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Although a pathologists’ review of Papanicolaou smear cell samples has been 

successful in decreasing cervical cancer incidence, it is often costly and time-consuming. 

Quantitative cytology is a promising semi-automated method that measures cell features for 

further analysis or classification. There have been several advancements in classification 

algorithms, but many do not account for the nested data structure seen in quantitative 

cytology. Further, histologic diagnoses are separated into five or more classes, yet, multi-

class classification has not been investigated. Here, we compare the predictive performance 

of macrolevel discriminant analysis (MDA) to traditional discriminant analysis methods in 

multi-class settings on cervical quantitative cytology data and simulated data sets. MDA had 

similar overall classification accuracy and area under the ROC curve results to linear 

discriminant analysis (LDA) and quadratic discriminant analysis (QDA) when applied to 

cervical quantitative cytology data. However, MDA has a tremendous advantage over LDA 

and QDA methods when a macrolevel (patient or individual) effect is assumed and when one 

class is composed of a mixture of gaussian distributions.   
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BACKGROUND 

Introduction 

Approximately 583,000 cervical cancer cases are discovered each year, accounting 

for 7.9% of all female cancer incidences. Worldwide, 266,000 annual deaths are due to 

cervical cancer [1]. Treatment of cervical cancer is highly successful with an expected 91% 

5-year survival rate if detected while the cancer is localized and greater than 91% if detected 

in the pre-cancerous stage [2]. The current standard for detection of premalignant lesions is 

through the use of Papanicolaou smears in which a sample of cells is obtained from a 

patient’s cervix. A pathologist then examines these cells under a microscope and classifies a 

patient into one of several possible varying stages of disease including, but not limited to: 

cancer, high-grade, low-grade, atypical squamous cells of undetermined significance 

(ASCUS), or negative for dysplasia. One promising alternative to the costly and onerous 

Papanicolaou smear screening process is through the use of quantitative cytology. This semi-

automated technology classifies cells by measuring features on cell images. There have been 

several advancements in classification of the stages of cervical cancer due to computer 

automation and machine learning algorithms. However, many procedures only have the 

capability of predicting up to 2 classes. Because the histologic diagnosis is actually ordinal, it 

is usually dichotomized to be used in those methods.  

Many attempts have been made to apply classical discriminant analysis to repeated 

measures data, but fall short of accurate classification due to several factors: missing values 

of a single observation results in deletion of entire individuals, application to high 

dimensional data (i.e. # 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 ≪ 𝑝 × # 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠) is difficult if not 
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impossible, and central measures of tendency of the individual are compared to class means 

and variances with no regard to variation of observations within an individual [3].  Yamal et 

al. (currently under review) provides a solution to classifying data with a nested structure 

where multiple measurements are obtained per subject and correlations exist among 

measurements within a subject. This method is outlined here. 

First, assume that we wish to classify an observation into one of two classes (class r 

or l) using p predictors. Let X be a random vector of predictors or features and Y be the 

random response variable that can take on the value r or l. Additionally, let 𝜋𝑟  be the prior 

probability that a given observation is associated with the 𝑟th class. Applying Bayes’ 

theorem, we obtain     

 
Pr(𝑌 = 𝑟|𝑋 = 𝑥) =

𝜋𝑟𝑓𝑟(𝑥)

𝜋𝑟𝑓𝑟(𝑥) + 𝜋𝑙𝑓𝑙(𝑥)
 (1-1) 

where 𝑓𝑟(𝑥) is the class conditional density of X. Linear discriminant analysis (LDA) makes 

use of the assumption that observations in the kth class are drawn from a multivariate normal 

gaussian distribution where 𝑋~𝑁(𝜇𝑘 , 𝚺) such that   

 
𝑓𝑘(𝑥) =

1

(2𝜋)𝑝/2|𝚺|1/2 
𝑒−

1
2
(𝑥−𝜇𝑘)

𝑇𝚺−1(𝑥−𝜇𝑘) (1-2) 

Furthermore, LDA assumes that 𝚺 is a covariance matrix that is common to all K classes.  

Thus, 

 

Pr(𝑌 = 𝑟|𝑋 = 𝑥) =

𝜋𝑟
1

(2𝜋)
𝑝
2|𝚺|

1
2 

𝑒
−
1
2
(𝑥−𝜇𝑟)

𝑇𝚺−1(𝑥−𝜇𝑟)

𝜋𝑟
1

(2𝜋)
𝑝
2|𝚺|

1
2 

𝑒
−
1
2
(𝑥−𝜇𝑟)𝑇𝚺−1(𝑥−𝜇𝑟)+𝜋𝑙

1

(2𝜋)
𝑝
2|𝚺|

1
2 

𝑒
−
1
2(𝑥−𝜇𝑙)

