 
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compared to other common elements in human tissues – carbon and oxygen. In the 

mean while, the increase of calcium percentage actually causes the SPR to decrease 

slightly, because calcium is slightly harder to excite compared to carbon and oxygen. 

But according to the calibration curve, an increase of the CT number should always lead 

to an increase of the stopping power, which results in a larger error. Similar patterns 

were observed for all human tissue types when their densities and calcium percentages 

are different from the published values. This shows that the accuracy of SPRs estimated 

from a single CT number is susceptible to the uncertainties in human tissue 

compositions. 

In this study, we propose to use the DECT scan to estimate patient SPR 

distribution. We hypothesize that the SPR estimated based on both density and 

elemental composition information, acquired through the DECT scan, is more accurate 

and robust against uncertainties in human tissue composition than that derived using the 

conventional calibration method. 
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Figure 3. Demonstration of sensitivity of current SPR estimation method to human tissue 

composition variations. The mandible with the published density and elemental composition fall 

on the calibration curve perfectly, so a negligible error (uncertainty) results when estimating its 

SPR based on the calibration curve. But when this mandible’s density or calcium percentage is 

changed by 5%, it deviates from the calibration curve, which causes a large error in its 

estimated SPR. 
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CHAPTER 2: HYPOTHESIS AND SPECIFIC AIMS 

The hypothesis of this study is that the dual energy computed tomography can 

be used to derive more accurate proton stopping power ratios for human tissues than the 

current standard method (the stoichiometric method), and the margin to account for 

range uncertainties in SPRs for treatment planning can be reduced by a factor of two. 

This hypothesis will be tested in the following specific aims: 

1. To evaluate range uncertainties related to CT imaging in current practice. This 

aim is necessary to establish a baseline in existing practice despite the fact that a 

3.5% range uncertainty is assumed historically. 

2. To develop a two-parameter model and a computational method for using the 

DECT scan to derive proton SPRs of human tissues. The goal of this aim is to 

develop a method to calculate SPRs from DECT images. 

3. To develop criteria to select x-ray energy pairs for using in a DECT 

configuration. This is necessary in order to reduce the impact of uncertainties in 

CT measurements to the DECT calculation. 

4. To evaluate the margin reduction by using the DECT for treatment planning. 

This aim is necessary to study the clinical benefit of the DECT in proton therapy 

and to test our hypothesis.  
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CHAPTER 3: SPECIFIC AIM I - ESTIMATION OF 

RANGE UNCERTAINTIES (SPR-RELATED) IN 

CURRENT PRACTICE 

3.1 Introduction 

Specific Aim I: Evaluation of range uncertainties related to SPR estimation 

in current practice 

This specific aim is necessary to establish the baseline data for uncertainties 

encountered in existing practice despite the fact that a 3.5% range uncertainty is 

assumed historically. One major innovation in our estimation is that the uncertainty 

estimates were determined for different tissue groups separately, i.e., lung tissues, soft 

tissues, and bone tissues. Another innovation is that the uncertainties related to human 

tissue composition variations were estimated in our study.  

This chapter starts with a detailed description of the stoichiometric calibration 

method and its key elements – the modeling of treatment planning CT scanners and the 

calculation of proton SPRs of human body tissues using the Bethe-Bloch equation. The 

equipments and tissue composition data from the literature, used to determine the 

calibration curve in this study, are also described. Then our methods of categorizing and 

estimating the uncertainties in current practice, and combining the uncertainties 

associated with each tissue group to a composite range uncertainty are explained in 

detail. Lastly, our estimates of the uncertainties in current SPR estimation are presented, 
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followed by a discussion to compare our estimates with the estimates made by other 

groups and the possible measures to mitigate the composite range uncertainty in current 

practice. 

 

3.2 Methods and Materials 

3.2.1 Terminology 

A few terms, which are used frequently in this study but may be confusing, are 

defined here for clarification. In general, if the value of a quantity is derived indirectly 

using the stoichiometric method or the DECT method, its value is termed as the 

‘estimated’ value. Meanwhile, if the value is calculated directly based on the elemental 

composition information, it is termed as the ‘true’ or ‘theoretical’ value. A few 

important examples are listed below. 

• ‘True’ or ‘Theoretical’ CT number: the CT number calculated directly based 

on the elemental composition information and the x-ray spectrum according to 

the CT number definition (Eq. 6) 

• ‘Predicted’ CT number: the CT number calculated based on the specific 

parameter set used in either the stoichiometric method or the DECT method for 

CT modeling. 

• ‘True’ SPR: the SPR calculated directly based on the elemental composition 

using the Bethe-Bloch equation (Eq. 10). 

• ‘Estimated’ SPR: the SPR derived from the CT number(s) by using either the 

stoichiometric method or the DECT method. 
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3.2.2 Stoichiometric Calibration Method 

 The stoichiometric calibration procedure (Schneider et al., 1996) consists of four 

major steps: 

1) Acquire images of several tissue substitutes of known densities and elemental 

compositions using a treatment planning CT scanner. 

2) Model the treatment planning CT scanner by calculating scanner specific 

parameters (��� , ���� , and ��� ) based on CT measurements of the tissue 

substitutes in step one. 

3) Predict CT numbers of various human body tissue types based on the parameters 

determined in step two. 

4) Determine the calibration curve by linear regression fit within each tissue group 

and connect them piecewise.  

3.2.2.1 Determination of CT Scanner Specific Parameters 

The key step in the stoichiometric calibration procedure is the second step – 

modeling the CT scanner. The CT number (Hounsfield unit or ��) yielded by a CT 

scan is essentially a measure of the photon linear attenuation coefficient, and is defined 

as  

�� �  ���� � ��� !"#���� !"#� $ 1000 , (1) 

where ���� and ��� !"#� are the photon linear attenuation coefficients averaged over the 

x-ray spectrum of the object of interest and water, respectively. The following CT 

number definition was used in this study for convenience: 

��' �  ������� !"#� ( 1000 . (2) 
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In this way, 
)*+,*+, � )�-.��-.� .  

The photon linear attenuation coefficient (��/�) of a composite material for a 

poly-energetic x-ray beam with peak energy below 1.02 MeV can be expressed as 

��/� � 0"1���234.67 8 ����29:.;6 8 ���< , (3) 

where ��� , ����  and ��� are constants describing the photoelectric interaction, 

coherent scattering, and Compton scattering, respectively. 0"  is the electron density 

which can be calculated by   

0" � 0 ( => ( ? 2@A@B@
C

DE:  , (4) 

where 2@, B@, A@, => and = are the atomic number, atomic weight, relative weight (by 

mass) of the ith element, Avogadro’s number, and the number of elements in the 

composite material, respectively. 23  and 29  are the effective atomic numbers of the 

composite material which are defined as 

23 � F? 2@A@B@ ( 2@4.67C
DE: G: 4.67⁄

 

29 � F? 2@A@B@ ( 2@:.;6C
DE: G: :.;6⁄

 

. (5) 

After substituting ���� and ��IJKLM� with Eq. 3, Eq. 2 becomes  

��' � 0"' 1���'234.67 8 ����'29:.;6 8 ���'< ( 1000 , (6) 

where 0"' � NONO,QRSOT , ���' � UVWXQRSOT , ����' � UYZWXQRSOT , ���' � U[\XQRSOT , and ]� !"# �
1���23� !"#4.67 8 ����29� !"#:.;6 8 ���<. 0",� !"# is the electron density of water. 
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According to Eq. 6, the measured CT number ( ��' ) is a function of six 

variables. Three of them (0"' , 234.67, and 29:.;6) are only related to the object of interest, 

and can be calculated when the object’s elemental composition is known. The other 

three variables (���'
, ����'

, and ���'
) are only related to the CT scanner, and can be 

determined by linear regression fit when more than three tissue substitutes of known 

elemental compositions are scanned. With those three scanner specific parameters 

known, the CT numbers of human body tissues can be calculated using Eq. 6. 

3.2.2.2 Bethe-Bloch Equation 

 Another key step is to determine the SPRs for human body tissues. It is 

impractical to prepare samples of all human tissue types and measure their SPRs 

directly. Therefore, the SPRs of human body tissues that are used in current practice for 

calibration are normally calculated using the Bethe-Bloch equation.  

The stopping power (0^) of a moderately relativistic proton is well-described by 

the Bethe-Bloch equation 

0^ � �0 2B 1_7 `12 ln 2b"c7_7d� �1 � _7 � _7 � ln 
� � �e_fg2 h , (7) 

where 0, 2, B and 
� are the density, atomic number, atomic mass and mean excitation 

energy of the absorber, respectively (Nakamura, 2010; ICRU, 1993). _ is the velocity of 

the incident proton relative to the velocity of light, and b" is the mass of the electron. 

� � 4j=>k"7b"c7 � 0.307 MeV gr:cm7 , where k"  is the classical electron radius. 

d� � is the maximal kinetic energy that can be transferred to a single electron in a single 

collision, which is given by 
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d� � � 2b"c7_7f7
1 8 2fb"u 8 vb"u w7 , (8) 

where f � e1 � _7gr: 7⁄  and u is the mass of the proton. At the University of Texas 

MD Anderson Cancer Center (UTMDACC) Proton Therapy Center (PTC), the maximal 

proton energy is 250 MeV. For protons with energy lower than 250 MeV, d� � x
0.9987 $ 2b"c7_7f7 x 2b"c7_7f7. The term 

{e|}g7  is the ‘density correction’ to the 

ionization energy loss due to the shielding of remote electrons by close electrons, which 

is approximately zero for the proton energies considered in this study.  

After ignoring the ‘density correction’ term and plugging d� � x 2b"c7_7f7 

back into Eq. 7, the proton stopping power is approximately equal to  

0^ � �0 2B 1_7 `ln 2b"c7_71 � _7 � _7 � ln 
�h . (9) 

For protons with energy beyond 100 MeV, the difference between the stopping power 

of water calculated using the original form (Eq. 7) and the one calculated using the 

simplified form (Eq. 9) is well below 0.1%, justifying our stopping power calculation 

using the simplified form. Based on Eq. 9, the proton SPR of a material relative to water 

is defined as 

0'̂ � 0^,�0^,� !"# � 0"' $ ln 2b"c7_71 � _7 � _7 � ln 
�,�
ln 2b"c7_71 � _7 � _7 � ln 
�,� !"# , (10) 

where 0"'  is the EDR of the object of interest relative to water.  

The SPRs calculated using Eq. 10 based on the elemental composition 

information are referred to as “true” SPRs, while the SPRs derived from CT numbers 
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using either the stoichiometric calibration method or the DECT method are referred to 

as “estimated” SPRs. The relative error in the estimated SPR is defined as 

�~�����~ �kk�k e%g �  ���. ��� � dk�~ ���dk�~ ���  $ 100% . (11) 

The root-mean-square (RMS) error is defined as 

�u� �kk�k e%g �  �∑  v���. ���@ � dk�~ ���@dk�~ ���@ w7CDE: =  $ 100% 
, (12) 

where N is the number of samples. 

3.2.2.3 Our Calibration 

The tissue substitutes chosen in our stoichiometric calibration were adipose 

tissue (AP6), solid water, brain (SR2), liver (LV1), water, B200, CB2-30%, CB2-50% 

and cortical bone (SB3) (Table 1), which are all from the RMI 467 tissue 

characterization phantom (Gammex, Middleton, WI). CT measurements of the same 

object may vary strongly with scanning conditions because of the beam hardening 

effect. To be consistent in our calibration, one insert was scanned a time and it was 

always located at the center of the phantom during the scan. In addition, to account for 

the patient size effect, the calibration curves were determined for two phantom sizes 

(head- and body-size), and the average calibration curve of the two was used for patient 

SPR estimation. The diameters of the head- and body-size calibration phantoms are 16 

cm and 32 cm, respectively, and both phantoms are made of acrylic. The images of the 

RMI 467 phantom and the head- and body-size calibration phantoms are shown in Fig. 

4.  
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Figure 4. Images of (a) the RMI 467 tissue characterization phanotm and (b) the head- and 

body-size calibration phantoms. 

  

41 types of human body tissues were chosen in our stoichiometric calibration. 

Table 2 lists their densities and elemental compositions recommended in the literature 

(Woodard and White, 1982, 1986; White et al., 1987; White et al., 1991; ICRU, 1989). 

The human body tissues with the recommended values of densities and elemental 

compositions are referred to as ‘reference’ human body tissues in this study. The 

‘reference’ human body tissues listed in Table 2 were divided into three tissue groups – 

lung tissues, soft tissues, and bone tissues. The lung tissue group consists of just one 

tissue – lung (inflated). The soft tissue group consists of 29 body tissues that do not 

contain a substantial amount of calcium (>1%), while the bone tissue group consist of 

11 body tissues that contain a substantial amount of calcium. 

The stoichiometric calibration was performed on the treatment planning CT 

scanner (ACB CT1) at the UTMDACC. Figure 5 shows the calibration curves 

determined for ACB CT1 for different phantom sizes. 
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Figure 5. Stoichiometric calibration curves determined for the kV scanner (ACB CT1). 
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Table 1. Recommended elemental compositions and densities (ρ) of air, water and human tissue substitutes provided with the RMI 467 

phantom. 

 H C N O Mg Si P Cl Ar Ca 

ρ (g/cm
3
) 

Atomic Number (Z) 1 6 7 8 12 14 15 17 18 20 

Atomic Weight (A) 1.008 12.01 14.01 16.00 24.31 28.09 30.97 35.45 39.95 40.08 

Tissue Substitutes Elemental Compositions (percentage by mass) 

Air 0.0 0.02 75.5 23.19 0.0 0.0 0.0 0.0 1.3 0.0 0.001 

Lung (LN300) 8.5 59.3 2.0 18.1 11.2 0.8 0.0 0.1 0.0 0.0 0.3 

Lung(LN450) 8.5 59.5 2.0 18.1 11.2 0.6 0.0 0.1 0.0 0.0 0.45 

Solid Water 8.1 67.2 2.4 19.8 0.0 0.0 0.0 0.1 0.0 2.3 1.12 

SR2 Brain 10.8 72.5 1.7 14.9 0.0 0.0 0.0 0.1 0.0 0.0 0.99 

IB1, Inner Bone 7.9 63.8 4.2 9.9 0.0 0.0 0.0 14.2 0.0 0.0 1.015 

AP6 Adipose 9.1 72.2 2.3 16.3 0.0 0.0 0.0 0.1 0.0 0.0 1.049 

Breast 8.7 70.0 2.4 17.9 0.0 0.0 0.0 0.1 0.0 1.0 0.92 

Liver 11.0 4.1 1.2 82.5 0.0 0.0 0.0 1.2 0.0 0.0 1.08 

Water 11.2 0.0 0.0 88.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

B200 Bone Mineral 6.6 55.6 2.0 23.6 0.0 0.0 3.2 0.1 0.0 8.9 1.145 

CB2-30% CaCO3 6.7 53.5 2.1 25.6 0.0 0.0 0.0 0.1 0.0 12.0 1.34 

CB2-50% CaCO3 4.8 41.6 1.5 32.0 0.0 0.0 0.0 0.1 0.0 20.0 1.56 

SB3 Bone Cortical 3.4 31.4 1.8 36.5 0.0 0.0 0.0 0.0 0.0 26.8 1.819 

 

Table 2. Recommended elemental compositions and densities (ρ) of human body tissues from the literature. 

 H C N O Na Mg P S Cl K Ca Fe I 

ρ 
(g/cm

3

) 

Atomic Number (Z) 1 6 7 8 11 12 15 16 17 19 20 26 53 

Atomic Weight (A) 
1.00

8 
12.0

1 
14.0

1 
16.0

0 
22.9

9 
24.3

1 
30.9

7 
32.0

7 
35.4

5 
39.1

0 
40.0

8 
55.8

0 
126.

9 

Human Body 
Tissues 

Elemental Composition (percentage by mass) 
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Lung (inflated) 10.3 10.5 3.1 74.9 0.2 0.0 0.2 0.3 0.3 0.2 0.0 0.0 0.0 0.26 

Adipose tissue 11.4 59.8 0.7 27.8 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.95 

Adrenal gland 10.6 28.4 2.6 57.8 0.0 0.0 0.1 0.2 0.2 0.1 0.0 0.0 0.0 1.03 

Aorta 9.9 14.7 4.2 69.8 0.2 0.0 0.4 0.3 0.0 0.1 0.4 0.0 0.0 1.05 

Bladder – filled 10.8 3.5 1.5 83.0 0.3 0.0 0.1 0.1 0.5 0.2 0.0 0.0 0.0 1.03 

Blood (whole) 
(erythrocytes/plasm
a 44:56, by mass) 

10.2 11.0 3.3 74.5 0.1 0.0 0.1 0.2 0.3 0.2 0.0 0.1 0.0 1.06 

Brain (grey/white 
matter 50:50, by 
mass) 

10.7 14.5 2.2 71.2 0.2 0.0 0.4 0.2 0.3 0.3 0.0 0.0 0.0 1.04 

Breast (mammary 
gland) 

10.6 33.2 3.0 52.7 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 1.02 

Connective Tissue 9.4 20.7 6.2 62.2 0.6 0.0 0.0 0.6 0.3 0.0 0.0 0.0 0.0 1.12 

Eye lens 9.6 19.5 5.7 64.6 0.1 0.0 0.1 0.3 0.1 0.0 0.0 0.0 0.0 1.07 

Gallbladder – Bile 10.8 6.1 0.1 82.2 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 1.03 

GI tract (intestine) 10.6 11.5 2.2 75.1 0.1 0.0 0.1 0.1 0.2 0.1 0.0 0.0 0.0 1.03 

Heart (blood filled) 10.3 12.1 3.2 73.4 0.1 0.0 0.1 0.2 0.3 0.2 0.0 0.1 0.0 1.06 

Kidney 10.3 13.2 3.0 72.4 0.2 0.0 0.2 0.2 0.2 0.2 0.1 0.0 0.0 1.05 

Liver 10.2 13.9 3.0 71.6 0.2 0.0 0.3 0.3 0.2 0.3 0.0 0.0 0.0 1.06 

Lung (deflated) 10.3 10.5 3.1 74.9 0.2 0.0 0.2 0.3 0.3 0.2 0.0 0.0 0.0 1.05 

Lymph 10.8 4.1 1.1 83.2 0.3 0.0 0.0 0.1 0.4 0.0 0.0 0.0 0.0 1.03 

Muscle (skeletal) 10.2 14.3 3.4 71.0 0.1 0.0 0.2 0.3 0.1 0.4 0.0 0.0 0.0 1.05 

Ovary 10.5 9.3 2.4 76.8 0.2 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.0 1.05 

Pancreas 10.6 16.9 2.2 69.4 0.2 0.0 0.2 0.1 0.2 0.2 0.0 0.0 0.0 1.04 

Prostate 10.5 8.9 2.5 77.4 0.2 0.0 0.1 0.2 0.0 0.2 0.0 0.0 0.0 1.04 

Skin 10.0 20.4 4.2 64.5 0.2 0.0 0.1 0.2 0.3 0.1 0.0 0.0 0.0 1.09 

Spleen 10.3 11.3 3.2 74.1 0.1 0.0 0.3 0.2 0.2 0.3 0.0 0.0 0.0 1.06 

Stomach 10.4 13.9 2.9 72.1 0.1 0.0 0.1 0.2 0.1 0.2 0.0 0.0 0.0 1.05 

Testis 10.6 9.9 2.0 76.6 0.2 0.0 0.1 0.2 0.2 0.2 0.0 0.0 0.0 1.04 

Thyroid 10.4 11.9 2.4 74.5 0.2 0.0 0.1 0.1 0.2 0.1 0.0 0.0 0.1 1.05 

Trachea 10.1 13.9 3.3 71.3 0.1 0.0 0.4 0.4 0.1 0.4 0.0 0.0 0.0 1.06 

Skeleton-Red 
Marrow 

10.5 41.4 3.4 43.9 0.0 0.0 0.1 0.2 0.2 0.2 0.0 0.1 0.0 1.03 
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Skeleton-Yellow 
marrow 

11.5 64.4 0.7 23.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.98 

Skeleton-Cartilage 9.6 9.9 2.2 74.4 0.5 0.0 2.2 0.9 0.3 0.0 0.0 0.0 0.0 1.10 

Skeleton-Cortical 
bone 

3.4 15.5 4.2 43.5 0.1 0.2 10.3 0.3 0.0 0.0 22.5 0.0 0.0 1.92 

Skeleton-Spongiosa 8.5 40.4 2.8 36.7 0.1 0.1 3.4 0.2 0.2 0.1 7.4 0.1 0.0 1.18 

Skeleton-Cranium 5.0 21.2 4.0 43.5 0.1 0.2 8.1 0.3 0.0 0.0 17.6 0.0 0.0 1.61 

Skeleton-Femur 7.0 34.5 2.8 36.8 0.1 0.1 5.5 0.2 0.1 0.0 12.9 0.0 0.0 1.33 

Skeleton-Humerus 6.0 31.4 3.1 36.9 0.1 0.1 7.0 0.2 0.0 0.0 15.2 0.0 0.0 1.46 

Skeleton-Mandible 4.6 19.9 4.1 43.5 0.1 0.2 8.6 0.3 0.0 0.0 18.7 0.0 0.0 1.68 

Skeleton-Ribs 
(2nd,6th) 

6.4 26.3 3.9 43.6 0.1 0.1 6.0 0.3 0.1 0.1 13.1 0.0 0.0 1.41 

Skeleton-Ribs (10th) 5.6 23.5 4.0 43.4 0.1 0.1 7.2 0.3 0.1 0.1 15.6 0.0 0.0 1.52 

Skeleton-Sacrum 7.4 30.2 3.7 43.8 0.0 0.1 4.5 0.2 0.1 0.1 9.8 0.1 0.0 1.29 

Skeleton-Vertebral 
column (C4) 

6.3 26.1 3.9 43.6 0.1 0.1 6.1 0.3 0.1 0.1 13.3 0.0 0.0 1.42 

Skeleton-Vertebra 
column (D6,L3) 

7.0 28.7 3.8 43.7 0.0 0.1 5.1 0.2 0.1 0.1 11.1 0.1 0.0 1.33 
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3.2.3 Uncertainties in SPR Estimation 

We found that the uncertainties in SPR estimation using the stoichiometric 

calibration method can be divided into three major categories. The first major category 

is the inherent uncertainty due to the inherent flaw of the current calibration method, 

estimating the SPR from a single CT number. The calibration curve is determined by 

linear regression fit of the ‘reference’ human body tissues. Figure 6 shows a zoomed-in 

version of the calibration curve overlaid with the ‘reference’ human body tissues. 

Clearly seen in Fig. 6, the fitting between the human tissue data points and the 

calibration curve is not perfect because the CT number and the SPR relate to different 

physical properties. Both quantities are linearly proportional to EDRs. But the CT 

number also depends on the cross sections of various photon interactions, among which 

the photoelectric interaction is approximately proportional to Z
3
, while the SPR also 

depends on the mean excitation energy which only changes with Z slightly. Therefore, 

there is no ‘perfect’ linear correspondence between CT numbers and SPRs of human 

tissues, which results in the inherent uncertainties (or residue error) when estimating the 

SPR from a single CT number based on a linear calibration curve (Fig. 6). 

The other two major categories are the uncertainties in calculated CT numbers 

and the uncertainties in calculated SPRs. The stoichiometric calibration curve is 

determined based on CT numbers and SPRs of human body tissues, which are all 

calculated instead of measured. The potential differences between the calculated values 

and their measured counterparts cause uncertainties. 

The uncertainties in calculated CT numbers can be divided further into two 

independent sources of uncertainties: the difference between the predicted CT number 
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and the measured CT number at the reference condition, and the difference between the 

CT numbers measured at the reference condition and at a non-reference condition. The 

first category of uncertainties in predicted CT numbers is caused by the ‘imperfectness’ 

of CT modeling, while the second category is caused by CT number variation with 

scanning conditions, largely due to the beam hardening effect. These two categories of 

uncertainties are referred to as modeling error in predicted CT numbers and CT imaging 

uncertainty. 

There are also two major sources of uncertainties when calculating SPRs of 

human tissues using the Bethe-Bloch equation: the uncertainties in mean excitation 

energies of human tissues and water, and the uncertainties due to SPR variations with 

proton energy. The details of how the uncertainties of each category were estimated will 

be shown in the following sections.  

 

 

Figure 6. Illustration of uncertainties in proton SPRs estimated using the stoichiometric 

calibration method. The blue triangles represent ‘reference’ human body tissues and the black 

solid line represents the stoichiometric calibration curve. The first category of uncertainties is 
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the inherent uncertainty caused by the differences between the calculated SPRs and the SPRs 

derived based on the calibration curve. The other two categories of uncertainties are the 

uncertainties in the calculation of CT numbers and SPRs for the ‘reference’ human body tissues.  

 

3.2.3.1 Inherent Uncertainties 

It was straightforward to estimate the inherent uncertainties by comparing the 

SPRs calculated using the Bethe-Bloch equation and the ones derived from the 

predicted CT numbers. The predicted CT numbers can be calculated using Eq. 6 based 

on the scanner specific parameters ( ���'
, ����'

, and ���'
) determined in the 

calibration process. In this study, the inherent uncertainties were estimated for not only 

‘reference’ human tissues, but also ‘individualized’ human tissues. The ‘individualized’ 

human tissues were generated from the ‘reference’ human tissues by introducing 

variations to the recommended tissue compositions. Our previous study (Appendix A) 

showed that uncertainties exist in the recommended tissue compositions of the 

‘reference’ human tissues, and that the inherent uncertainties increase substantially in 

the presence of tissue composition variations. Therefore, it was necessary to consider 

the uncertainties in the recommended tissue composition when estimating the inherent 

uncertainties.  

We found that there exist two categories of uncertainties in the recommended 

tissue compositions of the ‘reference’ human body tissues (Table 2). The first is a 

possible systematic uncertainty of the given values. The recommended values are 

supposed to represent the population average. In reality, they may deviate from the true 

population average due to a variety of reasons such as a biased sample, a flawed 

measurement method, etc. The second is a statistical uncertainty caused by individual 
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patient-to-patient variation. ICRU Report No. 44 (1989) states explicitly that “the 

elemental compositions of most body tissues are known to vary considerably between 

individuals of the same age” and that “the composition of a given tissue within one 

individual may vary from one body site to another.” 

A population of 'individualized' human tissues was generated for each 

‘reference’ human tissue type. The ‘reference’ human tissue was used as a template: all 

quantities of the 'individualized' human tissues were kept the same as the corresponding 

'reference' human tissue except for key factors. The key factors were found to be the 

density, the percentage of hydrogen for soft tissues, and the percentage of calcium for 

bone tissues. To simulate individual (statistical) variations, the values of the key factors 

were determined by drawing random numbers from a Gaussian distribution. To account 

for the systematic uncertainty, a small difference was introduced between the mean of 

the Gaussian distribution and the original value of the key factor. The densities of 

‘individualized’ human tissues were determined from a Gaussian distribution ~ 

=e�', �'g, where �' and �' are the mean and standard deviation, respectively. �' � � (
e1 � �g, where � and � are the density of the corresponding ‘reference’ human tissue 

template and the relative systematic uncertainty, respectively. �' � � ( �, where � is 

the relative statistical uncertainty. The percentages of key elements of the 

‘individualized’ human tissues were determined from a Gaussian distribution with �' 
and �' equal to � � � and �, respectively, where � is the percentage of the 'reference' 

human tissue template, and �  and �  are the systematic uncertainty and statistical 

uncertainty, respectively. Table 3 lists the values of � and � in this study. These values 

were determined through a thorough literature search, which is described in detail in 
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Appendix A. 2000 ‘individualized’ human tissues were generated for each tissue type in 

this study. 

 

Table 3. Summary of the systematic uncertainty (� ) and statistical uncertainty (� ) in the 

recommended values of the ‘reference’ human tissues. 

 Systematic Uncertainty (�) Statistical (Individual) Uncertainty (�) 

Density 2.1% 1.7% 
H (%) 0.2% 0.5% 
Ca (%) 1% 1% 

 

3.2.3.2 Modeling Errors in Predicted CT Numbers 

It was difficult to directly estimate the possible differences between the 

predicted and measured CT numbers for human body tissues. Therefore, we chose to 

estimate the modeling errors based on the data of tissue substitutes. We scanned a set of 

tissue substitutes of known elemental compositions. Their measured CT numbers were 

then compared with the CT numbers predicted based on the model. Because the model 

for predicting CT numbers should work for both human tissues and tissues substitutes, 

the uncertainty estimates based on tissues substitutes were considered to be equivalent 

to those based on human tissues. 

3.2.3.3 CT Imaging Uncertainties 

There are various factors that can cause CT number variations. In this study, 

general factors such as time, scanner, patient size, position in the scan, surrounding 

objects, and a special factor – the object outside field-of-view (FOV) – were considered. 

 Although modern CT scanners are stable, CT measurements of the same object 

under the same conditions by the same CT scanner may still vary from time to time, due 

to random noise or systematic problems. In addition to that, CT measurements of the 
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same object may differ when using different CT scanners, especially scanners made by 

different manufactures. In this study, CT number variations with time and scanner were 

estimated based on the monthly quality assurance (QA) data of different treatment 

planning CT scanners. During monthly QAs, the same set of tissue substitutes is 

scanned for each scanner. Therefore, monthly CT QA data provides a perfect reference 

of CT number variations with time and scanner. 

 CT number variations with patient size were estimated by scanning the same 

material insert in the head phantom and the body phantom, respectively (Fig. 7). The 

material insert was always located at the center so the size of the phantom was the only 

differing parameter. 

CT number variations with the position in the scan were estimated by scanning 

the same material insert at the center and at the periphery of the body phantom, 

respectively (Fig. 8). The body phantom was selected because it offered larger position 

differences. 
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Figure 7. Axial CT images of the head phantom and the body phantom with the same tissue 

substitute insert at the center. 

 

 

Figure 8. Axial CT images of the body phantom with the same tissue insert at the center and at 

the periphery. 

 

CT number variations with different objects in the surrounding area were 

estimated by placing different tissue substitutes at the periphery of the body phantom 

and measuring CT numbers of solid water inserts at other locations. CT number 

variations caused by the objects outside the FOV were estimated by scanning the RMI 

467 phantom with the same distribution of material inserts with and without a particular 

material insert of choice outside the FOV, respectively. One special object that can be 

outside the FOV is the couch of the CT scanner. In order to study the impact of the 

couch position, the RMI 467 phantom of the same distribution of tissue substitutes were 

scanned at two different couch positions: the couch inside the FOV and the couch 

outside the FOV (Fig. 9). 
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Figure 9. Axial CT images of the RMI 467 phantom with two different couch positions: one 

inside the FOV and one outside the FOV. 

 

 In addition, we found that relative CT number variations do not translate into the 

same amount of relative SPR variations because of the slope of the calibration curve. 

The calibration curve relates SPRs and CT numbers essentially by a linear relationship, 

0s� � � ( ��� 8 �, where � and � are the slope and the residue of the calibration curve. 

By taking the first derivative, the relative SPR variation is related to the relative CT 

number variation by 

�0'̂0'̂ � ���'��' ( ��'��' 8 � ��  . (13) 

The variation ratio, 
*+,*+,�� J� , was calculated for all tissue substitutes used to measure CT 

imaging uncertainties (Table 4).  
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Table 4. Variation ratios calculated for tissue substitutes used to measure CT imaging 

uncertainties. 

Tissue Substitutes Ratio  

LN-300  1.03 

LN-450  1.02 

Adipose  0.91 

Breast  0.68 

Solid Water  0.69 

Brain  0.69 

Liver  0.70 

Water  0.69 

Inner Bone  0.54 

B-200  0.55 

CB2-30%  0.59 

CB2-50%  0.64 

Cortical Bone  0.69 

 

3.2.3.4 Uncertainties in Mean Excitation Energies 

It is not a trivial task to determine the mean excitation energy for a material. 

Even for water, there are several different values suggested based on experiments in the 

literature – 67eV, 75 eV, 78 eV and 80 eV (ICRU, 2005; Paul et al., 2007; ICRU, 1993; 

Kumazaki et al., 2007; Emfietzoglou et al., 2009; Bischel and Hiraoka, 1992). The 

variation of this value causes up to 1% uncertainty in the calculated stopping power of 

water. The mean excitation energies of human body tissues from the literature are likely 

to carry larger uncertainties than that of water, because they were mostly determined by 

calculations using the Bragg additivity rule (ICRU, 1993; Seltzer and Berger, 1982)  

instead of direct measurements like water. If the mean excitation energies of human 

body tissues vary by 10%, the SPRs vary about 1% as well. Thus the total uncertainty in 

the calculated SPRs will be about 1.4% if considering these two uncertainty factors to 

be independent. 
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However, there exist correlations between these two variations because a major 

fraction of soft tissues is water (Valentin and Streffer, 2002; Woodard and White, 

1986). The mean excitation energies of water and soft tissues should vary in the same 

direction, so the uncertainties in the calculated SPRs of human tissues should be 

smaller. A variation study was conducted to estimate the uncertainties in SPR 

calculations with this correlation considered. Our way of considering the correlation 

was to introduce variations to the mean excitation energies of the elements first and then 

calculating the mean excitation energies of human tissues based on those varied values 

of elements, instead of introducing variations to the mean excitation energies of human 

tissues directly. Three variation scenarios were considered: 

• Scenario 1: increasing or decreasing the mean excitation energies of all elements 

by 10% at the same time; 

• Scenario 2: increasing or decreasing the mean excitation energies of all elements 

by 10% except for H and O; 

• Scenario 3: increasing or decreasing only the mean excitation energies of H and 

O by 10%. 

 

3.2.3.5 SPR Variations with Proton Energies  

Another source of uncertainties in calculated SPRs is the proton energy. 

According to the Bethe-Bloch equation, the SPR is a function of proton energy (_). But 

current treatment planning systems ignore the SPR’s dependency on proton energy by 

calculating dose based on SPRs at a single proton energy for simplicity. Although the 
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SPR is known to be approximately constant with proton energy, this approximation 

causes additional uncertainty. 

The uncertainty from ignoring the SPR dependency on proton energy was 

estimated by comparing proton ranges in human tissues calculated with and without 

considering proton energy variations. Two human tissues, the adipose tissue and the 

cortical bone, were chosen for this comparison, because the differences between their 

mean excitation energies and that of water are the largest among all ‘reference’ human 

tissues listed in Table 2. According to the Bethe-Bloch equation, their SPRs have the 

largest variation with proton energy. The proton range in human tissues without 

considering proton energy variation was calculated by simply multiplying the proton 

range in water and the SPR at a chosen proton energy, simulating the process of current 

treatment planning systems. In this study, the chosen proton energy was 175 MeV, i.e., 

the energy chosen for treatment planning at the UTMDACC PTC. The proton range in 

human tissues with considering SPR variation with energy was taken from the database 

on the website of the National Institutes of Standards and Technology (NIST) – the 

stopping-power and range tables for protons (PSTAR). The PSTAR database provides 

the projected proton ranges of various materials including water, adipose tissue and 

cortical bone (ICRU, 1993). 

3.2.3.6 Composite Range Uncertainty 

In addition to dividing the uncertainties into different categories according to 

their origins, human tissues were also divided into three different tissue groups, i.e., 

lung tissues, soft tissues and bone tissues, because their uncertainty estimates were 

found to be substantially different. An uncertainty estimate of each category was 
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determined for each tissue group separately. The total uncertainty was determined for 

each tissue group by adding the uncertainty estimates of all categories in quadrature. 

For treatment planning purposes, it is best to provide a single composite range 

uncertainty. The composite range uncertainty was estimated by combining the 

uncertainty estimates for all tissue groups into a single value based on their tissue 

proportions.  

15 proton patients, including 5 prostate, 5 lung and 5 head-and-neck (H&N) 

patients, were selected to determine the tissue proportion for each tissue group. The 

beam angles and planning target volume (PTV) from the original proton plan were used, 

in order to make realistic estimates. The CT voxels along each ray to the proximal or 

distal end of the PTV were categorized into lung tissues, soft tissues, and bone tissues 

based on their CT numbers. In order to identify the appropriate CT numbers to separate 

tissue groups, CT number histograms were generated based on patients CT images (Fig. 

10). From the histograms, a CT number value of 800 was chosen to separate lung 

tissues and soft tissues, and 1200 chosen to separate soft tissues and bone tissues. The 

range uncertainties of all three tissue groups were combined to produce a composite 

range uncertainty (��) for each ray by  

�� � �� ( �� 8 �� ( ��8�� ( �� , (14) 

where ��, �� and �� are the tissue proportions of lung tissues, soft tissues, and bone 

tissues along each ray, respectively, and ��, �� and �� are the range uncertainties for 

lung tissues, soft tissues, and bone tissues, respectively. The values of ��, �� and ��, 

used in calculating the composite range uncertainty for each ray, were sampled from a 
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Gaussian distribution with mean equal to zero and standard deviation equal to the 

estimated uncertainty (1σ) of the corresponding tissue group. 
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Figure 10. (a) CT number histogram for lung, prostate and head-and-neck patients; (b) The 

zoomed-in version of (a), which shows 800 and 1200 can be used to separate soft tissues from 

lung tissues and bone tissues. 

 

3.3 Results 

3.3.1 Uncertainties in SPR Estimation 

3.3.1.1 Inherent Uncertainties 

 The histogram and statistics of the inherent uncertainties are shown in Fig. 11 

and Table 5, respectively. The soft tissue group had the largest inherent uncertainties. 

The bone tissue group had relatively smaller inherent uncertainties because of the good 

linearity between CT numbers and SPRs of bone tissues. It could be due to the fact that 

the densities and elemental compositions of bone tissues, except the cortical bone, were 

simply determined by linear combinations of the densities and elemental compositions 

of the cortical bone and a few soft tissues such as red marrow, yellow marrow and 

cartilage (Woodard and White, 1982). 
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Figure 11. Histogram of the inherent uncertainties in SPRs of the ‘reference’ human body 

tissues estimated using the stoichiometric method. 

 

Table 5. Statistics of the inherent uncertainties (1σ) in SPRs of the ‘reference’ human body 

tissues estimated using the stoichiometric method. 

Tissue Groups Inherent Uncertainties (1σσσσ)  

Lung Tissues 0.00% 
Soft Tissues 0.43% 
Bone Tissues 0.29% 

 

The SPRs of the ‘individualized’ human tissues calculated using the Bethe-Bloch 

equation were plotted against their predicted CT numbers calculated using Eq. 6 in Fig. 

12, together with the ‘reference’ human tissues and the calibration curve. The 

‘individualized’ human tissues fitted worse with the calibration curve than the 

‘reference’ human tissues as expected. For soft tissues, the density variation was the 

dominant factor (Fig. 12(a)). The histogram and statistics of the inherent uncertainties 

for the ‘individualized’ human tissues are shown in Fig. 13 and Table 6, respectively. 



47 

 

  

The inherent uncertainties increased substantially for both soft tissues and bone tissues 

in the presence of tissue composition variations. For soft tissues, the inherent 

uncertainties doubled at least, while for bone tissues it increased by at least four times. 

The large increase of the inherent uncertainties for bone tissues shows that the SPR 

estimation for bone tissues is very sensitive to tissue composition variations.  
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Figure 12. CT calibration curve shown with the ‘reference’ body tissues and the ‘individualized’ 

body tissues. (a) and (b) are zoomed in on the soft tissue and bone tissue region, respectively. 

 

 
Figure 13. Histograms of the inherent uncertainties in proton SPRs of the ‘individualized’ 

human body tissues estimated using the stoichiometric method. 

 

Table 6. Statistics of the inherent uncertainties (1σ) in SPRs of the ‘individualized’ human body 

tissues estimated using the stoichiometric method. 

Tissue Groups Inherent Uncertainties (1σ) 

Lung Tissues 0.18% 
Soft Tissues 1.24% 
Bone Tissues 1.59% 

 

3.3.1.2 Modeling Errors in Predicted CT Numbers 

The measured CT numbers of the tissue substitutes used in the calibration were 

compared with their predicted CT numbers (Fig. 14). The lung tissue group had the 

largest errors in the predicted CT numbers (Table 7), which is probably due to the fact 

that the lung tissue substitute was not included in the calibration subset in order to 
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achieve a better fit in the soft tissue and bone tissue range. The modeling errors in the 

soft tissue group had the largest spread. This agrees with our observation in Table 5 that 

the soft tissue group had the largest inherent uncertainties, which is a manifestation of 

the non-linearity between CT numbers and SPRs of soft tissues. 
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Figure 14. (a) Measured versus calculated CT numbers of the tissue substitutes; (b) The 

difference between the measured and calculated CT numbers of the tissues substitutes relative 

to the calculated CT numbers. 

 

Table 7. Statistics of the modeling errors (1σ) in predicted CT numbers of the tissue substitutes 

and the induced errors in estimated SPRs. 

Tissue Groups 
Modeling Errors (1σσσσ) 

CT Number SPR 

Lung Tissues 3.66% 3.76% 
Soft Tissues 1.00% 0.75% 
Bone Tissues 0.92% 0.53% 

 

3.3.1.3 CT Imaging Uncertainties 

We obtained five monthly QA data sets for the ACB CT1 and CT2, and seven 

data sets for the PTC CT (Table 8). The mean CT numbers measured by different 

scanners were within 1% from each other for most tissue substitutes (Table 9). The 

mean CT numbers and standard deviations were calculated for each tissue substitute 

based on the data from all three CT scanners. The monthly QA for the PTC CT included 

5 additional tissue substitutes, which were not used for the ACB CT1 and CT2. For 

those tissue substitutes, only the data from the PTC CT were used to calculate the mean 

values and standard deviations. The SPR variations were calculated by multiplying the 

CT number variations with the CT number-to-SPR variation ratios listed in Table 4. The 

CT numbers of the soft tissue group varied less than those of the lung and bone tissue 

groups (Table 10). 
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Table 8. CT measurements of tissue substitute inserts scanned during monthly QA for three treatment planning CT scanners at 

UTMDACC. 

Tissue 
Substitutes 

ACB CT1 ACB CT2 PTC CT 

LN-450 471 477 468 472 470 471 487 472 471 470 463 465 464 464 466 467 465 
Adipose 914 914 917 914 915 915 922 913 914 912 920 913 913 917 915 910 911 
Solid 
Water 

1010 1006 1004 1012 1012 1005 1000 1004 1004 1007 1005 1004 1008 1010 1008 1006 1007 

Real Water 1007 1007 1013 1009 1012 1006 1009 1007 1007 1007 1004 1007 1007 1007 1006 1004 1004 
Breast 957 955 957 957 958 956 958 955 954 954 958 969 966 966 963 963 960 
Inner Bone 1222 1221 1215 1223 1220 1213 1196 1213 1215 1213 1223 1216 1221 1223 1220 1222 1223 
Cortical 
Bone 

2233 2234 2216 2231 2223 2208 2176 2208 2211 2209 2181 2188 2200 2222 2218 2228 2211 

LN-300           316 309 315 315 314 314 314 
Liver           1087 1087 1091 1094 1092 1091 1090 
B-200           1221 1223 1228 1232 1230 1234 1235 
CB2-30%           1437 1440 1442 1423 1448 1454 1443 
CB2-50%           1800 1799 1816 1804 1821 1821 1800 

 

Table 9. Statistics of CT number variations with time and scanner and the induced SPR variations for tissue substitutes.  

Tissue 
Substitutes 

ACB CT1 ACB CT2 PTC CT 
Mean σσσσ 

Rel. CT#  Var. 

(σσσσ/Mean) 

Rel. SPR  Var. 

(σσσσ/Mean) Mean σσσσ Mean σσσσ Mean σσσσ 

Lung-450 471 3.4 474 7.3 465 1.4 469 5.8 1.2% 1.3% 
Adipose 915 1.5 915 3.9 914 3.6 915 3.1 0.3% 0.3% 
 Solid Water 1009 3.6 1004 2.7 1007 2.1 1007 3.2 0.3% 0.2% 
Water 1010 2.6 1007 1.2 1005 1.6 1007 2.5 0.2% 0.2% 
Breast 957 1.1 955 1.8 964 3.8 959 4.6 0.5% 0.3% 
Inner Bone 1220 3.1 1210 7.8 1221 2.5 1218 6.7 0.6% 0.3% 
Cortical Bone 2227 7.7 2202 14.8 2207 17.6 2212 17.3 0.8% 0.5% 
Lung-300     314 2.2 314 2.2 0.7% 0.7% 
Liver     1090 2.5 1090 2.5 0.2% 0.2% 
B-200     1229 5.2 1229 5.2 0.4% 0.2% 
CB2-30%     1441 9.8 1441 9.8 0.7% 0.4% 
CB2-50%     1809 10.1 1809 10.1 0.6% 0.4% 
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Table 10. Statistics of relative CT number and SPR variations (1σ) with time and scanner for 

different tissue groups. 

Tissue Groups 
Relative Variation (1σσσσ) 

CT# SPR 

Lung Tissues 1.00% 1.03% 
Soft Tissues 0.33% 0.25% 
Bone Tissues 0.61% 0.38% 

 

 

Table 11 lists CT numbers of various tissue substitutes scanned at the center of 

the head phantom and the body phantom, respectively. The relative difference in the 

measured CT numbers was calculated for each tissue substitute by 
*+�RT�O, r*+��R  ,*+�RT�O, �*+��R  , . The 

CT numbers of the soft tissue group were very stable as the phantom size changed: the 

maximal CT number difference was only 0.6%. The CT number of water was even 

more stable: the difference was less than 0.2%. However, the CT numbers of the lung 

tissue and bone tissue group varied substantially with a maximal difference larger than 

3.5%. This large CT number variation for the lung tissue and bone tissue groups was 

due to the fact that their photon attenuation properties are very different from water and 

current CT scanners are calibrated using water phantom. It was observed in Table 11 

that the CT numbers of lung tissues scanned in the large (body) phantom were always 

larger than the values scanned in the small (head) phantom. The opposite was observed 

for bone tissues: the CT numbers acquired in the body phantom were always smaller 

than those in the head phantom. This was most likely due to the beam hardening effect. 

The x-ray beam passing through the body phantom should be ‘harder’ compared to the 

one passing through the head phantom. For a ‘harder’ x-ray beam, the difference 

between photon attenuation coefficients of the material of interest and the reference 
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material, water, becomes smaller. Thus, the CT numbers of lung tissues increase and the 

CT numbers of bone tissues decrease. 

 

Table 11.  CT measurements of various tissue substitutes scanned at the center of the head 

phantom and the body phantom, respectively, and the relative differences in CT numbers and 

SPRs related to the size of the phantom. The maximal relative difference was determined based 

on the absolute values of relative differences of all the tissues within one tissue group. 

Tissue 
Groups 

Tissue 
Substitutes 

CT Number 
Relative 

Difference 
Maximal Relative 

Difference 

Small Large Mean CT# SPR CT# SPR 

Lung 
Tissues 

LN-300 292 323 308 5.13% 5.30% 
5.13% 5.30% 

LN-450 447 478 463 3.40% 3.48% 

Soft 
Tissues 

Adipose 902 919 910 0.93% 0.85% 

0.93% 0.85% 

Breast 950 961 955 0.61% 0.41% 

Solid Water 1007 1012 1010 0.24% 0.16% 

Brain 1019 1030 1024 0.54% 0.38% 

Liver 1084 1085 1085 0.05% 0.04% 

Water 1006 1010 1008 0.19% 0.13% 

Bone 
Tissues 

Inner Bone 1020 1022 1021 -1.27% -0.69% 

3.69% 2.53% 

B-200 1271 1239 1255 -1.29% -0.70% 

CB2-30% 1517 1459 1488 -1.93% -1.13% 

CB2-50% 1924 1812 1868 -2.98% -1.91% 

Cortical Bone 2367 2198 2282 -3.69% -2.53% 

 

 Table 12 lists CT numbers of various tissue substitutes when scanned at the 

center and at the periphery of the body phantom, respectively. The relative CT number 

difference was calculated by 
*+¡OT¢VWOTR , r*+£O¤SOT,

v*+¡OT¢VWOTR , �*+£O¤SOT, w 7⁄ . The CT numbers of the soft tissue 

group remained very stable with the position in the scan: the maximal difference was 

less than 0.2%. The CT numbers of the lung and bone tissue groups varied substantially, 

with the maximal difference larger than 2%. The CT numbers of lung tissues scanned at 

the center were found to be larger than those scanned at the periphery, while the CT 
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numbers of bone tissues were found to vary in the opposite direction. Again, this was 

likely due to the beam hardening effect: the beam spectrum at the center was ‘harder’ 

than that at the periphery so the CT number difference between the material of interest 

and water was smaller at the center compared to that at the periphery. 

 

Table 12. CT measurements of various tissue substitutes scanned at the center and the periphery 

of the body phantom, respectively, and the relative differences in CT numbers and SPRs related 

to the position in the phantom. The maximal relative difference was determined based on the 

absolute values of relative differences of all the tissue substitutes within one tissue group. 

Tissue 
Groups 

Tissue 
Substitutes 

CT Number 
Relative 

Difference 
Maximal Relative 

Difference 

Center Peripheral CT# SPR CT# SPR 

Lung 
Tissues 

LN-300 323 315 -2.64% -2.73% 
2.64% 2.73% 

LN-450 478 471 -1.57% -1.61% 

Soft 
Tissues 

Adipose 919 917 -0.25% -0.23% 

0.25% 0.23% 

Breast 961 961 0.00% 0.00% 
Solid Water 1012 1012 0.02% 0.01% 
Brain 1030 1030 0.00% 0.00% 
Liver 1085 1087 0.16% 0.11% 
Water 1010 1011 0.15% 0.11% 

Bone 
Tissues 

Inner Bone 1022 1025 0.74% 0.40% 

2.06% 1.42% 
B-200 1239 1248 0.67% 0.37% 
CB2-30% 1459 1475 1.05% 0.62% 
CB2-50% 1812 1842 1.62% 1.04% 
Cortical Bone 2198 2244 2.06% 1.42% 

 

The body phantom was scanned sequentially with three different materials 

inserted at the same peripheral location, which were air, liver and cortical bone. The CT 

numbers of solid water inserts at other locations were measured and compared among 

all three scans. The CT number difference was negligible (~0.1%) so the data is not 

shown here. 

 In order to investigate the impact of objects outside the FOV to CT 

measurements inside the FOV, the RMI 467 phantom with the same distribution of 
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tissue substitute inserts was scanned while different material inserts were put outside the 

FOV. The impact of this was also found to be negligible. However, one special object to 

consider was the couch of the CT scanner, which can be inside or outside the FOV 

depending on patient size and tumor location. The couch position was found to have a 

relatively large impact to the CT measurements inside the FOV (Table 13), especially 

for lung and bone tissues. The relative CT number difference was calculated by 

*+Z¥S¦Z§¦¨¢O ©, r*+¢¤¦¨¢O ©,1*+Z¥S¦Z§¦¨¢O ©, �*+¢¤¦¨¢O ©, < 7⁄ . 

 

Table 13. CT measurements of various tissue substitutes scanned in the RMI 467 phantom with 

two different couch positions, respectively, and the relative differences in CT numbers and 

SPRs. The maximal relative difference was determined based on the absolute values of relative 

differences of all the tissues within one tissue group. 

Tissue 
Groups 

Tissue 
Substitutes 

CT Number Relative Difference 
Maximal 
Relative 

Difference 

In-field 
Out-of-

field 
CT# SPR CT# SPR 

Lung 
Tissues 

LN-300 320 316 -1.36% -1.40% 
2.09% 2.14% 

LN-450 479 489 2.09% 2.14% 

Soft 
Tissues 

Breast 955 960 0.54% 0.37% 

0.54% 0.37% 

Solid Water 1008 1009 0.09% 0.06% 

Brain 1023 1028 0.47% 0.33% 

Liver 1080 1083 0.24% 0.17% 

Water 1003 1007 0.32% 0.22% 

Bone 
Tissues 

Inner Bone 1207 1214 0.56% 0.30% 

0.91 % 0.62% 

B-200 1227 1235 0.69% 0.38% 

CB2-30% 1435 1441 0.37% 0.22% 

CB2-50% 1775 1792 0.92% 0.59% 

Cortical Bone 2159 2179 0.91% 0.62% 

 

Table 14 lists our estimates of CT imaging uncertainties (1σ) due to each major 

factor and their induced SPR uncertainties. Overall, CT measurements of soft tissues 
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were much more stable than those of lung and bone tissues. For soft tissues, the factors 

– time and scanner, patient size and couch position had similar impact. For both lung 

and bone tissues, patient size was the dominant factor. These factors were independent 

so the uncertainties due to each factor were added in quadrature to estimate the total 

uncertainty. 

 

Table 14. Statistics of CT number uncertainties (1σ) due to different factors and the induced 

uncertainties in SPRs for different tissue groups.  

 
Tissue 
Groups 

Major Uncertainty Contributing Factors  
Total (Root-sum-

square) 
Time and 
Scanner 

Patient 
Size 

Position in 
the Scan 

Couch 
Position 

CT# 
Lung 1.00% 2.56% 1.32% 1.05% 3.23% 
Soft 0.33% 0.30% 0.08% 0.27% 0.53% 
Bone 0.61% 1.85% 1.03% 0.46% 2.25% 

SPR 

Lung 1.03% 2.65% 1.37% 1.07% 3.33% 

Soft 0.25% 0.21% 0.06% 0.18% 0.38% 

Bone 0.38% 1.27% 0.71% 0.31% 1.53% 

 

3.3.1.4 Uncertainties in Mean Excitation Energies 

Variations were introduced to the mean excitation energies of elements as 

described in Section 3.2.3.4. The SPRs calculated based on the new values of elemental 

mean excitation energies were compared to the SPRs calculated based on the original 

values of elemental mean excitation energies. In Scenario 1, when the mean excitation 

energies of all elements were increased or decreased by 10% simultaneously, the SPR 

differences were less than 0.1% for all tissues. In Scenario 2 and 3, when the mean 

excitation energies of either only hydrogen (H) and oxygen (O), or all elements except 

for H and O were changed by 10%, the SPR deviations were found to be larger, 

especially for bone tissues. The maximal difference among all scenarios was chosen for 
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each tissue and used to calculate statistics (Fig. 15). Soft tissues tended to have smaller 

SPR differences compared to bone tissues, as expected (Table 15). 

 

 

Figure 15. Histograms of relative differences between the SPRs calculated based on the original 

elemental mean exciation energies and the SPRs calcualted based on the values with variations 

for all 41 ‘reference’ human tissues (Table 2). The histograms were based on the maximal 

relative differences among all three scenarios. 

 

Table 15. Statistics of relative differences in calculated SPRs due to variations of the elemental 

mean excitation energies. 

Tissue Groups Relative Differences in Calculated SPRs (1σ) 

Lung Tissues 0.17% 
Soft Tissues 0.23% 
Bone Tissues 0.65% 

 

3.3.1.5 SPR Variations with Proton Energies 



58 

 

  

Relative errors in the calculated proton ranges in human tissues when ignoring 

proton energy variation were determined for various initial proton energies. In proton 

radiotherapy, the initial proton energy before entering patients varies depending on the 

depth of the tumor, so it is more straightforward to plot the relative range error versus 

the projected range in water instead of the proton energy. For reference, the projected 

range in water versus the proton energy is shown in Fig. 16. The absolute value of the 

relative range error increases as the projected range in water decreases (Fig. 17(a)). 

According to our experience, the distal end of tumors treated at the PTC is mostly 

deeper than 5 cm. Thus, the relative range error at 5 cm was regarded as the worst-case 

estimate (2σ). The relative error in the calculated proton range is small at typical tumor 

depths for both the adipose tissue and cortical bone (less than 0.5% for tumors deeper 

than 10 cm). Even when the tumor is as shallow as 5 cm, the relative range error is still 

less than 0.5% for soft tissues similar to adipose tissue. The absolute range error was 

also plotted against the projected range in water (Fig. 17(b)). The largest absolute range 

error is about 0.3 mm and 0.6 mm for the adipose tissue and cortical bone, respectively, 

occurring when the tumor is at about 20 cm depth.  
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Figure 16. Projected proton range in water at different energies from the NIST PSTAR 

database. 
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Figure 17. (a) relative and (b) absolute error in the calculated proton range caused by using 

SPRs based on a single energy of 175MeV versus the projected range in water for the adipose 

tissue (×) and cortical bone (♦).  

 

3.3.1.6 Composite Range Uncertainty 

Table 16 lists our estimates of the relative range uncertainties related to proton 

SPR estimation. The dominant uncertainty contributing factor for soft tissues and bone 

tissues is the inherent uncertainty in the presence of tissue composition variations, while 
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it is CT imaging uncertainty for lung tissues. This shows that it is important to reduce 

the impact of tissue composition variations in order to reduce the overall uncertainty in 

proton SPR estimation. 

 

Table 16. Summary of our estimates of relative range uncertainties (1σ) related to proton SPR 

estimation in current clinical practice. 

Uncertainty Sources 
Relative Range Uncertainty 

Lung Soft Bone 

Inherent uncertainty in the presence of human 
tissue composition variations 

0.2% 1.2% 1.6% 

CT# 
Related 

Modeling errors in predicted CT 
numbers 

3.8% 0.8% 0.5% 

CT imaging uncertainties 3.3% 0.6% 1.5% 

SPR 
Related 

Uncertainties in mean excitation 
energies 

0.2% 0.2% 0.6% 

SPR variations with proton energy 0.2% 0.2% 0.4% 

Total (RSS) 5.0% 1.6% 2.4% 

 

The relative weight of each tissue group along the beam path from skin to the 

proximal or distal end of the PTV was determined for three tumor sites commonly 

treated with proton therapy, i.e., prostate, lung and head-and-neck (Table 17). Based on 

the tissue proportion and the estimated uncertainties for each tissue group (Table 16), 

the composite range uncertainty was calculated using Eq. 14. Table 18 lists the median, 

the 90th percentile and the 95th percentile composite range uncertainty for prostate, 

lung and head-and-neck patients. No significant difference exists between the range 

uncertainties to the proximal and distal ends. Table 18 shows that the current value used 

for the distal and proximal margin design, 3.5%, is comparative to what we estimated 

(3.0- 3.4%). 
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Table 17. Mean, standard deviation (σ) and standard error of mean (SEM) of relative weights of 

each tissue group in different clinical situtions. 

Tumor 
Sites 

Distal or 
Proximal 

Relative Weight (%) 

Lung Tissues Soft Tissues Bone Tissues 

Mean σσσσ SEM Mean σσσσ SEM Mean σσσσ SEM 

Prostate 
Distal 0.5 0.2 0.00 80.2 8.4 0.10 19.3 8.4 0.10 
Proximal 0.7 0.2 0.00 75.8 10.7 0.13 23.5 10.7 0.13 

Lung 
Distal 11.1 10.2 0.05 81.6 11.9 0.05 7.3 7.4 0.03 
Proximal 10.2 9.8 0.05 80.2 13.4 0.07 9.6 10.9 0.05 

Head & 
Neck 

Distal 2.6 2.3 0.02 86.8 11.2 0.11 10.5 10.8 0.11 
Proximal 3.5 2.6 0.03 82.9 12.5 0.13 13.6 12.5 0.13 

 

 

Table 18. Median, 90th percentile and 95th percentile of composite range uncertainties and the 

corresponding percentile when range uncertainty is equal to 3.5%, respectively, at different 

clinical situations. 

Tumor 
Sites 

Distal or 
Proximal 

Composite Range Uncertainty Percentile when 
Range Uncertainty 

= 3.5% 
Median 

90th 
Percentile 

95th 
Percentile 

Prostate 
Distal 1.3% 2.5% 3.0% 98.4% 

Proximal 1.3% 2.6% 3.0% 98.4% 

Lung 
Distal 1.5% 2.9% 3.4% 95.6% 

Proximal 1.5% 2.9% 3.4% 96.0% 

Head & 
Neck 

Distal 1.3% 2.6% 3.0% 97.7% 

Proximal 1.3% 2.7% 3.1% 97.6% 

 

 

3.4 Discussion 

3.4.1 Comparison of Our Estimates with the Estimates from Other 

Groups 

An estimate of the 3.5% range uncertainty in current clinical practice was first 

proposed by Moyers et al. (2001). Since then, people started to use that value to design 

proximal and distal target volume margins for proton therapy. However, Moyers et al. 

did not explain how they derived that value until their recent paper (Moyers et al., 

2009), which gave a detailed analysis. We used their analysis as a reference in our 
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evaluation, but we did not agree with their estimates for some categories. In the 

following discussion, we focused on comparing our estimates to theirs and also to the 

estimates from other groups (Schaffner and Pedroni, 1998; Trofimov et al., 2010). 

The major difference between our estimates and the estimates by Moyers et al. 

is the CT imaging uncertainty. They stated that the measured CT number values of 

water were found to vary up to 2.5% (5% spread) with the size of the phantom and the 

position in the scan. Their statement was based on some data from the literature (Chen 

et al., 1979; Cann, 1987; Constantinou et al., 1992), which were all measured more than 

15 years ago. Modern CT scanners, however, are much more stable. According to the 

CT accreditation requirements published by the American College of Radiology (2003),  

modern CT scanners should achieve a flat profile less than ±0.5% for a scan of a 

uniform water phantom. In our measurements, the mean CT number of water in a 

region-of-interest (ROI) did not vary by much. The variation of mean CT numbers of 

water was always less than 0.5%, even when the phantom size and the position in the 

scan were changed together. The total imaging uncertainties for soft tissue substitutes 

were found to be less than 1%. However, we did observe that the CT numbers of lung 

tissues and bone tissues could vary up to 4%. But the large CT number uncertainties of 

lung tissues and bone tissues do not make large contributions to the composite range 

uncertainty because of their low percentages in human bodies. In addition, the variation 

ratio between CT numbers and SPRs (
)N�, N�,⁄)*+, *+,⁄ ) was not considered in their estimates. 

As shown in Section 3.2.3.3, 1% CT number variation only translates into about 0.7% 

SPR variation for soft tissues and bone tissues. 
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Another major difference between our estimates and their estimates is that we 

considered the uncertainties in the recommended tissue compositions of human body 

tissues from the literature while Moyers et al. did not. Our survey of the literature 

shows that there existed uncertainties in the recommended tissue compositions 

(Woodard and White, 1986; White et al., 1991). The estimate of the uncertainties in the 

conversion of CT numbers to SPRs made by Moyers et al. was based on the results 

from Schaffner and Pedroni (1998), which measured a limited number of animal tissue 

samples. Our estimate was based on a ‘population’ study, which considered both 

systematic and individual (statistical) uncertainties in the recommended tissue 

compositions. The parameters used in the population study were determined through a 

thorough literature search.  

Another difference between our estimates and their estimates is that Moyers et 

al. included the uncertainty in the stopping power of water (~1%) while we did not. We 

agree that there exists at least 1% uncertainty in the stopping power of water, but we do 

not agree that it should be included when calculating range uncertainty. This is because 

the stopping power of water is not directly used by current treatment planning systems 

to calculate proton range and dose distribution in tissue. The proton range in tissue is 

determined by multiplying the proton range in water and the tissue’s SPR relative to 

water. The range in water is directly measured for protons of various energies during 

the commissioning of the treatment planning system. The precision of range 

measurements in water is 0.5 mm. At UTMDACC, this uncertainty is covered by a 3 

mm distal margin in addition to the 3.5% margin. 
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Our approach to estimate the uncertainties in calculated SPRs of human body 

tissues is also different from the approach taken by Moyers et al. They estimated the 

uncertainties by comparing the measured SPRs and the calculated SPRs of various 

materials. Their approach is straightforward, and they did observe some large 

differences between the measured SPRs and the calculated SPRs (1% - 3%). But there 

are other potential factors contributing to the observed differences in addition to the 

uncertainties in SPR calculation, such as the SPR measurement uncertainties (up to 

2%), and the uncertainties in the elemental compositions of the materials used in their 

SPR calculation. We took a theoretical approach by introducing variations to elemental 

mean excitation energies directly and then estimated the variations in calculated SPRs 

of human tissues. Our reasoning was that the uncertainties in calculated SPRs of human 

tissues are primarily due to the uncertainties in the mean excitation energies of water 

and human tissues in the literature. The advantages of our approach include that the 

whole analysis was based on human body tissues, and other contributing factors 

existing in the measurement approach are ruled out. In addition, the ‘correlation’ 

between human tissues and water were considered. 

The last difference between our estimates and their estimates is the uncertainty 

in range calculation due to ignoring the proton energy change along the beam path. The 

estimate by Moyers et al. was based on the difference of SPRs of the same material at 

different energies while our estimate was based on the difference between proton ranges 

calculated with and without considering proton energy change. Our analysis showed 

that the SPR at very low energies (≤10 MeV) can be a few percent different from the 

SPR at 175 MeV. The relative difference between SPRs at 10 MeV and 175 MeV is 
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1.0% for adipose tissue and -2.1% for cortical bone (Table 19). But the distance that a 

low energy proton can travel is very limited (a 10 MeV proton’s projected range in 

water is less than 2 millimeters). This indicates that a large difference of SPR at very 

low energies does not translate to a large range difference. Therefore, it will be over-

estimating to use the differences between SPRs at different energies as a rough estimate 

of the range uncertainty caused by ignoring SPR variation with energy. 

 

Table 19. Proton SPRs for adipose tissue and cortical bone at different proton energies and their 

relative differences compared to the SPRs at 175 MeV. 

Proton 
Energy 
(MeV) 

SPR 
Relative Difference  

Compared to the SPR at 175MeV 

Adipose 
Tissue 

Cortical 
Bone 

Adipose Tissue Cortical Bone 

250 1.02 0.96 -0.1% 0.2% 

175 1.02 0.96 0.0% 0.0% 

125 1.02 0.96 0.1% -0.2% 

75 1.02 0.95 0.2% -0.4% 

50 1.02 0.95 0.3% -0.7% 

25 1.03 0.95 0.5% -1.2% 

10 1.03 0.94 1.0% -2.1% 

5 1.03 0.93 1.4% -3.0% 

1 1.05 0.90 3.0% -6.5% 

 

Schaffner and Pedroni’s (1998) estimates included two parts: the uncertainty in 

converting CT numbers to SPRs, and the uncertainty due to the beam hardening effect. 

They measured both CT numbers and SPRs experimentally for a limited number of 

animal tissues. The measured SPRs were then compared to the SPRs derived from the 

CT numbers using the calibration curve. They found that the differences between the 

measured SPRs and the derived SPRs were less than 1%. The strength of their estimates 

was that they were based on direct experimental measurements. However, because of 
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this, they could not measure SPRs for a large range of tissue samples. They admitted in 

their paper that their estimates were based on the assumption that there would not be 

considerable variations in human tissue compositions. Our estimates were based on a 

‘population’ study which considered both systematic uncertainties in the recommended 

values of tissue compositions and individual (statistical) uncertainties. As to the second 

part, the CT imaging uncertainties, our estimates did agree with theirs.  

Recently, Trofimov et al. (2010) estimated that the relative range uncertainty for 

prostate cancer patients was less than 2.5%. They used the values suggested by 

Schaffner and Pedroni (1998), i.e., 1.1% and 1.8% for soft tissues and bone tissues, 

respectively, and added 1% on top of that to account for scanner calibration 

uncertainties. They studied 10 prostate cancer patients and concluded that the relative 

range uncertainties were less than 2.5%. Our final estimated value of the total 

uncertainty is close to their estimate. 
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Table 20. Comparison of our estimates of the relative range uncertainties (SPR related) and the estimates from the literature. 

Uncertainty Sources 

Relative Range Uncertainties 

Our Estimation (2σσσσ) 
Moyers et al 

Schaffner et al 
Trofimov et 

al 

Lung Soft Bone Soft Bone Soft Bone 

Inherent uncertainty in the presence of human 
tissue composition variations 

0.4% 2.0% 3.0% 
1.6% 1% 

Based on 
Schaffner’s 
estimates 

CT# 
Related 

Modeling errors in predicted CT 
numbers 

7.5% 1.5% 1.1% 

CT imaging uncertainties 6.7% 1.1% 3.1% 2.5% 0.5% 1.5% 

SPR 
Related 

Uncertainties in mean excitation 
energies 

0.2% 0.6% 0.7% 1% 

n/a 1% 
SPR variations with proton energy 0.3% 0.8% 1.2% 

Uncertainties in proton ranges in water n/a 1% 

Total 10.1% 2.9% 4.5% 3.5% 1.1% 1.8% 
2.1% 2.8% 

2.5% 
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3.4.2 Measures to Mitigate Uncertainties in Current Practice 

In this section, the possible measures to mitigate range uncertainties in current 

practice are discussed. 

The first method is related to the proton energy assumed in the treatment 

planning system. We found that the relative uncertainties in range calculation could be 

reduced by using SPRs at 100 MeV instead of 175 MeV for dose calculation, especially 

for tumors with the distal end shallower than 20 cm WET from the skin surface (Fig. 

18). This change would reduce the relative uncertainty from 0.18% and 0.48% to 0.05% 

and 0.17% for the adipose tissue and cortical bone of 10 cm WET, respectively. If 

assuming that the typical tumor depth is about 20 cm WET, the initial proton energy 

required to reach that depth is about 200 MeV, according to Fig. 16. As shown in Table 

19, the SPR changes monotonically with energy (decreases for adipose tissue and 

increases for cortical bone). Therefore, it is logical to choose an energy that is in the 

middle of the initial energy and the end energy to minimize errors. In our case, the 

initial energy is about 200 MeV and the end energy is 0 MeV thus the energy in the 

middle will be 100 MeV. As shown in Fig. 18(a), this change results in minimizing the 

relative range error – less than 0.1% for both the adipose tissue and cortical bone of 20 

cm WET. 
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Figure 18. (a) relative and (b) absolute error in proton range calculation induced by using SPRs 

of 175 MeV (black) and 100 MeV (blue), respectively, versus the projected range in water for 

the adipose tissue (×) and cortical bone (♦). 

 

The second method is a patient-specific calibration, which was also referred to 

as the patient-specific scaling by Moyers et al. (2009). The essence of this technique is 

to scan patients together with some reference materials and use the CT numbers of these 
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reference materials to calibrate patient images based on their CT numbers measured at 

reference conditions. For example, Moyers et al. chose air and water as the reference 

materials and determined a rescale ratio by comparing the CT numbers of air and water 

in patient CT images and their theoretical values – 0 and 1000. The rescale ratio would 

then be applied to patient images. This technique can reduce CT number variations 

caused by patient size, especially for lung tissues. But this technique requires the 

presence of air and water in patient images and the knowledge of their location in the 

images. Air is always present surrounding patients. Water can sometimes be found in 

patient CT images, e.g., water in a rectal balloon, urine in the bladder, etc. Besides, a 

small water tube can be intentionally placed adjacent to patients during scanning. We 

found that this technique could reduce CT number variations caused by patient size (1σ) 

from 2.6%, 0.42% and 1.3%, to 0.42%, 0.25% and 0.93% for lung tissues, soft tissues 

and bone tissues, respectively. This technique can be extended to include bone tissues 

by putting a small insert of cortical bone or other similar high-Z materials adjacent to 

patients during the scan and using its CT number to rescale CT numbers of bone tissues. 

In this way, CT number variations of bone tissues were found to be reduced further 

down from 0.93% to 0.07%. After applying this technique, the total uncertainty in SPR 

calculation was reduced from 5.1%, 1.6% and 2.4% to 4.3%, 1.5% and 2.0% for lung 

tissues, soft tissues and bone tissues, respectively. 
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CHAPTER 4: SPECIFIC AIM II – DEVELOPMENT OF 

THE DECT METHOD 

4.1 Introduction 

Specific Aim II: To develop a two-parameter model and a computational method 

for using the DECT scan to derive proton SPRs of human tissues. 

The goal of this aim is to develop a method to calculate SPRs from DECT 

images, which is necessary for the final goal of this research project. This eventually 

leads to the reduction of uncertainties in SPR estimation. The key finding, which 

enabled us to achieve this aim, was the discovery of an empirical relationship existing 

between mean excitation energies and effective atomic numbers (EANs) of ‘reference’ 

human body tissues (Table 2). 

This chapter starts with a description of the two-parameter model of calculating 

EDR and EAN from CT numbers obtained with two different energies. Then our DECT 

method of deriving SPR from EDR and EAN based on the empirical relationship is 

described. Lastly, the results of the DECT method’s accuracy in estimating SPRs for 

human body tissues under different conditions are presented, with a discussion of CT 

calibration for DECT calculation and our method for implementing the DECT method.  

 

4.2 Methods and Materials 

4.2.1 Two-parameter Model 
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The two-parameter model used in this study to calculate EDR and EAN from 

two CT measurements was first described by Torikoshi et al. (2003) for monochromatic 

x-rays, and later extended by Bazalova et al. (2008) for polychromatic x-rays, which is 

described in detail below. 

 The elemental linear attenuation coefficient (�) for monoenergetic x-rays with 

peak energies below 1.02 MeV can be calculated by  

� � 0"ª2«¬e�, 2g 8 ­e�, 2g® , (15) 

where 0" , Z, and E, are the electron density, atomic number, and x-ray energy, 

respectively. The terms 0"2«¬e�, 2g  and 0"­e�, 2g  describe the photoelectric 

interaction and the combined effects of Compton interaction and coherent interaction, 

respectively. In this study, the values of ¬e�, 2g and ­e�, 2g were interpolated based on 

the photoelectric and scattering cross section data from the XCOM database provided 

by the NIST (Berger et al., 2005). 

The linear attenuation coefficient of a composite material for polyenergetic x-

rays with peak energies below 1.02 MeV can be calculated by 

��� � 0" ? �@ª2�«¬e�@, 2�g 8 ­e�@, 2�g®C
DE:  , (16) 

where �D is the weighting factor of �D, and 2¯ is the EAN of the composite material. 

Combining Eq. 2 and Eq. 16 yields the equation below 

��'1000 � 0",� ∑ �@ª2�«¬e�@, 2�g 8 ­e�@, 2�g®CDE:0",� ∑ �@ª2�« ¬e�@, 2�g 8 ­e�@, 2�g®CDE:  . (17) 

Eq. 17 can be rearranged and expressed by 

��'1000 � 0",�'B�,° $ ª��b¬e2�g $ 2�« 8 ��b­e2�g® , (18) 
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where B� � ∑ �@ª2�« ¬e�@, 2�g 8 ­e�@, 2�g®CDE: , ��b¬e2�g � ∑ �@¬e�@, 2�gCDE:  and 

��b­e2�g � ∑ �@­e�@, 2�gCDE: .  
The two unknowns in Eq. 18, 0",�′ , and 2�, are solvable if two CT measurements 

are provided. Because ��b¬e2�g and ��b­e2�g does not strongly depend on 2�, 2�« 

can be solved iteratively by 

2�« � ��,±' $ B�,± $ ��b­e2�g� � ��,�' $ B�,� $ ��b­e2�g±��,�' $ B�,� $ ��b¬e2�g± � ��,±' $ B�,± $ ��b¬e2�g� , (19) 

where ��' � *+²,:³³³ � �-.��-QRSOT�. The DECT method involves two x-ray beams with different 

spectra.  In this study, the one with lower effective energy is referred to as the low-

energy x-ray beam (denoted by subscript L), while the one with higher effective energy 

is referred to as the high-energy x-ray beam (subscript H). 0",�′  can be calculated from 

2� by 

0",�' � ��,�' $ B�,� $ ��b¬e2�g± � ��,±' $ B�,± $ ��b¬e2�g���b¬e2�g± $ ��b­e2�g� � ��b¬e2�g� $ ��b­e2�g± . (20) 

A MATLAB (The Mathworks, Natick, MA) program was developed to solve 

Eq. 19 iteratively and to calculate EAN and EDR. The program inputs include CT 

spectra, measured CT numbers, and elemental photon attenuation coefficients from the 

NIST XCOM database (Berger et al., 2005). The same calculation can be performed for 

every pair of CT pixels on DECT images, which will result in a map of EDR and EAN. 

The DECT calculation for different CT voxel pairs is completely independent from each 

other, so it can be done in parallel easily. 

4.2.2 Our DECT Method of Deriving SPRs from EDRs and EANs 
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As shown in Section 3.2.2.2, proton SPRs can be calculated by the Bethe-Bloch 

equation. According to the equation, the two variables needed to derive the SPR of 

protons with certain energy are EDR and mean excitation energy (ln 
�). The EDR is a 

direct output of the DECT calculation. One problem remains: how to determine ln 
� 

from another output of the DECT calculation, EAN.  

 In order to solve the problem, we calculated ln 
� and EANs for all ‘reference’ 

human body tissues listed in Table 2 and plotted them in Fig. 19. ln 
� was calculated 

based on the Bragg additivity rule: 

ln 
� � ∑ A@2@B@CDE: $ ln 
�,@∑ A@2@B@CDE:  , (21) 

where B@ , 
�,@ , 2@ , A@  and =  are the atomic number, mean excitation energy, atomic 

mass,  mass weight of the i
th

 element, and the number of elements in the composite 

material, respectively (Seltzer and Berger, 1982; Schneider et al., 1996). The 
�  of 

elements used in this study were taken from the work of Seltzer and Berger (1982). 

Seltzer and Berger found that 
� of composite materials calculated directly based on the 

measured 
�  of elements are not accurate. They suggested specific values of 
�  for 

abundant elements in human tissues such as hydrogen, carbon, oxygen, nitrogen and 

fluorine, which should be used to calculate accurate 
� for composite materials. For 

other elements, they suggested a 13% rule, i.e., increasing the Im-values measured at 

condensed phase by 13%. 

The EAN of a composite material can be calculated by 
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�B= � �´? A@2@B@ 2@µ
C

DE: ¶ ´? A@2@B@
C

DE: ¶·¸   . (22) 

The value of E in Eq. 22 was chosen to be 3.3, which minimized the difference between 

the EANs of the ‘reference’ human body tissues calculated using Eq. 22 and the ones 

calculated through the DECT calculation. Clearly shown in Fig. 19, human tissue data 

points are broken into two groups, one comprises only soft tissues and the other only 

bone tissues. A good linear relationship exists between ln 
�  and EANs for human 

tissues within one group, except the thyroid which consists of 0.1% iodine. The thyroid 

was not included for linear regression of soft tissues. Based on the linear relationships, 

the value of ln 
� of any human body tissue can be derived from its EAN value. When 

both EDR and ln 
�  are known, the SPR can be calculated using the Bethe-Bloch 

equation. 

In this study, the EDR and EAN calculated from two CT numbers using Eqs. 19 

and 20 are referred to as the “estimated EDR and EAN”, respectively. The mean 

excitation energy determined from the estimated EAN based on the empirical 

relationship is referred to as the “estimated mean excitation energy”. The SPR 

calculated based on the estimated EDR and mean excitation energy using the Bethe-

Bloch equation is referred to as the “estimated SPR”. The EDR, EAN, and mean 

excitation energy calculated directly from material composition information using Eqs. 

4, 22, and 21 are referred to as the “true EDR”, “true EAN”, and “true mean excitation 

energy”, respectively. The SPR calculated from the true EDR and mean excitation 

energy using the Bethe-Bloch equation is referred to as the “true SPR”. 
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Figure 19. The soft tissue group and bone tissue group had separate linear relationships between 

the effective atomic number (EAN) and the logarithm of mean excitation energy (ln 
�). Shown 

are plots for 41 ‘reference’ human body tissues listed in Table 2. 

  

4.3 Results 

We developed a Matlab program that can calculate the EDR and EAN 

simultaneously from two CT numbers. We also discovered an empirical relationship 

between EANs and mean excitation energies of the ‘reference’ human tissues listed in 

Table 2. These two developments enabled us to derive protons SPRs of human tissues 

by using DECT. 

In the following, the accuracy of our DECT Matlab program was first tested 

when calculating EDRs and EANs for human body tissues. Then, its accuracy was 

tested for deriving SPRs of human body tissues and compared with the stoichiometric 
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method. In this part, true CT numbers were used as inputs to the DECT calculation 

program so that we could know the ideal accuracy of the DECT method and the 

comparison would be focused on the methods themselves. 

4.3.1 Accuracy of EDR and EAN Calculation 

 The EDRs and EANs calculated using the DECT method for the ‘reference’ 

human body tissues were compared with the true EDRs and EANs calculated based on 

their composition information using Eq. 4 and 22. Figure 20 shows that the relative 

errors in calculated EANs and EDRs are less than 1% and 0.5%, respectively, for all 

tissues except the thyroid and cortical bone. 
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Figure 20. Relative errors in EANs and EDRs of the ‘reference’ human body tissues calculated 

using our DECT Matlab program. 

 

4.3.2 Accuracy of SPR Derivation 
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In the following section, the estimated SPRs were compared with the true SPRs 

for the ‘reference’ human body tissues and human body tissues with variations 

introduced to the recommended densities and elemental compositions as described in 

Section 3.2.3.1. 

4.3.2.1 ‘Reference’ Human Tissues 

Figure 21 shows that both methods can achieve high accuracy in estimating 

SPRs of the ‘reference’ human body tissues with the RMS error well below 1%. 

Nonetheless, the DECT method’s accuracy is still higher than the stoichiometric method: 

the maximum (MAX) and RMS uncertainties of the DECT method are 1.01% and 

0.24%, respectively, compared to 2.96% and 0.65% of the stoichiometric method. 

 

 

Figure 21. Histograms of relative uncertainties in proton SPRs of the ‘reference’ human tissues 

estimated using the DECT method and the stoichiometric calibration method, respectively. 
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4.3.2.2 Single Tissue Composition Variations 

Separate variations were introduced to the densities and elemental compositions 

of the ‘reference’ human body tissues listed in Table 2. For simplicity, the density and 

elemental composition were assumed to be independent from each other. The variation 

scheme for the density was simple. The original value was either increased or decreased 

by a certain percentage. For the elemental composition, the variation scheme was more 

complex. First, three elements with the highest weight were identified for each tissue. 

Oxygen (O) and carbon (C) were most abundant by weight in all tissues. Hydrogen (H) 

is the third most abundant element in soft tissues, while calcium (Ca) is in bone tissues 

except for the spongiosa tissue which contains more hydrogen (8.9% by weight) than 

calcium (7.5% by weight). However, we still decided to vary the percentage of calcium 

instead of hydrogen for the spongiosa tissue to be consistent. Second, one element was 

chosen from those top three elements and its percentage was added or subtracted by a 

certain percentage. To keep the total percentage constant at 100, one of the remaining 

two elements was chosen, and its percentage was changed by the same value as the first 

element in the opposite direction. 

Figure 22 shows how the uncertainties in SPR estimates change when variations 

are introduced one key quantity at a time. The accuracy of the DECT method is less 

sensitive to single component variation than the stoichiometric method.  The 

uncertainties in the estimated SPRs increase with the deviations from the ‘reference’ 

human tissues. Generally, the increase for the stoichiometric method is more linear than 

that for the DECT method. Figure 22(a) shows that the accuracy of SPRs estimated 

using the DECT method is totally immune to the density variation, while the accuracy 
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becomes substantially worse for the stoichiometric method.  The RMS error in the 

stoichiometric method increases from 0.6% to 1.4% as the relative variation in density 

increases from 0% to 4%. This feature of the DECT method can yield high clinical 

benefits because density variations are commonly seen in human body tissues with 

different ages or stature. The accuracy of SPR estimates has almost no dependence on 

the percentage change between C and O for both methods (Fig. 22(b)).  This is possibly 

due to the fact that C and O have similar characteristics.  

Overall, for the stoichiometric method, the variations applied to the weight 

percentages of Ca and H caused the largest impact on the SPR estimates, followed by 

density variations. For the DECT method, the variations to H had the largest impact, 

followed by the variations to Ca. The DECT method achieved higher accuracy at all 

levels, compared to the stoichiometric calibration method.  
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Figure 22. Uncertainties in SPRs derived using the stoichiometric and DECT method, 

respectively, when different levels of variations were introduced to (a) the density, (b) the 

percentage of the oxygen (O)–carbon (C) pair, (c) the percentage of the hydrogen (H)–oxygen 

pair and hydrogen–carbon pair and (d) the percentage of the calcium (Ca)–oxygen pair and 

calcium–carbon pair. The variation was relative for density while the percentage variation for 

elemental compositions was absolute. The percentage variation on the x-axis was introduced to 

the first element within each element pair, while the reverse variation was introduced to the 

second element, in order to keep the total percentage constant. 

 

4.3.2.3 ‘Individualized’ Human Tissues 

Figure 23 shows the histograms of uncertainties in the SPRs of ‘individualized’ 

human tissues estimated using the DECT method and the stoichiometric method. The 

DECT method was observed to have great robustness with respect to tissue composition 

variations: the RMS uncertainties in the estimated SPRs increase from 0.24% for the 

‘reference’ human tissues to 0.28% for the ‘individualized’ human tissues. The RMS 

uncertainties in SPRs derived using the stoichiometric method were found to increase 

from 0.65% for the ‘reference’ human tissues to 1.26% for the ‘individualized’ human 

tissues. The maximal uncertainty could reach 6% for the stoichiometric method, 

compared to 2% for the DECT method.  

Overall, the DECT method has the potential to achieve higher accuracy than the 

conventional calibration method in estimating SPRs for patients of different ages, health 

conditions, etc. 
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Figure 23. Histograms of relative errors in proton SPRs of the ‘individualized’ human tissues 

estimated using the DECT method and the stoichiometric calibration method, respectively 

 

4.4 Discussion 

4.4.1 CT Calibration for DECT Calculation 

The DECT calculation algorithm requires knowledge of the x-ray spectra to 

model the CT scanner. The accuracy of the DECT calculation relies on the ‘closeness’ 

of the x-ray spectra assumed in the DECT calculation to the actual spectra. However, it 

is not a trivial task to determine the x-ray spectra accurately, especially when 

considering the beam hardening effect. In this section, we will discuss a simple and 

effective method to determine the x-ray spectra for the DECT calculation.  

The ‘ideal’ x-ray spectra for the DECT calculation are the x-ray spectra which 

match the measured CT numbers completely. However, these ‘ideal’ spectra do not 

exist because of the beam hardening effect, which will be explained in the following 
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paragraphs. As a compromise, we can determine the best-match spectra first, and then 

determine a calibration curve to bring the measured and calculated CT numbers closer. 

 It is unpractical to vary the poly-energetic spectra directly to search for the 

‘ideal’ spectra because of the large number of variables. Mono-energetic x-rays have 

only one variable and it is easy to determine the optimal energy that best matches the 

measured CT numbers. To take advantage of the useful feature of mono-energetic x-

rays, we developed a working hypothesis that there exists a mono-energetic 

representation for any poly-energetic spectrum, i.e., the CT numbers of human tissues 

and tissue substitutes calculated based on the mono-energetic x-ray match those 

calculated based on the poly-energetic spectrum. If this hypothesis is true, a mono-

energy should exist, which fits with the measured CT numbers equally well as the 

‘ideal’ spectrum. In other words, it is only necessary to find the ‘ideal’ energy instead of 

the ‘ideal’ spectrum. 

It is not the intent of this study to prove the hypothesis about the existence of 

equivalent mono-energy for any poly-energetic spectrum comprehensively. However, 

we did find some legitimate indications to support our hypothesis. We calculated CT 

numbers of various human body tissues and tissue substitutes using the simulated 

spectra of the 100 kVp, 140 kVp, 1MV beams. Then we calculated their CT numbers 

using different mono-energies to search for the best-match to each spectrum. The results 

were successful and we found very good matches for each poly-energetic spectrum 

(Fig. 24). The RMS relative differences between the CT numbers calculated based on 

the poly-energetic x-ray spectrum and the mono-energy counterparts were less than 

0.1% for all four beams. 
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Figure 24. Comparison of CT numbers of various human body tissues and tissue substitutes 

calculated based on the poly-energetic x-ray beams and their equivalent mono-energetic x-ray 

beams. 

 

We could not find a mono-energy that fitted the measured CT numbers of all 

tissue substitutes perfectly, indicating that the ‘ideal’ spectrum does not exist. Table 21 

shows that the relative difference between the measured CT numbers and the calculated 

ones using the best-match mono-energy can still be up to 9% for lung substitutes and 

3% for bone substitutes. Therefore, it is necessary to perform the calibration process 

(Fig. 25) to bring the measured CT numbers closer to the calculated ones. After the 

calibration, the relative difference became less than 1%. For comparison, we also 

performed the calibration process for a simulated 100 kVp spectrum (Fig. 26). After the 

calibration, the relative difference was still almost 4% (Table 22). It shows that the best-
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match mono-energy gave better results for the DECT calculation compared to the 

simulated spectrum. This finding makes the DECT calculation more convenient to carry 

out in real clinics. Users just need to scan a few tissue substitutes to obtain the single 

energy that matches the measured CT numbers. This can be done without simulating or 

measuring the entire x-ray spectrum. 

 

Table 21. Comparison of the calculated and measured CT numbers of various tissue substitutes 

for the 100 kVp beam. The calculated CT numbers were based on the best-match mono-energy 

(70.0 keV) to the measured CT numbers. The measured CT numbers were further adjusted 

using the calibration curve shown in Fig. 25 so that they match with the calcualted CT numbers. 

Tissue Substitutes Cal. CT# Meas. CT# Rel. Diff. Adjusted Meas. CT# Rel. Diff. 

LN-300 276 300 8.9% 276 0.2% 

LN-450 434 459 5.8% 433 -0.1% 

Adipose tissue 894 898 0.4% 895 0.1% 

Breast 946 948 0.1% 944 -0.3% 

Solid Water 1003 1009 0.6% 1004 0.1% 

Water 1000 1004 0.4% 999 -0.1% 

Brain 1006 1013 0.7% 1008 0.2% 

Liver 1080 1085 0.5% 1079 -0.1% 

B-200 1274 1291 1.4% 1258 -1.2% 

CB2-30% 1507 1548 2.7% 1519 0.8% 

CB2-50% 1944 1981 1.9% 1960 0.8% 

Cortical Bone 2448 2449 0.0% 2436 -0.5% 
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Figure 25. Linear regression fit of the calculated and measured CT numbers of various tissue 

substitutes for the 100 kVp beam (Table 21). The fits were carried out for lung, soft and bone 

tissu groups seperately. The calculated CT numbers were based on the best-match mono-energy 

(70.0 keV) to the measured CT numbers. 

 

Table 22. Comparison of the calculated and measured CT numbers of various tissue substitutes 

for the 100 kVp beam. The calculated CT numbers were based on the 100 kVp spectrum 

determined from Monte Carlo simulations. The measured CT numbers were adjusted using the 

calibration curve determined in Fig. 26 for better fitting. 

Tissue Substitutes Cal. CT# Meas. CT# Rel. Diff. Adjusted Meas. CT# Rel. Diff. 

LN-300 277 300 8.5% 277 0.1% 

LN-450 435 459 5.5% 435 0.0% 

Adipose tissue 864 898 3.9% 867 0.3% 

Breast 931 948 1.8% 925 -0.7% 

Solid Water 1010 1009 -0.1% 996 -1.4% 

Water 1000 1004 0.4% 991 -0.9% 

Brain 970 1013 4.4% 1001 3.2% 

Liver 1088 1085 -0.3% 1085 -0.3% 
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B-200 1426 1291 -9.5% 1377 -3.4% 

CB2-30% 1723 1548 -10.2% 1769 2.7% 

CB2-50% 2398 1981 -17.4% 2430 1.4% 

Cortical Bone 3175 2449 -22.8% 3145 -0.9% 

 

 

Figure 26. Linear regression fit of the calculated and measured CT numbers for various tissue 

substitutes using  a 100 kVp beam (Table 22). The fits were carried out for lung, soft and bone 

tissue groups seperately. 

 

 

4.4.2 Our Recipe for Implementing the DECT Method 

Our recipe for anyone who wants to implement the DECT calculation method 

for patient SPR distribution is listed below: 

1) Scan tissue substitutes of known densities and elemental compositions using 

both x-ray beams of the DECT scanner. The tissue substitutes should cover the 

lung tissue, soft tissue, and bone tissue range. 

2) Identify the representative mono-energy for each x-ray beam by calculating CT 

numbers of the tissue substitute with the highest density used in step one, 
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normally the cortical bone, for different x-ray energies (Eq. 2) followed by 

searches for the energy where the calculated CT number match the measured CT 

number best for that material. 

3) Calculate CT numbers for all tissue substitutes used in step one based on the 

representative mono-energies determined in step two, and determine a 

calibration curve between the calculated CT numbers and measured CT numbers 

by linear regression fit within each tissue group. 

4) Develop a DECT calculation program to calculate EDRs and EANs from two 

CT numbers simultaneously. The DECT calculation program is based on the 

mono-energies determined in step two. 

5) Determine the empirical relationship between EAN and lne
¹g for human body 

tissues (Fig. 19) and incorporate that into the DECT calculation program to 

derive SPR from EDR and EAN. 
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CHAPTER 5. SPECIFIC AIM III – DEVELOPING 

CRITERIA FOR SELECTING X-RAY PAIRS FOR 

DECT 

5.1 Introduction 

Specific Aim III: To develop criteria to select x-ray energy pairs for using in 

a DECT configuration. 

This aim is necessary to investigate the impact of uncertainties in CT numbers 

on the accuracy of DECT calculation of proton SPRs for human body tissues. The 

DECT calculation of EDR and EAN is known to be sensitive to CT number variation, 

which can substantially compromise the theoretical benefit of the DECT method, i.e., 

more accurate and robust against human tissue composition variations. We 

hypothesized that the sensitivity of the DECT calculation to CT number variations 

could be minimized by choosing an appropriate x-ray pair. In search of the general 

criteria for selecting x-ray pairs for the DECT calculation, we started with three 

representative x-ray pairs. Their accuracy of estimating SPRs for human body tissues 

under the impact of different CT artifacts such as random noise and the beam hardening 

effect were compared. We then performed an uncertainty propagation analysis on the 

DECT calculation, and extended the comparison to mono-energetic x-ray pairs with 

energies ranging from 5 keV to 1 MeV. From the comparison between mono-energetic 
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x-ray pairs, we found the general criteria for selecting x-ray pairs for the DECT 

calculation. . 

This chapter starts with a description of the selected representative x-ray pairs, 

our methods of simulating random noise and the beam hardening effect, and the 

uncertainty propagation analysis. Then, the results of comparisons between the 

representative x-ray pairs and the mono-energy x-ray pairs are presented. Lastly, the 

general criteria for selecting x-ray pairs for the DECT calculation and some interesting 

observations about the DECT calculation are discussed. 

 

5.2 Methods and Materials 

5.2.1 Selection of Three Representative X-ray Pairs 

Three representative x-ray pairs were selected in this study. The first pair was a 

kV-kV pair consisting of a 100 kVp beam and a 140 kVp beam. The second pair was a 

kV-MV pair consisting of a 100 kVp beam and a 1 MV beam. The third pair was a MV-

MV pair consisting of two 1 MV beams with different external filtration. 

 Poly-energetic x-ray spectra used in this study were generated from Monte Carlo 

simulations according to the x-ray tube specifications (Fig. 27). The Monte Carlo 

simulations were carried out using the BEAMnrc and EGSnrc Monte Carlo simulation 

systems provided by the National Research Council of Canada (Rogers et al., 2005; 

Kawrakow et al., 2009). The 100 kVp and 140 kVp beams were generated by 

simulating the x-ray tube used in the GE RT
16

 CT scanner (GE Healthcare, Wauwatosa, 

Wisconsin). The key parameters for simulating the x-ray tube were determined from the 

manufacture specifications (GE LightSpeed Technical Reference Manual 2007): the 
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target material was tungsten, the anode angle was 7°, and the equivalent filter thickness 

in aluminum was 7.4 mm. The spectra of the 1 MV beams were generated by simulating 

the compact linac made by the Varian Medical Systems (Clayton et al., 2009). The x-

ray beams were run through an additional 16 cm of water to simulate the spectrum 

change along the beam path. The average energy of the simulated spectra of the 100 

kVp beam, 140 kVp beam and 1MV beams with 0mm Cu external filter and 3mm Cu 

external filter was 61.2 keV, 74.1 keV, 352.6 keV and 397.9 keV, respectively. 
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Figure 27. X-ray spectra generated for the (a) 100 kVp and 140 kVp beams and (b) 1MV 

0mmCu and 1MV 3mmCu beams using the BEAMnrc Monte Carlo simulation package. 

 

5.2.2 Simulation of Random Noise and Beam Hardening Effect 
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Various artifacts (e.g., random noise, beam hardening effect, metal artifact, etc.) 

can cause a CT measurement to deviate from its true value. The calculation of EDRs 

and EANs using the DECT method is known to be sensitive to CT number variations 

because the calculation is based on the difference between two CT measurements of the 

same object (Williamson et al., 2006). Because of that, we were interested in 

investigating the accuracy of all three x-ray pairs under the impact of CT artifacts. 

 In this study, the random noise in CT imaging was assumed to follow the 

Gaussian distribution (Chvetsov and Paige, 2010). Random noise was introduced to a 

CT number by replacing the original value with a random number sampled from a 

Gaussian distribution with �  equal to the original value. The level of the noise 

introduced was controlled by the ratio of standard deviation (σ) to mean (µ) of the 

Gaussian distribution, 
º-. 1000 random numbers were sampled for each tissue type and 

each specific value of 
º- . The SPRs derived from the CT numbers introduced with 

random noise were compared to the true SPRs to quantify the impact of noise.  

 The x-ray spectra of both x-ray beams are required for the DECT algorithm to 

model the interactions in the scanning process. Because of the beam hardening effect, 

there is no “exact beam spectra”; instead, a set of “average spectra” were used in our 

DECT calculation program. The spectra detected at the center of a typical patient were 

regarded as the average spectra. The diameter of a typical patient was estimated to be 32 

cm. Thus, the average x-ray spectra were determined by directing the x-ray through a 16 

cm water slab.  

Various x-ray spectra, each with a non-standard ‘hardness’, were generated by 

changing the thickness of the water slab from 0 cm to 32 cm. CT numbers were 
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calculated for the ‘reference’ human tissues based on those spectra. The SPRs derived 

from those CT numbers were compared to the corresponding true SPRs. 

5.2.3 Uncertainty Propagation 

The Bethe-Bloch equation can be rewritten as 

0^,�' � 0",�' ( B � ln 
�,�»   , (23) 

where B �  lnª2b"c7_7 e1 � _7g⁄ ® �_7  and » �  ln¼2b"c7_7 
�,�e1 � _7g⁄ ½ �_7 . 

Their values were calculated to be 12.8 and 8.45, respectively, for proton energy equal 

to 175 MeV. The value of the mean excitation energy of water (
�,�) used in this study 

was 75 eV. According to the empirical relationship shown in Fig. 19, the ln 
�,� of a 

human tissue can be derived from its EAN (2�) by 

ln 
�,� x ] ( 2� 8 ¾ . (24) 

For soft tissues, ] and ¾ were calculated to be 0.121 and 3.40 while they were 0.103 

and 3.31 for bone tissues. After substituting ln 
�,�  with Eq. 24 and performing 

differential derivative, Eq. 23 becomes  

�0^,�'0^,�' � �0",�'0",�' � ] ( �2�eB � ¾g � ] ( 2� . (25) 

The factor 
Xe¿rÀgrX(Á. was found to be near constant within each tissue group, with the 

relative standard deviations of 0.6% for soft tissues and 1.2% for bone tissues. Thus, 

Eq. 25 can be rewritten as 

�0^,�'0^,�' � �0",�'0",�' � � ( �2� , (26) 

where E is equal to 1.43% and 1.21% for soft tissues and bone tissues, respectively. 
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 Our next step was to study the uncertainty propagation in the DECT calculation 

of EDRs and EANs. After differentiation, Eq. 19 becomes 

�2� � Â���,�'��,�' � ���,±'��,±' Ã $ 

��,�'��,±' $ B�,�B�,± $ ª��b¬e2�g� $ ��b­e2�g± � ��b¬e2�g± $ ��b­e2�g�®
4 `��b¬e2�g� � ��,�'��,±' $ B�,�B�,± $ ��b¬e2�g±hÄ «⁄ $ `��,�'��,±' $ B�,�B�,± $ ��b­e2�g± � ��b­e2�g�h4 «⁄  

. (27) 

After differentiation, Eq. 20 becomes 

�0",�'0",�' � ���,�'��,�' $ SumFeZ�g±��b¬e2�g± � ��,±'��,�' $ B�,±B�,� $ ��b¬e2�g� 

8 ���,±'��,±' $ � ��,±'��,�' $ B�,±B�,� $ ��b¬e2�g�
��b¬e2�g± � ��,±'��,�' $ B�,±B�,� $ ��b¬e2�g� 

. (28) 

After substituting �2� and 
)NO,.,NO,.,  with Eqs. 27 and 28, Eq. 26 becomes 

�0^,�'0^,�' � �� ( ���,�'��,�' 8 �± ( ���,±'��,±'  , (29) 

where �� � ¬�ÉcB � � ( ¬�Éc», �± � ¬�ÉcB � � ( ¬�Éc], 

¬�ÉcB � Ê.,�,
Ê.,Ë, (ÌQ,�ÌQ,Ë(ªÍÎ¹ÏeÁ.g�(ÍÎ¹ÐeÁ.gËrÍÎ¹ÏeÁ.gË(ÍÎ¹ÐeÁ.g�®

«`ÍÎ¹ÏeÁ.g�rÊ.,�,Ê.,Ë, (ÌQ,�ÌQ,Ë(ÍÎ¹ÏeÁ.gËhÑ Ò⁄ (`Ê.,�,Ê.,Ë, (ÌQ,�ÌQ,Ë(ÍÎ¹ÐeÁ.gËrÍÎ¹ÐeÁ.g�hÓ Ò⁄ , 

¬�Éc» � ÍÎ¹ÏeÁ.gËÍÎ¹ÏeÁ.gËrÊ.,Ë,Ê.,�, (ÌQ,ËÔQ,� (ÍÎ¹ÏeÁ.g�  and ¬�Éc] � ÍÎ¹ÏeÁ.g�Ê.,�,Ê.,Ë, (ÌQ,�ÌQ,Ë(ÍÎ¹ÏeÁ.gËrÍÎ¹ÏeÁ.g� . 

The factors �� and �± are termed as the sensitivity ratio factors in this study, and can be 

calculated for each human tissue if the tissue composition and the DECT x-ray spectra 

are known. Finally, the uncertainties in SPRs can be determined by 
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�Õ�,.,0^,�' � ÖÂ�� ( �µ.,�,��,�' Ã7 8 Â�± ( �µ.,Ë,��,±' Ã7
 . (30) 

 

5.3 Results 

5.3.1 Comparison of Three Representative X-ray Pairs 

5.3.1.1 Tissue Composition Variations 

All three x-ray pairs achieved similar accuracy in deriving SPRs for both the 

‘reference’ human body tissues and ‘individualized’ human body tissues when 

theorectical CT numbers were used as the input for the DECT calculation (Fig. 28). The 

theoretical CT numbers were calculated based on the x-ray spectra stored in the DECT 

calculation program. In this case, the DECT calculation program modeled the ‘virtual’ 

CT scanner perfectly. Under this ideal condition, the selection of the x-ray pairs had 

negligible impact on the accuracy of SPR estimation. 
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Figure 28. Histograms of the relative errors in SPRs estimated using the kV-kV, kV-MV, and 

MV-MV DECT for the (a) ‘reference’ human body tissues and (b) ‘individualized’ human body 

tissues. The RMS error was calculated to describe the overall magnitude of uncertainty 

distribution. The results showed that, under ideal conditions (i.e., without imaging artifacts), the 

uncertainties in the DECT calculation were independent of the x-ray energy pairs. 

 

5.3.1.2 Random Noise 

The uncertainties in estimated SPRs increased with random noise linearly for all 

three energy pairs (Fig. 29). The sensitivity of RMS errors to random noise was 6.76, 
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1.16, and 6.28 for the kV-kV, kV-MV, and MV-MV pairs, respectively. The SPR 

estimation was substantially less sensitive to random noise when using the kV-MV pair 

than that using the other two pairs. 

 

 

Figure 29. Dependence of the RMS errors in SPRs estimated using the DECT method on 

random noise in CT numbers for the ‘reference’ human body tissues.  

 

5.3.1.3 Uncertainty Propagation 

The ratios of absolute EAN variation (�2�) and relative EDR variation (
)NO,.,NO,., ) to 

relative CT number variation (
)-.,-., ) were calculated for all three x-ray pairs according to 

Eqs. 27 and 28, respectively. Table 23 shows that the calculated EANs of soft tissues 

were more sensitive to CT number variations than those of bone tissues. The EDRs of 

bone tisssues were similarly sensitive except for the kV-kV DECT. In addition, the 

EDRs were less sensitive to variations of high-energy CT numbers (
)-.,Ë,-.,Ë, ) than 
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variations of low-energy CT numbers (
)-.,�,-.,�, ) for all cases, especially for the kV-MV 

DECT. Overall, the DECT calculation using the kV-MV pair was the least sensitive to 

CT number variations among all three x-ray pairs studied. 

The ratios of relative SPR variations (
)N�,.,N�,., ) to relative CT number variations 

were calculated for all three x-ray pairs based on Eq. 29. The kV-MV DECT was the 

least sensitive to CT number uncertainties; the sensitivity ratio factors, �Ø and �*, were 

at least 1/3 smaller for the kV-MV pair than those for the other two pairs. The 

conventional kV-kV DECT was slightly less sensitive to CT number variations than 

was the MV-MV DECT. �Ø  was smaller than 1/3 of �*  for the kV-MV DECT, 

indicating that it is more effective to reduce the overall uncertainties in SPRs by 

reducing the uncertainties in kV CT imaging than the uncertainties in MV CT imaging. 

 Our uncertainty propagation analysis validated the linear relationship between 

the random noise level in CT numbers and the RMS errors in SPRs observed in Fig 29. 

According to the sensitivity ratio factors listed in Table 24, a 1% random noise in low-

energy CT numbers leads to a 4.14%, 0.31%, and 5.60% SPR uncertainty for the kV-

kV, kV-MV, and MV-MV DECT, respectively. A 1% random noise in high-energy CT 

numbers leads to a 5.14%, 1.31%, and 6.56% SPR uncertainty, respectively. By adding 

the uncertainties from both the low-energy and high-energy CT numbers in quadrature , 

a 1% random noise in both CT numbers leads to a 6.58%, 1.34%, and 8.63% SPR 

uncertainty for the kV-kV, kV-MV, and MV-MV DECT, respectively. These agree with 

the corresponding values determined from simulations (Fig. 29), especially for the kV-

kV and kV-MV DECT, which serves as a validation of our uncertainty propagation 

analysis. 



102 

 

  

 

Table 23. Ratios of absolute EAN variations and relative EDR variations over relative CT 

number variations in the DECT calculations for different x-ray energy pairs. The values were 

averaged of all tissue types within each tissue group.  

Energy 
Pairs 

Tissue 
Groups 

ÙÚÛ,Ü′ ÚÛ,Ü′�ÙÝÜ,Þ′ ÝÜ,Þ′�  
ÙÚÛ,Ü′ ÚÛ,Ü′�ÙÝÜ,ß′ ÝÜ,ß′�  

ÙàÜÙÝÜ,Þ′ ÝÜ,Þ′�  
ÙàÜÙÝÜ,ß′ ÝÜ,ß′�  

kV-kV 
Soft Tissue -2.81 3.81 70.5 -70.5 

Bone Tissue -4.30 5.30 43.8 -43.8 

kV-MV 
Soft Tissue -0.06 1.06 19.6 -19.6 

Bone Tissue -0.09 1.09 9.1 -9.1 

MV-MV 
Soft Tissue -1.09 2.09 366 -366 

Bone Tissue -1.17 2.17 118 -118 

 

 

Table 24. SPR sensitivity ratio factors, RL and RH, calculated for all three x-ray beam pairs. The 

values were averaged of all tissue types within each tissue group. 

Energy Pairs 
Tissue 

Groups 
áÞ(

ÙÚâ,Ü� Úâ,Ü��ÙÝÜ,Þ� ÝÜ,Þ�� ) áã(
ÙÚâ,Ü� Úâ,Ü��ÙÝÜ,ß� ÝÜ,ß�� ) 

kV-kV 

Soft Tissues 3.82 4.82 

Bone Tissues 4.85 5.84 

All Tissues 4.19 5.18 

kV-MV 

Soft Tissues 0.34 1.34 

Bone Tissues 0.21 1.21 

All Tissues 0.30 1.30 

MV-MV 

Soft Tissues 6.36 7.35 

Bone Tissues 2.63 3.63 

All Tissues 5.38 6.34 

 

5.3.2 Comparison of Mono-energetic X-ray Pairs 

The sensitivity ratio factors, ��  and �± , were calculated for various mono-

energetic x-ray beam pairs. The energies of mono-energetic x-rays studied here ranged 

from 5 keV to 1 MeV with a step size of 5 keV. Generally, the SPR sensitivity to CT 

number variations decreased with the difference between two x-ray spectra. We 
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changed the energy of one beam at a time in order to demonstrate how the sensitivity 

changes with the beam energies.  

First, the energy of the low-energy beam was set to 60 keV, the average energy 

of our 100 kVp x-ray, and the energy of the high-energy beam was changed from 65 

keV to 1 MeV. It was noticed that �� was always negative and �± was always positive. 

In the following paragraphs of this section, when we mention the sensitivity ratio 

factors �� and �±, unless specified otherwise, we mean their absolute values because 

the absolute value is what matters in uncertainty propagation. Fig. 30(a) shows that both 

��  and �±  decreased quickly with the energy of the high-energy beam before they 

reached a plateau.  

 Next, the high-energy component was set to the average energy of the 1 MV x-

ray beam, 400 keV, and the low-energy x-ray was changed from 5 keV to 395 keV. �� 

and �± were observed to increase substantially with the energy of the low-energy beam 

(Fig. 30(b)). This was especially true for ��, which increased more than 20% for every 

5 keV step from 25 keV to 60 keV. This finding indicates that the energy of the low-

energy beam needs to be as low as practically possible, while the energy of the high-

energy beam just needs to be above a threshold value. The threshold value was 

observed to be about 200 keV above the effective energy of the low-energy beam. The 

low energy beam is dominant in determining the minimum sensitivity that is achievable. 

When the energy of the low energy beam is 5 keV, �� is reduced to 0.03 while �± only 

reduced to 1.03, indicating that the SPR uncertainty will become increasingly 

dominated by uncertainties in the high-energy CT imaging as the energy of the low-

energy beam decreases. 
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Figure 30. Relationship between the SPR sensitivity ratio factors (the absolute value of �� and 

�±) and the energy of (a) the high-energy x-ray beam and (b) the low-energy x-ray beam used 

for DECT scans. In (a), the energy of the low-energy x-ray beam was 60 keV, and in (b), the 

energy of the high-energy x-ray beam was 400 keV. Mono-energetic x-ray beams were used in 

these simulations. 

 

5.4 Discussion 

5.4.1 Criteria for Selecting X-ray Pairs 
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The kV-MV pair was the best of all three beam pairs investigated in this study 

because its SPR estimation was the least sensitive to CT number variations. However, 

our goal was to find general principles for selecting the optimum x-ray pairs for DECT 

calculations and to test whether there is a beam pair that is better than our kV-MV pair 

in terms of reducing the sensitivity ratio factors. The general principle was concluded to 

be: the energy of the low-energy beam needs to be made as low as practically possible 

while the energy of the high-energy beam needs to be at least 200 keV higher than that 

of the low-energy beam. The average energy of the 100 kVp and 1 MV beams of the 

kV-MV pair were about 60 keV and 400 keV, respectively. �� and �± were found to 

decrease from 0.648 to 0.636 and from 1.616 to 1.603, respectively, as the energy of the 

high-energy beam increased from 400 keV to 1 MeV. It suggests that no significant 

gain will be achieved by replacing the 1 MV beam with a beam with higher energy, e.g., 

a 6 MV therapy beam. 

The key is to lower the energy of the low-energy beam in order to reduce the 

sensitivity of the DECT calculation to CT number variations. But the CT imaging 

uncertainties due to the beam hardening effect increase as the x-ray energy gets low, 

which competes with the reduction of the sensitivity ratio factors. The typical x-ray 

peak energies used in current CT scanners are 80 keV, 100 keV, 120 keV and 140 keV. 

In the next specific aim, both the sensitivity ratio factors and CT imaging uncertainties 

associated with each beam will be determined, based on which the optimal kV beam 

will be determined to pair with the 1 MV beam. 

5.4.2 Interesting Observations about DECT Calculations 
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According to our uncertainty propagation analysis, the energy of the low energy 

x-ray beam determines the lowest achievable sensitivity ratio while the energy of the 

high energy x-ray beam just needs to be high enough to achieve that minimum value. 

The DECT calculation depends on the difference between two CT measurements of the 

same object. It implicitly indicates that the larger the difference is, the less sensitive the 

calculation will be to CT number variations. The CT number is essentially the ratio of 

photon linear attenuation coefficients of the object of interest relative to water. The 

photon linear attenuation coefficient for photons with energy below 1.02 MeV has two 

major components – the photoelectric absorption and Compton scatter. The cross 

section of photoelectric absorption depends on both the EAN and x-ray energy strongly, 

while that of the Compton scatter does not depend on the EAN at all and depends on the 

energy slightly. As the energy increases, the cross section of photoelectric interaction 

decreases quickly, while that of Compton scatter remains almost constant. As a result, 

the CT number changes from a value depending on both EDR and EAN toward a 

constant value that is proportional to EDR. Therefore, the maximal CT number 

difference between two energies depends on the lower energy, and the higher energy 

just needs to be high enough to reach that maximal difference. This explains how the 

sensitivity ratio factors change with the energy of the low energy and high energy x-ray 

beams. 

Table 17 shows that the sensitivity ratios of EAN to CT number variations are 

always positive for the low energy x-ray beam, 
)Á.)-.,�′ -.,�′� , while negative for the high 

energy x-ray beam, 
)Á²)-.,Ë′ -.,Ë′� . The CT number of the low energy x-ray beam (���' ) 

depends on the EAN more strongly than the CT number of the high energy x-ray beam 
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(��±' ), so the EAN calculated based on the difference of two CT numbers increases 

with ���'  and decreases with ��±' . Table 17 also shows that the sensitivity ratios of 

EDR over CT number variations are always negative for the low energy x-ray beam, 

)NO,.′ NO,.′�)-.,�′ -.,�′� , while positive for the high energy x-ray beam, 
)NO,.′ NO,.′�)-.,Ë′ -.,Ë′� . Similarly, the 

sensitivity ratio increases with ��±'  because ��±'  depends more strongly on the EDR 

compared to ���' . As shown in Eq. 26, the SPR variation increases with EDR variation 

and decreases with EAN variation. An increase of ���'  results in an increase of EAN, a 

decrease of EDR, and thus a decrease of SPR. On the contrary, an increase of ��±'  

leads to a decrease of EAN, an increase of EDR, and thus an increase of SPR. This 

explains why �� is always negative while �± is always positive. Fig. 30 shows that �� 

approaches 0 while �± approaches 1 as the energy of the low energy beam becomes low 

(0 keV to 10 keV). In that energy range, the photoelectric interaction is dominant so the 

CT number difference is proportional to EAN
3
. Thus, CT number variations have a 

limited impact on EAN calculation. The other factor, EDR, is essentially a weighted 

average of both CT numbers. In the energy range of 0 keV to 10 keV, the EDR 

calculations depend on ��±'  almost completely. Therefore, in that energy range, the 

variation of ���'  has little impact on both EDR and EAN while the variation of ��±'  

has little impact on EAN but large impact on EDR. This explains why ��  and 

�± approaches 0 and 1, respectively, as the energy of the low energy x-ray beam 

becomes low. 
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CHAPTER 6: SPECIFIC AIM IV – ESTIMATION OF 

MARGIN REDUCTION BY USING DECT 

6.1 Introduction 

Specific Aim IV: To evaluate the margin reduction by using DECT for treatment 

planning.  

This aim is necessary to study the clinical benefit of DECT in proton therapy 

and to test our hypothesis of margin reduction by a factor of 2. The uncertainties in 

DECT calculations were also broken down into five categories. The uncertainties were 

estimated for each category and each tissue group, based on which a composite range 

uncertainty estimate was determined for prostate, lung and head-and-neck cancer sites. 

This chapter starts with a brief description of our methods of estimating the 

uncertainties in SPR estimation when using the DECT method. Then the measurements 

using four kV beams and one MV beam are presented, followed by our uncertainty 

estimates for the kV-MV DECT. Finally, a few interesting topics about the DECT 

method are discussed, such as comparison of the DECT method with the stoichiometric 

method, measures to improve the DECT method, practical limitations and other benefits 

of the DECT method. 

 

6.2 Methods and Materials 

6.2.1 Uncertainties in SPR Estimates Using the DECT Method 
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Similar to the stoichiometric method, the uncertainties in SPRs estimated using 

the DECT method were divided into 5 categories: the inherent uncertainty in the 

presence of human tissue composition variations, the CT modeling uncertainty, the CT 

imaging uncertainty, the uncertainty in mean excitation energy and the SPR variation 

with proton energy. The uncertainty of each category was estimated for the DECT 

method similar to those for the stoichiometric method. The inherent uncertainties in the 

presence of human tissue composition variations were estimated by comparing the 

SPRs derived using the DECT and the true SPRs of the ‘individualized’ human tissues. 

The CT modeling uncertainties were estimated by comparing the measured CT numbers 

and the calculated CT numbers of tissue substitute inserts. The imaging uncertainties 

were estimated by comparing the CT numbers of the same tissue substitutes measured 

under different conditions as described in Section 3.2.3.3. The CT modeling 

uncertainties and CT imaging uncertainties were estimated for both beams of the energy 

pair, based on which the induced SPR uncertainties were calculated, using Eq. 30. The 

SPR uncertainties due to the uncertainties in mean excitation energies and SPR 

variations with proton energies have the same estimated values for the DECT method 

and the stoichiometric method. 

 

6.3 Results 

The imaging uncertainties and modeling uncertainties were determined based on 

experimental measurements for four kV beams – the 80 kVp, 100 kVp, 120 kVp and 

140 kVp beams, in order to determine which kV beam is the optimal one to pair with 

the MV beam as discussed in Section 5.4. The imaging uncertainties and modeling 
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uncertainties were estimated for the MV beam based on measurements using a 

TomoTherapy machine instead of the Varian compact linear accelerator. The 

equivalence of the two beams was discussed in Section 6.3.2. The overall uncertainty 

estimates were first determined for the kV-MV beam pair, and then the composite range 

uncertainty was estimated for prostate, lung and head-and-neck patients. 

6.3.1 Selection of the Best kV Beam to Pair with the MV Beam 

The same set of measurements as used in estimating the imaging uncertainties 

for the stoichiometric method was repeated for four kV beams – the 80 kVp, 100 kVp, 

120 kVp and 140 kVp. Based on the measurements, the effective energies of the 80 

kVp, 100 kVp, 120 kVp and 140 kVp beams were estimated to be 62.0 keV, 69.9 keV, 

76.4 keV and 82.7 keV, respectively, using the method described in Section 4.4. The 

sensitivity ratio factors were calculated for them based on their effective energies and 

the effective energy of the 1 MV beam (Table 25). The sensitivity ratio factors for both 

the low energy and high energy beams (�� and �±) decrease substantially as the energy 

of the kV beam decreases, which agrees with our general principle found in Section 5.4. 

The imaging uncertainties and modeling uncertainties increases as the beam energy 

decreases (Table 26 and Table 27), but the decrease of both sensitivity ratio factors 

outcompete the increase of imaging uncertainties and modeling uncertainties. As a 

result, the pair of the 80 kVp – 1 MV beams was able to produce the smallest SPR 

uncertainties. Therefore, the 80 kVp beam was chosen to pair with the 1 MV beam. In 

the following, the kV-MV pair refers to the 80 kVp – 1 MV pair, unless specified 

otherwise. 
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Table 25. Sensitivity ratio factors calculated for the 80 kVp, 100 kVp, 120 kVp and 140 kVp 

beams, respectively, when paired with the 1 MV beam.  

 Tissue Types 80 kVp 100 kVp 120 kVp 140 kVp  

áÞ 
Lung Tissues 0.47 0.64 0.88 1.2  
Soft Tissues 0.43 0.59 0.82 1.1  
Bone Tissues 0.16 0.20 0.26 0.32  

áß 

Lung Tissues 1.4 1.6 1.8 2.1  
Soft Tissues 1.4 1.6 1.8 2.1  
Bone Tissues 1.2 1.2 1.2 1.3  

 

Table 26. Our estimates of imaging uncertianties (1σ) of the 80 kVp, 100 kVp, 120 kVp and 

140 kVp beams. 

Tissue Groups 
Imaging Uncertainties (1σ) 

80 kVp 100 kVp 120 kVp 140 kVp 

Lung tissues 3.6% 3.5% 3.0% 2.9% 
Soft Tissues 0.61% 0.63% 0.57% 0.58% 
Bone tissues 2.5% 2.3% 2.1% 2.1% 

 

Table 27. Statistics of modeling uncertainties (1σ) for the 80 kVp, 100 kVp, 120 kVp, 140 kVp 

beams and the MV beam of the TomoTherapy mahcine. 

Tissue Groups 
Modeling Errors (1σ) 

80 kVp 100 kVp 120 kVp 140 kVp TomoTherapy 

Lung tissues 0.04% 0.12% 0.23% 0.08% 0.25% 
Soft Tissues 0.15% 0.16% 0.15% 0.16% 0.03% 
Bone tissues 1.0% 0.88% 0.71% 0.59% 0.00% 

 

6.3.2 MV Measurements using the TomoTherapy Machine 

Our estimates of the modeling errors and the imaging uncertainties for the 1 MV 

beam were based on the measurements using the TomoTherapy machine. The MV 

beam of the TomoTherapy machine has a peak energy of 3.5 MeV (Jeraj et al., 2004), 

which is higher than our 1 MV beam. But as discussed in Section 5.4, the effective 

energy of our 1 MV beam is already high enough to couple with the kV beam, and 

further increase of the energy does not decrease the sensitivity ratio factors substantially 



112 

 

  

(less than 5%). The imaging uncertainties may be reduced further by using the 3.5 MV 

beam instead of the 1 MV beam. But considering that current TomoTherapy machines 

are not dedicated for imaging, it is reasonable to expect future dedicated MV scanners 

to achieve an uncertainty no worse than current TomoTherapy machines. The 

experimental measurements for determining the modeling errors and the imaging 

uncertainties for the MV beam were the same as those for the kV beams.  

Table 27 lists the modeling uncertainties associated with the MV beam, which 

were found smaller for soft tissues and bone tissues than the kV beams, due to the 

dominance of the Compton interaction in the MV energy range. Table 28 lists our 

estimates of the imaging uncertainties for the MV beam of the TomoTherapy machine. 

The CT number uncertainties related to the phantom size and the position in the scan 

were found smaller for the MV beam than for the kV beams, especially for bone tissues. 

One thing to note in Table 28 is that the uncertainty estimates of the factors, the time 

and scanner and the couch position, for the MV beam were actually taken from our 

previous estimates for the kV beam. The uncertainty estimates of the factor, time and 

scanner, for the kV beams were based on the repeated CT measurements of the same set 

of tissue substitute inserts in monthly QAs. But those CT number measurements are not 

included in the monthly QAs of the TomoTherapy machine, because the TomoTherapy 

machine is not used regularly for patient treatment planning purpose. Our estimates for 

the couch height for the 1 MV beam were not based on the measurements of the 

TomoTherapy machine, because our measurements indicated that the TomoTherapy 

machine has not been designed to give accurate CT numbers when the couch is at 

different height thus it will be over-estimating to use its uncertainty values as estimates 
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for future dedicated MV scanners. The CT numbers measured using the TomoTherapy 

machine were found to vary substantially when the treatment couch was at different 

height. Moreover, no clear pattern was observed in CT number variations for the 

TomoTherapy machine, e.g., the CT number variation for water was 2% while it was 

only 0.2% for liver and 1% for CB2-50%. On the contrary, a clear pattern was observed 

for the dedicated kV CT scanner, i.e., the variations were always small for materials 

with CT number value close to water and the variation became larger as the difference 

increased. Therefore, we decided to use the uncertainty estimates of the following 

factors, the time and scanner and the couch position, for the kV beam when calculating 

the total imaging uncertainties for the MV beam, so that the comparison of the DECT 

method with the stoichiometric method would be fair. 

 

Table 28. Statistics of CT number uncertainties (1-σ) due to different factors for different tissus 

groups for the MV TomoTherapy beam.  

Tissue 
Groups 

Major Uncertainty Contributing Factors (1-σ) 
Total 
(RSS) 

Time and 
Scanner* 

Patient 
Size 

Position in 
the Scan 

Couch 
Position* 

Lung 1.0% 0.69% 1.6% 1.0% 2.3% 
Soft 0.33% 0.21% 0.35% 0.27% 0.59% 
Bone 0.61% 0.16% 0.30% 0.46% 0.84% 

*. The data of this category are from the data of the kV beam listed in Table 14. 

 

6.3.3 Summary 

Table 29 lists the summary of the uncertainties of each category estimated for 

the DECT with the 80 kVp – 1 MV pair. The imaging uncertainties were found to be the 

dominant factor for all three tissue types. The total SPR uncertainties were estimated to 

be 3.7%, 0.99% and 1.4% for lung, soft and bone tissues, respectively. The composite 
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range uncertainties calculated based on these values are 1.9%, 2.3% and 1.9% for 

prostate, lung and head-and-neck patients, respectively. 

 

Table 29. Summary of our estimates of the relative SPR uncertainties (1-σ) when using the 

DECT with the 80 kVp – 1 MV pair. 

Uncertainty Sources 
Relative SPR Uncertainty (1-σ) 

Lung Soft Bone 

Inherent uncertainties in the presence of 
human tissue composition variations 

0.23% 0.32% 0.43% 

CT# 
Related 

Modeling errors in predicted CT 
numbers 

0.36% 0.08% 0.15% 

CT imaging uncertainties 3.7% 0.89% 1.0% 

SPR 
Related 

Uncertainties in mean excitation 
energies 

0.17% 0.23% 0.65% 

SPR variations with energies 0.17% 0.17% 0.41% 

Total (RSS) 3.7% 0.99% 1.4% 

 

6.4 Discussion 

6.4.1 Comparison of the DECT Method and the Stoichiometric Method 

Our study shows that the kV-MV DECT can reduce the range uncertainty (Table 

30) but it fails to reach our main goal, i.e., reducing the total uncertainty by a factor of 

two. However, our study demonstrates that the DECT method holds a possible 

advantage over the stoichiometric method with the extra tissue composition 

information.  

Currently, the dominant uncertainty factor for the stoichiometric method using 

the kV beam is the inherent uncertainty in the presence of tissue composition variations. 

This uncertainty cannot be reduced because it is due to the inherent drawback of the 

stoichiometric method itself, i.e., the incapability of fully capture SPR variation with a 

single CT number. The uncertainties due to the other three factors – CT modeling 
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uncertainties, the uncertainties in mean excitation energy and SPR variations with 

proton energy cannot be reduced neither because they are all limited by the method 

itself. Only the CT imaging uncertainties may be reduced with the advance in CT 

technologies, e.g., better beam hardening correction algorithm, more stable CT imaging, 

etc. But the reduction of CT imaging uncertainties does not lead to substantial reduction 

of the total uncertainty for the stoichiometric method using the kV beam: the total 

uncertainty is only reduced from about 3.0% to 2.6% (Table 30) even when assuming 

an ideal case scenario, i.e., the CT imaging uncertainties are removed completely. On 

the contrary, the total range uncertainty using the kV-MV DECT can be reduced 

substantially in the ideal case scenario: the composite range uncertainty can be reduced 

below 1%. In that case, the composite range uncertainty can be reduced by a factor of 

two compared to the corresponding uncertainty of the kV stoichiometric method.  

One potential way to reduce the inherent uncertainties in the presence of tissue 

composition variations for the stoichiometric method is to use an x-ray beam of higher 

energy such as the MV beam. As the x-ray energy increases, the Compton scatter 

interaction becomes more dominant, which reduces the nonlinearity between CT 

number and SPR thus the sensitivity to tissue composition variations. As shown in 

Table 30, the stoichiometric method using the MV beam can achieve similar or even 

slightly better accuracy compared to the kV-MV DECT, owing to both its lower 

sensitivity to tissue composition variations compared to the kV stoichiometric method 

and lower imaging uncertainties compared to the kV-MV DECT. However, the 

dominant uncertainty for the MV stoichiometric method is still its sensitivity to tissue 

composition variations. Because of that, in an ideal case, when CT imaging uncertainty 
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is completely removed, its total uncertainty becomes larger than that of the kV-MV 

DECT. 

Overall, the kV-MV DECT is advantageous over the stoichiometric method in 

theory, and it may promise the reduction of the total uncertainty by a factor of two in 

the future, when CT imaging uncertainties are reduced further. 

  

Table 30. Summary of comparison of the DECT method and the stoichiometric method. 

 The DECT Method 
The Stoichiometric Calibration 

Method 

Methodology 
SPR derived from two CT numbers 
based on both density and tissue 
composition information 

SPR derived from a single CT number 
based on a pre-defined CT#-to-SPR 
calibration curve 

Strength 
Resolve composition difference better, 
insensitive to tissue composition 
variation 

Less sensitive to CT number variation 

Weakness 
The DECT calculation is sensitive to 
CT number variation 

Sensitive to tissue composition 
variation due to CT degeneracy 
problem 

  Prostate Lung HN  Prostate Lung HN 

Margin 
(Current 
Technology) 

kV-MV 1.9% 2.3% 1.9% 
kV 3.0% 3.4% 3.1% 

MV 1.8% 1.9% 1.8% 

Margin (Ideal 
Condition, no 
CT Imaging 
Uncertainty) 

kV-MV 0.85% 0.82% 0.87% 
kV 2.6% 3.0% 2.8% 

MV 1.4% 1.4% 1.5% 

 

6.4.2 Measures to Improve the DECT Method’s Accuracy 

The dominant uncertainty factor for the kV-MV DECT is the CT imaging 

uncertainty (Table 29), which prevents us from reducing the total range uncertainty by a 

factor of two. Therefore, the key to reduce the total uncertainty is to reduce the imaging 

uncertainties. There are two important factors determining the imaging uncertainty, i.e., 

the sensitivity ratio factors (��  and �± ) and the imaging uncertainties of the high-

energy beam. The sensitivity ratio factors can be further reduced by lowering the energy 
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of the low-energy beam. The 80 kVp x-ray was the x-ray with the lowest energy that 

was available to us. Its effective energy was about 60 keV. If the effective energy can 

be reduced from 60 keV to 40 keV, the composite range uncertainty can be reduced 

from 1.9%, 2.3% and 1.9% to 1.5%, 1.8% and 1.6% for prostate, lung and head-and-

neck patients. But as the x-ray energy becomes lower, CT number variations may 

increase. Further measurements needs to be performed to find the optimum balance 

between the reduction of the sensitivity ratio factors and the increase of the CT imaging 

uncertainties. Moreover, the low energy mono-energetic x-rays may be an option for the 

kV beam in which case the beam hardening artifact is totally eliminated.  

Another critical factor is the imaging uncertainties of the MV imaging. In this 

study, the CT imaging uncertainty estimates were based on the measurements using the 

TomoTherapy machine, which is not optimized for the reduction of CT imaging 

uncertainties. The imaging uncertainties may be further reduced by using dedicated MV 

scanners in future. If the CT imaging uncertainties can be reduced by a factor of two 

from current value, i.e., from 0.59% to 0.3%, the total range uncertainty (2-σ) for 

prostate, lung and head-and-neck patients can be reduced from 1.9%, 2.3% and 1.9% to 

1.4%, 1.8% and 1.4%, respectively. This way, the composite range uncertainty can be 

reduced by a factor of 2 for prostate and head-and-neck patients, and a factor of 1.94 for 

lung patients. 

6.4.3 Practical Limitations of Estimating Patient SPRs Using DECT 

One general issue for DECT applications, especially quantitative applications 

like ours, is the misalignment of two CT image sets caused by patient movements 

between two CT scans. In general, patient motion artifact can be substantially reduced 
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by acquiring CT images for both energies simultaneously. There are two types of CT 

scanners with this capability – the scanner with fast kVp switching x-ray tubes and the 

scanner with two x-ray tubes mounted on the gantry orthogonally (Grasruck et al., 2009; 

Flohr et al., 2006). In our case, the most probable design for the kV-MV DECT scanner 

will be the dual source design. The negative effect of cross-scattered radiation in dual 

source CT systems can be mitigated by either model-based or measurement-based 

scatter correction techniques (Kyriakou and Kalender, 2007; Petersilka et al., 2010). 

Besides, deformable image registration tools can also be helpful in reducing the 

misalignment. 

Another common issue with DECT applications is the extra dose delivered to 

patients by one additional CT scan. A kV-kV DECT scan will deliver about twice the 

dose as a conventional kV-CT scan, and a kV-MV DECT scan will deliver an even 

higher dose. Our Monte Carlo simulations showed that the 1 MV beam needs to deliver 

about 5 times the dose as the 100 kVp beam, to achieve the same level of image noise. 

The detector modeled in our simulation was a 0.6 mm cesium iodide (CsI) scintillator 

detector. As shown before, the sensitivity ratio factor for the MV CT number is larger 

than that for the kV CT number, which indicates that it is more important to reduce the 

noise in the MV CT image. The image noise can be reduced by simply using a higher 

radiation dose. Although the imaging dose in treatment planning is negligible compared 

to the dose delivered by the radiation treatment itself, the ALARA (As Low As 

Reasonably Achievable) concept is valid and it is important to reduce the dose to the 

patient as much as possible. One way to accomplish this is to use thicker detectors. 

There have been several studies showing that the dose can be reduced substantially for 



119 

 

  

the MV CT if a thicker segmented scintillation detector is used (Sawant et al., 2005; 

Monajemi et al., 2006; Wang et al., 2008; Wang et al., 2009). Our Monte Carlo 

simulation results showed the ratio between the dose needed for a 1 MV beam and that 

for a 100 kVp beam to achieve the same noise level can be reduced from 6 to 2 by 

increasing the detector thickness from 0.6 mm to 10 mm. Another way is to reduce the 

noise by applying software solutions. The impact of random noise to the overall range 

uncertainty is reduced further considering the averaging effect along the beam path 

(Chvetsov and Paige, 2010). 

6.4.4 Other Benefits of DECT 

One additional benefit of the 1 MV beam is the reduction of metal artifacts in 

CT images of patients with high Z material, such as dental fillings. In a previous study, 

the use of a 320 kVp beam substantially reduced metal artifacts caused by a Ti insert 

(Yang et al., 2008). Compared to the 320 kVp beam, the 1 MV beam has a higher peak 

energy thus should reduce the metal artifact even more and make it easier for physicians 

to draw contours in the artifact-affected area. In the artifact-affected area, the CT 

number of the kV beam may deviate substantially from its true value, which may cause 

errors in DECT calculation. Under that circumstance, the SPR can be estimated using 

just the MV CT number, which will minimize the imaging artifacts. 

Another potential application of the EAN information derived from DECT is to 

help with tissue parameterization for Monte Carlo proton dose calculations. The 

element weighting proportion information is needed to determine the cross sections of 

different proton interactions for Monte Carlo dose calculations (Paganetti et al., 2008). 

Currently, patient elemental proportion information is determined from CT numbers 
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based on the correlation between CT numbers and the percentages of each major 

element (Schneider et al., 2000; Espana and Paganetti, 2010). The EAN should have a 

better correlation with elemental percentages compared to the CT number because CT 

number also depends on the density in addition to elemental compositions. We plotted 

the EAN versus the percentage for each major element for the ‘reference’ human body 

tissues listed in Table 2. The correlation between EANs and elemental proportions were 

found truly better than that between CT numbers and elemental proportions, especially 

for bone tissues (Fig. 31). Further study needs to be done to determine the overall 

benefit achievable by using the DECT, accounting for the relative large uncertainties 

carried in the EAN calculation.  
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Figure 31. Elemental proportions of Hydrogen (H), Potassium (P), Calcium (Ca) and the 

summation of elemental proportion of Carbon (C), Nitrogen (N) and Oxygen (O), respectively, 

versus the effective atomic number (EAN) of human bone tissues listed in Table 2. 
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CHAPTER 7: CONCLUSIONS 

7.1 Specific Aim I – Estimation of Range Uncertainty (SPR-related) in 

Current Practice 

The uncertainties in estimated SPRs in current practice were thoroughly 

examined: 1) the uncertainties were broken down into five categories; 2) the 

uncertainties (1σ) were estimated for lung, soft and bone tissues separately; 3) the 

composite uncertainties (2σ) were estimated for prostate, lung and head-and-neck 

patients after accounting for different radiological path lengths going through different 

tissues in actual patient geometries.  

The dominating uncertainty factor was found to be the inherent uncertainty in 

the presence of tissue composition variations. The uncertainties (1σ) in estimated SPRs 

of different tissue groups were shown substantially different (from 1.6% to 5.0%); 

however, the combined uncertainty (2σ) was fairly consistent at 3.0-3.4%. The current 

value used for distal and proximal margin design – 3.5% was found to be comparative, 

compared to our uncertainty estimates (3.0- 3.4%). 

 

7.2 Specific Aim II – Development of the DECT Method 

An empirical relationship was discovered between the mean excitation energies 

and effective atomic numbers (EANs) in human body tissues. This key discovery 

enabled us to develop an innovative method utilizing the dual-energy computed 

tomography (DECT) to derive proton stopping power ratio (SPR) distribution inside 
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patients (the DECT method). The DECT method was shown to hold theoretical 

advantages over the conventional stoichiometric method because of the extra tissue 

composition information. The DECT method can achieve higher accuracy in estimating 

SPRs than the stoichiometric method, especially in the presence of human tissue 

composition variations: the uncertainties using the DECT method increase from 0.24% 

for the ‘reference’ human tissues to 0.28% for the ‘individualized’ human tissues while 

they increase from 0.65% to 1.26% when using the stoichiometric method. Moreover, 

the maximal uncertainty could reach 6% for the stoichiometric method, much larger 

than 2% for the DECT method. 

 

7.3 Specific Aim III – Developing Criteria for Selecting X-ray Pairs for 

DECT 

The kV-MV DECT achieved substantially higher accuracy in SPR estimation 

than the kV-kV DECT, which was confirmed by our uncertainty propagation analysis. 

Our uncertainty propagation analysis also yielded the general principles for selecting x-

ray pairs to minimize the sensitivity of the DECT calculation to CT number variations. 

The low-energy x-ray beam is the key; its effective energy needs to be made as low as 

practically possible. Meanwhile, the effective energy of the high-energy x-ray needs to 

be about 200 keV above that of the low-energy x-ray beam, in order to achieve the 

minimum sensitivity determined by the low-energy x-ray beam. 

 

7.4 Specific Aim IV – Estimation of Margin Reduction using the DECT 
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The 80 kVp beam was found to be the optimum kV beam to pair up with the 

MV beam because of its relatively low sensitivity to CT number variations. The DECT 

with the kV-MV pair was shown to be capable of reducing total range uncertainty 

substantially, i.e., from current value, 3.5% to 2%, but failed to achieve the main goal of 

reducing the total uncertainty by a factor of two. It was largely limited by the imaging 

uncertainties existing in current CT technologies, especially in the MV imaging. 

However, it has been shown that the kV-MV DECT still has the promise to reduce the 

total uncertainty by a factor of two in future, if the CT imaging uncertainty can be 

reduced further with future advances in CT technologies such as better beam hardening 

correction. 

 

7.5 Testing the Hypothesis 

The first part of our hypothesis was tested to be true, i.e., the DECT can be 

designed to derive more accurate proton SPRs of human tissues than the stoichiometric 

method. The second part of the hypothesis was tested to be false, i.e., the margin to 

account for range uncertainties in SPRs for treatment planning can NOT be reduced by 

a factor of two as we hypothesized. Instead, the margin can be reduced from 3.5% to 

1.9% for prostate and head-and-neck patients and 2.3% for lung patients. The imaging 

uncertainties in current CT technologies, especially the MV imaging, was found to be 

the major reason that prevented the kV-MV DECT from reaching the margin reduction 

by a factor of two. 
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APPENDIX A – ESTIMATION OF UNCERTAINTIES IN 

HUMAN TISSUE COMPOSITIONS PUBLISHED IN THE 

LITERATURE 

A thorough literature review was performed in order to get a realistic estimate of 

the systematic and statistical uncertainties in the recommended tissue compositions of 

the ‘reference’ human tissues listed in Table 2. Our estimate of the systematic 

uncertainties in the recommended values was based on the difference between the 

recommended values of the same tissue type from different published articles. Our 

estimate of the statistical uncertainties was based on several studies by Woodard and 

White (Woodard, 1964; Woodard and White, 1982, 1986; White et al., 1987; White et 

al., 1991). In the remainder of this appendix, our estimates of the uncertainties in the 

recommended values of the key factors will be explained in details. The key factors 

include the density and the percentages of hydrogen (H) and calcium (Ca). 

 The recommended density values for most human tissues found in the literature 

were not determined by direct experimental measurements. Instead, they were 

determined by indirect calculation based on a tissue component model (Woodard and 

White, 1986; White et al., 1987). The tissue component model assumes that all human 

body tissues are composed of several fundamental components such as water, lipids, 

proteins, minerals, etc., and the density of any human tissue can be simply calculated 

using the following equation: 
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0� � 1∑ �@0@äDE:  , (31) 

where �@  and 0@  are the weight by mass and the density of the ith component, 

respectively. There is an inherent flaw in this method: it ignores possible structural 

changes after mixing these components in vivo. The difference between the density 

calculated with this method and its actual value can be up to 2% (Woodard and White, 

1986). The reason why the densities calculated this way are still used in spite of their 

known possible errors is that the measured densities are not available for most human 

tissues (White et al., 1991). Table 31 lists the recommended density values of several 

human tissue types from different articles. The relative differences were seen to range 

from 0.0% to 3.6% with the root-mean-square (RMS) average equal to 2.1%. Based on 

those facts, 2.1% was chosen as our estimate (1σ) of the systematic uncertainties in the 

recommended density values. Table 32 lists the mean density values and the standard 

deviations of seven human tissues estimated by Woodard and White (1986). The 

relative standard deviations were seen to range from 0.0% to 3.4% with the RMS 

average equal to 1.7%, which was used as our estimate (1σ) of the statistical 

uncertainties. 

 

Table 31. Comparison of the recommended density values of the same human tissue type from 

different publications. 

Tissue Types 
Density (g/cm

3
) 

Rel. Diff. 
Woodard and White (1986) ICRU 44 (1989) 

Adipose 0.95 0.916 3.6% 
Mammary gland 1.02 1.05 2.9% 
Liver 1.06 1.053 0.7% 
Muscle 1.05 1.04 1.0% 
Skin 1.09 1.1 0.9% 
Eye Lens 1.07 1.1 2.8% 
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Lung (deflated) 1.05 1.05 0.0% 
Ovary 1.05 1.048 0.2% 
Red Marrow 1.03 1.03 0.0% 
Thyroid 1.05 1.05 0.0% 
Heart (blood filled) 1.06 1.03 2.8% 
Cortical bone 1.92 1.85 3.6% 

Root-mean-square (RMS) 2.1% 

 
 

Table 32. Mean densities (<ρ>) and standard deviations (σ) of human tissues from Woodard and 

White (1986). The relative standard deviation (σrel) was also calculated. 

Tissue Types  <ρ>, g/cm
3
 σσσσ σσσσrel 

Adipose 0.95 0.02 2.1% 
Mammary Gland 1.02 0.035 3.4% 
Liver 1.06 0.01 0.9% 
Kidney 1.05 0.0 0.0% 
Muscle 1.05 0.0 0.0% 
Skin 1.09 0.0 0.0% 
Heart 1.05 0.0 0.0% 
Cortical Bone* 1.91 0.05 2.4% 

Root-mean-square 1.7% 

*: The mean and standard deviation of cortical bone is from Woodard (1964). 

 

The hydrogen percentages of human body tissues published in the literature 

were also calculated instead of measured, based on the tissue component model. There 

are three major tissue components containing substantial amounts of hydrogen, which 

are water, lipids and proteins. Based on the component model, the hydrogen percentage 

of a human body tissue can be calculated using the following equation 

�� � Aå ( �å 8 A� ( ��8Aæ ( �æ , (32) 

where Aå, A� and Aæ are the weight by mass of water, lipids and proteins in that body 

tissue, respectively. �å , ��  and �æ  are the hydrogen percentage by mass in water, 

lipids and proteins, respectively. The uncertainty in the calculated hydrogen percentage 

can be determined by taking the first derivative of Eq. 32, 

�±. � ç1�èé ( �å<7 8 1�è� ( ��<7 8 1�è¡ ( �æ<7 8 1Aå ( �±é<7 8 1A� ( �±�<7 8 1Aæ ( �±¡<7
 , (33) 
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where �èé, �è� and �è¡ are the uncertainty in the weight by mass of water, lipids and 

proteins, respectively, and �±é , �±�  and �±¡  are the uncertainty in the hydrogen 

percentage, respectively. Table 33 lists the uncertainties in hydrogen percentages of 

seven human body tissues estimated by Woodard and White (1986), which only 

accounted for the uncertainties in the weights of water, lipids, and proteins in human 

tissues. In order to determine the total uncertainty, we estimated the uncertainties in the 

hydrogen percentages of water, lipids, and proteins. 

 The uncertainty in hydrogen percentage of water (�±é) is simply zero because 

the hydrogen percentage of water is constant. The uncertainty in hydrogen percentage 

of lipids (�±�) was determined to be 1.0% by calculating the standard deviation of the 

hydrogen percentages of four major biological substances within the lipid category 

(Table 34). The uncertainty in hydrogen percentage of protein (�±�) was determined to 

1.8% by calculating the standard deviation of the hydrogen percentages of twenty-three 

major amino acids, the building blocks of proteins. It is known that one water molecule 

is lost when two amino acids bind to each other. For a relatively long peptide, each 

amino acid loses one water molecule on average, which was considered when 

calculating the hydrogen percentages of amino acids shown in Table 35. After putting 

all those values back into Eq. 33, the total standard deviation of hydrogen percentage 

was calculated for each tissue type (Table 36). The RMS average standard deviation 

was calculated to be 0.5%, which was used as our estimate (1σ) of the statistical 

uncertainty in hydrogen percentage. 
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Table 33. Compositions of seven human tissues from Woodard and White (1986) and the 

calculated standard deviation of hydrogen percentages (σ'H). Three tissue compositions are 

provided for each human tissue: mean and mean ± 1 standard deviation (σ). The hydrogen 

percentage was calculated based on the relative weight by mass and the hydrogen percentage of 

each tissue component. 

Tissue Types Category 
Relative Weight by Mass 

H �ß′  

Water Lipid Protein 

Adipose 

Mean + σ 30.5% 61.4% 7.9% 11.2% 

0.2% Mean 21.2% 74.1% 4.4% 11.4% 

Mean – σ 11.4% 87.3% 1.0% 11.6% 

Heart 
Mean + σ 71.0% 10.0% 18.2% 10.3% 

0.0% Mean 75.9% 6.2% 17.1% 10.4% 
Mean – σ 80.9% 2.4% 15.9% 10.4% 

Kidney 
Mean + σ 72.3% 6.9% 19.9% 10.2% 

0.1% Mean 76.6% 4.8% 17.7% 10.3% 
Mean – σ 80.5% 2.8% 15.8% 10.4% 

Liver 
Mean + σ 72.8% 7.8% 16.1% 10.1%  
Mean 74.5% 4.6% 17.6% 10.0% 0.1% 
Mean – σ 75.6% 1.5% 19.6% 9.9%  

Mammary Gland 
Mean + σ 30.2% 56.2% 13.3% 10.9%  
Mean 51.4% 30.9% 17.4% 10.6% 0.3% 
Mean – σ 72.6% 5.6% 21.5% 10.2%  

Muscle 
Mean + σ 70.0% 6.8% 21.3% 10.0% 

0.1% Mean 74.1% 4.2% 19.8% 10.1% 
Mean – σ 78.6% 1.6% 17.9% 10.2% 

Skin 
Mean + σ 58.6% 13.5% 27.2% 10.0% 

0.1% Mean 65.3% 9.4% 24.6% 10.0% 
Mean – σ 72.1% 5.2% 22.0% 10.1% 

 

Table 34. Hydrogen percentages of major lipid substances from Woodard and White (1986).  

Major Lipid Substances H  

Cerebroside  9.8% 
Cholesterol  12.0%  
Glycerol Trioleate  11.8%  
Sphingomyelin  11.7%  

Standard Deviation 1.0%  

 

Table 35. Hydrogen percentages of amino acids.  

Amino Acids H 

Isoleucine  9.8% 
Leucine 9.8% 
Lycine  9.4% 



130 

 

  

Methionine 6.9% 
Phenylalanine 6.2% 
Threonine 7.0% 
Tryptophan 5.4% 
Valine 9.2% 
Alanine 7.1% 
Asparagine 5.3% 
Aspartic Acid 4.4% 
Cysteine 4.9% 
Glutamic acid 5.5% 
Glutamine  6.3% 
Glycine  5.3% 
Proline  7.3% 
Selenocysteine  3.4% 
Serine  5.8% 
Tyrosine  5.6% 
Arginine  7.7% 
Histidine  5.1% 
Ornithine  8.8% 
Taurine  4.7% 

Min 3.4%  
Max  9.8%  
Mean 6.6% 
Standard Deviation  1.8%  

 

Table 36. Our estimates of the uncertainties corresponding to the first three items in Eq. 33 

given by Woodard and White (1986) (σ'H), our estimates of the uncertainties corresponding to 

the last three items in Eq. 33 (ωW*σHW for water, ωL*σHL for lipid, and ωP*σHP for protein), and 

the total uncertainty (σH) calculated using Eq. 33 for seven human tissue types. 

Tissues �ß'  êë ( �ßë êÞ ( �ßÞ êì ( �ßì �ß 

Adipose 0.2% 0.0% 0.7% 0.1% 0.8% 
Heart 0.0% 0.0% 0.1% 0.3% 0.3% 
Kidney 0.1% 0.0% 0.0% 0.3% 0.3% 
Liver 0.1% 0.0% 0.0% 0.3% 0.3% 
Mammary 
Gland 

0.3% 0.0% 0.3% 0.3% 0.6% 

Muscle 0.1% 0.0% 0.0% 0.4% 0.4% 
Skin 0.1% 0.0% 0.1% 0.4% 0.5% 

Root-mean-square (RMS) 0.5% 

 

The uncertainties in calcium percentage of bone tissues depend strongly on the 

uncertainty in calcium percentage of cortical bone. This is because the elemental 

compositions of bone tissues were calculated based on the weights by mass and the 
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elemental compositions of fundamental bone tissue components – cortical bone 

(compact bone), trabecular bone (cancellous bone or spongiosa), bone marrow and 

cartilage (Woodard and White, 1982). Among them, only cortical bone and trabecular 

bone contain substantial amount of calcium. Cortical bone contains more calcium than 

trabecular bone, i.e., 22.2% by mass for cortical bone compared to 7.47% for trabecular 

bone. Cortical bone is also much denser than trabecular bone, i.e., 1.90 g/cm
3
 for 

cortical bone compared to 1.18 g/cm
3
 for trabecular bone. In a typical adult, about 80% 

of total bone mass is cortical bone and the rest is trabecular bone (Valentin and Streffer, 

2002). Moreover, the calcium percentage of trabecular bone was calculated based on the 

assumption that trabecular bone is a combination of cortical bone and bone marrow. 

Thus, we decided to only study the uncertainty in the calcium percentage of cortical 

bone and apply it for all bone tissues. 

Table 37 shows the mean value and the range of calcium percentage of cortical 

bone in adults and children. The relative standard deviation was calculated to be 0.5% 

and 0.8% for adults and children, respectively. It is understandable that the calcium 

percentage in children has a larger spread because bones in children are still growing. 

We chose 1% as our estimate of statistical uncertainties in calcium percentage to cover 

both adult and pediatric patients. The systematic uncertainties in calcium percentage 

were determined using the difference between the recommended calcium percentages 

for adults from two publications (Table 37), which was calculated to be 1% as well. 

 

Table 37. Calcium percentages in human cortical bone. 

Groups 
Ca % 

Sources 
Mean STD Min Max 

Age 2-19 20.8% 0.83% 19.0% 22.8% Woodard (1964) 
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Age 20-74 22.5% 0.50% 21.0% 23.8% 

Adult 21.5%    
Valentin and Streffer 
(2002) 

 

One limitation of our estimation is that all our data were taken from studies 

based on healthy adults. It is known that tissue compositions depend on the state of 

health, nutrition, sex, age, etc (White et al., 1991). Most cancer patients receiving 

radiation therapy are relatively old in age and in bad health condition. Therefore, further 

studies are needed to determine tissue compositions of cancer patients and compare 

them with healthy adults. 

Additionally, our data from the literature did not consider spatial variation of 

tissue compositions within a tissue. Kalef-Ezra et al. (1998; 1999) found substantial 

variations of electron densities of lung tissues within the thoracic region. The variations 

were found to be approximately 10% for the same gender. 

It is possible that our estimate of the uncertainties in the recommended human 

tissue compositions is smaller than reality because we did not consider the two factors 

mentioned in previous paragraphs. 
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APPENDIX B – METAL ARTIFACT REDUCTION 

USING HIGH ENERGY COMPUTED TOMOGRAPHY 

This appendix is a summary of our preliminary work before developing the kV-

MV DECT, which was evaluating metal artifact reduction and the improvement in EDR 

measurement using orthovoltage CT (OVCT) imaging and kilovoltage CT (KVCT).  

A bench-top CT imaging system was constructed using the x-ray tube with 

adjustable peak voltage up to 320 kVp (Fig. 32). The RMI 467 phantom loaded with 

various human tissue equivalent samples were scanned using the 125 kVp (KVCT) and 

320 kVp (OVCT) x-ray beams. The CT#-to-EDR calibration curves were determined 

for both beams using the stoichiometric method. The metal artifact and its impact on 

EDR measurement of the metal itself and the surrounding areas were studied by 

comparing CT images with and without metal inserts such as a titanium rod and an 

aluminum rod (Fig. 33).  

The relationships between the CT numbers (HUs) and EDRs were seen to be 

more predictable for OVCT than KVCT (Fig. 34). Moreover, unlike KVCT, the 

calibration curve for OVCT was insensitive to the subset of tissue substitutes chosen for 

the calibration, so it is robust to generate the calibration curve just based on tissue 

substitutes for OVCT (Fig. 35). Metal artifacts were found to be substantially reduced 

by using the OVCT compared to the kVCT (Fig. 36). Uncertainties in EDR 

measurements due to severe metal artifact were reduced substantially from 42% (Max) 

and 18% (RMS) in KVCT to 12% and 2% in OVCT, respectively. Improvements were 
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also seen in areas with less metal artifact. Overall, the OVCT were found to be a good 

option to achieve high precision treatment planning for patients with metal implants.   

 

 

Figure 32. Experimental setup of the bench-top CT imaging system. 

 

 

Figure 33. Axial CT images of the RMI 467 phantom scanned using KVCT (left) versus OVCT 

(right) beam, respectively. The arrangement of the inserts is identical in both images, for which 

the keys are provided in Table 38. The object distortion and streak artifacts are significantly 
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reduced by using OVCT. Note that the same window and level was used for both images. Ten 

rectangular ROIs were chosen, which were grouped to four groups based on the level of the 

artifact in KVCT image, to evaluate the CT number deviations of solid water affected by the 

metal streaking artifact.  

 

Table 38. This table lists the materials of inserts used in the RMI 467 phantom and their 

positions in the phantom. The positions here correspond to the labels used in Fig. 33. Also listed 

are the nominal electron densities relative to water (EDRs), the mean CT number, and the 

standard error of the mean (SEM) CT number within the material insert. 
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Figure 34. Relationship between the relative electron density and the measured CT number 

(HU) of the materials for x-ray beams with different energy spectra. ‘125 kVp + 1.05mm Cu’ 

represents the beam of 125 kVp with 1.05mm extra Au filter, and ‘320 kVp + 0mmCu’ 

represents the beam of 320 kVp with no Au filter. The relationship between relative electron 

density and the measured CT number are shown to follow a more predictable linear relationship 

for OVCT than for KVCT. 
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Figure 35. Stoichiometric CT Number calibration curves for KVCT (a,c) and OVCT (b,d). (c) 

and (d) are the zoomed-in versions of (a) and (b), respectively. The crosses represent real tissue 

and the triangles represent tissue substitutes. The solid line represent the calibration curve, 

which is obtained by three linear regression fit to real tissue points. Real tissue points are shown 

to fit better with the calibration curve for OVCT than for KVCT. 
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Figure 36. Comparison of KVCT and OVCT showing  the deviation of estimated relative 

electron densities from true relative electron densities for solid water ROIs belonging to four 

different groups. ROIs are grouped based on the metal artifact level in KVCT image in Fig. 

33(a) – (d) are histograms of the deviation distribution for Group 1 with most severe artifact, 

Group 2 with heavy artifact, for Group 3 with medium artifact, for Group 4 with least artifact, 

respectively. The maximal absolute deviation, the root-mean-square (RMS) deviation and the 

standard deviation (STD) are provided for each deviation distribution. 
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