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Marta Rojas, M.S.  

Supervisory Professor: Oliver Bögler, Ph.D. 

       The Cancer Genome Atlas (TCGA) has conducted a comprehensive analysis of a 

large tumor cohort and has cataloged genetic alterations involving primary sequence 

variations and copy number aberrations of genes involved in key signaling pathways in 

glioblastoma (GBM). This dataset revealed missense ectodomain point mutations in 

epidermal growth factor receptor (EGFR), but the biological and clinical significance of 

these mutations is not well defined in the context of gliomas.  

      In our study, we focused on understanding and defining the molecular 

mechanisms underlying the functions of EGFR ectodomain mutants. Using proteomic 

approaches to broadly analyze cell signaling, including antibody array and mass 

spectrometry-based methods, we found a differential spectrum of tyrosine 

phosphorylation across the EGFR ectodomain mutations that enabled us to stratify 

them into three main groups that correlate with either wild type EGFR (EGFR) or the 

long-studied mutant, EGFRvIII. Interestingly, one mutant shared characteristics of both 

groups suggesting a continuum of behaviors along which different mutants fall. 

Surprisingly, no substantial differences were seen in activation of classical 

downstream signaling pathways such as Akt and S6 pathways between these classes 

of mutants. Importantly, we demonstrated that ectodomain mutations lead to 

differential tumor growth capabilities in both in vitro (anchorage independent colony 
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formation) and in vivo conditions (xenografts). Our data from the biological 

characterization allowed us to categorize the mutants into three main groups: the first 

group typified by EGFRvIII are mutations with a more aggressive phenotype including 

R108K and A289T; a second group characterized by a less aggressive phenotype 

exemplified by EGFR and the T263P mutation; and a third group which shared 

characteristics from both groups and is exemplified by the mutation A289D. In 

addition, we treated cells overexpressing the mutants with various agents employed in 

the clinic including temozolomide, cisplatin and tarceva. We found that cells 

overexpressing the mutants in general displayed resistance to the treatments. Our 

findings yield insights that help with the molecular characterization of these mutants. In 

addition, our results from the drug studies might be valuable in explaining differential 

responses to specific treatments in GBM patients.   
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1.1 Genetics of Glioblastoma 

       Glioblastoma multiforme (GBM) is the most common and lethal type of primary 

brain tumor in adults accounting for about 52% of all the glioma cases. About 3 in 

100,000 people are newly diagnosed with GBM each year (1), with the mean age of 

primary GBM being about 62 years(2). GBM occurs more frequently in males (3) 

Depending on genetic alterations and histological hallmarks, the degree of malignancy 

in gliomas is ranked on a scale of I to IV, where grade IV tumors exhibit the more 

aggressive features of the malignancy involving necrosis and vascular proliferation (4). 

Also, these tumors are more refractory to chemo- and radiation therapy and so confer 

shorter survival time. Based on clinical presentation, GBMs can be additionally 

classified into primary or secondary subtypes (5). Although these two categories are 

histologically indistinguishable, they display different patterns of genetic alterations. 

Primary or de novo GBM category comprises about 90% of the cases where most of 

them develop very rapidly without indication of a less malignant preceding lesion and 

have shorter survival times (9-12 months) (6). In contrast, secondary GBMs originates 

from transformation of lower grade astrocytomas into grade III/IV GBMs. Secondary 

GBMs are fairly rare and involve about 10% of the GBM cases and is common in 

patients below the age of 45 years (7). Primary GBMs characteristically show 

overexpression or amplification of CD1/3 and MDM2/4, and loss of heterozygozity of 

chromosome 10 (8). About 40% of these tumors show PTEN mutations, and typically 

EGFR is amplified in about 45% of the cases. In these EGFR amplified cases, about 

14% also show mutations in the receptor (9, 10). The most common genetic 

alterations in secondary GBMs include p53 mutations, loss of heterozygozity in the 
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long arm of the chromosome 10, deregulation of RB pathway through mutations as 

well as PTEN mutations in about 10% of the cases (11-14). The National Cancer 

Institute (NCI) and The National Human Genome Research Institute (NHGRI) have 

joined efforts to accelerate the understanding of the molecular basis of GBM and other 

types of cancers through The Cancer Genome Atlas (TCGA) initiative. The central 

goal of TCGA is to provide valuable information to the scientific community allowing a 

better diagnosis, treatment and prevention of multiple types of malignancies including 

GBM. This group systematically explores the full spectrum of genomic changes in 

GBMs through the application of genome analysis technologies. TCGA initially started 

with sequencing of about 600 target genes in 500 GBM cases. They then expanded 

the target gene list to about 6000 which is available for analysis currently and are 

currently doing whole exome sequencing for the GBM samples. In addition, whole 

genome sequencing has been made available for 24 GBM cases along with their 

matched controls (http://tcga-data.nci.nih.gov/tcga/). The marked molecular diversity in 

GBM has been delineated by this group; they have catalogued key genomic 

alterations found in this type of cancer based on the results obtained from 201 tumor 

samples. Analysis from TCGA has allowed the finding of recurrent and important focal 

alterations not detected previously in GBMs such as amplifications in AKT3, 

homozygous deletions in PARK2 and NF1 (10).   

      Additionally, a new algorithm was used to search for copy numbers aberrations 

(CNAs) that resulted in the uncovering of less frequent focal events including 

amplification of FGFR2 kinase and IRS2 kinase adaptor genes and deletion of the 

tumor suppressor NF2 (10, 15). This analysis also indicated loss of heterozygozity 

mainly at chromosome 17q which encompass the p53 gene, and less frequently at 7q 
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and 9q, pointing to potential new tumor suppressor genes as candidates for further 

study (16). In summary, the integrated expression data set highlighted that 76% of the 

genes with CNAs displayed a relationship between expression pattern and copy 

number (10).  

      Sequencing analysis in a cohort of 91 GBM samples, revealed 453 validated non- 

silenced somatic mutations in 233 unique genes, 79 of which contained two or more 

variations. In general, mutational background differed substantially between untreated 

and treated GBMs in a proportion of 1.4 versus 5.8 somatic silence mutations for each 

sample (10). As a consequence, a reduction in DNA repair ability is inferred in some 

treated patients having mutations in one or more mismatch repair genes (MMR) 

including MSH6, MLH1and MSH2 and mutations in these genes are thought to be 

causally associated with temozolomide resistance (17) Additionally, TCGA has 

reported an incidence of about 23% inactivating somatic mutations in NF1 gene. 

However, the functional implication of these mutants has not been established yet (18, 

19).       Furthermore, TCGA assessed the promoter methylation status of MGMT, a 

DNA repair enzyme associated with glioblastoma sensitivity to alkylating agents (20, 

21), and found that 19 of 91 tumors exhibited MGMT promoter methylation. Further, 

these findings showed an association between the hyper-mutated phenotype and the 

pattern of MGMT methylation characterized by a significant change in the nucleotide 

substitution spectrum of treated glioblastomas. In the TCGA dataset, the most 

frequently mutated and amplified gene was EGFR, which reconfirmed data from early 

studies demonstrating pivotal role played by EGFR in GBMs (12, 22, 23). 
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1.2 Core pathways in GBM  

      Decades of work identifying individual genetic events in human glioblastomas, 

were confirmed in a comprehensive analysis of a substantial set of tumors by TCGA 

(5) . Thereby, the TCGA has provided an integrated view of an interconnected network 

of aberrations involving primary sequence alterations and significant copy number 

changes for components in major pathways including p53 and RB tumor suppressor 

pathways (10), and activation of RTKs. While these studies highlight the high degree 

of heterogeneity in GBMs in terms of the specific mutations encountered in a given 

tumor, they also show that a common set of core pathways are invariably activated or 

inactivated, albeit by different specific events. This suggests that the pattern of 

mutations may govern therapeutic decisions in the near future (24). The dominant 

pathways implicated in glioma biology are:  

(1) Signaling alteration due to mutations and amplifications in receptor tyrosine 

kinases (RTK) and their downstream effector genes 

           Aberrations in RTK signaling arising either from deregulated RTKs and/or 

components of their downstream signaling events has been identified as one of the 

primary alteration in GBMs, Among the RTKs that are altered: Epidermal Growth 

Factor Receptor (EGFR) is dysregulated in a large population of cases, and will be 

reviewed in detail in section 1. In addition to EGFR, platelet derived growth factor 

receptors (PDGFR) represent another RTK with a critical role in gliomagenesis, where 

PDGFRα and its ligands PDGF-A and PDGF-B are expressed at high levels in high 
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grade gliomas. Robust expression of PDGFRβ has also been demonstrated in 

proliferating endothelial cells of GBM tumors (25-28). 

      In addition to RTKs, signaling hyperactivation of PI3K and MAPK pathways is often 

a feature of GBM (29). The class IA PI3Ks are heterodimers that are recruited to 

activated RTKs and adaptor proteins via their regulatory subunit, and there are five 

isoforms encoded by: p85α, p55α, and p50α (PIK3R1); p85β (PIKR2); and p55γ 

(PIKR3) (30). The action of class I PI3K enzymes is directly antagonized by the tumor 

suppressor PTEN, however, this gene is inactivated in about 50% of the GBMs by 

deletions mutations or epigenetic  mechanisms (2, 31). In addition, activation of 

phosphoinositide 3’-kinase (PIK3) through point mutations has been reported in about 

15% of GBM tumors samples. These mutations mostly occur in the adaptor binding 

domain (ABD) and the C2 helical and kinase domains of the catalytic subunit 

(PIK3CA) (32-34). More recently, crystallographic studies have suggested that these 

mutations disrupt interactions diminishing the inhibitory effect of the p85α on p110α 

(35). In contrast, mutations in the regulatory subunit of PIK3 (PIK3R1) are uncommon 

in cancer. However, sequencing analysis from TCGA indicated the presence of 9 

PIK3R1 somatic mutations in a cohort of 91 GBMs samples. Crystallographic studies 

have suggested that these mutants might diminish the inhibitory effect of p85α on 

p110α (36). Consequently, uncontrolled PI3K activation leading to AKT activation is 

observed in about 85% of the GBM samples (37). 

AKT phosphorylates a broad number of proteins associated with regulation of cell 

growth, proliferation, metabolism, and apoptosis. Other mechanisms by which AKT 

activation could be altered in GBM include: elevation of expression of PIKE-A, a small 

GTPase , which is highly expressed in GBMs and glioma cell lines, and which binds to 
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phosphorylated Akt and enhances its anti-apoptotic role (38, 39); suppression of 

expression of PH domain leucine-rich repeat protein phosphatase  (PHLPP) which 

dephosphorylates S473 residue as well as the C terminal modulator protein (CTMP), 

and which binds and inhibit the phosphorylation of AKT (40-42). A further study 

suggests that AKT represents an important requirement for cell proliferation and 

susceptibility to oncogenesis in a p53 independent manner but mTORC1 dependent 

(43). 

(2) Alterations in genes involved in cell cycle  

A. The p16-CDK4-RB Pathway 

In order to control the fidelity of cell cycle, progression through cell cycle is 

regulated by cyclin-dependent kinases (CDKs) which are in turn regulated by cyclins 

(44). In addition, the activity of the different cyclin/CDK complexes is further influenced 

by binding to cyclin-dependent kinase inhibitors (CKIs). Two CKI families have been 

identified : the CIP/KIP family, comprising p21CIP1, p27KIP1, and p57KIP2 and the INK4 

family (inhibitors of CDK4), which include p15INK4B, p16INK4A, p18INK4C, and p19INK4D 

(45).  Members of the INK4-family bind exclusively to CDK4 and CDK6, thus 

preventing them from binding to cyclins or blocking the kinase activity of pre-

assembled complexes (46). The retinoblastoma tumor suppressor protein (pRB) is one 

of the most important substrates regulated by cyclin/CDK activity in mammalian cells 

(47). pRB is inactivated by phosphorylation and  in its hypophosphorylated state binds 

to transcription factors such as the E2F family members (48). Upon phosphoryaltion, 

pRB dissociates from E2Fs allowing E2F target gene expression and cell cycle 

progression (49). 
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GBMs contain alterations by genetic and epigenetic events in genes that code for 

components of the pRB/E2F pathway. The identified abnormalities include 

homozygous deletion of RB1 (located at chromosome 13q14) or hemizygous deletion 

with mutations in the retained allele which results in a nonfunctional RB1 protein (50). 

Mutations in RB1 are observed in 30% of GBMs and hypermethylation of the RB1 

promoter, resulting in transcriptional silencing of the gene has also been documented 

(51). While CDK4 amplification is found in about 15% of GBM (10), mutations in 

p16INK4A gene occur more frequently (52). In the comprehensive TCGA analysis (10), it 

was shown that the p16INK4A gene was altered in about 52% of the GBMs that were 

evaluated. In addition to loss of heterozygosity (LOH) of the p16INK4A locus, alterations 

in expression of the p16INK4A protein have been described (53). These are a result of 

either decreased mRNA or protein stability or decreased mRNA production due to 

promoter methylation (54). Homozygous deletion of CDKN2B (coding for p15), occur 

in 47% of glioblastomas (10). Other members of the pathway that are altered in a lower 

number of patients are CDKN2C (deleted- 2%) and CCND1 and CDK6 which are 

amplified in 1% and 2% of the patient population respectively. Disruption in the various 

pathway members collectively were found to occur in about 80% of the tumors (10)  

B. The ARF-MDM2-p53 Pathway 

A second pathway involved in control of cell cycle progression is the one involving 

the p53 protein. p53 is a transcription factor that is induced in response to cellular 

stress and external insults which brings about either cell cycle arrest or promotes 

apoptosis (55). One of the main regulators of p53 levels—and thus of the biological 

response—is Mdm2 (murine double mutant 2), an E3 ligase which binds to p53, and 
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targets it for degradation. Mdm2 in turn is inactivated by its binding to p14ARF 

consequently blocking the ubiquitination and degradation of p53 (56).  

The p53 pathway is inactivated in about 90% of gliomas, either by mutations in the 

p53 gene, by amplification of MDM2 or MDM4, or by loss of expression of ARF (10). 

The most common event causing p53 inactivation (at about 35% frequency) is LOH of 

the p53 gene accompanied by missense mutations in the remaining allele (10, 16). 

Amplification and overexpression of MDM2 occurs in 14% of GBMs while that of 

MDM4 is detected in 7% of GBMs (10). Both MDM2 and CDK4 are often co-amplified 

as they are both located on chromosome 12q13-14 (57), and thus affect both the pRB 

and the p53 pathways. Similarly, mutations in the p19ARF protein which is generated by 

an alternative reading frame (ARF) of the INK4A locus that also encodes for the CKI 

p16INK4A (58) affects the regulation of both the pRB and p53 pathway. CDKN2A 

mutations occur essentially via homozygous gene deletion at a frequency of about 

50% of GBMs (10, 59)  

1.3 Therapeutics in GBMs 

      The accumulation of multiple genetic variations is thought to confer GBMs with a 

notorious plasticity which, in spite of therapeutic interventions, allows recurrence. 

Despite recent achievements in standard multimodal therapies including resection 

followed by chemotherapy and radiotherapy, treatments remain ineffective with very 

poor survival (1-2 years) (60, 61). Thus, the development of novel therapeutics and 

improved strategies focusing on abnormal genetic events and signaling pathways, 

tumor stem cell identification and characterization as well as categorization of patients 

for customization of treatment regimens is of extreme importance (62). Standard 

treatment in GBMs involves the use of temozolomide (TMZ). This agent is an oral 
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alkylating agent approved for anaplastic astrocytoma and GBMs. TMZ is an analog of 

mitozolomide, one of the antitumor imidazotetrazines synthesized by Stevens et al. in 

the 1980s (63), but in contrast to mitozolomide, TMZ showed less toxicity and a wide 

spectrum of activity on mouse tumors (64). This lower toxicity allows for better 

tolerance to TMZ treatment in conjunction with radiation in patients. Clinical trials 

phase I showed better tolerance and response in patients with melanomas and 

malignant gliomas (65). TMZ has become one of the standard modalities that offer a 

modest clinical efficacy (no more than 20%) in malignant gliomas (66). The strongest 

predictive signature for favorable outcome to TMZ treatment is the silencing through 

promoter methylation of the DNA repair enzyme O (6)-methylguanine-DNA-

methyltransferase gene (MGMT), which is detected in about 45% of the GBMs cases 

(21). However, patients with TMZ-sensitive glioblastoma also relapse eventually (67). 

