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ABSTRACT 

 

CHANGE DETECTION MEMORY IN RHESUS MONKEYS AND HUMANS 

 

Publication No. _____ 

Lauren Caitlin Elmore, B.S. 

 

Supervisory Professor: Anthony A. Wright, Ph.D. 

 

 Visual short-term memory (VSTM) is the storage of visual information over a brief time 

period (usually a few seconds or less).  Over the past decade, the most popular task for 

studying VSTM in humans has been the change detection task. In this task, subjects must 

remember several visual items per trial in order to identify a change following a brief delay 

interval.  Results from change detection tasks have shown that VSTM is limited; humans are 

only able to accurately hold a few visual items in mind over a brief delay.  However, there has 

been much debate in regard to the structure or cause of these limitations.  The two most 

popular conceptualizations of VSTM limitations in recent years have been the fixed-capacity 

model and the continuous-resource model.  The fixed-capacity model proposes a discrete limit 

on the total number of visual items that can be stored in VSTM.  The continuous-resource 

model proposes a continuous-resource that can be allocated among many visual items in 

VSTM, with noise in item memory increasing as the number of items to be remembered 

increases. 

 While VSTM is far from being completely understood in humans, even less is known 

about VSTM in non-human animals, including the rhesus monkey (Macaca mulatta).  Given 

that rhesus monkeys are the premier medical model for humans, it is important to understand  

their VSTM if they are to contribute to understanding human memory.  The primary goals of 
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this study were to train and test rhesus monkeys and humans in change detection in order to 

directly compare VSTM between the two species and explore the possibility that direct species 

comparison might shed light on the fixed-capacity vs. continuous-resource models of VSTM.   

The comparative results suggest qualitatively similar VSTM for the two species through 

converging evidence supporting the continuous-resource model and thereby establish rhesus 

monkeys as a good system for exploring neurophysiological correlates of VSTM.   
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CHAPTER 1: GENERAL INTRODUCTION 
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Visual short-term memory (VSTM) is the mental storage of visually presented 

information over a brief delay of a few seconds or less.  VSTM is undoubtedly a major 

mechanism by which humans (and animals) maintain awareness of their constantly changing 

environments, and behave adaptively.  For humans, VSTM is important for tasks like driving, 

wherein we must act based on both our current views of the road conditions and other cars, 

but also based on our memory for what was seen in the sideview mirror a few seconds ago, 

for example.  Likewise, non-human animals also use VSTM to detect changes in their 

environment.  Maintaining constant vigilance is impossible, as animals must engage in other 

behaviors, such as foraging, caring for young, and building habitats.  Consider the example of 

a rhesus monkey, searching for fruit in the tree tops of an Indian forest.  The monkey must 

focus his attention on finding fruit but must also be vigilant for potential predators, such as 

raptors.  If the monkey checks his surroundings at regular intervals, it may notice a change in 

the shadow on a nearby tree.  Such a change could help alert the monkey to the presence of a 

raptor perched atop the tree, allowing time for escape. Noticing the shadow would depend on 

memory of the tree’s prior appearance. 

 Aside from its role in the safety and survival of humans and other animals, short-term 

memory is an important component in memory generally, given its role as the gateway to long-

term memory (Modal model of Atkinson & Shiffrin, 1968).  Incoming visual information is at first 

transiently stored in VSTM before being consolidated into long-term memory (Fukuda & Vogel, 

2010; 2011).  Again, the driving and fruit searching examples highlight the importance of visual 

long-term memory.  For the driver, it is important for him/her to remember that the fork in the 

road marked by a pecan tree is the place where he must veer right in order to complete the 

journey to his summer cabin.  This information about the pecan tree entered his memory via 

VSTM the first time he made the trip, and was ultimately consolidated into long-term memory, 

allowing him/her to remember this tree year after year.  The monkey must use visual cues to 

remember where he found fruit.  After he and his fellow monkeys deplete one tree of fruit, it is 
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advantageous for them to remember that tree’s location and appearance over the long term as 

they will want to revisit once more fruits become ripe.  Again information about the tree’s 

appearance must pass through VSTM before it is consolidated and more permanently stored 

in long-term memory. 