𝑇
𝚺−1(𝑥−𝜇𝑙)

  (1-3) 

simplifies to 



3 

 

 
𝜋𝑟𝑒

−
1
2
(𝑥−𝜇𝑟)

𝑇𝚺−1(𝑥−𝜇𝑟)

𝜋𝑟𝑒
−
1
2
(𝑥−𝜇𝑟)𝑇𝚺−1(𝑥−𝜇𝑟) + 𝜋𝑙𝑒

−
1
2
(𝑥−𝜇𝑙)𝑇𝚺−1(𝑥−𝜇𝑙)

 (1-4) 

Taking the log of this simplified equation provides us the discriminant function where 

assignment of an observation, 𝑋 = 𝑥, is to the class for which 

 
𝛿𝑘(𝑥) = 𝑥

𝑇𝚺−1𝜇𝑘 −
1

2
𝜇𝑘
𝑇𝚺−1𝜇𝑘 + 𝑙𝑜𝑔𝜋𝑘 

(1-5) 

is largest for class 𝑟 or 𝑙.  

To demonstrate how Yamal et al. utilized the well-known classification methods of 

LDA, an implementation of macrolevel discriminant analysis (MDA) will be provided in the 

context of quantitative cytology data. Assume that p=2 features are measured on each cell 

and the patient (referring to the population of cells for a patient) will be classified into one of 

two 𝑘 classes, r or l. Here, we may denote patients as the macrolevel and cells as the 

microlevel. 

Let 𝑋𝑖𝑗 be a vector of random variables for p features of the selected cell 𝑖 of patient 

𝑗. 𝑋𝑖𝑗 can be constructed out of the sum of two distributions 𝑍𝑖𝑗 and 𝑈𝑗.  The distribution of 

all cells in the population given a class 𝑘 is 𝑓(𝑍𝑖𝑗|𝑌𝑗 = 𝑘) ~𝑀𝑉𝑁(𝜇𝑘 , 𝑉𝑧) where the 

covariance 𝑉𝑍 is a 𝑝 × 𝑝 matrix.  𝑈𝑗 is the patient effect (a vector of length 𝑝) measuring the 

deviation of the patient feature means from the population feature means and is distributed as 

a 𝑀𝑉𝑁(0,𝑉𝑈) where the covariance 𝑉𝑈 is a 𝑝 × 𝑝 matrix. Now, let 𝑋𝑗 be a vector of length 

𝑝 × 𝑛𝑗 where the features of each cell for a patient are vectorized and concatenated, and 𝑛𝑗 is 

the number of cells for patient j. Thus, the conditional distribution is 𝑓(𝑋𝑗|𝑌𝑗 =
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𝑘)~𝑀𝑉𝑁(𝝁𝒌, 𝑉𝑋
𝑗
) where 𝝁𝒌 is a column vector of length 𝑝 × 𝑛𝑗 composed of the mean of 

each feature for class 𝑘 and repeated 𝑛𝑗 times. Lastly: 

 

𝑉𝑋
𝑗
= (

𝑉𝑍 + 𝑉𝑈 𝑉𝑈 ⋯ 𝑉𝑈
𝑉𝑈 𝑉𝑍 + 𝑉𝑈 ⋯ 𝑉𝑈
⋮ ⋮ ⋱ ⋮
𝑉𝑈 𝑉𝑈 ⋯ 𝑉𝑍 + 𝑉𝑈

) (1-6) 

This covariance matrix is not the same for each patient due to the varying random number of 

cells obtained for each patient, but, as with traditional LDA, we can assume that each cell has 

a common covariance. Thus, using the LDA function from above: 

Pr(𝑌𝑗 = 𝑟|𝑋𝑗 = 𝑥𝑗) =
𝜋𝑟𝑒

−
1
2(𝑥𝑗−𝜇𝑟)

𝑇
(VX
j
)
−1
(𝑥𝑗−𝜇𝑟)

𝜋𝑟𝑒
−
1
2(𝑥𝑗−𝜇𝑟)

𝑇
(VX
j
)
−1
(𝑥𝑗−𝜇𝑟) + 𝜋𝑙𝑒

−
1
2(𝑥𝑗−𝜇𝑙)

𝑇
(VX
j
)
−1
(𝑥𝑗−𝜇𝑙)

   (1-7) 

and similarly, we classify a patient, 𝑋𝑗 = 𝑥𝑗, to the class for which the discriminant function 

 
𝛿𝑘(𝑥𝑗) = 𝑥𝑗

𝑇(VX
j
)−1𝜇𝑘 −

1

2
𝜇𝑘
𝑇(VX

j
)−1𝜇𝑘 + 𝑙𝑜𝑔𝜋𝑘 (1-8) 

is largest.  

