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Abstract 
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Supervisory Professor: David Followill, Ph.D. 

  

Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly 

conformal dose distribution to a target volume while attempting to maximally spare the 

surrounding normal tissues. IMRT is a common treatment modality used for treating head 

and neck (H&N) cancers, and the presence of many critical structures in this region requires 

accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote 

and on-site quality assurance agency that credentials institutions participating in clinical 

trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using 

the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N 

IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity 

and the use of improper dosimetry data from machines that were thought to be matched but 

in reality were not. Eight H&N IMRT plans with a range of complexity  defined by total 

MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) 

(0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N 

phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and 

MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N 

phantom irradiations. This average IMRT plan was also delivered on four matched Varian 

Clinac machines and the dose distribution calculated using a different 6MV beam model. 

Radiochromic film and TLD within the phantom were used to analyze the dose profiles and 

absolute doses, respectively. The measured and calculated were compared to evaluate the 

dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose 
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difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was 

performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the 

treatment plan complexity by varying the MU, number of segments, or varying the MCS 

resulted in no clear trend toward an increase in dosimetric error determined by the absolute 

dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam 

model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not 

show any clear trend towards an increased dosimetric error using the same criteria indicated 

above.  
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Chapter 1 Introduction 

1.1 Statement of Problem 

Intensity modulated radiation therapy (IMRT) is a relatively new technique that is 

widely used in radiotherapy clinics across the nation. IMRT utilizes a linear accelerator 

(linac)-mounted multi-leaf collimator (MLC) to shape the radiation beam into multiple 

segments per beam angle, creating fluence maps of varying intensity. Upon delivery, these 

fluence-modulated beams sum in three dimensions to create a highly conformal dose 

distribution. This technique increases the ability to cover tumor targets of irregular shape 

with the prescription dose while sparing nearby normal tissues and organs at risk (OARs). 

These advantages in target dose conformity and OAR dose sparing make IMRT very 

desirable for radiotherapy treatment situations in which tumor targets are in close proximity 

to OARs and steep dose gradients are required. For these reasons, IMRT is commonly used 

to treat head and neck (H&N) cancers, where many OARs exist such as the spinal cord, 

orbits, parotid glands, and may be near the target. In these situations a complex dose 

distribution is needed to avoid unacceptable or undesirable normal tissue toxicities.  

 In order to create these more conformal dose distributions, IMRT utilizes a 

technique of breaking up a large beam into a grid of several smaller beams known as 

“beamlets.” These beamlets are given an intensity weight between 0% and 100% of the total 

beam intensity. The beamlets are combined to create a pattern of intensities known as an 

intensity map. This intensity map represents the radiation output from the specific angle of 

incidence of that beam required to deliver dose to the target and spare other tissues. This 

process is carried out for each of the beams used in an IMRT treatment plan and all intensity 

maps are then summed in three dimensions to create the desired dose distribution. Intensity 

maps are translated into deliverable MLC configurations, known as segments, for each 

beam. IMRT treatments can then be delivered in a step-and-shoot method, during which the 

radiation beam is off between segments, or with the dynamic method, during which the 

radiation beam remains on while the MLC form the different segments. The ability of this 

technique to modulate the fluence and create highly conformal dose distributions with 

varying dose levels makes it much more complex than conventional radiotherapy.   
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IMRT treatment plan complexity has been associated with a large numbers of 

monitor units (MU), small segment size, large numbers of segments, complex segment 

shape, and overall complex fluence maps (for a single beam). It has been quantified by 

Webb using the modulation index (MI) which compares adjacent bixel (or beamlet) 

intensities. The MI measures the complexity of a treatment plan by evaluating the number of 

changes in intensity of adjacent bixels that exceed one half the standard deviation of the 

bixel intensities, therefore quantifying the amount of modulation required.  In this study, 

three types of treatment plans were used to evaluate the possible gains of fully modulated, 

more complex beams. One plan was created with full modulation, allowing each beamlet to 

vary as necessary to create the desired dose distribution. A second plan was created with the 

idea of few-segment IMRT (fsIMRT), in which each beam was allowed two segments for 

modulation, one including the entire beam’s eye view (BEV) of the PTV and one of the 

BEV of the PTV excluding any overlap with the OAR. The simplest plan was an example of 

conventional conformal radiotherapy (CRT) in which each beam conformed to the PTV with 

one segment and had a single weight.  In Webb’s study, plans with these three levels of 

complexity were created for two challenging planning situations and it was verified that the 

MI increases with increased complexity and in turn with increased conformity. Webb also 

showed that the plans created with more modulation and with higher MIs were able to 

achieve better PTV coverage and OAR sparing [1].  

More recently, McNiven et al introduced the concept of the modulation complexity 

score (MCS) which takes into account leaf position variability, degree of field shape 

irregularity, segment weight, and segment area by using the leaf sequence variability (LSV) 

and aperture area variability (AAV).  The MCS has a value from 0.0-1.0, with 1.0 being the 

most simple open square field. In their study, they evaluated the MCS of treatment plans for 

various sites and found that sites with more complex anatomy, such as the head and neck, 

required plans with a lower MCS (increased complexity). They also evaluated several 

radical lung plans that covered a range of MCS values, MU, and segment numbers to 

compare plan and delivery. While no direct correlation between MCS and gamma index 

analysis percentage pass rate was found, it was identified that any plan with MCS > 0.8 or 

less than 50 MU were always (100% specificity) considered dosimetrically robust (>90% 
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pass rate for 2%/1mm criteria). The MCS offered higher sensitivity in identifying threshold 

criteria than the MU. The MCS is used in this study and is further described in Section 

2.3.1.The increased complexity that comes with IMRT affects many stages of the IMRT 

delivery process, including treatment planning, treatment delivery, and quality assurance.  

The complexity and its effect on dose calculations, plan quality and delivery accuracy must 

be considered if accurate and safe radiation doses are to be delivered to patients [2].  

To optimize radiotherapy doses, treatment planning systems can implement either 

forward planning or inverse planning. In forward treatment planning, the planner determines 

the treatment beam parameters such as the beam angle, collimator shape, modifiers to be 

used and the weight of each beam. The dose is then calculated and evaluated. The planner 

can iteratively make adjustments to the beam parameters to alter the dose distribution as 

desired until an acceptable plan is reached.  In inverse treatment planning, the planner 

establishes dose objectives such as tumor prescriptions and OAR dose limitations. The 

treatment planning computer then determines the beam parameters required to meet those 

objectives. This is also an iterative process in that the planner can continue to add or adjust 

objectives to increase the quality of the plan. 

Currently commercial treatment planning systems (TPSs) allow inverse treatment 

planning methods for IMRT plans, which can easily allow a plan to become more complex 

than necessary. During the dose calculation and optimization process, artifacts and noise can 

lead to small but sharp fluctuations in the intensity maps making the treatment plan more 

complex without any benefit to the quality of the plan [3]. In addition, the planner does not 

have direct control over the segments generated in IMRT inverse planning and thus, with a 

large number of possible solutions to the input objectives, the TPS may choose a more 

complex set of segments with minimal or no increase in treatment plan quality. Finally, with 

the ability of IMRT to conform to tumor targets so well, a planner may continue to optimize 

a plan passed the objectives required by the physician resulting in a plan of superior quality, 

but of unnecessary complexity, requiring more time to deliver and more mechanical work. 

One technique suggested to reduce IMRT plan complexity and increase the treatment 

deliverability is fluence smoothing performed during optimization. An algorithm can be 

used to reduce the unwanted fluctuations in fluence in a treatment plan, hence smoothing the 
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intensity map and decreasing its complexity. Giorgia et al evaluated the effects of smoothing 

fluences on the IMRT treatment plan complexity, as measured by the modulation index 

(MI), the plan quality, and the dose delivery accuracy. It was found that IMRT plans created 

with less smoothing had an increased number of MUs and a decreased average MLC 

aperture and, as expected, were more complex (had a higher MI). There was not much 

difference noted in the quality of plans with varying levels of smoothing, as evaluated by the 

dose volume histograms (DVHs). It was, however, found that a poorer gamma index 

analysis pass rate (±3%/3mm criteria) resulted from decreased smoothing and that the 

correlation between the percentage of failing pixels with MI decreased with increasing 

fluence smoothness. Giorgia et al concluded that these correlations could indicate that when 

an IMRT plan was simple (low MI), failures were caused by dose calculation errors and 

when a plan was complex (high MI), failures were more likely to be caused by delivery 

errors [3]. 

Craft et al studied the tradeoff between number of MU (a measure of complexity) 

and the plan quality by adding a direct measure of the number of MU required, the sum of 

positive gradients (SPG), as a linear function to the treatment planning objectives. The SPG 

is the sum of all positive increases in intensity between adjacent beamlets. It was found that 

significant reductions in MU could usually be made without greatly affecting plan quality. 

However, there was a certain amount of complexity required and plans that were too simple 

did not provide adequate target coverage and normal tissue sparing. The authors concluded 

that a tradeoff tool could be implemented into treatment planning to avoid over-

complicating treatment plans while providing an acceptable treatment plan that met the 

prescription requirements and normal tissue constraints [4].  

Accuracy of an IMRT treatment dose calculation is imperative. Several different 

characteristics of the radiation delivery system in this calculation can contribute to 

uncertainty in IMRT dose calculations such as the definition of the source, MLC leaf 

positioning and speed, MLC leaf end shape, MLC transmission and scatter, and MLC 

tongue-and-groove effects.  In one study by Li et al, a maximum PTV dose difference of 

5.4% was found between calculations with and without MLC leakage. When the effects of 
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MLC tongue-and-groove effects were evaluated in the same study, a maximum of 5.1% 

difference was found [5]. 

In a study by Mohan et al, the effects of increasing the frequency and amplitude of 

intensity fluctuations of an IMRT field, as might be seen in complex treatment plans, were 

evaluated. It was observed that high frequency and amplitude fluctuations in the intensity 

require increased MU and small window widths for delivery. This resulted in a limitation on 

the minimum dose to the target region, possibly affecting plan quality by imposing a lower 

limit on the dose normal tissues could receive. Also for a complex plan with many small 

segments, a large amount of the dose comes from indirect sources (MLC leaf transmission 

and scatter), increasing the dose calculation dependence on empirical corrections and 

possibly decreasing the accuracy of this calculation [6]. 

In addition, the resolution of the MLC leaf position and size can impact on the dose 

calculation and can affect the quality and accuracy of the plan. Zhang et al found that with 

increasing beamlet step-size: maximum dose values of the PTV (hotspots) increased, the 

mean dose of the OAR increased, uniformity and conformity decreased, PTV coverage 

decreased, and the objective function increased. These changes indicated that an coarse 

resolution as defined by the width of the MLC leaves and the beamlet step-size negatively 

affected treatment plan quality as one might observe in complex IMRT plans [7]. 

In a dose accuracy study mentioned previously, Li et al compared dose distribution 

calculations between Monte Carlo and Corvus (Best Inc., Springfield, VA) treatment plans 

of varying intensity map resolution and found a maximum of 8% difference in mean dose 

and a maximum 4% standard deviation for treatment plans with a 1 X 1 mm
2
 resolution in 

the dose calculation grid. The authors suggested that a 0.2 X 0.2 mm
2
 intensity map at 

isocenter was necessary for accurate IMRT dose calculations [5]. 

IMRT treatment plan complexity also affects the radiation delivery itself. Steep dose 

gradients between targets and adjacent OARs greatly increase the need for accurate patient 

localization and set up. Hong et al studied the effects of daily setup variations on H&N 

IMRT treatments by measuring setup errors made when using conventional thermoplastic 

immobilization masking, laser alignment, and weekly portal films for setup. An average 

error of 3.33 mm in a single dimension was found and when all six degrees of freedom were 
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accounted for, an average composite vector offset of 6.97 mm was found. These errors 

would result in as much as 20-30% PTV under dosing and increases in OAR doses 

exceeding the toxicity limitations in the plans evaluated. Hong’s study illustrated that small 

errors along one axis can add up in three dimensional space to create offsets that are not 

measured by conventional setup techniques and that could result in significant dosimetric 

consequences [8]. 

In addition, Siebers et al studied the effects of random and systematic setup errors on 

H&N simultaneous integrated boost (SIB) IMRT treatments and found that while the plans 

were relatively insensitive to random setup errors, systematic errors of 1.5 mm and 3 mm 

resulted in a dose error of greater than 3% for approximately 10% and 50% of patients, 

respectively. Twenty-eight percent of the plans evaluated with a 3 mm systematic error had 

a dose error of greater than 5%. This study illustrated the need for techniques to detect and 

reduce systematic setup errors and demonstrated the need for appropriate PTV margins to 

ensure dosimetric accuracy in tumor dose coverage [9].  

Also, the accelerator’s mechanical ability to deliver the treatment is a key issue in 

IMRT that could increase with increasing plan complexity. Luo et al, using prostate 

treatment log file-based Monte Carlo calculations, discovered that for every 0.2 mm 

systematic leaf position error, there was a 1% target dose error [10]. In another study, Mu et 

al evaluated the effects of random and systematic MLC leaf position errors on the quality of 

IMRT plans. Overall, it was found that while plans are unaffected by random errors, 

systematic MLC leaf position errors of only 1 mm resulted in a 4% average change in the 

dose received by 95% of the target (D95%) for simple plans (with less than 50 segments) and 

an 8% change for more complex plans (with more than 100 segments).  This 1 mm 

systematic MLC leaf position error also resulted in 9% and 13% dose changes in the parotid 

glands for simple and complex plans, respectively [11]. These studies described above 

indicate just how sensitive IMRT dose delivery is to MLC leaf position and with complex 

plans there is an increase in the number MLC leaf positions because of the larger number of 

segments used.  

As described above, since there are numerous possible contributors to errors in 

IMRT treatment delivery and the possible delivery of an unsafe radiation dose, IMRT 
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quality assurance (QA) becomes all that more  important. However, even though most 

medical physicists recognize the need for IMRT QA, a standard IMRT QA procedure and 

evaluation criteria have not been agreed upon. Several methods and products exist for 

patient-specific IMRT QA. One commonly implemented technique is “per-beam” or “single 

field” planar QA. This is performed by delivering each beam of a treatment plan 

individually to a planar detector such as a diode array, ion chamber array, film or EPID 

device followed by a gamma analysis on the expected dose distribution of that individual 

beam. Currently, 3%/3mm gamma or composite distance-to-agreement (DTA) criteria is 

commonly held, though there is minimal evidence of its predictive power [12]. 

In a study by Kruse et al, three clinically acceptable plans were modified by 

reoptimizing with aggressive objectives and constraints to create three complex, and 

unacceptable, plans. The clinically acceptable plans had a calculated dose that agreed to 

within 4% of the dose measured at several low gradient points using an ion chamber in a 

cylindrical phantom, while the dose comparison with the unacceptable plans exceeded the 

4% criterion. Single field IMRT QA was performed on both sets of plans using an EPID and 

an ion chamber array with a gamma index analysis of 3%/3mm and 2%/2mm. The EPID 

3%/3mm analysis resulted in an average percent of pixels passing of 97.6% and 97.1% for 

acceptable and unacceptable plans, respectively. With the 2%/2mm criteria, these pass rates 

were 90.7% and 89.0% for acceptable and unacceptable plans, respectively.   Similarly, pass 

rates of 98.8% and 98.7% were found with the 3%/3mm ion chamber array gamma analysis 

for acceptable and unacceptable plans, respectively, and of 93.4% and 91.0% with the 

2%/2mm criteria. Pass rates for the acceptable and unacceptable plans were comparable in 

each evaluation and in some cases the unacceptable plan had a higher planar gamma 

analysis pass rate than the acceptable plan, therefore the fraction of pixels passing the 

gamma analysis was found to be a poor predictor of IMRT dosimetric accuracy [13].  

Other methods of patient-specific IMRT QA include single-angle composite dose 

delivery to a planar detector and phantom measurements. With single-angle composite 

IMRT QA, all treatment fields are delivered to a planar detector, such as a diode array, at a 

normal angle and the summation of these fields is evaluated as compared to a calculation of 

the dose expected by the TPS. In this process, all high dose, steep gradient, and low dose 
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regions are summed together, possibly masking the complexity of the fields and making 

error detection difficult [12]. With phantom measurements for IMRT QA, the entire 

treatment plan is recalculated on the phantom geometry and then delivered to the phantom 

as it would be to a patient. Ion chamber measurements are made in low dose gradient 

regions and planar film measurements are taken to evaluate steep dose gradients.  Again, it 

is common to implement a 3%/3mm gamma or composite DTA criteria.  

While any of these IMRT QA methods may be sufficient for certain plans, the 

consistency of these techniques is unknown and therefore they are unreliable. With 

increased dose gradients and more complex intensity maps, complex IMRT treatment plans 

increase the difficulty as well as the importance  of the measurements, and may increase the 

uncertainty of the these QA methods.  

With the many possible causes of errors in IMRT delivery and minimal means to 

measure them, it is not surprising that almost 30% of institutions participating in NCI funded 

clinical trials failed a QA audit using the Radiological Physics Center’s (RPC) IMRT H&N 

phantom [14]. This failure rate is very alarming, especially considering that these 

institutions put forth their best effort in order to pass the audit in order to be allowed to 

participate in clinical trials using IMRT. It is extremely important for institutions to be able 

to deliver these treatments accurately, to be consistent with each other for the purpose of the 

clinical trials, as will be discussed in the next section, but even more importantly for the 

safety and the health of the patients. Unfortunately advanced treatment techniques have not 

always proved to be beneficial to the patients, as highlighted in several NY Times articles in 

the past few years [15,16].  

For all of the above mentioned reasons, it is critical to evaluate the IMRT treatment 

process to identify causes of delivery error so they can be detected, avoided, and fixed. 