 A scientific investigation of the mechanisms of VSTM is important for many reasons.  

Considering the important role of VSTM in daily life and its connection to long-term memory, it 

is often quite debilitating when VSTM fails.  Interestingly, short-term memory is impaired in 

numerous psychological and neurological disorders, including: Alzheimer’s disease, 

Parkinson’s disease, Huntington’s disease, Tourette’s syndrome, Dementia with Lewy bodies, 

Progressive Supranuclear Palsy, Traumatic Brain Injury, Stroke, Multiple Sclerosis, Attention 

Deficit-Hyperactivity Disorder, Schizophrenia, Depression, & Post-Traumatic Stress Disorder 

(e.g, Baddeley et al., 1986; Baddeley et al., 1991; Dubois & Pillon, 1997; Gabrieli, 1998; 

Budson & Price, 2005; Brandes et al., 2002, Koenen, et al., 2001).  It is therefore important to 

understand VSTM when it is functioning normally in order to understand how various disease 

states impair VSTM.    

 Over the course of the past two decades, the change detection task has become an 

increasingly popular procedure for the study of VSTM (e.g., Alvarez & Cavanagh, 2004; Eng, 

Chen, & Jiang, 2005; Luck & Vogel, 1997; Pashler, 1988; Rensink, 2002; Wilken & Ma, 2004).  

In this task, a sample display of two or more stimuli is presented.  Following a brief delay (e.g., 

one second) the subject has to judge which item changed or whether or not a change 

occurred.  Studies using change detection have shown that visual short-term memory 

performance declines as a function of display size (the number of stimuli presented in the 

sample display (e.g., Alvarez & Cavanagh, 2004; Eng, Chen, & Jiang, 2005; Luck & Vogel, 

1997; Pashler, 1988; Wilken & Ma, 2004).  This is an expected result; the task becomes more 

difficult as the display size increases because there are more items to remember.  This result 

does however highlight an important fact, that VSTM is limited.  The system is not capable of 
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processing and storing unlimited numbers of visual items.  This begs the question of how 

VSTM works when it is overwhelmed with information to store?  Interestingly, during the past 

decade two competing models were developed that seek to explain the limitations of VSTM.  

These models, the fixed-capacity model (Cowan, 2000; 2005) and the continuous-resource 

model (Wilken & Ma, 2004; Bays & Husain, 2008) suggest very different mechanisms for 

VSTM function.   

 The fixed-capacity model has its roots in George Miller’s seminal 1956 paper, “The 

magical number seven, plus or minus two.”  Although this paper was less about precise 

memory storage limits and more about the ability to increase storage capacity through 

purposeful grouping of items (chunking), it was the first to suggest that short-term memory has 

a limit which can be quantified.  Since the publication of Miller’s paper, other possibilities have 

been proposed to explain the limitations of VSTM.  Some authors argued that the limitation is 

in the duration of time in which an item can be stored in short-term memory without being 

actively rehearsed (e.g. Baddeley, 1986; Sperling, 1963).  Cowan previously suggested that 

the storage mechanism is time limited whereas the focus of attention is capacity-limited 

(Cowan, 1988; 1995).  However, in the past decade, the overwhelmingly popular model 

mechanism of VSTM has been Cowan’s more recent “fixed-capacity model” which states that 

VSTM is a capacity-limited storage mechanism which on average (across subjects) consists of 

“slots” for three to five items (Cowan, 2000; 2005).  Cowan notes that this limit, or “magic 

number 4±1” is applicable to short-term memory in multiple modalities, including visual, verbal, 

and auditory short-term memory.  Cowan reviews converging evidence supporting the “magic 

number 4±1” come from various tasks including visual partial vs. whole report (e.g. Sperling, 

1960), auditory whole report (e.g., Darwin et al., 1972), whole report of spoken lists (e.g. 