Parameter estimates are obtained from a sample as follows: 

• 𝜋̂𝑘 =
𝑛𝑘

𝑁
 where 𝑛𝑘 is the number of patients associated with class 𝑘 and 𝑁 is the total 

number of patients in the sample 

• 𝜇̂𝑘 =
1

𝑛𝑘
∑ 𝑥𝑖{𝑗:𝑌𝑗=𝑘}  is the sample mean of all cells for patients belonging to class 𝑘  

• 𝑥𝑗 is a vector of all measured features of cells obtained from a patient and 𝑥̅𝑗 is a 

vector of length 𝑝 where each value is the mean of each feature of all cells for a 

patient 
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• 𝑈𝑗̂ = 𝑥̅𝑗 − 𝜇̂𝑘 is the estimated patient effect where the class mean for a patient 

belonging to class 𝑘 is subtracted from the patient mean; These estimates are 

concatenated to form a matrix with dimension 𝑁 × 𝑝 

• 𝑉𝑢̂ = 
1

𝑁−𝑘
∑ ∑ (𝑥̅𝑗 − 𝜇̂𝑘)(𝑥̅𝑗 − 𝜇̂𝑘)

𝑇
𝑗:𝑌𝑗=𝑘

𝐾
𝑘=1  is the between patient variation 

• 𝑍̂𝑗 = 𝑥𝑖𝑗 − 𝑥̅𝑗 subtracts the patient mean from each cell within a patient; These 

estimates are concatenated to form a matrix with dimension 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 × 𝑝 

• 𝑉̂𝑍 =
1

𝑁𝑐𝑒𝑙𝑙𝑠
∑ ∑ (𝑥𝑖𝑗 − 𝑥̅𝑗)(𝑥𝑖𝑗 − 𝑥̅𝑗)

𝑇
𝑖𝑗  is the within patient variation  

A significant advantage of LDA has been the ability to reduce a higher-dimensional problem 

into lower dimensions (1) to directly classify objects (as described above); (2) to aid 

visualization; and (3) to be used as new features by projecting a feature space into a subspace 

while keeping the discrimination information. Dimension reduction helps to avoid overfitting 

due to subsequently having fewer parameters to estimate. It also helps significantly with 

computational costs. The MDA method is expected to enjoy the same benefits, but these have 

not been explored. Specifically, the MDA method has not been evaluated via simulations for 

more than two classes. In previous analyses, patients were predicted into one of two classes: 

high grade or worse vs. low grade or better. However, there are actually 5 ordinal histologic 

categories in which a patients’ sample of cells could be classified. This thesis evaluates and 

compares the classification accuracy of MDA for two and three classes in a series of 

simulations. We also applied this method to cervical quantitative cytology data to classify 

into more than two histologic diagnoses, including the use of MDA as a visualization tool.  
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Public Health Significance 

Pathologists’ reviews of Papanicolaou smears are not only costly and labor intensive, 

but are subjective and relies on proper education, training, and resources, many of which are 

not available in underdeveloped countries. Furthermore, high interpretive variability exists 

even among expert pathologists [4] and thus standardization of this process would be 

advantageous. Current classification algorithms for macrolevel data have primarily classified 

patients into two classes: high-grade disease or worse and low-grade disease or normal. 

However, women with low-grade lesions have an increased risk of developing more 

advanced stages of pre-cancerous lesions [5]  and require, at a minimum, closer monitoring 

than those with normal cells. Additionally, personalized treatment based on precise diagnoses 

may reduce risk of complications due to overtreatment such as premature labor in the future 

[6].  

Accurate and precise classification and prediction of disease severity is essential for 

determining the types, length, and intensity of treatment for patients across the healthcare 

industry. For example, in one study, successful risk-based classification led to decreased 

toxicity and improved outcome for low- and intermediate-risk patients, as well as higher 

survival rates for high-risk patients. There is a total of 16 risk groups for patients with 

neuroblastoma and classification is crucial at onset [7].  Furthermore, automated 

classification removes human error and ensures consistency across hospitals and even 

countries. On a broader scope, there has been an increasing need to classify groups, 

neighborhoods etc. in the public health sector, such as analysis of cluster randomized trials 

[8].  



7 

 

Specific Aims 

1. Conduct computer simulations of the macrolevel discriminant analysis method 

predicting two and three classes under varying circumstances to assess model behavior.   

2. Apply the macrolevel discriminant analysis model to quantitative cytology data to 

predict two, three, and four class groupings of stages of cervical cancer and assess 

prediction accuracy. 