Events involved in the innate resistant of GBM patients to TMZ include: a) high activity 

of MGMT whose main function is the removal of alkyl groups from O6-methylguanine 

in double-stranded DNA (68), b) loss of PTEN where therapeutic studies have 

demonstrated that induction of PTEN expression along with an inhibitor of Akt 

phosphorylation –neflavir- enhances sensitivity to temozolomide in glioblastoma cells 

(69, 70) and c) strong base excision repair (BER), where a significant proportion of 

DNA damage induced by TMZ is repaired by the BER pathway (70, 71). In addition, 

early studies have demonstrated that glioma cell lines with low MGMT expression can 

also exhibit significant resistance to TMZ, suggesting the existence of alternative 

mechanisms of resistance (72, 73). Deficiency of the mismatch repair genes is one of 

the proposed mechanisms for resistance to TMZ (72, 73). Further, nucleotide excision 

repair mechanism may also be implicated in TMZ resistance as well as the expression 
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of genes involved in the nucleotide excision such as repair protein, poly (ADP-ribose) 

polymerase-1 (PARP) (74). In addition, more recent studies have indicated that the  

expression of HOX gene signatures such as prominin-1 (CD133) predict poor 

prognosis and postulates CD133 as a stem cell marker in the subpopulation of glioma 

stem cells that are resistant to TMZ treatment (75).  

      Although cisplatin and its analogues are most commonly used in head and neck 

squamous cell carcinoma therapies (76-78), platinum compounds have been also 

considered in the treatment of gliomas (79). Previous reports have shown response to 

platinum compounds in ~15% of the patients (80). In vitro studies have demonstrated 

that cisplatin reduces MGMT activity (81). Thus, combination of TMZ and cisplatin has 

been the object of clinical trials, where this regimen appears active and with 

acceptable levels of toxicity in patients with recurrent GBM (82).  In pre-clinical 

models, cisplatin has been demonstrated to induce apoptosis and has become the 

gold standard for induction of apoptosis in an experimental setup (83). 

 1.4 Dysregulation of EGFR in GBMs 

      EGFR, also known as Human Epidermal Growth Factor Receptor (HER1/ErbB1) is 

cataloged among the type I tyrosine kinase receptors group. Other members of the 

HER family include ErbB2/ Her2, ErbB3/ Her3 and ErbB4/ Her4.  

      EGFR is a 170 KDa glycosylated plasma membrane protein with three main 

domains: an extracellular domain, a transmembrane domain and an intracellular 

domain containing the tyrosine kinase activity (TK) (84, 85). The extracellular domain 

consists of four subdomains, where the ligand binding pocket arises from domains I, II 

and III, which interact with the cognate ligands (86). EGFR can be activated by 
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multiple ligands including epidermal growth factor (EGF), transforming growth factor-

alpha (TGF-α), betacellulin (BTC) and amphiregulin (AR) (87). These factors activate 

the receptor through dimerization that consequently leads to the autophosphorylation 

of various preferential residues in the cytoplasmic domain of the receptor (88, 89). 

Tyrosine autophosphorylation plays an essential role in determining the selectivity of 

downstream signaling cascade triggered by EGFR and facilitates binding of adapters 

or other signaling proteins (29). This enables trans-phosphorylation of the interacting 

partners and thus triggers important downstream pathways such as RAS-RAF-MEK-

ERK cascade, PI3K-AKT pathways and finally alterations in activation of transcription 

factors that lead to changes in gene transcription (90-92). Thus, the final biological 

consequence includes cellular growth and proliferation in tumorigenesis (1, 93, 94). 

      From the physiological perspective, the function of EGFR during development is 

not well established. Recapitulation of EGFR overexpression in mice has been 

unsuccessful, probably due to lethality during mouse development. It has been found 

that EGFR overexpression leads to premature death between midterm of gestation 

and post natal day 20 depending of the genetic milieu, with the strain the 129/sv being 

more susceptible than the C57BL/6 strain These mice showed abnormalities in 

multiple organs including skin, hair, eyes, lungs, bones, heart and neurodegeneration 

(95-98). Therefore, the majority of our insight regarding embryonic role of EGFR 

comes from loss of function studies in mouse models and show that epithelial and glial 

cells in general are the most affected during development (99, 100).  

      To approach the function of EGFR in the developing brain, different groups have 

successfully targeted EGFR knock-out in mice (95, 96, 101). The results of these 
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studies again differ according to the genetic background of the mice. A homozygous 

null mutation developed on CF-1 or 129Sv backgrounds caused embryonic lethality  

(101), while mice with similar genetic manipulation developed on CD-1, C57BL/6 or 

129Sv/J Swiss Black backgrounds survived postnatally (97). Early analysis of mice 

developed on a CD-1 background (96) indicated abnormalities in piriform cortex and 

cerebellum, which took place postnatally and also thalamus degeneration between 

postnatal days 5 and 8. Additional findings showed a focal but massive degeneration 

of olfactory bulb and neocortex with this particular phenotype occurring due in part to 

apoptosis (100). However, some of the neuronal cell populations that degenerate 

usually do not express EGFR, suggesting an indirect mechanism of neuronal death 

(100, 102). 

      Stimulation of EGFR through multiple ligands generates numerous effects in the 

central nervous system (CNS). This receptor and its ligands are expressed in both 

developing and adult brain.  Studies with in situ hybridization in mouse brain tissue 

sections showed TGF-α as the predominant EGFR ligand in neuronal cell populations 

(102). Early studies indicated different regional distribution of mRNA levels for EGF 

and TGF-α ligands in adult mouse regions, where the levels of EGF mRNA were 15-

170 times lower than TGF-α ligand, with the highest regional concentration of mRNA 

EGF observed in olfactory bulbs, cerebellum and basal hypothalamus (103). TGF-α’s 

presence was observed at low level in the dorsal, medial, and lateral extents of the 

anterior olfactory nuclei, dentate gyrus, accessory olfactory bulb, and the tuberculum 

olfactorium and in numerous periglomerular and mitral cells of the olfactory bulb, the 

latter cells forming a laminar cell group adjacent to the granular cell layer (103). 

Further examination of mRNA levels for EGF and TGF-α ligands showed detectable 
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levels as early as embryonic day 14 (103-107). Investigations have shown a role for 

EGFR expression across all the stages of mammary gland development. Studies in 

mice having mutations in the kinase domain region of the receptor have shown a weak 

development of the mammary gland (108, 109).   

      In human cancers of epithelial or glial origin, EGFR is significantly deregulated and 

shown to drive cellular differentiation, proliferation, motility and survival. The 

dysregulation of the receptor is implicated in many human malignancies and is present 

in about 50% of the GBMs (110, 111). EGFR can be deregulated by multiple 

mechanisms in cancer. These are:  

1.4.1 Aberrant enhancement of ligand production  

      Autocrine loops, in which both the receptor and its cognate ligand are expressed in 

the same cells have long been recognized as an important contributor to growth 

autonomy of cancer cells (112). Various studies have demonstrated that tumor cells 

coexpress both EGFR and its ligands that lead to its aberrant activation in a variety of 

neoplasms including GBMs (113, 114).  EGF and TGF-α are the two most frequently 

studied ligands, which particularly bind and activate EGFR. After the screening of 

multiple cell lines derived from GBMs and normal human brain tissues, an abnormal 

increase in the expression of genes encoding TGF-α and EGF were observed (115). 

TGF-α mRNA is overexpressed in significant percentage of malignant astrocytomas 

and found at very low levels in normal cerebral cortex. After screening of multiple 

gliomas for levels of transcripts coding for the pre-pro forms of EGF and TGF-α, 

expression of mRNA levels for one or both of the pre-pro forms of the ligands were 

detected in every tumor studied (116). In glioblastoma cell lines, coexpression of 
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EGFR and TGF-α has been described in EGFR amplification-positive glioma , 

indicating an autocrine growth stimulatory loop which may be involved in the 

anchorage independent proliferation of these cells (114). TGF-α overexpression 

appears predominantly in malignant gliomas (glioblastoma and anaplastic gliomas) 

(117), supporting the role of TGF-α as an oncoprotein marker in brain neoplasms and 

suggesting a strong positive correlation between tumor grade and extent of TGF-α 

amounts (118-120). Gene amplification and expression of TGF-α and EGFR in human 

gliomas has been shown to be highest in recurrent tumors where lower grade tumors 

had progressed to high grade malignant tumors(121). In addition, it was recently 

demonstrated that EGFRvIII overexpressing glioma cells produced increased amounts 

of TGF-α and HB-EGF, thus influencing the growth of EGFR expressing cells (122, 

123). In a more recent study, it was shown that autocrine TGF-stimulation leads to 

enhancement of tumor growth in vivo, an effect that was mediated through EGFR 

activation (124). This TGF-α/EGFR autocrine loop could be downregulated by an 

EGFR specific tyrosine kinase inhibitor, which resulted in tumor growth inhibition (124), 

suggesting that interruption of the autocrine loop may be key node for therapeutic 

intervention.   

 Lately, substantial attention has been focused on heparin-binding EGF-like growth 

factor (HB-EGF) as an important ligand for EGFR activation. Early studies have 

showed that coexpression of EGFR and HB-EGF is found in 44 % of GBMs (125). 

Importantly, in the same study, the authors showed that neutralizing anti-HB-EGF 

antibody suppressed the proliferation of glioma cell lines that expressed this ligand 

(125), indicating that HB-EGF may participate in the autocrine growth of glioma cells. 

Additionally, it has been shown that EGFR activation by G-protein coupled receptors 
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(GPCR) is facilitated via metalloproteinase dependent cleavage of pro-HB-EGF in the 

tumors where the HB-EGF then activates EGFR in either an autocrine or paracrine 

manner (126).         

1.4.2 Increased EGFR protein level (via gene amplification and abnormal gene      

expression) 

      One of the most prevalent characteristics in GBMs is the overexpression and 

amplification of EGFR. It occurs in 40% - 50% of primary GBMs and is not seen in low 

grade astrocytomas (2, 127). In GBMs the distribution of cells with EGFR amplification 

can vary in the same tumor from 10% to 60% (128, 129). Typically amplification of the 

receptor appears as small fragments of extrachromosomal DNA and it is always 

associated with increased intensity of protein expression (130) resulting in tumor 

growth, disease progression, poor prognosis and reduced sensitivity to chemotherapy 

(131).  Recently, a different type of EGFR amplification has been identified, in which 

extra copies of EGFR inserted in different loci of chromosome 7, and it is present in 

28% of the cases (132). A small fraction of GBM tumors can show overexpression of 

EGFR without gene amplification (14). Interestingly, a similar pattern is seen with 

ErbB2 receptor in breast cancer patients, where overexpression without amplification 

is associated with clinical outcome comparable to patients who do not express ErbB2. 

However, it is unknown if this pattern also seen for EGFR in GBMs patients, largely 

because the prognosis for patients with GBM is uniformly poor (133). 

      In the recently advanced subgrouping according to differential gene expression 

profiles, GBMs can be categorized into three different types: One group where EGFR 

is overexpressed, a second group characterized by upregulation of genes on the 
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chromosome 12q13-15 and a third group of GBM which lacks any of these changes 

(134). Upregulation of EGFR is associated with the group that shows characteristic 

transcriptional profile such as expressing genes that promote cell growth, cell survival 

and angiogenesis, which are critical for EGFR-mediated pathogenesis and also can 

provide different therapeutic targets (134, 135).  

1.4.3 Malfunction in downregulation  

      Ligand induced endocytosis of EGFR is a key deactivation pathway, which leads to 

receptor downregulation and subsequent degradation. Activation of EGFR leads to 

recruitment of the c-Cbl E3 ubiquitin-protein ligase directly or indirectly for degradation 

via the proteosomal pathway (136, 137). c-Cbl is an adaptor protein catalogued as a 

complex scaffolding protein due to its ability to interact with multiple proteins. Direct 

binding of Cbl with EGFR is mediated through the phosphorylated tyrosine residue 

1045 on EGFR (138), while indirect binding is mediated through the adaptor protein 

Grb2, which binds to phosphorylated tyrosine sites, 1086 and 1068 on the receptor 

(138, 139). This binding facilitates efficient internalization via clathrin-coated pits that 

invaginate to form coated vesicles and then subsequent receptor degradation in the 

lysosomes (136).    

Previous studies involving mutagenesis of c-Cbl and EGFR revealed specific 

requirements for productive ubiquitination and sorting of the receptor to degradation 

such as intact SH2 and RING finger domains on c-Cbl as well as EGFR  Tyr-1045 

phosphorylation, which creates a major docking site for c-Cbl or indirect interaction 

between c-Cbl and EGFR through adaptor protein Grb2 (138).Malfunction in EGFR 

downregulation involves the presence of truncated forms of c-Cbl with oncogenic 
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function where v-cbl form was generated by a truncation in which 60% of the C-

terminus has been removed (140). The studies defined the region within Cbl,  where 

the change occurs between non-tumorigenic and tumorigenic forms (140). Further, 

mutational studies have also evidenced deregulation in downregulation and 

degradation of the receptor, where mutation of Tyr-1045 reduced ligand-induced 

down-regulation in living cells and also decreased receptor ubiquitylation (138, 141) 

thus, enhancing the mitogenic response to EGF (138, 142).     

 1.4.4 Crosstalk with others receptors 

 Lateral activation of EGFR by various membrane bound molecules including other 

RTKs, cell adhesion molecules, cytokine receptors, ion channels, and G-protein 

coupled receptors (GPCR) has been demonstrated in tumor cells  (143).  Cross-talk 

between EGFR and other RTKs such as c-MET has been extensively described for 

tumor types where EGFR is a major player in their biology (144-146). This is also true 

in the case of GBMs where crosstalk between EGFR and c-MET has been described 

(88). EGFR and c-MET physically interact with other and can induce each other’s 

activity (147). Two large scale phosphoproteomic studies have shown that c-MET and 

EGFR coactivate in glioma cell lines. The first report was  by Huang et al (88) where 

they showed that cMET phosphorylation levels in glioma cells overexpressing 

EGFRvIII mutant was dependent on the kinase activity of this mutant. The second 

study showed that cMET phosphorylation levels was responsive not only to the 

EGFRvIII mutant but also to ligand stimulated EGFR in gliomas (148). This cross-talk 

between the receptors could be targeted with specific inhibitors to both, resulting in 

enhanced cytotoxicity of EGFRvIII-expressing cells compared with either compound 
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alone, suggesting a potential combination strategy to be explored in the clinic (88, 89, 

89, 148). 

     Cross-talk between EGFR and a number of cell adhesion molecules including 

members of the integrin family has also been found. Activation of specific integrin 

molecules by extracellular matrix proteins (ECM) has been demonstrated to trigger 

tyrosine phosphorylation of EGFR (149, 150). Studies in fibroblast and epithelial cells 

have provided evidence on the ability of integrins to stimulate EGFR tyrosine 

phosphorylation in a ligand- independent manner leading to subsequent activation of 

MAPK and PI3K pathways (151). Similarly integrins is also involved in PLCγ activation, 

which is particularly dependent on EGFR in epithelial cells (149, 151). 

A further well defined cross-talk mechanism of EGFR activation involves G-protein 

coupled receptors (GPCR), which participate in EGFR transactivation. Activation of 

EGFR in response to a broad number of diverse GPCR agonist has been 

demonstrated in several different human cancers (152-155). However, the 

mechanisms by which GPCRs transactivate EGFR have not been well established and 

seem to differ in distinct cell types. In general, as mentioned earlier, GPCRs activated 

MMPs which cleave HB-EGF from the cell surface to facilitate activation of EGFR 

(143, 156). Studies using glioblastoma cells simultaneously expressing EGFR and a 

formylpeptide receptor (FPR), a member of the GPCR family, have demonstrated 

transactivation of EGFR, and synergistic cooperation to exacerbate the malignant 

phenotype in GBMs through cellular growth and tumor formation in athymic mice 

(157). Other GPCRs have also been shown to transactivate EGFR, including the 

receptors for lysophosphatidic acid  (LPA) (158, 159), thrombin (160, 161), endothelin-
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1(162, 163), carbachol (164, 165), angiotensin (166, 167), bombesin (168), and the 

chemokine SDF1 (169). 

  

1.4.5 Mutations in EGFR 

      One of the mechanisms driving functional alteration of EGFR in tumor cells is 

mutation giving rise to constitutively active variants. Mutations in EGFR comprise three 

categories: extracellular, intracellular and tyrosine kinase mutations. Extracellular 

domain EGFR mutations are common in GBM, and characteristically, the majority of 

these mutations give rise to truncated forms of the receptor. A typical example of this 

type of mutation is the EGFRvIII (also call ∆EGFR). This variant is characterized by an 

in-frame deletion of exons 2 to 7 encompassing part of the ligand binding domain of 

EGFR (170). EGFRvIII is the most commonly occurring and comprehensively studied 

member of this class of mutants.  

      EGFRvIII variant is present in about 30%-40% of the GBMs where EGFR is 

amplified (171-173). EGFRvIII exerts a prominent enhancement of tumorigenicity, and 

this characteristic has been attributed to suppression of apoptosis which is associated 

with the constitutively active signal observed in EGFRvIII (116, 173, 174). EGFRvIII is 

also related with a shorter interval to relapse and decrease in survival rates in GBMs 

(175, 176). EGFRvIII differs from EGFR in the following characteristics:  

      1) It is insensitive to the ligand stimulus, due to rearrangements of the ectodomain 

region of the receptor that lead to the absence of domain I and II which are important 

requirements for the ligand binding pocket conformation (172, 177, 178). Therefore, 

EGFRvIII is unable to bind EGFR-binding ligands and it is constitutively active and 
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capable of triggering downstream signaling events.  Typically EGFR is characterized 

by absent or low levels of tyrosine phosphorylation in the absence of external ligand. 