Baddeley, 1986), in addition to change detection.  It should be noted that Cowan was not the 

first or only researcher to propose a fixed capacity of VSTM (e.g., Alvarez & Cavanagh, 2004; 
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Eng, Chen, & Jiang, 2005; Luck & Vogel, 1997; Pashler, 1988; Vogel et al., 2001), but has 

been the most prolific in his description of the model. 

 There are essentially two schools of thought within this group of memory researchers 

investigating the fixed-capacity model.  One group has proposed a more rigid interpretation of 

the model, in which the “magic number 4±1” is constant across stimulus types and visual 

complexity.  For instance, Luck & Vogel (1997) found that the capacity limit of 4±1 was 

constant despite increases in the information that had to be maintained for each stimulus.  In 

this experiment subjects were instructed to remember colored bars of varying orientation.  In 

one condition subjects were instructed to only remember the colors, in another condition only 

the orientations, and finally in the most complex condition to remember both the color and the 

orientation.  They found that the capacity limit did not decrease when subjects had to 

remember both color and orientation, a finding indicating that complexity of the visual 

information stored does not influence VSTM capacity. 

The second school of thought takes a more flexible interpretation of the fixed-capacity 

model and has shown that capacity could be a function of stimulus complexity (e.g., Alvarez & 

Cavanagh, 2004; Eng, Chen, & Jiang, 2005). Alvarez & Cavanagh (2004) and Eng et al. 

(2005) tested subjects in both change detection and visual search tasks using a variety of 

stimulus types including colored squares, shaded cubes, squiggles, faces, random polygons, 

Snodgrass line drawings, and Chinese characters.  They found that stimulus complexity (as 

determined by visual search time) had an inverse correlation with VSTM capacity for that 

stimulus type.  For instance, Eng et al. (2005) showed that capacity was highest with alphabet 

letters and lowest for human faces.    Eng et al. (2005) found a weaker correlation between 

visual search time and capacity (r2 = 0.76) than did Alvarez & Cavanagh (2004) as they 

reported an r2 value of 0.992.  It is odd to claim that a discrete-slot storage system should vary 

in capacity (change the number of memory slots) based on stimulus type, Eng et al. (2005) 

showed that increasing the viewing time reduced the variance in capacity measures across 
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stimulus types.  They proposed that the differences in capacity limits across stimulus types 

were the result of a perceptual bottleneck in which more complex objects required longer 

encoding time in order to be adequately stored in VSTM.  Alvarez & Cavanagh interpreted 

their similar results in a more complex conceptualization of VSTM: they hypothesized that 

there is a maximum visual information limit, which is the product of the number of stimuli and 

the visual information per stimulus, and that there is a secondary limit in that the maximum 

number of stimuli maintained cannot be greater than four or five.           

Cowan’s (2000) description of the fixed-capacity model sparked several attempts to 

investigate the neural correlates of the “magic number 4±1”.  For instance, Todd & Marois 

(2004) demonstrated using functional magnetic resonance imaging (fMRI) that brain activity in 

bilateral intraparietal sulcus increased as the memory load (number of items to remember) 

increased.  They claimed that this finding suggests that the locus of VSTM lies in the posterior 

parietal cortex.  They also found that brain activity was maximal during the delay period when 

subjects had three or four items to remember and that this brain activity did not increase 

further when the memory load was as large as eight items.  The authors interpreted these 

results as evidence that the intraparietal sulcus tracks VSTM capacity, and proof positive for 

the notion of a capacity limit of 4±1.   

In a study in the same issue of Nature, Vogel & Machizawa (2004) claimed that VSTM 

capacity varied across a large range among subjects (from 1.5 to 5 objects), but that they too 

had identified a neural correlate of a fixed-capacity, in this case using event-related potentials 

(ERPs).  They found that the contralateral ERP signal during the retention delay (presumed to 

originate from posterior parietal and lateral occipital regions) was maximal at the VSTM 

capacity of the individual subject.  For instance, an individual with a low capacity of two would 

have maximum ERP signal for memory loads of two or greater.  Likewise, an individual with a 

larger capacity of four items would have maximum ERP signal for memory loads of four or 

greater.  Thus, the ERP signal was tied to the individual subject’s capacity limit.  However, 
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what remains unclear is whether or not a maximum neural signal at a particular capacity value 

is definitive evidence for a fixed-capacity limit.  Neither of these papers provided much 

information on within subject variability across trials and conditions. 