METHODS 

Quadratic MDA 

Typical LDA and linear MDA assume a common covariance matrix among the 

classes. However, similar to quadratic discriminant analysis, our expansion to multiple class 

classification required a unique covariance for each class. The simplified LDA equation (1-4) 

no longer applies and the posterior probability of a patient being in class 𝑘 is given by: 

 

Pr(𝑌𝑗 = 𝑘|𝑋𝑗 = 𝑥𝑗) =

𝜋𝑘
1

(2𝜋)
𝑝
2|VX

j,k
|

1
2
 

𝑒−
1
2(𝑥𝑗−𝜇𝑘)

𝑇
(VX
j,k
)
−1
(𝑥𝑗−𝜇𝑘)

∑ 𝜋𝑘
1

(2𝜋)
𝑝
2|VX

j,k
|

1
2
 

𝑒−
1
2(𝑥𝑗−𝜇𝑘)

𝑇
(VX
j,k
)
−1
(𝑥𝑗−𝜇𝑘)𝐾

𝑖=1

   
(2-1) 

and the quadratic MDA function becomes 

 
𝛿𝑘(𝑥) = −

1

2
𝑙𝑜𝑔|VX

j,k
| −
1

2
(𝑥 − 𝜇𝑘)

𝑇  (VX
j,k
)−1(𝑥 − 𝜇𝑘) + 𝑙𝑜𝑔𝜋𝑘 (2-2) 

Where, again, a patient is classified into the class for which the quadratic MDA function is 

greatest. Parameter estimates are similar to those described previously but are now class 

specific: 

• 𝑉𝑢̂  becomes 𝑉̂𝑢
𝑘 =

1

𝑛𝑘
∑ (𝑥̅𝑗 − 𝜇̂𝑘)(𝑥̅𝑗 − 𝜇̂𝑘)

𝑇
𝑗:𝑌𝑗=𝑘 ; 
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• 𝑉̂𝑧 becomes 𝑉̂𝑧
𝑘 =

1

𝑛𝑘,𝑐𝑒𝑙𝑙𝑠
∑ ∑ (𝑥𝑖𝑗 − 𝑥̅𝑗)(𝑥𝑖𝑗 − 𝑥̅𝑗)

𝑇
𝑖𝑗:𝑌𝑗=𝑘 ; and 

• 𝑉𝑋
𝑗
 becomes 

𝑉𝑋
𝑗,𝑘
=  

(

 

𝑉𝑍
𝑘 + 𝑉𝑈

𝑘 𝑉𝑈
𝑘 ⋯ 𝑉𝑈

𝑘

𝑉𝑈
𝑘 𝑉𝑍

𝑘 + 𝑉𝑈
𝑘 ⋯ 𝑉𝑈

𝑘

⋮ ⋮ ⋱ ⋮
𝑉𝑈
𝑘 𝑉𝑈

𝑘 ⋯ 𝑉𝑍
𝑘 + 𝑉𝑈

𝑘)

  

 

Regularized MDA 

 Due to the high dimensionality and increased correlation of nested data, the estimated 

covariance matrices are often unstable and singular. Therefore, we introduced a 

regularization technique presented in Guo et al. [9]. Here, the within patient and between 

patient covariance matrices are regularized using the identity matrix: 

 𝑉̃𝑢
𝑘 = 𝛼𝑉𝑢

𝑘 + (1 − 𝛼)𝐼𝑝 (2-3) 

and  

 𝑉̃𝑧
𝑘 = 𝛼𝑉𝑧

𝑘 + (1 − 𝛼)𝐼𝑝 (2-4) 

for some 𝛼, 0 ≤ 𝛼 ≤ 1. Given that the 𝑉𝑍
𝑘 and 𝑉𝑈

𝑘 matrices are additive, having the same 

regularization parameter is a reasonable simplification to train the model. An alternative 

model could use separate parameters for each matrix. 

 

Cervical quantitative cytology data application 

 The data available includes quantitative measurements on an average of 2600 cells 

collected from 1728 women. A patient’s disease status was determined by the worst 
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histologic grade out of all biopsies. Further details on data collection may be found in Yamal 

et al. and Guillaud et al. [10,11]. Histological diagnosis classes are defined in Table 1. 

Table 1:  Cervical data histological diagnosis class allocations  

 

 

 

 

 

 

 

For this analysis, we combined class 2 and 3 & class 4 and 5 when classifying into 3 

categories. Class 4 and 5 were combined when classifying into 4 categories. Previous studies 

suggest that DNA Index and optical density (OD) skewness are associated with disease and 

thus will be the sole variables used in all analyses [10,11]. 

Variable reduction methods 

Fortunately, previous studies have identified important predictor variables to be used 

in this analysis. However, this information is not always available to researchers and other 

variable selection methods need to be employed. Lasso is one method of variable reduction 

that places a constraint on the coefficients so that the estimates are shrunk.  Some coefficient 

estimates are shrunk to zero thus, only variables with non-zero coefficients will be 

considered in the model [12]. 