Post EGF ligand stimulation, the levels of activation increase substantially (179-181). 

From a molecular perspective, similar pathways are activated by both EGFR and 

EGFRvIII, including MAPK, PI3K and STAT3 pathways (89, 182, 183) but with 

different levels of intensity. Interestingly, recent studies have indicated that even as 

wild type EGFR signals through classical pathways, EGFRvIII may not activate the 

same canonical pathways (184, 185). This variant seems to preferentially utilize the 

PI3K and STAT3/5 pathways to bring about its downstream biological effects ((89, 

186). The dominant pathway that is activated by EGFRvIII in this regard is the PI3K 

pathway (187, 188). EGFRvIII may interact directly with the PI3K regulatory subunit 

p85 or indirectly through interactions with Gab1 adaptor (189). In addition, in the 

context of the loss of the tumor suppressor PTEN, EGFRvIII is strongly associated 

with the activation of PI3K-Akt pathway and the activation of mTOR and S6 pathways 

(89, 174, 182, 183, 190, 191). 

      2) EGFRvIII’s low level constitutively active signal is augmented by its capacity to 

signal continuously as a result of the reduced endocytosis and degradation of the 

receptor (179). This is associated with restricted c-Cbl binding and inefficient 

ubiquitinylation (192-194). In addition, the small fraction of receptor that does 

internalize is recycled rather than delivered to lysosomes (192). 

      3) EGFRvIII appears to signal strongly to inhibit apoptosis via upregulation of Bcl-Xl 

expression (195). The role of canonical Bcl2 family members (BID, BAX, BCL-XL, 

MCL-1 BAK, BAD) has been widely studied in gliomagenesis (5, 196). Typically these 

set of proteins regulate apoptotic process via preservation of mitochondrial membrane 



22 
 

and release of cytochrome c (197). During the transitional process from initial to 

recurrent GBM there is a change in the balance of anti-apoptotic function (198), where 

Bcl-xL is upregulated by overexpression of EGFRvIII in glioma cells. This has been 

attributed to be the basis for the enhancement in tumorigenesis and resistance to 

cisplatin-induced apoptosis observed in EGFRvIII overexpressing cells (174, 195). 

Additional functions of Bcl2 family members involve enhancement of migration and 

invasion (199-201). 

Patients with EGFRvIII-expressing tumors have a shorter interval to clinical relapse 

and poorer survival than patients with EGFRvIII-negative tumors (202). For GBM 

patients who survive 1 year or longer after diagnosis, the expression of EGFRvIII is 

also an independent negative prognostic indicator of survival (203-205) Current 

molecular characterization of resistance to targeted therapy has shown that this 

variant grants distinct properties as compared to EGFR (206). Early studies have 

reported better response to EGFR tyrosine kinase inhibitors in patients whose tumors 

express EGFRvIII (207)demonstrating that this variant could sensitize gliomas to 

EGFR tyrosine kinase inhibitors. However, better response is observed in just 50% of 

the patients indicating that other aberrations affect the outcome of the treatment. 

Further, studies have shown evidence that clinical response to targeted therapy could 

be dictated by other molecular pathways (10, 174, 208). Loss of PTEN is one of the 

most frequent molecular signatures in GBM patients who exhibit poor response to 

tyrosine kinase inhibitor treatments. Studies where a cohort of more than 600 patients 

with newly diagnosed GBMs were examined have suggested that tumors negative for 

EGFRvIII were less aggressive (209), and complementary clinical trial studies 

suggested that tumors coexpressing EGFRvIII and PTEN are more prone to respond 
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to EGFR-tyrosine-kinese inhibitors (207, 210-212). Thus, it has been hypothesized 

that expression of EGFRvIII and PTEN might be useful prognostic indicators in 

patients that exhibit a better response to EGFR tyrosine kinase inhibitor therapies 

(207, 208, 210). In addition, novel strategies involving immunotherapy have been 

considered and could represent a promising approach in GBM treatment. Preclinical 

studies have shown that EGFRvIII specific peptides can be used in association with 

specialized antigen presenting cells, dendritic cells, to induce a long-lasting 

immunological response that significantly increased median survival times in mice 

(213, 214). Phase 1 clinical trial was conducted where the dendritic cell presenting the 

unique peptide of EGFRvIII was administered intradermally to patients. The results 

from the trial have indicated longer survival in GBM patients (18.7 months) after 

EGFRvIII-based vaccination (215). More recently, a phase II clinical trial reported an 

increase in overall survival (26 months) in group of patients with newly diagnosed 

GBM expressing EGFRvIII who received EGFRvIII targeted vaccine and at the present 

a randomizing phase III study is in planning stage (216).  

      Additional less common deletion mutations have been identified in GBMs and 

include intracellular deletions which lack of three exons  25–27 named  EGFRvIVa; or 

two exons 25 and 26 termed EGFRvIVb) (172, 217) but their oncogenic potential 

remained uncharacterized until recently. Stable expression of these mutants in mouse 

fibroblast NIH3T3 cells showed that overexpression of these mutants result in an 

increase in cellular proliferation (218). Further, subcutaneous implantation of these 

cells in nude mice demonstrated that these mutants were tumorigenic to a greater 

extent than EGFR (218). In addition, both mutants exhibited activation in the absence 

of ligand. This study also suggested that signal transduction from these mutants 
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shows differences as well as similarities with signaling from EGFRvIII in the same 

context (218). For instance, both activate AKT and show dependency on chaperone 

HSP90 for activity and stabilization. In addition, mass spectrometry analysis showed a 

decrease in the basal levels of phosphorylation of a negative regulator, EPHA2 in 

theses mutants (218). EPHA2 has been reported to be overexpressed in the 

unphosphorylated state in GBM cells and tumors (218, 219). Other deletion mutations 

that have been also found specifically in GBM (220), include EGFRvI and EGFRvII, 

which are believed has a significant role in cell proliferation and invasiveness (220, 

221). In addition, the deletion EGFRvV is found in about 15% of the GBMs and has 

thus far not been identified in any other tumor type (217). This particular mutant lacks 

the c-Cbl binding site at Tyr-1045 suggesting that there are defects in the receptor 

internalization (222), but the ability of this mutant to confer tumorigenesis and the 

signaling mechanism activated have yet to be studied (217).    

      Recently, a novel class of glioblastoma-associated EGFR mutants has been 

identified. These are missense mutations in the extracellular domain (9). I have 

focused my work on this new class, and specifically those that occur between exons 2-

7 of the receptor, in order to test the hypothesis that they resemble EGFRvIII in terms 

of biology and mechanism. It has been shown that ectodomain missense mutants can 

have constitutive, ligand-independent kinase activity like EGFRvIII. However, they can 

also still be activated further by the addition of ligand such as EGF, unlike EGFRvIII 

(9). Many of these missense mutations have been identified in the TCGA dataset. 

1.4.5.1 Role of EGFR ectodomain mutations in gliomagenesis:  

      Lee et al. sequenced the EGFR coding regions in a cohort of a 151 glioma tumor 

and cell lines, and identified novel mutations, including a substantial number of 
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ectodomain missense mutations (9). Approximately 14% (19/132) of glioblastomas 

and 13% (1/8) of glioblastoma cell lines displayed this type of mutation (9). In addition, 

they found that these mutants exhibited a stronger transforming phenotype when 

compared to wild type EGFR as evidenced by the anchorage independent growth 

assay, where transformation by EGFR overexpression in mouse fibroblast cells was 

completely dependent on ligand stimulation for colony formation (9). On the other 

hand, fibroblasts overexpressing ectodomain mutants formed colonies even in the 

absence of ligand suggesting the ligand-independent oncogenic nature of these 

mutants. Also, they found that fibroblasts overexpressing these mutants were able to 

generate tumors after implantation in nude but a similar phenotype was not observed 

in the group of mice implanted either with fibroblast expressing empty vectors or 

EGFR (9).In addition, these mutants showed tyrosine kinase activation in serum 

starved condition as seen for EGFRvIII in BaF3 cells which have no endogenous 

EGFR (9). Unlike EGFRvIII however, there was more robust tyrosine kinase activation 

observed after EGF stimulation in cells harboring EGFR with the ectodomain 

mutations (9). This indicates that these mutants respond to EGF acutely similar to 

EGFR. The main conclusion of this study is that EGFR missense ectodomain 

mutations could signify a novel mechanism for activation of EGFR in tumors (9). Their 

transforming and oncogenic capacity suggests a potentially important role in 

gliomagenesis but further studies are essential to validate it. Also a complete analysis 

of downstream signaling pathways of the mutants is critical to establish if they are 

active through the same or different mechanism when compared to EGFR and 

EGFRvIII. In particular, as new ectodomain mutants are being identified by the 

sequencing efforts of TCGA, it is important to determine whether they can be classified 

into categories, which may have mechanistic and ultimately clinical significance. TCGA 
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initially analyzed a cohort of 206 GBMs patient samples. Now the panel of has been 

increased to 500 patient samples. Information contained in the data base of TCGA 

allowed us to identify EGFR ectodomain mutations situated in the deleted area of the 

EGFRvIII. The multidimensional data from TCGA gives us further information such as 

gene copy number, frequency and also patient clinical data, which permits us to 

associate expression of the ectodomain mutants to the above mentioned parameters. 

Additionally, high-resolution genomic and exon-specific transcriptomic profiling readily 

detected the EGFR vIII as well as carboxy-terminal deletions of EGFR in GBMs (10). 

Also, this analysis detected point mutations associated with focal amplifications of the 

EGFR. In an analysis from a cohort of 91 GBM samples, 3 different statuses were 

found: one that exhibited focal amplification without mutations (total 22 cases), one 

that displayed focal amplification and point mutations (16 cases) and one that showed 

point mutations without focal amplification (3 cases) (10).  

1.5 EGFR inhibitors effectiveness in treatment strategies and resistance in GBM  

Overexpression of EGFR has been detected in numerous epithelial tumors during 

the 1980s and these findings support the theory that deregulated EGFR expression 

and signaling is an important event in the origin of human cancers (223, 224). This fact 

has led to the development of multiple drugs targeting EGFR, which include anti-

EGFR monoclonal antibodies such as mABC225 and mAB528 (225, 226). These 

antibodies compete with EGF for EGFR binding and also induce receptor 

downregulation through internalization and degradation (227). This results in inhibition 

of cellular proliferation in human fibroblast (228). Initially the mABC225 (Cetuximab) 

had demonstrated efficient antitumor effect in cell cultures and xenograft models, 

leading to the development of this therapeutic agent (229). Cetuximab is an 
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immunoglobulin G1 chimeric mouse–human monoclonal antibody with a mean half-life 

of approximately 112 h in humans (229). This agent was approved for the use in 

metastatic colorectal cancer (CRC), and for treatment of squamous cell carcinoma of 

the head and neck (HNSCC). Both of the tumor types are of epithelial origin and 

typically express EGFR (230, 231). Cetuximab has also been under active clinical 

evaluation in progressive non small cell lung cancer (NSCLC) (232-235). More recent 

studies suggest a new role for this antibody in breast cancer cells, where it has been 

shown to affect integrins independent of EGFR (236). Cetuximab treatment leads to 

activation of RhoA and inhibition of breast cancer cell invasion independent of the level 

of EGFR in the cells, thus providing a basis for using this antibody in metastatic breast 

cancer independent of the levels of EGFR (236). Preclinical studies in cell cultures and 

mouse models indicate that cetuximab exerts antitumor and radiosensitizing effects in 

GBM (237). Preclinical data also suggests that cetuximab binds to and internalizes 

EGFRvlll leading to significant reduction of active forms of the variant (238). Although 

very little clinical data of cetuximab in patients with GBM is available, anecdotal cases 

where patients with recurrent, strongly pretreated, EGFR-expressing GBM responded 

to treatment with the single agent cetuximab have been reported (239). While in other 

types of cancers such as CRC and HNSCC, cetuximab has showed promising 

antitumor activity in clinical trials as monotherapy, it has been efficacious also in 

combination with chemotherapy and/or radiation (230, 231, 240, 241). Therefore, in 

more recent clinical trials, the efficacy and safety of cetuximab in combination with 

other agents such as irinotecan and bevacizumab was investigated in patients with 

recurrent primary GBM (242). These phase II trials demonstrated that cetuximab in 

combination with irinotecan and bevacizumab had a satisfactory safety profile and 

stimulated a considerable number of clinically significant, long-term responses in a 
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cohort of 43 patients (26%) (241).Another approach to inhibiting receptor tyrosine 

kinases is with tyrosine kinase inhibitors (TKIs), which are synthetic molecules with low 

molecular weight that likely allow them to penetrate the blood-brain-barrier, and which 

inhibit the tyrosine kinase activity by acting at the ATP binding site. TKI’s are typically 

administrated orally to patients. The most advanced TKIs in clinical development are 

erlotinib (Tarceva®, Genentech Inc., San Francisco, CA, USA; OSI Pharmaceuticals 

Inc., Melville, NY, USA; and F. Hoffmann-La Roche Ltd., Basel, Switzerland) and 

gefitinib (Iressa®, AstraZeneca, Wilmington, DE, USA), two EGFR-specific, reversible 

TKIs. Numerous preclinical studies highlight the efficacy of TKIs in GBMs. While 

erlotinib is able to repress anchorage-independent growth of GBM cells, cells were 

able to overcome this inhibition by upregulation of EGFR mRNA levels (243). In 

contrast, erlotinib induced higher levels of apoptosis in cell lines from secondary 

GBMs, probably because of their inability to increase EGFR mRNA levels when 

expose to erlotinib (243). A phase I clinical trial has  established a safety profile and 

indicated a degree of efficacy of erlotinib in combination with TMZ in patients with 

malignant glioma, who received escalating doses of erlotinib starting with 100 mg/day 

to 500 mg/day (244). Another study has shown that the combination of erlotinib and 

radiotherapy in GBM patients has acceptable levels of tolerance in patients receiving 

doses from 150 to 200 mg/day (245). Various combinations of EGFR-TKIs with other 

compounds are under investigation including mTOR inhibitors such as sirolimus used 

in combination with erlotinib in recurrent malignant gliomas, a regimen that was 

reasonably tolerated and under which 19% of the patients showed a partial response, 

while 50% had stable disease (246). In gliomas, association between gefitinib 

sensitivity and EGFR amplification is not apparent (247, 248). Furthermore, this agent 

appears more effective when mutations are present in the intracellular domain of 
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EGFR exon 18 to 21 as was shown in NSCLC (249, 250), but these mutations are not 

present in GBMs (251). GBM tumors expressing EGFRvIII are significantly affected by 

erlotinib (252, 253). In contrast, these tumors do not display any response to gefitinib 

treatment (254). More recently, preliminary studies from Lee et al indicate that erlotinib 

did induce dose-dependent cell death in Ba/F3 cells expressing the EGFR ectodomain 

mutations including EGFRvIII (9), suggesting that this drug may have uses in a subset 

of GBM patients. Thus, a series of clinical trials with particularly selected group of 

patients exhibiting EGFR mutations, who are most likely to benefit from first-line 

treatment with EGFR TKI therapy needs to be conducted (255-257). 

1.6 Hypothesis, rationale and significance  

Rationale 

The importance of EGFR in the biology of glioma, both in terms of the prevalence 

of mutations in the gene and in its central position in key signaling pathways, provides 

a strong case for targeting it with drugs. The last decade of research on targeting of 

RTKs with antibodies and TKIs has made it clear that the details of the receptor 

biology of the many mutations in EGFR needs to be considered in detail, as they will 

profoundly affect the effectiveness of these agents. More recently, large scale 

sequencing efforts have revealed new mutants in EGFR in glioma, particularly in the 

extracellular domains where deletion mutations were previously identified. Early 

studies had identified missense ectodomain mutations in EGFR after screening of a 

panel of 132 glioblastoma samples and 8 glioblastoma cell lines (9). In their study, Lee 

et al. have demonstrated anchorage independent colony formation in soft agar of 

NIH3T3 mouse fibroblast expressing novel EGFR missense mutations as well as 

tumorigenic capacity in athymic nude mice after subcutaneous implantation of stable 
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mouse fibroblast expressing these mutants (9), but the mechanisms of receptor 

activation followed by these mutants remains  unclear.   In order to realize the promise 

of EGFR-directed therapy in this disease, it is imperative to study EGFR ectodomain 

mutations in detail by defining the downstream signaling events specifically activated 

by these mutations, by determining whether they have essential function in GBMs and 

by identifying possible implications in novel therapeutic approaches. Furthermore, 

because many of these mutations occur in the domains deleted in the most common 

and thoroughly studied EGFR mutant, EGFRvIII, it is important to determine whether 

point mutations in this region share characteristics with this ligand-independent, 

oncogene which exhibits persistent but low levels of activity. Therefore, the goal of my 

work is to evaluate the molecular mechanism of receptor activation and also the 

oncogenic capacity of EGFR ectodomain mutations located in the region deleted in 

EGFRvIII. 