Aside from the multiple components contributing to IMRT complexity, mistakes in IMRT 

treatment delivery can be caused by a plethora of factors. Some of these include incorrect 

photon beam dosimetry data, malfunctioning MLC, improper treatment planning, and failed 

or incorrect data transfer. A common oversight when performing IMRT QA is to assume 

that the TPS beam models are accurate when in fact the inaccuracies in the beam model may 

be contributing to the dose delivery error. One must ensure that the very basic dosimetry 
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parameters used to calculate dose for IMRT plans are accurate since this is the starting point 

for a very complex IMRT dose calculation. Once the basic dosimetry parameters and 

associated beam models have been verified then attention to the MLC parameters, etc. can 

be considered in the IMRT QA process. Current IMRT QA techniques may or may not be 

sensitive to these factors depending on the rigor of the measurements and agreement criteria 

used. For example, a study by Nelms et al used IMRT treatment plans calculated with 

intentionally incorrect beam models, and found that per-beam planar IMRT QA gamma 

analysis pass rate was not sensitive to clinically relevant dose errors. In fact, significant 

moderate correlations were found indicating that larger errors occur with higher pass rates. 

Nelms concluded that per-beam planar IMRT QA was not very useful in predicting IMRT 

dose delivery errors [17]. In fact, many of the RPC’s IMRT H&N phantom irradiation 

failures were found after the institution had performed its own IMRT QA measurements that 

showed no IMRT delivery errors. 

Until now, no one to our knowledge has attempted to measure the effects of 

treatment plan complexity or mismatched (incorrect beam model dosimetry parameters) 

dosimetry data by comparing treatment plan calculations to measurements made in an 

anthropomorphic phantom. In this project, we evaluated the dose delivery accuracy of H&N 

IMRT treatments of varying complexity. Additionally, we evaluated the ability of matched 

machines using a single TPS beam model even though there was some degree of variability 

in dosimetry parameters between the machines to deliver a standard H&N IMRT treatment 

accurately.  
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1.2  The Radiological Physics Center and Anthropomorphic QA Phantoms  

Assigned with the task of ensuring clinical consistency and comparability in radiation 

doses delivered at institutions participating in clinical trials, the Radiological Physics Center 

(RPC) was founded in the late 1960’s as a National Cancer Institute (NCI) funded group. It 

is crucial for institutions participating in multi-clinic studies to have uniform radiation 

therapy delivery quality and accuracy to ensure trial results are not influenced by dosimetric 

differences between clinics. The RPC monitors the machine output and brachytherapy 

source strength, dose calculation algorithms, dosimetry data, and quality assurance 

procedures of participating institutions by means of off-site remote auditing and on-site 

dosimetry review visits. The RPC performs chart checks, QA procedure review, treatment 

planning algorithm verification, and dosimetry data comparisons. Additionally included in 

the RPC’s off-site programs are mailable TLD and OSLD machine output checks and six 

different mailable anthropomorphic phantoms.  

Anthropomorphic phantoms enable the RPC to evaluate the ability of an institution to 

accurately deliver therapeutic dose distributions to a patient, including patient imaging, 

treatment planning, set up, and dose delivery processes. The RPC currently utilizes different 

anthropomorphic phantoms for thorax, spine, liver, pelvis/prostate, head and neck, and 

stereotactic radiosurgery treatments. These phantoms are made of anatomically shaped 

plastic shells which can be filled with water to simulate soft tissue. Also present in the 

plastic shell is a removable section containing imageable target and avoidance structures as 

well as dosimeters. Relative planar dose distributions are measured with radiochromic film 

and absolute point doses are measured with TLD. The dose distribution is generally 

measured with film in two major planes of the phantom and is normalized to the absolute 

point doses measured by the TLD. These phantoms are mailed to institutions for remote 

auditing and returned to the RPC for dosimeter reading and evaluation of the agreement 

between the dose distribution planned by the institution and that delivered. The RPC is also 

involved in helping institutions in implementing corrective action if deemed necessary. 

Currently, the IMRT head and neck (H&N) phantom is used for IMRT credentialing 

of institutions for many clinical trials including eight active Radiation Therapy Oncology 

Group (RTOG) protocols. Recently, it was reported that about 30% of the institutions 
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participating in the IMRT H&N phantom audit are not passing the 7% absolute dose and 4 

mm distance-to-agreement (DTA) criteria. Within the clinical trial community, there is a 

desire to better understand why such a large percentage of institutions fail the H&N 

phantom irradiation test. The RPC has decided to investigate the possible causes of the 

phantom failures in order to provide the radiotherapy community guidance as to how to 

improve the delivery of IMRT treatments. In the present study, the IMRT H&N phantom 

will be utilized to evaluate two of the possible causes of IMRT dosimetric inaccuracy, 

treatment plan complexity and mismatched dosimetry data. 
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1.3  Hypothesis and Specific Aims 

We hypothesized that increased IMRT treatment plan complexity or the use of 

improperly matched accelerator dosimetry data can lead to errors in head and neck IMRT 

deliver, as measured with the RPC’s H&N phantom, that result in differences between the 

measured and planned dose distributions.  

This hypothesis was tested with the following specific aims: 

1. We created clinically relevant treatment plans for the RPC IMRT H&N phantom for: 

a) a standard 6 MV delivery b) three increasingly more simple 6 MV deliveries and 

c) four increasingly more complex 6 MV deliveries as defined by MCS, MU and 

number of segments. 

2. We delivered the eight planned IMRT treatments to the RPC IMRT H&N phantom 

on a single linear accelerator three times and measured the dose distribution 

delivered by each. 

3. We delivered the standard treatment plan to the RPC IMRT H&N phantom on four 

matched machines that use the same dosimetry data three times each.  

4. We calculated the standard plan dose distribution on an unmatched machine. 

5. We compared the measured and calculated doses using the common RPC criteria of 

7% and 4mm DTA as well as criteria of 5% and 3 mm DTA. 

 The dose distributions delivered using the eight treatment plans were measured with 

TLD and radiochromic film and both absolute point doses and planar dose distributions were 

compared to those calculated with the treatment planning system. Likewise, the delivery of 

the standard plan was measured with TLD and radiochromic film on four matched machines 

and the absolute point doses and planar dose distributions were compared to those calculated 

with the treatment planning system. A composite measure of the percent point dose 

agreement and the distance to agreement (DTA), the gamma index, was also be evaluated 

for each of these measurements.  

 The completion of this study will give the RPC direction into to what is causing the 

high rate of IMRT credentialing failure. With the growing use of advanced technologies 
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including IMRT and the increased need for strong QA, this study hopes to highlight some of 

the indicators of plans that are likely to contain dosimetric errors. The results of this study 

could decrease the amount of time and effort it takes to determine the cause of irradiation 

failures post-irradiation. Ideally the results will provide guidance to institutions as to 

treatment plan criteria that should be noted and avoided to increase the robustness of the 

treatment plan and treatment delivery, such as a complexity threshold above which 

dosimetric failure is expected.  
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Chapter 2 Methods and Materials 

 

2.1 Phantom 

This study utilizes the RPC’s IMRT head and neck phantom, which was designed as a 

means of auditing and credentialing institutions wishing to participate in Radiation Therapy 

Oncology Group (RTOG) head and neck protocols using IMRT. It was designed to mimic a 

patient for an RTOG oropharyngeal protocol (H-0022) with two target volumes, a primary 

tumor and a secondary node, and an organ at risk (OAR) within close proximity to the 

primary target. This phantom was created with tissue-equivalent materials containing 

radiation dosimeters to measure the dose delivered. 

The phantom consists of an anthropomorphic clear plastic shell and a polystyrene block 

insert, as shown in Figure 2.1. The plastic shell is hollow and can be filled with water 

through two plugs in the bottom to simulate soft tissue.  

 

Figure 2.1 RPC IMRT Head and Neck phantom with dosimetry insert 

The removable polystyrene insert measures 13 cm by 10.5 cm by 7.5 cm and 

contains the two targets and OAR volumes as well as the radiation dosimeters. The insert is 

cut along the axial plane for insertion and removal of dosimeters. The targets and OAR are 

visible at this opening as seen in Figure 2.1. Error! Reference source not found.Error! 

Reference source not found. shows the superior half of the insert alongside a cross-

sectional CT image of the same half. The solid water planning target volumes (PTVs) and 
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the acrylic OAR are labeled in the images in Figure 2.2, as well as the locations for the TLD. 

The phantom dosimetry insert materials were chosen to ensure visibility on CT images with 

minimal effects on the delivery. The three structures within the insert are cylinders with 

central axes that lay along the superior-inferior axis of the phantom. The primary PTV has a 

posterior semi-circular cut-out the OAR sits, separated by a 0.8 cm gap.  Dimensions of the 

PTVs and OAR can be found in Table 2.1.  

 

 

 

Figure 2.2 Picture (left) and CT image (right) of superior axial half of IMRT Head and Neck phantom with two 

PTVs and an OAR. Eight TLD are numbered as those in the superior half (those in the inferior half). 

 

Structure Diameter (cm) Length (cm) 

Primary PTV 4 5 

Secondary PTV 2 5 

OAR 1 13 
Table 2.1 Dimensions of structures within RPC IMRT Head and Neck phantom dosimetry insert 

 

The phantom insert houses a total of eight thermoluminescent dosimeter capsules 

(TLDs). There are four holes in each half of the insert, that hold the TLD. The TLD are 

placed in pairs at the same location in the superior and inferior half of the insert. There is 

one pair of TLD in the center of each the secondary PTV and the OAR. In the primary PTV, 

one pair of TLD lies anterior and right of the center of the cylinder and one pair lies 

posterior and left of the center.  

Primary PTV 
Secondary 

PTV 

OA

R 

Sagittal Film 

TLD 7 (8 inf) 

TLD 5 (6 

inf) 

TLD 1 (2 
TLD 3 (4 
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The insert also houses radiochromic film in the axial and sagittal planes. The film along 

the sagittal plane bisects the primary PTV and the OAR and is cut in two pieces where it 

intersects the axial film. There is also a region of the sagittal film cut to allow for TLDs in 

the OAR. Small holes are pricked in designated points of the film for registration purposes. 

These holes are pricked in the axial film by three pins located in the axial plane of the insert. 

The sagittal films are pricked by a placing a small, sharp tool through five holes that are 

drilled in the left side of the insert. Details on film registration are provided in Section 2.4.4. 

2.2 Treatment Planning 

2.2.1 Treatment Plan Goals 

To determine if treatment plan complexity is directly related to dosimetry errors in 

IMRT delivery, we created eight IMRT treatment plans of varying complexity to deliver to 

the RPC’s H&N phantom. One plan was created to represent the average IMRT H&N 

phantom plan, the baseline plan. From there, treatment plan complexity was increased or 

decreased by extensive re-optimization, influencing the number of MU, number of 

segments, segment size, and MCS.  

In order to establish a baseline plan, a sample of 130 previous irradiations of the 

RPC’s IMRT H&N phantom completed at institutions across the country with Pinnacle 

treatment planning, Varian linear accelerators, and using one fraction to deliver the full 

prescription were evaluated. The median number of MU, number of segments, and number 

of beams were used to establish planning goals for the baseline plan of this study. 

2.2.2 Phantom Imaging 

To acquire images of the RPC IMRT H&N phantom for treatment planning, a CT 

simulation on a Philips Mx8000 IDT 16 slice CT scanner (Philips Healthcare, Andover, 

MA) with the AcQSim workstation was performed. The phantom was filled with water and 

the insert containing TLD was put in place. The phantom was set up on the imaging table 

supine and “head first.” Screws on the posterior side of the inferior support were adjusted to 

ensure the insert was approximately level with the table. The anterior-posterior laser was 

aligned along the central line of the face. A radio-opaque marker (bb fiducial) was placed at 

the position of the laser crosshairs on the nose and each ear to mark the simulation isocenter. 

These bb’s were taped down to ensure they did not move over the course of irradiation and 
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the laser crosshair position was drawn on the tape. Scan parameters similar to the commonly 

used MD Anderson adult head and neck protocol was used with 1.5 mm slice thickness, 120 

kV, and 250 mAs contiguous imaging, resulting in 174 images. The fine slice thickness was 

used to ensure TLD visibility. These images were imported into the Pinnacle (Philips 

Medical, Madison, WI) for treatment planning.  

2.2.3 Planning Parameters 

Treatment planning was performed on Pinnacle version 8.0m (Philips Medical, 

Madison, WI). The couch was removed from the CT scan at the interface between the 

phantom and the table. We used electron density lookup table that is routinely used at MD 

Anderson and was created for this and two other simulation CT scanners. This table allows 

the TPS to convert CT numbers to electron densities for the dose calculation. 

Using the region of interest (ROI) tool set, contours required by the RPC for the 

primary PTV (PTV_66), secondary PTV (PTV_54), OAR (CORD), and all eight TLD were 

created manually. TLD contours were created to include the TLD powder visible on the CT 

images. The skin was contoured with the autocontour function and a normal tissue structure 

was created by subtracting the PTVs with an additional margin of 5 mm from the total 

volume defined by the skin. Several planning structures were also contoured, including a 5 

mm expanded OAR, total PTV and several hot spots. 

The isocenter for these plans were created at the intersection of the three bb’s placed 

during simulation on the slice in which all three bb’s are visible. This point was used for 

laser localization.  

As commonly done at MDACC, nine beams were used in our IMRT planning. The 

nine coplanar beams were placed at gantry angles of 200°, 240°, 280°, 320°, 0°, 40°, 80°, 

120°, and 160°. In some cases, the beam angle was change from 160° to 165° to increase the 

ability to avoid the OAR. The MLC for each beam was initially set to expose both PTVs 

with an additional margin of 5 mm. All beams used 6 MV photons with couch and 

collimator angles of 0°.  

2.2.4 Dose Prescription 

The dose prescription used in this study is based on the dosimetric requirements set 

by the RPC for credentialing irradiations of the phantom. At least 95% of the primary PTV 

is to receive 6.6 Gy, and less than 1% can receive less than 93% of 6.6 Gy. At least 95% of 
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the secondary PTV is to receive 5.4 Gy, and less than 1% can receive less than 93% of 5.4 

Gy. The OAR may receive at maximum 4.5 Gy and the normal tissue may receive at 

maximum 110% of the full prescription dose of 6.6 Gy. These criteria are summarized in  

Table 2.2. The prescription was set to deliver 660 cGy to 96% of the ROI mean dose to the 

primary PTV for all plans.  The dose grid was set to include the entirety of the phantom and 

used a 0.4 cm
3
 resolution unless otherwise noted. 

Structure Dosimetric Criteria 

Primary PTV 
D95% ≥ 6.60 Gy 

D99% ≥ 6.14 Gy 

Secondary PTV 
D95% ≥ 5.40 Gy 

D99% ≥ 5.03Gy 

OAR Maximum dose < 4.50 Gy 

Normal Tissue Maximum dose ≤ 7.26 Gy 
 

Table 2.2 RPC IMRT Head and Neck phantom dose prescription and constraints 

2.2.5 Objectives/Inverse Planning 

Inverse planning was performed using Direct Machine Parameter Optimization 

(DMPO). Iterations of the optimization used the Adaptive Convolve dose calculation 

algorithm and the final dose was computed with the CC Convolution algorithm. The IMRT 

parameters (number of iterations, convolution dose iteration, minimum MU, maximum 

number of segments, stopping tolerance, minimum segment size) and the planning 

objectives were manipulated to create plans of the desired complexity. The objectives, their 

weights, and IMRT parameters for each of the eight plans used in this study can be found in 

Appendix A  Treatment Planning Dose Objectives and IMRT Parameters 

2.2.6 Mismatched Beam Dosimetry Dose Calculation 

To investigate the effects of improper beam modeling on dosimetric accuracy, a 

calculation of the baseline plan dose was performed using an incorrect beam model. This 

was done using a script that copies the beams and respective control points from one plan to 

another using a different designated beam model. At MDACC, different beam models are 

utilized for the Varian 2100 series machines and the Varian 600 series machines to account 

for variations in the machine designs. The main mechanical differences in these machines 

exist at the wave guide. Since the Varian 600 series machines output only 6 MV photon 

beams, the waveguide can be shorter than that of the Varian 2100 series machines. The 600 



19 

 

series waveguide is therefore vertical and no bending magnet is used. This results in a 

different electron beam focus on the target than a machine using a bending magnet. The 

Varian 2100 CD machine that the 2100 series model is based off will be referred to in this 

study as the “baseline machine.” The 600 series beam model was used to calculate the dose 

of the baseline plan to compare against the delivery on a 2100 series machine to demonstrate 

a case of forced mismatched beams.  

2.3 Treatment Plan Evaluation 

2.3.1 Complexity 

2.3.1.1 Modulation Complexity Score 

In addition to number of MU and number of segments, we used the modulation 

complexity score (MCS) as a measure of plan complexity in this study [2]. The modulation 

complexity score (MCS) uses two parameters, the leaf sequence variability (LSV) and 

aperture area variability (AAV), to take into account leaf position variability, degree of field 

shape irregularity, segment weight, and area. The LSV considers the difference in position 

of adjacent MLC leaves for each segment and is calculated as shown in Equation 2.1. The 

AAV considers the area of each segment as defined by the MLC compared to the maximum 

aperture of that segment and is calculated as shown in Equation 2.2. Finally, these two terms 

are combined for each beam as the sum of their MU-weight product, as in Equation 2.3. The 

MCS of an entire plan is equal to the MU-weighted sum of the MCS for each beam in the 

plan, shown in Equation 2.4. An MCS of 1.0 has “zero” complexity and is defined by an 

open rectangular field. More highly complex plans have a lower MCS [2]. A Pinnacle script 

written by Tom Purdie was used to compute the MCS for each of the treatment plans.  
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2.3.1.2 Segment Size 

Additional effort was made to evaluate the open area per segment, the segment size, 

for each plan. This information is not provided in Pinnacle v.8m but is in Pinnacle v.9. 

Treatment plans were copied and opened with Pinnacle v.9 to use this feature. Doses were 

not recalculated in the copied plans, but segment weights were provided and multiplied by 

the beam MU calculated in Pinnacle v.8m to find the MU per segment. The minimum, 

maximum, and average MU per segment size and per segment were evaluated along with the 

minimum segment size for each beam.  

2.3.2 Plan quality  

To ensure all plans met prescription and were comparable, we evaluated each plan’s 

ability to achieve the dose objectives set by the RPC. To do this, the percent of the PTVs 

receiving 100% and 93% of the prescription dose, the maximum dose to the OAR, and the 

maximum dose to the normal tissue were assessed.  