A third investigation of the neural substrates of VSTM capacity was pursued by 

Buschman et al. (2011).  They trained rhesus monkeys in a change detection task and 

recorded from neurons in three brain regions, lateral intraparietal cortex, lateral prefrontal 

cortex, and the frontal eye fields.  Based on their behavioral and electrophysiological results, 

Buschman et al. (2011) concluded that there is a capacity limit, and also that the right and left 

hemifields have independent capacity limits.  These authors suggested that their 

electrophysiological data indicated that the information bottleneck giving rise to capacity limits, 

originates in posterior parietal cortex.  However, these authors noted that increasing the 

memory load (more items to remember) reduced the information available about each 

individual stimulus in all three brain regions. It is unclear how this finding could support a slot-

like fixed-capacity memory because slot-like representations must be all or none.  The findings 

of Buschman et al. (2011) seem to suggest a continuous allocation of memory resources.     

   The continuous-resource model of Wilken & Ma (2004) is an approach to VSTM that 

is more closely tied to what is known about computations in the brain in general. Wilken & Ma 

(2004) began their description by pointing out the unattractive features of fixed-capacity 

models.  Of particular interest was that fixed-capacity models proclaim that individual stimuli 

are encoded all-or-nothing within the brain.  Specifically fixed-capacity models claim that an 

item is either present or absent, and there is no noise in the system.  Wilken & Ma (2004) 

argued that discrete noise-free representations are neurally implausible.  Instead, they 

proposed VSTM to be a continuous variable (rather than discrete units) which can be modeled 

using signal detection theory.  In place of computing the discrete variable of capacity, they 

used d’ from signal detection theory to quantify memory sensitivity.  The model predicts that 

like accuracy, d’ should fall as the memory load increases, but also that this decline in d’ 
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should be fit by a power law function, because d’ should fall as a function of 1/n, where n is the 

number of items in the memory display.  Although memory as a continuous-resource can be 

allocated to large numbers of stimuli, performance and d’ fall because the noise in the memory 

representation also increases with larger displays of stimuli.  Wilken & Ma (2004) also noted 

that fixed-capacity models are overly complex and that the simple assumption of neural noise 

along with the simple decision rule from signal detection theory is sufficient to understand 

VSTM.  They also suggested that the fixed-capacity model “magic number 4±1” has received 

considerable empirical support due to an artifact of increasing noise as the memory load 

increases.   

Modeling VSTM as a continuous-resource has received support from some recent 

studies (Bays et al., 2009; Bays & Husain, 2008).  In 2008,  Bays & Husain showed that 

memory is a resource which is shared between all objects in a scene, but can be flexibly 

shifted and weighted more heavily toward certain stimuli based on selective attention.  They 

argued that the precision of storage of an item depends on the total number of items to be 

stored.  In a second article, Bays et al. (2009) showed that the continuous-resource model 

could account for findings that had been previously argued to support a modified fixed-

capacity slot model (Zhang & Luck, 2008).        

 Thus, it seems that both the fixed-capacity model and the continuous-resource model 

both have received support in the literature based on results from human subjects.  One 

approach to disambiguating hypotheses in human cognition is to see if the same hypotheses 

can garner support in non-human animals.  Because cognitive processes such as VSTM are 

subject to evolution the same or similar cognitive processes may be present in our ancestral 

species.  This is more likely to be the case is closely related species, such as non-human 

primates, but can also occur in more distantly related species.   