Principal component analysis (PCA) provides an alternate option to variable selection 

by reducing dimensionality. Although not typically a concern in prediction models, this does 

Class Histological diagnosis 

1 Negative for dysplasia 

2 Atypical squamous cells of undetermined significance (ASCUS) 

3 HPV associated Cancer (HPVaC) 

Mild 

4 Moderate 

Severe 

5 Carcinoma In Situ (CIS) 

Cancer 



10 

 

come at the expense of interpretability. PCA produces a set of new uncorrelated variables 

(components) each of which represent a linear combination of the original variables. The first 

principal component is found by accounting for the largest amount of variability in the data. 

The components that follow will also maximize variance but are subject to the constraint of 

being orthogonal (uncorrelated) with prior components [12].  

There are several other methods of variable reduction that may be chosen based on 

the type of data or problem one would like to solve.  

Assessment of classification accuracy in cervical cancer data 

 The cervical cancer data was randomly divided into a training set (40%), validation 

set (30%) to tune parameters, and a test set (30%). Three classification methods were 

considered: (1) Macrolevel Discriminant Analysis as described above; (2) means of each of 

the two cell features are computed for each patient and subsequently classified using Linear 

Discriminant Analysis; and (3) means of each of the two cell features are computed for each 

patient and subsequently classified using Quadratic Discriminant Analysis. 

 An average test set accuracy was computed for each classification method as follows:  

 ∑
𝑡𝑝𝑖 +  𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖
𝑘
𝑖=1

𝑘
 

(2-5) 

where 𝑘 is the total number of classes, tp is the number of true positives, tn is the number of 

true negatives, fn is the number of false negatives, and fp is the number of false positives. 

Additionally, we calculated the area under the Receiver Operating Characteristic (ROC) 

curve (AUC) as another measure of classification accuracy. This measure is typically used in 
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two-class supervised classification settings, but was extended to be used in the multiclass 

setting by averaging the AUC’s of pairwise comparisons of the classes [13]. 

Simulations 

 We conducted several simulation studies and compared overall classification 

accuracies and AUC’s across the three methods previously described: MDA, LDA at the 

patient level, and QDA at the patient level. Each simulation utilized two predictor variables 

(features) under two scenarios; classification into two and three classes. Due to computation 

constraints we limited the number of patients to 250 per class with 500 cells per patient.  

 The first simulation assumed the model such that there is a macro level effect 

𝑈𝑗 ~ 𝑀𝑉𝑁(0,𝑉𝑈), 𝑍𝑗 ~ 𝑀𝑉𝑁(𝜇𝑘 , 𝑉𝑧), and 𝑋𝑗 = 𝑈𝑗 + 𝑍𝑗 . Where mean vectors and 

covariance matrices were defined as follows for each class: 

Table 2:  Simulation 1 parameters by class 

 

  

 

 

Figure 1 provides a visualization of a random sample of six patients (two for each class) and 

100 cells per patient. The ellipse captures 95% of the data points for each patient. 

Class 1 𝜇1 = (0, 0) 𝑉𝑢
1 = [

1 0
0 1

] 𝑉𝑧
1 = [

4 2
2 1

] 

Class 2 𝜇2 = (0.05,−0.05) 𝑉𝑢
2 = [

2 0.5
0.5 2

] 𝑉𝑧
2 = [

1 0
0 1

] 

Class 3 
(when including 

a third class) 

𝜇3 = (−0.05, 0.05) 𝑉𝑢
3 = [

2 −0.5
−0.5 2

] 𝑉𝑧
3 = [

1 0
0 1

] 



12 

 

Figure 1: Simulation 1 sample data 

visualization 

 

 

 

 

 

 

 

 

In the second simulation, we assumed the same model as simulation 1. However, we 

increased the number of macrolevel subjects incrementally from 10 to 1000 and the number 

of microlevel observations from 10 to 2000 in order to assess the influence of small to large 

microlevel and macrolevel sample sizes.   

 In the remaining simulations we investigated prediction accuracy across the three 

methods when the model is misspecified. The third simulation included a right-skewed 

variable in each of the classes and thus, violating the normality assumption required for 

LDA. Mean vectors for each class were adjusted to implement this simulation so that 𝜇1 =

(5,5), 𝜇2 = (5.05, 4.95), and 𝑥1𝑗 = 𝑥1𝑗
2 .   The fourth simulation contains a class that is 

composed of a mixture of Gaussian distributions. For the two-class scenario: if 𝑌𝑗 = 1, 