2.4 Dosimetric Accuracy Evaluation 

To determine if dosimetric accuracy is affected by treatment plan complexity, each of 

the eight treatment plans was delivered to the RPC’s H&N phantom three times on the 

baseline machine and the dose distribution measured by TLD and radiochromic film. 

Additionally, the baseline plan was delivered to the phantom on another Varian 2100 CD, a 

Varian 21EX, and a Varian Trilogy three times each and the dose distribution measured by 

TLD and radiochromic film to assess the possible effects of beam model matching.  

2.4.1 Phantom Irradiation 
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We delivered the baseline plan on the baseline machine, a Varian Clinac 2100 CD 

linac at MD Anderson Cancer Center in Houston, TX. This machine was equipped with the 

Varian Millennium 120 MLC. This multi-leaf collimator has 120 total leaves, sixty leaves 

on each bank. The forty central leaves are 5 mm wide at isocenter and the ten peripheral 

leaves on each side are 10 mm wide at isocenter. Following the AAPM TG-51 protocol, this 

linac was calibrated to 1.000 cGy/MU in muscle at dmax under reference conditions of 100 

cm SSD and 10 cm X 10 cm field size.  

The phantom was positioned at the head of the treatment couch, above the mesh top 

to avoid possible effects of the mesh on the film. It was positioned supine and “head first” as 

it was for the simulation as shown in Figure 2.3. The lasers were aligned to the simulation 

isocenter using the bb’s and intersecting marks. The alignment of the lasers with the cross 

hairs of the gantry was checked several times throughout these measurements. This was 

done by setting the phantom up according to the lasers and checking that the position was 

correct with the cross hairs also.  

 

Figure 2.3 RPC IMRT Head and Neck phantom set up for irradiation on linac table 

We delivered each treatment using the record and verify system, Mosaiq (IMPAC 

Medical Systems, Inc., Sunnyvale, CA), with the linac in clinical mode. Each treatment was 

delivered three separate times, loading new TLD and film prior to each irradiation. Since the 
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exchange of dosimeters requires removing the phantom insert, the phantom was completely 

repositioned and proper set up confirmed for each individual irradiation. 

The baseline plan was also delivered following the same process on three additional 

machines which employ the same beam model in our TPS. Another Varian 2100CD linac, a 

Varian 21EX linac, and a Varian Trilogy linac each with Millennium 120 MLC and 

calibrated in the same manner as the baseline machine were used. These linacs employ the 

same basic physics machinery and ideally should be the same. The Varian 2100CD linac 

became commercially available about 2002. The Varian 21EX machine was the next in the 

series and includes an EPID. Finally, the Trilogy was released and in addition to on-board 

imaging accessories contains a mini filter to allow for higher dose rates at small field sizes, 

an addition that did not affect this study. On the Trilogy machine, the treatment table is 

slightly different in that it is designed for imaging. All other machines had a mesh top in 

place. For the Trilogy couch, the phantom was placed on the imaging top (as opposed to at 

the head of the couch above the mesh top) and the rails were moved for beams which 

intersected them at angles of 160° (or 165°) and 240°. These machines were all matched to 

the baseline machine upon acceptance and are maintained at 2% absolute agreement of 

percent depth dose and machine output by following AAPM TG-51 annual quality assurance 

[18]. Monthly machine output checks around the time of the irradiations performed for this 

study matched each machine with the baseline machine with 1% deviation or less. 

2.4.2 Dosimeters 

This study utilized TLD and radiochromic film for radiation measurements as 

routinely performed by the RPC for auditing and credentialing. Each of these radiation 

dosimeters measures the radiation dose passively, making them optimal for remote 

measurements such as the RPC’s mailable phantom audit program. The absolute point doses 

and planar relative dose distributions delivered in this study were measured by the TLD and 

radiochromic film, respectively. 

2.4.2.1 Thermoluminescent Dosimetry 

Thermoluminescent (TL) dosimetry is based upon the phenomena of certain 

inorganic crystals absorbing radiation energy and emitting it as light when heated. These 

crystals, TL phosphors, have high concentrations of imperfections known as trapping 
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centers. Electron-hole pairs can be created in the crystal by incident radiation, followed by 

the migration of these electrons and holes to various traps located off the conduction and 

valence bands, respectively. When the crystal is heated, the electrons and holes are excited 

out of the traps and can recombine, resulting in the release of a light photon. TL phosphors 

are integrating dosimeters, meaning continuous exposure of the crystal to radiation will lead 

to a progressive accumulation of trapped electrons and holes. Therefore, the number of 

electron-hole pairs formed by the incident radiation is reflected by the number of trapped 

electrons and holes and the intensity of light created by their recombination can be 

measured. This, in turn, can be related to the radiation dose received by the TL material.  

The RPC uses a TL material known as TLD100. TLD100 is a lithium fluoride crystal 

powder doped with magnesium and titanium to serve as the primary trapping centers and 

luminescent recombination centers, respectively. The TL powder is housed in a plastic 

capsule measuring 15 mm long and 4 mm in diameter. These capsules contain two packets 

of approximately 20 mg of the radiation-sensitive powder each, providing two absolute dose 

measurements.  

To determine the radiation dose received by a TLD capsule, each packet of powder is 

weighed, heated, and the amount of light released is measured with a photomultiplier tube 

(PMT). The measured amount of light is then converted to absorbed dose to muscle, D, 

using a number of correction factors as in Equation 2.5.  

6 
 7 � � � 89 � 8: � 8; 

Equation 2.5 

In the above equation, T is the average TL response reading per mass of powder, as 

determined by the PMT and scale. The system sensitivity, S, is the absorbed dose per system 

response, which is determined by measuring the system’s response for a set of TLD (the 

“standards”) irradiated to a known dose with 
60

Co under standard conditions. KE is a factor 

to take into account the varying response of TLD to different radiation energies. KL accounts 

for the response of TLD to radiation, which is approximately linear up to 4 Gy (for 

TLD100), past which it is supralinear [19]. Finally, KF is a function of time and takes into 

account TL response signal fading that occurs over time due to electrons and holes being 

excited and recombining at room temperature. Some traps are shallow (do not differ much in 
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energy level from the conduction or valence band) and are unstable and therefore electrons 

and holes in them are more likely to escape without thermal excitation. Fading decreases 

exponentially with time, becoming mostly constant after ten days [20]. The RPC waits a 

minimum of ten days to read TLD in order to reduce unstable fading and the effects of 

uncertainty in the exact time since irradiation. 

The corrections mentioned for energy response, fading, and linearity are found by 

the RPC for each batch of TLD they use. This study used TLD from one single batch and the 

corresponding corrections determined by the RPC were used. A control set and a standard 

set of TLD were irradiated to a known dose the same week as a phantom irradiation and read 

out at the same time as the phantom TLD to determine the system’s response. All TLD used 

in this study were read out at least 10 days post-irradiation. This TLD system has a precision 

of 3% and agrees with ion chamber measurements within ±4% at a 90% confidence level 

[20]. 

2.4.2.2 Radiochromic Film Dosimetry 

Radiochromic film is comprised of a material that changes color upon exposure to 

radiation without any chemical, optical, or heat processing. The resultant image which is a 

pattern of optical densities (OD), or reduced transmission of light, can be measured to obtain 

a planar dose distribution. Radiochromic film has high spatial resolution (<0.1 mm), 

relatively low spectral sensitivity, and is insensitive to light [21]. It also is approximately 

tissue equivalent and has no significant angular dependence, making it ideal to make 

dosimetric measurements [22]. 

In this study, we used GafChromic® EBT2 (International Specialty Products, 

Wayne, NJ) film which is specifically intended for use in external beam radiotherapy 

applications. EBT2 film is made of an active microcrystalline monomeric dispersion coated 

on a flexible polyester film base. EBT2 film turns blue upon irradiation which occurs as a 

result of partial polymerization of the active component of the film [21]. In this irradiated 

state, the film has a primary absorption peak at about 636 nm and a secondary absorption 

peak at 565 nm. The active layer of this film contains a yellow dye which decreases it’s 

sensitivity to light by about ten times and provides a reference background. This dye causes 

the irradiated portion of the film to appear dark green.  
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EBT2 film is designed to be used to measure doses from 1 cGy to 40 Gy. Within the 

range of therapeutic and scattered radiation energies EBT2 has a low energy dependence, 

with less than 10% response difference for 100 keV and 6 MV photons, as reported by the 

manufacturer. A recent study by Arjomandy et al showed that the energy dependence is 

even weaker, varying about 4.5% for photon energies from 75 kVp to 18 MeV [23]. The 

spatial resolution of EBT2 film is reported by the manufacturer to be at least 100 µm. The 

effective atomic number is reported to be 6.84 compared to the effective atomic number of 

water of 7.3. 

For each of the phantom irradiations in this study, three pieces of film were cut from 

a pattern. An axial film was cut to fit between the two halves of the insert. Two sagittal films 

were cut to fit within the superior and inferior halves of the insert, with a section cut out for 

the OAR TLD. All films came from the same batch and were marked to maintain orientation 

and irradiation number.  

The recommendations of AAPM Radiation Therapy Committee Task Group 55 were 

followed in regards to handling and measuring the film [21]. All film was kept in closed, 

dark envelopes to reduce the exposure to light. The film was kept at room temperature with 

low humidity and blank film was kept with the measurement pieces to record background 

radiation. All film was read at least two days post-irradiation.  

To evaluate the resultant distribution of optical densities of the EBT2 film, we used a 

transmission densitometer, the CCD100 Microdensitometer (Photoelectron Corporation, 

Lexington, MA). In this system, a light-emitting diode (LED) light box, emitting light with a 

wavelength centered at 665 nm to approximately match the primary absorption of the film, 

was used to shine through a piece of film. The light transmitting through was recorded by a 

charge-coupled device (CCD) camera directly above. The CCD camera was set at a height 

appropriate to focus on the 150 mm by 150 mm we desired to measure and the focus 

checked by acquiring an image of a ruler. The region of the light box not contained in the 

central measurement area was covered with a black mask. The CCD camera had a resolution 

of 512 by 512 pixels, which produces a pixel size of approximately 0.3 mm for this set up. 

This system was contained in a light-tight cabinet to prevent external light contamination. 
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A piece of blank film was imaged and stored as a “flat field” to be subtracted from 

the following images to account for variations in the scanner. Next, a 10 mm by 10 mm grid 

was imaged to set the spatial calibration. Once the scanner was calibrated, the experimental 

films were measured. A consistent orientation was maintained for all film measurements. 

Axial films were imaged alone and sagittal films from the same irradiation were imaged 

together as they were in the phantom, with a small gap in between. All measurements were 

saved as .FIT files for further analysis.  

To find the relationship between OD and dose for our batch of film, we performed a 

film calibration. We irradiated film to several different doses with 6 MV photons as in the 

IMRT plans, and evaluated the resultant ODs to generate a dose response curve. Nine 3 cm 

by 3 cm squares were cut from the same piece of film and marked for unique identification 

and orientation. On the baseline machine treatment table, these pieces of film were arranged 

in a square on the center of 9 cm stack of solid water for adequate backscatter and covered 

by 5 cm of solid water. The top of the solid water stack was set to 100 cm SSD and a 35 cm 

by 35 cm field was centered on the stack using the field light. We then irradiated the stack 

with all pieces of film present, removed one piece, and delivered additional MU to the 

remaining film. Another piece of film was removed and the process continued until a 

different number of MU was delivered to each piece of film. The alignment of all pieces was 

maintained during this process. To determine the total dose delivered to each piece of film, 

the number of MU was multiplied by the appropriate machine output factor. The machine 

output factor was calculated using Equation 2.6, where Sc is the collimator scatter factor, Sp 

is the phantom scatter factor, and PDD is the percent depth dose at 5 cm depth in water. The 

output factor for this machine and field size was 0.9632. The films were irradiated to a range 

of 48 cGy to 1300 cGy, which covers the range of doses expected in the phantom 

irradiations. These values are reported in  

.  

<=>�=> ?+@>�A 
 �B � �3 � C66 

Equation 2.6 

 

 

 

 

Square # Total MU Dose (cGy) 

1 50 48.16 

2 150 144.48 

3 250 240.80 

4 350 337.13 

5 550 529.77 

6 750 722.41 
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7 950 915.05 

8 1150 1107.70 

9 1350 1300.34 
 

Table 2.3 EBT2 film irradiation for dose calibration 

 

These calibration films were imaged using the technique described above and the 

average OD of three readings for the center of each square was recorded. These net ODs 

were plotted against the calculated dose delivered and fit with a third-order polynomial, as 

shown in Figure 2.4. The resulting equation was used to convert the experimental film OD, 

x, to dose, D as in Equation 2.7 and had R
2
 of 0.9984. 

 

Figure 2.4 Dose response curve for EBT2 film used in this study 

6 
 4707.8,I � 1556.3,N O 675.08, 

Equation 2.7 

 

2.4.3 Absolute Point Dose Analysis 

In order to assess the quality of a treatment planning system, the planned dose 

distribution should be compared to a physical measurement of the dose distribution. 

Different techniques are used to quantitatively evaluate the agreement between planned and 

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
o

se
 (

cG
y

)

OD



28 

 

delivered doses in low and high dose gradient regions. In low gradient regions, the absolute 

doses are directly compared and held to a percentage standard. 

To evaluate the absolute dose to a specific point in the phantom, the dose to eight 

TLDs in the phantom insert was measured for each irradiation as described in Section 

2.4.2.1. Doses measured by the TLD were then compared to the mean dose to the 

corresponding TLD ROI calculated by the TPS. The percentage difference between the 

measured dose and the predicted dose for each TLD was calculated. This percentage must be 

±7% for both the primary PTV and secondary PTV point doses in order to comply with the 

RPC standards. The RPC does not include the TLD in the OAR in this analysis because they 

are generally within or near a steep dose gradient and small positional errors can result in 

large dosimetric errors. 

2.4.4 Film, Plan, and Phantom Registration 

In order to compare the measured dose distributions with those calculated in the 

TPS, we had to register the irradiated films and the treatment planning data to a single 

coordinate system. This was done using a program built using the MATLAB® language 

(The MathWorks, Inc., Natick, MA) known as the Computational Environment for 

Radiotherapy Research (CERR) (J.O. Deasy and Washington University, St. Louis, MO) 

which can be used to view and analyze treatment plans in a standard format. All treatment 

plans, including the CT image set, were exported in DICOM-RT format from Pinnacle and 

imported into CERR. Then, by identifying a set of known points on the CT images, we were 

able to register each of the treatment plans to the phantom coordinate system. To allow for a 

comparison of the planar dose distributions, the film was registered to these same 

coordinates using another program written in MATLAB, RPCFILM. With the RPCFILM 

program, the .FIT files containing the OD images of the film were opened and registered to 

the phantom coordinate system using the pin pricks. The location of each pin prick was 

identified and matched to its corresponding point within the phantom. Our dose response 

curve generated in Section 2.4.2.2 was then used to convert the OD distributions of the films 

to dose distributions. 

To allow for a comparison of the absolute doses, the film doses were normalized to 

the matching primary PTV TLD doses. On the axial films, the percent difference between 
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the average doses of the superior and inferior TLD in the primary PTV to the film-measured 

doses at those two points were determined. On the sagittal films, the percent difference 

between the dose measured with TLD to that measured by film was determined at all four of 

the TLD locations within the primary PTV.  

2.4.5 Planar Dose Analysis 

Using the above described registration process and the RPCFILM program, we 

compared the dose distributions recorded by the film to those of the treatment plan. Dose 

profiles were taken through the center of the primary PTV in each orthogonal direction. On 

the axial films, a lateral dose profile was taken through the center of the primary and 

secondary PTV and an anteroposterior dose profile was taken through the center of the 

primary PTV. On the sagittal films, a dose profile was recorded in the superior-inferior 

direction through the center of the primary PTV. The dose profiles were generated by a 0.3 

mm resolution sampling of the film and each profile was visually inspected for shifts in the 

dose distributions. We used a moving average at 3 mm intervals to smooth the dose profiles. 

In high gradient regions, small spatial errors can lead to large dose differences in 

planned and delivered treatments and thus a distance-to-agreement (DTA) criteria is used. 

The DTA is a measurement of the distance between a measured dose point and the closest 

matching dose point in the planned dose distribution.   

To evaluate the ability of the system to plan and deliver the steep dose gradient 

required between the primary PTV and the OAR, the distance to agreement (DTA) was 

evaluated.  The dose profile between the primary PTV and OAR in the anteroposterior 

direction on the axial films was used for this analysis. A linear regression of the penumbra 

was performed on the film data and corresponding treatment plan data with the boundaries 

at the approximate max and min points of the dose gradient between the two. These points 

were considered to be at the relatively flat regions of dose, evaluated individually for each 

film. From both the film and treatment plan profiles, 75%, 50%, and 25% dose values were 

determined and the differences in position at each point recorded. The average of all these 

values was taken to be the DTA for that film.  

2.4.6 Gamma Analysis 
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RPCFILM was also used to compare the measured planar dose distributions to the 

corresponding treatment plans in RPCFILM with a gamma analysis, a quantitative technique 

described by Low et al.  A gamma analysis quantifies both the absolute dose difference and 

DTA criterion into a single metric for evaluating dose distribution agreement, with the 

measured dose as reference and the calculated dose assessed for comparison. Using the 

gamma analysis, these two criteria are assessed and agreement of the measured and 

calculated dose distributions is quantified by the γ-index.  

To perform a gamma analysis, one first defines the criteria to hold the dose distribution 

agreement to. ∆DM is the dose difference criteria and ∆dM is the DTA criteria, for example 

we used ∆DM/ ∆dM of 7%/4mm. These two acceptance criterion are used to form an ellipsoid 

surface when combined in a space of major axis DTA, r(rm,r), and dose difference, ∆(rm, r) 

which is defined by Equation 2.8 below: 

PANA�, A�
∆RSN O TNA�, A�

∆6SN 
 1 

Equation 2.8 

Where AA�, A� 
  |A � A�|, TA�, A� 
  6A� � 6�A��, m denotes measurement and D(r) 

is the dose at point r. 

Assessment of the calculated dose distribution can then be performed and evaluation 

of its ability to meet acceptance criteria by finding the minimum value of ∆(rm, rc) as defined 

below: 

VA�� 
 minZΓA�, AB�[ \ZAB[ 

Equation 2.9 

With  

 

ΓA�, AB� 
 PANA�, AB�
∆RSN O TNA�, AB�

∆6SN  

Equation 2.10 

Where c denotes calculated. 
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If γ(rm), the γ-index, is less than or equal to one, that measured point is within the 

ellipsoid of acceptance and passes the criteria as acceptably agreeing with the calculated 

dose. The γ-index is then generally found at all points in the measured distribution and a 

percentage of points passing can be used to assess the overall agreement between calculated 

and measured dose. 

The program RPCFILM has a masking tool which allows the user to define regions 

of the film not to include in the gamma analysis. This is particularly useful for the H&N 

IMRT phantom sagittal films where the OAR TLD section is cut out. It is also useful at 

some film edges where the film was affected by the cutting action and the dose it reflects 

may be corrupted.  

The RPC is not currently using a gamma analysis to credential institutions with the 

H&N IMRT phantom, but has been collecting data using a criterion of 7%/4mm on a region 

of the axial film as shown below in Figure 2.5. Therefore, we performed a 7%/4mm gamma 

analysis on the same region of all our films to compare to the percent of pixels passing the 

RPC’s evaluation.  

 

Figure 2.5 Primary PTV region on axial films used for gamma analysis to compare with gamma analysis done at the 

RPC 

In addition, we performed a gamma analysis on a more complete region of the axial 

films as shown in Figure 2.6 and a region of the sagittal films as shown in Figure 2.7 with 

criteria of 7%/4mm and 5%/3mm for each. The masking tool was used to cover all pin 

pricks, cuts, and uneven edges, defined individually for each film. 
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Figure 2.6 Complete axial film area used for gamma analysis in this study 

 

Figure 2.7 Complete sagittal film area used for gamma analysis in this study 
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Chapter 3 Results 

3.1 Treatment Plans 

3.1.1 Treatment Planning Goals 

To establish a baseline treatment plan, 130 previous irradiations of the RPC’s IMRT 

H&N phantom performed with the Pinnacle TPS and Varian linear accelerators (linacs) 

were evaluated.  Table 3.1 shows the resultant median, standard deviation, maximum, and 

minimum for each the number of beams, number of MU, and number of segments. 

 Number of beams Total MU Total number of segments 

Median 9 1863 87 

Standard Deviation 1.3 417 76 

Minimum 5 557 29 

Maximum 13 2961 581 
Table 3.1 Summary of characteristics of comparable irradiations of the RPC IMRT Head and Neck phantom  

Of the plans included in Table 1, 108 of these plans had passed the RPC audit and 22 

had failed. Figure 3.1 and Figure 3.2 show the distribution as a histogram of each plan’s 

total MU and number of segments, respectively, and whether it passed or failed the RPC 

audit. Note that there is not a clear distinction between passing and failing treatment plans 

for either of these measures of complexity. 
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Figure 3.1 Distribution of total MU in plans passing and failing an RPC audit with the IMRT Head and Neck 

phantom 

 

Figure 3.2 Distribution of total number of segments in plans passing and failing an RPC audit with the IMRT Head 

and Neck phantom 
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3.1.2 Treatment Plans 

The analysis performed above in Section 3.1.1 provided treatment planning goals for 

a baseline plan as well as goals for the most simple and complex plans as defined by the 

number of MU and number of segments. The median number of beams, nine, matched with 

the commonly used number at our institution and was used for all treatment plans.  

After establishing a baseline plan and re-optimizing extensively to both decrease and 

increase treatment plan complexity, a total of fifty IMRT treatment plans for the RPC’s 

H&N phantom meeting prescription and OAR constraints were created. From these, eight 

treatment plans were chosen based on the distribution of the modulation complexity score 

(MCS), which for our plans range from 0.181 (most complex) to 0.609 (least complex). The 

number of MU, number of segments, and MCS for each of the plans used in this study are 

shown in Table 3.2. Also included are the average number of MU per segment and the 

minimum segment area allowed by the TPS for each plan. The blue row highlights the 

baseline plan, chosen to represent the median RPC plan from the previous analysis. The plan 

numbering convention used in Table 3.2 will be used for the remainder of this report. Plans 

6 and 7 used a grid size of 0.3 mm
3
 and the remaining plans used a grid size of 0.4 mm

3
. 

 

Plan  MCS MU # segments MU/segment Min Segment Area (cm
2
) 

1 0.609 1460 54 27 6 

2 0.574 1585 134 12 0.5 

3 0.532 1712 53 32 6 

4 0.469 1932 88 22 4 

5 0.392 2058 225 9 0.5 

6 0.338 2488 89 28 0.1 

7 0.269 2527 225 11 0.25 

8 0.181 3469 216 16 0.1 
Table 3.2 Summary of measures of complexity of treatment plans used in this study, blue highlight indicates 

baseline plan 

 Segment size and MU per segment were evaluated to further understand the 

complexity of each treatment plan. The minimum segment size actually used in the 

treatment plan, the minimum, maximum and average number of MU per cm
2
 of all segments 

in each plan, and the minimum and maximum MU per segment are reported in Table 3.3. 



36 

 

Notice that the minimum and maximum MU per cm
2
 tend to become more extreme with the 

more complex plans, that is not always the case. Most importantly, notice that there are 

segments in the more complex plans that plan fractional MU for some segments, some with 

only 0.1 MU/segment. Some linacs would not be allowed to deliver fractional MU and the 

accuracy of fractional MU delivery on those that do allow it is questionable since it is not 

generally calibrated or evaluated.  

Plan MCS MU # segments 

min segment 

size (cm
2
) 

min 

MU/cm
2
 

max 

MU/cm
2
 

avg 

MU/cm
2
 

min 

MU/seg 

max 

MU/seg 

1 0.609 1460 54 6 0.36 6.01 1.78 16.0 55.2 

2 0.574 1585 134 0.51 0.02 24.36 1.35 1.0 83.3 

3 0.532 1641 54 6.02 0.15 14.76 2.27 5.0 89.1 

4 0.469 1851 88 4 0.02 18.01 2.19 1.0 72.0 

5 0.392 2058 225 1.28 0.01 20.98 1.58 0.5 55.2 

6 0.338 2410 89 0.25 0.13 334.60 9.46 0.1 87.0 

7 0.269 2417 225 0.96 0.00 106.60 2.33 0.1 107.7 

8 0.181 3466 216 0.29 0.00 54.42 3.64 0.1 72.0 

Table 3.3 Summary of segment size and MU/segment of treatment plans used in this study, blue highlight indicates 

baseline plan 

The relationship between the three measures of complexity used in this study, total 

MU, number of segments, and MCS for the eight treatment plans chosen are illustrated in 

Figure 3.3-Figure 3.5. It can be seen that while the total MU and MCS trend together with 

an R
2
 value of 0.93, the number of segments does not directly relate to either the total MU or 

the MCS.  
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Figure 3.3 Relationship between total MU and MCS for the eight plans used in this study with linear trendline 

 

 

Figure 3.4 Relationship between number of segments and MCS for the eight plans used in this study 
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Figure 3.5 Relationship between number of segments and total MU for the eight plans used in this study 

3.2 Treatment Plan Quality Comparison 

To ensure all plans used in this study were comparable, we evaluated the quality of each 

plan through three means. We first looked at the ability to meet the RPC prescription and 

constraints, which were presented in Table 2.2. The results of this evaluation are presented 

below in Table 3.4. 

Plan 

Number 

Primary 

PTV V660  

Primary 

PTV Max 

Dose (cGy) 

Secondary 

PTV V540  

OAR Max 

Dose 

(cGy) 

NT Max 

Dose 

(cGy) 

NT Max 

Dose %of 

Rx 

1 96.0% 719.2 99.9% 450 679.7 103.0% 

2 95.0% 738.2 100.0% 444.8 692.1 104.9% 

3 97.4% 712.0 100.0% 422.7 704.3 106.7% 

4 97.7% 712.4 100.0% 410 690 104.6% 

5 98.4% 718.8 100.0% 409 644 97.6% 

6 98.9% 748.0 99.9% 389.1 690.8 104.7% 

7 96.3% 746.1 98.0% 402.7 674.6 102.2% 

8 98.6% 742.5 98.0% 425.9 778 117.9% 
Table 3.4 The values of each dosimetric objectives for the eight plans used in this study, including prescriptions and 

constraints.  

The second column of Table 3.4 shows the percent of the primary PTV volume 

receiving the prescribed dose of 660 cGy (as required for irradiating the RPC H&N 
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phantom), known as V660. For each of the plans, the dose distribution was normalized to 

96% of the prescription dose to the primary PTV. The percent of the primary PTV volume 

receiving the prescribed 660 cGy is not always 96% because the dose distribution does not 

always perfectly match the volume of the primary PTV. All plans exceed the required 95% 

primary PTV coverage. In addition, the next column contains the maximum dose in cGy 

received by the primary PTV. These values are between 710 cGy and 750 cGy, generally 

increasing with treatment plan complexity. The fourth column of Table 3.4 shows the 

percent of the secondary PTV volume receiving the prescribed dose of 540 cGy, known as 

V540. All plans cover greater than 97% of the secondary PTV with this dose, therefore 

meeting and exceeding the requirement of 95% secondary PTV coverage. The fifth column 

of Table 3.4 shows the maximum dose for each plan in cGy received by the OAR, which 

should not exceed 450 cGy according to the RPC constraints. All plans met this 

requirement. The sixth and seventh columns of Table 3.4 show the maximum dose in cGy 

received by the normal tissue (NT) as defined in Section 17 and the percentage that dose is 

of the prescribed 660 cGy, respectively. The RPC constraint states that the normal tissue 

should not receive greater than 110% of the prescribed dose. All plans met this requirement 

with the exception of plan number 8, which exceeds by almost 8% or about 53 cGy. Note 

that plan number 8 is the most complex of the plans. This was deemed acceptable since the 

study is not evaluating the effects of complexity on plan quality and the plan meets all other 

constraints. Overall, note that increased complexity does not necessarily increase the quality 

for this sample of IMRT treatment plans. 

3.3 Dosimetric Accuracy Evaluation 

3.3.1 Absolute Point Dose Analysis 

Each of the eight plans was delivered on the RPC IMRT H&N phantom using the 

baseline linac three times to evaluate the possible effects of treatment plan complexity on 

dosimetric accuracy. In addition, the baseline plan was run on three additional machines 

three times each and re-calculated using a different beam model and compared to the 

baseline measurement in order to evaluate the possible effects of beam matching on 
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dosimetric accuracy. This H&N phantom holds eight TLD, numbered as shown in Figure 

2.2.  

The point dose measured with each TLD for all irradiations are reported in Appendix 

B  Absolute Point Dose Measurements. The absolute point dose analysis is summarized in 

Table 3.5 and Table 3.6. The percent difference between the average measured dose and the 

calculated dose to each of the six TLD in the PTVs of the phantom for all irradiations as 

well as the standard deviation of the three TLD measurements for each point is provided. A 

positive percent difference indicates a greater calculated dose than measured for that specific 

TLD. Note that all TLD measurements meet the RPC standard of 7% agreement. Recall that 

TLD in the OAR (TLD #7 and #8) are not included in this analysis because of their position 

with respect to steep dose gradients.  Differences between the delivered and planned doses 

tend to be positive more often than negative, indicating a higher dose delivered than 

planned, but this effect does not reveal a consistent trend.  Plan 5 has all negative differences 

and Plan 6 and 7 have all positive differences. Plan 3 had errors of greater than 5% for four 

out of six TLD measurements. Plan 6 had errors of 5% or greater for each of the analyzed 

points. . Only two other absolute point dose measurements evaluating the effects of 

complexity on dosimetric error (Table 3.5) had an error of 4% or greater. None of the TLD 

measurements evaluating the effects of beam matching on dosimetric accuracy (Table 3.6) 

exceed 4% dose difference. 

 TLD Average Measured vs. Calculated % Difference (standard deviation) 

Plan TLD #1 TLD #2 TLD #3 TLD #4 TLD #5 TLD #6 

1 2.7% (2.3%) 3.1% (2.2%) -0.1% (1.3%) -0.1% (1.1%) 2.4% (0.7%) 2.2% (1.2%) 

2 2.5% (0.7%) 3.4% (1.5%) -0.6% (0.6%) -0.9% (1.2%) 3.9% (2.3%) 2.2% (2.0%) 

3 5.7% (0.8%) 6.3% (1.3%) 2.5% (1.4%) 3.6% (1.9%) 6.3% (1.1%) 5.5% (1.4%) 

4 2.3% (2.4%) 3.1% (1.3%) 0.4% (1.0%) -1.3% (2.5%) 2.8% (0.7%) 1.5% (0.3%) 

5 -0.1% (0.7%) -0.2% (2.9%) -2.7% (0.3%) -2.6% (2.1%) -1.7% (0.9%) -1.4% (1.3%) 

6 4.8% (0.7%) 6.5% (2.4%) 5.6% (1.4%) 5.9% (1.7%) 4.7% (1.7%) 4.7% (2.2%) 

7 3.9% (0.5%) 2.9% (1.6%) 2.1% (0.9%) 3.1% (1.7%) 1.6% (0.5%) 3.1% (0.7%) 

8 2.7% (1.4%) -0.2% (2.2%) -2.1% (0.7%) -2.5%( 0.9%) 1.7% (1.4%) 3.7% (2.1%) 

Table 3.5 Average difference between measured and calculated TLD doses and standard deviation of the three TLD 

measurement differences for the six PTV TLD for all eight plans used in this study 
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 TLD Average Measured vs. Calculated % Difference (standard deviation) 

Machine TLD #1 TLD #2 TLD #3 TLD #4 TLD #5 TLD #6 

Baseline 2.3% (2.4%) 3.1% (1.3%) 0.4% (1.0%) -1.3% (2.5%) 2.8% (0.7%) 1.5% (0.3%) 

2100 CD 2.9% (1.5%) 1.4% (1.9%) 0.3% (1.5%) -1.5% (1.2%) 3.4% (1.4%) 1.1% (1.4%) 

21EX 1.1% (0.8%) 1.5% (0.6%) -1.5% (0.5%) -2.5% (1.1%) 3.5% (0.8%) 0.2% (1.2%) 

Trilogy -0.9% (0.4%) -1.2% (0.4%) -2.5% (1.0%) -1.5% (2.1%) 1.1% (0.1%) -0.9% (0.7%) 

6EX 2.4% (2.4%) 2.9% (1.3%) 0.2% (1.0%) -1.6% (2.5%) 2.5% (0.7%) 1.3% (0.3%) 

Table 3.6 Average difference between measured and calculated TLD doses and standard deviation of the dose (cGy) 

for the six PTV TLD for irradiations of the baseline plan on four different machines and recalculated with the 

incorrect beam model (6EX) 

 The percent error for each of the six PTV TLDs was compared to our three measures 

of treatment plan complexity: MCS, number of MU, number of segments, and minimum 

segment size. These comparisons are shown graphically in Figure 3.6, Figure 3.7, Figure 

3.8, and Figure 3.9. None of these measures of complexity appear to relate to absolute point 

dose errors, as there is no trend in any of these figures. There also appears to be no 

relationship between absolute point dose measurements and beam matching. 

 

 

Figure 3.6 Distribution of absolute percent difference in calculated and measured TLD doses with the MCS of the 

corresponding eight treatment plans 
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Figure 3.7 Distribution of percent difference in calculated and measured TLD doses with the total number of MU of 

the corresponding eight treatment plans 

 

Figure 3.8 Distribution of percent difference in calculated and measured TLD doses with the total number of 

segments of the corresponding eight treatment plans 
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Figure 3.9 Distribution of percent difference in calculated and measured TLD doses with the minimum segment size 

(cm2) of the corresponding eight treatment plans 

3.3.2 Planar Dose Analysis 

As mentioned in Section 2.4.2.2, the RPC IMRT H&N phantom holds film in two 

planes. To evaluate the planar agreement between planned and measured doses, three 

different dose profiles were measured for each of the irradiations. On the axial films, a 

lateral dose profile was taken through the center of the primary and secondary PTV and an 

anterior-to-posterior dose profile was taken through the center of the primary PTV and 

OAR. On the sagittal films, a dose profile was recorded in the superior-inferior direction 

through the center of the primary PTV and OAR, where a cut-out for the OAR TLD exists. 

The profiles for the baseline plan (Plan 4) are presented below in Figure 3.10-Figure 3.12. 

The profiles for all other plans are presented in Appendix C  Dose Profiles. These profiles 

display the calculated dose, each of the three measurements, and the average of all three 

measurements. The measured sagittal superior-inferior profiles have a gap in the data along 

the y-axis where the axial film separated the two sagittal films.  
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Figure 3.10 Posterior-to-anterior dose profile of Plan 4 as planned by the TPS and measured with the three axial 

films  

 

Figure 3.11 Lateral dose profile of Plan 4 as planned by the TPS and measured with the three axial films 
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Figure 3.12 Inferior-to-superior dose profile of Plan 4 as planned by the TPS and measured by the three sagittal 

films 
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measurements taken with the baseline plan on the various machines and the incorrect beam 
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Table 3.8. All average DTAs are positive and reflect the measured dose being to the right of 
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gradient than calculated. All average DTA value are less than or equal to 3 mm and are 

therefore within the RPC criteria of ±4 mm. In Table 3.7 it can be seen that Plan 6 had the 

lowest average DTA and therefore the best agreement between delivery and calculation. 

This is interesting because Plan 6 also had the poorest TLD absolute dose agreement with 

expected doses. Also notice in Table 3.8 that the baseline machine had the largest DTA 

standard deviation of all machines and therefore poor agreement. Surprisingly, the 

measurements made on the baseline machine and compared to the treatment plan calculated 

with the incorrect beam model agreed better than the baseline machine with the original 

baseline plan with the treatment plan calculated as measured by average DTA. The Trilogy 

had the best DTA. 