The approach of comparing across species both closely related (humans and rhesus 

monkeys) and more distantly related (pigeons) was taken with great success by Wright and 
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colleagues (1985).  They were interested in understanding the mechanism of U-shaped serial 

position functions in visual list memory.  Serial position functions had been known to occur in 

human memory, and the primacy and recency effects shown in these functions were often 

attributed to verbal rehearsal processes (e.g., Atkinson & Shiffrin, 1968).  However, in this 

seminal Science paper, Wright and colleagues (1985), showed that serial position functions 

were present in humans, rhesus monkeys, and pigeons, and that they primarily differed in time 

course, with the changes from recency to primacy occurring fastest for pigeons and slowest for 

humans.  The finding of primacy and recency effects in monkeys and pigeons eliminated the 

possibility that these effects were due to verbal rehearsal, and demonstrated that the 

underlying mechanism must qualitatively be the same across species.  Serial position 

functions have been shown in  other species including capuchin monkeys (Wright, 2007), apes 

(Buchanan et al., 1981), squirrel monkeys (Roberts & Kraemer, 1981), and rats (Bolhuis & van 

Kampen, 1988; Harper, McLean, & Dalyrmple-Alford, 1993; Kesner & Novak, 1982; Reed et 

al., 1996), thereby providing converging evidence that serial position effects occur in 

recognition memory in a variety of species, and thus that the cognitive process underlying 

recognition memory has been conserved throughout much of recent evolution.   

Given the example from serial position functions, it is easy to imagine how comparing 

the two models of VSTM across species may provide converging evidence in support of either 

the fixed-capacity or the continuous-resource model.  Testing animals with the change 

detection task and finding that they too have a fixed capacity or “magic number” which could 

also be four but might differ (e.g., smaller) would provide further evidence in favor of the fixed-

capacity model.  Likewise, finding that memory sensitivity (d’) can be characterized by power 

law functions in multiple species would provide support for the continuous-resource model.   

Testing non-human animals in change detection has other advantages as well.  Not 

only is understanding animal memory interesting in its own right, but also, animals provide 

opportunities to conduct studies that cannot be done in humans for practical reasons.  Animals 
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can be tested for many more sessions than would be practical with human subjects.  Large 

numbers of sessions increase the statistical power of the study and provide a more stable 

measure of the construct of interest, in this case VSTM.  Greater control is possible with 

animal studies, as the subjects can easily be tested at the same time daily with greater control 

over the subject’s motivational state.  Since animals routinely work for food or liquid 

reinforcement, and this can be tightly controlled by the experimenter.  Furthermore, non-

human animals ultimately allow the direct manipulation and investigation of the neural 

substrates of cognitive processes through invasive studies including lesions, 

electrophysiological recordings, inactivation, stimulation, and pharmacological and 

neurotransmitter manipulations (although it should be noted that this type of work is beyond 

the scope of this dissertation). 

An obvious first choice of non-human species to compare with human subjects in the 

change detection task is the rhesus monkey (Macaca mulatta).  Rhesus monkeys are the 

premier medical model for humans due to their highly similar genetics, anatomy, and 

physiology (Rhesus Macaque Genome Sequencing and Analysis Consortium, 2007).  They 

are closely related to humans and diverged from a common ancestor in the relatively short 

evolutionary timescale of 25 million years ago (Kumar & Hedges, 1998).  Their neuroanatomy 

is well known and is similar to humans.   

Like humans, monkeys are particularly predisposed to visual tasks like change 

detection because they have a highly developed visual system.  Both species have a large 

percentage of their cortex devoted to vision: 50% in rhesus monkeys and 30% in humans (Van 

Essen, 2004).  Another critical brain region for VSTM is the prefrontal cortex, as demonstrated 

by electophysiological, lesion, and inactivation studies in rhesus monkeys (e.g., Funahashi et 

al., 1989; Fuster & Bauer, 1974; Petrides, 1994; 1996; Sawaguchi & Goldman-Rakic, 1991; 

Wilson et al., 1993) and human neuroimaging studies (e.g., Pessoa & Ungerleider, 2004; Sala 

& Courtney, 2007).   A direct comparison of the architecture of the prefrontal cortex between 
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monkeys and humans has shown that the architectonic organization is quite similar (Petrides, 

2005).  In both species, the cortex is organized along a rostral-caudal axis as well as a dorsal 

ventral axis.  Functional roles for the different subregions of the prefrontal cortex appear to 

correspond between monkeys and humans, including the regions involved in motor control, 

cognitive control, working memory, and decision making.  Given the qualitative similarities and 

close anatomical organization of both monkey and human visual and prefrontal cortices, one 

might predict that monkey and human performance in a VSTM task should be qualitatively 

similar.   