  Hypothesis 

      1. Signaling from EGFR ectodomain mutants shares characteristics of both EGFR 

and EGFRvIII. 

      2. EGFR ectodomain mutants are oncogenic and confer a more aggressive 

phenotype on GBM cells. 

      3. The overexpression of EGFR ectodomain mutants in glioma cell lines leads to 

changes in the pattern of response to chemotherapeutic agents.  

 Significance 

      One of the most common genetic abnormalities in GBMs is the activation of RTKs,  
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and overexpression, amplification and mutation of EGFR is the most prevalent, 

occurring in about half of GBMs (10, 258). Multimodal treatment involving surgical 

resection followed by chemoradiation represents the current standard treatment of 

GBMs, but offers median survival of less than two years (259). Thus, inhibition of 

EGFR remains an important goal, and with the advent of personalized medicine the 

possibility of customization of therapeutic schemes to the molecular abnormalities in 

an individual’s tumor provides a compelling rationale for studying EGFR mutations in 

depth. The finding that EGFR missense ectodomain mutations grant increased 

receptor sensitivity to small molecule inhibitors such as erlotinib is particularly 

encouraging in this context (9). It is also clear that the broader molecular context, such 

as the status of tumor suppressor genes like PTEN, will be important when selecting 

the appropriate treatment for groups of patients with a particular molecular abnormality 

(210). Thorough analysis of the recently identified ectodomain mutations is therefore 

highly significant, as it could ultimately contribute to the stratification of individual GBM 

patients according to their molecular signatures for more effective treatment.  
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2.1 Generation of EGFR and TOPO-Cloning 

      Blunt end PCR products for TOPO-cloning were generated by PCR reaction 

containing 100 ng of genomic DNA (in house EGFR construct) as template, 10X high 

fidelity PCR buffer, 10mM dNTP mixture, 50mM MgSO4, 2 Units VentR® DNA 

polymerase from Biolabs (Catalog #MO254S), 20μM forward and reverse primers 

purchased from Sigma Aldrich: EGFR 5’ fwd CACCATGCGACCCTCCGGGACGGCC 

and EGFR 3’rev TGCTCCAATAAATTCACTGCT (no stop codon) in a 150μl reaction 

volume. PCR cycling parameters were: One cycle 95◦C for 5 min; 32 cycles of 95◦C for 

15 s, 55◦C for 30 s, and 72◦C for 6 min; followed by one cycle of 72◦C for 7 min. Then 

PCR products were transformed using One Shot®TOP10 chemically competent E.coli 

cells from Invitrogen (Catalalog # C4040-10) and then purified using the Promega 

Wizard®Plus Midipreps DNA purification system (catalog #A-7640). DNA purified 

products were quantified and then TOPO-cloned in pENTR TM /TEV/D-TOPO vector 

using the pENTR directional topocloning kit from invitrogen ( Catalog #K2525-20).  

2.2 Identification of ectodomain mutations 

      EGFR ectodomain mutations R108K, T263P, A289D, A289T were identified using 

TCGA information at https://cgwb.nci.nih.gov.  

2.3 Mutagenesis and Cloning 

      TOPO-cloned blunt end PCR products were used to generate EGFR ectodomain 

mutations using specific forward and reverse primers for every mutation previously 

identified from the TCGA dataset. The primers were designed using the Primer X 

software program (http://www.bioinformatics.org/primerx/) and are listed below:   

https://cgwb.nci.nih.gov/�
http://www.bioinformatics.org/primerx/�
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Primer Name Sequence 

R108K-F 5’-CCTGCAGATCATCAAGGGAAATATGTACTAC-3’ 

R108K-R 5’-GTAGTACATATTTCCCTTGATGATCTGCAGG-3’ 

T263P-F 5’-CACGTGCAAGGACCCATGCCCCCCACTC-3’ 

T263P-R 5’-GAGTGGGGGGCATGGGTCCTTGCACGTG-3’ 

A289D-F 5’-CAAATACAGCTTTGGTGACACCTGCGTGAAGAAG-3’ 

A289D-R 5’-CTTCTTCACGCAGGTGTCACCAAAGCTGTATTTG-3’ 

A289T-F 5’-CAAATACAGCTTTGGTACCACCTGCGTGAAGAAG-3’ 

A289T-R 5’-CTTCTTCACGCAGGTGGTACCAAAGCTGTATTTG-3’ 

 

Then QuikChange II ®Site-Directed Mutagenesis protocol from Stratagene (Catalog # 

200523) was followed. DNA products were transformed and purified as described 

above in section 5-1, and EGFR mutations were confirmed by sequencing analysis 

using primers: 

 

 

Table 1 Primers for site-directed mutagenesis 

Table lists the set of primers used to generate the different EGFR ectodomain 

mutations along with their sequences.  
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Primer Name Sequence 

T7-0 TAA TAC GAC TCA CTA TAG GG 

EGFR3622-F AGTGGGCAACCCCGAGTATCT 

 

Next, recombination reaction was performed using pENTR EGFR ectodomain 

mutations and DNA products were subcloned into expression vectors using the 

Gateway®LR Clonase™ II Enzyme Mix kit from Invitrogen (Catalog # 11791-020). The 

destination vectors used were pcDNA-DEST 47 from invitrogen (Catalog #12281-010) 

and the Bi-cistronic retroviruses system 1726-zeo (260). 

2.4 Generation of stable cell lines 

2.4.1 Production of Bi-cistronic VSV-G pseudotyped retrovirus stocks 

      We use the BD Retro-XTM universal packaging cell line system from Clontech 

(Catalog # 631530) stably expressing gag/pol genes were cultivated at 37◦C in 5% 

CO2 in 100 mm diameter plates in DMEM media purchased from Cellgro (Catalog #10-

017-CV ) supplemented with 10% of FBS and 5% sodium pyruvate. Once the GP2 

cells reached ~70% confluence the cells transfected following the modified calcium 

phosphate protocol and using 20μg of DNA: 10μg VSV-G DNA plasmid acquired from 

Clontech (Catalog# 631530) and 10μg of the retroviral construct. In brief, the plasmids 

Table 2 Confirmation primers 

Sequences for EGFR ectodomain mutations were confirmed in the MD Anderson 

Cancer Center sequencing core using specific primers contained in this table.  
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were added to a total volume of 437 μl of TE [10mM Tris pH 7.9 and 0.1 mM EDTA] to 

which 63μl of 2 M CaCl2 was added. Using a 1 ml culture pipette in a small sterile 

polystyrene snap cap tube was used to establish a steady flow of air bubbles through 

500 μl of 2x hepes buffer saline (HBS) [0.05 M HEPES free acid, 0.28 M NaCl and 1.5 

mM Na2HPO4 pH 7.12] and the DNA/CaCl2 mixture was added drop wise over the 

course of about 30 seconds. After incubation at room temperature for about 20 

minutes the mixture was added drops wise to the GP2 cells, and then incubated for 4 

hours. Subsequently, the media was changed to add fresh media using half the 

volume (5 ml) and the plates were incubated for 48 hours. There after supernatants 

were collected and filtered through 0.4 μm filter, aliquoted and stored at -80◦C until 

further use. 

2.4.2 Transduction of Glioblastoma and CHO cell lines 

      Glioblastoma cell lines U87 (ATCC®# HTB-14™), LNZ308 and LN428 (courtesy of 

Dr. Alfred Yung’s lab. Neuro-Oncology Department MD Anderson Cancer Center) 

were cultured in T25 flasks in DMEM media purchased from Cellgro (Catalog #10-017-

CV ) supplemented with 10% of FBS and 5% of L-Glutamine and penicillin-

streptomycin and incubated at 37◦C in 7% CO2 , also CHO cell lines (ATCC®#CCL-61) 

were cultured in IMDM  procured from Hyclone (Catalog # SH 30228.01) 

supplemented with 10% of FBS, 5% of L-Glutamine and penicillin-streptomycin and 

5% of sodium pyruvate and then incubated in standard conditions as above. Thereafter 

when plated target cells reached 50% confluence, the media was removed, and 1 ml  

of stock virus with 8 mg/ml of Polybrene [Hexadimethrine bromide, Sigma H-9268, 

made up in water at 8 mg/ml and sterilized by filtration] were applied onto the cells to 
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infect them and then were left for 2 hours in the incubator at standard conditions, the 

media was then removed and replaced with normal growth media and incubated for 48 

hours before initiation of drug selection using Zeocin. 

2.4.3 Zeocin selection to obtain stable cell lines 

      Cells were subjected to treatment using the antibiotic zeocin purchased from 

Invitrogen (Catalog # R250-01) at the lowest lethal dose as determined by titration 

curve on naive cells as follow:  

CHO cell …………. 600 μg /ml  

U87 cell………….. 100 μg /ml  

LNZ 308…………..   50μg /ml 

LN428…………….    50μg /ml 

Cells were fed every two days until selection of stable cell lines was achieved (we run 

in parallel a non-infected culture control cells). Selection of stable cell lines took about 

15 days.  

2.5 Protein expression of stable cell lines 

      Protein expression in stable cell lines was confirmed using western blotting 

analysis according to standard protocols (148). 

2.5.1 Obtain protein lysates      

      Cultured stable cells were washed with pre-cold PBS and after scrapping cells  

were lysed in RIPA buffer containing 50 mM Tris-HCL  buffer (pH 7.4), 150 mM NaCl,  
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1% NP40, 0.25% Na-deoxycholate, 1Mm EDTA, 1mM PMSF, 1μg/ml of aprotinin, 

1μg/ml of leupeptin, 1mM Na3VO4, 1mM NaF 1mM. Thereafter, samples were 

individually passed through a 25G needle, and then incubated with rotation at 4◦C for 

45min to 1 Hour, followed by centrifugation at 4◦C for 30 min at 14,000 revolutions/min. 

The supernatants were separated and used for further experiments. 

2.5.2 Protein quantitation   

      Protein concentration was determined using the protocol from BCA™Protein 

Assay Kit from Pierce (Catalog # 23227). Then protein concentration of the lysates 

was adjusted between 10-15 μg/μl.  

2.5.3 Western blot analysis  

      Lysates were boiled in 5X SDS at 95◦C for 5-10 min to perform protein separation 

on 10% SDS polyacrylamide gel in 1X running buffer for 1 Hour at 120 volts. Then 

membranes were transferred to nitrocellulose membranes for 1 hour at 100 volts at 

4◦C (Bio-Rad, Hercules California Catalog# 162-0097). Membranes were washed in 

1X TBST buffer [0.1% Tween 20, 20 mM Tris base (pH 7.6), 136 mM NaCl  and 0.38 

mM HCL] and blocked for 1 h at room temperature in either 5% nonfat milk or 5% BSA 

from Sigma (Catalog # A3059) in 1X TBST buffer and probed with (1000X) anti EGFR 

rabbit polyclonal antibody (Cell Signaling Technology Catalog # 2232) in 5% of 

blocking buffer (nonfat milk), and then incubated overnight at  4◦C. Next day, blots 

were washed 3 times using 1X TBST buffer and followed by incubation with (10,000X) 

horseradish peroxidase linked to the secondary antibody anti-rabbit (EGFR) from 

Thermo Scientific (Catalog # 31460)for 45 min then washed 3 times in 1X TBST 

buffer, and followed by enhanced chemiluminescence detection using 
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SuperSignal®West Dura ThermoScientific (Catalog #34076) according to the 

manufacturer’s instruction. Membranes were stripped at 42◦C for 30 min, and then 

washed overnight and re-probed using monoclonal anti-B-Actin peroxidase from 

Sigma (Catalog #A3854) or monoclonal antibody vinculin from Sigma (Catalog # 

V9131) for I hour, followed by chemiluminescence detection. We use the ChemiDoc™ 

XRS+ imaging system from Bio-Rad for the acquisition of all the images.  

2.6 Ray®Bio EGFR phosphorylation antibody array analysis using U87 stable 

cell lines 

      In this analysis, stable U87 cell lines overexpressing EGFR ectodomain mutations 

were seeded in 150 mm plates (2 plates per mutation) and cultivated under standard 

conditions. Once the plates reached ~70% confluence, the plates were separated into 

two sets. One set was serum starved for 24 hours and the other set was ligand 

stimulated after starvation using recombinant human EGF from Invitrogen (Catalog # 

PHG 0311) for 5 minutes using 15 nanograms/ml. Subsequently, cells were harvest by 

scraping and pellets were collected by centrifugation at 1,000 revolutions/ minute per 5 

minutes, then pellets were treated using Ray-Bio kit protocol to obtain protein lysates. 

The protein concentration was estimated using BCA™Protein Assay Kit from Pierce 

(Catalog # 23227) protocol. Thereafter, a preliminary western blot analysis using 

specific antibodies for Tyr-845, Tyr-1068 and Tyr-1173 sites as well as total EGFR  

was performed to determine relative signal intensities. Subsequently we assessed for 

relative levels of autophosphorylation for EGFR Tyr-845, Tyr-1068, Tyr-1148 and Tyr-

1173 using the protocol from Ray®Bio human EGFR phosphorylation antibody array 

kit from RayBiotech, Inc. (Cat# AAH-PER-1-8) followed by chemiluminescence 
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detection . Images  from the  membranes  were captured  using the ChemiDoc™ 

XRS+ imaging system from Bio-Rad and quantitative analysis of signal densities were 

carried out using the Quantity One software program from Bio-Rad.  Following 

normalization with the total EGFR fraction and biotinylated controls and after 

background subtractions, relative levels of autophosphorylation were estimated for the 

multiple tyrosine sites across all the mutations including EGFRvIII and also intact 

EGFR in both conditions. Results were graphed using the graphpad prism software 

program and then subjected to analysis.   

      Validation of the different autophosphorylation profiles for several tyrosines 

residues obtained from the Ray-Bio analysis was performed using antibodies for Tyr-

845, Tyr-1068 and Tyr-1173 by western blot technique.  

2.7 Cell signaling analysis after starved and EGF stimulated conditions 

      U87 cell lines stably expressing EGFR ectodomain mutations were seeded in 100 

mm plates (two plates per mutation) and cultivated in standard conditions. At 60% 

confluence, one set of plates was serum starved from 18-24 hours and the other set of 

plates was ligand stimulated after 24 hours of starvation using EGF (15 ng/ml of media 

for 5 minutes). Next cell cultures were washed with pre-chilled PBS and lysed in RIPA 

buffer. Protein lysates were obtained and quantitated as described earlier in section 5-

1. The membranes were probed using antibodies procured from Cell Signaling: EGFR 

(Catalog #2232), EGFR-Tyr 1068 (Catalog #2234), EGFR-Tyr-1173 (Catalog # 4407), 

AKT (Catalog #9272), p-AKT/S473(Catalog #4060), MAP-K p44/42 (Catalog #9102), 

p-MAP-K (Thr 202/ Tyr 204) (Catalog #9101), S6  (Catalog # 2217) and p-S6  

Ribosomal protein (Ser 235/ 236) (Catalog #4858) from Cell Signaling Technology. 

The HRP-linked anti-rabbit (EGFR) secondary antibody was obtained from 
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ThermoScientific (Catalog #31460), anti B-Actin peroxidase antibody from Sigma 

(Catalog#A3854), Monoclonal antibody 4G10 platinum-anti-phospho-tyrosine from 

Millipore (Catalog # 05-1050) and secondary antibody ECL- anti mouse IgG HRP-

linked from Amershan (Catalog #NA931V). After chemiluminescence signaling 

detection, quantitation was carried out as performed in section 2.6. Following to 

normalization with EGFR total fraction and actin levels, relative levels of kinase 

activation for Akt and ribosomal S6 pathways were graphed using GraphPad Prism 

Program and then subjected to analysis.  

2.8 Phospho-proteomics assays 

      Stable U87 cells overexpressing ectodomain mutations R108K, T263P, EGFRvIII 

and also EGFR were seeded in 150 mm plates until they reached 70 to 80% of 

confluence. Thereafter cells were washed twice with PBS and serum starved using 

serum free media and incubated in standard conditions for 24 hours. After incubation, 

cells were lysated and trypsinized according to phospho-proteomics protocol. The 

phospho-proteomic analysis was performed by Dr, Chumbalkar, a collaborator from 

Dr. Bögler’s laboratory. 

 2.8.1 Sample preparation, peptide immunoprecipitation and mass spectrometry 

analysis 

      Samples for mass spectrometry analysis were prepared and analyzed as 

described earlier. In brief, we used two biological replicates and for each, we extracted 

protein in urea lysis buffer and later trypsinized it after reduction and alkylation. Thus 

generated peptides generated were desalted with Sep-Pak C18 column (Waters Corp) 

and freeze dried. Peptide immunoprecipitation was out carried out using the P-Tyr-100  
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phosphotyrosine mouse mAb (Cell Signaling Technology), and enriched peptides were 

further purified with C18 zip-tips (Millipore Corp). LC-MS/MS analysis was done in 

duplicate with Agilents 6340 Ion trap system with electron transfer dissociation (ETD) 

where fragmentation was set to alternate between Collision-Induce Dissociation (CID) 

and ETD. The CID process consists of fragmentation of isolated peptides by repeated 

collisions with the helium cooling gas, thus adding internal energy to the peptides and  

inducing random fragmentation (261). We alternated CID with the ETD process which 

uses low levels of energy and allows us a complementary fragmentation strategy 

providing better confidence in peptide identification (262, 263).   