 𝑉𝑧 ~ 𝑀𝑉𝑁((3,3)
𝑇 , [
4 1
1 2

]) , 𝑉𝑢 ~ 𝑀𝑉𝑁((0,0)
𝑇, [
1 0
0 1

]) and if 𝑌𝑗 = 2, 

𝑉𝑧 ~0.5𝑀𝑉𝑁((3.5,2.5)
𝑇 , [
1 0
0 1

]) + 0.5(𝑀𝑉𝑁 ((2.5,3.5)𝑇 , [
1 0
0 1

]) , 
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𝑉𝑢 ~0.5𝑀𝑉𝑁((0,0)
𝑇 , [
3.5 1.5
1.5 2.5

]) + 0.5(𝑀𝑉𝑁((0,0)𝑇 , [
3.5 1.5
1.5 2.5

]) For the three-class 

scenario: if 𝑌𝑗 = 1,  𝑉𝑧 ~ 𝑀𝑉𝑁((3,3)
𝑇 , [
4 1
1 2

]) , 𝑉𝑢 ~ 𝑀𝑉𝑁((0,0)
𝑇 , [
1 0
0 1

]); if 𝑌𝑗 = 2, 

𝑉𝑧 ~0.5𝑀𝑉𝑁((3.2,3)
𝑇 , [
1 0
0 1

]) + 0.5(𝑀𝑉𝑁((3,3.2)𝑇 , [
1 0
0 1

]) , 

𝑉𝑢 ~0.5𝑀𝑉𝑁((0,0)
𝑇 , [
3.5 1.75
1.75 2.5

]) + 0.5(𝑀𝑉𝑁 ((0,0)𝑇 , [
3.5 1.75
1.75 2.5

]); if 𝑌𝑗 = 3, 

𝑉𝑧 ~0.5𝑀𝑉𝑁((3, 3)
𝑇 , [
1 0
0 1

]) + 0.5(𝑀𝑉𝑁 ((3.2, 3.2)𝑇 , [
1 0
0 1

]) , 

𝑉𝑢 ~0.5𝑀𝑉𝑁((0,0)
𝑇 , [

2 −1
−1 2

]) + 0.5(𝑀𝑉𝑁((0,0)𝑇 , [
2 −1
−1 2

]) . The idea is to create a 

bimodal distribution in class two and three such that the combined distributions have mean 

vectors and covariance matrices similar to class one. Figure 2 provides a visualization of 

sample data for the two-class scenario. Here, class 1 consists of two individuals; each 

sampled from two gaussian distributions and belong to the same class.  

Figure 2: Simulation 4 sample data 

visualization 
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Lastly, in the fifth simulation, we utilized the same parameters shown in Table 2. However, 

we began with covariance matrices with zero values in the off diagonals, i.e. no covariance, 

and incrementally increased the covariance between the two features in all classes. 

Specifically, 𝑽𝒛
𝟏 was initialized as [

4 0
0 1

] and the off diagonals increased by 0.5 in each 

iteration up to  [
4 2.5
2.5 1

] ; 𝑉𝑢
2 was initialized as [

2 0
0 2

] and the off diagonals increased by 

0.1 in each iteration up to [
2 0.5
0.5 2

] ; 𝑉𝑢
3 was initialized as [

2 0
0 2

] and the off diagonals 

decreased by 0.1 in each iteration to [
2 −0.5
−0.5 2

]. Identity matrices were set for all other 

covariance matrices (𝑽𝑢
𝟏 , 𝑽𝒛

2, 𝑽𝒛
3). Figure 3 provides a visualization of sample data that has 

no covariation between two features transitioning to sample data that has high covariation. 

Here, the sample data consists of 2 patients per class with 100 cells per patient and each 

ellipse encompasses 95% of the data points for each class.  

Figure 3: Simulation 5 sample data visualization 
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Assessment of classification accuracy in simulations 

 100 separate train and test sets were created for each simulation. The distributions of 

overall classification accuracies and AUC’s were recorded. In total, we had 6 accuracy 

distributions for each simulation – one for each combination of the three methods used and 

the number of classes attempting to predict (two and three).  

All analyses were performed using the statistical package R version 3.5 (R 

Foundation for Statistical Computing, Vienna, Austria).  

IRB Approval 

This research received IRB approval (“Optical Technologies and Molecular Imaging 

of Cervical Neoplasia”, HSC-SPH-10-0631). All data was de-identified and analyzed on a 

secure UTHealth server. 

 

RESULTS 

Simulation Results 

The distributions of overall classification accuracy and AUC after repeating 

simulation 1 (assumption of macrolevel effect) 100 times are displayed in figures 4 and 5. 

MDA had an observable advantage over LDA and QDA with nearly perfect prediction 

accuracy on the test sets.  