However, despite the striking similarities between humans and monkeys there are 

quantifiable differences in the neuroanatomical substrates of VSTM that would likely give rise 

to quantitative differences in absolute performance levels. This hypothesis is in accord with the 

Darwinian perspective, that cognitive differences between animals and humans are a matter of 

degree and not of kind (Darwin, 1872).  For one, rhesus monkey brains are both smaller than 

human brains: and more specifically their brain to body mass ratio or encephalization quotient 

is smaller.  For humans the average encephalization quotient is 7.4-7.8 and for monkeys it is 

2.1(Roth & Dicke, 2005).  However, differences in encephalization quotient should be 

interpreted with caution, other studies have suggested that overall brain size is more important 

(e.g. Deaner, et al., 2007), and it is unclear how much variance in cognitive function can be 

related to encephalization quotient or total brain size.   

The human prefrontal cortex though architecturally similar to that of the rhesus monkey 

is much larger and occupies a greater proportion of the brain (Semendeferi et al., 2002).  

Another quantifiable difference relates to the pyramidal cells of the prefrontal cortex.  By 

comparing pyramidal cell morphology across humans, rhesus monkeys, and marmosets, 

Elston et al. (2001) demonstrated that pyramidal cells in the prefrontal cortex have become 

more branched and spined over the course of evolution (human cells were the most branched 

and spined), allowing greater numbers of connections between neurons.  Elston et al., (2001) 
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suggested that this difference in neuronal morphology likely underlies the more advanced 

cognitive capabilities that occur in humans.  In general, the differences in prefrontal cortex 

size, neuron morphology, and neuronal density are thought to underlie the differences in 

cognitive abilities presumed to exist between humans and other mammals (Roth & Dicke, 

2005). Thus, it seems that rhesus monkeys have a similar enough cortical architecture that 

their VSTM may be qualitatively similar to humans, but that there are enough differences, 

particularly in the prefrontal cortex, that one would expect a quantitative difference between 

the two species.   

 There were four main goals in this study.  We began our research (Chapter 2) by 

testing human subjects in change detection in order to determine if our paradigm would yield 

results similar to those previously published.  We also tested human subjects with the 

parameters which would eventually be used with rhesus monkeys in order to allow a direct 

comparison.  In a second experiment, we investigated the role of stimulus type in VSTM by 

testing various types of stimuli.  

The second goal was to train rhesus monkeys to perform the change detection task 

(Chapter 3).  Because this is one of the most popular tasks for the study of VSTM in humans, 

it would be advantageous to determine if the task could be learned by monkeys.  If monkeys 

could learn change detection, would the monkeys perform change detection in an analogous 

way to humans? Such a result would validate comparisons between the two species.     

 The third goal was to compare VSTM between humans and monkeys using the change 

detection task.  Most animal memory procedures are simplistic (e.g. delayed match to sample) 

relative to recall and recognition procedures used with humans. As such, training rhesus 

monkeys in change detection provided a unique opportunity to directly compare memory (and 

its limitations) across species using identical or nearly identical task parameters. In Chapter 4, 

we tested rhesus monkeys in a task similar to that used to test humans (Chapter 2) in order to 

determine if VSTM was qualitatively similar between species.  In Chapter 5, we extended the 
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study began in Chapter 4, by testing rhesus monkeys with the same stimuli, viewing time, 

delay period, and many of the same display sizes used with humans in Chapter 2.  To provide 

a more direct comparison of VSTM between rhesus monkeys and humans, in Chapter 5 the 

test parameters were made as similar as possible given the constraints of each species.   

 Finally, the fourth goal of this dissertation was to use the results generated in Chapters 

2, 4, and 5 to guide a more thorough theoretical understanding of VSTM function, and 

determine whether or not these results and comparisons could discriminate between fixed-

capacity and continuous-resource models of VSTM.  Specifically, we compared the fixed-

capacity and continuous-resource models to determine which model provided a better fit to the 

data, and which model was more theoretically sound given the results that we found.                       
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CHAPTER 2: VISUAL SHORT-TERM MEMORY IN HUMANS 
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Introduction 

 Despite decades of research, VSTM is only beginning to be understood.  The field is 

riddled with conflicting interpretations, only coming together in agreement that VSTM is limited 

because memory accuracy declines as a function of the display size, or the number of stimuli 

that one must remember (e.g., Alvarez & Cavanagh, 2004; Eng, Chen, & Jiang, 2005; Luck & 

Vogel, 1997; Pashler, 1988; & Wilken & Ma, 2004). In fact, the limitations in short-term 

memory have been demonstrated for visual, verbal, and auditory information.  VSTM storage 

limitations are in contrast to long-term visual memory, where research has shown extremely 

large storage capacities for pictures, words, and associations (Standing, et al., 1970; Standing, 

1973; Shepard, 1967; Voss, 2009).    

As mentioned in the General Introduction, the greatest point of contention in the VSTM 

arises from the dispute between competing models, the fixed-capacity model and the 

continuous-resource model.  Both models seek to provide structure and a functional basis to 

the inherent limitations in VSTM.  Differences between these two approaches are further 

developed here.  The work of Luck & Vogel (1997) and Cowan (2001) has supported modeling 

VSTM as a slot-like storage system of a limited (and fixed) capacity.  The model has a discrete 

number of slots for the storage of visual information.  The popularized number of slots is the 

so-called “magic number 4±1.”  A computational model has also been developed to explain 

this magic number (Rouder et al., 2008).  Figure 2.1 provides a visual conceptualization of 

how fixed-capacity models are thought to work.   
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Figure 2.1: Fixed-Capacity Memory System with three slots.  Black box outlines 
represent visual stimuli to be remembered.  If an individual has a VSTM capacity of 
three, then six exceeds the capacity limit by three items.  Blue fills represent memory.  
According to a fixed-capacity model memory (blue) is allocated according to the 
number of slots available (three).  As a result three stimuli are perfectly stored, and the 
other three are subsequently forgotten. 
 
 

The apparent simplicity of a fixed number of memory slots has been muddled by some 

researchers supporting this view.  For instance, Brady et al. (2011) and Alvarez & Cavanagh 

(2004) suggested that VSTM should be characterized both by the number of items it can store 

(capacity) but also by the fidelity of storage.  This emphasis on fidelity has arisen from findings 

demonstrating that VSTM capacity differs based on stimulus type (e.g. Alvarez & Cavanagh, 

2004; Eng et al., 2005).  While one group (Eng et al., 2005) indicates that stimulus differences 

in capacity can be eliminated with additional viewing (study?) time, Alvarez & Cavanagh 

(2004) proposed that to adequately model VSTM, one must create a model that incorporates 

both visual information (stimulus complexity) and a limited number of storage slots.  

Rouder et al. (2008) added yet additional parameters of attention to “salvage” the fixed-

capacity model.  In lieu of adding parameters to rescue the fixed-capacity model,is it possible 

to account for the findings of VSTM experiments with a simpler solution? 

A promising and simpler model of VSTM limitations is the continuous-resource model 

of Wilken & Ma (2004).  Rather than modeling memory as a discrete entity of a few slots, the 

continuous-resource model states that memory is a continuous-resource that can be allocated 

to many stimuli.  A visual conceptualization of this is displayed in Figure 2.2. 
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Figure 2.2: Continuous-Resource Model of VSTM.  Black box outlines represent visual 
stimuli to be remembered.  Blue fills represent memory.  Memory is distributed among 
all items, but there is not enough resource to perfectly store all six stimuli. 
 