2-8-2 Database analysis and quantification  

      MS/MS spectra were extracted using Bruker Compassxport to mzxml files which 

were converted to “.mgf” (mascot generic format) for database searches using trans-

proteomic pipeline (Seattle Proteome Center). Mascot search engine version 2.3.02 

was used for searching human subset of Swissprot database to identify peptides and 

modifications. Phosphorylation site assignment was confirmed manually looking at 

spectra. We used Ideal-Q2 software to align all the runs with each other based on 

retention time. After this we used Ideal-Q to calculate peak areas manually for all the 

identified phosphopeptides (264). We normalized these values by total ion 

chromatogram (TIC) of whole run. At the end we calculated mean of peak areas all the 

phosphopeptides and calculated statistical significance by unpaired t test. The 

preliminary cohort of phosphopeptides obtained was filtered based on common 

phosphopeptides to R108K, T263P and EGFRvIII mutants, where the values of 

relative phosphorylation for these phosphopeptides were considered as zero 

(logarithm of one) for EGFR. Then potential targets were selected base on the criteria 
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of phosphopeptides with high relative levels of phosphorylation common to R108K and 

EGFRvIII but different to the levels seen for the mutation T263P. 

2.9 Cellular distribution of EGFR ectodomain mutations in transient transfected 

CHO cell lines 

      CHO cells were seeded in 6 well plates containing sterile cover slips at low density 

(30% confluence) and cultured in IMDM media and incubated under standard 

conditions. Thereafter, cells were transiently transfected using 2μg of DNA (GFP-

Tagged EGFR ectodomain mutation plasmids) per well. Protocol for the use of 

Fugene-HD purchased from Roche (Catalog # 04709713001) was followed for 

transient transfection. Cells were grown until they reached 60% confluence in standard 

media conditions (10% serum). After that, plates were rinsed with PBS (5 minutes x 2) 

and fixed in 4% paraformaldehyde at room temperature for 20 minutes. Following 

wash ( 5 minutes x 2) using PBS they were covered with blocking buffer containing 5% 

normal goat serum (NGS)and 0.1% Triton X-100) using 900μl/well for 1 hour, then 

rinsed for 5 minutes x 3 with PBS. Then cover slips were lifted out using a fine gauge 

needle with the tip bent at an angle and placed the top part of the cover slip inside on 

top of a slide containing a drop of mounting media (80% of glycerol in PBS). The slides 

were sealed using nail polish and kept at 4oC for confocal microscopic analysis.  

2.9.1 Cellular distribution of EGFR ectodomain mutations in transient 

transfected U87 cells

      Parental U87 or cell lines were cultured at 50-60% of confluence in 6 well plates 

containing sterile cover slips previously pretreated with poly-L-Lysine, and then cells 

were transiently transfected using 2μg of DNA (GFP-Tagged EGFR ectodomain  

mutations plasmids) per well as explained earlier in section (5.9). After 24 hours, the 
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cells were serum starved for 24 hours and one set of plates were used as such while 

the other set of plates were stimulated with EGF ligand (15 ng/ml for 30 minutes) and 

subjected to immunostaining for confocal microscopic evaluation. The staining was 

done as described earlier in section (2.9) with the following modifications: the plates 

were counterstained using Topro3 (blue) for 20 minutes.  

2.9.2 Nuclear and cytoplasmic expression of EGFR ectodomain mutations 

      To obtain nuclear and cytoplasmic cellular fractions, we used 100 mm plates of 

stable U87 cells overexpressing EGFR ectodomain mutations including EGFRvIII and 

also wt-EGFR. After the plates reached about 80% confluence, cells were serum 

starved for 24 hours. One set of cells was processed in serum starved condition, while 

the second set was stimulated using EGF ligand (15 ng/ml for 30 minutes) and then 

cellular fractionation protocol was followed in order to obtain nuclear and cytoplasmic 

cellular fractions. Cells were washed twice with ice-cold PBS, collected by scraping 

and lysed in lysis buffer (20mM HEPES, pH 7.0, 10 mM KCL, 2 mM MgCl2, 0.5% 

Nonidet P-40, 1 mM Na3VO4, 10 mM NaF, 1 mM phenylmethanesulfonyl fluoride, 2  

μg/ml aprotinin and protease and phosphatase inhibitors cocktail). After incubation on 

ice for 10 minutes, the cells were homogenized by 20 strokes in a tightly fitting dounce 

homogenizer. The homogenate was centrifuged at 1,500 x g for 5 minute to sediment 

the nuclei the supernatant was then centrifuged at a maximum speed 14,000 rpm for 

20 minutes, and the resulting supernatant formed the non-nuclear fraction. The 

nuclear pellets were washed three times with lysis buffer to remove any contamination 

from cytoplasmic fraction. To extract nuclear proteins, the isolated nuclei were 

resuspended in nuclear extraction buffer (20mM HEPES, pH7.9, 400 mM NaCl, 1mM 

EDTA, pH 8, 1mM EGTA, pH 7, protease inhibitor cocktail (from Sigma) and 



45 
 

phosphatase inhibitor cocktail) and incubated on ice for 30 minutes with intermittent 

vortexing. The nuclei were centrifuged for 30-60 minutes at 14,000-16,000 rpm. The 

supernatant comprised the nuclear extract. Thereafter protein amounts were 

quantitated and western blot analysis was performed to confirm the expression of 

EGFR mutations in both nuclear and cytoplasmic cell compartments.              

2.10 Cell viability in EGFR ectodomain mutations 

      U87 cell lines stably overexpressing EGFR ectodomain mutations were seeded 

(15,000-20,000 cells/well) in 6 well plates and incubated at standard conditions. After 

72 hours of incubation, total number of viable cells was counted in the Vi-Cell Analyzer 

from Beckman, which determines percentage of cell viability via standard trypan blue 

assay. Data was graph and analyzed using GraphPad Prism program. 

2.11 WST-1 assay of glioma cells overexpressing EGFR ectodomain mutations 

      Complementary to the previous analysis in section 2.10, we seeded U87 and 

LNZ308 cells overexpressing ectodomain mutants in 96 well plates (1,000 cells per 

well) and the WST-1 protocol from Roche (Catalog # 1644807) was followed to 

determine changes in cell viability. After 72 hours of incubation the plates were subject 

to scanning in the plate reader SPECTRAMAX and then values were graphed and 

analyzed using GraphPad Prism program.  

2.12 Anchorage independent colony formation 

      U87, LNZ308, LN428 MG cell lines over-expressing EGFR ectodomain mutants 

were grew under exponential growth phase in standard conditions. Then plates were 

washed and cells were trypsinized. Thereafter, cell densities were determined in the 

Vi-Cell analyzer instrument from Beckman in order to seed 2,000 cells/well in 12 well 
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plates. These plates were previously covered with 1 ml of base agarose solution 

consisting of 4% of low melt agarose (10 ml) in pre-warmed media (42.5 ml) and FBS 

(7.5 ml), then adding 1 ml of top agarose solution consisting of 3% of low melt agarose 

(10 ml) in pre-warmed media (42.5 ml) and FBS (7.5ml) and followed by the addition of 

1ml of pre-warmed media after the top matrix has solidified, plates were incubated at 

standard conditions. After 7 days of culture, plates were scanned for tumor colony 

formation in the Gel-CountMT instrument from Oxford-Optronix and daily readings were 

recorded until day 12 for stable U87 cells and day 15 for LNZ308 and LN428 stable 

cells lines. Three independent biological replicates were performed for every set of 

mutants in the different glioblastoma cell lines. After calculation of colony number and 

biomass for all the replicates, data was graphed and analyzed using GraphPad Prism 

software program.  

2.13 Generation of xenograft models  

      The Guide Screw System was followed (265) for xenograft studies and performed  

by the Brain Tumor Center animal core from MD Anderson Cancer Center. Single cell 

suspensions of U87 cells were prepared in Serum-free medium at a final concentration 

of 400,000 cells /10μl which were injected intracranially in sterile nude mice. Groups of 

10 mice per mutant were used and mice status was monitored for a period of 2-4 

weeks. Tumors were collected and survival time was recorded. Half of the tumors 

were processed for H&E (paraffin embedded) and the other half for protein preparation 

(flash frozen in liquid nitrogen). To estimate survival time across all the groups of mice, 

Kaplan Meier survival estimator was used. In addition, to determine statistical 

significant differences in survival among the groups we used Gehan-Breslow-Wilcoxon 

Test. In general, P<0.05 is considered as statistical significance.   
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2.14 Inhibitor studies 

      To evaluate the effect in anchorage independent growth of various agents on 

EGFR ectodomain mutations overexpressed in U87cell lines we established IC50 

values using 4 different drug concentrations of cisplatin, tarceva and TMZ. Three 

independent biological replicates were performed and the protocol for anchorage 

independent growth as is described in section 2.12 was followed. Data from the 

relative biomass indexes resulting from the different concentration treatments after 

days five, seven and nine for cisplatin and tarceva was used to calculate IC50 values 

and for TMZ we use data from days seven and nine. The graphpad prism software 

program was used, where X= logarithm dose and Y are relative biomass indexes. 

Biomass indexes were calculated by multiplication of volume and colony count values 

and the relative levels of biomass were obtained after normalization using the biomass 

indexes values from the mock-treated (DMSO). In addition, we also evaluate the effect 

of TMZ on EGFR ectodomain mutants overexpressed in LN428 cells. 

2.14.1 Erlotinib treatment 

       Erlotinib Cat-N◦E-4007 was purchased from LC Laboratories.  Stock solution of 

(10 mM) was made and then different concentrations of erlotinib were prepared in 

DMSO: 0.5 μM, 5 μM, 10μM and 20μ M. After 7 days of incubation cell culture plates 

were scanned in the Gel- Count instrument and readings were recorded.  Thereafter 

the different sets of cells were treated with individual concentrations of erlotinib (0.5, 

5.0,10 or 20 μM) and control cells were treated with equal amounts of vehicle. To 

assess the inhibitory effect of erlotinib in tumor colony growth, the plates were 

subjected to multiple readings in the Gel-Count instrument starting from the day one of 

treatment and then every other day until day nine. Readings obtained from the Gel-
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Count instrument were used to calculate colony count and biomass, after that 

collected data was graphed and analyzed using GraphPad Prism software program as 

previous described in section 2.14.  

2.14.2 Cisplatin Treatment 

       cis-Platinum(II) diammine dichloride Cat N◦P-4394 from Sigma-Aldrich was 

purchased. Stock solution (50 mM) was prepared in DMSO, then different 

concentrations were prepared as follow: 0.33 μM, 3.3 μM, 16.5 μM and 33μM. After six 

days of culture the cells were treated with specific doses of cisplatin (0.33, 3.3, 16.5 or 

33μM), control cells were treated with equal amounts of DMSO. Then the protocol 

used for erlotinib was followed to evaluate the effect of cisplatin. 

2.14.3 Temozolomide Treatment  

      Temozolomide compound (Catalog # 1849) was purchased from LKT laboratories, 

Inc. An initial stock solution of 200μM was prepared and then different drug  

concentrations were prepared: 1μM, 10μM, 50μM, 100 μM and 200 μM. Cells were 

seeded at 500 cells/well in 24 well plates previously covered with agarose as 

described earlier. Plates were incubated under standard conditions. After 5 days of 

incubation, TMZ treatment was initiated at the following doses 1.0, 10, 50 and 100μM 

for LN428 cells and 0, 10, 50, 100 and 200μM for U87. The plates were scanned every 

other day for tumor colony formation in the Gel-CountTM instrument and readings were 

recorded for both cell lines. After calculation of colony number and biomass, data was 

graphed and analyzed using GraphPad Prism software program as described in 

section 2.14.  
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2.15 Statistical Analysis 

The results of xenograft studies were analyzed for survival using Kaplan Meier 

estimator and for their significance using Gehan-Breslow-Wilcoxon Test. In general, a 

P<0.05 was considered as statistically significant. For inhibitor studies we established 

IC50 using the GradPad Prism software program. For cell viability, WST1 assay and 

anchorage independent studies statistically differences were determined using the 

one-way ANOVA test. We considered P<0.05 or P<0.0001 as statistically significant.  
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3.1 Identification of EGFR Ectodomain mutations 

      EGFRvIII represents the most common mutation in GBMs with an incidence of 

about 50% in GBM patients whose tumors show amplification of EGFR (94, 266-269). 

The in frame deletion between the exons 2 and 7 of this variant leads to important 

changes in the functional characteristics of the receptor, which are recognized as 

essential to its oncogenic effects (177-179, 182, 270).  

      In our study we focused our attention on newly described EGFR ectodomain point 

mutations that are located in the region deleted in EGFRvIII. We used TCGA 

information to identify these mutations, using the database found at their website 

(http://tcga-data.nci.nih.gov/). We selected the following mutations: R108K, T263P, 

A289D and A289T for in depth examination because they represent both some of the 

most common mutants (at T263 and at A289), and mutants predicted to have the 

strongest structural impact (at R108 – see below). Additional information obtained from 

TCGA data base is found in Table 3. It includes the analysis of a cohort of 536 tumor 

samples where the mutation T263P showed the highest frequency of occurrence (5%) 

followed by the mutation A289T (4.4%) and mutation R108K exhibited the lowest 

incidence (0.56%). Similar to the occurrence of EGFRvIII with EGFR amplification, the 

ectodomain mutations that we identified also coexisted with EGFR amplification where 

the highest level of amplification was observed for the mutation A289T (CNA 10.3) and 

the lowest for the mutation T263P (CNA 2.9). 

http://tcga-data.nci.nih.gov/�
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The TCGA web portal (https://cma.nci.nih.gov/cma-tcga/.) provides survival analysis 

information, assessing survival differences between patient population that have 

EGFR somatic mutations or lack it. We found that the group of patients exhibiting 

EGFR somatic mutations showed shorter survival versus longer survival seen in the  

Table 3 EGFR ectodomain mutants identified by TCGA 

 Ectodomain point mutants occurring between exons 2 and 7 of EGFR recognized 

after validated sequencing and additional data obtained from the TCGA (Updated 

3/31/11). CNA were obtained from TCGA information as single values.   
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group of patients without EGFR mutations (p-value 0.64). However, there the 

difference between the two groups is not statistically significant as shown by the log-

rank p-value of 0.64 (Figure 1). 

 

 

Further, the MSKCC tools allowed us to predict the functional impact of mutations 

empirically (271), using an algorithm based on the assessment of the evolutionary 

Figure 1 Probability of survival in GBM by TCGA  

 Graph showing shorter overall survival in GBM patients with EGFR somatic 

mutations versus all GBM patients. According to TCGA information differences 

between both groups are not statistically significant after calculate the log rank p-

value using the Mantel-Haenszel method (p-value 0.64). Data from TCGA at 

https://cma.nci.nih.gov/cma-tcga/. 

MONTHS 
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conservation of amino acid residues in the protein family.  This allows for 

determination of relevant or irrelevant structural alterations in the parent molecule  due 

to the different genetic variations (272). This analysis has facilitated the stratification of 

the mutations in 3 groups, where the T263P mutation is categorized as the mutant that 

demonstrate low functional impact while R108K mutation falls in the group where there 

is high functional impact and the mutants A289T and A289D were included in the 

group with medium impact.              

3.2 Stratification of ectodomain mutations according to molecular profiles 

      Mutational studies have demonstrated that the increased tumorigenicity arising 

from the EGFRvIII mutation is dependent on the autophosphorylation sites situated in 

the regulatory carboxyl terminus. Tyr-1173 has been shown to be the main 

phosphorylation site for this variant (29, 89, 179). Mutation on Tyr-1173 residue 

significantly reduced the phosphorylation levels of the receptor, with the reciprocal 

mutation of all autophosphorylation sites except Tyr-1173, having a less profound 

impact (273). Mutations involving all three major phosphorylation sites, Tyr-1173, Tyr-

1148 and Tyr-1068 (29, 179), very substantially reduce the levels of 

autophosphorylation and the tumorigenesis-enhancing characteristic of EGFRvIII 

(179). Additional studies on the role of these major phosphorylation sites in 

tumorigenesis of GBMs have indicated a redundant effect on the activation of 

downstream signaling pathways, suggesting that multiple tyrosine phosphorylation 

residues on the receptor may serve to recruit similar adaptor proteins (29). We 

therefore wanted to investigate the impact of the ectodomain mutations on the 

phosphorylation status of the receptor and downstream signaling events.  
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      In our study, we generated different glioblastoma cell lines (U87, LNZ308 and 

LN428) and CHO cells stably expressing the EGFR ectodomain mutants R108K, 

T263P, A289D and A289T as well as EGFRvIII and EGFR. The expression of EGFR 

ectodomain mutations in the different glioblastoma and CHO cell lines was confirmed  

using western blot (Figure 2).  

 

LNZ308 

LN428 CHO 

U87 

Figure 2 EGFR ectodomain mutants overexpressed in stable cell lines  

Western blot analysis confirms the expression of ectodomain mutants including 

EGFRvIII, EGFR and 1726-zeo (expressing the empty retrovirus) after 

transduction of the mutants in A-U87, B-LNZ308, C-LN428 and D-CHO cell lines.   
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We used U87 cells stably overexpressing the ectodomain mutants to analyze the 

Figure 3 EGFR phosphorylation antibody array analysis 

 A. Map of the antibody array showing membrane localization of the critical 

tyrosine residues B. Shows antibody array profiles from U87 cells overexpressing 

EGFR ectodomain mutants including EGFRvIII, EGFR and the negative control, 

1726-zeo in both serum starved (S.S) and ligand stimulated (EGF) conditions.  
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tyrosine phosphorylation profile of the ectodomain mutants using the human EGFR                                                                                                                         

phosphorylation antibody array technique. This array simultaneously detects relative 

levels of different phosphorylation sites across the ErbB family using site specific 

antibodies. We mapped and quantified relative autophosphorylation levels on tyrosine 

sites (Tyr-1173, Tyr-1148, Tyr-1068, Tyr-845) after normalization with EGFR total 

fraction and biotinylated protein controls. The phosphorylation status was assessed in 

two different conditions: serum starved condition and after EGF stimulation using 15 

ng/ml for 5 minutes (Figure 3).  

      In our analysis we compared the phosphorylation of the ectodomain mutations with 

either EGFRvIII or EGFR primarily at the tyrosine residues. Additionally, validation for 

residues Tyr-1173, Tyr-1068 and Tyr-845 using conventional western blot technique 

was also performed. In general, the same trend was observed for the mutants in our 

western blot analysis as well as the array analysis in terms of tyrosine phosphorylation 

levels under both serum deprived and EGF stimulated conditions. Our findings 

suggest different profiles of auto-phosphorylation for EGFR ectodomain mutations in 

the tyrosine sites and are enumerated below:         

      Tyr-1173. It has been reported that the Tyr-1173 residue has a critical function as 

an activator of the Ras/Raf/MAPK pathway after EGF stimulation resulting in mitogenic 

and transforming activities (89, 93, 179). This residue also provides a secondary 

binding site for the SH2 containing adaptor protein, Shc. This tyrosine site is the major 

phosphorylation site of EGFRvIII and is also considered as a critical phosphorylation 

site in tumorigenesis of GBM.(274). When we assessed for the relative levels of 

phosphorylation for Tyr-1173 site in serum starved condition, we detected basal  
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activation across all the mutants except for the mutation R108K which did not show 

Figure 4 Differential phosphorylation profiles for Tyr-1173 across EGFR 

ectodomain mutants 

U87 cells overexpressing ectodomain mutants and also EGFRvIII, EGFR and the 

negative control (1726-zeo) in serum starved and after EGF stimulation were 

subjected to array analysis and relative levels of phosphorylation after normalization 

to total EGFR and biotinylated controls were mapped for  Tyr-1173. Data from a 

single experiment.  
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detectable levels of phosphorylation. The highest level of phosphorylation was                                                                                                                                    

observed for the A289T mutant. After EGF stimulation, we found that ectodomain 

mutations R108K and T263P showed robust increases in the levels of Tyr-1173 

Figure 5 Differential phosphorylation profiles for Tyr-1068 phosphorylation 

across EGFR ectodomain mutants 

U87 cells stably overexpressing ectodomain mutants and also EGFRvIII, EGFR and 

the negative control (1726-zeo) in serum starved and after EGF stimulation were 

subjected to array analysis and relative levels of phosphorylation after normalization 

to total EGFR and biotinylated controls were mapped for  Tyr-1068. Graph illustrates 

data from a single experiment.  
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phosphorylation which resembles the profile observed for EGFR. In contrast, the 

mutations A289T and A289D exhibited similar characteristics as that of EGFRvIII, 

which does not respond to the EGF ligand, and if anything showed lower signal after 

EGF stimulation (Figure 4).   

Tyr-1068. 

 

 Previous investigations have found that this residue interacts with the 

adaptor protein Grb2 and activates Erk1/2 through SOS as well as Ras (93, 182, 275). 

This residue has also been shown to be activated in GBMs (179, 276). In our study, 

we were unable to detect Tyr-1068 phosphorylation in R108K and EGFRvIII 

overexpressing cells in both serum starved and EGF stimulated conditions. However, 

mutants T263P and A289D showed increased phosphorylation after stimulation with 

EGF a profile similar to EGFR. In serum starved condition, the mutant A289T showed 

substantial levels of Tyr-1068 phosphorylation. In contrast, marginal phosphorylation 

was observed in the A289D mutant (Figure 5).  

Tyr-1148. Early investigations have proposed this site as the major binding site for the 

adaptor protein Shc, which has an important role in the activation of MAPK pathway 

(274). It is considered to be among the conserved sites that are activated in tumor 

development in GBMs (276) (179). Our analysis indicated significant basal levels of 

phosphorylation in serum starved condition for Tyr-1148 particularly for the mutants 

T263P, A289D and A289T and to a minor degree for the mutants R108K and 

EGFRvIII. EGFR also showed basal activation at this site. Further, we observed a 

slight increase in the levels of phosphorylation for Tyr-1148 after EGF ligand 

stimulation for EGFR and similarly the trend was maintained for the mutants R108K 

and T263P. In contrast, A289D and A289T mutants showed no obvious response to  
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EGF ligand stimulation resembling the trend seen in EGFRvIII (Figure 6).  

 

Figure 6 Differential profiles of phosphorylation for Tyr-1148 across EGFR 

ectodomain mutants 

U87 cells overexpressing ectodomain mutants and also EGFRvIII, EGFR and the 

negative control (1726-zeo) in serum starved and after EGF stimulation. Graph shows 

the relative levels of phosphorylation for Tyr-1148 after array analysis, data belongs to 

a single experiment and was normalized to total EGFR and biotinylated controls.   
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Figure 7 Differential phosphorylation profiles for Tyr-845 across EGFR 

ectodomain mutants 

U87 cells overexpressing ectodomain mutants and also EGFRvIII, EGFR and the 

negative control (1726-zeo) in serum starved and after EGF stimulation were 

subjected to array analysis and relative levels of phosphorylation after normalization 

to total EGFR and biotinylated controls were mapped for  Tyr-845. Graph represents 

data from a single experiment.  
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Tyr-845

Additional studies have indicated the importance of this activated residue in stimulating 

additional pathways such as the transcription factor STAT5b (277). This site is also 

required for the optimal activation of EGFRvIII. Mutation of Y845 site in EGFRvIII leads 

to decrease in autophosphorylated levels of EGFRvIII and suppression of downstream 

signaling as well as cell growth (29). We observed in general that all the EGFR 

ectodomain mutants as well as EGFRvIII and EGFR showed high basal 

phosphorylation levels on Tyr-845 in serum starved condition, and that in general 

these levels were not profoundly altered by EGF. One exception was R108K, which 

displayed a marked increased phospho-levels of Tyr-845 after EGF stimulation 

(Figure 7).   

. The Tyr-845 site is phosphorylated by c-Src. Previous studies have 

demonstrated that this site is of vital importance in cellular proliferation and cell cycle 

progression (29, 277). This site has also been implicated in stabilizing the activation 

loop necessary for EGFR’S enzymatic activity (278).  

To provide experimental support for these results from antibody array analysis, we 

performed validation using western blot for the sites Tyr-1173, Tyr-845 and Tyr-1068.  

Similar trends were seen across all the mutations for Tyr-845 after validation. For Tyr-

1173 site, mutants R108K, T263P and A289T showed comparable profiles in the 

validation to those seen in the array analysis. Similarly, tendencies seen in Ray-Bio 

analysis for mutations R108K, A289D and A289T for Tyr-1068 were confirmed after 
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validation analysis (Figure 8). 

 

 

Overall, this analysis showed that individual residues of EGFR mutants showed 

complex and variable levels of basal and ligand-stimulated activity, with the  

Figure 8 Western blots validation for selected tyrosine residues  

Signaling densities from the western blots were normalized to total EGFR and actin 

values and then mapped. Graphs show relative phosphorylation levels from a single 

representative experiment for Tyr-1173, Tyr-1068 and Tyr-845. 
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ectodomain mutants showing some response to ligand. Of note in our analysis, the 

A289T mutant displayed persistent elevated basal levels of phosphorylation across the 

multiple tyrosine sites in the antibody array and this pattern was consistent after 

Figure 9 Downstream signaling of ectodomain mutants overexpressing U87 

cells 

A. Western blots show phospho EGFR-Tyr-1173, p-AKT-S473, p-ERK (p-MAPK 

Thr202/Tyr204) and p-S6-Ser235/26 kinase activation in serum starved and after 

EGF stimulation of ectodomain mutants overexpressed in U87 cells. B. Graphs 

depict relative levels of phosphorylation after normalization to total protein for AKT, 

and S6 and actin fractions. Data from three independent biological experiments.  

Error bars indicate standard deviation of the mean. 

  

 

 

EGF 

EGF 
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validation using western blot technique, and so resembled EGFRvIII most closely.   

      As a next step, we examined the impact of ectodomain mutations on downstream 

signaling, by assessing for active forms of AKT and ribosomal S6 kinases in serum 

starved and EGF stimulated conditions. In U87 cells which are PTEN null, the findings 

Figure 10 Downstream signaling of EGFR ectodomain mutants overexpressing 

LNZ308 cells 

A. Westerns show phosphotyrosine profile and downstream kinase activation of 

canonical pathway components of EGFR ectodomain mutants overexpressed in 

LNZ308 cells in serum starved condition and after EGF stimulation. B. Graphs depict 

relative phosphorylation levels from three independent biological experiments for 

EGFR-Tyr-1173 and kinase activation for AKT and S6 after normalization to total 

protein fractions and actin levels. Error bars are standard deviation of the means.  
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did not show significant differences in activation across the mutations in the two 

pathways in both conditions, which may represent an overall deregulation of the PI3K 

pathway in these cells (279, 280) (Figure 9). 

      In addition, we also assessed the contribution of the ectodomain mutations in 

different molecular backgrounds using stable LNZ308, which are p53 and PTEN 

mutated as well as LN428 cell lines which contain intact p53 and PTEN. These two 

panels of cells overexpressing EGFR ectodomain mutations were evaluated in serum 

starved and after EGF stimulated conditions. Our findings suggest differences in basal 

activation in both contexts:  

In LNZ308 cells, the level of basal phosphorylation for Tyr-1173 was very weak 

especially for the mutants R108K, T263P and A289T. The mutant A289D showed 

slightly higher levels of phosphorylation. Examination of the phosphorylation levels for 

AKT and ribosomal S6 suggested no significant changes in activation of the two 

pathways in both conditions, again probably related to a loss of PTEN function (Figure 

10).  
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Figure 11 Basal of EGFR ectodomain mutants overexpressed in LN428 cells 

A. Shows western blot panels for EGFR-Tyr-1173, p-AKT-S473, p-ERK (p-MAPK 

Thr202/Tyr204) and p-S6-Ser235/26 kinase activation of EGFR ectodomain mutants 

overexpressed in LN428 cells in serum deprivation and after EGF stimulation 

conditions. B. Graphs display relative phosphorylation levels after normalization of 

signaling densities to total proteins and actin levels. Data from three independent 

biological replicates. Error bars indicate standard deviation of the mean.   
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 In the context of LN428 cells, the basal activation for Tyr-1173 residue was more 

robust across all the mutants than the pattern seen in LNZ308 cells. We also 

evaluated the effect on activation of downstream signaling events originating from 

these mutants. While we observed EGF-induced increases in Akt and S6 

phosphorylation, we also found differences in total levels of these proteins, which 

correlated. This may reflects a difference in the stability of these proteins after 

activation.  As a result, we were not able to report statistically significant differences for 

Akt or ribosomal S6 kinase activity in either condition (Figure 11).  

 

 3.3 Impact of EGFR ectodomain mutations on cell viability and proliferation 

      We investigated the effect of these mutants on cell viability using U87 cells 

overexpressing EGFR ectodomain mutants. Upon comparison among the different 

ectodomain mutants, EGFRvIII and EGFR we did not find significant differences in the 

cell viability. The extent of viable cells across all the mutations including EGFRvIII and 

EGFR were very similar (>90%) (Figure 12).  
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Figure 12 Effect of EGFR ectodomain mutations overexpressed in U87 cells on 

cell viability 

Graph illustrates percentage of viable cells from the different ectodomain mutants in 

U87 cells after 72 hours of incubation under standard conditions. Data was obtained 

from the automated cell viability analyzer from Beckman (trypan blue exclusion test). 

Error bars are standard deviation of the means from two replicates in the same 

biological experiment. No statistically differences were detected by one-way ANOVA 

test (p>0.05).   
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      In addition, we examined the effect of these mutants on cellular proliferation with a 

WST1 assay, using two different glioma cell lines: U87 and LNZ308 overexpressing 

ectodomain mutants as well as EGFRvIII and EGFR. We did not observe a significant 

impact of the ectodomain mutations overexpressed in U87. In contrast, significant 

differences were observed in the context of LNZ308 cells, where the mutants R108K, 

T263, A289D and EGFRvIII showed increase in the bioreduction levels as compared 

to EGFR (Figure 13).  
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B 

Figure 13 Cellular proliferation effect of EGFR ectodomain mutants 

overexpressed in different glioma cell lines 

A. The graph shows bioreduction levels in absorbance units after WST-1 assay of the 

ectodomain mutants overexpressed in U87 cells after 72 hour of incubation and B. 

same analysis in LNZ308 cells. Error bars are standard deviation of the means from 

three replicates in the same biological experiment. No statistically differences were 

detected in U87 cells overexpressing ectodomain mutants by one-way ANOVA test 

(p>0.0001). In contrast, statistically differences were observed in the context of 

LNZ308 for some of the mutants and LNZ308 cells overexpressing EGFR (p<0.0001). 

 

 

 

*** 

*** *** *** 
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      Assays more relevant to determining the capacity of a mutant to promote 

oncogenicity are: anchorage independent growth and growth rate in xenografts. 

Furthermore, the literature (91, 116, 174, 281) suggests that EGFRvIII has a profound 

effect on tumorigenic capabilities of GBM cells as assessed by anchorage 

independent assays and xenograft studies but not their growth on plastic such as 

those performed above. Therefore, we decided to analyze the tumorigenic capacities 

of the ectodomain mutations in these more biologically relevant assays.  

3.4 Expression of ectodomain mutations enhances anchorage independent 

colony formation in different glioma cells 

      To assess the ability of ectodomain mutations to promote anchorage independent 

colony formation, we carried out 3-dimensional growth studies on agarose using three 

different glioblastoma cell lines U87,LNZ308 and LN428 that stably overexpressed 

ectodomain mutations, EGFRvIII and EGFR. The results observed in the set of 

experiments using stable U87 cells showed an increase in anchorage independent 

colony formation induced by the ectodomain mutants. It was demonstrated by higher 

total biomass indices in all the ectodomain mutants as compared to EGFR after twelve 

days of culture. Among the mutants, R108K, A289T, T263P and EGFRvIII 

demonstrated the ability to induce higher levels of colony formation in the assay 

(Figure 14).   
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Figure 14 Contribution of U87 cells overexpressing ectodomain mutants in 

anchorage independent colony growth  

Graph shows total biomass indices of U87 cells overexpressing EGFR ectodomain 

mutants after 7, 9 and 12 days of incubation. Error bars are standard deviation of 

the means from three independent biological experiments. Statistically differences 

were detected by one-way ANOVA test P<0.0001.  

 

A 
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      Extension of these experiments to LNZ308 and LN428 cells showed that 

ectodomain mutants confer a growth-enhancing phenotype in anchorage independent 

colony formation in these cell lines as well. In LNZ308 cells, EGFRvIII enhanced the 

*** 

** 
*** 

*** 

Figure 15 Contribution of LNZ308 cells overexpressing ectodomain mutants in 

anchorage independent colony growth 

Graph shows total biomass indices for LNZ308 cells overexpressing EGFR 

ectodomain mutants after 10, 13 and 15 days of incubation. Error bars are standard 

deviation of the means from three independent biological experiments. Statistically 

differences were detected by one-way ANOVA test P<0.0001.   
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growth of the cells to a higher extent (Figure 15).  

In contrast, in the context of LN428 cells, the mutant A289T exhibited the most 

substantial increase in anchorage independent growth (Figure 16). Overall, the EGFR 

mutants provided an enhancement of growth in soft-agarose over EGFR, suggesting 

that they have significant transformation-enhancing properties, consistent with being 

oncogenes.  