 

Figure 3.13 Posterior-to-anterior dose profile example demonstrated the measurement of distance-to-agreement 
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Plan Number DTA (cm) Standard Deviation 

1 0.3 0.02 

2 0.3 0.04 

3 0.3 0.02 

4 0.3 0.10 

5 0.2 0.01 

6 0.1 0.05 

7 0.2 0.03 

8 0.3 0.05 
Table 3.7 Displacement (cm) of measurement from calculation and the standard deviation of the posterior 

penumbra between the primary PTV and the OAR for all eight treatment plans 

 

Machine DTA (cm) Standard Deviation 

Baseline 0.3 0.10 

2100CD 0.2 0.02 

21EX 0.2 0.02 

Trilogy 0.1 0.02 

6 EX 0.2 0.08 
Table 3.8 Displacement (cm) of measurement from calculation and the standard deviation of the posterior 

penumbra between the primary PTV and the OAR for the baseline plan delivered on four matched machines and 

recalculated with an incorrect beam model 

 The distance-to-agreement values were compared to our three measures of 

complexity to evaluate possible dosimetric effects of increased treatment plan complexity. 

The average DTA values were graphed against each the MCS, number of MU, number of 

segments and minimum segment size and are shown in Figure 3.14, Figure 3.15, Figure 

3.16, and Figure 3.17 respectively. None of these parameters have a clear relationship with 

planar dose distribution error demonstrated by DTA.  
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Figure 3.14 Displacement (cm) of measurement from calculation and the standard deviation of the posterior 

penumbra between the primary PTV and the OAR for all eight treatment plans according to MCS 

 

Figure 3.15 Displacement (cm) of measurement from calculation and the standard deviation of the posterior 

penumbra between the primary PTV and the OAR for all eight treatment plans according to total plan MU 
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Figure 3.16 Displacement (cm) of measurement from calculation and the standard deviation of the posterior 

penumbra between the primary PTV and the OAR for all eight treatment plans according to total number of 

segments

 

Figure 3.17 Displacement (cm) of measurement from calculation and the standard deviation of the posterior 

penumbra between the primary PTV and the OAR for all eight treatment plans according to minimum segment size 

(cm2) 
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3.3.3 Gamma Analysis 

As our final measure of the agreement between calculated and delivered dose 

distributions, a gamma analysis was performed as described in Section 2.4.6. Table 3.9 

contains the average percent of pixels passing a gamma analysis with 7%/4mm criteria of 

the primary PTV region of the axial films as shown in Figure 2.5 for each of the eight plans. 

All plans with the exception of Plan 3 had greater than 90% of pixels passing this analysis. 

For comparison, institutions irradiating the RPC’s IMRT H&N phantom in 2010 had an 

average percent of pixels passing a gamma analysis performed by the RPC on the same 

region with the same criteria of 93 % ±11 %.  

 

Plan MCS MU # Seg 7%/4mm Standard Deviation 

1 0.609 1460 54 98.0% 4.7% 

2 0.574 1585 134 96.8% 2.2% 

3 0.532 1641 54 75.7% 12.7% 

4 0.469 1851 88 90.8% 6.4% 

5 0.392 2058 225 90.7% 3.6% 

6 0.338 2410 89 94.7% 9.2% 

7 0.269 2417 225 96.4% 3.7% 

8 0.181 3466 216 91.7% 4.1% 
Table 3.9 Percent of pixel passing gamma analysis of primary PTV axial film region with 7%/4mm criteria and 

standard deviation of all eight plans 

 Further gamma analysis was performed on more complete regions of the axial and 

sagittal films with criteria of 7%/4mm and 5%/3mm. The averages of the percent pixels 

passing for these gamma analyses for each of the eight treatment plans in axial and sagittal 

planes are presented below in Table 3.10 and Table 3.11, respectively. Similar to the gamma 

analysis performed on the primary PTV region, all films had near 90% agreement using 

criteria of 7%/4mm except for Plan 3. On the full sagittal film region, all plans had greater 

than 90% pixels passing the 7%/4mm criteria with the exception of Plan 3. Overall, Plan 3 

had much lower average percent pixels passing for each of the criterion on each film region. 

These results are displayed in comparison to the MCS, number of MU, number of segments 

and minimum segment size in Figure 3.18, Figure 3.19, Figure 3.20, and Figure 3.21, 
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respectively. As with our evaluation of the effects of complexity on point doses and planar 

doses, there is no clear trend with complexity and percent of pixel passing gamma analysis.   

Plan 7%/4mm 5%/3mm 

1 97.8% 82.7% 

2 94.7% 81.9% 

3 73.6% 48.2% 

4 90.7% 74.8% 

5 88.9% 70.5% 

6 95.3% 85.8% 

7 97.6% 87.5% 

8 89.3% 74.2% 
Table 3.10 Average percent of pixels passing gamma analysis in the axial full film region for criteria of 7%/4mm 

and 5%/3mm for all eight plans 

Plan 7%/4mm 5%/3mm 

1 95.9% 86.3% 

2 95.6% 86.2% 

3 86.8% 73.4% 

4 96.3% 86.1% 

5 97.8% 92.1% 

6 94.3% 89.7% 

7 96.9% 90.4% 

8 93.7% 81.3% 
Table 3.11 Average percent of pixels passing gamma analysis in the sagittal full film region for criteria of 7%/4mm 

and 5%/3mm for all eight plans 
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Figure 3.18 Average percent of pixels passing gamma analysis on the axial and sagittal full film regions for all eight 

plans according to MCS 

 

 

Figure 3.19 Average percent of pixels passing gamma analysis on the axial and sagittal full film regions for all eight 

plans according to total MU 
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Figure 3.20 Average percent of pixels passing gamma analysis on the axial and sagittal full film regions for all eight 

plans according to total number of segments 

 

Figure 3.21 Average percent of pixels passing gamma analysis on the axial and sagittal full film regions for all eight 

plans according to the minimum segment size (cm2) 
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 To further evaluate the gamma analysis we performed, three of the full film region 

results are presented below in Figure 3.22-Figure 3.33. Refer back to Figure 2.6 and Figure 

2.7 for cross-sectional images of the phantom in the film planes. First, we looked at the 

baseline plan (Plan 4) results. It can be seen in Figure 3.22 and Figure 3.23 that the delivery 

of this plan begins to fail mainly posterior to the primary PTV around the OAR and laterally. 

This is also reflected in the sagittal gamma analysis shown in Figure 3.24 and Figure 3.25, 

where most of the failure occurs near the OAR TLD cut out. We next evaluated the gamma 

analysis of Plan 3, which was consistently low for no apparent reason. It can be seen in 

Figure 3.26 through Figure 3.29 that this plan delivery fails in the areas surrounding the 

PTVs and OAR, mainly low dose regions. Finally, we looked at the gamma analyses 

performed on Plan 6, which had the greatest TLD dose deviations. The failure seen in the 

Plan 6 axial gamma analysis, shown in Figure 3.30 and Figure 3.31 is similar to that of Plan 

4. It is mainly in the area posterior to the primary PTV, around the OAR and lateral to the 

OAR. The sagittal gamma analysis of Plan 6 shown in Figure 3.32 and Figure 3.33 

illustrates that the failure is located more in between then primary PTV and the OAR than 

directly on the OAR as it appears in Plan 4. The gamma analysis results for the remainder of 

the plans are presented in Appendix D  Gamma Index Analyses Results.  
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Figure 3.22 7%/4mm gamma analysis of full axial film region for one measurement of Plan 4 on the baseline 

machine 

 

Figure 3.23 5%/3mm gamma analysis of full axial film region for one measurement made of Plan 4 on the baseline 

machine 
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Figure 3.24 7%/4mm gamma analysis of full sagittal film region for one measurement made of Plan 4 on the 

baseline machine 

 

Figure 3.25 5%/3mm gamma analysis of full sagittal film region for one measurement made of Plan 4 on the 

baseline machine 
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Figure 3.26 7%/4mm gamma analysis of full axial film region for one measurement made of Plan 3 on the baseline 

machine 

 

Figure 3.27 5%/3mm gamma analysis of full axial film region for one measurement made of Plan 3 on the baseline 

machine 
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Figure 3.28 7%/4mm gamma analysis of full sagittal film region for one measurement made of Plan 3 on the 

baseline machine 

 

 

Figure 3.29 5%/3mm gamma analysis of full sagittal film region for one measurement made of Plan 3 on the 

baseline machine 
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Figure 3.30 7%/4mm gamma analysis of full axial film region for one measurement made of Plan 6 on the baseline 

machine 

 

 

Figure 3.31 5%/3mm gamma analysis of full axial film region for one measurement made of Plan 6 on the baseline 

machine 
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Figure 3.32 7%/4mm gamma analysis of full sagittal film region for one measurement made of Plan 6 on the 

baseline machine 

 

 

Figure 3.33 5%/3mm gamma analysis of full sagittal film region for one measurement made of Plan 6 on the 

baseline machine 
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The same gamma analysis was performed on the measurements taken with the 

baseline plan on the four different machines and on the calculation performed with the 

incorrect beam model. These results are displayed below in  

Machine 7%/4mm 5%/3mm 

Base 90.7% 74.8% 

2100CD 96.8% 87.8% 

21EX 95.8% 85.0% 

Trilogy 95.6% 88.1% 

6EX 92.0% 75.6% 

Table 3.12, Table 3.13 and Figure 3.34. The average gamma analysis made on each 

machine with 7%/4mm criteria exceeded 90% pixels passing.  There is no evidence that 

beam matching is affecting the accuracy of the dose calculation for these machines. The 

calculation intentionally performed with the incorrect beam model matched the 

measurement performed on the baseline machine just as well as the measurements 

performed on all the other machines.  

Machine 7%/4mm 5%/3mm 

Base 90.7% 74.8% 

2100CD 96.8% 87.8% 

21EX 95.8% 85.0% 

Trilogy 95.6% 88.1% 

6EX 92.0% 75.6% 
Table 3.12 Average percent of pixels passing gamma analysis in the axial full film regions for criteria of 7%/4mm 

and 5%/3mmfor the baseline plan delivered on four matched machines and recalculated with the incorrect beam 

model (6EX) 

Machine 7%/4mm 5%/3mm 

Base 96.3% 86.1% 

2100CD 93.5% 82.3% 

21EX 96.7% 87.5% 

Trilogy 90.9% 82.0% 

6EX 97.9% 87.7% 
Table 3.13 Average percent of pixels passing gamma analysis in the sagittal full film regions for criteria of 7%/4mm 

and 5%/3mmfor the baseline plan delivered on four matched machines and recalculated with the incorrect beam 

model (6EX) 
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Figure 3.34 Average percent of pixels passing gamma analysis in both the axial and sagittal full film regions for 

criteria of 7%/4mm, 5%/3mm, and 3%/2mm for the baseline plan delivered on four matched machines and 

recalculated with the incorrect beam model (6EX) 
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Chapter 4 Discussion 

4.1 General Discussion 

The data presented in this study suggest that an increase in treatment plan complexity 

and the use of improperly matched beam dosimetry data do not lead to detectable errors in 

head and neck IMRT delivery that result in differences between the measured and planned 

dose distributions as measured by the RPC’s IMRT head and neck phantom. Despite 

substantial increases in treatment plan complexity, as measured by the total  number of MU, 

number of segments, and the MCS, all treatment plans delivered on the same treatment 

machine whose dosimetry data is used as the baseline dataset for the planning system, 

passed the RPC’s criteria of 7% absolute point dose and 4 mm distance-to-agreement 

(DTA). In addition, a study of delivering the same IMRT treatments using four different 

matched linacs whose dosimetric parameters were matched to the baseline dataset  as well as 

a the same plan recalculated using an intentionally incorrect beam model also all passed the 

7% and 4 mm DTA criteria. Additionally, we did not identify any relationships between 

dosimetric accuracy and our measures of complexity or beam matching. 

We performed TLD absolute point dose measurements and compared the results to the 

expected dose calculated by the TPS. While we found better than 7% agreement in all TLD 

within the PTVs, measurements made using Plan 3 and Plan 6 on the baseline machine had 

noticeably worse agreement than any other treatment delivery. Plan 3 is simpler than Plan 6, 

as demonstrated in Table 3.2, however, these two plans have the highest number of 

MU/segment with 28 and 32, respectively. The plan with the next largest number of 

MU/segment is Plan 1, with 27 MU/segment. Plan 1 did not have significantly different 

TLD results than any of the remaining plans, therefore we are unable to say definitively 

whether an increased number of MU/segment influenced the absolute point dose 

measurement agreement with calculation. Increased number of MU/segment would not 

intuitively decrease the accuracy of a dose calculation though, as it better resembles the field 

of a convention 3D conventional radiotherapy (CRT) treatment. However, it could be the 

case that particularly small segments that are prone to more inaccuracies are utilizing more 

MU, which could lead to differences between the measurement and calculation. However, 
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the smallest segment allowed in the optimization of Plan 3 was not particularly small at 2.45 

X 2.45 cm
2
. Increased MU with very small segments could decrease the accuracy of the 

dose calculation due to the increased MLC transmission and leakage and hence dependence 

on the TPS correction factors for each of these effects.  

 We performed radiochromic film measurements to analyze the planar dose 

measurement to calculation agreement with dose profiles and DTA. From these two 

analyses, we could see that for each plan delivery of increasing complexity, the delivered 

dose had a visually steeper gradient between the primary PTV and the OAR than calculated 

through the center of the primary PTV. This was visually evident on the anterior-posterior 

dose profiles from the axial films and the positive average DTAs. The average DTA for each 

delivery was less than or equal to  3 mm, with Plan 6 having the smallest average DTA of 1 

mm. This is interesting because Plan 6 had the poorest absolute dose agreement. The 

increased complexity appears to not lead to dosimetric errors, but can lead to sharper dose 

gradients that are planned on average. Another interesting observation resulting from the 

DTA measurements is that the baseline plan delivery measurement matched slightly better 

with the treatment plan recalculated using the incorrect beam model than with the 

calculation performed with the correct beam model. The Trilogy machine had the smallest 

DTA for the mismatched machine beam dosimetry data measurements of 1 mm. None of 

these planar dose measurements results indicate any trend. 

We also performed several gamma index analyses on each dose delivery to evaluate the 

overall agreement with the planned treatment dose distribution. All plans with the exception 

of Plan 3 performed well using a ±7%/4 mm gamma index analysis, with the percent of 

pixels meeting the criteria being approximately 90% or better in each case. As mentioned in 

Chapter 3, Plan 3 consistently had poor gamma analysis pass rates and in examining the 

distribution of gamma index values in Figure 3.26, Figure 3.27,Figure 3.28, and Figure 3.29, 

it can be seen that in addition to the area posterior to the primary PTV where most plans 

begin to fail, areas surrounding and within both the primary and secondary PTVs also failed. 

There is no obvious or simple explanation as to why the plan 3 irradiation resulted in poorer 

dosimetric accuracy than the other plans. 
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This work was based on the auditing and credentialing system used by the RPC, an 

internationally known group that audits over 1900 facilities. All of the phantom irradiations 

were performed following the same instructions given to institutions wishing to be 

credentialed for IMRT clinical trials. All of the above dosimetric analyses were performed 

in exactly the same manner as used by the RPC. This analysis process is well established 

and results have undergone extensive in-house QA and validation and are accurate and 

consistent. The impetus behind conducting this particular study was to try and understand 

some of the reasons why many institutions wishing to be credentialed to use IMRT in 

clinical trials fail the IMRT H&N phantom irradiation. 

Although it has been speculated that increased complexity can degrade IMRT treatment 

plan delivery in several ways, this was not shown in our study. Increased fluence map 

complexity is suspected to have a significant effect on delivery accuracy. Giorgia et al 

demonstrated that less smooth fluence maps, i.e. more complex, have poorer agreement 

between calculation and delivery [3]. Mohan et al showed the increased dependence that 

more complex plans have on dose calculation corrections that are not entirely accurate. In 

addition, Mohan et al showed that sliding window IMRT plans with lower MU, i.e. more 

simple, had better agreement between calculation and delivery than those with higher [6]. 

There are many different parameters involved in the delivery of IMRT treatments that are 

machine, TPS, and user dependent. Because of these numerous dependencies, IMRT 

delivery can vary from institution to institution even though the sites might have similar 

machines and TPSs. A distinct possibility and reason that we did not observe any of the 

postulated errors in our experiment at MDACC is that the resources available at MDACC 

have minimized the potential errors, Performance of this same study at another institution or 

group of institutions might yield a very different result than what we observed. There are a 

plethora of factors that affect the delivery accuracy of an IMRT treatment and each of these 

may be regulated by different methods or held to different standards at different institutions. 

This is the nature of a user dependent dose delivery system. 

As mentioned before, there are several steps within the IMRT treatment planning 

process and specifically dose calculation where possible errors can arise. Different dose 

calculations algorithms are utilized throughout the radiotherapy community and each may 
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implement a different approach to estimating the dose distribution delivered, bringing 

different levels of calculation accuracy. With increased treatment plan complexity, the 

certainty of the dose calculation can be decreased due to increased reliance on the MLC 

leakage and transmission factors as well as increased complexity of the buildup dose 

(Li)(Hsu).The resolution and size of a dose calculation grid can affect the accuracy of a dose 

calculation. Also of importance in the TPS is the beam model and how accurately it 

represents the true beam characteristics of the linac delivering the IMRT treatment. Specific 

points of question in the beam model include tongue-and-groove effects, MLC leakage and 

transmission, and penumbra modeling.  Each TPS may use different information to form 

these beam models and judgment of different medical physicists as to the appropriateness of 

the resulting beam model may also differ between different institutions. Each institution is 

responsible for measuring and inputting this information correctly and ensuring that the 

beam model used for dose calculations represents their machines well. At MDACC, beam 

modeling is of paramount importance and extensive work is performed to ensure accuracy of 

beam modeling, matching, and consistency through verification measurements and 

independent dose calculations. 

Another key component to achieve accurate dose delivery, in addition to the dose 

calculation, is the set up of the patient for an IMRT treatment due to the potential steep dose 

gradients the IMRT may create to deliver the high target doses while minimizing the doses 

to the surrounding normal tissues. Although the IMRT treatment process is simplified with 

the anthropomorphic phantom as compared to a live patient in several ways, specifically for 

set up due to the lack of intra- and inter-fractional external and internal motion and other 

issues, accurate set up of the phantom is nonetheless critical. To our knowledge and as 

demonstrated by the reproducibility of the phantom irradiations for each plan and the results 

of our experiments, our set up was consistent for each irradiation. Care was taken to align 

the phantom in the same way for each delivery. The alignment of the lasers with the true 

isocenter of the linac gantry was checked on several occasions. When a number of different 

individuals participate in dose delivery, variability in the set up of the phantom can be 

introduced whereas in this study the setup of each phantom was performed consistently by 

one person. In addition to the human factor, consistency and accuracy are required of the 
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mechanical features of the machine used to set up, including the lasers, optical distance 

indicator (ODI), couch position, etc. These are all possible factors that can contribute to why 

many institutions fail the IMRT H&N phantom irradiation test.  

Most likely, one of the most important IMRT dose delivery components, that can 

contribute to an inaccurate IMRT dose delivery is the MLC. The uncertainty of 

deliverability of a treatment plan increases as the segments become smaller, more complex 

and greater in number, as in a more complex IMRT plan. Different institutions can have 

different linacs from different manufacturers and different MLC models. As mentioned 

before, the issue of dose calculation and beam modeling is important and the MLC are 

involved heavily in this. The effects of the leaf ends, tongue-and-groove, and transmission 

must be modeled correctly.  Additionally, the positional accuracy of the MLC plays a large 

role in IMRT cases because numerous apertures are used and the MLC define not only the 

edges of the fields, but shape the non-uniform fluence map. MLC positional and dose 

delivery errors can be due to issues with the MLC controller and leaf motion errors are 

likely caused by limitations in the feedback control mechanism that controls the MLC and 

accelerator beam output [24]. If an institution does not maintain an appropriate preventive 

maintenance schedule or QA program for the MLCs then the possibility of inaccurate MLC 

positioning increases. Because of the importance of the MLC in IMRT delivery, its potential 

for contributing errors to dose delivery remains high.   

Though comparable literature investigating IMRT dose delivery is limited, our study 

tends to agree with the few reported findings available. Other studies investigating the role 

of treatment plan complexity were detailed in earlier sections of this report, including those 

performed by McNiven et al and Giorgia et al. Similar to the results of the study by 

McNiven et al. in which the MCS was formulated, we did not find a direct relationship 

between MCS and gamma analysis results[2]. Giorgia et al utilized the modulation index 

(MI) created by Webb and found a threshold level of complexity that could ensure 

deliverability but again did not find a direct relationship between increasing complexity and 

treatment delivery accuracy[3].  

Although it was not an objective of this study, we confirmed that treatment plans of 

comparable quality can have a wide range of levels of complexity. Craft et al observed that 
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while an inherent level of complexity is required to achieve conformal dose coverage with 

IMRT, generally the number of MU used can be significantly reduced without effects on the 

plan quality. Jiang et al saw that treatment plans may be created with nine segments per 

beam or less without reducing plan quality as compared to those with more, complimenting 

the idea that plans of similar quality can be achieved with various levels of complexity.  

Limitations of this study mainly include the lack of variety in TPS, hardware, and linacs 

used to deliver IMRT. All treatments were planned with Pinnacle v.8m by the same 

individual. All treatments were delivered on Varian linacs with 120-leaf Millennium MLC at 

MDACC where consistent commissioning and QA is performed by experienced physicists. 

The set up was performed by the same individual for each irradiation. Therefore, the 

variability associated with the RPC’s IMRT H&N phantom irradiation failure rate, does not 

exist within the irradiation conditions of this study.  

 Additional limitations to this study involve the measurement methodology. The RPC 

H&N IMRT phantom is anthropomorphic in shape and contains tissue equivalent structures 

that represent those in the human body. However, one must keep in mind that true human 

anatomy is much more complex and diverse than this phantom and therefore treatment plans 

for patient delivery may become even more complex than those seen in this study with the 

phantom. So, while this study reflects perfectly the conditions of those being credentialed by 

the RPC, it is important to remember that in the clinic these effects may be even greater. If 

we are seeing approximately a 20-30% failure rate on the simple geometry of a phantom, it 

is questionable and frightening what may be happening in the clinic.   

4.1.1 Conclusions 

In conclusion, our hypothesis that increased IMRT treatment plan complexity or the use 

of improperly matched accelerator dosimetry data can lead to errors in head and neck IMRT 

deliver, as measured with the RPC’s H&N phantom, that result in differences between the 

measured and planned dose distributions was not supported. No variation in dosimetric 

accuracy with increased treatment plan complexity or with improper beam matching was 

seen. All deliveries of all treatment plans on each machine passed the RPC credentialing 

criteria. When compared to institutions passing the IMRT H&N credentialing, the average 
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percent of pixels passing the gamma analysis of all but one plan was within a standard 

deviation.  

4.2 Future Work 

The results of this study indicate a need for further research into the cause of failures in 

treatment delivery to the RPC's head and neck IMRT phantom. Further examination of the 

effects of increased treatment plan complexity and beam matching on IMRT delivery at 

other institutions under various is conditions warranted. IMRT is now a widely used 

technique and its inherent complexity demand increased attention to determine proper safety 

measures. 

While it is intuitive that simple measures such as treatment plan complexity could 

identify treatment plans of higher sensitivity to errors of all sorts, it is crucial to investigate 

all components of possible error. AAPM Task Group 100 has performed a failure modes and 

effects analysis (FMEA) on IMRT at one institution and physical evaluation of many of the 

indicated failure modes would be very useful. An FMEA consists of identification of all 

components of a process (IMRT treatment), ways in which each component can fail, the 

likelihood and detectability of these failures, the consequences of these failures, and the 

severity of the consequences. While not all failure modes identified in the treatment of a 

patient may apply to that of a phantom, there are several cases that do. For example, for 

IMRT delivery there exists many possible failure modes that have been mentioned in this 

discussion.  Linac hardware failure, such as incorrect beam output, can lead to consequences 

such as a wrong dose or wrong dose distribution. Inaccurate MLC motions and other factors 

considered in common QA procedures can lead to these same delivery issues. An FMEA 

based on expert experience and opinion can assist a particular institution identify the critical 

elements to accurate dose delivery hat need to be monitored frequently. Which of these 

processes is leading to failure in the RPC credentialing process? That is yet to be determined 

and it extremely important in order to continue not only consistent and comparable clinical 

trials, but also to identify possible causes of failure jeopardizing the safety of all patients.   

Furthermore, IMRT QA was not performed on these treatment plans, but investigation 

into the ability of various IMRT QA methods to detect errors and predict failure of an audit 

with and RPC phantom would be useful. Investigation into any relationship between 
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treatment plan complexity and IMRT QA results would also be interesting and potentially 

useful in the creation of a standard IMRT QA method and acceptance criteria. 
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Appendix A  Treatment Planning Dose Objectives and IMRT 

Parameters 

 

Plan 1 

Objectives IMRT Parameters 

ROI Type 

Target 

cGy 

% 

Volume Weight Optimization Type DMPO 

PTV_66 UD 660 98 

Allow jaw 

motion/Split beam? No 

PTV_54 UD 540 65 Max iterations 12 

CORD 

Max 

Dose 365 60 

Convolution dose 

iteration 5 

Normal 

tissue 

Max 

DVH 245 18 20 Stopping tolerance 1.00E-05 

Normal 

tissue 

Max 

DVH 330 8 20 Min segment MUs 1 

Normal 

tissue 

Max 

DVH 450 2 20 

Max number of 

segments 54 

CORD 

expanded 

Max 

Dose 490 45 Min segment area 6 

PTV_66 

Min 

Dose 660 100 Leaf/jaw overlap 1 

Overlap Distance 2 

 

Plan 2 

Objectives IMRT Parameters 

ROI Type 

Target 

cGy 

% 

Volume Weight Optimization Type DMPO 

PTV_66 UD 660 85 

Allow jaw 

motion/Split beam? Yes 

PTV_54 UD 540 60 Max iterations 12 

CORD 

Max 

Dose 365 50 

Convolution dose 

iteration 5 

Normal 

tissue 

Max 

DVH 245 18 20 Stopping tolerance 1.00E-05 

Normal 

tissue 

Max 

DVH 330 8 20 Min segment MUs 1 

Normal 

tissue 

Max 

DVH 450 2 20 

Max number of 

segments 135 

CORD 

expanded 

Max 

Dose 495 45 Min segment area 0.5 
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PTV_66 

Min 

Dose 660 100 Leaf/jaw overlap 0.2 

Overlap Distance 2 

 

Plan 3 

Objectives IMRT Parameters 

ROI Type 

Target 

cGy 

% 

Volume Weight Optimization Type DMPO 

PTV_66 UD 660 94 

Allow jaw 

motion/Split beam? No 

PTV_54 UD 540 60 Max iterations 25 

CORD 

Max 

Dose 370 55 

Convolution dose 

iteration 4 

Normal 

tissue 

Max 

DVH 300 22 10 Stopping tolerance 1.00E-04 

Normal 

tissue 

Max 

DVH 385 10 10 Min segment MUs 5 

Normal 

tissue 

Max 

DVH 465 5 10 

Max number of 

segments 54 

CORD 

expanded 

Max 

Dose 500 45 Min segment area 6 

PTV_66 

Min 

Dose 660 100 Leaf/jaw overlap 0.5 

Overlap Distance 2 

 

Plan 4 

Objectives IMRT Parameters 

ROI Type 

Target 

cGy 

% 

Volume Weight Optimization Type DMPO 

PTV_66 UD 660 87 

Allow jaw 

motion/Split beam? No 

PTV_54 UD 540 60 Max iterations 20 

CORD 

Max 

Dose 365 50 

Convolution dose 

iteration 5 

Normal 

tissue 

Max 

DVH 245 18 25 Stopping tolerance 0.00E+00 

Normal 

tissue 

Max 

DVH 330 8 25 Min segment MUs 1 

Normal 

tissue 

Max 

DVH 450 2 25 

Max number of 

segments 90 

CORD 

expanded 

Max 

Dose 495 45 Min segment area 4 
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PTV_66 

Min 

Dose 660 100 Leaf/jaw overlap 0.5 

Hot Spot 

Max 

Dose 725 50 Overlap Distance 2 

Plan 5 

Objectives IMRT Parameters 

ROI Type 

Target 

cGy 

% 

Volume Weight Optimization Type DMPO 

PTV_66 UD 660 95 

Allow jaw 

motion/Split beam? Yes 

PTV_54 UD 540 70 Max iterations 50 

CORD 

Max 

Dose 365 65 

Convolution dose 

iteration 12 

Normal 

tissue 

Max 

DVH 220 20 40 Stopping tolerance 0 

Normal 

tissue 

Max 

DVH 300 8 40 Min segment MUs 0.5 

Normal 

tissue 

Max 

DVH 430 2 40 

Max number of 

segments 225 

CORD 

expanded 

Max 

Dose 470 53 Min segment area 0.5 

PTV_66 

Min 

Dose 660 100 Leaf/jaw overlap 0.2 

Hot 

Spot12 

Max 

Dose 690 85 Overlap Distance 2 

Decrease 

Norm 

Max 

Dose 570 20 

 

 

Plan 6 

Objectives IMRT Parameters 

ROI Type 

Target 

cGy 

% 

Volume Weight Optimization Type DMPO 

PTV_66 UD 660 100 

Allow jaw 

motion/Split beam? Yes 

PTV_54 UD 540 75 Max iterations 50 

CORD 

Max 

Dose 350 85 

Convolution dose 

iteration 12 

Normal 

tissue 

Max 

DVH 200 15 25 Stopping tolerance 0 

Normal 

tissue 

Max 

DVH 300 8 25 Min segment MUs 0.1 



74 

 

Normal 

tissue 

Max 

DVH 400 2 25 

Max number of 

segments 90 

CORD 

expanded 

Max 

Dose 480 60 Min segment area 0.1 

PTV_66 

Min 

Dose 660 100 Leaf/jaw overlap 0.5 

PTV66 

concave 

Min 

Dose 665 30 Overlap Distance 2 

Hot Spot 7 

Max 

Dose 690 50 Dose Grid  0.3 

Normal 

tissue 

Max 

Dose 650 60 

PTV_66 

Max 

Dose 710 50 

PTV54 

Push 

Min 

Dose 540 50 

DoseShape 

6 

Max 

Dose 500 25 

DoseShape 

6 

Max 

DVH 475 40 20 

Dose 

Shape7 

Max 

Dose 550 20 

Dose 

Shape7 

Max 

DVH 540 1 25 

Dose 

Shape8 

Max 

DVH 540 1 20 

Dose 

Shape8 

Max 

Dose 550 25 

Dose 

Shape8 

Max 

DVH 500 10 20 

Push662 

Min 

Dose 660 90 

Hot Spot8 

Max 

Dose 690 50 

 

Plan 7 

Objectives IMRT Parameters 

ROI Type 

Target 

cGy 

% 

Volume Weight Optimization Type DMPO 

PTV_66 UD 660 100 

Allow jaw 

motion/Split beam? Yes 

PTV_54 UD 540 80 Max iterations 200 

CORD Max 355 70 Convolution dose 24 
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Dose iteration 

Normal 

tissue 

Max 

DVH 155 18 50 Stopping tolerance 0 

Normal 

tissue 

Max 

DVH 240 8 50 Min segment MUs 0.1 

Normal 

tissue 

Max 

DVH 330 2 50 

Max number of 

segments 225 

CORD 

expanded 

Max 

Dose 460 55 Min segment area 0.25 

PTV_66 

Min 

Dose 660 100 Leaf/jaw overlap 0.2 

Normal 

Tissue 

Max 

Dose 600 50 Overlap Distance 2 

Hot Spot 

Kry 

Max 

Dose 690 50 Dose Grid 0.3 

Bonus 7 

Max 

DVH 550 2 20 

Bonus 7 

Max 

DVH 450 10 1 

 

Plan 8 

Objectives IMRT Parameters 

ROI Type 

Target 

cGy 

% 

Volume Weight Optimization Type DMPO 

PTV_66 UD 660 100 

Allow jaw 

motion/Split beam? Yes 

PTV_54 UD 540 75 Max iterations 200 

CORD 

Max 

Dose 355 85 

Convolution dose 

iteration 12 

Normal 

tissue 

Max 

DVH 245 18 25 Stopping tolerance 1.00E-05 

Normal 

tissue 

Max 

DVH 330 8 25 Min segment MUs 0.1 

Normal 

tissue 

Max 

DVH 450 2 25 

Max number of 

segments 216 

CORD 

expanded 

Max 

Dose 480 75 Min segment area 0.1 

PTV_66 

Min 

Dose 660 100 Leaf/jaw overlap 0.5 

Hot Spot 

Max 

Dose 695 70 Overlap Distance 2 

Hot Spot 2 

Max 

Dose 695 70 
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PTV66 

concave 

Min 

Dose 665 50 

Hot Spot 4 

Max 

Dose 690 45 

Extra 

Max 

Dose 200 20 

Extra 

Max 

DVH 150 70 20 

Extra2 

Max 

Dose 210 20 

Extra2 

Max 

DVH 182 63 18 

Extra3 

Max 

DVH 160 68 22 

Extra3 

Max 

DVH 100 85 15 

Dose 

Shape3 

Max 

DVH 540 10 18 

Dose 

Shape4 

Max 

DVH 525 5 20 

Dose 

Shape4 

Max 

Dose 560 21 

Dose 

Shape5 

Max 

DVH 660 12 18 

Dose 

Shape5 

Max 

Dose 670 22 

Extra4 

Max 

Dose 200 26 

Hot Spot 7 

Max 

Dose 690 35 

Push66 

Min 

Dose 660 28 

Dose 

Shape 6 

Max 

Dose 500 20 

Dose 

Shape 6 

Max 

DVH 400 50 20 

Dose 

Shape 7 

Max 

DVH 525 2 18 

Dose 

Shape7 

Max 

Dose 550 25 

PTV54 

Push  

Min 

Dose  540 35 

Push 66 2 

Min 

Dose 660 35 
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Hot Spot8 

Max 

Dose 690 20 

Hot Spot 

12 

Max 

Dose 690 22 

Dose 

Shape9 

Max 

DVH 540 20 20 

  



78 

 

Appendix B  Absolute Point Dose Measurements 

 

TLD # TLD position 

1 Primary PTV Superior Anterior 

2 Primary PTV Inferior Anterior 

3 Primary PTV Superior Posterior 

4 Primary PTV Inferior Posterior 

5 Secondary PTV Superior 

6 Secondary PTV Inferior 

7 OAR Superior 

8 OAR Inferior 
Table B.1 TLD position numbering 

Plan 1 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev  1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 674.5 652.6 682.7 669.9 688.7 2.7% 2.3% 

2 681.9 663.6 652.6 666.0 687.1 3.1% 2.2% 

3 680.7 684.1 697.6 687.5 686.9 -0.1% 1.3% 

4 692.5 686.3 677.0 685.3 684.6 -0.1% 1.1% 

5 555.5 548.3 548.5 550.8 564.2 2.4% 0.7% 

6 559.7 549.7 546.4 552.0 564.5 2.2% 1.2% 

7 313.1 316.3 323.9 317.8 347.6 8.6% 1.6% 

8 309.9 310.4 305.3 308.5 343.6 10.2% 0.8% 
Table B.2 Absolute doses measured with eight TLD for three deliveries of treatment Plan 1 on the baseline machine, 

corresponding doses calculated with the TPS and the percent difference 
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Plan 2 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev  1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 678.0 671.4 668.7 672.7 690.3 2.5% 0.7% 

2 676.4 667.0 656.1 666.5 689.8 3.4% 1.5% 

3 684.6 688.8 681.1 684.8 680.5 -0.6% 0.6% 

4 694.2 679.8 680.1 684.7 678.8 -0.9% 1.2% 

5 556.5 533.5 535.1 541.7 563.4 3.9% 2.3% 

6 566.4 550.1 544.7 553.7 566 2.2% 2.0% 

7 336.4 344.5 340.9 340.6 364.6 6.6% 1.1% 

8 342.7 335.4 333.8 337.3 362.3 6.9% 1.3% 
Table B.3 Absolute doses measured with eight TLD for three deliveries of treatment Plan 2 on the baseline machine, 

corresponding doses calculated with the TPS and the percent difference 

Plan 3 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev  1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 649.4 641.7 653.0 648.0 687.2 5.7% 0.8% 

2 653.4 642.3 635.7 643.8 687.2 6.3% 1.3% 

3 685.0 665.7 672.2 674.3 691.9 2.5% 1.4% 

4 681.4 659.0 659.5 666.6 691.2 3.6% 1.9% 

5 534.2 523.8 523.6 527.2 562.4 6.3% 1.1% 

6 542.2 526.8 532.6 533.9 564.7 5.5% 1.4% 

7 280.3 282.8 278.2 280.4 316 11.3% 0.7% 

8 272.5 267.3 261.9 267.2 302.6 11.7% 1.8% 
Table B.4 Absolute doses measured with eight TLD for three deliveries of treatment Plan 3 on the baseline machine, 

corresponding doses calculated with the TPS and the percent difference 

 

 

 

 

 

 

 

 



80 

 

Plan 4 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev 1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 657.4 664.1 688.1 669.9 685.5 2.3% 2.4% 

2 674.2 672.1 657.8 668.0 689.2 3.1% 1.3% 

3 692.8 686.7 679.4 686.3 689 0.4% 1.0% 

4 709.1 708.3 678.5 698.6 689.9 -1.3% 2.5% 

5 553.4 546.6 546.3 548.8 564.5 2.8% 0.7% 

6 556.3 552.5 554.4 554.4 563.1 1.5% 0.3% 

7 284.4 285.8 328.1 299.5 317.7 5.7% 7.8% 

8 273.4 267.7 298.0 279.7 299.4 6.6% 5.4% 
Table B.5 Absolute doses measured with eight TLD for three deliveries of treatment Plan 4 on the baseline machine, 

corresponding doses calculated with the TPS and the percent difference 

 

Plan 5 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev 1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 663.5 654.7 661.5 659.9 659.2 -0.1% 0.7% 

2 669.5 672.5 637.5 659.8 658.8 -0.2% 2.9% 

3 683.3 678.8 682.0 681.4 663.4 -2.7% 0.3% 

4 690.3 685.1 664.5 680.0 662.7 -2.6% 2.1% 

5 553.2 543.5 548.6 548.4 539.1 -1.7% 0.9% 

6 557.4 546.1 543.8 549.1 541.3 -1.4% 1.3% 

7 256.8 253.2 263.9 258.0 303 14.9% 1.8% 

8 274.2 273.1 275.1 274.1 290.1 5.5% 0.3% 
Table B.6 Absolute doses measured with eight TLD for three deliveries of treatment Plan 5 on the baseline machine, 

corresponding doses calculated with the TPS and the percent difference 
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Plan 6 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev 1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 658.8 652.6 649.6 653.7 686.4 4.8% 0.7% 

2 657.7 631.6 627.0 638.8 683.2 6.5% 2.4% 

3 668.0 649.4 663.6 660.3 699.8 5.6% 1.4% 

4 670.9 651.3 649.7 657.3 698.7 5.9% 1.7% 

5 544.7 529.6 527.2 533.8 560.3 4.7% 1.7% 

6 547.2 533.0 522.2 534.1 560.6 4.7% 2.2% 

7 249.5 247.8 253.1 250.1 275.7 9.3% 1.0% 

8 235.3 236.1 237.7 236.4 262.1 9.8% 0.4% 
Table B.7 Absolute doses measured with eight TLD for three deliveries of treatment Plan 6 on the baseline machine, 

corresponding doses calculated with the TPS and the percent difference 

Plan 7  

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev 1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 637.9 631.0 635.7 634.9 660.6 3.9% 0.5% 

2 644.2 640.2 624.7 636.4 655.7 2.9% 1.6% 

3 659.1 648.2 650.4 652.6 666.9 2.1% 0.9% 

4 655.7 658.3 636.9 650.3 671.4 3.1% 1.7% 

5 536.5 533.7 531.0 533.7 542.3 1.6% 0.5% 

6 530.1 531.1 536.8 532.7 549.6 3.1% 0.7% 

7 212.1 218.8 218.7 216.6 250.8 13.6% 1.5% 

8 217.1 218.7 217.0 217.6 248.1 12.3% 0.4% 
Table B.8 Absolute doses measured with eight TLD for three deliveries of treatment Plan 7 on the baseline machine, 

corresponding doses calculated with the TPS and the percent difference 
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Plan 8 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev 1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 657.5 665.3 677.2 666.6 684.9 2.7% 1.4% 

2 701.3 681.0 672.7 685.0 683.8 -0.2% 2.2% 

3 698.5 705.4 707.3 703.7 689 -2.1% 0.7% 

4 706.6 711.4 699.0 705.7 688.2 -2.5% 0.9% 

5 564.9 553.2 549.8 555.9 565.8 1.7% 1.4% 

6 538.1 522.1 515.9 525.4 545.8 3.7% 2.1% 

7 218.9 212.2 214.2 215.1 261.7 17.8% 1.3% 

8 213.1 203.1 204.2 206.8 248.7 16.9% 2.2% 
Table B.9 Absolute doses measured with eight TLD for three deliveries of treatment Plan 8 on the baseline machine, 

corresponding doses calculated with the TPS and the percent difference 

2100 CD 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev 1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 661.6 657.9 677.9 665.8 685.5 2.9% 1.5% 

2 666.3 679.3 692.4 679.3 689.2 1.4% 1.9% 

3 677.5 684.9 698.3 686.9 689 0.3% 1.5% 

4 700.5 692.0 708.5 700.3 689.9 -1.5% 1.2% 

5 540.5 541.4 554.8 545.6 564.5 3.4% 1.4% 

6 548.6 557.0 564.8 556.8 563.1 1.1% 1.4% 

7 300.1 299.0 301.8 300.3 317.7 5.5% 0.4% 

8 283.4 286.6 283.9 284.6 299.4 4.9% 0.6% 
Table B.10 Absolute doses measured with eight TLD for three deliveries of treatment Plan 4 on another Varian 

2100CD, corresponding doses calculated with the TPS and the percent difference 
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21EX  

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev 1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 674.9 683.9 675.1 678.0 685.5 1.1% 0.8% 

2 677.1 675.7 683.0 678.6 689.2 1.5% 0.6% 

3 696.2 702.8 698.4 699.1 689 -1.5% 0.5% 

4 708.5 713.8 699.4 707.2 689.9 -2.5% 1.1% 

5 545.3 540.2 548.8 544.8 564.5 3.5% 0.8% 

6 569.5 560.4 556.7 562.2 563.1 0.2% 1.2% 

7 296.1 295.1 292.7 294.6 317.7 7.3% 0.5% 

8 279.3 273.9 280.9 278.0 299.4 7.1% 1.2% 
Table B.11 Absolute doses measured with eight TLD for three deliveries of treatment Plan 4 on a Varian 21EX, 

corresponding doses calculated with the TPS and the percent difference 

Trilogy 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 
% Difference Std Dev 1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 693.8 692.9 688.9 691.9 685.5 -0.9% 0.4% 

2 696.3 700.0 695.4 697.2 689.2 -1.2% 0.4% 

3 699.2 707.2 712.4 706.3 689 -2.5% 1.0% 

4 684.8 702.9 712.7 700.1 689.9 -1.5% 2.1% 

5 557.9 559.0 557.4 558.1 564.5 1.1% 0.1% 

6 564.9 572.5 567.5 568.3 563.1 -0.9% 0.7% 

7 317.1 307.2 313.5 312.6 317.7 1.6% 1.6% 

8 297.0 285.8 288.9 290.5 299.4 3.0% 1.9% 
Table B.12 Absolute doses measured with eight TLD for three deliveries of treatment Plan 4 on another Varian 

Trilogy, corresponding doses calculated with the TPS and the percent difference 
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6 EX Beam Model 

TLD # 

Measured Dose 
Average 

(cGy) 

Planned Dose 

(cGy) 

% 

Difference 
Std Dev 1 

(cGy) 

2 

(cGy) 

3 

(cGy) 

1 657.4 664.1 688.1 669.9 686.6 2.4% 2.4% 

2 674.2 672.1 657.8 668.0 688.0 2.9% 1.3% 

3 692.8 686.7 679.4 686.3 687.8 0.2% 1.0% 

4 709.1 708.3 678.5 698.6 687.7 -1.6% 2.5% 

5 553.4 546.6 546.3 548.8 562.9 2.5% 0.7% 

6 556.3 552.5 554.4 554.4 561.5 1.3% 0.3% 

7 284.4 285.8 328.1 299.5 313.4 4.5% 7.9% 

8 273.4 267.7 298.0 279.7 295.0 5.2% 5.5% 
Table B.13 Absolute doses measured with eight TLD for three deliveries of treatment Plan 4 on the baseline 

machine, corresponding doses calculated with the Varian 6EX beam model and the percent difference 
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Appendix C  Dose Profiles 

 

 

Figure C.1 Posterior-to-anterior dose profile of Plan 1 as planned by the TPS and measured with the three axial 

films 

 

Figure C.2 Left-to-right dose profile of Plan 1 as planned by the TPS and measured by the three axial films 
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Figure C.3 Inferior-to-superior dose profile of Plan 1 as planned by the TPS and measured by the three sagittal 

films 

 

Figure C.4 Posterior-to-anterior dose profile of Plan 2 as planned by the TPS and measured with the three axial 

films 
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Figure C.5 Left-to-right dose profile of Plan 2 as planned by the TPS and measured by the three axial films 

 

 

Figure C.6 Inferior-to-superior dose profile of Plan 2 as planned by the TPS and measured by the three sagittal 

films 
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Figure C.7 Posterior-to-anterior dose profile of Plan 3 as planned by the TPS and measured with the three axial 

films 

 

Figure C.8 Left-to-right dose profile of Plan 3 as planned by the TPS and measured by the three axial films 
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Figure C.9 Inferior-to-superior dose profile of Plan 3 as planned by the TPS and measured by the three sagittal 

films 

 

Figure C.10 Posterior-to-anterior dose profile of Plan 4 as planned by the TPS and measured with the three axial 

films 
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Figure C.11 Left-to-right dose profile of Plan 4 as planned by the TPS and measured by the three axial films 

 

Figure C.12 Inferior-to-superior dose profile of Plan 4 as planned by the TPS and measured by the three sagittal 

films 
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Figure C.13 Posterior-to-anterior dose profile of Plan 5 as planned by the TPS and measured with the three axial 

films 

 

Figure C.14 Left-to-right dose profile of Plan 5 as planned by the TPS and measured by the three axial films 
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Figure C.15 Inferior-to-superior dose profile of Plan 5 as planned by the TPS and measured by the three sagittal 

films 

 

Figure C.16 Posterior-to-anterior dose profile of Plan 6 as planned by the TPS and measured with the three axial 

films 
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Figure C.17 Left-to-right dose profile of Plan 6 as planned by the TPS and measured by the three axial films 

 

Figure C.18 Inferior-to-superior dose profile of Plan 6 as planned by the TPS and measured by the three sagittal 

films 
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Figure C.19 Posterior-to-anterior dose profile of Plan 7 as planned by the TPS and measured with the three axial 

films 

 

Figure C.20 Left-to-right dose profile of Plan 7 as planned by the TPS and measured by the three axial films 
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Figure C.21 Inferior-to-superior dose profile of Plan 7 as planned by the TPS and measured by the three sagittal 

films 

 

Figure C.22 Posterior-to-anterior dose profile of Plan 8 as planned by the TPS and measured with the three axial 

films 
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Figure C.23 Left-to-right dose profile of Plan 8 as planned by the TPS and measured by the three axial films 

 

Figure C.24 Inferior-to-superior dose profile of Plan 8 as planned by the TPS and measured by the three sagittal 

films 
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Figure C.25 Posterior-to-anterior dose profile of Plan 4 delivered on the second 2100CD machine as planned by the 

TPS and measured with the three axial films 

 

Figure C.26 Left-to-right dose profile of Plan 4 delivered on the second 2100CD machine as planned by the TPS and 

measured by the three axial films 
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Figure C.27 Inferior-to-superior dose profile of Plan 4 delivered on the second 2100CD machine as planned by the 

TPS and measured by the three sagittal films 

 

 

Figure C.28 Posterior-to-anterior dose profile of Plan 4 delivered on the 21EX machine as planned by the TPS and 

measured with the three axial films 
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Figure C.29 Left-to-right dose profile of Plan 4 delivered on the 21EX machine as planned by the TPS and 

measured by the three axial films 

 

Figure C.30 Posterior-to-anterior dose profile of Plan 4 delivered on the second Trilogy machine as planned by the 

TPS and measured with the three axial films 
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Figure C.31 Left-to-right dose profile of Plan 4 delivered on the Trilogy machine as planned by the TPS and 

measured by the three axial films 

 

Figure C.32 Inferior-to-superior dose profile of Plan 4 delivered on the Trilogy machine as planned by the TPS and 

measured by the three sagittal films 
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Figure C.33 Posterior-to-anterior dose profile of Plan 4 delivered on the baseline machine as compared to the dose 

calculated with the incorrect beam model measured with the three axial films 

 

Figure C.34 Left-to-right dose profile of Plan 4 delivered on the baseline machine as compared to the dose 

calculated with the incorrect beam model measured with the three axial films 
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Figure C.35 Inferior-to-superior dose profile of Plan 4 delivered on the baseline machine as compared to the dose 

calculated with the incorrect beam model measured by the three sagittal films 
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Appendix D  Gamma Index Analyses Results 

 

Figure D.36 Regions used for the gamma index analysis: Axial primary PTV (right), axial full (center), 

sagittal full (left) 

Plan 1 Results 

 

Figure D.37 Plan 1 measurement 1 axial PTV region, 7%/4mm with 98.54% pixels passing (left) and 

5%/3mm with 87.7% pixels passing (right) 
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Figure D.38 Plan 1 measurement 1 full axial region, 7%/4mm with 98.89% pixels passing (left) and 

5%/3mmwith 86.76% pixels passing (right) 

 

Figure D.39 Plan 1 measurement 1 full sagittal region, 7%/4mmwith 94.9% pixels passing (left) and 

5%/3mmwith 85.13% pixels passing (right) 
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Figure D.40 Plan 1 measurement 2 axial PTV region, 7%/4mm with 97.89% pixels passing (left) and 

5%/3mm with 82.74% pixels passing (right) 

 

 

Figure D.41 Plan 1 measurement 2 full axial region, 7%/4mm with 96.44% pixels passing (left) and 

5%/3mm with 79.69% pixels passing(right) 



106 

 

 

Figure D.42 Plan 1 measurement 2 full sagittal region, 7%/4mm with 93.12% pixels passing (left) and 

5%/3mm with 77.48% pixels passing (right) 

 

 

Figure D.43 Plan 1 measurement 3 axial PTV region, 7%/4mm with 97.57% pixels passing (left) and 

5%/3mm with 81.68% pixels passing (right) 
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Figure D.44 Plan 1 measurement 3 full axial region, 7%/4mm with 97.95% pixels passing (left) and 

5%/3mm with 81.59% pixels passing (right) 

 

 

Figure D.45 Plan 1 measurement 3 full sagittal region, 7%/4mm with 99.54% pixels passing (left) and 

5%/3mm with 96.38% pixels passing (right) 
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Plan 2 Results 
 

 

Figure D.46 Plan 2 measurement 1 axial PTV region, 7%/4mm with 93.74% pixels passing (left) and 

5%/3mm with 86.38% pixels passing (right) 

 

 

Figure D.47 Plan 2 measurement 1 full axial region, 7%/4mm with 94.54% pixels passing (left) and 

5%/3mm with 85.24% pixels passing (right) 
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Figure D.48 Plan 2 measurement 1 full sagittal region, 7%/4mm with 96.15% pixels passing (left) and 

5%/3mm with 85.55% pixels passing (right) 

 

 

Figure D.49 Plan 2 measurement 2 axial PTV region, 7%/4mm with 99.84% pixels passing (left) and 

5%/3mm with 94% pixels passing (right) 
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Figure D.50 Plan 2 measurement 2 full axial region, 7%/4mm with 98.24% pixels passing (left) and 

5%/3mm with 89.9% pixels passing (right) 

 

Figure D.51 Plan 2 measurement 2 full sagittal region, 7%/4mm with 97.17% pixels passing (left) and 

5%/3mm with 90.43% pixels passing (right) 
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Figure D.52 Plan 2 measurement 3 axial PTV region, 7%/4mm with 96.83% pixels passing (left) and 

5%/3mm with 81.22% pixels passing (right) 

 

 

Figure D.53 Plan 2 measurement 3 full axial region, 7%/4mm with 91.32% pixels passing (left) and 

5%/3mm with 70.51% pixels passing (right) 
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Figure D.54 Plan 2 measurement 3 full sagittal region, 7%/4mm with 93.33% pixels passing (left) and 

5%/3mm with 82.57% pixels passing (right) 

 

Plan 3 Results 
 

 

Figure D.55 Plan 3 measurement 1 axial PTV region, 7%/4mm gamma index analysis with 90.3% pixels 

passing (left) and 5%/3mm with 71.62% pixels passing (right) 
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Figure D.56 Plan 3 measurement 1 full axial region, 7%/4mm gamma index analysis with 92.09% pixels 

passing (left) and 5%/3mm with 70.34% pixels passing (right) 

 

Figure D.57 Plan 3 measurement 1 full sagittal region, 7%/4mm gamma index analysis with 83.72% 

pixels passing (left) and 5%/3mm with 68.17% pixels passing (right) 
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Figure D.58 Plan 3 measurement 2 axial PTV region, 7%/4mm gamma index analysis with 69.34% 

pixels passing (left) and 5%/3mm with 37.12% pixels passing (right) 

 

 

 

Figure D.59 Plan 3 measurement 2 full axial region, 7%/4mm gamma index analysis with 60.54% pixels 

passing (left) and 5%/3mm with 34.34% pixels passing (right) 
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Figure D.60 Plan 3 measurement 2 full sagittal region, 7%/4mm gamma index analysis with 85.33% 

pixels passing (left) and 5%/3mm with 69.57% pixels passing (right) 

 

 

Figure D.61 Plan 3 measurement 3 axial PTV region, 7%/4mm gamma index analysis with 67.33% 

pixels passing (left) and 5%/3mm with 37.11% pixels passing (right) 

 

 



116 

 

 

Figure D.62 Plan 3 measurement 3 full axial region, 7%/4mm gamma index analysis with 68.06% pixels 

passing (left) and 5%/3mm with 40.01% pixels passing (right) 

 

 

Figure D.63 Plan 3 measurement 3 full sagittal region, 7%/4mm gamma index analysis with 91.22% 

pixels passing (left) and 5%/3mm with 82.41% pixels passing (right) 
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Plan 4 Results 
 

 

Figure D.64 Plan 4 measurement 1 axial PTV region, 7%/4mm gamma index analysis with 92.66% 

pixels passing (left) and 5%/3mm with 81.07% pixels passing (right) 

 

 

Figure D.65 Plan 4 measurement 1 full axial region, 7%/4mm gamma index analysis with 93.2% pixels 

passing (left) and 5%/3mm with 77.79% pixels passing (right) 
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Figure D.66 Plan 4 measurement 1 full sagittal region, 7%/4mm gamma index analysis with 96.34% 

pixels passing (left) and 5%/3mm with 84.43% pixels passing (right) 

 

 

Figure D.67 Plan 4 measurement 2 axial PTV region, 7%/4mm gamma index analysis with 92.35% 

pixels passing (left) and 5%/3mm with 77.73% pixels passing (right) 
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Figure D.68 Plan 4 measurement 2 full axial region, 7%/4mm gamma index analysis with 89.99% pixels 

passing (left) and 5%/3mm with 73.38% pixels passing (right) 

 

 

Figure D.69 Plan 4 measurement 2 full sagittal region, 7%/4mm gamma index analysis with 94.64% 

pixels passing (left) and 5%/3mm with 83.31% pixels passing (right) 
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Figure D.70 Plan 4 measurement 3 axial PTV region, 7%/4mm gamma index analysis with 87.32% 

pixels passing (left) and 5%/3mm with 71.83% pixels passing (right) 

 

 

Figure D.71 Plan 4 measurement 3 full axial region, 7%/4mm gamma index analysis with 88.77% pixels 

passing (left) and 5%/3mm with 73.69% pixels passing (right) 
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Figure D.72 Plan 4 measurement 3 full sagittal region, 7%/4mm gamma index analysis with 97.81% 

pixels passing (left) and 5%/3mm with 90.6% pixels passing (right) 

 

Plan 5 Results 
 

 

Figure D.73 Plan 5 measurement 1 axial PTV region, 7%/4mm gamma index analysis with 97.02% 

pixels passing (left) and 5%/3mm with 83.49% pixels passing (right) 
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Figure D.74 Plan 5 measurement 1 full axial region, 7%/4mm gamma index analysis with 97.49% pixels 

passing (left) and 5%/3mm with 81.82% pixels passing (right) 

 

Figure D.75 Plan 5 measurement 1 full sagittal region, 7%/4mm gamma index analysis with 98.28% 

pixels passing (left) and 5%/3mm with 95.39% pixels passing (right) 
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Figure D.76 Plan 5 measurement 2 axial PTV region, 7%/4mm gamma index analysis with 87.81% 

pixels passing (left) and 5%/3mm with 70.61% pixels passing (right) 

 

Figure D.77 Plan 5 measurement 2 full axial region, 7%/4mm gamma index analysis with 84.74% pixels 

passing (left) and 5%/3mm with 66.46% pixels passing (right) 
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Figure D.78 Plan 5 measurement 2 full sagittal region, 7%/4mm gamma index analysis with 97.67% 

pixels passing (left) and 5%/3mm with 91.33% pixels passing (right) 

 

 

Figure D.79 Plan 5 measurement 3 axial PTV region, 7%/4mm gamma index analysis with 87.21% 

pixels passing (left) and 5%/3mm with 65.67% pixels passing (right) 
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Figure D.80 Plan 5 measurement 3 full axial region, 7%/4mm gamma index analysis with 84.46% pixels 

passing (left) and 5%/3mm with 63.2% pixels passing (right) 

 

 

Figure D.81 Plan 5 measurement 3 full sagittal region, 7%/4mm gamma index analysis with 97.43% 

pixels passing (left) and 5%/3mm with 89.48% pixels passing (right) 
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Plan 6 Results 
 

 

Figure D.82 Plan 6 measurement 1 axial PTV region, 7%/4mm gamma index analysis with 92.67% 

pixels passing (left) and 5%/3mm with 83.32% pixels passing (right) 

 

 

Figure D.83 Plan 6 measurement 1 full axial region, 7%/4mm gamma index analysis with 92.81% pixels 

passing (left) and 5%/3mm with 83.44% pixels passing (right) 
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Figure D.84 Plan 6 measurement 2 axial PTV region, 7%/4mm gamma index analysis with 93.46% 

pixels passing (left) and 5%/3mm with 81.84% pixels passing (right) 

 

 

Figure D.85 Plan 6 measurement 2 full axial region, 7%/4mm gamma index analysis with 94.54% pixels 

passing (left) and 5%/3mm with 83.23% pixels passing (right) 
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Figure D.86 Plan 6 measurement 3 axial PTV region, 7%/4mm gamma index analysis with 98.06% 

pixels passing (left) and 5%/3mm with 88.79% pixels passing (right) 

 

Figure D.87 Plan 6 measurement 3 full axial region, 7%/4mm gamma index analysis with 98.47% pixels 

passing (left) and 5%/3mm with 90.83% pixels passing (right) 

 

 



129 

 

 

Figure D.88 Plan 6 measurement 1 full sagittal region, 7%/4mm gamma index analysis with 87.16% 

pixels passing (left) and 5%/3mm with 80.73% pixels passing (right) 

 

 

Figure D.89 Plan 6 measurement 2 full sagittal region, 7%/4mm gamma index analysis with 98.59% 

pixels passing (left) and 5%/3mm with 95.48% pixels passing (right) 
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Figure D.90 Plan 6 measurement 3 full sagittal region, 7%/4mm gamma index analysis with 97.16% 

pixels passing (left) and 5%/3mm with 92.85% pixels passing (right) 

Plan 7 Results 
 

 

Figure D.91 Plan 7 measurement 1 axial PTV region, 7%/4mm gamma index analysis with 96.64% 

pixels passing (left) and 5%/3mm with 84.9% pixels passing (right) 
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Figure D.92 Plan 7 measurement 1 full axial region, 7%/4mm gamma index analysis with 97.26% pixels 

passing (left) and 5%/3mm with 85.15% pixels passing (right) 

 

Figure D.93 Plan 7 measurement 1 full sagittal region, 7%/4mm gamma index analysis with 96.58% 

pixels passing (left) and 5%/3mm with 88.9% pixels passing (right) 
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Figure D.94 Plan 7 measurement 2 axial PTV region, 7%/4mm gamma index analysis with 98.12% 

pixels passing (left) and 5%/3mm with 90.36% pixels passing (right) 

 

Figure D.95 Plan 7 measurement 2 full axial region, 7%/4mm gamma index analysis with 98.7% pixels 

passing (left) and 5%/3mm with 91% pixels passing (right) 
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Figure D.96 Plan 7 measurement 2 full sagittal region, 7%/4mm gamma index analysis with 95.55% 

pixels passing (left) and 5%/3mm with 87.21% pixels passing (right) 

 

 

Figure D.97 Plan 7 measurement 3 axial PTV region, 7%/4mm gamma index analysis with 94.36% 

pixels passing (left) and 5%/3mm with 82.24% pixels passing (right) 
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Figure D.98 Plan 7 measurement 3 full axial region, 7%/4mm gamma index analysis with 96.88% pixels 

passing (left) and 5%/3mm with 86.21% pixels passing (right) 

 

 

Figure D.99 Plan 7 measurement 3 full sagittal region, 7%/4mm gamma index analysis with 98.54% 

pixels passing (left) and 5%/3mm with 94.19% pixels passing (right) 
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Plan 8 Results 
 

 

Figure D.100 Plan 8 measurement 1 axial PTV region, 7%/4mm gamma index analysis with 92.74% 

pixels passing (left) and 5%/3mm with 73.85% pixels passing (right) 

 

 

Figure D.101 Plan 8 measurement 1 full axial region, 7%/4mm gamma index analysis with 93.32% 

pixels passing (left) and 5%/3mm with 77% pixels passing (right) 
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Figure D.102 Plan 8 measurement 2 axial PTV region, 7%/4mm gamma index analysis with 89.44% 

pixels passing (left) and 5%/3mm with 74.13% pixels passing (right) 

 

Figure D.103 Plan 8 measurement 2 full axial region, 7%/4mm gamma index analysis with 89.44% 

pixels passing (left) and 5%/3mm with 74.13% pixels passing (right) 



137 

 

 

Figure D.104 Plan 8 measurement 3 axial PTV region, 7%/4mm gamma index analysis with 92.77% 

pixels passing (left) and 5%/3mm with 77.82% pixels passing (right) 

 

 

Figure D.105 Plan 8 measurement 3 full axial region, 7%/4mm gamma index analysis with 88.48% 

pixels passing (left) and 5%/3mm with 73.59% pixels passing (right) 
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Figure D.106 Plan 8 measurement 1 full sagittal region, 7%/4mm gamma index analysis with 96.2% 

pixels passing (left) and 5%/3mm with 86.22% pixels passing (right) 

 

 

Figure D.107 Plan 8 measurement 2 full sagittal region, 7%/4mm gamma index analysis with 90.36% 

pixels passing (left) and 5%/3mm with 74.89% pixels passing (right) 

 

 



139 

 

 

Figure D.108 Plan 8 measurement 3 full sagittal region, 7%/4mm gamma index analysis with 94.59% 

pixels passing (left) and 5%/3mm with 82.9% pixels passing (right) 

 

2100 CD Results 
 

 

Figure D.109 Plan 4 (baseline) delivery on 2100 CD measurement 1 axial PTV region, 7%/4mm gamma 

index analysis with 95.58% pixels passing (left) and 5%/3mm with 85.82% pixels passing (right) 
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Figure D.110 Plan 4 (baseline) delivery on 2100 CD measurement 1 full axial region, 7%/4mm gamma 

index analysis with 94.21% pixels passing (left) and 5%/3mm with 81.81% pixels passing (right) 

 

 

Figure D.111 Plan 4 (baseline) delivery on 2100 CD measurement 2 axial PTV region, 7%/4mm gamma 

index analysis with 97.1% pixels passing (left) and 5%/3mm with 90.25% pixels passing (right) 
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Figure D.112 Plan 4 (baseline) delivery on 2100 CD measurement 2 full axial region, 7%/4mm gamma 

index analysis with 97.39% pixels passing (left) and 5%/3mm with 89.23% pixels passing (right) 

 

 

Figure D.113 Plan 4 (baseline) delivery on 2100 CD measurement 3 axial PTV region, 7%/4mm gamma 

index analysis with 97.5% pixels passing (left) and 5%/3mm with 91.54% pixels passing (right) 
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Figure D.114 Plan 4 (baseline) delivery on 2100 CD measurement 3 full axial region, 7%/4mm gamma 

index analysis with 98.86% pixels passing (left) and 5%/3mm with 92.47% pixels passing (right) 

 

 

Figure D.115 Plan 4 (baseline) delivery on 2100 CD measurement 1 full sagittal region, 7%/4mm gamma 

index analysis with 86.02% pixels passing (left) and 5%/3mm with 79.34% pixels passing (right) 
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Figure D.116 Plan 4 (baseline) delivery on 2100 CD measurement 2 full sagittal region, 7%/4mm gamma 

index analysis with 87.61% pixels passing (left) and 5%/3mm with 76.62% pixels passing (right) 

 

 

Figure D.117 Plan 4 (baseline) delivery on 2100 CD measurement 3 full sagittal region, 7%/4mm gamma 

index analysis with 96.91% pixels passing (left) and 5%/3mm with 90.84% pixels passing (right) 
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21EX Results 
 

 

Figure D.118 Plan 4 (baseline) delivery on 21EX measurement 1 axial PTV region, 7%/4mm gamma 

index analysis with 97.65% pixels passing (left) and 5%/3mm with 87.79% pixels passing (right) 

 

 

Figure D.119 Plan 4 (baseline) delivery on 21EX measurement 1 full axial region, 7%/4mm gamma 

index analysis with 98.27% pixels passing (left) and 5%/3mm with 87.73% pixels passing (right) 
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Figure D.120 Plan 4 (baseline) delivery on 21EX measurement 1 full sagittal region, 7%/4mm gamma 

index analysis with 96.32% pixels passing (left) and 5%/3mm with 85.53% pixels passing (right) 

 

 

Figure D.121 Plan 4 (baseline) delivery on 21EX measurement 2 axial PTV region, 7%/4mm gamma 

index analysis with 98.38% pixels passing (left) and 5%/3mm with 92.21% pixels passing (right) 
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Figure D.122 Plan 4 (baseline) delivery on 21EX measurement 2 full axial region, 7%/4mm gamma 

index analysis with 97.32% pixels passing (left) and 5%/3mm with 87.56% pixels passing (right) 

 

Figure D.123 Plan 4 (baseline) delivery on 21EX measurement 2 full sagittal region, 7%/4mm gamma 

index analysis with 97.11% pixels passing (left) and 5%/3mm with 89.45% pixels passing (right) 
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Figure D.124 Plan 4 (baseline) delivery on 21EX measurement 3 axial PTV region, 7%/4mm gamma 

index analysis with 97.02% pixels passing (left) and 5%/3mm with 89.97% pixels passing (right) 

 

 

Figure D.125 Plan 4 (baseline) delivery on 21EX measurement 3 full axial region, 7%/4mm gamma 

index analysis with 91.66% pixels passing (left) and 5%/3mm with 79.66% pixels passing (right) 
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Trilogy Results 
 

 

Figure D.126 Plan 4 (baseline) delivery on Trilogy measurement 1 axial PTV region, 7%/4mm gamma 

index analysis with 93.95% pixels passing (left) and 5%/3mm with 84.1% pixels passing (right) 

 

 

Figure D.127 Plan 4 (baseline) delivery on Trilogy measurement 1 full axial region, 7%/4mm gamma 

index analysis with 92.93% pixels passing (left) and 5%/3mm with 84.03% pixels passing (right) 
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Figure D.128 Plan 4 (baseline) delivery on Trilogy measurement  2 axial PTV region, 7%/4mm gamma 

index analysis with 98.82% pixels passing (left) and 5%/3mm with 93.96% pixels passing (right) 

 

 

Figure D.129 Plan 4 (baseline) delivery on Trilogy measurement 2 full axial region, 7%/4mm gamma 

index analysis with 99.1% pixels passing (left) and 5%/3mm with 94.87% pixels passing (right) 
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Figure D.130 Plan 4 (baseline) delivery on Trilogy measurement 3 axial PTV region, 7%/4mm gamma 

index analysis with 93.74% pixels passing (left) and 5%/3mm with 83.54% pixels passing (right) 

 

 

Figure D.131 Plan 4 (baseline) delivery on Trilogy measurement 3 full axial region, 7%/4mm gamma 

index analysis with 94.9% pixels passing (left) and 5%/3mm with 85.48% pixels passing (right) 
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Figure D.132 Plan 4 (baseline) delivery on Trilogy measurement 1 full sagittal region, 7%/4mm gamma 

index analysis with 89.81% pixels passing (left) and 5%/3mm with 79.75% pixels passing (right) 

 

 

Figure D.133 Plan 4 (baseline) delivery on Trilogy measurement 2 full sagittal region, 7%/4mm gamma 

index analysis with 88.56% pixels passing (left) and 5%/3mm with 78.37% pixels passing (right) 

 



152 

 

 

Figure D.134 Plan 4 (baseline) delivery on Trilogy measurement 3 full sagittal region, 7%/4mm gamma 

index analysis with 94.37% pixels passing (left) and 5%/3mm with 87.92% pixels passing (right) 

 

6EX Results 
 

 

Figure D.135 Plan 4 (baseline) recalculated with the 600 series beam model and compared to the baseline 

machine delivery measurement 1 axial PTV region, 7%/4mm gamma index analysis with 94.84% pixels 

passing (left) and 5%/3mm with 83.56% pixels passing (right) 
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Figure D.136 Plan 4 (baseline) recalculated with the 600 series beam model and compared to the baseline 

machine delivery measurement 1 full axial region, 7%/4mm gamma index analysis with 94.87% pixels 

passing (left) and 5%/3mm with 80.22% pixels passing (right) 

 

 

Figure D.137 Plan 4 (baseline) recalculated with the 600 series beam model and compared to the baseline 

machine delivery measurement 2 axial PTV region, 7%/4mm gamma index analysis with 93.35% pixels 

passing (left) and 5%/3mm with 78.76% pixels passing (right) 
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Figure D.138 Plan 4 (baseline) recalculated with the 600 series beam model and compared to the baseline 

machine delivery measurement 2 full axial region, 7%/4mm gamma index analysis with 91.12% pixels 

passing (left) and 5%/3mm with 73.97% pixels passing (right) 

 

 

Figure D.139 Plan 4 (baseline) recalculated with the 600 series beam model and compared to the baseline 

machine delivery measurement 3 axial PTV region, 7%/4mm gamma index analysis with 88.49% pixels 

passing (left) and 5%/3mm with 71.56% pixels passing (right) 
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Figure D.140 Plan 4 (baseline) recalculated with the 600 series beam model and compared to the baseline 

machine delivery measurement 3 full axial region, 7%/4mm gamma index analysis with 90.14% pixels 

passing (left) and 5%/3mm with 72.51% pixels passing (right) 

 

 

Figure D.141 Plan 4 (baseline) recalculated with the 600 series beam model and compared to the baseline 

machine delivery measurement 1 full sagittal region, 7%/4mm gamma index analysis with 97.72% pixels 

passing (left) and 5%/3mm with 84.77% pixels passing (right) 
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Figure D.142 Plan 4 (baseline) recalculated with the 600 series beam model and compared to the baseline 

machine delivery measurement 2 full sagittal region, 7%/4mm gamma index analysis with 97.31% pixels 

passing (left) and 5%/3mm with 86.71% pixels passing (right) 

 

 

Figure D.143 Plan 4 (baseline) recalculated with the 600 series beam model and compared to the baseline 

machine delivery measurement 3 full sagittal region, 7%/4mm gamma index analysis with 98.57% pixels 

passing (left) and 5%/3mm with 90.75% pixels passing (right) 
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