In simulation 2, increasing the number of macrolevel individuals resulted in small 

changes to the overall classification accuracy or AUC. However, these accuracy 

measurements increased drastically as the number of microlevel observations increased 

(Tables 6 & 7). This trend was observed in both two and three-class scenarios.   
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Figure 4:  Simulation 1 two-class test 

set accuracies 

 Figure 5:  Simulation 1 three-class test 

set accuracies 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6:  Simulation 2 two-class overall classification accuracy and area under the ROC 

curve using MDA on test set varying the number of macro-level and micro-level 

observations  

Number of Patients per Class 

 10 20 50 100 200 1000 

Overall Classification Accuracy 

10 0.790 0.785 0.807 0.809 0.812 0.808 

20 0.818 0.838 0.839 0.849 0.853 0.851 

50 0.863 0.891 0.888 0.900 0.902 0.901 

100 0.930 0.929 0.939 0.937 0.943 0.945 

150 0.944 0.957 0.962 0.964 0.963 0.966 

250 0.975 0.977 0.984 0.985 0.986 0.987 

350 0.987 0.991 0.993 0.993 0.994 0.994 

450 0.996 0.995 0.997 0.997 0.997 0.998 

2000 1.000 1.000 1.000 1.000 1.000 1.000 

AUC 

10 0.948 0.949 0.955 0.955 0.955 0.955 

20 0.990 0.991 0.993 0.993 0.993 0.992 

50 1.000 1.000 1.000 1.000 1.000 1.000 

100 1.000 1.000 1.000 1.000 1.000 1.000 

150 1.000 1.000 1.000 1.000 1.000 1.000 

250 1.000 1.000 1.000 1.000 1.000 1.000 

350 1.000 1.000 1.000 1.000 1.000 1.000 

450 1.000 1.000 1.000 1.000 1.000 1.000 

2000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 7:  Simulation 2 three-class overall classification accuracy and area under the ROC 

curve using MDA on test set varying the number of macro-level and micro-level 

observations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Simulation 3 two-class test 

set accuracies in simulation 3 

 Figure 7:  Simulation 3 three-class test 

set accuracies 

  

 

 

 

 

 

 

 

 

Number of Patients per Class 

 10 20 50 100 200 1000 

Overall Classification Accuracy 

10 0.583 0.614 0.645 0.655 0.663 0.671 

20 0.653 0.687 0.709 0.740 0.741 0.749 

50 0.749 0.797 0.824 0.843 0.852 0.858 

100 0.839 0.894 0.911 0.917 0.929 0.933 

150 0.884 0.930 0.953 0.955 0.962 0.966 

250 0.926 0.974 0.983 0.986 0.988 0.988 

350 0.966 0.985 0.993 0.995 0.996 0.996 

450 0.984 0.994 0.998 0.998 0.998 0.998 

2000 1.000 1.000 1.000 1.000 1.000 1.000 

AUC 

10 0.834 0.854 0.861 0.864 0.868 0.870 

20 0.894 0.912 0.915 0.921 0.919 0.921 

50 0.959 0.962 0.966 0.969 0.970 0.970 

100 0.985 0.990 0.991 0.991 0.992 0.992 

150 0.993 0.996 0.997 0.997 0.997 0.998 

250 0.999 0.999 1.000 1.000 1.000 1.000 

350 1.000 1.000 1.000 1.000 1.000 1.000 

450 1.000 1.000 1.000 1.000 1.000 1.000 

2000 1.000 1.000 1.000 1.000 1.000 1.000 
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Simulation three results were similar to those observed in simulation one. MDA had 

an advantage and higher overall classification accuracy and AUC measurements over LDA 

and QDA even when the assumption of normality was violated (Figures 6 & 7). 

Introducing a class with a mixture of gaussian distributions resulted in decreased 

accuracies across all models. MDA had a large variation of overall classification accuracies, 

but an AUC with small variation and average extremely close to 1. Overall, MDA 

outperformed both LDA and QDA in both the two and three-class scenarios (Figures 8 & 9).  

 

Figure 8:  Simulation 4 two-class test 

set accuracies 

 Figure 9:  Simulation 4 three-class test 

set accuracies 

  

 

 

 

 

 

 

 

 

Prediction accuracies for all models increased as the covariation between the features 

increased (Figures 10 & 11). This was observed for both the two and three-class scenarios. 

MDA resulted in a steep increase in overall classification accuracy in the three-class setting. 

Furthermore, MDA had the highest average AUC at all levels of covariation and in both class 

settings.   

 



19 

 

Figure 10: Simulation 5 two-class 

average test set accuracies as 

covariation increases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Simulation 5 three-class 

average test set accuracies as 

covariation increases 
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Cervical cancer quantitative cytology data results 

The model was trained on 40% of the data and parameters were tuned on a validation 

set (30% of the data). The regularization parameter, 𝛼, in (2-3) and (2-4) was 0.2 in the two-

class setting and 0.1 in both the three and four class setting.  Table 3 provides results when 

patients were assigned to two histologic diagnosis classes. Overall classification accuracy, 

sensitivity, and specificity were all calculated using a threshold of 0.5. LDA had the highest 

overall classification accuracy and specificity, while MDA had the highest AUC and 

sensitivity.  

Table 3:  Cervical cancer two-class results on test set 

  

All three models performed similarly in the three and four class settings (Table 4 and 5). 

MDA had a slight advantage over LDA and QDA in the three-class scenario as the average 

pairwise AUC was approximately 0.05 higher.  

Table 4:  Cervical cancer three-class results on test set 

  

 

 

 

 

 

Model AUC 

Overall 

Classification 

Accuracy 

Sensitivity Specificity 

Q*-point 

(specificity, 

sensitivity) 

MDA 0.7817 0.8215 0.3933 0.9097 (0.718, 0.764) 

QDA 0.7125 0.8599 0.2809 0.9792 (0.775, 0.663) 

LDA 0.7042 0.8637 0.2584 0.9884 (0.727, 0.652) 

Model 
Average Pairwise 

AUC 

Overall Classification 

Accuracy 

MDA 0.6909 0.5374 

QDA 0.6485 0.5432 

LDA 0.6436 0.5374 
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Table 5:  Cervical cancer four-class results on test set 

  

 

 

 

 

 

 

DISCUSSION 

 

Through comparisons using both cervical quantitative cytology data and simulated 

data sets, we have demonstrated that macrolevel discriminant analysis is a promising 

classification tool for nested data structures. Furthermore, MDA can be expanded to multi-

class classification problems and is a better suited model than LDA or QDA under certain 

conditions.  

Although several non-parametric classification methods exist that can handle non-

normal data and data with heterogenous group structures, there has been limited research on 

methods that are robust to these deviations for nested data structures[13].  Our study of 

performance on simulated data sets indicates that MDA is robust to departures from typical 

assumptions required for LDA and QDA methods to perform well. Results from simulation 4 

are particularly intriguing as MDA still performs exceptionally well even when the 

microlevel observations are sampled from two different gaussian distributions. Several real-

life data sets exist that mimic this same pattern. For example, in quantitative cytology, a 

patient may have several cells containing features that look benign and some that resemble 

cancerous cells. MDA has the benefit of accounting for within patient heterogeneity and thus 

Model 
Average Pairwise 

AUC 

Overall Classification 

Accuracy 

MDA 0.6391 0.5374 

QDA 0.6423 0.5374 

LDA 0.6228 0.5374 
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more accurately classifies patients to diseased versus non-diseased groups. In LDA or QDA, 

researchers have typically calculated the summary statistics (e.g., mean) of each patients’ 

cells and then proceeded to classification. MDA has an advantage over these traditional 

methods because a central measure of tendency may not be representative of a patients’ true 

classification.  

A large variation of overall classification accuracy on test sets using the MDA model 

was observed in a few simulations. This is likely because a constant regularization parameter 

was used for each simulation and not tuned to each specific training/test set. However, AUC 

calculations were stable and is a more accurate representation of performance primarily 

because it does not require adjustment of classification thresholds[13].  

MDA had a slight advantage over LDA and QDA when predicting cervical histologic 

diagnosis classes as AUC was highest in the two and three class scenarios. However, we did 

not see a drastic improvement in predictive capabilities of MDA over LDA and QDA with 

application to the cervical quantitative data available. It is possible that a macrolevel patient 

effect did not exist in this data set, and further investigations should be performed to 

understand the underlying structure of the data. Additionally, it is promising to find that 

MDA performed as well as, or slightly better than, traditional discriminant analysis methods 

when separating into more defined classes even if the data is not well suited for this type of 

model. 

A few limitations should be discussed in the implementation of MDA. One limitation 

is the long computation time required to build and take the inverse of the variance-covariance 



23 

 

matrix, 𝑉𝑋
𝑗,𝑘

. This matrix has dimension 𝑝 × 𝑛𝑗 and is restructured for each patient for class 

prediction. Another possible limitation is the need for regularization of the within and 

between patient covariance matrices due to high dimensionality. Other regularization 

techniques, and procedures for handling high-dimensionality due to the large number of 

observations obtained for each patient, should be explored. This problem would be 

exacerbated as the number of measured features increases. If able to tackle high-

dimensionality, prediction accuracies may improve as more important features are included 

when fitting the model.  

Overall, MDA performs as well as, or better than, traditional discriminant analysis 

methods and makes use of all information provided at the micro and macro level. Our 

research included classification of up to four-classes for cervical cytology data and up to 

three-classes for simulated data. Most biomedical data do not require classification beyond 

four or five classes, but future research should explore prediction capabilities of MDA as the 

number of classes increases beyond four.  Lastly, the MDA method should be applied to 

several other real-life repeated measures and nested data sets to determine its applicability to 

a wide array of environments.  
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