 

 

 

 

A 

** 

*** 
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Figure 16 Contribution of LN428 overexpressing ectodomain mutants in 

anchorage independent colony growth 

A. Graph shows total biomass indices for LN428 cells overexpressing EGFR 

ectodomain mutants after 10, 13 and 15 days of incubation. Error bars are standard 

deviation of the means from three independent biological experiments. Statistically 

differences were detected by one-way ANOVA test P<0.0001. Panel B. Depicts 

representative images of colony formation obtained from the GelCount instrument for 

experiments using U87, LNZ308 and LN428.  

 

B 

B 
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Figure 17 Kaplan Meier survival analysis in xenograft groups implanted with 

EGFR ectodomain mutants 

The Kaplan Meier survival analysis graph shows the death of mice in days which 

indicates the survival function in mice implanted with U87 cells overexpressing the 

ectodomain mutants, EGFRvIII, EGFR and control group (1726-zeo). All animals that 

did not die by day 42 were sacrificed. Animal experiment was carried out with the help 

of the animal core at the Brain Tumor Center (MD Anderson Cancer Center).     

 

3.5 Expression of EGFR ectodomain mutations decreased tumor latency period 

in xenograft mice 

      To correlate in vitro results with the ability of these ectodomain mutations to affect 
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tumor formation in vivo, we performed xenograft studies in nude mice. U87 stable cell 

lines overexpressing the ectodomain mutations were implanted intracranially into nude 

mice and tumor latency periods were recorded as the times at which animals 

developed neurological symptoms that triggered their euthanasia, according to the 

IACUC protocol. We evaluated survival time across the different groups of mice using 

the Kaplan-Meier survival analysis. A decrease in tumor latency period in the group of 

mice implanted with the EGFRvIII (median survival-13 days) in comparison to EGFR 

(median survival-16 days) was observed as has been reported (174, 182). Similarly, 

shorter median survival times were seen in for mice implanted with cells 

overexpressing mutants R108K (13 days), A289D (14 days) and A289T (14 days). In 

contrast, mice implanted with cells overexpressing T263P mutant exhibited longer 

tumor latency (median survival-17 days), which was similar to median survival 

observed for mice implanted with cells overexpressing EGFR (Figure 17). 

We found that the median survival time for mice implanted with U87 cells 

overexpressing R108K, A289T and A289D were similar to that seen in mice implanted 

with cells overexpressing EGFRvIII (13 or 14 days median survival) and significantly 

shorter than mice implanted with cells expressing EGFR. In contrast, mice implanted 

with stable cells overexpressing T263P mutant showed similar median survival to that 

seen in mice implanted with stable cells overexpressing EGFR (Table 4) 
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Table 4 Significant differences in survival curves of xenograft groups 

implanted with U87 cells overexpressing EGFR ectodomain mutants 

Table summarizes the results of the assessment of similarities between the groups 

of mice implanted with EGFR ectodomain mutants and EGFRvIII or EGFR using the 

Gehan-Breslow-Wilcoxon test. P-values<0.05 are considered as significant. The last 

column shows median survival time (in days) for all the groups of mice. 
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Examination of tissue sections from these mice, after hematoxylin and eosin staining, 

showed tumors with features characteristic of glioblastoma: hypercellularity, mitotic 

features as well as necrosis (Figure 18). 

3.6 Phosphoscan phospho-tyrosine analysis. 

      In order to find differences in protein phosphorylation that may form the 

mechanistic basis for the differences in oncogenic impact of the different EGFR 

mutants, we performed an unbiased, tyrosine-directed and mass spectrometry based  

Figure 18 Histological analysis of xenograft brain tumors   

Brain tumor sections from xenografts were stained with hematoxylin-eosin. 

Microphotographs show characteristic hypercellularity across all the xenograft tumor 

sections. Arrows indicate necrotic tissue (C), mitotic figure (D) and neovascularization 

of the tissue (F). (Scale Bars: 0.02 mm.). Tissue sections were stained at histology core 

from the division of surgery, MD Anderson Cancer Center.     
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Figure 19 Phosphoscan analysis of EGFR ectodomain mutants 

U87 cells overexpressing R108K, T263P, EGFRvIII (delta) and EGFR (wt) were serum 

starved and the lysates were subjected to treatment with phosphotyrosine antibody to 

enrich fractions for phosphotyrosine peptides. Graph shows intensity of 13 selected 

phosphopeptides from a cohort of ~150 phospho-tyrosine peptides obtained after liquid 

chromatography and mass spectrometry analysis (LC-MS/MS). Asterisks show 

phosphopeptides with high common relative levels of phosphorylation to EGFRvIII and 

R108K mutants but different to T263P mutant. Phosphoscan performed, analyzed and 

graphed by Dr. Chumbalkar, a collaborator from Dr. Bögler’s laboratory.   
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EGFR 

screen using Phospho-Scan analysis on U87 cells stably overexpressing the 

ectodomain mutations R108K, T263P, EGFRvIII and EGFR that were serum starved 

for 24 hours. We selected this particular set of mutations because the mutations 

R108K and T263P showed similar profile of tyrosine phosphorylation with EGFR in the 

Ray-Bio analysis, but the biological phenotype for these mutations was different. 

R108K mutant exhibited similar characteristics to EGFRvIII, but the T263P mutation 

exhibited more similarities with EGFR. In this analysis we identified about 150 

phosphopeptides totally. After the filtering of the data set, we obtained a set of 13 

phosphopeptides that varied between the two groups (Group I: R108K and EGFRvIII. 

Group II: T263P and EGFR) (Figure 19).  

Of the peptides identified, one was common to R108K and EGFRvIII and exhibited 

substantial levels of relative phosphorylation: SHIP2 Tyr-987. SHIP2 stands for SH2 

domain containing inositol 5-phosphatase 2. It is a tyrosine phosphorylated protein 

(282), which is widely expressed including fibroblasts, non hematopoietic cancer cells 

and insulin target tissues (283-285) This protein is tyrosine phosphorylated  in 

response to platelet-derived grow factor (PDGF), EGF and insulin-like grow factor 

1(IGF-1) in Sh-SY5Y cells or after nerve grow factor (NGF) stimulus in PC-12 cells or 

in response to insulin in 3T3L1 adipocytes (286).  Although the role of tyrosine 

phosphorylation on SHIP2 is still not clear, mutational studies have indicated an 

antiproliferative effect of SHIP2 Y987F mutant in pre-adipocytes (26), suggesting that 

Y987 phosphorylation is important for proliferation. We are in the process of validating 

SHIP2 Tyr-987 phosphorylation and its role in EGFRvIII / R108K- induced 

tumorigenesis. 
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3-7 Cellular distribution of ectodomain mutations 

      Typically, EGFR is a plasma membrane bound receptor, where it activates 

downstream signaling cascade to elicit its biological response. Recently nuclear 

localization of EGFR has been demonstrated in various studies in different cancers 

(92, 287-289). Significantly, nuclear localization of EGFR predicts poor prognosis in 

different types of cancer (290-292) The role of nuclear EGFR primarily involves 

transcriptional activation of cyclin D1, B-Myb, iNOS and Aurora-A through binding of 

ATRS sequences on their promoters, and protein-protein interactions with transcription 

factors such as, STAT3, STAT5, E2F1 and RHA (92, 290, 293). Studies have also 

reported nuclear expression of the constitutively activated EGFRvIII (294). More 

recently, EGFRvIII was shown to be associated with STAT3 (186) to transcriptionally 

activate Cox2 gene (295).  

      To examine the subcellular localization of ectodomain mutations, we carried out 

preliminary confocal microscopic analysis using CHO cells, which do not contain 

endogenous EGFR. These cells were transiently transfected with GFP-Tagged EGFR 

mutants as well as EGFR and EGFRvIII and maintained in standard culture media 

(10% of serum). After microscopic evaluation, our findings showed a similar 

distribution profile of the EGFRvIII with R108K and A289T mutants, which showed 

significant cytoplasmic distribution, but also nuclear localization. In contrast, mutants 

T263P and A289D exhibited more similarity with the pattern showed by EGFR, which  

is mostly located in the cytoplasmic compartment (Figure 20).  
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Further we also assed the profile of distribution in glioma cell lines for which we used 

GFP-Tagged EGFR mutants, which were transiently transfected in the U87 cell line. 

The profile of distribution was examined in both serum starved condition and after EGF 

stimulation. In serum starved condition, the receptor was observed in both nuclear and 

cytoplasmic compartments for R108K, A289D and A289T mutants, which were similar 

Figure 20 Cellular distributions of GFP-tagged EGFR ectodomain mutants in 

CHO cells 

A. shows western blot analysis that confirms the expression of multiple GFP-

tagged ectodomain mutants after transient transfection in CHO cells. Sample with 

the best expression for every mutant was selected for microscopic confocal 

analysis. B. Results from confocal microscopic analysis show different distribution 

profiles across the mutants with some of them resembling EGFRvIII or EGFR 

profiles. 



86 
 

to the subcellular distribution seen for EGFRvIII. However, the T263P mutant was 

almost completely restricted to the cytoplasm resembling the profile seen for EGFR. 

After EGF stimulation, the distribution of all the EGFR ectodomain mutants showed 

similar subcellular profile of distribution with localization at both the nuclear and also 

cytoplasmic level (Figure 21).   

Figure 21 Profile of distribution of GFP-tagged EGFR ectodomain mutants in 

U87 cells 

Confocal microscopic images show pattern of distribution of EGFR ectodomain 

mutants in glioma cells (U87) after transient transfection using GFP-tagged mutants:  

A. In serum starved condition and B. After EGF stimulation cells were counterstained 

using Topro3 (blue). 
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      To provide validation that supports the confocal analysis, we carried out western 

blot analysis. We fractionated stable U87 cell lines overexpressing ectodomain 

mutations in serum starved and EGF stimulated conditions into nuclear and  

 

cytoplasmic fractions.  After western blot analysis, all the mutants showed, in  

general a strong cytoplasmic localization in both serum starved and after EGF 

stimulated conditions. However, the nuclear localization pattern was differential in 

different conditions. Robust nuclear levels of the mutants T263P, A289D and A289T 

were observed in serum starved condition resembling the expression pattern seen for 

A 

B 

Figure 22 Nuclear and cytoplasmic expression of EGFR ectodomain 

mutants in U87 stable cells 

Western blot analysis shows nuclear and cytoplasmic expression of EGFR 

ectodomain mutants, EGFRvIII, wild type EGFR and negative control 1726-

zeo in serum starved condition and after EGF stimulation. Western blot 

performed by Dr. Anupama Gururaj a collaborator from Bögler’s Laboratory.  
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EGFRvIII. In contrast, lower amounts of the R108K mutant were observed in the 

nucleus resembling the profile seen for EGFR. After EGF stimulation, the mutant  

A289T showed increased amounts in the nuclear compartment, which was similar to 

the pattern seen for EGFR. The remaining mutants did not exhibit significant 

differences in levels in the nucleus after EGF stimulation (Figure 22).   

3-8 EGFR ectodomain mutants determine response to standard therapy 

      Previous clinical studies have shown association of EGFRvIII and PTEN 

expression with clinical response to TKIs in patients with recurrent malignant gliomas 

(207). More recently, Lee’s studies also have indicated that erlotinib a small molecule 

TKI, was able to induce cell death in Ba/F3 cells overexpressing EGFR missense 

mutations. The IC50 values were between 50-150 nM suggesting that EGFR 

ectodomain mutations could sensitize GBM cells to TKIs such as erlotinib (9). Similar 

results from previous investigations that establish association of intact PTEN and 

expression of EGFRvIII with response to TKIs have been obtained in studies 

performed by Sarkaria et al., where glioblastoma xenografts which express wild type 

PTEN in combination with EGFRvIII showed sensitivity to erlotinib treatment (210). 

The above studies provide support for the relevance of obtaining individual molecular 

phenotype for tumors and using this knowledge as part of the decision-making process 

to treat patients with GBMs and also extend this model to other types of cancer.  

      In our study we tested the sensitivity of U87 cells overexpressing the ectodomain 

mutations to chemotherapeutic agents such as cisplatin and TMZ. In addition, we also 

evaluated the effect of EGFR TKI, tarceva on anchorage independent growth of these 

cells overexpressing ectodomain mutations as well as EGFRvIII and EGFR.     
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3.8.1 Cisplatin treatment:  

      We determined IC50 values for cisplatin in U87 cells overexpressing ectodomain 

mutants, EGFRvIII and EGFR after 5, 7 and 9 days of treatment. We also included 

control cells 1726-zeo which carries the empty vector and thus expresses endogenous 

Figure 23 Response of U87 cells expressing various EGFR mutants to cisplatin   

Dose effect of cisplatin on relative biomass (soft agarose colony formation assay) for 

ectodomain mutants stably overexpressed in U87 cells and treated with 4 different cisplatin 

doses 0.33, 3.3, 16.5 and 33 µM. The graph depicts dose effect after 7 days of treatment. 

Data from three independend biological experiments. 
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levels of EGFR (Figure 23). 

After seven days of cisplatin treatment, we found that the T263P mutation showed a  

substantial response to cisplatin showing an IC50 of 3.5 µM similar to the response    

 

seen for EGFR and control group with IC50 of 3.9 µM and 2.1 µM respectively. In  

Table 5 Cisplatin IC50 values for ectodomain mutants overexpressed in U87 

cells 

The table summarizes IC50 values from three independent experiments after 5, 7 

and 9 days of cisplatin treatment at 4 different concentrations of 0.3, 3.3, 16.5 and 

33 µM. Dose values were transformed using the function X= Log (X) and then 

subjected to analysis using the graphpad prism software program. 
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contrast, mutations R108K, A289D, A289T and EGFRvIII exhibited a protective 

phenotype to the treatment showing higher IC50 values 9.4 µM, 10.5 µM, 4.6 µM and 

11.0 µM respectively. The cisplatin IC50 values for ectodomain mutants, EGFRvIII and 

EGFR overexpressed in U87 cells are summarized in (Table 5).     

3.8.2 Tarceva treatment: 

      We determined IC50 values for tarceva as performed previously for cisplatin using 

Figure 24 Effect of tarceva treatment on ectodomain mutants overexpressed 

in U87 cells 

The graph shows dose effect on the relative biomass indices of ectodomain 

mutants (soft agarose colony formation assay), EGFRvIII and EGFR overexpressed 

in U87 cells at different concentrations of tarceva (0.5, 5.0, 10 and 20 µM) after 9 

days of treatment. Data from three independent biological experiments.   

 



92 
 

4 different concentrations of the inhibitor (0.5, 5.0, 10.0 and 20 µM). After nine days of 

treatment, we analyzed the effect of tarceva on relative biomass of ectodomain 

mutations, EGFRvIII and EGFR overexpressed in U87 cells (Figure 24)  

 

Table 6 Tarceva IC50 values for ectodomain mutants overexpressed in U87 

cells 

Table shows the different IC50 values for ectodomain mutants, EGFRvIII and 

EGFR overexpressed in U87 cells after day 5, 7 and 9 of tarceva treatment using 

4 different doses, soft agarose colony formation assay was carried out. The data 

was analyzed as is described above for cisplatin treatment and represent three 

independent experiments. 
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Our findings indicate a response to tarceva for the mutants T263P, A289T and 

EGFRvIII which showed low IC50 values of the inhibitor (5.0 µM, 6.4 µM and 3.3 µM) 

respectively. In contrast, higher IC50 values were observed for mutants R108K and 

A289D (7.9 µM and 11.2 µM) respectively, thus indicating a protective phenotype to 

tarceva treatment. In our analysis EGFR exhibited the highest IC50 value (16.2 µM), 

indicating a significant resistance to tarceva treatment. Tarceva IC50 values for the 

ectodomain mutations, EGFRvIII and EGFR are summarized in the (Table 6).  

3.8.3 Temozolomide treatment: 

      We established IC50 values for TMZ treatment in both U87 and LN428 cells 

overexpressing ectodomain mutants as was performed previously for cisplatin and 

tarceva. For the analysis, we used data from day 7 and 9 of treatment using four 

different concentrations. Our findings indicated that the mutants overexpressed in 

U87cells showed significant response to TMZ after 7 days of treatment as reflected by 

lower IC50 indices (Figure 25).  

Thus, after 9 days of treatment the mutants R108K, A289D and EGFRvIII showed 

lower IC50 values (0.01 µM, 9.7 µM and 2.8 µM) respectively, mutant T263P exhibited 

a minor response to the treatment reflecting an IC50 of (11.9 µM). The mutant A289T 

was less sensitive to TMZ showing an elevated IC50 value (26.4 µM). (Table 7) shows  
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IC50 for the mutants in the U87 cell context.  

Figure 25 Effect of temozolomide treatment on ectodomain mutants 

overexpressed in U87 cells 

The graph depicts the effect on soft agarose colony formation after treatment using 

different TMZ doses. Graph illustrates the relative biomass indices across all the 

EGFR ectodomain mutants after 7 days of treatment. Same analysis described 

previously for the other inhibitors was performed using data from three independent 

experiments. Experiments performed by Dr. Takashi Shingu from Dr. Bögler 

Laboratory. 
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Table 7 Temozolomide IC50 across EGFR ectodomain mutants 

overexpressed in U87 cells 

The table shows IC50 values for ectodomain mutants in the context of U87 cells. 