 
 Instead of proposing a discrete limit in terms of number of stimuli (capacity), the continuous-

resource model proposes that memory should be distributed among all stimuli, but with 

increasing numbers of stimuli there is less resource per stimulus.  A reduction in resource per 

stimulus with increasing display size results in increasing noise in those memory 

representations.  The fidelity of the representation of each item is decreased.   An obvious 

extension is that complex stimuli would require more resource per stimulus, thereby resulting 

in the performance differences based on stimulus type, a result found in previously discussed 

studies (e.g. Eng et al., 2005; Alvarez & Cavanagh, 2004). 

 The continuous-resource model is based on signal-detection theory (e.g. Green & 

Swets, 1996, & Macmillan & Creelman, 2005), the predominant theory for how discriminations 

are made.  The model sees VSTM as a matter of discriminating memory for an item from 

noise.  The model uses d’ from signal detection theory as a measure of memory sensitivity 

(Figure 2.3).  In change detection, the model posits that each stimulus in the sample display is 

represented with noise in memory.  The noise in the memory representation can lead to 

perceived changes in both test stimuli (although only one has in fact changed).  In order to 

make a decision as to which stimulus changed, the subject must compare the perceived 

changes to zero.  The probability of each item being the changed stimulus is represented by a 

Gaussian curve and d’ or memory sensitivity corresponds to the ability to distinguish between 

the two curves and identify the item which has actually changed.    
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Figure 2.3: Memory Sensitivity – d’. The signal (d’) is the distance between the means of 
the probability distributions for change in each item in the test display.         
 
 
 In a series of two experiments, human subjects were tested using the change detection 

task.   We first sought to determine if our test parameters would yield similar results to studies 

published previously.  We tested these subjects with similar parameters to what would later be 

used with monkeys in order to facilitate a cross-species comparison (see Chapters 4 & 5).  In 

the second experiment, four different types of stimuli were tested in order to investigate the 

contentious role of stimulus type in VSTM.   

 

EXPERIMENT ONE 

Methods  

Subjects 

The six subjects ranged in age from 22-32 (mean age 26.3) and there were five 

females and one male.  The subjects visited the lab for a total of eleven 1-hour sessions.  
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These sessions were part of a larger study, and only five of these sessions included the test 

trials presented in this experiment.  The subjects were compensated $10 per 1-hour session.  

All procedures were approved by the University of Texas Health Science Center at Houston 

Institutional Review Board.   

Apparatus 

 Human subjects were tested in an experimental room with a PC computer.  The 

computer’s monitor (17” EIZO) was on a desk in the room and was equipped with an infrared 

touch-screen (17-inch Unitouch; ELO, Round Rock, TX).  The subjects were provided with 

feedback by two twenty-five watt light bulbs that were mounted on the wall behind the 

subjects.  The green light was illuminated for 1 s following correct responses and the red light 

was illuminated for 1 s following incorrect responses.  The lights were operated by a computer-

controlled relay interface (Model PI0-12; Metrabyte, Taunton, MA).  Microsoft Visual Basic 6.0 

was used to create custom software which created, controlled and recorded experimental 

sessions.  The monitor was controlled by a video card (ATI graphics adaptor). 

Stimuli 

 The stimuli were 6 different colored squares (aqua, blue, green, magenta, red, yellow) 

and 976 different clip art images.  The six colored squares and 12 example clip art images are 

shown in Figure 2.4.  The RGB 24-bit values for the colored squares were aqua – 0, 255, 255; 

blue – 0, 0, 255; green – 0, 255, 0; magenta – 255, 0, 255; red – 255, 0, 0; yellow – 255, 255, 

0.  The colored squares were randomly presented in 16 possible locations (defined by points 

on an invisible 4 by 4 grid) and the clip art items were randomly presented in 20 possible 

locations (defined by points on two invisible concentric circles).  In both cases, the stimuli 

subtended a visual angle of 1.3 degrees.     
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Figure 2.4. Colored Squares and Subset of Clip Art Stimuli.  Top Row: Aqua, Blue, 
Green, Magenta, Red, and Yellow Colored Squares.  Middle Row:  Battle Cruiser, 
Football Helmet, Perfume Bottle, