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Since Food and Drug Administration (FDA) issued the very first draft guidance in 

2010, adaptive designs have been considered to be one of the most promising approaches to 

make drug development more efficient and less costly. Two approaches, covariate-adjusted 

response-adaptive (CARA) randomization and adaptive seamless phase II/III design (ASD) 

have garnered growing attention recently. However, most of the CARA designs are based on 

parametric models and suffered from model misspecification. The research of incorporating 

CARA into ASD is also limited and whether type I error rate can be controlled has not been 

answered. In this dissertation, a new family of CARA emphasizing on efficiency and ethics 

using targeted maximum likelihood estimators (TMLE) was proposed to address public 

health questions as well as tackle the issue of restrictive modeling assumptions. Moreover, 

the combination of ASD and CARA using TMLE was studied under different scenarios. The 

asymptotic properties of these approaches were provided and proved rigorously. The 

simulation studies were carried out to check the concept further. The operating characteristics 



 
 

revealed that all of the proposed approaches have well-controlled type I error rates around the 

nominal level, increases in power and advantage in other ethical aspects.
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1 Introduction

1.1 Motivation and Objectives

In 2006, the US Food and Drug Administration (FDA) introduced the Critical Path

Initiative (FDA et al. 2004) to help modernize drug and medical device development.

In the Critical Path Opportunities List (FDA et al. 2006), FDA established the expec-

tation in streamlining clinical trials and advancing innovative trial designs. Since then,

adaptive designs have garnered growing attention and been considered to be one of the

most promising approaches to make drug development more efficient and less costly. To

address the increasing demand for the application of adaptive designs in clinical trials,

FDA announced a new draft guidance in 2018 to replace the old draft issued in 2010. Ac-

cording to the draft, adaptive designs are eligible to detect drug efficacy more efficiently

and reduce the number of patients exposed to inferior investigational treatments. The

advantages in statistical efficiency and clinical ethics of adaptive designs make it more

appealing to stakeholders than comparable non-adaptive designs (FDA et al. 2018a).

With the development of new diagnostic techologies and bioinformatics, precision

medicine became one of the most popular areas in applying adaptive designs. Precision

medicine naturally incorporates patients’ covariates such as biomarkers and other charac-

teristics into clinical trial designs. The flexibility of precision medicine may also allow the

clinical trialists to achieve other design objectives such as optimizing power of detecting

treatment effect and minimizing exposure to inferior treatments. Therefore, it is desir-

able to design adaptive randomized clinical trials that incorporate covariates and achieve
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ethical and efficient objectives. Covariate-adjusted response-adaptive (CARA) design is

one possible approach satisfying the need. CARA skews the allocation probability for

a new patient based on the full history of the previous patients’ and the covariates of

the current patient to achieve different purposes (F. Hu and Rosenberger 2006). How-

ever, in the literature, the statistical inference of most of the CARA designs are based on

parametric models and may suffer from model mis-specification and type I error inflation.

Moreover, FDA launched a new guidance to outline the use of an innovative seamless

trial design to reduce the time and cost in early stages of oncology drug development

(FDA et al. 2018b). FDA also emphasized its move towards the broadening acceptance

of seamless trials and provided advice to sponsors to efficiently expedite the clinical

development of cancer drugs through multiple expansion cohort trial designs (FDA et al.

2018b). Until 2016, there have been more than 40 active, first-in-human cancer trials

that are using the seamless strategy (Prowell, Theoret, and Pazdur 2016). The seamless

design has been showed to be capable of reducing the lead time and the number of

trials conducted in drug evaluation programs, decreasing the sample size (Bretz, Koenig,

et al. 2009). In the area of phase II and phase III study, the adaptive seamless phase

II/III trials (ASD) combine the phase II and phase III into a single and seamless trial

with two stages, the learning stage and the confirmatory stage, and interim analyses

(Bretz, Schmidli, et al. 2006, Stallard 2010). By “adaptive”, it means that in the interim

analysis, a treatment arm selection is carried out and the confirmation stage is conducted

according to the arm selection. The ASD has been shown to have advantage in efficiency

over the standard phase II and phase III trials for efficacy confirmation (Bretz, Schmidli,
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et al. 2006).

This dissertation proposes the combination of ASD and CARA to leverage covariates

and patients’ historical information to achieve efficiency and ethics objectives. Fur-

thermore, a semiparametric approach based on target maximum likelihood estimation

(TMLE) is provided to tackle the issue of model mis-specification and type I error in-

flation and to achieve an overall better power in treatment arm selection and treatment

effect detection. The theoretical properties and operating characteristics in simulation of

the approach are provided.

1.2 Public Health Significance

The high cost of clinical trials has become one of the major barriers for drug development

and limits patient’s access to novel treatments. Drug companies’ willingness to conduct

clinical trials is decreased by the increasing cost of clinical research. The average cost of

a phase I study conducted in the US ranged from $1.4 million to $6.6 million. A phase

II study cost from $7.0 million to $19.6 million, whereas a phase III study cost ranged

from $11.5 million to $52.9 million on average (Sertkaya et al. 2016).

By developing innovative approaches to adaptive seamless phase II/III clinical trials

with adaptive randomization designs, one can significantly decrease the total number

of patients needed to participate in clinical trials which in turn reduce the cost of new

drug development. Nevertheless, the proposed method takes efficiency and ethics into

account, which magnifies the power of detecting treatment effects and at the same time
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diminish the exposure of patients to inferior treatments. We believe this dissertation will

change the practice of implementing clinical trials, expedite the development of precision

medicine, benefit the trial participants and future patients.

1.3 Three specific arms

For seamless clinical trials, it is critical to control the type I error rate which can be

inflated because of the dual influence of multiplicity and selection (Bauer, Koenig, et al.

2010). In addition, adaptive randomization designs pose new challenges. First, the rela-

tionships among the treatment assignments, covariates, and responses are complicated.

Second, the allocation probability functions are often not continuous, so Taylor expan-

sion does not work. Third, the theoretical investigation of CARA and TMLE requires

challenging work related to empirical processes, statistical functionals, and martingales.

To solve these problems, we conducted comprehensive researches and address the

following questions. First, is there a general mathematical framework for combining ASD

and adaptive randomization designs? Second, are there fundamental properties of this

sequential procedure that can provide a theoretical foundation for further investigations?

Third, is it possible to protect the type I error rate? Fourth, what are the advantages

of the combination, especially in terms of efficiency and ethics? Fifth, can we avoid

unnecessary model assumptions and address the problem of model mis-specification?

The objective is to facilitate and expedite the development of precision medicine

and benefit the trial participants by studying seamless phase II/III clinical trials with
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adaptive randomization designs. The three specific aims of this dissertation are:

Aim 1: Propose an innovative CARA design targeting both efficiency and ethics analyzed

by using the semiparametric methodology of TMLE in two treatment scenario.

Aim 2: Extend and generalize the CARA design targeting both efficiency and ethics ana-

lyzed by using TMLE (proposed in aim 1) to multiple treatment scenario.

Aim 3: Study the feasibility of combing the seamless phase II/III clinical trials with the

CARA design proposed in aim 1 and aim 2.

In aim 1 and aim 2, we provided a rigorous proof of the consistency and asymptotic

normality in theory. The concept was also tested in simulations in terms of type I error

rate and power. In aim 3, we conducted simulations that mimic real life clinical trials to

further evaluate the operating characteristics (e.g. type I error rate, power, etc) of ASD

with the proposed CARA using TMLE.

1.4 Organization of the dissertation

In section 3, we first introduced the fundamental theories and statistical methods as the

basis of our proposed CARA designs and TMLE. The achievements of aim 1 and aim

2 were combined in generalized framework and presented in section 4. The detail of

the allocation strategies and the asymptotic properties of the designs were introduced.

The implementation of TMLE in analysis and its statistical properties were provided

in section 4. In addition, extensive numerical studies were carried out to evaluate the
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operating characteristics and validity of the methodology. In section 5, we introduced

some basic settings and concept of adaptive seamless designs including combination test,

multiple testing and closure principle. The research framework of the combination of

ASD and the proposed CARA using TMLE were developed in section 6. Besides, the

simulation study was conducted and presented in section 6. All corresponding proofs

were relocated to the Appendix.
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2 Statistical methods

In this section, we introduced some basic settings in causal inference, statistical func-

tionals and empirical process. They set up the foundation of the nonparametric method-

ology, the TMLE. We adopted the same notations and terminology in “Unified Methods

for Censored Longitudinal Data and Causality” (M. Van der Laan and Robins 2012),

“Targeted Learning” (M. Van der Laan and Rose 2011), “Targeted Learning in Data Sci-

ence” (M. Van der Laan and Rose 2018) and “Introduction to Empirical Processes and

Semiparametric Inference” (Kosorok 2008).

2.1 Data structure in counterfactuals

In a statistical experiment, we denote the true data generating distribution as P0. Let

a statistical full model MF representing a collection of probability distributions for P0

that P0 ∈ MF . MF may possibly contain some parametric models, semi-parametric

models or non-parametric models. The full data structure X can be written as X =

(W, (Y (a), a ∈ A)), where W represents the set of baseline covariates for a subject,

A denotes a collection of all possible treatment or exposure, and Y the outcome. In

many clinical trial applications, we also represent X as X = (X(a), a ∈ A), where

X(a) = (W,Y (a)). According to the concept of counterfactuals, the full data structure

contains all possible realizations of Y under different intervention a ∈ A. Our observed

data O can be viewed as a censored version of X that O = (A,L(A) = X(A)). Here,

censoring means that the full data structure can only be observed partially rather than
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fully observed. The censoring variable A indicated windicates what component of X

will be available in the experiment. For example, assume there are two treatment arms

A = {0, 1}, the full data structure is X = (W,Y (1), Y (0)). If a patient is assigned to

treatment arm A = 1, the observed data is O = (A = 1, X(A = 1)) = (W,Y (1)). The

information on treatment arm A = 0 is censored and unobservable once A is determined

because no one can go back in time to assign another treatment to the same patient.

We denote Oi = (O1, . . . , Oi) and X i = (X1, . . . , Xi) as the observed data and the full

data of the first i experiments respectively. Let Ai = (A1, . . . , Ai) denote the collection

of first i observed treatment assignments. Note that here Ai is the treatment which the

i-th patient is assigned to. The same notation applies to all other random variables.

2.2 Design settings and assumptions

Design settings here refers to the way how patients are assigned to available treatments

or interventions. In a fixed design, the design settings for each patient is pre-determined

before the trial begins. However, in an adaptive randomization trial, the design setting

is typically dynamic as the trial progresses. It varies from patient to patient and it also

depends on the performance of other patients. In this section, we will give out statistical

definitions of fixed and adaptive design settings upon some commonly used assumptions.

Suppose in an experimental study where experiments are conducted sequentially such

that each individual experiment is carried out right after the previous one and all infor-

mation from previous experiments are collected and available. For the i-th experiment,
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we define our design setting gi as the conditional probability of the i-th treatment as-

signment Ai, given the full data X i:

gi(Ai|X i) = Pr(Ai|X i).

We denote gn = (g1, . . . , gn) ∈ G as the design settings in the study, where G is defined

as the collection of all conditional probability distribution gi.

In 1991, Heitjan and Rubin introduced the notion of coarsening at random (CAR)

to describe the general form of randomly grouped, censored, or missing data. The CAR

states that the censoring mechanism satisfies coarsening at random (CAR) when the cen-

soring distribution only depends on the observed components of X (Heitjan and Donald

Rubin 1991). In this dissertation, we assume CAR assumption holds by assuming the

conditional probability g is only a function of the observed data O,

gi(Ai|X i) = gi(Ai|Xi,Oi−1) = gi(Ai|Xi(Ai),Oi−1), i = 1, . . . , n.

We denote G(CAR) as a collection of all design settings satisfying CAR assumption, then

we have gi ∈ G(CAR) ⊂ G for all i = 1, . . . , n.

In an experimental study, if one or more of the conditional distributions gi of a

single experiment is a function of (O1, . . . , Oi−1) and satisfies CAR assumption, then we

consider g ∈ G(CAR) as an adaptive design. If all conditional distributions gi of a single

experiment is independent from others, but not necessarily identical, gi �= gj for some i �=

j, we refer to the design settings g of the study as a fixed design g ∈ {g : g(A|X) =

h(A,X(A)) for some measurable function h}.
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2.3 Probability factorization

The factorization of the data-generating distribution is essential in constructing semi-

parametric parameters of interest in TMLE methodology. Under CAR assumption, the

probability density of a single observation O can be factorized in a Q0-factor and a design

allocation strategy g as follows:

Pr(o = (a, l)) = (a, l(x))) = Q0((a, l(x))g(a|x)

where Q0 denotes the probability density function of l(x) for a given a. Q0 only depends

on the the full data distribution P0 of X. We also utilize the notation PQ0,g(O) as the

probability density of O. We can easily generalize the density function of a single exper-

iment to a joint probability density for a collection of experiments On = {Oi, . . . , On}

under design settings g = {gi, gi ∈ G(CAR) for all i = 1, . . . , n},

PQ0,g(on) = Q0((ai, ll), i = 1, . . . , n)g(a|x)

=
n∏

i=1

Q0(ai, li)
n∏

i=1

gi(ai|xi,oi−1).

For a fixed design with fixed design settings where g is independent of previous obser-

vations, in the i-th experiment, the observed data is constructed by randomly drawing

Xi from P0, drawing Ai from gi and censoring Oi = (Ai, Li = Xi(Oi)) ∼ PQ0,gi (M. J.

Van der Laan 2008). For an adaptive design, one can randomly draw Xi from P0 for the

i-th experiment. The Ai is drawn from the conditional distribution gi(·|Xi, O1, . . . , Oi−1)

which is calculated based on the previous (i − 1) experiments. The observed data then

can be expressed as Oi ∼ PQ0,gi where gi is no longer a fixed value but depends the

previous data.
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For example, in a k-arm randomized clinical trail (RCT), the collection of all possible

treatment is defined as A = {1, . . . , k}, the baseline covariates is expressed as W . The

endpoint outcome is expressed as Y . Under counterfactual concept, Y (k) denotes the

realization of the endpoint outcome Y when treatment k is assigned, A = k. Therefore

the full data structure is X = (A,W, Y (a) for all a ∈ A) ∼ P0 while the observed data

structure O = (A,W, Y (A)) ∼ PQ0,g. The probability factorization of the observed data

is

PQ0,g(O) = Q0(A,W, Y )g(A|W ),

where Q0(A,W, Y ) = P0(Y |A,W )P0(W ). One important property of this factorization

is that the Q-part and g-part are orthogonal (M. Van der Laan and Rose 2011). In other

word, the two parts are independent of each other, and the Q-part is the component that

impacts the evaluation of our target parameter.

2.4 Empirical Process

The theory of empirical process which is a stochastic process that describes the properties

of sums of independent random variables began in 1930s. It has laid a solid foundation

for many subsequent researches. In this section, we will briefly introduce some important

definitions and settings based on Kosorok’s book (Kosorok 2008) that is closely related

to this dissertation.

Let X be a random variable drawing from distribution P , X ∼ P . We use notation

FX as its cumulative distribution function. Also, in some cases, we use FX to represent
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the corresponding distribution of X. Let f be a real-valued function, mapping R → R,

whose domain is the space of X. Let F be the set of these real-valued functions such

that f ∈ F . Consider a sample of n i.i.d. observations Xi, . . . , Xn from P . Let Pn denote

the corresponding empirical distribution. We define the operators (or functions) P and

Pn on a real-valued function f as following:

Pf =

∫
fdP = EP [f(X)]

Pnf =

∫
fdPn =

1

n

n∑
i=1

f(xi)

Throughout this dissertation, instead of being a symbol of distribution, P and Pn can

aslo be treated as a function or operator on a real-valued function. Specifically, Pf and

Pnf defines the Lebesgue Integral on a set of measurable functions f ∈ F (M. Van der

Laan and Robins 2012).

Let (l∞(F), ‖ · ‖F) denote a normed space of mappings which maps F → R. If

P ∈ l∞(F), the uniform norm is defined by ‖P‖F = supf∈F |Pf | <∞. Then an empirical

process Gn is defined by

Gnf =
√
n(Pnf − Pf) =

√
n

(
1

n

∑
f(Xi)− EPf(X)

)
,

if f ∈ F and F ⊆ L1(P ) (Kosorok 2008). The empirical process Gn as well as P and Pn

are elements in (l∞(F), ‖ · ‖F). The n observations in Pn render the randomness in Gn

(Kosorok 2008). A class F is called a P -Glivenko-Cantelli class if F is in L1(P ) satisfying

‖Pn − P‖f∈F = supf∈F |Pnf − Pf | a.s.→ 0.

The P -Glivenko-Cantelli class implies that if F is P -Glivenko-Cantelli, then for an em-
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pirical process 1√
n
Gn converges almost surely to zero over all f ∈ F . This property

can be derived directly from law of large numbers. Note that not all functions are in

P -Glivenko-Cantelli class. As F becomes larger, it is harder to ensure all f ∈ F satisfy

the strong convergence.

The P -Brownian Bridge is defined by a random element G from l∞(F) which is

continuous with probability one satisfying that for any k elements from F

(Gf1, . . . , Gfk) ∼ N(0,COVP (fi, fj)).

A typical P -Brownian Bridge G1 is defined in a way such that for f ∈ F , G1f =

f − Pf . For any fi, fj ∈ F , we have P (Gfi) = P (Gfj) = 0, and P (Gf1 · Gf2) =

P (f1f2)− Pf1Pf2 = COVP (f1, f2), which satisfies the definition of P -Brownian Bridge.

Besides, the empirical process Gn can be expressed as Gn = 1
n

∑n
i=1G1(Xi). A class

F is called a P -Donsker class if the empirical process Gn ∈ (l∞(F), ‖ · ‖F) converges

in distribution to a P -Brownian Bridge G ∈ (l∞(F), ‖ · ‖F). Note that P -Donsker

class implies a uniformly CLT property over F . In addition, P -Donsker classes are P -

Glivenko-Cantelli classes but the converse is not true. Some examples of Donsker classes

are all monotone functions, all functions with uniformly bounded derivatives and the set

of indicator functions F = {I(−∞,t] : t ∈ R} (Kosorok 2008). In this dissertation, all

functions used are in both P -Donsker class and P -Glivenko-Cantelli class.
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2.5 Statistical Functional

Statistical functional is a common tool in nonparametric analysis. It provides an elegant

way to define a population quantities as well as an estimator as a functional of the

population. The notion of statistical functional acts as the foundational role in TMLE

methodology. A statistical functional Ψ is a mapping that maps a function space to a

d-dimensional vector of real numbers, Ψ : (l∞(F), ‖ · ‖F) → R
d. The functional Ψ(P )

can be viewed as a projection from an infinity dimensional “vector” (Pf : f ∈ F) to a

real space Rd. For example, if we define a functional Ψ such that Ψ(P ) = V ar(X)/E(X)

of a random variable X from a distribution P . This functional actually calculates the

ratio of the variance to the expectation of a given distribution. The functional can also

be written as

Ψ(P ) =
Pf2 − (Pf1)

2

Pf1
,

Ψ(Pn) =
Pnf2 − (Pnf1)

2

Pnf1
,

where f1(X) = X, f2(X) = X2. Therefore, Ψ maps Pf1 and Pf2 into a real number. In

general, suppose we have n i.i.d. observations X1, . . . , Xn from a probability distribution

P0. Let Ψ be a target parameter of interest, and let ψ0 = Ψ(P0) be the true value of

our target parameter. In addition, let Pn be the empirical distribution of X1, . . . , Xn,

and let ψn = Ψ̂(Pn) be an estimator of ψ0. We assume that Ψ(P ) = Ψ̂(P ) so that the

estimator targets the desired target parameter ψ0. If F is a P0-Glivenko-Cantelli class,

from continuous mapping theorem we have Ψ(Pn)−Ψ(P0) converge to zero in probability,

which implied the consistency of the estimator Ψ̂(Pn) (Kosorok 2008).
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2.6 Functional derivative

A statistical functional Ψ : (l∞(F), ‖ · ‖F) → R
d is Hadamard differentiable at P ∈

(l∞(F), ‖ · ‖F) with derivative dΨ : (l∞(F), ‖ · ‖F) → R
d if dΨ is a continuous linear map

such that

Ψ(P + tnhn)−Ψ(P )

tn
→ dΨ(P )(h)

for all scalar sequences tn → 0 and all hn ∈ l∞(F) → h ∈ l∞(F). Basically, there are

three types of differentiability, Gateaux, Hadamard and Frechet. Frechet differentiabil-

ity implies Hadamard differentiability, which implies Gateaux differentiability (Shapiro

1990).

The natural thing is that we can connect the differentiability and the asymptotic

property of an estimator of statistical functional (target parameter) by using functional

delta method (Fang and Santos 2014). We suppose Ψ has Hadamard derivative dΨ(P )

at P ∈ l∞(F), and the same for Pn ∈ l∞(F). We assume that F is a P -Donsker class

such that there exists a Brownian bridge G satisfying Gn ≡ √
n(Pn − P )

d
=⇒ G. If G is

Borel measurable and separable, then the functional delta method says

√
n(Ψ(Pn)−Ψ(P ))

d
=⇒ dΨ(P )(G).

Or equivalently,

√
n(Ψ(Pn)−Ψ(P )) = dΨ(P )(Gn) + oP (1) = dΨ(P )(

√
n(Pn − P )) + oP (1).

Ψ(Pn) is referred as an asymptotically linear estimator of Ψ(P ) ∈ R
k with influence curve
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IC(P ) ∈ R
k if EP [IC(P )(X)] = 0, EP (IC(P )IC(P )

T ) ≤ ∞, and

Ψ(Pn)−Ψ(P ) = (Pn − P )IC(P ) + oP (1/
√
n).

Note that IC(P ) is also a functional of P , so it is not a statistic. If Ψ(Pn) is asymptotically

linear for Ψ(P ), it is easy to show that the influence curve IC(P ) is formulated as

IC(P ) = dΨ(P )(G1).

The inference about Ψ(Pn) is implemented by applying CLT,

√
n(Ψ(Pn)−Ψ(P ))

d
=⇒ N(0,ΣP ),

where ΣP = EP (IC(P )IC(P )
T ). ΣP can be consistently estimated by its empirical

estimator Σ̂ = 1
n

∑n
i=1 IC(Pn)(Xi)IC(Pn)(Xi)

T . Then we can form asymptotically valid

confidence intervals or confidence regions for Ψ(P ).

2.7 Nuisance tangent space

In TMLE, one essential step is to derive the influence curve of the target parameter.

Let L2(P ) denote a Hilbert space of functions of random variable X from P with zero

expectation and finite variance endowed with inner product 〈f1(x), f2(x)〉 =
∫
f1f2dFX

where FX is the cumulative distribution function (CDF) of the probability distribution

P . Let Fε,g denote a one-dimensional submodel of MF with parameter ε ∈ (−δ, δ) for

some small δ around zero and an index function g satisfying FX = F0,g. A score function

s ∈ L2(P ) indexed by g is defined as

s(X) = s(g)(X) =
d

dε
log

(
dFε,g

dFX

(X)

) ∣∣∣∣
ε=0

.
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A typically used submodel is constructed as dFε,g(x) = (1 + εg(x))dFX(x) + o(ε) with

score function s(g)(X) = g(X). This one-dimensional submodel is very useful in finding

functional derivatives. Note that s(X) needs to be mean zero to ensure that Fε,s(x) is

a legitimate cumulative distribution function. Let S be the set of score functions. The

tangent space T F (P ) ⊆ L2(P ) is referred as the closure of the linear space spanned by S.

If the model MF for P is nonparametric, then it follows immediately that the tangent

space is saturated such that T F (P ) = L2(P ). If the model is not nonparametric, then the

tangent space is unsaturated and is a subspace of L2(P ) (M. Van der Laan and Robins

2012).

For a statistical functional Ψ : (l∞(F), ‖ · ‖F) → R
d, we assume it is Hadamard

directionally differentiable (pathwise differentiable) in terms of the one-dimensional sub-

models, which means for every s ∈ S

d

dε
Ψ(Pε,s)

∣∣
ε=0

= limε→0
Ψ(Pε,s)−Ψ(P )

ε
= 〈l(P ), s〉P

for an element l(P ) ∈ L2(P )d which is called a gradient of the pathewise derivative or

the influence curve. The unique gradient Seff (P ), defined as Seff,j = Π(lj(P )|T F (P )) ∈

T F (P ), is called canonical gradient or efficient influence curve. By unique, it means the

projection of gradient l(P ) on T F (P ) is uniquely determined. For a nonparametric full

model, if influence curve exists, it is also the efficient influence curve. We give three

examples of calculating influence curves. The nuisance scores are given by the scores of

the models Pε,s for which Ψ does not locally vary:

{
s ∈ S :

d

dε
Ψ(Pε,s)|ε=0 = 0

}
⊂ S
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The nuisance tangent space Tnuis(P ) is now the closure of the linear space spanned by

these nuisance scores:

T F
nuis(P ) =

{
s ∈ S :

d

dε
Ψ(Pε,s)|ε=0 ≡ 0

}
⊂ T F (P )

Therefore, for any one-dimensional model Pε,s with s ∈ T F
nuis(P ), we have

Ψ(Pε,s)−Ψ(P ) = o(ε).

Example 1 Suppose we have a random variable Y from a distribution P with cumulative

distribution function F (y). A simple statistical functional is defined as Ψ(P ) = E(Y ).

We propose a one-dimensional sub-model dFε,s(y) = (1 + εs)dF (y) with a score function

s(y). The influence curve of Ψ can be derived as following:

d

dε
(Ψ(Pε,s)−Ψ(P ))

∣∣
ε=0

=
d

dε

(∫ +∞

−∞
ydFε,s(y)−

∫ +∞

−∞
ydF (y)

) ∣∣
ε=0

=
d

dε

(∫ +∞

−∞
y(1 + εs)dF (y)−

∫ +∞

−∞
ydF (y)

) ∣∣
ε=0

=

∫ +∞

−∞
ysdF (y) =

∫ +∞

−∞
(y − E(Y ))sdF (y)

Therefore the influence curve is IC = Y − E(Y ).

Example 2 Suppose we have an observation O = (Y,A,W ) from a distribution P

with cumulative distribution function F (y, a, w). A simple statistical functional is de-

fined as Ψ(P ) = E(Y |A = ai,W = wi). We propose a one-dimensional sub-model
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dFε,s(y, a, w) = (1 + εs)dF (y, a, w) with a score function s(y, a, w). Without generaliz-

ability, all integrals become summation when the underlying variable is discrete. Then

the statistical functional can be re-written in integral form as

Ψ(P ) = E(Y |A = ai,W = wi) =

∫ +∞
−∞ yIai,wi

dF∫ +∞
−∞ Iai,wi

dF

and

Ψ(Pε,s) =

∫ +∞
−∞ yIai,wi

dFε,s∫ +∞
−∞ Iai,wi

dFε,s

=

∫ +∞
−∞ yIai,wi

dF + ε
∫ +∞
−∞ yIai,wi

sdF∫ +∞
−∞ Iai,wi

dF + ε
∫ +∞
−∞ Iai,wi

sdF

=

∫ +∞
−∞ yIai,wi

dF∫ +∞
−∞ Iai,wi

dF
+
ε
∫ +∞
−∞ yIai,wi

sdF∫ +∞
−∞ Iai,wi

dF

−
ε
(∫ +∞

−∞ yIai,wi
dF
)(∫ +∞

−∞ yIai,wi
sdF
)

(∫ +∞
−∞ Iai,wi

dF
)2 + o(ε)

The influence curve of Ψ can be derived as following:

d

dε
(Ψ(Pε,s)−Ψ(P ))

∣∣
ε=0

=

∫ +∞
−∞ yIai,wi

sdF∫ +∞
−∞ Iai,wi

dF
−
(∫ +∞

−∞ yIai,wi
dF
)(∫ +∞

−∞ Iai,wi
sdF
)

(∫ +∞
−∞ Iai,wi

dF
)2

=

∫ +∞

−∞
sdF

⎛
⎜⎝ yIai,wi∫ +∞

−∞ Iai,wi
dF

−
(∫ +∞

−∞ yIai,wi
dF
)
Iai,wi(∫ +∞

−∞ Iai,wi
dF
)2

⎞
⎟⎠

It is easy to confirm that the expression inside the parentheses has expectation zero.