Data comes from the analysis of 4 different TMZ doses after day 7 and 9 of 

treatment three independent experiments (soft agarose colony formation assay). 

The GraphPad Prism software program was used for the analysis.     
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In contrast, we found a prevalent resistance across the ectodomain mutations 

overexpressed in LN428 cells after 9 days of treatment (Figure 26). 

 

 

Figure 26 Dose response effect of temozolomide on ectodomain mutants 

overexpressed in LN428 cells 

The graph shows TMZ effect in 4 different doses (1.0, 10, 50 and 100 µM) after 9 

days of treatment on the relative biomass indices (soft agarose colony formation 

assay) across all the ectodomain mutants EGFRvIII and EGFR overexpressed in 

LN428. Data from three independent experiments. Experiments performed by Dr. 

Takashi Shingu from Dr. Bögler’s Laboratory. 
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However, the mutant A289T exhibited a marginal response after 9 days of TMZ 

treatment showing IC50 values of (21.7 µM). Mutants T263P, A289D, R108K and 

EGFRvIII exhibited a protective phenotype as evidenced by undetermined IC50 values.  

IC50 for ectodomain mutants overexpressed in LN428 cells are illustrated in (Table 8).  

Table 8 Temozolomide IC50 for ectodomain mutants overexpressed in LN428 

cells 

The IC50 values illustrated in the table were obtained using the relative biomass 

indices from soft agarose colony formation assay after use 4 different TMZ doses post 

day 7 and 9 of treatment. Similar analysis performed previously was carried out. 

Table includes data from three individual experiments.   
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CHAPTER 4 DISCUSSION, SUMMARY, AND FUTURE 
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Discussion 

      EGFR is a critical driver in the tumorigenesis of GBM patients, where its 

amplification occurs in 40% to 70% of the primary GBMs (2, 172). Mutations in EGFR 

have been widely recognized as being part of the multiple mechanisms of deregulation 

of the receptor. Further, TCGA has reported EGFR as one of the most highly mutated 

genes in GBMs (10). These mutations coexist in a significant percentage (~ 80%) of 

tumors that show amplification of the receptor. EGFR mutations have been cataloged 

from ectodomain mutations or deletions to deletions in the cytoplasmic tail of the 

receptor (9, 86, 217, 220, 221), where ectodomain mutations represent the most 

common subset of mutations in EGFR. The most common and widely studied mutation 

is the type III EGFR variant deletion mutant (EGFRvIII). This variant is has a deletion 

of exons 2 to 7; it is expressed in about 50 to 60% of GBM tumors overexpressing 

EGFR (171-173). Typically, this variant shows consistent enhancement in 

tumorigenesis and clinical studies have indicated a correlation between the expression 

of EGFRvIII and poor prognosis (175, 176).         

      More recently, a novel class of missense mutations has been identified in GBMs 

samples, where the majority of these mutations are located in the ectodomain region 

of EGFR with some of them located in the deleted area of EGFRvIII. They are found in 

~14% of GBM tumors (9), which has been also documented by information obtained 

by TCGA (10). Further characterization of these mutants in mouse fibroblast has 

demonstrated a transforming and tumorigenic capacity (9). In addition, some of these 

mutants exhibited tyrosine kinase activity for the residues Tyr-1068 and Tyr-845 in 

serum starved condition as seen for EGFRvIII, in BaF3 cells context, which do not  
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contain endogenous EGFR and stronger tyrosine kinase activation was seen after 

EGF stimulation in these cells (9). Thus, these mutants respond to EGF similar to 

EGFR. However, the molecular mechanisms by which ectodomain mutations drive 

EGFR activation reminds to be studied.     

       In our study we have identified EGFR ectodomain mutations using information 

contained in the TCGA database. Selecting ones that are located in the deleted area 

of EGFRvIII (R108K, T263P, A289D and A289T). Previous studies (9) have 

demonstrated oncogenic capacity for some of them (R108K and T263P) in mouse 

fibroblast. Therefore, to gain molecular understanding for which these mutants act to 

activate the receptor, we interrogated whether our cohort of mutants exhibited similar 

molecular characteristics with EGFRvIII or EGFR. The knowledge acquired in our 

study may contribute for a better understanding of the molecular mechanisms by 

which these mutants trigger particular signaling pathways leading to biological 

contributions in the tumorigenesis of GBMs. Subsequently this information would be 

useful for the customization of treatments where groups of patients expressing these 

particular mutants could receive more effective therapies. 

      In the tumorigenesis of GBM critical sites of phosphorylation on the cytoplasmic tail 

of EGFR have been determined in previous studies in vitro and in vivo using U87 cells 

and xenograft models. These indicate Tyr-1048, Tyr-1068, Tyr-1173 and Tyr-845 as 

relevant residues for tumor development in GBM (29, 93, 179). In our study, after we 

tested phosphorylation levels for these residues across all the EGFR ectodomain 

mutations, we found different profiles of activation.  In the context of U87 cells (PTEN 

mutated / WT-p53), the mutants R108K and T263P showed a similar profile to EGFR,  
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where these mutants showed basal activation and characteristically responded to the 

ligand stimulus. In contrast, the mutant A289T exhibited very strong basal activation 

across all the tyrosine sites but did not show response to the ligand stimulus 

resembling the profile seen for EGFRvIII. The mutant A289D showed characteristics 

from both EGFR and EGFRvIII. In the context of LN428 cells the ectodomain mutants 

showed more robust basal activation than in LNZ308 cell context. These observations 

suggest potential differences in downstream signaling activation. Previous studies 

have pointed out a decrease in signaling activation after reduction or loss of 

phosphorylation levels in critical EGFR tyrosine residues (29). In addition, previous 

investigations have indicated a distinct signaling pattern of activation, where for 

EGFRvIII the PI3K pathway could be predominantly activated over the MAPK and 

STAT3 pathways (89). Therefore, we raised the question as to whether these mutants 

exhibit characteristic patterns of kinase activation in downstream canonical pathways 

AKT and ribosomal S6. However, our signaling analysis did not show significant 

differences in basal or ligand stimulation conditions across all the ectodomain 

mutations and EGFRvIII and EGFR. After examination of the signaling in different 

genetic backgrounds from LNZ308 (PTEN/p53 mutated) and LN428 (WT-PTEN / WT-

p53) cell lines, similar tendencies were observed. In addition, a strong and consistent 

basal activation for Tyr-1173 site was observed across all the ectodomain mutants in 

U87 cells context and to a low extent in LN428 cells. Interestingly, in LNZ308 cells, 

basal phosphorylation was reduced to almost undetectable levels, suggesting that 

molecular background could help to define molecular characteristics of these mutants. 

These observations lead us to hypothesize that molecular context could have an 

important effect in the biological contribution of these mutants in GBMs. This was  
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borne out by our results demonstrating the contribution of these mutants in anchorage 

independent growth in different genetic backgrounds. In general, higher 

enhancements in anchorage independent growth from the ectodomain mutants as 

compared to EGFR were observed in all the three stable cells. In the context of U87 

cells, mutants R108K, A289T and EGFRvIII showed more significant contribution after 

comparison to EGFR. In contrast, in stable LN428 all the ectodomain mutations 

showed greater enhancement than EGFRvIII as well as EGFR. In the context of 

LNZ308 cells, greater enhancements were seen for the mutants A289D and EGFRvIII 

as compared to EGFR. These observations also suggest that different genetic 

backgrounds might have a role in the biological inputs of the ectodomain mutants. 

However, differences in downstream signaling triggered by these mutants remain 

elusive.  

      According to previous studies, cell distribution of the receptor can lead to 

upregulation of alternative pathways associated with cell cycle progression (92, 293, 

295, 296). In our study we assessed the cellular distribution profile of ectodomain 

mutations. After confocal microscopic examination of transiently expressed 

ectodomain mutations in U87 cell lines, we found in serum starved condition nuclear 

and cytoplasmic distribution for mutants R108K, A289T and A289D resembling the 

pattern seen in EGFRvIII. In contrast, a predominantly cytoplasmic distribution was 

observed for the mutant T263P similar to the profile seen in EGFR. These findings 

also correlate with our preliminary confocal examination of transient expressed 

ectodomain mutations in CHO cell lines. However, in the western blot analysis using 

stable U87 cells overexpressing ectodomain mutations, we were able to detect the 

T263P mutant in the nucleus under serum starved conditions. The differences 
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observed could be due to the different expression systems. The flux of the molecules 

between the nucleus and the cytoplasm could be potentially different in transiently 

expressed and stably expressed systems as has been reported earlier in other studies 

(297, 298). Our observations open the question whether alternative pathways could be 

upregulated by these mutants in the nuclear compartment. The profile of distribution 

seen in U87 cells after transient transfection might correlate with results from the 

anchorage independent growth, where the mutants with more aggressive phenotype 

were those that showed nuclear and cytoplasmic distribution. These results were also 

in agreement with our xenograft studies, where the groups of mice implanted with U87 

cells overexpressing R108K, A289T and A289D mutants showed shorter tumor 

latency period similar to the group of mice implanted with EGFRvIII. In contrast, group 

of mice implanted with U87 cells overexpressing T263P exhibited longer tumor latency 

period similar to the group of mice implanted with EGFR.  

      Taking all our data together, we stratify these ectodomain mutants into three 

groups: A first group, characterized by similarity in the profile of tyrosine 

phosphorylation to EGFRvIII, more robust enhancement in anchorage independent 

growth and shorter tumor latency period, where we include the mutant A289T. A 

second group, which displays a similar profile of tyrosine phosphorylation with EGFR 

and leads to less enhancement in anchorage independent growth and longer tumor 

latency period, where we include the mutant T263P. A third group, where we include 

the mutant A289D which displays characteristics from both EGFR and EGFRvIII 

(Table 9). 
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However, the mutant R108K did not fit well in this classification as there was no 

agreement between the aggressive phenotype and the molecular profile observed for 

this mutant (Table 10). 

Table 9 Stratification of EGFR ectodomain mutants according to the biologic 

characteristics 

Table shows three main groups: First group (in red) which resembles the biology of 

EGFRvIII. Second group (in blue) showing similar characteristics with EGFR. A third 

group (in green), which shares characteristics from both groups. C denotes 

cytoplasmic and N nuclear distribution.   
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      We propose that alternative pathways might play a role in the biological 

contribution of this particular mutant. In our phosphoscan analysis, we identified the 

phosphopeptide SHIP2-Tyr-987, which appears as a potential target. Mutational 

Table 10 Categorization of EGFR ectodomain mutants according to tyrosine 

phosphorylation profiles 

Table shows identification of three main groups: First group showing similar profile 

to EGFR (T263P and R108K mutants). A second group with similar pattern to 

EGFRvIII (A289T mutant) and a third group showing similarities with both tyrosine 

profiles (A289D mutant). Mutant R108K did not show activity for the residue Tyr-

1068 (NR). 
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studies indicate that mutation in Tyr-987 residue on SHIP2 leads to an anti- 

proliferative effect (26). The phosphoscan analysis allowed us to identify significant 

cohort of phosphopeptides without bias that can help us to understand the biological 

contribution of these EGFR ectodomain mutations from the molecular point of view. 

One of the most important advantages of this method is the broad spectrum of 

phosphopeptides that could be identified. Also, this method enabled us to quantify and 

detect the EGFR phosphopeptides with high resolution and sensitivity. However, one 

of the disadvantages is that the analysis is limited to tyrosine residues because of the 

enrichment method used; in our case we enriched the samples using anti-tyrosine 

antibodies that allowed us just to identify the affected downstream tyrosine 

phosphopeptides. We consider that additional and complementary proteomic analyses 

such Reverse Phase Protein Arrays (RPPA) need to be done, in order to have a more 

comprehensive spectrum of potential targets that might have important role in the 

biological contribution of these mutants and subsequently an impact in therapeutics.  

      In our study we demonstrated that some of these mutants are highly oncogenic. 

Therefore, we asked the question whether these ectodomain mutants could have a 

prognostic value in therapy. Our findings showed that the mutants A289T, T263P and 

EGFRvIII responded well to tarceva treatment. Previous studies have associated 

EGFRvIII signature with responsiveness to EGFR TKIs (207). In agreement with these 

results, we found a significant response of EGFRvIII to tarceva treatment. Also 

previous studies from Lee et al have indicated sensitivity of missense mutations 

overexpressed in Ba/F3 to TKIs cells suggesting that these mutants can sensitize 

transformed cells to TKIs (9). In contrast, a different tendency was observed after 

cisplatin treatment, where persistent resistance was observed in almost all the 
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ectodomain mutations except the mutant T263P which showed a significant response. 

Previous studies have reported that nuclear EGFR is a requirement to increase DNA 

repair, thus, reducing DNA damage of EGFR expressing cells and leading to cisplatin 

resistance (299). The results from our studies also showed a correlation with the 

subcellular distribution after transient transfection of the mutants in serum starved 

condition, where all the ectodomain mutants, except the mutant T263P, exhibited 

nuclear localization. However, additional studies need to be done to establish potential 

interactions of ectodomain mutants and proliferating cell nuclear antigen (PCNA) and 

also DNA dependent kinase (DNA-PK) upregulation, which are EGFR nuclear 

interacting partners (300-303) and are necessary for DNA repair in EGFR expressing 

cells.  

      The ectodomain mutants showed a significant response to TMZ, which was 

evidenced by IC50 values after seven days of treatment in the context of U87 cells. 

However, same treatment in cells with a different genetic background (LN428) 

displayed a protective phenotype across all the mutants, except for the mutant A289T 

and R108K which showed a marginal response. One of the major determinants for 

favorable response to TMZ is the status of MGMT promoter methylation (304, 305). 

However, according to the literature, both the cell lines U87 and LN428 show similar 

status of MGMT methylation (306), suggesting that others factors contribute to TMZ 

resistance observed in the context of LN428 cells such as BER activation (307). 

However, further studies that help to explain the marked sensitivity of A289T mutant to 

TMZ in the context of LN428 need to be done.  

      In summary, our results present new information that would contribute to the  
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acquisition of a more comprehensive understanding of the biology and molecular 

characteristics of EGFR ectodomain mutants in GBM. In addition, in vitro inhibitory 

studies bring valuable findings, which might be useful as predictive parameters in 

therapeutic response of GBM patients expressing these mutants.   

Summary  

• In our study, we showed that in general, EGFR ectodomain mutants in glioma cells 

can be active even in the absence of the ligand particularly in the context of U87 cells 

and are thus constitutively active. 

• The overexpression of ectodomain mutants enhanced transformation and decreased 

tumor latency period in xenograft mice as compared to EGFR. 

• Based on the molecular characterization and biological phenotype, the ectodomain 

point mutants that we studied can be stratified in three main groups: A first group 

similar to EGFRvIII, a second group that resembles EGFR and a third group that 

shows characteristics from both the first and second category. 

• In terms of tyrosine activation profile, the mutant R108K behaves similar to EGFR but 

biological phenotype is like EGFRvIII suggesting alternative mechanism of activation 

for this mutant. 

• Inhibitory studies using TKI (tarceva) indicated that expression of the mutants T263P, 

A289T and EGFRvIII could be indicative of sensitivity of glioma cells to this particular 

treatment. 

• Ectodomain mutants exhibited different pattern of response to TMZ treatment in 

glioma cells with different molecular context, suggesting that genetic background has a 

significant role in TMZ response. 
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• In general ectodomain mutants showed a protective phenotype after cisplatin 

treatment except for the mutant T263P.      

Future Directions 

      In our study we have provided significant information that contributes to the 

molecular and biologic characterization of the EGFR ectodomain mutants in the 

context of gliomas. However, we think that numerous questions still need to be 

addressed. First, a more exhaustive proteomic analysis such as RPPA needs to be 

done in order to delineate molecular pathways that could be triggered by these 

ectodomain mutants which are critical in the tumorigenesis of GBMs. In addition, 

potential targets identified in proteomics analysis require validation as well as establish 

their contribution in tumorigenesis and significance in therapeutics in vitro and in vivo. 

      Further, EGFR nuclear distribution has been associated with poor prognosis in 

different malignancies. Our findings indicated a predominant cytoplasmic and nuclear 

distribution across the majority of these mutants, raising the question whether these 

ectodomain mutants are able to activate transcriptional machinery in the nucleus 

leading to activation of additional pathways that could potentiate the tumorigenic 

phenotype and also have implication in responses to therapies.  

      In our study we evidenced that genetic backgrounds may help to define the 

biological contribution and therapeutic response of ectodomain mutants. However, 

clear mechanisms that take place in the definition of these characteristics are 

unknown. We think that a more comprehensive understanding of the role of the 

different molecular contexts could be useful to find explanations why particular  
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treatments are more or less effective in different cohorts of patients. Therefore, the 

elucidation of all these questions would be useful in the customization of treatments for 

GBM patients.              
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