Therefore the influence curve is

IC(O) =
I(A = ai,W = wi)

P (A = ai,W = wi)
(Y − E(Y |A = ai,W = wi)) .
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Example 3 Suppose we have an observation O = (Y,A,W ) from a distribution P with

cumulative distribution function F (y, a, w). A simple statistical functional is defined

as Ψ(P ) = E(Y |A = 1). We propose a one-dimensional sub-model dFε,s(y, a, w) =

(1+ εs)dF (y, a, w) with a score function s(y, a, w). Without generalizability, all integrals

become summation when the underlying variable is discrete. The statistical functional

can be re-written in integral form as

Ψ(P ) = E(Y |A = 1) =

∫ +∞

−∞

(∫ +∞
−∞ yI(a = 1, w = w′)dF (y, a, w)∫ +∞
−∞ I(a = 1, w = w′)dF (y, a, w)

)
dF (y′, a′, w′)

and

Ψ(Pε,s) =

∫ +∞

−∞

(∫ +∞
−∞ yI(a = 1, w = w′)dFε,s(y, a, w)∫ +∞
−∞ I(a = 1, w = w′)dFε,s(y, a, w)

)
dFε,s(y

′, a′, w′)

=

∫ +∞

−∞

(∫ +∞
−∞ yI1,w′dF + ε

∫ +∞
−∞ yI1,w′sdF∫ +∞

−∞ I1,w′dF + ε
∫ +∞
−∞ I1,w′sdF

)
dF (y′, a′, w′)

+ε

∫ +∞

−∞

(∫ +∞
−∞ yI1,w′dF + ε

∫ +∞
−∞ yI1,w′sdF∫ +∞

−∞ I1,w′dF + ε
∫ +∞
−∞ I1,w′sdF

)
sdF (y′, a′, w′)

=

∫ +∞

−∞
dF (y′, a′, w′)

(∫ +∞
−∞ yI1,w′dF∫ +∞
−∞ I1,w′dF

+
ε
∫ +∞
−∞ yI1,w′sdF∫ +∞
−∞ I1,w′dF

−
ε
(∫ +∞

−∞ yI1,w′dF
)(∫ +∞

−∞ yI1,w′sdF
)

(∫ +∞
−∞ I1,w′dF

)2 + o(ε)

⎞
⎟⎠

+ε

∫ +∞

−∞

(∫ +∞
−∞ yI1,w′dF∫ +∞
−∞ I1,w′dF

+ o(ε)

)
s(y′, a′, w′)dF (y′, a′, w′)
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The influence curve of Ψ can be derived as following:

d

dε
(Ψ(Pε,s)−Ψ(P ))

∣∣
ε=0

=

∫ +∞

−∞
dF (y′, a′, w′)

(∫ +∞
−∞ yI1,w′sdF∫ +∞
−∞ I1,w′dF

−
(∫ +∞

−∞ yI1,w′dF
)(∫ +∞

−∞ yI1,w′sdF
)

(∫ +∞
−∞ I1,w′dF

)2
+ s

∫ +∞
−∞ yI1,w′dF∫ +∞
−∞ I1,w′dF

)

=

∫ +∞

−∞
dF (y′, a′, w′)

∫ +∞

−∞
dF (y, a, w)

×s(y, a, w) I1,w′

P (1, w′)
(y − E(Y |1, w′))

+

∫ +∞

−∞
dF (y′, a′, w′)s(y′, a′, w′)E(Y |1, w′)

=

∫ +∞

−∞
dF (y, a, w)s(y, a, w)

∫ +∞

−∞
dF (y′, a′, w′)

×Ia=1,w′=w

P (1, w′)
(y − E(Y |1, w′))

+

∫ +∞

−∞
dF (y′, a′, w′)s(y′, a′, w′) (E(Y |1, w′)− E(Y |1))

=

∫ +∞

−∞
dF (y, a, w)s(y, a, w)

I1
P (a = 1|w)(y − E(Y |1, w))

+

∫ +∞

−∞
dF (y, a, w)s(y, a, w) (E(Y |1, w)− E(Y |1))

Therefore, the influence curve of Ψ(P ) is

IC(O) =
I(A = 1)

P (A = 1|W )
(Y − E(Y |A = 1,W )) + E(Y |A = 1,W )−Ψ(P ).
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3 A family of CARA designs driven by TMLE em-

phasizing on efficiency and ethics

3.1 Background

Since Food and Drug Administration (FDA) issued the very first draft guidance in 2010,

adaptive designs have garnered growing attention and been considered to be one of the

most promising approaches to make drug development more efficient and less costly. To

address the increasing demand for the application of adaptive designs in clinical trials,

FDA announced a new draft guidance in 2018 to replace the old draft issued in 2010.

According to the draft, adaptive designs are eligible to detect drug efficacy more efficiently

and reduce the number of patients exposed to inferior investigational treatments. The

advantages in statistical efficiency and clinical ethics of adaptive designs make it more

appealing to stakeholders than comparable non-adaptive designs (FDA et al. 2018a).

However, the draft also addressed some limitations and questions such as the risk of

type I error rate inflation and statistical bias in the estimation of treatment effects which

is relatively less well-studied (FDA et al. 2018a). To further utilize the advantages

of adaptive designs and to tackle FDA’s concerns, we proposed a family of covariate-

adjusted response-adaptive (CARA) designs emphasizing on efficiency and ethics. We

also established a theoretical foundation for the family of CARA and employed target

maximum likelihood estimation (TMLE) in data analysis to facilitate its application in

practice.
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Adaptive randomization procedures are classified into four categories: restricted ran-

domization (RR), covariate adaptive randomization (CAR), response adaptive random-

ization (RAR) and CARA (F. Hu and Rosenberger 2006). CAR dynamically shift treat-

ment assignment of a patient based on his or her baseline characteristics, e.g., to ensure

that the imbalance between treatment groups on potentially prognostic covariates is con-

trolled, which has an advantage in increasing the statistical power of a trial. While in the

scheme of RAR, the allocation probability of a newly-enrolled patient is based on the ac-

cumulating history of previously enrolled patients. CARA designs combine both features

of CAR and RAR in a way that skews the allocation probability for a newly-enrolled pa-

tient based on his or her baseline covariates and the full history of the previous patients’

treatment assignments, responses, and baseline covariates to achieve a particular objec-

tive (Bandyopadhyay and Biswas 2001, Rosenberger, Vidyashankar, and Agarwal 2001,

Bandyopadhyay, Biswas, and Bhattacharya 2007, F. Hu, Y. Hu, et al. 2015). However,

unlike CAR and RCT which have been extensively studied in theory and real applica-

tions, the research in CARA is still in its infancy, and the application of CARA is limited

due to its technical difficulties. Here, we briefly mention some CARA related papers in

the literature. Zhang et al. 2007 and Zhu 2015 have studied the asymptotic properties

of CARA. Some Bayesian approaches in CARA have been implemented by Inoue, Thall,

and Berry 2002, Berry et al. 2004, Berry 2012, Atkinson and Biswas 2005, Schmidli,

Bretz, and Racine-Poon 2007, Thall and Wathen 2007, Brannath et al. 2009, Huang

et al. 2009, Yuan, Huang, and Liu 2011, Zang and Lee 2014, J. Hu, Zhu, and F. Hu 2015,

J. Lin, L. Lin, and Sankoh 2016 and Villar and Rosenberger 2018. However, the above
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papers on CARA have only provided valid statistical inference for CARA under correctly

specified parametric models or showed controlled type I error rate in simulations.

TMLE is a novel statistical method first introduced by M. Van der Laan and Daniel

Rubin 2006. It has been well acknowledged as a versatile tool in causal inference, ob-

servational study, etc. TMLE is semiparametric based and avoids assuming possibly

misspecified parametric models when conducting statistical analysis. It aims to obtain

an unbiased estimator for a target parameter of interest instead of the whole distribu-

tion and other nuisance parameters. It is worth noting that TMLE is a double-robust

substitution estimator which holds desirable statistical properties and remains computa-

tionally feasible. TMLE has been successfully used in many applications, e.g., Bembom

et al. 2009, Lendle, Fireman, and M. Van der Laan 2013, Schnitzer et al. 2014, Balzer

et al. 2016, Pang et al. 2016, Pirracchio et al. 2018, Akosile et al. 2018, etc. In order to

tackle model misspecification in clinical trials, M. J. Van der Laan 2008 extended TMLE

to the regime of adaptive designs and established a TMLE based framework in which

robust approaches were offered under semiparametric settings. Later on, Chambaz and

M. Van der Laan 2014 and Zheng, Chambaz, and M. Van der Laan 2015 studied some

specific CARA designs using the TMLE based framework. Many other works regarding

clinical trials have been accomplished using TMLE, such as Moore and M. Van der Laan

2009a, Colantuoni and Rosenblum 2015, etc. Although the advantages of CARA have

been studied in the literature listed above, the application of TMLE is hindered by its

theoretical complexities.

In this dissertation, we proposed an innovative family of CARA design which is capa-
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ble of addressing efficiency and ethics simultaneously. The proposed design also offered

flexibility to adjust the balance between trial efficiency and ethical concerns to meet

different research needs. Accordingly, TMLE approach was applied in the estimation of

the target parameter and the corresponding hypothesis testing. We provided rigorous

derivation and proof for its asymptotical properties under the semiparametric setting.

Besides, numerical studies were carried out to compare the proposed CARA design and

other commonly used randomizations and to investigate the issue of type I error rate

inflation. A similar study has been studied by Chambaz and M. Van der Laan 2014.

They incorporated Neyman allocation under CARA framework such that the asymptotic

variance of the TMLE for the target parameter is minimized. In their study, the dynamic

allocation probability was evaluated by applying TMLE for each patient sequentially en-

rolled. Though we shared a similar big picture, our approaches varied from different

angles: 1) Instead of targeting an optimal design, we offered flexibility in a different

manner which can meet different research needs, 2) We used martingale estimating equa-

tion based estimator in evaluating the allocation probability instead of using TMLE. By

doing this, we eased the computational intensity while still ensured theoretical validity.

3) The working model and fluctuation model in TMLE were carefully selected to have

good interpretability.
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3.2 CARA designs based on semiparametric estimators

Trial settings and Data structure

Consider a clinical trial with K experimental arms and one control arm. Assume that

n patients sequentially enter the trial. Let Ai ∈ A = {0, 1, . . . , K}, i = 1, . . . , n denote

the treatment assignment of the ith patient. Let Yi be the one-dimensional primary

endpoint of the ith patient, where it can be either binary Yi ∈ {0, 1} or continuous

Yi ∈ R. For the ith patient, W i = (Wi,1, . . . ,Wi,nW
) ∈ W represents the ith patient’s

baseline characteristics, where Wis the domain of W . Assume we are interested in a

biomarker/subgroup indicator Vi that is a function of the baseline characteristics de-

noted as Vi = fV (W i) ∈ V = {v1, . . . , vq}. The choice of V might be from previous

translational research and represent a comprehensive understanding about the impact

of baseline characteristics on the treatment effects. The definition of V will solve this

problem by collapsing the categories from W ∈ W. Let X = (Y (a), a ∈ A,W ) ∼ P0

be the full data structure, where Y (a) denotes the realization of Y under A = a and P0

represents the true data-generating probability distribution. According to the notation

of counterfactuals (M. Van der Laan and Rose 2011), the full data structure X contains

all possible realizations of Y under different treatments a ∈ A. The observed data for

the ith patient is a censored version of Xi denoted as Oi = (Yi(Ai), Ai,W i). Except for

the response from the treatment arm Ai which the patient is assigned to, all the other

realizations of Yi in Xi are not observable.

We use Gi(·) to denote the censoring mechanism of the ith patient. For CARA de-
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signs, Gi(·) is the conditional probability of treatment assignment Ai given (X1, . . . , Xi).

Based on the coarsening at random assumption that the censoring mechanism only

depends on the observed data (Heitjan and Donald Rubin 1991), we assume that Gi

is conditioned on the historical observed data Oi−1 = (O1, . . . , Oi−1) and the base-

line characteristics W i through the subgroup indicator Vi. Mathematically, Gi(a, v) =

Pr(Ai = a|Vi = fV (W i) = v,Oi−1). For convenience, we use short notation Gi for

the conditional probability and omit the Oi−1 in this dissertation. The likelihood of

the ith observed data Oi is factorized as P0(Oi) = Q0(Yi, Ai,W i)Gi(Ai, Vi), where

Q0(Yi, Ai,W i) = P0(Yi|Ai,W i)P0(W i) is a parameter of the full data distribution P0.

We use notation Q0Gi in subscript to denote the data generating mechanism for the ith

observed data. We also denote Na,v(n)/n as the proportion of n patients that has been

assigned to treatment a in subgroup v.

A family of CARA designs

Clinical trials may have a variety of design objectives such as assigning more patients to

the superior treatment group with higher efficiency of detecting the treatment effects. In

addition, patients with different baseline characteristics may respond to the treatments

differently. We propose a family of CARA designs to take into account both efficiency and

ethics simultaneously, acknowledge the heterogeneity of patients, and avoid unnecessary

model assumptions by using semiparametric estimators.

We first define our design parameter vector θ0 = {θa,v0 , a ∈ A, v ∈ V}, where θa,v0 =
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(θa,v0,1 , θ
a,v
0,2) for all pairs of (a, v), such that

θa,v0,1 = EP0(Y |A = a, V = v), θa,v0,2 = EP0(Y
2|A = a, V = v). (1)

These parameters are the conditional first moment and second moment of Y . We define

an extra parameter σa,v
0 = θa,v0,2 − (θa,v0,1)

2 that is the conditional variance of Y given

(A, V ) = (a, v) under the true probability distribution P0. Note that when Y is binary,

θa,v0,2 are redundant and σa,v
0 = θa,v0,1(1− θa,v0,1).

Next, we discuss how to obtain an appropriate semiparameter estimator θ̂n = {θ̂a,vn , a ∈

A, v ∈ V} based on the accumulated dataOn, where θ̂
a,v

n = (θ̂a,vn1 , θ̂
a,v
n2 ) and the subscript n

refers to the sample size. For an arbitrary parameter θ ∈ Θ, we first define two estimating

functions Ma,v
1 (θ)(Oi) and M

a,v
2 (θ)(Oi) for all pairs of (a, v) as follow:

Ma,v
1 (θ)(Oi) =

Ii(a, v) (Yi − θ)

Gi(a, v)(Oi−1)
, Ma,v

2 (θ)(Oi) =
Ii(a, v) (Y

2
i − θ)

Gi(a, v)(Oi−1)
, (2)

where Ii(a, v) is the shorthand notation of I(Ai = a, Vi = v). We can re-define θa,v0,1

and θa,v0,2 as the true parameters of the martingale estimating functions (2) such that

EQ0Gi

[
Ma,v

1 (θa,v0,1)(Oi)
]
= 0 and EQ0Gi

[
Ma,v

2 (θa,v0,2)(Oi)
]
= 0 for all (a, v). The estimators

θ̂n are the solutions of
∑n

i=1

[
Ma,v

1 (θa,vn,l )(Oi)
]
= 0, l = 1, 2, with the closed form

θ̂a,vn,1 =

∑n
i=1

Ii(a,v)
Gi(a,v)

Yi∑n
i=1

Ii(a,v)
Gi(a,v)

, θ̂a,vn,2 =

∑n
i=1

Ii(a,v)
Gi(a,v)

Y 2
i∑n

i=1
Ii(a,v)
Gi(a,v)

. (3)

The calculated weight can potentially improve the efficiency and reduce the bias of un-

weighted estimators. Moreover, by incorporating the weight rather than simply cal-

culating the first and second moments of Y , the martingale estimating equations (see

in appendix) defined by the estimating functions Ma,v
1 (θ)(Oi) and M

a,v
2 (θ)(Oi) become

independent of the CARA allocation probability Gi.
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The specific design setup is inspired by J. Hu, Zhu, and F. Hu 2015, however, our work

is extended to nonparametric setting. We define d(a, v,θ0) and e(a, v,θ0), a ∈ A, v ∈ V,

as finite one-dimensional quantities of efficiency and ethics measurements of treatment

a in subgroup v, respectively, where d(·, ·, ·) and e(·, ·, ·) are certain given functions.

For example, we can use the reciprocal of the failure rate as an ethics measurement

and the variance of response as an efficiency measurement. The choice of the efficiency

and ethics measurements are determined by different design objectives, and will lead to

different target allocation proportions. Here, we allow these measurements to vary with

the subgroups V , which is consistent with the idea of precision medicine. We propose a

family of CARA designs that assign the ith subject in subgroup Vi = v to treatment a

with probability

Gi(a, v) = Pr(Ai = a|Vi = v, θ̂i−1) =
e(a, v, θ̂i−1)

γ1d(a, v, θ̂i−1)
γ2∑

k∈A e(k, v, θ̂i−1)γ1d(k, v, θ̂i−1)γ2
, (4)

where (γ1, γ2) ∈ [0,+∞)2 are two tuning parameters determining the balance between

ethics and efficiency. The ratio form makes the allocation function a legitimate probabil-

ity and guarantees the scale invariant property of the efficiency and ethics measurements.

This family of CARA designs has very few restrictions about the efficiency and ethics

component, so that it can satisfy diverse practical needs in clinical trials.

Asymptotic results of the CARA designs

We introduce the following conditions for the asymptotic results:
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Condition 1 sup
a∈A,v∈V

E0(Y
2|A = a, V = v) <∞.

Condition 2 Gi is bounded in [gL, gU ], where 0 < gL < gU < 1.

Condition 3 For any fixed pair (a, v) ∈ A×V, d(a, v,θ) and e(a, v,θ) are both contin-

uous in terms of θ.

The first condition ensures that the expectation and the variance of Y is defined con-

ditioned on all possible A, V pairs under P0. The second condition indicates that the

CARA designs should avoid assigning zero probability or probability of one to any treat-

ments when allocating patients. The third condition requires the ethics and efficiency

measurements to be continuous in θ.

Theorem 1 Under Conditions (1), (2) and (3)

θ̂n
a.s.−→ θ0 , Gn(a, v)

a.s.−→ G0(a, v) , Na,v(n)/n
a.s.−→ p0(v)G0(a, v) (5)

for all (a, v) as n → ∞, where p0(v) = P0(V = v) is the marginal probability of V = v,

and

G0(a, v) = Pr(A = a|V = v) =
e(a, v,θ0)

γ1d(a, v,θ0)
γ2∑

k∈A e(k, v,θ0)
γ1d(k, v,θ0)γ2

.

(See Appendix Page 117 for proof.)

Theorem 1 shows the consistency of θ̂n, Gn, and Na,v(n)/n. To study the asymptotic

normality of the semiparameter estimator and the allocation proportions of the CARA

design, we introduce the following conditions.
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Condition 4 sup
a∈A,v∈V

E0(Y
4|A = a, V = v) <∞.

Condition 5 For any fixed pair (a, v) ∈ A× V, d(a, v,θ) and e(a, v,θ) are both differ-

entiable in terms of θ.

Theorem 2 Under Conditions (1), (2), (3), (4) and (5)

√
n(θ̂n − θ0) D−→ N(0,ΣCARA

0 ), (6)

√
n (Na,v(n)/n− p0(v)G0(a, v))

D−→ N
(
0, p0(v)G0(a, v)− p0(v)

2G0(a, v)
2
)
, (7)

where ΣCARA
0 = diag{Σa,v

0 , (a, v) ∈ A × V} is a diagonal block matrix. Each element

matrix of ΣCARA
0 is in the form of

Σa,v
0 =

1

p0(v)G0(a, v)

⎛
⎜⎜⎝ θa,v0,2 − (θa,v0,1)

2 θa,v0,3 − (θa,v0,1)θ
a,v
0,2

θa,v0,3 − (θa,v0,1)θ
a,v
0,2 θa,v0,3 − (θa,v0,2)

2

⎞
⎟⎟⎠ ,

where θa,v0,3 and θa,v0,4 are defined as the 3rd and 4th conditional moment of Y given (A, V ) =

(a, v) under P0. (See Appendix Page 120 for proof.)

3.3 Analysis of clinical trials with CARA designs based on

semiparametric approaches

As introduced in the introduction, traditional analysis methods in CARA designs either

have difficulties in addressing the issue of dependent observations or have to assume a

possibly misspecified model. In this paper, we propose to use innovative semiparametric

approaches such as TMLE to perform data analysis in clinical trials with CARA designs.

31



Target parameters of the designs

In the proposed CARA designs, the target parameter in TMLE can be defined as a

(K + 1)-dimensional parameter ψ0 = Ψ(P0) = (ψ0,0, ψ0,1, . . . , ψ0,K), where Ψ is the

target mapping Ψ : M → R
k+1, and

ψ0,j = EP0(Y |A = j), j = 0, 1, . . . , K. (8)

At the end of the trial, we perform the following hypothesis test

H0 : Cψ0 = 0 versus H1 : Cψ0 �= 0, (9)

where C is a K× (K+1) contrast matrix representing the additive treatment differences

between K experimental arms and the control arm:

CK×(K+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 . . .

−1 1

...
. . .

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Other target parameters such as relative risk and odds ratio in the scenarios of binary

outcome can be easily transformed by taking logarithm of the target parameter.

As a two-step approach, TMLE obtains an initial estimator through some parametric

models or semi-parametric approaches such as machin learning in the first step. In the

second step, an update is applied to achieve asymptotic unbiasness through a valid loss

function and a parametric fluctuation working model (M. Van der Laan and Daniel Rubin

2006).
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In next subsections, we offer technique details about how to perform TMLE in clinical

trials with CARA designs. At the end, we provided asymptotic results for statistical

inferences of the target parameters.

An initial estimator of Q0

Suppose the response Y is re-scaled in [0, 1] and it can be either binary or continuous

bounded in [0, 1]. Note that the re-scale can be implemented either through a linear

transformation or any other continuous mapping. For instance, for any set of observa-

tions, a linear transformation Y ′ = Y−Ymin

Ymax−Ymin
can be implemented. Also, for Y ∈ R,

Y ′ = logitY is bounded in [0, 1]. The re-scaling is practical because all real life mea-

surement are always truncated to have a lowest and a highest reading. This is a linear

transformation that has no impact on our inferences and conclusions. All results can be

transformed back to the original scale.

Let Q0,Y |A,W (P0) = P0(Y |A,W ) be the conditional distribution of Y and Q0,W =

QW (P0) = P0(W ) be the marginal distribution of W . Define Q̄0(A,W ) = EP0(Y |A,W )

as the conditional expectation of Y given (A,W ). Our target parameter Ψ(P0) only de-

pends on the true data generating distribution P0 throughQ0(A,W ) = (Q̄0(A,W ), Q0,W (W ))

and it can be written as ψ0 = Ψ(P0) = Ψ(Q0) (rigorously we should use Ψ(P0) =

Ψ(Q0(P0)), but for convenience we use this notation as in M. Van der Laan and Rose

2011). For an arbitrary estimator Qn of Q0, the substitution estimator of the target

parameter is ψ̂n = Ψ(Qn). To make an initial estimate of Q0(A,W ), we introduce a
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parametric model Q0
n(θ̂n, β̂n)(A,W ) as follows:

Q̄0
n(θ̂n, β̂n)(A,W ) =

1

1 + (1/θ̂A,V
n,1 − 1) exp(−Wβ̂n)

, (10)

Q0
n,W (W ) =

1

n

n∑
i=1

I(W =W i), (11)

for all (A, V ) ∈ A× V, where V = fV (W ), and

β̂n = argmax
β

n∑
i=1

G�
n(Ai, Vi)

Gi(Ai, Vi)
log [expit (μi)]

Yi [1− expit (μi)]
1−Yi , (12)

where expit(x) = exp(x)/(1 + exp(x)), μi = logit θ̂Ai,Vi
n,1 +W iβ.

Remark 1 β̂n is the resulting coefficient of the baseline covariates in the logistic model

of logitYi = logit θ̂Ai,Vi
n1 +W iβ with weight wn(Oi) = G�

n(Ai, Vi)/Gi(Ai, Vi). The offset

term in the logistic model is the group-wise information that can be brought from θ̂n.

The second term adds more information about the within group heterogeneity from the

baseline charateristics. β̂n is a consistent estimator of the true parameter β0 such that

β̂n
P−→ β0, where β0 is defined as

β0 = argmax
β

EQ0G0 log [expit (μ0(W ,β))]Y [1− expit (μ0(W ,β))]1−Y ,

where μ0(W ,β) = logit θA,V
0,1 +Wβ. The logistic model on continuous outcomes in [0, 1]

was originally used by Wedderburn 1974 and McCullagh et al. 1983. It has also been

adopted and widely used in the field of TMLE (M. Van der Laan and Rose 2011, M. Van

der Laan and Rose 2018, Gruber and M. Van der Laan 2010). Note that this paramet-

ric model is in general misspecified and is biased in terms of the target parameter ψ0.

Therefore, in the second step, an update is needed to eliminate the unbiasness introduced

in the first step.
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Update the initial estimate with the parametric fluctuation working model

To update the initial fit and find an asymptotic unbiased estimator of ψ0, we introduce

a parametric fluctuation model. The procedure is described below.

Let Q̄n,G�
n
(θ̂n, β̂n, ε)(A,W ) be a sub-model of Q̄0

n(θ̂n, β̂n)(A,W ) indexed by G�
n with

a fluctuating parameter ε = (ε0, ε1, . . . , εK) ∈ R
K+1 satisfying Q̄n,G�

n
(θ̂n, β̂n,0)(A,W ) =

Q̄0
n(θ̂n)(A,W ) and

logit
Q̄n,G�

n
(θ̂n, β̂n, ε)(A,W )

1− Q̄n,G�
n
(θ̂n, β̂n, ε)(A,W )

= logit
Q̄0

n(θ̂n, β̂n)(A,W )

1− Q̄0
n(θ̂n, β̂n)(A,W )

+H(G�
n)(Ai,W i)ε̂,

(13)

whereH(G�
n)(A,W ) = (H0(G

�
n)(A,W ), . . . , HK(G

�
n)(A,W )),Hj(G

�
n)(A,W ) = I(A=j)

G�
n(A,fV (W ))

.

The optimal value of the fluctuating parameter ε is determined by

ε̂ = argmax
ε

n∑
i=1

G�
n(Ai, Vi)

Gi(Ai, Vi)
log
(
[Q̄n(θ̂n, β̂n, ε)(Ai,W i)]

Yi [1− Q̄n(θ̂n, β̂n, ε)(Ai,W i)]
1−Yi

)
.

Alternatively, it is equivalent to fit the logistic regression logitYi = logit Q̄0
n(θ̂n, β̂n)(Ai,W i)+

H(G�
n)(Ai,W i)ε with weight wn(Oi) = G�

n(Ai, Vi)/Gi(Ai, Vi). Then ε̂ is the fitted coef-

ficient of H(G�
n). Also, the marginal distribution of W is updated to Qn,W,Gn+1(W i) =

wi/
∑n

i wi, where the subscriptGn+1 = (G1, . . . , Gn+1) is the vector of all allocation func-

tions. We adopt the notationQ�
n = (Q̄�

n(A,W ), Q�
n,W (W )), Q̄�

n(A,W ) = Q̄n,G�
n
(θ̂n, ε̂)(A,W ),

Q�
n,W = Qn,W,Gn+1(W i) to denote the updated estimator of Q0. Hence, the updated es-

timator is Q�
n(A,W ) = (Q̄�

n(A,W ), Q�
n,W (W )),

Q̄�
n(A,W ) =

1

1 + (1/Q̄0
n(θ̂n, β̂n)(A,W )− 1) exp(−∑K

j=0 ε̂n,jHj(G�
n)(A,W ))

(14)

Q�
n,W (W ) =

1∑n
j=1wn(Oj)

n∑
i=1

wn(Oi)I(W =W i). (15)
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The logic of this procedure is described below.

Let IC denote the influence curve of Ψ. The influence curve is defined as the gradient

of the pathwise derivative of the statistical functional Ψ. In this dissertation, the influence

curve of our target parameter is (K + 1)-dimensional. The jth element of the IC at

P = QG and O = (Y,A,W ) is

ICj(Q,G)(O) = Hj(G)(A,W )
(
Y − Q̄(A,W )

)
+ Q̄(j,W )− ψj, j = 0, 1, . . . , K, (16)

where ψj is defined under under Q. The influence curve can be decomposed into

ICj,Y |A,W =
I(A = j)

G(A,W )

(
Y − Q̄(A,W )

)
, ICj,W = Q̄(j,W )− ψj. (17)

The two components are orthogonal and are the projections of the influence curve onto the

tangent space of Y |A,W andW respectively. The inner product of the two components

in the Hilbert space L2(QG) is zero (M. Van der Laan and Rose 2011). The influence

curve has the property that EQG IC(Q,G)(O) = 0. However, when the Q and G where

the IC is evaluated are not coincident with the Q and G endorsed by the expectation,

the zero expectation is not guaranteed.

In the CARA design, it has been acknowledged that under conditions (1), (2) and

(3), Ψ(Qn) is an asymptotic unbiased estimator of ψ0 if

1

n

n∑
i=1

IC(Qn, G
�
n)(Oi)

G�
n(Ai, Vi)

Gi(Ai, Vi)
= 0 (18)

(M. J. Van der Laan 2008). TMLE is used to update the initial estimator to achieve

(18). First, we define a quasi-log-likelihood loss function L(Q)(O) = −Y log(Q̄(A, V ) −

(1 − Y ) log(1 − Q(A, V ) − logQW (W )). This loss function is valid not only for binary
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outcome Y but also for continuous outcome Y ∈ [0, 1] (Gruber and M. Van der Laan

2010). Second, we define a fluctuating model parametric model QG(ε), ε = (ε1, ε2),

indexed by G as

logit Q̄(ε1)(A,W ) = logit Q̄(A,W ) + ε1H(G)(A,W ), (19)

logQW (ε2)(W ) = logQW (W ) + log(1 +
K∑
j=0

ε2j(Q̄(j,W )− ψj)). (20)

In general, one can also adopt other valid loss functions and any parametric fluctuating

models satisfying dQG(ε) = (1+εIC(Q,G)+o(ε))dQ, e.g., the squared error loss function

L(Q̄) = (Y − Q̄(A,W ))2 and Q̄G(ε) = Q̄+ εIC(Q,G)Q̄(1− Q̄). However, it is believed

to be less robust since they may result in a linear regression model which breaks the

global constraints (M. Van der Laan and Daniel Rubin 2006). In addition, the logit

based sub-model of Q̄ is widely used in TMLE because of its good properties such as

one-step update. We have the following theorem.

Theorem 3 With the loss function and the parametric model defined, we define the true

ε0 of our CARA design as ε0 = argmin
ε

EQ0G0L(QG0(θ0,β0, ε)), where G0 is the target

allocation probability and depends on θ0. Then, the target mapping Ψ maps Q0 and

QG0(θ0,β0, ε0) to the same value: Ψ(QG0(θ0,β0, ε0)) = Ψ(Q0) = ψ0. (See Appendix

Page 121 for proof.)

In the CARA design, all observations are not independent and are not sampled from

Q0G0 which is endorsed under the expectation in the definition of ε0. To estimate ε0, we

denote L�
n(Q)(Oi) = L(Q)(Oi)wn(Oi) as a weighted quasi-likelihood loss function for the
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ith patient, where wn(Oi) = Gn(Ai, Vi)/Gi(Ai, Vi). Then we define an estimator ε̂n as

ε̂n = argmin
ε

n∑
i=1

wn(Oi)L
�(Qn,G�

n
(θ̂n, β̂n, ε))(Oi). (21)

In general, the second step of TMLE involves an iterative update procedure such that

ε̂(k+1)
n = argmin

ε

n∑
i=1

wn(Oi)L
�(Q

(k)
n,G�

n
(ε))(Oi), (22)

where Q
(k)
n,G�

n
= Q

(k−1)
n,G�

n
(ε̂(k)n ). The iterative process stops when ε̂(k)n ≈ 0. M. Van der Laan

and Gruber 2016 have showed that the logit based submodel is also a universal least

favorable submodel in which the iterative process stops at one step in i.i.d. setting. It

is easy to verify that in the CARA design, TMLE is achieved in one step. Specifically,

the MLE of ε1 can be solved in one step through a weighted logistic regression. In i.i.d.

setting, the MLE of ε2 is zero, which indicates no update is needed for the empirical

distribution of W . However, there is no solution in general for the MLE of ε2 in the

CARA design. The updated (15) along with (14) solve the estimating equation (18). One

can also use the empirical distribution 1/n because of the fact that Q�
n,W (W )

a.s.−→ 1/n

as n→ ∞. The following theorem gives the asymptotic property of this estimator.

Condition 6 E0(W
2
j ) <∞ for all j ∈ {1, . . . , nW}.

Theorem 4 Under condition (1), (2), (5) and (6), we have

(β̂n, ε̂n)
a.s.−→ (β0, ε0). (23)

The updated estimator Qn,G�
n
(θ̂n, β̂n, ε̂) solves the estimating equation (18). (See Ap-

pendix Page 122 for proof.)
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Statistical inference

From previous section, we obtained the updated estimator Q�
n = (Q̄�

n(A,W ), Q�
n,W (W )).

The TMLE of ψ0 is calculated as

ψ̂TMLE
n,j =

n∑
i=1

Q�
n,W (W i)Q̄

�
n(j,W i), j ∈ {0, 1, . . . , K}.

The asymptotic property of ψ̂
TMLE

n can be studied through (θ̂n, β̂n, ε̂) by Theorem 8

(M. J. Van der Laan 2008). In this dissertation, our main focus is the behavior and

asymptotic property of ψ̂
TMLE

n . Moreover, we have multiple treatment arms, which

causes extra complexities. Thus, we construct the normality of ψ̂
TMLE

n directly through

the martingale estimating equation (18). The following theorem establishes the asymp-

totic normality of ψ̂
TMLE

n .

Theorem 5

√
n
(
ψ̂

TMLE

n −ψ0

)
D−→ N(0,ΣTMLE

0 ) as n→ ∞, (24)

where ΣTMLE
0 is a (K + 1)× (K + 1) covariance matrix with

σTMLE
0 (j, k) = EQ0G0 (ICj(QG0(θ0,β0, ε0), G0) ICk(QG0(θ0,β0, ε0), G0)) .

σTMLE
0 (j, k) can be consistently estimated by

σ̂TMLE
n (j, k) =

1

n

n∑
i=1

(
G�

n(Ai, Vi)

Gi(Ai, Vi)

)2

(ICj(Q
�
n, G

�
n)(Oi) ICk(Q

�
n, G

�
n)(Oi)) .

The hypothesis [9] can be tested using the statistic

T � = (Cψ̂
TMLE

n )T (
1

n
CΣ̂

TMLE

n CT )−1(Cψ̂
TMLE

n ).
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The null hypothesis is rejected at level α if T > χ2
K(1− α). (See Appendix Page 125 for

proof.)

In this section, we showed the advancement of TMLE in dealing with non-i.i.d data

in the proposed CARA designs. Without additional model assumption, TMLE approach

holds the consistence property and asymptotic property through theorem 3 and 4 theorem

4. In addition, the double robust nature of TMLE ensures its asymptotic efficiency in the

light of semiparametric statistical model efficiency theory (M. Van der Laan and Rose

2011).

3.4 Numerical studies

Having obtained the asymptotic properties of the proposed family of CARA designs, in

this section we numerically evaluated its finite-sample performance regarding the Type

I error rate, power, unbiasness, and ethics properties. We considered four scenarios:

(1) two treatment arms with binary endpoints; (2) three treatment arms with binary

endpoints; (3) two treatment arms with continuous endpoints; (4) three treatment arms

with continuous endpoints. We also studied four different CARA designs representing

different ethics measurements:

CARA1: e(a, v, θ̂i−1) = θ̂a,vi−1,1, d(a, v, θ̂i−1) =
√
θ̂a,vi−1,2 − (θ̂a,vi−1,1)

2

CARA2: e(a, v, θ̂i−1) = (1− θ̂a,vi−1,1)
−1, d(a, v, θ̂i−1) =

√
θ̂a,vi−1,2 − (θ̂a,vi−1,1)

2

CARA3: e(a, v, θ̂i−1) = θ̂a,vi−1,1 ∗ (1− θ̂a,vi−1,1)
−1, d(a, v, θ̂i−1) =

√
θ̂a,vi−1,2 − (θ̂a,vi−1,1)

2
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CARA4: e(a, v, θ̂i−1) = Φ(θ̂a,vi−1,1− 1
nA

∑nA

k=1 θ̂
k,v
i−1,1), d(a, v, θ̂i−1) =

√
θ̂a,vi−1,2 − (θ̂a,vi−1,1)

2,

where nA denotes the number of treatment arms, and Φ(·) denotes the CDF of a standard

normal distribution. All the four ethics measurements return larger value for the superior

treatment arm in terms of additive treatment effect. The efficiency measurement was

chosen based on the idea of Neyman allocation. The tuning parameters γ1 and γ2 can be

assigned to different values to further examine the validity and demonstrate the flexibility.

In the Tables, we used CARAk(γ1, γ2) to represent the above kth CARA design with

tuning parameters γ1 and γ2.

We compared four design and analysis combinations: 1) the proposed CARA de-

sign with TMLE; 2) the proposed CARA design with t-test (chi-square test for three-

treatment scenario); 3) complete randomization (CR) with TMLE; 4) complete random-

ization with t-test (chi-square test for three treatment). In the simulation, the first 20%

of patients were assigned to the treatments with the stratified permuted block (SPB)

randomization and the rest patients were allocated using TMLE. In all the scenarios, we

pre-specified the significance level at α = 0.05, and all the results were based on 10, 000

replications.

Scenario 1: two treatments with binary endpoints

Consider a clinical trial with two treatments with binary endpoints. Suppose we have a

covariate vector W = (W1,W2,W3) and a binary subgroup indicator V (W ) = I(W1 +

W2 +W3 > 1.6), where W1,W2,W3 independently follow uniform distribution in [0, 1]

41



and I(·) is the indicator function. Assume the success rate of the binary endpoint Y is:

p = Φ

(
β0 + βAA+ βV V + βAVAV +

3∑
p=1

βW,p ∗Wp

)
,

where (β0, βA, βV , βAV , βW,1, βW,2, βW,3) are unknown parameters. Note that the true

model of Y is a generalized linear model with a probit link function. In Tables 1.1, 1.2a

and 1.2b, we fix (β0, βV , βW,1, βW,2, βW,3) = (−0.5,−0.1, 0.22,−0.17,−0.1) while adjusting

the values of (βA, βAV ) to study the Type I error rate, power, and other properties of our

design.

In Table 1.1, we reported the Type I error rate with (βA, βAV ) = (0, 0). When CR

is used, the Type I error rate is close to 0.05 for both TMLE and t-test. For all types

of CARA designs, the Type I error rate is well-controlled for both TMLE and t-test. In

Tables 1.2a and Table 1.2b, power, allocation proportions (ρ1, ρ2), bias in estimation of

additive treatment effect (ATE) and overall response rate (ORR) are reported. Three

different types of data generating distributions were considered: (1) only additive treat-

ment effect exists with (βA, βAV ) = (0.32, 0); (2) only interaction treatment effect exists

with (βA, βAV ) = (0, 0.75); (3) both interaction treatment effect and additive treatment

effect exist with (βA, βAV ) = (0.18, 0.30). Under CR, TMLE gives higher power than

t-test does. Under CARA, when t-test returns higher power than TMLE, we can see

that it may be due to the bias in estimation of ATE. Note that TMLE always returns

unbiased estimates of ATE. In addition, CARA is able to assign more patients to the

superior treatment group than CR.
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Table 1.1: Type I error rate (in %) under CR and different CARA designs

in clinical trials with two treatment arms and binary endpoints.

Allocation N Type I error (%) N Type I error (%)

TMLE t-test TMLE t-test

CR 400 4.93 4.62 600 5.49 5.25

CARA1(0,1) 400 5.46 5.15 600 5.39 5.12

CARA1(1,0) 400 5.43 5.37 600 5.46 5.23

CARA1(1,1) 400 5.41 5.50 600 5.48 5.71

CARA2(0,1) 400 5.46 5.15 600 5.39 5.12

CARA2(1,0) 400 5.44 5.13 600 5.51 5.22

CARA2(1,1) 400 5.43 5.32 600 5.54 5.39

CARA3(0,1) 400 5.46 5.15 600 5.39 5.12

CARA3(1,0) 400 5.39 5.42 600 5.30 5.41

CARA3(1,1) 400 5.32 5.59 600 5.33 5.60

CARA4(0,1) 400 5.46 5.15 600 5.39 5.12

CARA4(1,0) 400 5.27 4.94 600 5.46 5.10

CARA4(1,1) 400 5.48 5.28 600 5.46 5.19
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Table 1.2a: Power (in %), proportion of treatment (in %), bias in estimation

of additive treatment effect (ATE) and overall response rate (ORR) (in %)

under CR and different CARA procedures in trial with two treatment arms

and binary endpoint at sample size N = 400.

Allocation (βA, βAV ) Power (%) ATE Bias Trt Prop (%) ORR (%)

(N=400) TMLE t-test TMLE Mean

CR (0.4, 0) 88.1 87.2 <0.001 <0.001 50.0, 50.0 0.360

CARA1(0,1) (0.4, 0) 87.3 87.0 <0.001 <0.001 48.2, 51.8 0.363

CARA1(1,0) (0.4, 0) 86.9 87.0 <0.001 <0.001 42.0, 58.0 0.372

CARA1(1,1) (0.4, 0) 86.4 87.0 <0.001 0.002 40.4, 59.6 0.374

CARA2(0,1) (0.4, 0) 87.3 87.0 <0.001 <0.001 48.2, 51.8 0.363

CARA2(1,0) (0.4, 0) 87.2 86.9 <0.001 <0.001 45.4, 54.6 0.367

CARA2(1,1) (0.4, 0) 87.0 87.1 <0.001 0.001 43.7, 56.3 0.370

CARA3(0,1) (0.4, 0) 87.3 87.0 <0.001 <0.001 48.2, 51.8 0.363

CARA3(1,0) (0.4, 0) 85.7 87.1 <0.001 0.002 38.2, 61.8 0.378

CARA3(1,1) (0.4, 0) 85.2 87.1 <0.001 0.003 37.0, 63.0 0.379

CARA4(0,1) (0.4, 0) 87.3 87.0 <0.001 <0.001 48.2, 51.8 0.363

CARA4(1,0) (0.4, 0) 87.4 86.9 <0.001 <0.001 47.7, 52.3 0.363

CARA4(1,1) (0.4, 0) 87.6 87.2 <0.001 <0.001 45.9, 54.1 0.366

CR (0, 0.9) 87.5 86.0 <0.001 <0.001 50.0, 50.0 0.359

CARA1(0,1) (0, 0.9) 87.0 87.0 <0.001 0.003 49.1, 50.9 0.362

Continued on next page
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Table 1.2a – Continued from previous page

Allocation (βA, βAV ) Power (%) ATE Bias Trt Prop (%) ORR (%)

(N=400) TMLE t-test TMLE Mean

CARA1(1,0) (0, 0.9) 85.2 92.4 <0.001 0.018 43.6, 56.4 0.381

CARA1(1,1) (0, 0.9) 84.5 93.2 <0.001 0.019 43.1, 56.9 0.383

CARA2(0,1) (0, 0.9) 87.0 87.0 <0.001 0.003 49.1, 50.9 0.362

CARA2(1,0) (0, 0.9) 86.0 90.7 <0.001 0.013 45.0, 55.0 0.376

CARA2(1,1) (0, 0.9) 85.6 91.6 <0.001 0.015 44.2, 55.8 0.379

CARA3(0,1) (0, 0.9) 87.0 87.0 <0.001 0.003 49.1, 50.9 0.362

CARA3(1,0) (0, 0.9) 82.3 94.6 <0.001 0.023 40.9, 59.1 0.390

CARA3(1,1) (0, 0.9) 82.1 94.9 <0.001 0.024 41.1, 58.9 0.390

CARA4(0,1) (0, 0.9) 87.0 87.0 <0.001 0.003 49.1, 50.9 0.362

CARA4(1,0) (0, 0.9) 86.7 88.3 <0.001 0.006 47.8, 52.2 0.366

CARA4(1,1) (0, 0.9) 86.4 89.6 <0.001 0.008 46.9, 53.1 0.369

CR (0.25, 0.35) 87.8 87.3 <0.001 <0.001 50.0, 50.0 0.360

CARA1(0,1) (0.25, 0.35) 87.1 86.8 <0.001 <0.001 48.3, 51.7 0.363

CARA1(1,0) (0.25, 0.35) 86.0 87.1 <0.001 0.002 42.2, 57.8 0.373

CARA1(1,1) (0.25, 0.35) 85.5 87.0 <0.001 0.003 40.8, 59.2 0.376

CARA2(0,1) (0.25, 0.35) 87.1 86.8 <0.001 <0.001 48.3, 51.7 0.363

CARA2(1,0) (0.25, 0.35) 86.8 86.9 <0.001 0.001 45.4, 54.6 0.368

CARA2(1,1) (0.25, 0.35) 86.6 87.1 <0.001 0.001 43.8, 56.2 0.371

CARA3(0,1) (0.25, 0.35) 87.1 86.8 <0.001 <0.001 48.3, 51.7 0.363

Continued on next page
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Table 1.2a – Continued from previous page

Allocation (βA, βAV ) Power (%) ATE Bias Trt Prop (%) ORR (%)

(N=400) TMLE t-test TMLE Mean

CARA3(1,0) (0.25, 0.35) 84.4 86.9 <0.001 0.013 38.6, 61.4 0.380

CARA3(1,1) (0.25, 0.35) 83.8 86.8 <0.001 0.013 37.6, 62.4 0.381

CARA4(0,1) (0.25, 0.35) 87.1 86.8 <0.001 <0.001 48.3, 51.7 0.363

CARA4(1,0) (0.25, 0.35) 87.1 86.8 <0.001 <0.001 47.7, 52.3 0.364

CARA4(1,1) (0.25, 0.35) 83.2 83.3 <0.001 0.001 46.0, 54.0 0.367

Table 1.2b: Power (in %), proportion of treatment (in %), bias in estimation

of additive treatment effect (ATE) and overall response rate (ORR) (in %)

under CR and different CARA procedures in trial with two treatment arms

and binary endpoint at sample size N = 600.

Allocation (βA, βAV ) Power (%) ATE Bias Trt Prop (%) ORR (%)

(N=600) TMLE t-test TMLE Mean

CR (0.32, 0) 85.5 84.8 <0.001 <0.001 50.0, 50.0 0.344

CARA1(0,1) (0.32, 0) 85.7 85.4 0.001 0.001 48.4, 51.6 0.346

CARA1(1,0) (0.32, 0) 85.1 85.3 0.001 0.001 43.3, 56.7 0.352

CARA1(1,1) (0.32, 0) 84.5 85.2 0.001 0.001 41.8, 58.2 0.354

CARA2(0,1) (0.32, 0) 85.7 85.4 0.001 0.001 48.4, 51.6 0.346

CARA2(1,0) (0.32, 0) 85.5 85.6 0.001 0.001 46.4, 53.6 0.349

Continued on next page
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Table 1.2b – Continued from previous page

Allocation (βA, βAV ) Power (%) ATE Bias Trt Prop (%) ORR (%)

(N=600) TMLE t-test TMLE Mean

CARA2(1,1) (0.32, 0) 85.7 85.7 0.001 0.001 44.8, 55.2 0.350

CARA3(0,1) (0.32, 0) 85.7 85.4 0.001 0.001 48.4, 51.6 0.346

CARA3(1,0) (0.32, 0) 84.5 85.1 0.001 0.002 40.1, 59.9 0.356

CARA3(1,1) (0.32, 0) 83.9 85.2 0.001 0.002 38.8, 61.2 0.357

CARA4(0,1) (0.32, 0) 85.7 85.4 0.001 0.001 48.4, 51.6 0.346

CARA4(1,0) (0.32, 0) 85.8 85.6 0.001 0.001 48.1, 51.9 0.347

CARA4(1,1) (0.32, 0) 85.7 85.7 0.001 0.001 46.5, 53.5 0.348

CR (0, 0.75) 87.9 87.4 0.001 0.001 50.0, 50.0 0.346

CARA1(0,1) (0, 0.75) 88.6 89.2 0.001 0.003 48.9, 51.1 0.349

CARA1(1,0) (0, 0.75) 87.7 93.1 0.001 0.013 44.1, 55.9 0.363

CARA1(1,1) (0, 0.75) 86.8 93.6 0.001 0.014 43.4, 56.7 0.365

CARA2(0,1) (0, 0.75) 88.6 89.2 0.001 0.003 48.9, 51.1 0.349

CARA2(1,0) (0, 0.75) 88.3 91.3 0.001 0.009 46.0, 54.0 0.357

CARA2(1,1) (0, 0.75) 88.1 92.3 0.001 0.011 45.0, 55.0 0.360

CARA3(0,1) (0, 0.75) 88.6 89.2 0.001 0.003 48.9, 51.1 0.349

CARA3(1,0) (0, 0.75) 84.9 94.8 0.001 0.017 41.5, 58.6 0.370

CARA3(1,1) (0, 0.75) 84.3 95.3 0.001 0.018 41.1, 58.9 0.371

CARA4(0,1) (0, 0.75) 88.6 89.2 0.001 0.003 48.9, 51.1 0.349

CARA4(1,0) (0, 0.75) 88.6 89.9 0.001 0.005 48.1, 51.9 0.351

Continued on next page
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Table 1.2b – Continued from previous page

Allocation (βA, βAV ) Power (%) ATE Bias Trt Prop (%) ORR (%)

(N=600) TMLE t-test TMLE Mean

CARA4(1,1) (0, 0.75) 88.5 90.8 0.001 0.007 47.1, 52.9 0.354

CR (0.18, 0.30) 83.2 82.7 <0.001 <0.001 50.0, 50.0 0.342

CARA1(0,1) (0.18, 0.30) 83.1 82.9 <0.001 <0.001 48.4, 51.6 0.344

CARA1(1,0) (0.18, 0.30) 82.5 83.2 <0.001 0.002 43.6, 56.4 0.351

CARA1(1,1) (0.18, 0.30) 81.8 83.3 <0.001 0.002 42.2, 57.8 0.353

CARA2(0,1) (0.18, 0.30) 83.1 82.9 <0.001 <0.001 48.4, 51.6 0.344

CARA2(1,0) (0.18, 0.30) 83.1 83.0 <0.001 0.001 46.6, 53.4 0.347

CARA2(1,1) (0.18, 0.30) 83.0 83.2 <0.001 0.011 45.0, 55.0 0.349

CARA3(0,1) (0.18, 0.30) 83.1 82.9 <0.001 <0.001 48.4, 51.6 0.344

CARA3(1,0) (0.18, 0.30) 81.4 83.3 <0.001 0.002 40.7, 59.3 0.355

CARA3(1,1) (0.18, 0.30) 80.4 83.1 <0.001 0.002 39.6, 60.4 0.356

CARA4(0,1) (0.18, 0.30) 83.1 82.9 <0.001 <0.001 48.4, 51.6 0.344

CARA4(1,0) (0.18, 0.30) 83.4 89.9 0.001 0.001 48.2, 51.8 0.345

CARA4(1,1) (0.18, 0.30) 83.2 83.3 0.001 0.001 46.7, 53.3 0.347

Scenario 2: three treatments with binary endpoint

Consider a clinical trial with three treatments with binary endpoints. Suppose that

the covariate vector W = (W1,W2,W3) and the binary subgroup indicator V (W ) are
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generated in the same manner as in Scenario 1. Assume the success rate of the binary

endpoint Y is

p = Φ

(
βA1I(A = 1) + βA2I(A = 2) + βV V + βAVAV +

3∑
p=1

βW,p ∗Wp

)
,

where (βA1, βA2, βV , βAV , βW,1, βW,2, βW,3) are unknown parameters. In Tables 2.1, 2.2a

and 2.2b, we fix the parameter values of (βV , βW,1, βW,2, βW,3) = (0.2, 0.22,−0.17,−0.1)

while adjusting the values of (βA1, βA2, βAV ) to study the Type I error rate, power, and

other properties of our design.

In Table 2.1, we reported the Type I error rate with (βA, βAV ) = (0, 0). Both TMLE

and chi-square test lead to well-controlled type I error rate when implementing either

CARA or CR. We also reported the operating characteristics of our design under H1

in Tables 2.2a and Table 2.2b. When CR is implemented, TMLE gives higher power

than chi-square test does. When CARA is implemented, chi-square test renders power

inflation and large bias in ATE estimation, which makes TMLE a more reliable analysis

method than chi-square test. In addition, CARA slightly leads CR when comparing

the power. In terms of treatment allocation proportion, CARA is able to assign more

patients to the superior treatment group and results in a better overall response rate,

especially when the choice of γ1 and γ2 aims to emphasize the ethics properties. Unlike

the power trade-off in scenario 1, the power is at the same level or better than CR even

when the differences in treatment allocation proportion are large, e.g. CARA3(1, 0).
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Table 2.1: Type I error rate (in %) under CR and different CARA procedures

in trial with three treatment arms and binary endpoint.

Allocation N Type I error (%) N Type I error (%)

TMLE chi-sq TMLE chi-sq

CR 600 5.80 5.44 800 5.58 5.21

CARA1(0,1) 600 5.78 5.11 800 5.58 5.13

CARA1(1,0) 600 5.66 5.25 800 5.66 5.54

CARA1(1,1) 600 5.67 5.32 800 5.66 5.41

CARA2(0,1) 600 5.78 5.11 800 5.58 5.13

CARA2(1,0) 600 5.43 5.37 800 5.76 5.63

CARA2(1,1) 600 5.75 5.57 800 5.65 5.49

CARA3(0,1) 600 5.78 5.11 800 5.58 5.13

CARA3(1,0) 600 5.59 5.66 800 5.41 5.63

CARA3(1,1) 600 5.40 5.38 800 5.45 5.59

CARA4(0,1) 600 5.78 5.11 800 5.58 5.13

CARA4(1,0) 600 5.78 5.39 800 5.54 5.21

CARA4(1,1) 600 5.83 5.34 800 5.47 5.01
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Table 2.2a: Power (in %), proportion of treatment (in %), bias in estimation

of additive treatment effect (ATE) and overall response rate (ORR) (in %)

under CR and different CARA procedures in trial with three treatment arms

and binary endpoint at sample size N = 600.

Allocation (βA, βAV ) Power (%) ATE Bias Trt Prop (%) ORR (%)

(N=600) TMLE t-test TMLE Mean

CR (0.25,0.20) 86.4 84.6 (<0.001, <0.001) (0.001, 0.001) 33.3, 33.3, 33.3 0.585

CARA1(0,1) (0.25,0.20) 86.4 82.3 (<0.001, <0.001) (0.001, 0.005) 34.3, 33.9, 31.8 0.583

CARA1(1,0) (0.25,0.20) 87.4 88.5 (<0.001, <0.001) (0.002, 0.004) 30.7, 32.0, 37.3 0.592

CARA1(1,1) (0.25,0.20) 87.5 85.8 (<0.001, <0.001) (0.003, <0.001) 31.6, 32.7, 35.7 0.589

CARA2(0,1) (0.25,0.20) 86.4 82.3 (<0.001, <0.001) (0.001, 0.005) 34.3, 33.9, 31.8 0.583

CARA2(1,0) (0.25,0.20) 87.6 92.1 (<0.001, <0.001) (0.001, 0.013) 28.9, 30.6, 40.6 0.598

CARA2(1,1) (0.25,0.20) 87.6 90.4 (<0.001, <0.001) (0.002, 0.009) 29.7, 31.3, 39.0 0.595

CARA3(0,1) (0.25,0.20) 86.4 82.3 (<0.001, <0.001) (0.001, 0.005) 34.3, 33.9, 31.8 0.583

CARA3(1,0) (0.25,0.20) 87.1 92.8 (<0.001, <0.001) (0.002, 0.016) 26.8, 28.9, 44.2 0.603

CARA3(1,1) (0.25,0.20) 87.1 92.0 (<0.001, <0.001) (0.003, 0.013) 27.5, 29.7, 42.9 0.601

CARA4(0,1) (0.25,0.20) 86.4 82.3 (<0.001, <0.001) (0.001, 0.005) 34.3, 33.9, 31.8 0.583

CARA4(1,0) (0.25,0.20) 87.4 87.2 (<0.001, <0.001) (0.001, 0.003) 32.0, 32.7, 35.2 0.589

CARA4(1,1) (0.25,0.20) 87.3 84.4 (<0.001, <0.001) (0.001, 0.002) 33.0, 33.4, 33.6 0.586
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Table 2.2b: Power (in %), proportion of treatment (in %), bias in estimation

of additive treatment effect (ATE) and overall response rate (ORR) (in %)

under CR and different CARA procedures in trial with three treatment arms

and binary endpoint at sample size N = 800.

Allocation (βA, βAV ) Power (%) ATE Bias Trt Prop (%) ORR (%)

(N=800) TMLE t-test TMLE Mean

CR (0.22,0.17) 87.7 86.6 (<0.001, <0.001) (0.001, 0.001) 33.3, 33.3, 33.3 0.578

CARA1(0,1) (0.22,0.17) 87.4 84.4 (<0.001, <0.001) (<0.001, 0.004) 34.1, 33.8, 32.1 0.576

CARA1(1,0) (0.22,0.17) 88.1 89.3 (<0.001, <0.001) (0.002, 0.004) 30.9, 32.1, 37.0 0.583

CARA1(1,1) (0.22,0.17) 87.9 87.5 (<0.001, <0.001) (0.002, <0.001) 31.7, 32.6, 35.7 0.581

CARA2(0,1) (0.22,0.17) 87.4 84.4 (<0.001, <0.001) (<0.001, 0.004) 34.1, 33.8, 32.1 0.576

CARA2(1,0) (0.22,0.17) 88.1 91.2 (<0.001, <0.001) (0.001, 0.011) 29.5, 31.0, 39.5 0.587

CARA2(1,1) (0.22,0.17) 88.3 90.7 (<0.001, <0.001) (0.002, 0.007) 30.2, 31.5, 38.2 0.585

CARA3(0,1) (0.22,0.17) 87.4 84.4 (<0.001, <0.001) (<0.001, 0.004) 34.1, 33.8, 32.1 0.576

CARA3(1,0) (0.22,0.17) 87.7 93.0 (<0.001, <0.001) (0.002, 0.013) 27.4, 29.5, 43.0 0.592

CARA3(1,1) (0.22,0.17) 87.9 92.0 (<0.001, <0.001) (0.003, 0.010) 28.0, 30.1, 41.9 0.590

CARA4(0,1) (0.22,0.17) 87.4 84.4 (<0.001, <0.001) (<0.001, 0.004) 34.1, 33.8, 32.1 0.576

CARA4(1,0) (0.22,0.17) 88.0 88.2 (<0.001, <0.001) (0.001, 0.002) 32.2, 32.8, 35.0 0.580

CARA4(1,1) (0.22,0.17) 87.8 86.0 (<0.001, <0.001) (0.001, 0.001) 32.9, 33.3, 33.8 0.578
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Scenario 3: Two treatments with continuous endpoint

Consider a clinical trial with two arms and bounded continuous endpoint Y ∈ R. Suppose

that the covariate vector W = (W1,W2,W3) and the binary subgroup indicator V (W )

are generated in the same manner. In order to study the robustness of the CARA, we

proposed the following two models to generate the endpoint Y :

M1: μ = μ0 + (1 + βAA)

(
1 + βV V +

3∑
p=1

βW,p ∗Wp

)
,

σ =
1 + βAA

1 + βV V
,

Y ∼ N(μ, σ2), Y is truncated if Y < 0 or Y > 12.

M2: a = 1 + (1 + βAA) (1 + βV V ) +
3∑

p=1

βW,p ∗Wp,

b =
1 + βAA

1 + βV V
,

Y ∼ Gamma(a, b), Y is truncated if Y > 10.

For a given A and V, M1 generates a symmetric distribution of Y while M2 generates

a skewed distribution of Y . The complexity in the models acknowledges not only the

treatment effect and the difference between subgroups but also their interaction effect and

within group heterogeneity due to unmeasured factors. We fixed the parameter values

βV = 0.2, βW,1 = −2.2, βW,2 = 0.8, βW,3 = −1.7 in model M1 and βV = −0.2, βW,1 =

0.73, βW,2 = −1.2, βW,3 = 0.56 in model M2. The change of values of βA was used to

study the properties of the proposed CARA design.

In Table 3.1a and Table 3.1b, we reported the Type I error rate for sample size n = 400

53



and n = 600 respectively. In both model M1 and model M2, TMLE demonstrates well-

controlled type I error rate under both CR and all types of CARA designs. However,

when t-test is conducted the type I error rate is controlled in CR but inflated in most

CARA designs especially for γ2 = 2.

We reported the operating characteristics of our design under H1 in Table 3.2a and

Table 3.2b. TMLE dominates t-test in power under CR and all types of CARA designs.

In addition, the estimation bias in TMLE is smaller and more stable compared to t-test,

which makes TMLE a more reliable analysis method. When comparing CARA and CR

with respect to treatment allocation, CARA is able to assign more than 20% patients to

the treatment arm while still holds the same power or even a higher power in model M1.

In model M2, CARA can still assign more patients to the treatment arm and retain a

good power. However, the power of CARA drops when there is a significant difference

in allocation proportion. In this case, we achieved ethics advantages by sacrificing the

efficiency properties. In practice, the choice of the designs including the values of γ1 and

γ2 depends on the practical need and more numerical studies.
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Table 3.1a: Type I error rate (in %) under CR and different CARA proce-

dures in trial with two treatment arms and continuous endpoint at sample

size N = 400.

Allocation Model Type I error (%) Model Type I error (%)

(N=400) TMLE t-test TMLE t-test

CR M1 5.29 5.11 M2 5.35 5.49

CARA1(0,1) M1 5.36 6.04 M2 5.11 5.17

CARA1(0,2) M1 5.34 9.47 M2 5.58 6.68

CARA1(0.5,0) M1 5.42 4.81 M2 5.11 4.95

CARA1(0.5,1) M1 5.42 5.86 M2 5.12 5.60

CARA1(0.5,2) M1 5.36 9.12 M2 6.03 6.95

CARA1(1,0) M1 5.21 4.67 M2 5.06 5.22

CARA1(1,1) M1 5.50 5.83 M2 5.39 6.04

CARA1(1,2) M1 5.53 8.81 M2 6.47 7.88

CARA2(0,1) M1 5.36 6.04 M2 5.11 5.17

CARA2(0,2) M1 5.34 9.47 M2 5.58 6.68

CARA2(0.5,0) M1 5.36 4.90 M2 5.08 4.93

CARA2(0.5,1) M1 5.35 5.93 M2 5.11 5.38

CARA2(0.5,2) M1 5.42 9.21 M2 5.79 6.96

CARA2(1,0) M1 5.26 4.74 M2 5.10 4.83

Continued on next page
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Table 3.1a – Continued from previous page

Allocation Model Type I error (%) Model Type I error (%)

(N=400) TMLE t-test TMLE t-test

CARA2(1,1) M1 5.49 5.94 M2 5.16 5.49

CARA2(1,2) M1 5.40 9.14 M2 5.81 6.77

CARA3(0,1) M1 5.36 6.04 M2 5.11 5.17

CARA3(0,2) M1 5.34 9.47 M2 5.58 6.68

CARA3(0.5,0) M1 5.14 4.71 M2 5.05 5.08

CARA3(0.5,1) M1 5.48 5.90 M2 5.39 5.82

CARA3(0.5,2) M1 5.41 8.85 M2 6.15 7.13

CARA3(1,0) M1 5.15 4.56 M2 5.37 5.27

CARA3(1,1) M1 5.29 5.71 M2 5.36 6.24

CARA3(1,2) M1 5.50 8.75 M2 7.19 8.42

CARA4(0,1) M1 5.36 6.04 M2 5.11 5.17

CARA4(0,2) M1 5.34 9.47 M2 5.58 6.68

CARA4(0.5,0) M1 5.28 4.98 M2 5.16 4.81

CARA4(0.5,1) M1 5.35 6.01 M2 4.99 5.21

CARA4(0.5,2) M1 5.32 9.36 M2 5.68 6.72

CARA4(1,0) M1 5.27 4.92 M2 5.04 4.97

CARA4(1,1) M1 5.38 6.02 M2 5.09 5.46

Continued on next page
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Table 3.1a – Continued from previous page

Allocation Model Type I error (%) Model Type I error (%)

(N=400) TMLE t-test TMLE t-test

CARA4(1,2) M1 5.52 9.31 M2 5.85 6.93

Table 3.1b: Type I error rate (in %) under CR and different CARA proce-

dures in trial with two treatment arms and continuous endpoint at sample

size N = 600.

Allocation Model Type I error (%) Model Type I error (%)

(N=600) TMLE t-test TMLE t-test

CR M1 5.33 4.97 M2 5.26 4.91

CARA1(0,1) M1 5.15 5.79 M2 5.59 5.71

CARA1(0,2) M1 5.01 8.45 M2 5.52 6.68

CARA1(0.5,0) M1 5.07 4.70 M2 5.07 5.18

CARA1(0.5,1) M1 5.19 5.50 M2 5.61 6.05

CARA1(0.5,2) M1 5.00 8.36 M2 5.54 7.02

CARA1(1,0) M1 5.02 4.48 M2 5.56 5.60

CARA1(1,1) M1 5.13 5.12 M2 5.26 6.21

CARA1(1,2) M1 5.20 8.20 M2 5.69 7.36

Continued on next page
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Table 3.1b – Continued from previous page

Allocation Model Type I error (%) Model Type I error (%)

(N=600) TMLE t-test TMLE t-test

CARA2(0,1) M1 5.15 5.79 M2 5.59 5.71

CARA2(0,2) M1 5.01 8.45 M2 5.52 6.68

CARA2(0.5,0) M1 5.19 4.80 M2 5.38 5.13

CARA2(0.5,1) M1 5.18 5.65 M2 5.59 5.72

CARA2(0.5,2) M1 5.09 8.45 M2 5.41 6.78

CARA2(1,0) M1 5.02 4.79 M2 5.07 5.10

CARA2(1,1) M1 5.25 5.47 M2 5.63 5.85

CARA2(1,2) M1 5.26 8.57 M2 5.55 6.72

CARA3(0,1) M1 5.15 5.79 M2 5.59 5.71

CARA3(0,2) M1 5.01 8.45 M2 5.52 6.68

CARA3(0.5,0) M1 5.08 4.70 M2 5.26 5.23

CARA3(0.5,1) M1 5.20 5.36 M2 5.52 6.08

CARA3(0.5,2) M1 5.21 8.35 M2 5.56 7.14

CARA3(1,0) M1 5.12 4.73 M2 5.27 5.52

CARA3(1,1) M1 5.26 5.34 M2 5.36 6.24

CARA3(1,2) M1 5.26 8.09 M2 5.84 7.78

CARA4(0,1) M1 5.15 5.79 M2 5.59 5.71

Continued on next page
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Table 3.1b – Continued from previous page

Allocation Model Type I error (%) Model Type I error (%)

(N=600) TMLE t-test TMLE t-test

CARA4(0,2) M1 5.01 8.45 M2 5.52 6.68

CARA4(0.5,0) M1 5.22 4.90 M2 5.23 5.05

CARA4(0.5,1) M1 5.18 5.68 M2 5.62 5.79

CARA4(0.5,2) M1 5.12 8.52 M2 5.40 6.66

CARA4(1,0) M1 5.13 4.73 M2 5.22 5.11

CARA4(1,1) M1 5.25 5.64 M2 5.60 5.83

CARA4(1,2) M1 5.12 8.41 M2 5.47 6.70

Table 3.2a: Power (in %), proportion of treatment (in %), bias in estimation

of additive treatment effect (ATE) under CR and different CARA procedures

in trial with two treatment arms and continuous endpoint at sample size

N = 400.

Allocation Model (βA) Power (%) ATE Bias (SE) Trt Prop (%)

(N=400) TMLE t-test TMLE Mean

CR M1 (0.55) 86.2 78.8 0.001 (0.0016) 0.002 (0.0017) 50.0, 50.0

CARA1(0,1) M1 (0.55) 87.4 78.3 0.001 (0.0016) 0.008 (0.0017) 41.7, 58.3

CARA1(0,2) M1 (0.55) 85.2 73.9 0.001 (0.0016) 0.018 (0.0018) 33.7, 66.3

Continued on next page
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Table 3.2a – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias (SE) Trt Prop (%)

(N=400) TMLE t-test TMLE Mean

CARA1(0.5,0) M1 (0.55) 86.8 79.5 0.001 (0.0016) 0.002 (0.0017) 49.1, 50.9

CARA1(0.5,1) M1 (0.55) 87.4 79.0 0.001 (0.0016) 0.006 (0.0017) 40.8, 59.2

CARA1(0.5,2) M1 (0.55) 84.9 74.3 0.001 (0.0016) 0.015 (0.0018) 32.9, 67.1

CARA1(1,0) M1 (0.55) 87.0 80.0 0.001 (0.0016) 0.003 (0.0017) 48.2, 51.8

CARA1(1,1) M1 (0.55) 87.3 79.5 0.001 (0.0016) 0.005 (0.0017) 39.9, 60.1

CARA1(1,2) M1 (0.55) 84.7 74.6 0.001 (0.0016) 0.014 (0.0018) 32.2, 67.8

CARA2(0.5,0) M1 (0.55) 86.7 79.6 0.001 (0.0016) 0.005 (0.0017) 49.0, 51.0

CARA2(0.5,1) M1 (0.55) 87.4 79.3 0.001 (0.0016) 0.004 (0.0017) 40.7, 59.3

CARA2(0.5,2) M1 (0.55) 85.0 74.6 0.001 (0.0016) 0.013 (0.0019) 32.9, 67.1

CARA2(1,0) M1 (0.55) 87.1 80.6 0.001 (0.0016) 0.008 (0.0017) 48.1, 51.9

CARA2(1,1) M1 (0.55) 87.2 80.2 0.001 (0.0016) 0.001 (0.0017) 39.8, 60.2

CARA2(1,2) M1 (0.55) 84.6 75.3 0.001 (0.0016) 0.008 (0.0017) 32.1, 67.9

CARA3(0.5,0) M1 (0.55) 87.1 80.3 0.001 (0.0016) 0.005 (0.0017) 48.2, 51.8

CARA3(0.5,1) M1 (0.55) 87.3 79.9 0.001 (0.0016) 0.003 (0.0017) 39.9, 60.1

CARA3(0.5,2) M1 (0.55) 84.8 74.9 0.001 (0.0016) 0.011 (0.0019) 32.2, 67.8

CARA3(1,0) M1 (0.55) 87.0 82.0 0.001 (0.0016) 0.011 (0.0017) 46.4, 53.6

CARA3(1,1) M1 (0.55) 87.5 80.3 0.001 (0.0016) 0.003 (0.0017) 38.2, 61.8

CARA3(1,2) M1 (0.55) 83.7 75.9 0.001 (0.0016) 0.004 (0.0019) 30.7, 69.3

CARA4(0.5,0) M1 (0.55) 86.6 79.0 0.001 (0.0016) 0.002 (0.0017) 49.6, 50.4

Continued on next page
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Table 3.2a – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias (SE) Trt Prop (%)

(N=400) TMLE t-test TMLE Mean

CARA4(0.5,1) M1 (0.55) 87.5 78.8 0.001 (0.0016) 0.007 (0.0017) 41.3, 58.7

CARA4(0.5,2) M1 (0.55) 85.3 74.4 0.001 (0.0016) 0.016 (0.0018) 33.4, 66.6

CARA4(1,0) M1 (0.55) 86.7 79.3 0.001 (0.0016) 0.003 (0.0017) 49.3, 50.7

CARA4(1,1) M1 (0.55) 87.4 79.0 0.001 (0.0016) 0.006 (0.0017) 41.0, 59.0

CARA4(1,2) M1 (0.55) 85.1 74.4 0.001 (0.0016) 0.015 (0.0018) 33.1, 66.9

CR M2 (0.16) 87.7 84.0 0.001 (0.0017) 0.001 (0.0018) 50.0, 50.0

CARA1(0,1) M2 (0.16) 87.2 83.7 0.001 (0.0017) 0.002 (0.0018) 46.1, 53.9

CARA1(0,2) M2 (0.16) 84.1 83.1 0.001 (0.0018) 0.004 (0.0018) 42.2, 57.8

CARA1(0.5,0) M2 (0.16) 88.1 84.4 0.001 (0.0017) 0.001 (0.0018) 47.5, 52.5

CARA1(0.5,1) M2 (0.16) 87.0 83.8 0.001 (0.0017) 0.003 (0.0018) 43.6, 56.4

CARA1(0.5,2) M2 (0.16) 82.4 82.6 0.001 (0.0019) 0.005 (0.0019) 39.9, 60.1

CARA1(1,0) M2 (0.16) 87.7 84.0 0.001 (0.0017) 0.001 (0.0018) 45.1, 54.9

CARA1(1,1) M2 (0.16) 85.8 83.0 0.001 (0.0017) 0.003 (0.0018) 41.3, 58.7

CARA1(1,2) M2 (0.16) 80.1 81.6 0.004 (0.0021) 0.009 (0.0019) 37.6, 62.4

CARA2(0.5,0) M2 (0.16) 87.7 84.0 0.001 (0.0017) 0.001 (0.0018) 49.2, 50.8

CARA2(0.5,1) M2 (0.16) 87.2 83.9 0.001 (0.0017) 0.002 (0.0018) 45.3, 54.7

CARA2(0.5,2) M2 (0.16) 83.7 83.0 0.001 (0.0018) 0.005 (0.0018) 41.5, 58.5

CARA2(1,0) M2 (0.16) 87.9 84.2 0.001 (0.0017) 0.002 (0.0018) 48.4, 51.6

CARA2(1,1) M2 (0.16) 87.0 83.9 0.001 (0.0017) 0.003 (0.0018) 44.5, 55.5
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Table 3.2a – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias (SE) Trt Prop (%)

(N=400) TMLE t-test TMLE Mean

CARA2(1,2) M2 (0.16) 83.1 82.8 0.001 (0.0018) 0.005 (0.0019) 40.7, 59.3

CARA3(0.5,0) M2 (0.16) 87.6 83.9 0.001 (0.0017) 0.001 (0.0018) 46.8, 53.2

CARA3(0.5,1) M2 (0.16) 86.6 83.9 0.001 (0.0017) 0.003 (0.0018) 42.9, 57.1

CARA3(0.5,2) M2 (0.16) 81.8 82.4 0.002 (0.0019) 0.006 (0.0019) 39.2, 60.8

CARA3(1,0) M2 (0.16) 87.4 83.8 0.001 (0.0017) 0.002 (0.0018) 43.6, 56.4

CARA3(1,1) M2 (0.16) 84.6 82.6 0.001 (0.0018) 0.005 (0.0018) 39.9, 60.1

CARA3(1,2) M2 (0.16) 78.1 80.9 0.008 (0.0022) 0.012 (0.0020) 36.3, 63.7

CARA4(0.5,0) M2 (0.16) 87.7 84.0 0.001 (0.0017) 0.002 (0.0018) 49.5, 50.5

CARA4(0.5,1) M2 (0.16) 87.4 83.8 0.001 (0.0017) 0.002 (0.0018) 45.6, 54.4

CARA4(0.5,2) M2 (0.16) 83.8 83.1 0.001 (0.0018) 0.004 (0.0018) 41.7, 58.3

CARA4(1,0) M2 (0.16) 87.6 83.9 0.001 (0.0017) 0.001 (0.0018) 49.0, 51.0

CARA4(1,1) M2 (0.16) 87.2 83.9 0.001 (0.0017) 0.002 (0.0018) 45.1, 54.9

CARA4(1,2) M2 (0.16) 83.5 82.9 0.001 (0.0018) 0.005 (0.0019) 41.3, 58.7
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Table 3.2b: Power (in %), proportion of treatment (in %), bias in estimation

of additive treatment effect (ATE) under CR and different CARA procedures

in trial with two treatment arms and continuous endpoint at sample size

N = 600.

Allocation Model (βA) Power (%) ATE Bias (SE) Trt Prop (%)

(N=600) TMLE t-test TMLE Mean

CR M1 (0.43) 86.9 79.3 0.001 (0.0012) 0.001 (0.0014) 50.0, 50.0

CARA1(0,1) M1 (0.43) 87.4 78.3 0.001 (0.0012) 0.006 (0.0013) 43.3, 56.7

CARA1(0,2) M1 (0.43) 86.9 74.4 0.001 (0.0012) 0.006 (0.0014) 36.8, 63.2

CARA1(0.5,0) M1 (0.43) 87.0 80.1 0.002 (0.0012) 0.002 (0.0013) 49.3, 50.7

CARA1(0.5,1) M1 (0.43) 87.8 78.9 0.001 (0.0012) 0.006 (0.0013) 42.6, 57.4

CARA1(0.5,2) M1 (0.43) 86.7 74.8 0.001 (0.0012) 0.007 (0.0014) 36.2, 63.8

CARA1(1,0) M1 (0.43) 87.4 81.1 0.002 (0.0012) 0.004 (0.0013) 48.6, 51.4

CARA1(1,1) M1 (0.43) 87.9 79.7 0.001 (0.0012) 0.004 (0.0013) 41.9, 58.1

CARA1(1,2) M1 (0.43) 86.7 75.4 0.001 (0.0012) 0.011 (0.0014) 35.5, 64.5

CARA2(0.5,0) M1 (0.43) 87.0 80.4 0.001 (0.0012) 0.004 (0.0013) 49.3, 50.7

CARA2(0.5,1) M1 (0.43) 87.7 79.2 0.001 (0.0012) 0.004 (0.0013) 42.5, 57.5

CARA2(0.5,2) M1 (0.43) 86.9 75.2 0.001 (0.0012) 0.010 (0.0014) 36.2, 63.8

CARA2(1,0) M1 (0.43) 87.2 81.6 0.002 (0.0012) 0.007 (0.0013) 48.5, 51.5

CARA2(1,1) M1 (0.43) 88.0 80.2 0.001 (0.0012) 0.001 (0.0013) 41.8, 58.2

CARA2(1,2) M1 (0.43) 86.6 75.9 0.001 (0.0012) 0.008 (0.0014) 35.5, 64.5

Continued on next page
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Table 3.2b – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias (SE) Trt Prop (%)

(N=600) TMLE t-test TMLE Mean

CARA3(0.5,0) M1 (0.43) 87.2 81.2 0.002 (0.0012) 0.005 (0.0013) 48.6, 51.4

CARA3(0.5,1) M1 (0.43) 88.0 80.0 0.001 (0.0012) 0.008 (0.0013) 41.9, 58.1

CARA3(0.5,2) M1 (0.43) 86.7 75.6 0.001 (0.0012) 0.009 (0.0014) 35.5, 64.5

CARA3(1,0) M1 (0.43) 87.5 82.9 0.001 (0.0012) 0.009 (0.0013) 47.1, 52.9

CARA3(1,1) M1 (0.43) 88.0 80.8 0.001 (0.0012) 0.002 (0.0013) 40.5, 59.5

CARA3(1,2) M1 (0.43) 86.2 76.7 0.001 (0.0012) 0.006 (0.0014) 34.3, 65.7

CARA4(0.5,0) M1 (0.43) 87.0 79.7 0.001 (0.0012) 0.002 (0.0013) 49.7, 50.3

CARA4(0.5,1) M1 (0.43) 88.0 78.9 0.001 (0.0012) 0.006 (0.0013) 43.0, 57.0

CARA4(0.5,2) M1 (0.43) 87.0 74.8 0.001 (0.0012) 0.012 (0.0014) 63.6, 63.4

CARA4(1,0) M1 (0.43) 87.1 80.1 0.001 (0.0012) 0.003 (0.0013) 49.4, 50.6

CARA4(1,1) M1 (0.43) 87.8 79.0 0.001 (0.0012) 0.005 (0.0013) 42.7, 57.3

CARA4(1,2) M1 (0.43) 87.0 75.1 0.001 (0.0012) 0.012 (0.0014) 36.3, 63.7

CR M2 (0.13) 88.1 84.2 0.001 (0.0014) 0.001 (0.0014) 50.0, 50.0

CARA1(0,1) M2 (0.13) 87.3 84.0 0.001 (0.0014) 0.002 (0.0014) 46.8, 53.2

CARA1(0,2) M2 (0.13) 86.0 83.3 0.002 (0.0014) 0.002 (0.0015) 43.6, 56.4

CARA1(0.5,0) M2 (0.13) 87.5 83.8 0.001 (0.0014) 0.002 (0.0014) 47.9, 52.1

CARA1(0.5,1) M2 (0.13) 87.2 83.7 0.001 (0.0014) 0.002 (0.0014) 44.8, 55.2

CARA1(0.5,2) M2 (0.13) 85.3 82.8 0.001 (0.0014) 0.001 (0.0015) 41.7, 58.3

CARA1(1,0) M2 (0.13) 87.5 83.8 0.001 (0.0014) 0.002 (0.0014) 45.9, 54.1
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Table 3.2b – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias (SE) Trt Prop (%)

(N=600) TMLE t-test TMLE Mean

CARA1(1,1) M2 (0.13) 86.6 83.5 0.001 (0.0014) 0.001 (0.0015) 42.8, 57.2

CARA1(1,2) M2 (0.13) 84.2 82.4 0.001 (0.0015) 0.002 (0.0015) 39.8, 60.2

CARA2(0.5,0) M2 (0.13) 87.3 83.9 0.001 (0.0014) 0.001 (0.0014) 49.3, 50.7

CARA2(0.5,1) M2 (0.13) 87.3 84.0 0.001 (0.0014) 0.001 (0.0014) 46.1, 53.9

CARA2(0.5,2) M2 (0.13) 86.2 83.3 0.002 (0.0014) 0.001 (0.0014) 43.0, 57.0

CARA2(1,0) M2 (0.13) 87.3 83.8 0.001 (0.0014) 0.002 (0.0014) 48.7, 51.3

CARA2(1,1) M2 (0.13) 87.3 83.8 0.001 (0.0014) 0.002 (0.0014) 45.5, 54.5

CARA2(1,2) M2 (0.13) 85.9 83.2 0.002 (0.0014) 0.005 (0.0015) 42.4, 57.6

CARA3(0.5,0) M2 (0.13) 87.8 84.0 0.001 (0.0014) 0.002 (0.0014) 47.3, 52.8

CARA3(0.5,1) M2 (0.13) 87.0 83.7 0.001 (0.0014) 0.002 (0.0014) 44.1, 55.9

CARA3(0.5,2) M2 (0.13) 85.3 82.9 0.001 (0.0014) 0.002 (0.0015) 41.1, 58.9

CARA3(1,0) M2 (0.13) 87.4 83.6 0.001 (0.0014) 0.001 (0.0014) 44.7, 55.3

CARA3(1,1) M2 (0.13) 86.4 83.4 0.001 (0.0014) 0.001 (0.0015) 41.6, 58.4

CARA3(1,2) M2 (0.13) 83.3 82.0 0.001 (0.0015) 0.004 (0.0015) 38.7, 61.3

CARA4(0.5,0) M2 (0.13) 87.4 83.8 0.001 (0.0014) 0.002 (0.0014) 49.6, 50.4

CARA4(0.5,1) M2 (0.13) 87.3 84.0 0.001 (0.0014) 0.002 (0.0014) 46.4, 53.6

CARA4(0.5,2) M2 (0.13) 86.1 83.1 0.002 (0.0014) 0.001 (0.0015) 43.2, 56.8

CARA4(1,0) M2 (0.13) 87.6 83.9 0.001 (0.0014) 0.001 (0.0014) 49.2, 50.8

CARA4(1,1) M2 (0.13) 87.3 83.9 0.001 (0.0014) 0.002 (0.0014) 46.0, 54.0

Continued on next page
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Table 3.2b – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias (SE) Trt Prop (%)

(N=600) TMLE t-test TMLE Mean

CARA4(1,2) M2 (0.13) 86.1 83.3 0.001 (0.0014) 0.001 (0.0015) 42.9, 57.1

Scenario 4: Three treatments with continuous endpoint

Consider a clinical trial with three arms and bounded continuous endpoint Y ∈ R.

Suppose that the covariate vectorW = (W1,W2,W3) and the binary subgroup indicator

V (W ) are generated in the same manner. In order to study the robustness of the CARA,

we proposed the following two models to generate the endpoint Y :

M3: μ = μ0 + (1 + βA1I(A = 1) + βA2I(A = 2)) (1 + βV V ) +
3∑

p=1

βW,p ∗Wp,

σ =
1 + βA1I(A = 1) + βA2I(A = 2)

1 + βV V
,

Y ∼ N(μ, σ2), Y is truncated if Y < 0 or Y > 8.

M4: a = 1 + (1 + βA1I(A = 1) + βA2I(A = 2)) (1 + βV V ) +
3∑

p=1

βW,p ∗Wp,

b =
1 + βA1I(A = 1) + βA2I(A = 2)

1 + βV V
,

Y ∼ Gamma(a, b), Y is truncated if Y > 12.

We fixed the parameter values βV = 0.22, βW,1 = −0.22, βW,2 = −0.7, βW,3 = −0.1 in

model M3, and βV = −0.4, βW,1 = 0.26, βW,2 = −0.37, βW,3 = 0.44 in model M4. The
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values of βA1 and βA1 in the two models are adjusted to obtain Type I error rate and

power.

In Tables 4.1a and Table 4.1b, we reported the Type I error rate. In model M3, both

TMLE and chi-square test demonstrates well-controlled type I error under CR and all

Type of CARA designs. In model M4, TMLE and chi-square test both are able to control

Type I error rate when implemented under CR. However, when CARA is conducted,

TMLE outperforms chi-square test in terms of much lower Type I error. TMLE and

chi-square test both give inflated Type I error rate when sample size is relatively small,

n = 600. When sample size is increased to n = 800, TMLE controls Type I error rate,

though when implemented under some CARA the Type I error rate is slight over 0.06,

while chi-square test keeps rendering inflated Type I error rate when implemented under

all types of CARA designs.

In Tables 4.2a and Table 4.2b, power, proportion of treatment, bias in estimation

of ATE are compared under CR and CARA procedures for sample size n = 600 and

n = 800 respectively. TMLE dominates chi-square test in power for CR and all CARAs.

In addition, TMLE gives a more accurate estimation of the ATE than chi-square test

does. When comparing designs, in model 1, many CARAs are able to assign more than

40% patients to the treatment group and increase power by 3% simultaneously. In model

2, CARAs can also assign more than 40% to the treatment group and without losing

power.
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Table 4.1a: Type I error rate (in %) under CR and different CARA proce-

dures in trial with three treatment arms and continuous endpoint at sample

size N = 600.

Allocation Model Type I error (%) Model Type I error (%)

(N=600) TMLE chi-sq TMLE chi-sq

CR M3 5.85 5.20 M4 5.81 5.52

CARA1(0,1) M3 5.08 4.85 M4 6.15 8.14

CARA1(0,2) M3 5.51 5.00 M4 7.10 16.47

CARA1(0.5,0) M3 5.19 4.86 M4 5.94 6.12

CARA1(0.5,1) M3 4.98 4.94 M4 6.31 10.01

CARA1(0.5,2) M3 5.62 5.14 M4 7.79 20.31

CARA1(1,0) M3 5.07 4.98 M4 6.10 7.30

CARA1(1,1) M3 5.18 4.97 M4 6.77 12.62

CARA1(1,2) M3 5.63 5.17 M4 9.51 24.09

CARA2(0.5,0) M3 5.18 4.85 M4 5.62 5.59

CARA2(0.5,1) M3 4.95 4.94 M4 6.34 8.81

CARA2(0.5,2) M3 5.54 5.05 M4 7.32 17.52

CARA2(1,0) M3 4.96 4.91 M4 5.93 5.94

CARA2(1,1) M3 5.16 4.98 M4 6.34 9.60

CARA2(1,2) M3 5.52 5.13 M4 7.24 18.47

Continued on next page
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Table 4.1a – Continued from previous page

Allocation Model Type I error (%) Model Type I error (%)

(N=600) TMLE chi-sq TMLE chi-sq

CARA3(0.5,0) M3 5.04 4.92 M4 5.85 6.39

CARA3(0.5,1) M3 5.15 4.98 M4 6.27 10.78

CARA3(0.5,2) M3 5.66 5.18 M4 7.92 21.61

CARA3(1,0) M3 5.08 4.83 M4 6.18 8.56

CARA3(1,1) M3 5.29 4.99 M4 6.74 14.63

CARA3(1,2) M3 5.61 5.25 M4 10.02 26.94

CARA4(0.5,0) M3 5.27 4.88 M4 5.77 5.35

CARA4(0.5,1) M3 4.98 4.89 M4 6.32 8.60

CARA4(0.5,2) M3 5.47 5.12 M4 7.17 17.14

CARA4(1,0) M3 5.12 4.83 M4 5.78 5.67

CARA4(1,1) M3 5.04 4.81 M4 6.16 8.94

CARA4(1,2) M3 5.74 5.10 M4 7.25 17.79
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Table 4.1b: Type I error rate (in %) under CR and different CARA proce-

dures in trial with three treatment arms and continuous endpoint at sample

size N = 800.

Allocation Model Type I error (%) Model Type I error (%)

(N=800) TMLE chi-sq TMLE chi-sq

CR M3 5.31 5.17 M4 5.41 5.22

CARA1(0,1) M3 5.58 5.27 M4 5.52 7.73

CARA1(0,2) M3 5.70 5.55 M4 5.83 15.05

CARA1(0.5,0) M3 5.57 5.14 M4 5.47 5.75

CARA1(0.5,1) M3 5.61 5.26 M4 5.59 9.46

CARA1(0.5,2) M3 5.68 5.33 M4 6.04 18.06

CARA1(1,0) M3 5.49 5.05 M4 5.32 7.01

CARA1(1,1) M3 5.65 5.21 M4 5.65 11.96

CARA1(1,2) M3 5.41 5.22 M4 6.75 21.76

CARA2(0.5,0) M3 5.50 5.11 M4 5.65 5.15

CARA2(0.5,1) M3 5.65 5.30 M4 5.71 8.43

CARA2(0.5,2) M3 5.64 5.31 M4 5.92 16.14

CARA2(1,0) M3 5.56 5.12 M4 5.52 5.62

CARA2(1,1) M3 5.66 5.24 M4 5.45 8.90

CARA2(1,2) M3 5.46 5.26 M4 6.06 16.75

Continued on next page
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Table 4.1b – Continued from previous page

Allocation Model Type I error (%) Model Type I error (%)

(N=800) TMLE chi-sq TMLE chi-sq

CARA3(0.5,0) M3 5.58 5.08 M4 5.37 6.10

CARA3(0.5,1) M3 5.69 5.21 M4 5.61 10.11

CARA3(0.5,2) M3 5.41 5.19 M4 6.42 19.39

CARA3(1,0) M3 5.28 4.92 M4 5.70 8.23

CARA3(1,1) M3 5.47 5.04 M4 5.64 13.36

CARA3(1,2) M3 5.54 5.39 M4 6.88 24.14

CARA4(0.5,0) M3 5.45 5.10 M4 5.50 4.97

CARA4(0.5,1) M3 5.57 5.23 M4 5.65 8.26

CARA4(0.5,2) M3 5.71 5.44 M4 5.88 15.62

CARA4(1,0) M3 5.54 5.09 M4 5.57 5.20

CARA4(1,1) M3 5.66 5.27 M4 5.61 8.42

CARA4(1,2) M3 5.68 5.27 M4 5.98 16.23
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Table 4.2a: Power (in %), proportion of treatment (in %), bias in estimation

of additive treatment effect (ATE) under CR and different CARA procedures

in trial with three treatment arms and continuous endpoint at sample size

N = 600.

Allocation Model (βA) Power (%) ATE Bias Trt Prop (%)

(N=600) TMLE chi-sq TMLE Mean

CR M3 (0, 0.25) 87.6 83.7 (0.002, 0.001) (0.002, 0.001) 33.3, 33.3, 33.3

CARA1(0,1) M3 (0, 0.25) 90.2 86.9 (0.001, 0.001) (0.001, 0.001) 31.0, 31.0, 37.9

CARA1(0,2) M3 (0, 0.25) 91.0 87.4 (0.001, 0.001) (0.001, 0.002) 28.6, 28.6, 42.8

CARA1(0.5,0) M3 (0, 0.25) 88.0 85.1 (0.001, 0.001) (0.001, 0.002) 33.0, 33.0, 34.0

CARA1(0.5,1) M3 (0, 0.25) 90.4 87.7 (0.001, 0.001) (0.001, 0.002) 30.7, 30.7, 38.7

CARA1(0.5,2) M3 (0, 0.25) 92.3 87.7 (0.001, 0.001) (0.001, 0.003) 28.2, 28.2, 43.6

CARA1(1,0) M3 (0, 0.25) 88.2 85.9 (0.001, 0.001) (0.001, 0.003) 32.6, 32.6, 34.7

CARA1(1,1) M3 (0, 0.25) 90.2 88.1 (0.001, 0.001) (0.001, 0.004) 30.3, 30.3, 39.4

CARA1(1,2) M3 (0, 0.25) 91.0 88.3 (0.001, 0.001) (0.001, 0.004) 27.8, 27.8, 44.4

CARA2(0.5,0) M3 (0, 0.25) 88.0 85.5 (0.001, 0.001) (0.001, 0.004) 32.9, 32.9, 34.2

CARA2(0.5,1) M3 (0, 0.25) 90.4 88.2 (0.001, 0.001) (0.001, 0.004) 30.6, 30.6, 38.9

CARA2(0.5,2) M3 (0, 0.25) 91.2 88.3 (0.001, 0.001) (0.001, 0.005) 28.1, 28.1, 43.8

CARA2(1,0) M3 (0, 0.25) 88.5 86.9 (0.001, 0.001) (0.001, 0.007) 32.5, 32.5, 35.1

CARA2(1,1) M3 (0, 0.25) 90.3 89.0 (0.001, 0.001) (0.001, 0.007) 30.1, 30.1, 39.8

CARA2(1,2) M3 (0, 0.25) 91.1 89.1 (0.001, 0.001) (0.001, 0.008) 27.7, 27.7, 44.7

Continued on next page
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Table 4.2a – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias Trt Prop (%)

(N=600) TMLE chi-sq TMLE Mean

CARA3(0.5,0) M3 (0, 0.25) 88.3 86.5 (0.001, 0.001) (0.001, 0.005) 32.5, 32.5, 34.9

CARA3(0.5,1) M3 (0, 0.25) 90.3 88.6 (0.001, 0.001) (0.001, 0.005) 30.2, 30.2, 39.6

CARA3(0.5,2) M3 (0, 0.25) 91.0 88.6 (0.001, 0.001) (0.001, 0.006) 27.8, 27.7, 44.6

CARA3(1,0) M3 (0, 0.25) 88.8 88.4 (0.001, 0.001) (0.001, 0.009) 31.7, 31.8, 36.5

CARA3(1,1) M3 (0, 0.25) 90.4 90.1 (0.001, 0.001) (0.001, 0.010) 29.4, 29.3, 41.3

CARA3(1,2) M3 (0, 0.25) 91.0 90.0 (0.001, 0.001) (0.001, 0.011) 26.9, 26.8, 46.3

CARA4(0.5,0) M3 (0, 0.25) 87.8 84.4 (0.001, 0.001) (0.001, 0.001) 33.2, 33.2, 33.6

CARA4(0.5,1) M3 (0, 0.25) 90.4 87.4 (0.001, 0.001) (0.001, 0.002) 30.9, 30.9, 38.3

CARA4(0.5,2) M3 (0, 0.25) 91.2 87.4 (0.001, 0.001) (0.001, 0.003) 28.5, 28.4, 43.2

CARA4(1,0) M3 (0, 0.25) 87.9 85.0 (0.001, 0.001) (0.001, 0.002) 33.0, 33.0, 34.0

CARA4(1,1) M3 (0, 0.25) 90.5 87.7 (0.001, 0.001) (0.001, 0.003) 30.7, 30.7, 38.6

CARA4(1,2) M3 (0, 0.25) 91.3 87.7 (0.001, 0.001) (0.001, 0.003) 28.3, 28.2, 43.5

CR M4 (0.16) 86.5 83.6 (0.001, 0.003) (0.001, 0.003) 33.3, 33.3, 33.3

CARA1(0,1) M4 (0.16) 86.8 83.4 (0.001, 0.001) (0.001, 0.006) 30.8, 32.4, 36.7

CARA1(0,2) M4 (0.16) 84.0 81.9 (0.001, 0.001) (0.001, 0.009) 28.3, 31.4, 40.3

CARA1(0.5,0) M4 (0.16) 87.4 84.1 (0.001, 0.001) (0.002, 0.003) 31.8, 32.8, 35.4

CARA1(0.5,1) M4 (0.16) 86.5 83.0 (0.001, 0.001) (0.001, 0.008) 29.3, 31.8, 38.9

CARA1(0.5,2) M4 (0.16) 82.8 81.9 (0.002, 0.003) (0.001, 0.008) 26.8, 30.8, 42.4

CARA1(1,0) M4 (0.16) 87.8 83.8 (0.001, 0.001) (0.001, 0.008) 30.3, 32.2, 37.5

Continued on next page

73



Table 4.2a – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias Trt Prop (%)

(N=600) TMLE chi-sq TMLE Mean

CARA1(1,1) M4 (0.16) 86.0 82.9 (0.001, 0.001) (0.001, 0.009) 27.8, 31.1, 41.0

CARA1(1,2) M4 (0.16) 80.9 81.5 (0.003, 0.006) (0.001, 0.008) 25.5, 30.0, 44.5

CARA2(0.5,0) M4 (0.16) 87.2 84.5 (0.001, 0.001) (0.001, 0.003) 32.9, 33.1, 34.0

CARA2(0.5,1) M4 (0.16) 86.7 83.4 (0.001, 0.001) (0.001, 0.004) 30.4, 32.2, 37.4

CARA2(0.5,2) M4 (0.16) 83.5 82.4 (0.001, 0.001) (0.001, 0.006) 27.8, 31.2, 40.9

CARA2(1,0) M4 (0.16) 87.3 84.7 (0.001, 0.001) (0.001, 0.005) 32.4, 32.9, 34.6

CARA2(1,1) M4 (0.16) 86.7 83.9 (0.001, 0.001) (0.001, 0.001) 29.9, 32.0, 38.1

CARA2(1,2) M4 (0.16) 83.3 82.6 (0.001, 0.002) (0.001, 0.002) 27.4, 31.0, 41.6

CARA3(0.5,0) M4 (0.16) 87.7 84.6 (0.001, 0.001) (0.001, 0.001) 31.4, 32.6, 36.0

CARA3(0.5,1) M4 (0.16) 86.3 83.5 (0.001, 0.001) (0.001, 0.005) 28.9, 31.6, 39.6

CARA3(0.5,2) M4 (0.16) 82.1 81.7 (0.003, 0.004) (0.001, 0.005) 26.4, 30.5, 43.1

CARA3(1,0) M4 (0.16) 87.7 84.5 (0.001, 0.001) (0.001, 0.001) 29.4, 31.8, 38.8

CARA3(1,1) M4 (0.16) 85.7 82.9 (0.002, 0.002) (0.003, 0.001) 27.0, 30.7, 42.3

CARA3(1,2) M4 (0.16) 79.6 81.6 (0.006, 0.009) (0.005, 0.001) 24.7, 29.6, 45.7

CARA4(0.5,0) M4 (0.16) 87.0 84.0 (0.001, 0.002) (0.001, 0.002) 33.1, 33.2, 33.7

CARA4(0.5,1) M4 (0.16) 86.8 83.4 (0.001, 0.001) (0.001, 0.005) 30.5, 32.3, 37.1

CARA4(0.5,2) M4 (0.16) 84.0 82.3 (0.002, 0.002) (0.001, 0.007) 28.0, 31.3, 40.7

CARA4(1,0) M4 (0.16) 87.2 84.4 (0.001, 0.001) (0.001, 0.002) 32.8, 33.1, 34.1

CARA4(1,1) M4 (0.16) 86.8 83.6 (0.001, 0.001) (0.001, 0.004) 30.3, 32.2, 37.5

Continued on next page
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Table 4.2a – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias Trt Prop (%)

(N=600) TMLE chi-sq TMLE Mean

CARA4(1,2) M4 (0.16) 83.4 82.2 (0.003, 0.001) (0.001, 0.006) 27.7, 31.2, 41.1

Table 4.2b: Power (in %), proportion of treatment (in %), bias in estimation

of additive treatment effect (ATE) under CR and different CARA procedures

in trial with three treatment arms and continuous endpoint at sample size

N = 800.

Allocation Model (βA) Power (%) ATE Bias Trt Prop (%)

(N=800) TMLE chi-sq TMLE Mean

CR M3 (0, 0.2) 83.5 80.0 (0.002, 0.001) (0.002, 0.001) 33.3, 33.3, 33.3

CARA1(0,1) M3 (0, 0.2) 86.4 82.1 (0.001, 0.001) (0.001, 0.001) 31.5, 31.5, 37.0

CARA1(0,2) M3 (0, 0.2) 87.2 83.0 (0.001, 0.001) (0.001, 0.001) 29.6, 29.5, 40.9

CARA1(0.5,0) M3 (0, 0.2) 84.2 81.1 (0.001, 0.001) (0.001, 0.001) 33.1, 33.0, 33.9

CARA1(0.5,1) M3 (0, 0.2) 86.2 82.7 (0.001, 0.001) (0.001, 0.001) 31.2, 31.2, 37.6

CARA1(0.5,2) M3 (0, 0.2) 87.4 83.5 (0.001, 0.001) (0.001, 0.002) 29.3, 29.2, 41.6

CARA1(1,0) M3 (0, 0.2) 84.6 81.8 (0.001, 0.001) (0.001, 0.002) 32.8, 32.8, 34.5

CARA1(1,1) M3 (0, 0.2) 86.4 83.9 (0.001, 0.001) (0.001, 0.002) 30.9, 30.9, 38.2

CARA1(1,2) M3 (0, 0.2) 87.3 83.9 (0.001, 0.001) (0.001, 0.003) 28.9, 28.9, 42.2

CARA2(0.5,0) M3 (0, 0.2) 84.3 81.8 (0.001, 0.001) (0.001, 0.002) 33.0, 33.0, 34.0

Continued on next page
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Table 4.2b – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias Trt Prop (%)

(N=800) TMLE chi-sq TMLE Mean

CARA2(0.5,1) M3 (0, 0.2) 86.4 83.3 (0.001, 0.001) (0.001, 0.002) 31.1, 31.1, 37.8

CARA2(0.5,2) M3 (0, 0.2) 87.4 83.8 (0.001, 0.001) (0.001, 0.003) 29.2, 29.1, 41.7

CARA2(1,0) M3 (0, 0.2) 84.7 83.0 (0.001, 0.001) (0.001, 0.004) 32.6, 32.6, 34.7

CARA2(1,1) M3 (0, 0.2) 86.5 84.7 (0.001, 0.001) (0.001, 0.005) 30.8, 30.7, 38.5

CARA2(1,2) M3 (0, 0.2) 87.5 84.7 (0.001, 0.001) (0.001, 0.005) 28.8, 28.8, 42.4

CARA3(0.5,0) M3 (0, 0.2) 84.6 82.4 (0.001, 0.001) (0.001, 0.003) 32.7, 32.7, 34.6

CARA3(0.5,1) M3 (0, 0.2) 86.4 84.3 (0.001, 0.001) (0.001, 0.004) 30.8, 30.8, 38.4

CARA3(0.5,2) M3 (0, 0.2) 87.5 84.5 (0.001, 0.001) (0.001, 0.004) 28.9, 28.8, 42.3

CARA3(1,0) M3 (0, 0.2) 84.9 84.6 (0.001, 0.001) (0.001, 0.007) 32.1, 32.1, 35.8

CARA3(1,1) M3 (0, 0.2) 86.7 85.9 (0.001, 0.001) (0.001, 0.007) 30.2, 30.1, 39.7

CARA3(1,2) M3 (0, 0.2) 87.5 85.9 (0.001, 0.001) (0.001, 0.008) 28.2, 28.1, 43.7

CARA4(0.5,0) M3 (0, 0.2) 84.2 80.5 (0.001, 0.001) (0.001, 0.001) 33.2, 33.2, 33.6

CARA4(0.5,1) M3 (0, 0.2) 86.2 82.4 (0.001, 0.001) (0.001, 0.001) 31.4, 31.3, 37.3

CARA4(0.5,2) M3 (0, 0.2) 87.2 83.2 (0.001, 0.001) (0.001, 0.001) 29.4, 29.4, 41.2

CARA4(1,0) M3 (0, 0.2) 84.1 81.1 (0.001, 0.001) (0.001, 0.001) 33.1, 33.1, 33.8

CARA4(1,1) M3 (0, 0.2) 86.2 82.7 (0.001, 0.001) (0.001, 0.001) 31.2, 31.2, 37.6

CARA4(1,2) M3 (0, 0.2) 87.4 83.5 (0.001, 0.001) (0.001, 0.002) 29.3, 29.2, 41.5

CR M4 (0.04, 0.16) 88.7 86.8 (0.001, 0.003) (0.001, 0.003) 33.3, 33.3, 33.3

CARA1(0,1) M4 (0.04, 0.16) 89.1 86.0 (0.001, 0.001) (0.002, 0.006) 31.2, 32.4, 36.4

Continued on next page
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Table 4.2b – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias Trt Prop (%)

(N=800) TMLE chi-sq TMLE Mean

CARA1(0,2) M4 (0.04, 0.16) 87.9 84.4 (0.001, 0.001) (0.003, 0.010) 29.0, 31.5, 39.6

CARA1(0.5,0) M4 (0.04, 0.16) 89.5 87.1 (0.001, 0.001) (0.001, 0.003) 32.0, 32.8, 35.2

CARA1(0.5,1) M4 (0.04, 0.16) 89.0 85.6 (0.001, 0.001) (0.003, 0.008) 29.9, 31.8, 38.3

CARA1(0.5,2) M4 (0.04, 0.16) 87.2 84.1 (0.002, 0.002) (0.003, 0.010) 27.7, 30.8, 41.5

CARA1(1,0) M4 (0.04, 0.16) 89.6 86.4 (0.001, 0.001) (0.002, 0.005) 30.7, 32.2, 37.1

CARA1(1,1) M4 (0.04, 0.16) 88.9 85.3 (0.001, 0.001) (0.003, 0.009) 28.6, 31.2, 40.3

CARA1(1,2) M4 (0.04, 0.16) 86.7 83.8 (0.001, 0.004) (0.002, 0.009) 26.4, 30.0, 43.5

CARA2(0.5,0) M4 (0.04, 0.16) 89.5 87.3 (0.001, 0.001) (0.001, 0.002) 33.0, 33.1, 33.9

CARA2(0.5,1) M4 (0.04, 0.16) 89.2 86.0 (0.001, 0.001) (0.002, 0.004) 30.8, 32.2, 37.0

CARA2(0.5,2) M4 (0.04, 0.16) 87.6 84.6 (0.001, 0.002) (0.002, 0.007) 28.6, 31.3, 40.2

CARA2(1,0) M4 (0.04, 0.16) 89.5 87.3 (0.001, 0.001) (0.001, 0.004) 32.6, 33.0, 34.5

CARA2(1,1) M4 (0.04, 0.16) 89.1 86.1 (0.001, 0.001) (0.002, 0.002) 30.4, 32.0, 37.6

CARA2(1,2) M4 (0.04, 0.16) 87.3 85.0 (0.001, 0.001) (0.002, 0.005) 28.2, 31.0, 40.8

CARA3(0.5,0) M4 (0.04, 0.16) 89.5 86.9 (0.001, 0.001) (0.001, 0.001) 31.6, 32.6, 35.8

CARA3(0.5,1) M4 (0.04, 0.16) 89.1 85.8 (0.001, 0.001) (0.003, 0.006) 29.5, 31.6, 38.9

CARA3(0.5,2) M4 (0.04, 0.16) 87.0 84.2 (0.001, 0.003) (0.002, 0.007) 27.3, 30.6, 42.1

CARA3(1,0) M4 (0.04, 0.16) 89.7 86.7 (0.001, 0.001) (0.001, 0.001) 29.9, 31.8, 38.2

CARA3(1,1) M4 (0.04, 0.16) 88.8 85.5 (0.001, 0.002) (0.002, 0.004) 27.8, 30.8, 41.5

CARA3(1,2) M4 (0.04, 0.16) 85.3 83.7 (0.002, 0.004) (0.001, 0.004) 25.7, 29.7, 44.6

Continued on next page
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Table 4.2b – Continued from previous page

Allocation Model (βA) Power (%) ATE Bias Trt Prop (%)

(N=800) TMLE chi-sq TMLE Mean

CARA4(0.5,0) M4 (0.04, 0.16) 89.3 87.2 (0.001, 0.001) (0.001, 0.001) 33.1, 33.2, 33.7

CARA4(0.5,1) M4 (0.04, 0.16) 89.1 85.8 (0.001, 0.001) (0.002, 0.005) 30.9, 32.3, 36.7

CARA4(0.5,2) M4 (0.04, 0.16) 87.8 84.6 (0.001, 0.001) (0.003, 0.009) 28.7, 31.3, 39.9

CARA4(1,0) M4 (0.04, 0.16) 89.5 87.2 (0.001, 0.001) (0.001, 0.001) 32.9, 33.1, 34.0

CARA4(1,1) M4 (0.04, 0.16) 89.1 86.0 (0.001, 0.001) (0.003, 0.005) 30.7, 32.2, 37.1

CARA4(1,2) M4 (0.04, 0.16) 87.6 84.5 (0.001, 0.001) (0.002, 0.007) 28.5, 31.2, 40.3

3.5 Conclusions

In this section, we proposed an innovative framework of CARA design with TMLE. Under

the framework, we demonstrated how to set up the allocation of a patient based on the

full history of the previous patients’ treatment assignments, responses, and covariates,

and the covariates of the current patient to achieve different objectives. The TMLE is

used to handle the “messy” data which is caused by the adaption in CARA design. In

the theory part, we showed the consistency and asymptotic properties of the proposed

family of CARA designs. In addition, the TMLE has been prove to have asymptotic

normality in the proposed CARA designs under certain conditions.
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Furthermore, the simulation studies above successfully verified the concept of the de-

signs in different angels. The advantage of the proposed framework lies on two major

points. First, the proposed framework is very flexible in terms of the efficiency measure

and ethics measure. And it is capable of addressing trial efficiency and ethics simulta-

neously. The diversity of the measures of trial efficiency and ethics as well as the tuning

parameters endures us the ability to assign more patients to superior treatment arm while

retain the same power or even gain more power. Second, the nonparametric nature of

TMLE can avoid model mis-specification and control Type I error rate under different

and complicated data generating distributions. Particularly, when the normality of the

data is invalid, which is always true in real applications, our proposed framework showed

superior robustness through a two-step approach than tradition methods with respect to

type I error control, power and ATE estimation.
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4 Principles of Adaptive Seamless II/III Designs

4.1 Background

The drive to reduce development costs and shorten the time-to-market of new therapies

has led to the development of the methodology of ASD. Typically, such trials combine the

phase II and phase III into a single and seamless trial with two stages, the learning stage

and the confirmatory stage, and interim analyses (Bretz, Schmidli, et al. 2006, Stallard

2010). The ASD has been shown to have advantage in efficiency over the standard phase

II and phase III trials for efficacy confirmation (Bretz, Schmidli, et al. 2006). In the

learning stage which is typically a phase II trial, the primary goal is to compare multiple

experimental treatments or drug doses simultaneously. In the interim analysis, the most

promising candidates are selected for further investigation in the confirmation stage which

corresponds to a phase III trial or the study is stopped due to futility. The final analysis

combines the “learnt data” and the “confirm data” and addresses the overall type I error

rate in statistical testing at a pre-specified level independent of the interim analysis.

In practice, hypothesis testing with type I error control is the primary focus of a

seamless phase II/III trial, with estimation being an important but secondary target

(Cohen and Sackrowitz 1989, Troendle and Yu 1999, Posch et al. 2005, Stallard and

Friede 2008, Bowden and Glimm 2008, Bowden and Glimm 2014, Todd and Stallard

2005). A critical problem in the seamless phase II/III clinical trial is to combine the data

from the two stages and control the familywise error rate (FWER).

The most crucial aspect of the problem is how to utilize the accumulating data while
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control the FWER. When the “learnt data” is used to make selection decision or used to

estimate design parameters in the interim analysis, a simple combination of the “learnt

data” and the “confirm data” to make statistical inference can considerable compromise

the FWER. That is, not only the type I error on the selected hypotheses but also the

family of the hypotheses of the adaptive trial need to be controlled at pre-specified level

(Wang, Hung, and O’Neill 2010). Certain combination methods such as the inverse χ2

method (Bauer and Kohne 1994) and the weighted inverse normal method (Lehmacher

and Wassmer 1999) have been proposed to combine data from the two stages in the final

hypothesis test and to achieve a strong control of the FWER.

The control of the FWER in ASD also involves dealing with multiplicity. Multiplicity

is the potential inflation of type I error rate in clinical trials where the simultaneous

assessments of multiple testing are carried out. It is a common issue in clinical tri-

als when evaluating multiple end points, conducting subgroup analysis and comparing

several treatment arms (Dmitrienko and D’Agostino 2018, Li et al. 2016). There are

many common statistical methods and approaches that have been proposed to address

multiplicity issues. Generally, the statistical methods are classified into two categories:

single step methods and stepwise methods (FDA et al. 2017, Bretz, Hothorn, and West-

fall 2016). The single step methods reject or accept a single hypothesis independently

and do not rely on the decision of any other hypothesis, e.g., Bonferroni method, Simes

method and Dunnett method. On the contrary the stepwise methods make decision of

a single hypothesis on the basis of the decisions of other hypotheses, e.g., Holm method

(stepdown Bonferroni method), Hochberg test (stepwise Simes method) and stepdown
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Dunnett method.

4.2 Combination tests

Combination test is a common approach used in meta-analysis. It combines p-values

from independent data or studies (Heard and Rubin-Delanchy 2018). The idea of using

combination function to combine stagewise p-values was first proposed by Bauer and

Kohne 1994 and then it was applied in treatment selection by Bauer and Kieser 1999.

In ASD, a simple combination of the “learnt data” and the “confirm data” to make

statistical inference can considerable compromise the FWER. Combination test is used

to tackle this issue and achieve a strong control of the FWER.

Suppose we have n p-values (p1, . . . , pn) from the hypothesis test of n independent

studies. Under the null hypotheses for i = 1, . . . , n,

H0 : pi ∼ U [0, 1].

There are variate of different combination methods available. Two commonly used com-

bination statistics are Fisher’s statistic (Bauer and Kohne 1994)

SF =
n∑

i=1

log pi

and Pearson’s statistic

SP =
n∑

i=1

log(1− pi).

Under the null hypothesisH0, both−2SF and−2SP are distributed as χ2
2n. The combined
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p-values can be expressed as

CF (p1, . . . , pn) = Pr(X ≥ −2SF ), CP (p1, . . . , pn) = Pr(X ≥ −2SP ). (25)

Fisher’s statistic is more sensitive to small p-values while Pearson’s statistic is more

sensitive to large p-values. In a two stage adaptive seamless design, one can reject the

joint null hypothesis at level α if

−2SF ≤ χ2
4,1−α and − 2SP ≤ χ2

4,1−α,

or equivalently

p1p2 ≤ exp(−1

2
χ2
4,1−α) and (1− p1)(1− p2) ≤ exp(−1

2
χ2
4,1−α).

Another commonly used combination method is the weighted inverse normal method

(Lehmacher and Wassmer 1999)

SW = 1− Φ

(∑n
i=1wiΦ

−1(1− pi)√∑n
i=1w

2
i

)
,

where 0 < wi < 1 are arbitrary weighted. Under the null hypothesisH0, SW is distributed

as U [0, 1] and is also the combined p-value. The weights are suggested to be proportional

to the expected difference between the H0 and H1 and be inversely proportional to the

standard deviation of the statistic used in the i-th experiment (Liptak 1958, Won et al.

2009). Under circumstance that no further information is available, a widely used weight

is wi ∝ √
ni where ni is the sample size of the i-th study. Similarly, in the final analysis

of a two stage adaptive seamless design, one can reject the joint null hypothesis at level

α if

CW (p1, . . . , pn) = SW = 1− Φ
(
w1Φ

−1(1− p1) + w2Φ
−1(1− p2)

) ≤ α, (26)

83



where wi =
√
ni/(n1 + n2), i = 1, 2.

4.3 Multiple testing methods

In this section, the three single step methods, Bonferroni method, Simes method and

Dunnett method are introduced.

Bonferroni method

Bonferroni method is a single step nonparametric test. Suppose we have a family of hy-

potheses with n single hypothesis (H1, . . . , Hn). Let H denote the global null hypothesis

such that

H = H1 ∩H2 ∩ . . . ∩Hn.

Let pi denote the corresponding p-values for each individual hypothesis Hi for i =

1, . . . , n. The Bonferroni test rejects an individual hypothesis Hi at the FWER α if

pi ≤ α/n or min(npi, 1) ≤ α.

Correspondingly, Bonferroni method rejects the global hypothesis H at the FWER α if

one or more individual hypothesis Hi is rejected. Bonferroni method controls the FWER

at level α following from the Boole’s inequality such that

FWER = Pr

{
n⋃

i=1

(
pi ≤ α

n

)}
≤

n∑
i=1

{
Pr
(
pi ≤ α

n

)}
= α.

Though the FWER is controlled at a pre-specified α level, Bonferroi method is rarely

used in practice. The Bonferroni method is rather conservative if there are a large number
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of hypotheses and/or the test statistics are strongly positively correlated. As a trade-off

of the strong control FWER, the Bonferroni method reduces statistical power.

Simes method

Simes method, proposed by Simes 1986, is also a single step nonparametric test. Unlike

Bonferroni method, Simes method assumes non-negative correlations between each in-

dividual p-values. Let p(i), i = 1, . . . , n be the ordered p-values such that p(1) < p(2) <

. . . < p(n). The Simes method rejects the global hypothesis H at the FWER α if

p(i) ≤ iα/n for at least one i

or equivalently if

min
i
{np(i)/i} ≤ α.

Unlike Bonferroni method, Simes method can only be used to test the global hypothesis

H but not the individual hypothesis Hi. However, Simes method is more powerful than

the global test using Bonferroni method.

Dunnett method

For scenarios that multiple treatment arms are compared with a control, Dunnett method

can be used to exploit the correlation between the p-values. Dunnett method, proposed by

Dunnett 1955, is a parametric method and assumes normality. When correctly specified,

Dunnett method provides a less conservative control of FWER and is more powerful than

the nonparametric methods such as Bonferroni method and Simes method.
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Suppose we have (K +1) arms with K treatment arms and 1 control arm. Each arm

has ni observations for i = 0, 1, . . . , K. We assume the following parametric model for

observation Yij,

Yij = μi + εij, i = 0, 1, . . . , K, j = 1, . . . , ni,

where μi is the treatment effect of arm i and εij is the i.i.d. normal term of Yij. We

assume εij ∼ N(0, σ2). For the multi-arm trial, we would like to test the K treatments

against the control:

Hi : μi − μ0 = 0, i = 1, . . . , K

According to the normality assumption above, we can obtain K t-test statistics,

ti =
μ̂i − μ̂0

σ̂
√

1
ni

+ 1
n0

, i = 1, . . . , K,

where μ̂i and σ̂ are estimators of μi and σ. The key point is that under the null hypotheses,

ti ∼ tν , where tν is a univariate t-distribution with degree of freedom ν =
∑K

i=0 ni−K−1.

In addition, under the global null hypothesis H =
⋂K

i=1Hi, (t1, . . . , tK) is a K-variate

t-distribution with degree of freedom ν and correlation matrix {ρij}K×K , where

ρij =

√
ninj

(ni + n0)(nj + n0)
, i = 1, . . . , K, j = 1, . . . , K.

The individual hypothesis Hi is rejected at the FWER α if

ti ≥ cK,1−α,

where cK,1−α satisfies Pr[(t1, . . . , tK) ≤ (cK,1−α, . . . , cK,1−α)] = 1 − α which can be cal-

culated based on the K-variate t-distribution with degree of freedom ν and correlation
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matrix {ρij}K×K . Also, Dunnett method rejects the global hypothesis H at the FWER

α if one or more individual hypothesis Hi is rejected. In practice, the multivariate t-

distribution can be approximated by a multivariate normal distribution when ν is large.

Dunnett method performs better than Bonferroni method and Simes method in term

of FWER and power because of the ability of adjusting for the correlations between test

statistics. Furthermore, Dunnett test can also be extend to linear models, generalized

linear models and any other methods with an asymptotically normal distributed statistic

such as TMLE. An example and discussion will be shown in section 4.

4.4 Closure principle

The closure principle proposed by Marcus, Eric, and Gabriel 1976 is the fundamental

principle in building FWER-controlling multiple testing procedures. It has been used to

construct virtually all multiple testing methods arising in clinical trial and pharmaceutical

applications. Since closure principle based procedures strongly control FWER, it has been

applied in all confirmatory clinical trials (Dmitrienko and D’Agostino 2013). Because of

this important property, we will use the closure principle in the final stage of our proposed

ASD.

Suppose we have n hypothesis (H1, . . . , Hn) in a study, n ≥ 2. The hypothesis testing

of the individual hypothesis Hi can be carried out at a local α level based on its own

test statistic ti and asymptotic property. Let pi denote the corresponding p-value of the

individual hypothesis testing for i = 1, . . . , n. We form an intersection hypothesis HI for
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an arbitrary subset I ⊆ {1, . . . , n} and |I| ≥ 2 such that

HI =
⋂
i∈I
Hi.

The hypothesis testing of all intersection hypotheses can be implemented at a local α

level using either the p-values or test statistics of the individual hypotheses through

multiple testing methods, e.g., Bonferroni method, Simes method and Dunnett method.

The closure principle says that an individual hypothesis Hi is rejected at FWER α if all

such intersection hypothesis HI with i ∈ I are rejected at local α level (Bretz, Schmidli,

et al. 2006).

4.5 Multiple testing in adaptive designs

In general, the idea of conducting multiple testing in adaptive designs is: a) using a

suitable combination test to fuse p-values of each individual hypothesis between trial

stages; b) constructing all intersection hypotheses and using multiple testing method on

them based on combined p-values at a local α level; c) using closure principle to conduct

a global test at FWER level α.

Suppose in a two stage adaptive design, there are two individual hypothesis H1 and

H2 and let H12 denote the intersection hypothesis. According to the closure principle,

the individual hypothesis H1, H2 and the intersection hypothesis H12 need to be tested

in both stages. Let pi,j denote the p-value for hypothesis Hj, j ∈ {1, 2, 12} at stage i,

i = 1, 2. The p-value of the intersection hypotheses Hi,12 can be obtained through any

suitable multiple testing method. By applying Fisher’s/Pearson’s combination test in
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(25) or weighted inverse normal combination test in (26), we have the combined p-values

of the two stages as C(p1,j, p2,j), j ∈ {1, 2, 12}. According to the closure principle, H1 is

rejected globally at a FWER α level if simultaneously

C(p1,1, p2,1) ≤ α, and C(p1,12, p2,12) ≤ α.

In a treatment/dose selection ASD where two experimental arms are compared with a

control arm in the first stage, H12 degenerate to either H1 or H2 in the second stage since

one experimental arm is dropped during interim analysis. If H2 is dropped, then H1 is

rejected globally at a FWER α level if simultaneously

C(p1,1, p2,1) ≤ α, and C(p1,12, p2,1) ≤ α.
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5 An Adaptive Seamless Design with CARA and

TMLE

In this section, the framework for the adaptive seamless phase II/III trials with CARA

and TMLE was discussed. The generalized version of the proposed CARA design pre-

sented in section 3 is the realization of aim 3 and is applied in the first stage of the ASD.

The special case of the proposed CARA design with only two arms is the realization

of aim 2 and is used as the allocation strategy in the second stage of the ASD. In this

section, we adopted the same notation as we presented in section 3.

5.1 Framework of the ASD with CARA designs

Suppose in a typical scenario where there are (K+1) treatment arms under investigation

in a clinical phase II and III study. Among the (K + 1) arms, K treatment arms are

compared with one control arm. Let Ai ∈ A = {0, 1, . . . , K} denote the treatment assign-

ment of the ith patient. Let Yi be the one-dimensional primary endpoint outcome of the

ith patient, where it can be either binary Yi ∈ {0, 1} or continuous Yi ∈ R. For the ith

patient, W i = (Wi,1, . . . ,Wi,nW
) ∈ W represents the patient’s baseline characteristics.

Assume we are interested in a biomarker/subgroup indicator Vi that is a function of the

baseline characteristics denoted as Vi = fV (W i) ∈ V = {v1, . . . , vq} for the ith patient.

The choice of V might be from previous translational research and represent a com-

prehensive understanding about the impact of baseline characteristics on the treatment
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effects.

In such scenario, an ASD can be carried out to reduce the costs and shorten the time in

the clinical trial. In addition to the good properties of ASD, we would also be interested in

assigning more patients to the superior treatment group with higher efficiency of detecting

the treatment effects. Therefore, we incorporated the ASD with CARA emphasizing on

ethics and efficiency. To operate a CARA randomization as discussed in section 3, we

first define the design parameter vector θ0 = {θa,v0 , a ∈ A, v ∈ V}, where θa,v0 = (θa,v0,1 , θ
a,v
0,2)

for all pairs of (a, v), such that

θa,v0,1 = EP0(Y |A = a, V = v), θa,v0,2 = EP0(Y
2|A = a, V = v).

According to section 3, the estimator of θ0, θ̂n = {θ̂a,vn , a ∈ A, v ∈ V}, can be obtained

through equation (3) as

θ̂a,vn,1 =

∑n
i=1

Ii(a,v)
Gi(a,v)

Yi∑n
i=1

Ii(a,v)
Gi(a,v)

, θ̂a,vn,2 =

∑n
i=1

Ii(a,v)
Gi(a,v)

Y 2
i∑n

i=1
Ii(a,v)
Gi(a,v)

,

where Gi(·) is the conditional probability of treatment assignment Ai given (X1, . . . , Xi)

in the CARA framework. Therefore, if subjects enter the trial sequentially, one can always

calculate θ̂n after the n-th subject and use the estimate for the (n + 1)-th subject. We

also define d(a, v,θ0) and e(a, v,θ0), a ∈ A, v ∈ V, as finite one-dimensional quantities of

efficiency and ethics measurements of treatment a in subgroup v, respectively. The choice

of the efficiency and ethics measurements are determined by different design objectives,

and will lead to different target allocation proportions.

Suppose in the protocol of the ASD, the planned total sample size is n, and the

planned sample size for the first stage is n1. Then the sample size for the second stage is
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n2 = n− n1. We proposed the following design framework of the ASD with CARA.

In the first stage, we assigns the ith subject with subgroup Vi = v to treatment

A = a, a = 0, 1, . . . , K, with probability

Gi(a, v) = Pr(Ai = a|Vi = v, θ̂i−1) =
e(a, v, θ̂i−1)

γ1d(a, v, θ̂i−1)
γ2∑

k∈A e(k, v, θ̂i−1)γ1d(k, v, θ̂i−1)γ2
,

where (γ1, γ2) ∈ [0,+∞)2 are two tuning parameters determining the balance between

ethics and efficiency. At the end of the first stage, one treatment, say treatment k�, is

chosen to enter the second stage with the control arm based on certain criteria. For

instance, in this dissertation, the treatment arm with the largest test statistic Tj,1 is

selected. The details were described in the following section.

In the second stage, the control arm along with the selected treatment k� resembles

a two arm trial with the planned number of remaining patients (n2). We sequentially

assigns the i-th patient (in the second stage) with subgroup Vi = v to treatment l, l =

0, k∗, with probability

Gi(l, v) = Pr(Ai = l|Vi = v, θ̂i−1) =
el(v, θ̂i−1)

γ1dl(v, θ̂i−1)
γ2

e0(v, θ̂i−1)γ1d0(v, θ̂i−1)γ2 + ek∗(v, θ̂i−1)γ1dk∗(v, θ̂i−1)γ2
.

Note that θ̂i−1 needs to be re-estimated in stage 2. The interim analysis regarding

selection criteria and final analysis using TMLE were discussed in section 5.2.

5.2 Using TMLE in interim analysis and final analysis

The design that incorporates ASD with CARA ses the previous covariates, responses,

treatment assignments, and the current covariate to update the allocation probability for
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the next patient and uses the responses to determine which treatment will be continued

to the second stage. It is conceptually difficult to combine these two types of adaptive

designs because (1) all the responses, treatment assignments and covariates are correlated

with each other in a complicated manner; (2) the data used in the treatment selection

are also used for inference at the end of the trial. The challenges related to TMLE in

CARA have been introduced before in section 3. In this section, we proposed the an

analysis plan to overcome these difficulties.

We define a (K+1)-dimensional target parameter asψ0 = Ψ(P0) = (ψ0,0, ψ0,1, . . . , ψ0,K),

where ψ0,j = EP0(Y |A = j) is the j-th treatment effect for j = 0, 1, . . . , K. For the many-

to-one comparison, we define K individual null hypothesis as H0,j : ψ0,j − ψ0,0 = 0 for

j = 1, . . . , K. Based on the TMLE procedure as we discussed in section 3, we have

√
n
(
ψ̂

TMLE

n −ψ0

)
D−→ N(0,ΣTMLE

0 ) as n→ ∞,

where the element of ΣTMLE
0 can be estimated as

σ̂TMLE
n (j, k) =

1

n

n∑
i=1

(
G�

n(Ai, Vi)

Gi(Ai, Vi)

)2

(ICj(Q
�
n, G

�
n)(Oi) ICk(Q

�
n, G

�
n)(Oi)) .

Then we consider the following standardized test statistics

Tj =

√
n(ψ̂TMLE

n,j − ψ̂TMLE
n,0 )√

σ̂TMLE
n (0, 0) + σ̂TMLE

n (j, j)− 2σ̂TMLE
n (0, j)

,

for the j-th hypothesis. According to Theorem 5, it is easy to show that under the

null, Tj
D−→ N(0, 1) for all j = 1, . . . , K. Therefore, each single test statistic Tj has

an approximate standard normal distribution. Moreover, (Ti, Tj) has an asymptotic bi-
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variate normal distribution ⎛
⎜⎜⎝Ti
Tj

⎞
⎟⎟⎠ D−→ N

⎛
⎜⎜⎝0,
⎡
⎢⎢⎣ 1 ρi,j

ρj,i 1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ ,

where

ρi,j =
σTMLE
0 (0, 0) + σTMLE

0 (i, j)− σTMLE
0 (0, i)− σTMLE

0 (0, j)√
(σTMLE

0 (0, 0) + σTMLE
0 (i, i)− 2σTMLE

0 (0, i))(σTMLE
0 (0, 0) + σTMLE

0 (j, j)− 2σTMLE
0 (0, j))

,

for all i �= j. If the null hypotheses are extended to the distribution-wise equivalence of

any two arms, then under the null we have ρi,j = 1/2. Therefore, the type I error rate

is controlled and asymptotically α when applying the Simes method and the Dunnett

method.

The analysis procedure is described below.

Firstly, we denote the test statistic based on the data from the first stage as Tj,1 for

j = 1, . . . , K (the subscript 1 stands for the first stage). In the interim analysis, the

treatment arm with the largest test statistic Tj,1 is selected and is denoted as k∗. The

adjusted p-values of all single hypotheses Hj, j = 1, . . . , K and all intersection hypotheses

HI , I ⊆ {1, . . . , K} are calculated using the Simes method or the Dunnett method at local

level α. We denote these p-values as pj,1 and pI,1 for single hypothesis and intersection

hypothesis respectively.

Secondly, the selected arm k∗ is carried forward to the second stage and resembles

a two-arm trial along with the control. In the final analysis, the test statistic Tk∗,2

and the corresponding p-value pk∗,2 are calculated using TMLE based on the data from

the second stage only and not on the accumulated data. The combined p-values from
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the two-stage trial can be obtained using Fisher’s method in (25) or weighted inverse

normal method in (26). For instance, the combined p-value for a single hypothesis Hk∗

is pk∗ = C(pk∗,1, pk∗,2); and the combined p-value for an intersection hypothesis HI with

k∗ ∈ I is pI = C(pI,1, pk∗,2) since all intersection hypotheses HI with k∗ ∈ I degenerate

to Hk∗ in the second stage.

Thirdly, to strongly control the FWER at level α, the closure principle is applied.

According to the closure principle (Marcus, Eric, and Gabriel 1976), one is able to re-

ject the null hypothesis Hk∗ for the selected arm k∗ if for any intersection hypothesis I

satisfying k∗ ∈ I, the combined p-value pk∗ ≤ α.

5.3 Simulation studies

In this section, we numerically evaluated the finite-sample operating characteristics of

the ASD with CARA and TMLE regarding the Type I error rate, power and other

properties. Consider an adaptive phase II/III trial with three arms in the first stage,

where two treatment/dose arms are compared to the control. In the interim analysis,

the promising one is chosen and carried forward to the second stage. We introduced

three different scenarios in terms of the type data generating distribution of the endpoint

Y : (1) binary; (2) continuous and symmetric (normally distributed); (3) continuous and

skewed (e.g. gamma distribution). The three scenarios covered most basic types of data

appeared in real applications and served as a test for the robustness of our proposed

framework.
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We also compared ASD with CARA to ASD with complete randomization (CR).

For the CARA procedure, we studied four different CARA designs representing different

ethics measurements:

CARA1: e(a, v, θ̂i−1) = θ̂a,vi−1,1, d(a, v, θ̂i−1) =
√
θ̂a,vi−1,2 − (θ̂a,vi−1,1)

2

CARA2: e(a, v, θ̂i−1) = (1− θ̂a,vi−1,1)
−1, d(a, v, θ̂i−1) =

√
θ̂a,vi−1,2 − (θ̂a,vi−1,1)

2

CARA3: e(a, v, θ̂i−1) = θ̂a,vi−1,1 ∗ (1− θ̂a,vi−1,1)
−1, d(a, v, θ̂i−1) =

√
θ̂a,vi−1,2 − (θ̂a,vi−1,1)

2

CARA4: e(a, v, θ̂i−1) = Φ(θ̂a,vi−1,1− 1
nA

∑nA

k=1 θ̂
k,v
i−1,1), d(a, v, θ̂i−1) =

√
θ̂a,vi−1,2 − (θ̂a,vi−1,1)

2,

where nA denotes the number of treatment arms (nA = 3 in the first stage, nA = 2 in

the second stage), and Φ(·) denotes the CDF of standard normal distribution. All the

four ethics measurements return larger value for the superior treatment arm in terms of

additive treatment effect. The efficiency measurement was chosen based on the idea of

Neyman allocation. The tuning parameters γ1 and γ2 can be assigned to different values

to further examine the validity and demonstrate the flexibility. In the Tables, we used

CARAk(γ1, γ2) to represent the above kth CARA design with tuning parameters γ1 and

γ2.

In the interim analysis and final analysis of the ASD, the test statistics Ti,j and the

corresponding p-values pi,j were obtained using TMLE as we described previously if the

allocation was carried out using CARA. The standardized t-statistics or z-statistics were

calculated for the complete randomization. We compared four combinations of multiple

testing method and combination method: (1) Dunnett method with Fisher’s method; (2)
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Dunnett method with weighted inverse normal method; (3) Simes method with Fisher’s

method; (CR) Simes method with weighted inverse normal method. The weighted used

in the weighted inverse normal method is proportional to the square root of sample size.

In the whole simulation study, we set the sample size for the first stage is n1 = 200 and

the sample size for the second stage is n2 = 500. Moreover, when CARA was conducted,

the first 25% and 10% of patients in the first and second stage were allocated using the

stratified permuted block (SPB) randomization and the rest patients were allocated using

TMLE. For the binary scenario, an additioal 10% (total 20%) patients in the second stage

were initially assigned by SPB for a better convergency in TMLE approach. Moreover,

we pre-specified the significance level at α = 0.05, and all the results were based on

10, 000 replications.

Scenario 1: Binary endpoint

Consider an ASD with binary endpoints, suppose we have a covariate vector W =

(W1,W2,W3) and a binary subgroup indicator V (W ) = I(W1 +W2 +W3 > 1.6), where

W1,W2,W3 independently follow uniform distribution in [0, 1] and I(·) is the indicator

function. Assume the success rate of the binary endpoint Y is:

p = Φ

(
β0 + βA1I(A = 1) + βA2I(A = 2) + βV V +

3∑
p=1

βW,p ∗Wp

)
,

where (β0, βA1, βA2, βV , βW,1, βW,2, βW,3) are unknown parameters. Note that the true

model of Y is a generalized linear model with a probit link function. In Tables 5.1, 5.2a

and 5.2b, we fix (β0, βV , βW,1, βW,2, βW,3) = (0, 0.2, 0.22,−0.17,−0.1) while adjusting the
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values of (βA1, βA2) to study the FWER, power, and other properties. Thus, the initial

estimate in TMLE was from a mis-specified model.

In Table 5.1, we reported the Type I error rate with (βA1, βA2) = (0, 0). All proposed

approaches and TMLE and the traditional approach control the Type I error rate at the

nominal level 0.05. In Table 5.2a and Table 5.2b, power, correct selection rate (M) and the

proportion of control arm in the first stage (C1) and the second stage (C2) are reported.

In Table 5.2a, we considered the situation that only one arm is more effective than the

control (βA1 = 0, βA2 = 0.33) while in Table 5.2b, there are differential treatment effects

in the two treatment arms (βA1 = 0.15, βA2 = 0.33). Though the proposed ASDs do

not show a dominated advantage in power and correct selection rate over the traditional

approach, the proportion of control arm can be significantly dropped from 33.3% in the

first stage to 30.1% and from 50.0% in the second stage to 45.3% (e.g. CARA2(1, 1)).

Table 5.1: Type I error rate (in %) comparison between the proposed ASD

and the traditional approach based ASD with binary endpoints.

Allocation Dunnett α(%) Simes α(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CR (t-test) 5.39 5.37 5.18 5.00

CARA1(0, 1) 5.22 4.84 5.07 4.40

CARA1(1, 0) 5.29 5.02 5.11 4.56

CARA1(1, 1) 5.18 4.99 5.02 4.59

Continued on next page
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Table 5.1 – Continued from previous page

Allocation Dunnett α(%) Simes α(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CARA2(0, 1) 5.22 4.84 5.07 4.40

CARA2(1, 0) 5.11 4.75 4.81 4.52

CARA2(1, 1) 5.34 4.99 5.10 4.63

CARA3(0, 1) 5.22 4.84 5.07 4.40

CARA3(1, 0) 5.42 5.06 5.16 4.80

CARA3(1, 1) 5.48 5.14 5.23 4.79

CARA4(0, 1) 5.22 4.84 5.07 4.40

CARA4(1, 0) 5.28 4.91 5.15 4.64

CARA4(1, 1) 5.42 4.86 5.12 4.64

Table 5.2a: Power (in %) comparison between the proposed ASD and the

traditional approach based ASD with binary endpoints. Only one arm has

treatment effect.

Allocation (βA1, βA2) Dunnett Power(%) Simes Power(%) M(%) C1(%) C2(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CR (t-test) (0,0.33) 85.55 87.07 84.55 85.12 92.98 33.4 50.0

CARA1(0, 1) (0,0.33) 85.78 87.04 84.93 85.09 93.28 32.0 46.9

Continued on next page
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Table 5.2a – Continued from previous page

Allocation (βA1, βA2) Dunnett Power(%) Simes Power(%) M(%) C1(%) C2(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CARA1(1, 0) (0,0.33) 85.69 86.95 84.66 85.25 93.36 31.7 46.2

CARA1(1, 1) (0,0.33) 85.71 86.95 84.88 85.22 93.39 30.4 43.3

CARA2(0, 1) (0,0.33) 85.78 87.04 84.93 85.09 93.28 32.0 46.9

CARA2(1, 0) (0,0.33) 85.52 86.92 84.50 85.15 93.36 32.9 48.9

CARA2(1, 1) (0,0.33) 85.69 87.25 84.69 85.21 93.45 31.5 45.8

CARA3(0, 1) (0,0.33) 85.78 87.04 84.93 85.09 93.28 32.0 46.9

CARA3(1, 0) (0,0.33) 84.41 86.08 83.16 84.27 93.36 31.3 45.1

CARA3(1, 1) (0,0.33) 84.82 86.26 83.56 84.66 93.37 29.9 42.3

CARA4(0, 1) (0,0.33) 85.78 87.04 84.93 85.09 93.28 32.0 46.9

CARA4(1, 0) (0,0.33) 85.99 87.23 85.05 85.33 93.41 33.1 49.3

CARA4(1, 1) (0,0.33) 85.90 87.16 84.97 85.30 93.35 31.7 46.2

Table 5.2b: Power (in %) comparison between the proposed ASD and the

traditional approach based ASD with binary endpoints. Two arms have

differential treatment effect.

Allocation (βA1, βA2) Dunnett Power(%) Simes Power(%) M(%) C1(%) C2(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CR (t-test) (0.15, 0.33) 83.47 85.31 83.06 84.55 79.03 33.4 50.0

Continued on next page
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Table 5.2b – Continued from previous page

Allocation (βA1, βA2) Dunnett Power(%) Simes Power(%) M(%) C1(%) C2(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CARA1(0, 1) (0.15, 0.33) 83.90 85.47 83.43 84.71 79.47 34.0 50.9

CARA1(1, 0) (0.15, 0.33) 83.20 84.98 82.71 84.32 79.36 30.6 46.1

CARA1(1, 1) (0.15, 0.33) 83.19 85.15 82.70 84.30 79.45 31.3 46.9

CARA2(0, 1) (0.15, 0.33) 83.90 85.47 83.43 84.71 79.47 34.0 50.9

CARA2(1, 0) (0.15, 0.33) 82.63 84.71 82.14 83.81 79.34 29.7 44.6

CARA2(1, 1) (0.15, 0.33) 82.95 84.80 82.54 83.88 79.35 30.1 45.3

CARA3(0, 1) (0.15, 0.33) 83.90 85.47 83.43 84.71 79.47 34.0 50.9

CARA3(1, 0) (0.15, 0.33) 81.19 83.78 80.79 82.85 79.25 28.3 41.1

CARA3(1, 1) (0.15, 0.33) 81.61 83.84 80.94 82.91 79.21 28.3 41.7

CARA4(0, 1) (0.15, 0.33) 83.90 85.47 83.43 84.71 79.47 34.0 50.9

CARA4(1, 0) (0.15, 0.33) 83.70 85.32 83.15 84.25 79.61 32.1 48.2

CARA4(1, 1) (0.15, 0.33) 83.56 85.37 83.20 84.57 79.40 32.7 49.0

Scenario 2: Continuous normal endpoint

Consider an ASD with bounded continuous endpoint Y ∈ R. Suppose that the covariate

vectorW = (W1,W2,W3) and the binary subgroup indicator V (W ) are generated in the
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same manner. Assume the endpoint Y follows a normal distribution as:

μ = μ0 + (1 + βA1I(A = 1) + βA2I(A = 2)) (1 + βV V ) +
3∑

p=1

βW,p ∗Wp,

σ =
1 + βA1I(A = 1) + βA2I(A = 2)

1 + βV V
,

Y ∼ N(μ, σ2), Y is truncated if Y < 0 or Y > 8.

We fixed the parameter values (μ0, βV , βW,1, βW,2, βW,3) = (3, 0.5, 0.22,−0.17,−0.1). The

values of βA1 and βA1 were adjusted to obtain the FWER and power.

In Table 6.1, we reported the Type I error rate with (βA1, βA2) = (0, 0). All proposed

approaches and TMLE and the traditional approach control the Type I error rate at

the nominal level 0.05. In Table 6.2a and Table 6.2b, power, correct selection rate (M)

and the proportion of control arm in the first stage (C1) and the second stage (C2) are

reported. In Table 6.2a, we considered the situation that only one arm is more effective

than the control (βA1 = 0, βA2 = 0.2) while in Table 6.2b, there are differential treatment

effects in the two treatment arms (βA1 = 0.1, βA2 = 0.2). The proposed ASD with CARA

and TMLE shows a significant advantage in both power and correct selection rate over

the traditional approach. There is more than 3% increase in power and around 2.5%

increase in correct selection rate across all types of CARAs. Besides, the proportion of

control arm can be dropped to around 30% in the first stage and 45% in the second stage.
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Table 6.1: Type I error rate (in %) comparison between the proposed ASD

and the traditional approach based ASD with continuous normal endpoints.

Allocation Dunnett α(%) Simes α(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CR (t-test) 5.31 5.52 5.14 5.05

CARA1(0, 1) 5.16 4.98 4.87 4.62

CARA1(1, 0) 5.14 5.17 4.91 4.70

CARA1(1, 1) 5.07 4.79 4.79 4.48

CARA2(0, 1) 5.16 4.98 4.87 4.62

CARA2(1, 0) 5.02 5.03 4.77 4.50

CARA2(1, 1) 5.10 4.89 4.80 4.34

CARA3(0, 1) 5.16 4.98 4.87 4.62

CARA3(1, 0) 5.28 5.00 4.93 4.55

CARA3(1, 1) 5.08 4.79 4.81 4.34

CARA4(0, 1) 5.16 4.98 4.87 4.62

CARA4(1, 0) 5.11 5.08 4.91 4.53

CARA4(1, 1) 5.12 5.00 4.77 4.55
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Table 6.2a: Power (in %) comparison between the proposed ASD and the

traditional approach based ASD with continuous normal endpoints. Only

one arm has treatment effect.

Allocation (βA1, βA2) Dunnett Power(%) Simes test Power(%) M(%) C1(%) C2(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CR (t-test) (0, 0.2) 79.57 81.61 78.32 79.27 90.01 33.4 50.0

CARA1(0, 1) (0, 0.2) 83.34 84.77 82.46 82.80 91.96 31.8 46.3

CARA1(1, 0) (0, 0.2) 83.04 84.61 81.97 82.72 91.44 32.9 48.9

CARA1(1, 1) (0, 0.2) 83.44 84.82 82.35 82.77 91.82 31.2 45.1

CARA2(0, 1) (0, 0.2) 83.34 84.77 82.46 82.80 91.96 31.8 46.3

CARA2(1, 0) (0, 0.2) 83.21 84.82 82.09 82.96 91.69 32.8 48.6

CARA2(1, 1) (0, 0.2) 83.52 84.84 82.39 82.77 91.93 31.1 44.9

CARA3(0, 1) (0, 0.2) 83.34 84.77 82.46 82.80 91.96 31.8 46.3

CARA3(1, 0) (0, 0.2) 83.29 84.65 82.22 82.68 91.71 32.3 47.5

CARA3(1, 1) (0, 0.2) 83.50 84.95 82.59 82.82 92.02 30.6 43.7

CARA4(0, 1) (0, 0.2) 83.34 84.77 82.46 82.80 91.96 31.8 46.3

CARA4(1, 0) (0, 0.2) 83.07 84.58 82.03 82.48 91.60 33.2 49.5

CARA4(1, 1) (0, 0.2) 83.38 84.84 82.45 83.01 92.00 31.5 45.8
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Table 6.2b: Power (in %) comparison between the proposed ASD and the

traditional approach based ASD with continuous normal endpoints. Two

arms have differential treatment effect.

Allocation (βA1, βA2) Dunnett Power(%) Simes Power(%) M(%) C1(%) C2(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CR (t-test) (0.1, 0.2) 78.77 81.15 78.06 80.23 72.61 33.4 50.0

CARA1(0, 1) (0.1, 0.2) 82.01 84.07 81.60 83.32 75.03 31.0 46.4

CARA1(1, 0) (0.1, 0.2) 82.14 84.20 81.69 83.55 74.11 32.7 48.9

CARA1(1, 1) (0.1, 0.2) 82.23 84.31 81.81 83.56 74.98 30.3 45.3

CARA2(0, 1) (0.1, 0.2) 82.01 84.07 81.60 83.32 75.03 31.0 46.4

CARA2(1, 0) (0.1, 0.2) 82.51 84.50 81.91 83.82 74.38 32.5 48.7

CARA2(1, 1) (0.1, 0.2) 82.17 84.31 81.67 83.37 74.88 30.2 45.1

CARA3(0, 1) (0.1, 0.2) 82.01 84.07 81.60 83.32 75.03 31.0 46.4

CARA3(1, 0) (0.1, 0.2) 82.10 84.34 81.66 83.40 74.33 31.8 47.6

CARA3(1, 1) (0.1, 0.2) 82.28 84.09 81.86 83.42 74.90 29.5 44.0

CARA4(0, 1) (0.1, 0.2) 82.01 84.07 81.60 83.32 75.03 31.0 46.4

CARA4(1, 0) (0.1, 0.2) 82.21 84.26 81.67 83.47 74.23 33.1 49.5

CARA4(1, 1) (0.1, 0.2) 82.13 84.04 81.72 83.19 74.90 30.7 45.9
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Scenario 3: Continuous skewed endpoint

Consider an ASD with bounded continuous endpoint Y ∈ R. Suppose that the covariate

vectorW = (W1,W2,W3) and the binary subgroup indicator V (W ) are generated in the

same manner. Assume the endpoint Y follows a gamma distribution as:

a = 1 + (1 + βA1I(A = 1) + βA2I(A = 2)) (1 + βV V ) +
3∑

p=1

βW,p ∗Wp,

b =
1 + βA1I(A = 1) + βA2I(A = 2)

1 + βV V
,

Y ∼ Gamma(a, b), Y is truncated if Y > 12.

We fixed the parameter values (βV , βW,1, βW,2, βW,3) = (−0.4, 0.26,−0.37, 0.44). The

values of βA1 and βA1 were adjusted to obtain the FWER and power.

In Table 7.1, we reported the Type I error rate with (βA1, βA2) = (0, 0). For some

types of CARAs, Fisher’s combination test results in a slight inflated type I error rate.

The weighted inverse normal is able to control the type I error at the nominal level 0.05.

In Table 7.2a and Table 7.2b, power, correct selection rate (M) and the proportion of

control arm in the first stage (C1) and the second stage (C2) are reported. In Table

7.2a, we considered the situation that only one arm is more effective than the control

(βA1 = 0, βA2 = 0.14) while in Table 7.2b, there are differential treatment effects in the

two treatment arms (βA1 = 0.06, βA2 = 0.15). Though most CARA types appear to

be more powerful than the traditional approach, we can observe some trade-offs exist-

ing in some types of CARA which show a slight drop in power and correct selection

rate but significantly increase the proportion of superior arms (e.g. CARA1(1, 1) and
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CARA3(1, 1)).

Table 7.1: Type I error rate (in %) comparison between the proposed ASD

and the traditional approach based ASD with continuous skewed endpoints.

Allocation Dunnett α(%) Simes α(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CR (t-test) 4.88 4.91 4.69 4.53

CARA1(0, 1) 5.52 5.39 5.26 4.80

CARA1(1, 0) 5.39 5.09 5.19 4.81

CARA1(1, 1) 6.23 5.55 6.01 5.22

CARA2(0, 1) 5.52 5.39 5.26 4.80

CARA2(1, 0) 5.08 5.23 4.89 4.77

CARA2(1, 1) 5.68 5.23 5.30 4.88

CARA3(0, 1) 5.52 5.39 5.26 4.80

CARA3(1, 0) 5.46 5.03 5.30 4.82

CARA3(1, 1) 6.72 5.67 6.54 5.37

CARA4(0, 1) 5.52 5.39 5.26 4.80

CARA4(1, 0) 5.22 5.13 4.97 4.77

CARA4(1, 1) 5.56 5.24 5.30 4.77
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Table 7.2a: Power (in %) comparison between the proposed ASD and the

traditional approach based ASD with continuous skewed endpoints. Only

one arm has treatment effect.

Allocation (βA1, βA2) Dunnett Power(%) Simes Power(%) M(%) C1(%) C2(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CR (t-test) (0, 0.14) 83.03 84.60 81.90 82.77 92.43 33.4 50.0

CARA1(0, 1) (0, 0.14) 84.05 85.91 83.03 83.93 93.01 32.0 46.9

CARA1(1, 0) (0, 0.14) 84.23 85.92 83.21 83.96 92.90 31.7 46.2

CARA1(1, 1) (0, 0.14) 83.32 84.66 82.21 82.88 92.33 30.4 43.3

CARA2(0, 1) (0, 0.14) 84.05 85.91 83.03 83.93 93.01 32.0 46.9

CARA2(1, 0) (0, 0.14) 84.80 86.08 83.86 84.10 93.12 32.9 48.9

CARA2(1, 1) (0, 0.14) 83.56 85.38 82.43 83.46 92.61 31.5 45.8

CARA3(0, 1) (0, 0.14) 84.05 85.91 83.03 83.93 93.01 32.0 46.9

CARA3(1, 0) (0, 0.14) 84.06 85.89 83.27 83.94 93.04 31.3 45.1

CARA3(1, 1) (0, 0.14) 82.38 84.35 81.23 82.10 92.10 29.9 42.3

CARA4(0, 1) (0, 0.14) 84.05 85.91 83.03 83.93 93.01 32.0 46.9

CARA4(1, 0) (0, 0.14) 84.88 86.38 83.72 84.33 93.13 33.1 49.3

CARA4(1, 1) (0, 0.14) 83.98 85.74 83.00 83.88 93.03 31.7 46.2
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Table 7.2b: Power (in %) comparison between the proposed ASD and the

traditional approach based ASD with continuous skewed endpoints. Two

arms have differential treatment effect.

Allocation (βA1, βA2) Dunnett Power(%) Simes Power(%) M(%) C1(%) C2(%)

N = 200+500 Fisher’s Weighted Fisher’s Weighted

CR (t-test) (0.06, 0.15) 84.61 86.24 84.28 85.51 81.93 33.4 50.0

CARA1(0, 1) (0.06, 0.15) 85.49 86.95 85.12 86.01 82.60 31.4 46.8

CARA1(1, 0) (0.06, 0.15) 85.60 87.19 84.99 86.33 82.61 31.0 46.1

CARA1(1, 1) (0.06, 0.15) 84.23 86.21 83.74 85.33 82.01 29.2 43.0

CARA2(0, 1) (0.06, 0.15) 85.49 86.95 85.12 86.01 82.60 31.4 46.8

CARA2(1, 0) (0.06, 0.15) 85.62 87.14 85.24 86.36 82.53 32.6 48.8

CARA2(1, 1) (0.06, 0.15) 85.37 86.58 84.88 85.93 82.51 30.7 45.6

CARA3(0, 1) (0.06, 0.15) 85.49 86.95 85.12 86.01 82.60 31.4 46.8

CARA3(1, 0) (0.06, 0.15) 85.56 87.09 85.07 86.52 82.81 30.4 44.9

CARA3(1, 1) (0.06, 0.15) 83.67 85.92 83.20 85.01 81.76 28.6 41.9

CARA4(0, 1) (0.06, 0.15) 85.49 86.95 85.12 86.01 82.60 31.4 46.8

CARA4(1, 0) (0.06, 0.15) 86.06 87.29 85.68 86.66 82.62 32.9 49.3

CARA4(1, 1) (0.06, 0.15) 85.19 86.69 84.94 85.93 82.58 30.9 46.1
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5.4 Discussion and Conclusions

In this section, we proposed an innovative framework of ASD with CARA and TMLE.

Under the framework, we demonstrated how to carry out an ASD using CARA ran-

domization in both stages and applying TMLE to handle the “messy” data. Simulation

studies have been conducted to verify the concept through the Type I error rates and

to compare the power between the proposed ASD and the traditional ASD. We also put

the two combination methods and two multiple testing methods side-by-side to further

investigate their operating characteristics under different simulation settings.

The Simes method is more conservative than Dunnett method in all conditions for

both type I error and power. Both Fisher’s method and weighted inverse normal method

are able to control the type I error at nominal level 0.05 except that when the endpoint

is skewed, Fisher’s method inflates the type I error up to 0.067. In terms of power,

weighted inverse normal method dominated Fisher’s method in every single situation.

This phenomenon has also been discussed in other literature, e.g. Zaykin 2011, Liptak

1958, Won et al. 2009. In general, Dunnett method with weighted inverse normal method

has an overall better performance than other combinations.

Furthermore, the advantage of the proposed framework lies on two major points.

First, the proposed framework is very flexible in terms of the efficiency measure and ethics

measure. And it is capable of addressing trial efficiency and ethics simultaneously. The

diversity of the measures of trial efficiency and ethics as well as the tuning parameters

endures us the ability to assign more patients to superior treatment arm while retain
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the same power or even gain more power. Second, the nonparametric nature of TMLE

can avoid model mis-specification and control Type I error rate under different and

complicated data generating distributions. Particularly, when the normality of the data

is invalid, which is always true in real applications, our proposed framework showed

superior robustness through a two-step approach than tradition methods with respect to

type I error control, power and correct selection rate.

It is worth mentioning that in scenario 1 when the endpoint was set to be binary,

we didn’t see a clear power gain or correct selection rate increase using the proposed

ASD. During the simulation, the allocation probability Gi(a, v) was restricted by a lower

bound and a upper bound, which was unnecessary for other scenarios with continuous

endpoint. Moreover, the initial number of patients in the second stage was also set to

be one time more than in other scenarios. All these may be caused by the convergence

issue in CARA where an initial estimate is needed to start the allocation procedure.

A possible solution is to use the estimates of design parameters from the first stage to

initiate the CARA procedure in the second stage. By doing this, we can potentially save

the initial number of patients in the second stage and speed up the convergence in CARA

and TMLE. However, whether or not the type I error will get compromised is unknown.

A future work is needed in both theory and simulation to confirm this thought.
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6 Conclusions

For the first two arms, we proposed an innovative framework of CARA design with

TMLE. Under the framework, we demonstrated how to set up the allocation of a patient

based on the full history of the previous patients’ treatment assignments, responses,

and covariates, and the covariates of the current patient to achieve different objectives.

The TMLE is used to handle the “messy” data which is caused by the adaption in

CARA design. In the theory part, we showed the consistency and asymptotic properties

of the proposed family of CARA designs. In addition, the TMLE has been proved

to have asymptotic normality in the proposed CARA designs under certain conditions.

Furthermore, the simulation studies successfully verified the concept of the designs in

different angels. The proposed framework shows advantage in both flexibility in terms of

efficiency and ethics and robustness in terms of type I error, power and ATE estimation.

For aim 3, we introduced the concept of incorporating CARA and TMLE in ASD.

Under the framework, we demonstrated how to carry out an ASD using CARA random-

ization in both stages and applying TMLE to handle the “messy” data in interim analysis

and final analysis. Simulation studies have been conducted to justify the validity of the

approach through the Type I error rates and to compare the power between the proposed

approach and the traditional approach. In addition to the main results, we found that

the Simes method is more conservative than Dunnett method in all conditions for both

type I error and power. Both Fisher’s method and weighted inverse normal method are

able to control the type I error at nominal level except that Fisher’s method inflates the

112



rate of type I error when the endpoint is highly skewed. In terms of power, weighted

inverse normal method dominated Fisher’s method in every single situation. In general,

Dunnett method with weighted inverse normal method has an overall better performance

than other combinations.

It is worth mentioning that the performance of either CARA with TMLE or ASD

with CARA and TMLE doesn’t dominate the tradition approaches when the trials have

binary endpoint. There are two reasons for this phenomenon. First, the binary endpoint

provides much less information than continuous endpoint does. This raises the diffi-

culty in statistical inference. Second, the convergence of CARA and TMLE is the most

challenge issue particularly when trial has binary endpoint. Throughout the simulation

studies in this dissertation, three remedy methods were used to tackle this problem: (1)

one may restrict G function in some pre-specified interval which avoids the allocation

probability to be zero and one. Actually, the restriction is unnecessary for continuous

endpoint. (2) instead of allocating the initial patients in a complete random manner, one

may apply stratified permuted block randomization to achieve a more balanced initial

allocation. (3) one can increase the initial number of patients and give CARA more time

to find a more accurate estimation of the design parameters.

In summary, we accomplished the three arms in the dissertation. The proposed

design frameworks are based on semiparametric approaches and avoid making model as-

sumptions. This desirable feature makes it more appealing to biostatisticians than other

parametric methods. Moreover, the proposed design framework provides the flexibility

of balancing trial efficiency and ethics. This innovative property may further encourage
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clinicalists in practicing adaptive designs in real applications.
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7 Appendix: Proofs

Lemma 1: Suppose there is a class of estimating function MB
h (φ)(Oi) of a parameter

φ ∈ R indexed by h has the following formMB
h (φ)(Oi) =

IB((Ai,Vi))
Gi(Ai,Vi)

(h(Oi)−φ), where the

indexed function h : R → R is bounded in [hL, hU ], the indicator function IB(x) = 1 if the

x ∈ B. Let SB
n (φ) denote the martingale SB

n (φ) =
∑n

i=1

(
MB

h (φ)(Oi)− EQ0,Gi
MB

h (φ)(Oi)
)
.

Then 1
n
SB
n (φ)

a.s.−→ 0 if Gi is bounded in [gL, gU ] for all i and 0 < gL < gU < 1.

Proof of Lemma 1: Let sBn denote the martingale difference sBn = MB
h (φ)(On) −

EQ0,GnM
B
h (φ)(On). Define the true parameter of MB

h (φ)(Oi) as EQ0Gi
MB

h (φ0)(Oi) = 0.

φ0 can be expressed explicitly as
∑

{a,v}∈B{EQ0(h(Y )|A = a, V = v)p0(v)}/p0,B(v), where

p0,B(v) =
∑

{a,v}∈B p0(v). We use the short notation IB(i) to denote the indicator function

IB({Ai, Vi}). For p = 1, E
(|sBi |p|Oi−1

)
= 0. For any 1 < p ≤ 2, we have

E
(|sBi |p|Oi−1

)
= E

(|sBi |p|Oi−1

)
= E

(∣∣∣ IB(i)

Gi(Ai, Vi)
(h(Oi)− φ)− p0,B(v)(φ0 − φ)

∣∣∣p∣∣∣∣Oi−1

)

= E

(∣∣∣φ(p0,B(v)− IB(i)

Gi(Ai, Vi)

)
+

IB(i)

Gi(Ai, Vi)
h(Oi)− p0,B(v)φ0

∣∣∣p∣∣∣∣Oi−1

)

≤ E

(∣∣∣φ(p0,B(v)− IB(i)

Gi(a, v)

) ∣∣∣p + ∣∣∣ IB(i)

Gi(Ai, Vi)
h(Oi)− p0,B(v)φ0

∣∣∣p∣∣∣∣Oi−1

)

≤ E

(∣∣∣φ(p0,B(v)− IB(i)

Gi(Ai, Vi)

) ∣∣∣p∣∣∣∣Oi−1

)

+E

(∣∣∣ IB(i)
Gi(a, v)

h(Oi)− p0,B(v)φ0

∣∣∣p∣∣∣∣Oi−1

)
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For the first term on the right hand side,

E

(∣∣∣φ(p0,B(v)− IB(i)

Gi(Ai, Vi)

) ∣∣∣p∣∣∣∣Oi−1

)
= φpE

(∣∣∣p0,B(v)− IB(i)

Gi(Ai, Vi)

∣∣∣p∣∣∣∣Oi−1

)

by Hölder’s inequality

< φp

(
EQ0Gi

(
p0,B(v)

2 − 2p0,B(v)

Gi(Ai, Vi)
IB(i) +

IB(i)

Gi(Ai, Vi)2

))p/2

≤ φp

(
1 +

1

g2L

)p/2

For the second term on the right hand side,

E

(∣∣∣ IB(i)

Gi(Ai, Vi)
h(Oi)− p0,B(v)φ0

∣∣∣p∣∣∣∣Oi−1

)
<

(
EQ0Gi

(
IB(i)

Gi(Ai, Vi)
h(Oi)− p0,B(v)φ0

)2
)p/2

by Hölder’s inequality

≤
(
EQ0Gi

(
IB(i)

G2
i (Ai, Vi)

h(Oi)
2 + p0,B(v)

2φ2
0 − 2

p0,B(v)φ0

Gi(Ai, Vi)
h(Oi)IB(i)

))p/2

≤
(
max(h2L, h

2
U)

g2L
+ φ2

0

)p/2

Thus, E (|si|p|Fi−1) < φp
(
1 + 1

g2L

)p/2
+ φp

0

(
1 +

max(h2
L,h

2
U )

g2Lφ
2
0

)p/2
. For a sequence {ci = i}n,

we have

∞∑
i=1

c−p
i E (|si|p|Oi−1) =

∞∑
i=1

E (|si|p|Oi−1)

cpi

=
∞∑
i=1

φp
(
1 + 1

g2L

)p/2
+ φp

0

(
1 +

max(h2
L,h

2
U )

g2Lφ
2
0

)p/2
ip

<∞.

Therefore
∑∞

i=1 a
−p
i E (|si|p|Oi−1) <∞ holds for all 1 ≤ p ≤ 2. According to the martin-

gale strong laws of large numbers,

Sn

cn
=

1

n

n∑
i=1

(
MB

h (φ)(Oi(i))− EQ0Gi
MB

h (φ)(Oi)
) a.s.−→ 0,

for all φ ∈ Θ.
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Proof of Theorem 1:

First, simply let IB(i) = Ii(a, v), h(Oi) = Yi, φ = θa,v0,1 . Under conditions (1) and (2),

Lemma 1 gives
n∑

i=1

Ii(a, v)

Gi(a, v)
(Yi − θa,v0,1) = 0.

It follows immediately that θ̂a,vn,1
a.s.−→ θa,v0,1 . Similarly, we have θ̂a,vn,2

a.s.−→ θa,v0,2 . Thus, θ̂n
a.s.−→

θ0 as n → ∞. Since under condition (3), the allocation function Gi is a continuous

function in terms of θ̂i−1 and the target allocation function G0 is also a continuous

function in terms of θ0, by continuous mapping we have

Gn(a, v)
a.s.−→ G0(a, v).

Second, if we let IB(i) = Ii(a, v), h(Oi) = G0(Ai, Vi) and φ = 0, we have φ0 = G0(a, v)

1

n

n∑
i=1

Ii(a, v)

Gi(a, v)
G0(a, v)

a.s.−→ p0(v)G0(a, v).

This implies that Na,v(n)/n
a.s.−→ p0(v)G0(a, v).

Lemma 2: Suppose there are two estimating functions MB1
h1

(φ1)(Oi) and M
B2
h2

(φ2)(Oi)

indexed by h1 and h2 respectively. h1 is bounded in [h1L, h1U ] and h2 is bounded in

[h2L, h2U ]. Under the condition that B1 = B2 = {(a, v)}, we omit the superscript. Let

Sn,h1(φ1) and Sn,h2(φ2) denote the martingales Sn,h1(φ1) =
∑n

i=1 (Mh1(φ1)(Oi)− EQ0,Gi
Mh1(φ1)(Oi)),

Sn,h2(φ2) =
∑n

i=1 (Mh2(φ2)(Oi)− EQ0,Gi
Mh2(φ2)(Oi)). Then

√
n

⎡
⎢⎢⎣Sn,h1(φh1,0)

Sn,h2(φh2,0)

⎤
⎥⎥⎦ D−→ N

⎛
⎜⎜⎝0, p0(v)

G0(a, v)

⎡
⎢⎢⎣ φh2

1,0
− φ2

h1,0
φh1h2,0 − φh1,0φh2,0

φh1h2,0 − φh1,0φh2,0 φh2
2,0

− φ2
h2,0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ ,
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where φh1,0, φh2,0, φh2
1,0
, φh2

2,0
, φh1h2,0 are the true parameters of the martingale estimating

functionsMh1(φ)(Oi), Mh2(φ)(Oi), Mh2
1
(φ)(Oi), Mh2

2
(φ)(Oi), Mh1h2(φ)(Oi) respectively.

Proof of Lemma 2: By Theorem 1, we have 1
n
Sn,h1(φ1)

a.s.−→ 0 and 1
n
Sn,h2(φ2)

a.s.−→ 0.

Let sn,h1(φ1) and sn,h2(φ2) denote the corresponding martingale differences. It is easy to

show that the conditional variance of si,h1 , si,h2 and their conditional covariance are

EQ0Gi
(si,h1(φ1))

2 =
p0(v)

Gi(a, v)

(
φh2

1,0
− 2φ1φh1,0 + φ2

1

)
− p0(v)

2(φh1,0 − φ1)
2,

EQ0Gi
(si,h2(φ2))

2 =
p0(v)

Gi(a, v)

(
φh2

2,0
− 2φ2φh2,0 + φ2

2

)
− p0(v)

2(φh2,0 − φ2)
2,

EQ0Gi
(si,h1(φ1)si,h2(φ2)) =

p0(v)

Gi(a, v)
(φh1h2,0 − φ1φh2,0 − φ2φh1,0 + φ1φ2)

−p0(v)2(φh1,0 − φ1)(φh2,0 − φ2).

Consider a linear combination ti = α1si,h1(φ1) + α2si,h2(φ2), α1, α2 ∈ R. We rewrite it in

vector form ti = α
Tsi(φ1, φ2)(Oi), whereα

T = (α1, α2), si(φ1, φ2)(Oi) = (si,h1(φ1), si,h2(φ2)).

The conditional variance-covariance matrix of ti is

Vti = EQ0Gi
t2i = αT

⎡
⎢⎢⎣ EQ0Gi

(si,h1(φ1))
2 EQ0Gi

(si,h1(φ1)si,h2(φ2))

EQ0Gi
(si,h1(φ1)si,h2(φ2)) EQ0Gi

(si,h2(φ2))
2

⎤
⎥⎥⎦α

= αT

(
p0(v)

Gi(a, v)
m1 − p0(v)

2m2

)
α,

where

m1 =

⎡
⎢⎢⎣ φh2

1,0
− 2φ1φh1,0 + φ2

1 φh1h2,0 − φ1φh2,0 − φ2φh1,0 + φ1φ2

φh1h2,0 − φ1φh2,0 − φ2φh1,0 + φ1φ2 φh2
2,0

− 2φ2φh2,0 + φ2
2

⎤
⎥⎥⎦ ,

m2 =

⎡
⎢⎢⎣ (φh1,0 − φ1)

2 (φh1,0 − φ1)(φh2,0 − φ2)

(φh1,0 − φ1)(φh2,0 − φ2) (φh2,0 − φ2)
2

⎤
⎥⎥⎦ .

118



{tn} is a martingale difference sequence. Let Tn =
∑n

i=1 ti be the martingale sum of ti.

We define VT as

1

n
VT = lim

n→∞
1

n

n∑
i=1

E[t2i ] = αT

(
p0(v)m1 lim

n→∞
1

n

n∑
i=1

E

(
1

Gi(a, v)

)
− p0(v)

2m2

)
α

Since Gi(a, v) depends on Oi−1 through θ̂i−1, by Theorem 1 we have θ̂0
a.s.−→ θ0. Thus,

E
(

1
Gi(a,v)

)
→ 1

G0(a,v)
as long as Gi(a, v) is a bounded and continuous function of θ̂i−1.

Therefore, 1
n
VT → αT

(
p0(v)

G0(a,v)
m1 − p0(v)

2m2

)
α. We define WT as

1

n
WT = lim

n→∞
1

n

n∑
i=1

EQ0Gi
[t2i ] = α

T

(
p0(v)m1 lim

n→∞
1

n

n∑
i=1

1

Gi(a, v)
− p0(v)

2m2

)
α.

By Theorem 1 and continuous mapping, we have 1
n
WT

P−→ αT
(

p0(v)
G0(a,v)

m1 − p0(v)
2m2

)
α.

Thus, for the martingale ti we have WT
P−→ VT . For all ε > 0, we have:

n∑
j=1

⎡
⎢⎢⎣E
⎛
⎜⎜⎝
⎛
⎜⎜⎝ tj√

nαT
(

p0(v)
G0(a,v)

m1 − p0(v)2m2

)
α

⎞
⎟⎟⎠

2

× I

⎛
⎜⎜⎝
∣∣∣∣∣ tj√

nαT
(

p0(v)
G0(a,v)

m1 − p0(v)2m2

)
α

∣∣∣∣∣ ≥ ε

⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎤
⎥⎥⎦

≤ 1

n

n∑
j=1

⎡
⎢⎢⎣E
⎛
⎜⎜⎝
⎛
⎜⎜⎝ supj |tj|√

αT
(

p0(v)
G0(a,v)

m1 − p0(v)2m2

)
α

⎞
⎟⎟⎠

2

× I

⎛
⎝n ≤ supj(t

2
j)/ε

2

αT
(

p0(v)
G0(a,v)

m1 − p0(v)2m2

)
α

⎞
⎠
⎞
⎠
⎤
⎦

≤ gU (α2
1φ

2
1 + α2

2φ
2
2 + ρ12)

g2Lα
T (p0(v)m1 − gUp0(v)2m2)α

×
(
1

n

n∑
j=1

I

(
n ≤ gU (α2

1φ
2
1 + α2

2φ
2
2 + ρ12) /ε

2

g2Lα
T (p0(v)m1 − gUp0(v)2m2)α

))
−→ 0,
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where ρ12 = α2
1 max(h21L, h

2
1U)) + α2

2 max(h22L, h
2
2U). Therefore, the Lindeberg conditions

holds. By martingale central limit theorem,

1√
n

n∑
i=1

αTsi(φ1, φ2)(Oi)
D−→ N

(
0,αT

(
p0(v)

G0(a, v)
m1 − p0(v)

2m2

)
α

)
(27)

The convergence holds for all α1, α2 ∈ R, by Cramer-Wold Theorem,

1√
n

⎡
⎢⎢⎣Sn,h1(φ1)

Sn,h2(φ2)

⎤
⎥⎥⎦ D−→ N

(
0,

p0(v)

G0(a, v)
m1 − p0(v)

2m2

)
.

In addition, when plugging in the true parameter we have

1√
n

⎡
⎢⎢⎣Sn,h1(φh1,0)

Sn,h2(φh2,0)

⎤
⎥⎥⎦ D−→ N

⎛
⎜⎜⎝0, p0(v)

G0(a, v)

⎡
⎢⎢⎣ φh2

1,0
− φ2

h1,0
φh1h2,0 − φh1,0φh2,0

φh1h2,0 − φh1,0φh2,0 φh2
2,0

− φ2
h2,0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

Proof of theorem 2: Firstly, we simply let h1(Oi) = Yi, h2(Oi) = Y 2
i . Under conditions

(1), (2), (3), (4) and (5), Lemma 2 gives

√
n
(
(θ̂a,vn,1, θ̂

a,v
n,2)− (θa,v0,1 , θ

a,v
0,2)
)

D−→ N(0,Σa,v
0 ),

where

Σa,v
0 =

1

p0(v)G0(a, v)

⎛
⎜⎜⎝ θa,v0,2 − (θa,v0,1)

2 θa,v0,3 − (θa,v0,1)θ
a,v
0,2

θa,v0,3 − (θa,v0,1)θ
a,v
0,2 θa,v0,3 − (θa,v0,2)

2

⎞
⎟⎟⎠ ,

where θa,v0,3 and θ
a,v
0,4 are defined as the 3rd and 4th conditional moment of Y given (A, V ) =

(a, v) under P0. Two different pairs of (a, v) is zero because the the multiplicity of the

indication functions become zero. Therefore,

√
n(θ̂n − θ0) D−→ N(0,ΣCARA

0 ),

where ΣCARA
0 = diag{Σa,v

0 , (a, v) ∈ A× V} is a diagonal block matrix.
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Secondly, we let h(Oi) = G0(Ai, Vi) and φ = 0, then the true parameter φh1,0 =

G0(a, v) and φh2
1,0

= G0(a, v)
2. Lemma 2 implies

1√
n

n∑
i=1

(
Ii(a, v)

Gi(Ai, Vi)
G0(Ai, Vi)− p0(v)G0(a, v)

)
D−→ N(0,

p0(v)

G0(a, v)
G0(a, v)

2−p0(v)2G0(a, v)
2).

By simplifying the above expression, we have

√
n (Na,v(n)/n− p0(v)G0(a, v))

D−→ N
(
0, p0(v)G0(a, v)− p0(v)

2G0(a, v)
2
)
.

Proof of Theorem 3: Consider the fluctuating model QG0(θ0,β0, ε) as defined in

(19) and (20). The local fluctuation model of QG0(θ0,β0, ε0) at ε0 then is denoted as

QG0(θ0,β0, ε0)(ε). Since ε0 is defined as the minimum of the expectation of the loss

function defined in theorem 3 under Q0 from the data generating distribution P0 and the

true design parameter θ0 (or G0), the derivative of EQ0G0L(QG0(θ0,β0, ε0)(ε)) at ε = 0

equals zero. Thus, we have for all j ∈ {0, 1, . . . , K}

EQ0G0

(
∂

∂εj
L(QG0(θ0,β0, ε0)(ε))

∣∣∣
εj=0

)
= EQ0G0

(
Hj(G0)(Q̄G0(θ0,β0, ε0)− Y )

)
= EQ0G0

(
ICj,Y |A,W (QG0(θ0,β0, ε0), G0)

)
= 0

EQ0G0

(
∂

∂εj
L(QG0(θ0,β0, ε0)(ε))

∣∣∣
εj=0

)
= EQ0G0

(
Q̄G0(θ0,β0, ε0)(j,W )−Ψj(QG0(θ0,β0, ε0)

)
= EQ0G0 (ICj,W (QG0(θ0,β0, ε0), G0)) = 0

Simply by combining the above two equations, it follows immediately that

EQ0G0 (ICj(QG0(θ0,β0, ε0), G0)) = 0
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According to Theorem 1.3M. Van der Laan and Robins 2012, the above equation implies

ψ0 −Ψ(QG0(θ0,β0, ε0)) = 0.

Proof of theorem 4:

By definition,

β0 = argmax
β

EQ0G0 log [expit (μ0(θ0,β)(O))]
Y [1− expit (μ0(θ0,β)(O))]

1−Y

= argmax
β

EQ0Gi

(
G0(Ai, Vi)

Gi(Ai, Vi)
log [expit (μ0(θ0,β)(Oi))]

Yi [1− expit (μ0(θ0,β)(Oi))]
1−Yi

)
,

where μ0(θ0,β)(O) = logit θA,V
0,1 +Wβ. Equivalently, β0 is the true parameter of

EQ0Gi

(
∂

∂βj

G0(Ai, Vi)

Gi(Ai, Vi)
log [expit (μ0(θ0,β)(Oi))]

Yi [1− expit (μ0(θ0,β)(Oi))]
1−Yi

∣∣∣
βj=β0,j

)

= EQ0Gi

(
G0(Ai, Vi)

Gi(Ai, Vi)
Wi,j

(
Yi − Q̄(θ0,β0)(Ai,W i)

))
= 0,

for all j ∈ {1, . . . , nW}. Let Mj(θ,β)(Oi) = Gθ(Ai,Vi)
Gi(Ai,Vi)

Wi,j

(
Yi − Q̄(θ,β)(Ai,W i)

)
and

then Sj,n(θ0,β0) =
∑n

i=1Mj(θ0,β0)(Oi) is a martingale. Under condition (2), we have Gi

is bounded in [gL, gU ] for all i and 0 < gL < gU < 1. For p = 1, E (|Mj(θ0,β0)(Oi)|p|Oi−1) =

0. For any 1 < p ≤ 2, we have

E (|Mj(θ0,β0)(Oi)|p|Oi−1) = E

(∣∣∣G0(Ai, Vi)

Gi(Ai, Vi)
Wij

(
Yi − Q̄(θ0,β0)(Ai,W i)

) ∣∣∣p∣∣∣∣Oi−1

)

≤
(
gU
gL

)p

E

(∣∣∣Wij

(
Yi − Q̄(θ0,β0)(Ai,W i)

) ∣∣∣p∣∣∣∣Oi−1

)

≤
(
gU
gL

)p

max |Wj|p <∞.

Therefore, for a sequence {ci = i}n, we have that
∑∞

i=1 c
−p
i E (|Mj(θ0,β0)(Oi)|p|Oi−1) <

∞ holds for all 1 ≤ p ≤ 2. According to the martingale strong laws of large num-
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bers, 1
n

∑n
i=1Mj(θ0,β0)(Oi)

a.s.−→ 0 holds for all j ∈ {1, . . . , nW}. Since from the-

orem 1, we know θ̂n
a.s.−→ θ0. It follows immediately by continuous mapping that

1
n

∑n
i=1Mj(θ̂n,β0)(Oi)

a.s.−→ 0. Since 1
n

∑n
i=1Mj(θ̂n, β̂n)(Oi) = 0, under condition (6)

we have

1

n

n∑
i=1

M (θ̂n,β0)(Oi) =
1

n

n∑
i=1

(
M (θ̂n,β0)(Oi)−M (θ̂n, β̂n)(Oi)

)

=

(
1

n

n∑
i=1

− d

dβ0

M (θ̂n,β0)(Oi)

)
(β̂n − β0)

a.s.−→ 0,

where M (θ,β) = (M1(θ,β), . . . ,MnW
(θ,β)) is the stacked vector, and

− 1

n

n∑
i=1

d

dβ0,j
Mk(θ̂n,β0)(Oi) =

1

n

n∑
i=1

G0(Ai, Vi)

Gi(Ai, Vi)
Wi,jWi,kQ̄(θ̂n,β0)(1− Q̄(θ̂n,β0))

a.s.−→ EQ0G0

(
WjWkQ̄(θ0,β0)(1− Q̄(θ0,β0))

)
<∞.

Assume that the matrix EQ0G0

(
WW T Q̄(θ0,β0)(1− Q̄(θ0,β0))

)
is invertible, then we

have β̂n
a.s.−→ β0 as n→ ∞. Similarly, for ε0 we have

ε0 = argmax
ε

EQ0G0 log
[
Q̄G0(θ0,β0, ε)

]Y [
1− Q̄G0(θ0,β0, ε)

]1−Y

= argmax
ε

EQ0Gi

G0(Ai, Vi)

Gi(Ai, Vi)
log
[
Q̄G0(θ0,β0, ε)(Oi)

]Y [
1− Q̄G0(θ0,β0, ε)(Oi)

]1−Y
.

Equivalently, ε0 is the true parameter of

EQ0Gi

(
G0(Ai, Vi)

Gi(Ai, Vi)
Hj(G0)(Ai,W i)

(
Yi − Q̄G0(θ0,β0, ε0)(Ai,W i)

))
= 0,

for all j ∈ {0, 1, . . . , K}. LetMj(θ,β, ε)(Oi) =
Gθ(Ai,Vi)
Gi(Ai,Vi)

Hj(G0)(Ai,W i)
(
Yi − Q̄Gθ

(θ,β, ε)(Ai,W i)
)

and then Sj,n(θ0,β0, ε0) =
∑n

i=1Mj(θ0,β0, ε0)(Oi) is a martingale. Under condition (2),

we have Gi is bounded in [gL, gU ] for all i and 0 < gL < gU < 1. Also G0 should be
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bounded in [gL, gU ]. For p = 1, E (|Mj(θ0,β0, ε0)(Oi)|p|Oi−1) = 0. For any 1 < p ≤ 2,

we have

E (|Mj(θ0,β0, ε0)(Oi)|p|Oi−1)

≤
(
gU
gL

)p

E

(∣∣∣Hj(G0)(Ai,W i)
(
Yi − Q̄G0(θ0,β0, ε0)(Ai,W i)

) ∣∣∣p∣∣∣∣Oi−1

)

≤
(
gU
gL

)p
1

gL
<∞.

Therefore, we have that 1
n

∑n
i=1Mj(θ0,β0, ε0)(Oi)

a.s.−→ 0 holds for all j ∈ {0, 1, . . . , K}.

As previously showed that (θ̂n, β̂n)
a.s.−→ (θ0,β0), it follows immediately by continuous

mapping that 1
n

∑n
i=1Mj(θ̂n, β̂n, ε0)(Oi)

a.s.−→ 0. Since 1
n

∑n
i=1Mj(θ̂n, β̂n, ε̂n)(Oi) = 0, we

have

1

n

n∑
i=1

M (θ̂n, β̂n, ε0)(Oi) =
1

n

n∑
i=1

(
M (θ̂n, β̂n, ε0)(Oi)−M (θ̂n, β̂n, ε̂n)(Oi)

)

=

(
1

n

n∑
i=1

− d

dε0
M (θ̂n, β̂n, ε0)(Oi)

)
(ε̂n − ε0) a.s.−→ 0,

where M (θ,β, ε) = (M1(θ,β, ε), . . . ,MK(θ,β, ε)) is the stacked vector, and

− 1

n

n∑
i=1

d

dε0,j
Mk(θ̂n, β̂n, ε0)(Oi)

=
1

n

n∑
i=1

G0(Ai, Vi)

Gi(Ai, Vi)
Hj(G0)Hk(G0)Q̄(θ̂n, β̂n, ε0)(1− Q̄(θ̂n, β̂n, ε0))

a.s.−→ EQ0G0

(
Hj(G0)Hk(G0)Q̄(θ0,β0)(1− Q̄(θ0,β0))

)
.

When j �= k,Hj(G0)Hk(G0) = 0, the matrix EQ0G0

(
H(G0)H(G0)

T Q̄(θ0,β0)(1− Q̄(θ0,β0))
)

is a diagonal matrix. Hence, we put all things together that

(θ̂n, β̂n, ε̂n)
a.s.−→ (θ0,β0, ε0)
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as n→ ∞.

Proof of theorem 5:

According to Theorem 3, we have EQG0
Gi

(
G0(Ai,Vi)
Gi(Ai,Vi)

IC(QG0 , G0)(Oi)
)

= 0. And be-

cause (θ̂n, β̂n, ε̂) solves the estimating equation (18) according to theorem 4, we have

1
n

∑n
i=1

Gn(Ai,Vi)
Gi(Ai,Vi)

IC(Q�
n, Gn)(Oi) = 0. Therefore, by the definition of pathwise differentia-

bility, we have

ψ̂TMLE
n,j − ψ0 = Ψ(Q�

n)−Ψ(QG0(θ0,β0, ε0))

= − 1

n

n∑
i=1

EQG0
Gi

(
Gn(Ai, Vi)

Gi(Ai, Vi)
IC(Q�

n, Gn)(Oi)

)

=
1

n

n∑
i=1

G0(Ai, Vi)

Gi(Ai, Vi)
IC(QG0 , G0)(Oi)

+
1

n

n∑
i=1

[
Gn(Ai, Vi)

Gi(Ai, Vi)
IC(Q�

n, Gn)(Oi)− G0(Ai, Vi)

Gi(Ai, Vi)
IC(QG0 , G0)(Oi)

]

− 1

n

n∑
i=1

EQG0
Gi

[
Gn(Ai, Vi)

Gi(Ai, Vi)
IC(Q�

n, Gn)(Oi)− G0(Ai, Vi)

Gi(Ai, Vi)
IC(QG0 , G0)(Oi)

]
.

We use notation D(θ,β, ε)(Oi) = Gθ(Ai, Vi)IC(Qθ(θ,β, ε), Gθ)(Oi), then we have by

Taylor expansion

1

n

n∑
i=1

[
Gn(Ai, Vi)

Gi(Ai, Vi)
IC(Q�

n, Gn)(Oi)− G0(Ai, Vi)

Gi(Ai, Vi)
IC(QG0 , G0)(Oi)

]

=

(
1

n

n∑
i=1

1

Gi

dD(θ,β, ε)

d(θ,β, ε)

∣∣
(θ,β,ε)=(θ0,β0,ε0)

(Oi)

)(
(θ̂n, β̂n, ε̂n)− (θ0,β0, ε0)

)
,

and

1

n

n∑
i=1

EQG0
Gi

[
Gn(Ai, Vi)

Gi(Ai, Vi)
IC(Q�

n, Gn)(Oi)− G0(Ai, Vi)

Gi(Ai, Vi)
IC(QG0 , G0)(Oi)

]

=

(
1

n

n∑
i=1

EQG0
Gi

[
1

Gi

dD(θ,β, ε)

d(θ,β, ε)

∣∣
(θ,β,ε)=(θ0,β0,ε0)

(Oi)

])(
(θ̂n, β̂n, ε̂n)− (θ0,β0, ε0)

)
.

125



Based on Theorem 1, we can easily have

1

n

n∑
i=1

(
1

Gi

dD(θ,β, ε)

d(θ,β, ε)(Oi)
− EQG0

Gi

[
1

Gi

dD(θ,β, ε)

d(θ,β, ε)(Oi)

]) ∣∣∣
(θ,β,ε)=(θ0,β0,ε0)

= op(1).

Assume all conditions in Theorem 8 in M. J. Van der Laan 2008 hold (where it is generally

the case), then
√
n
(
(θ̂n, β̂n, ε̂n)− (θ0,β0, ε0)

)
has an asymptotic multivariate normal

distribution. Therefore,

1√
n

n∑
i=1

[
Gn(Ai, Vi)

Gi(Ai, Vi)
IC(Q�

n, Gn)(Oi)− G0(Ai, Vi)

Gi(Ai, Vi)
IC(QG0 , G0)(Oi)

]

− 1√
n

n∑
i=1

EQG0
Gi

[
Gn(Ai, Vi)

Gi(Ai, Vi)
IC(Q�

n, Gn)(Oi)− G0(Ai, Vi)

Gi(Ai, Vi)
IC(QG0 , G0)(Oi)

]
= op(1).

It follows immediately that

√
n(ψ̂TMLE

n,j − ψ0) =
1√
n

n∑
i=1

G0(Ai, Vi)

Gi(Ai, Vi)
IC(QG0 , G0)(Oi) + op(1).

As a martingale difference EQG0
Gi

G0(Ai,Vi)
Gi(Ai,Vi)

IC(QG0 , G0)(Oi) = 0 for all i = 1, . . . , n, the

multivariate Lindeberg-Feller condition holds according to Condition 2 and the fact that

IC(·) ∈ L2(P )(K+1). Thus, we have

√
n
(
ψ̂

TMLE

n −ψ0

)
D−→ N(0,ΣTMLE

0 ) as n→ ∞,

where ΣTMLE
0 is a (K + 1)× (K + 1) covariance matrix with

σTMLE
0 (j, k) = EQ0G0 (ICj(QG0(θ0,β0, ε0), G0) ICk(QG0(θ0,β0, ε0), G0))

with a consistent estimator

σ̂TMLE
n (j, k) =

1

n

n∑
i=1

(
G�

n(Ai, Vi)

Gi(Ai, Vi)

)2

(ICj(Q
�
n, G

�
n)(Oi) ICk(Q

�
n, G

�
n)(Oi)) .
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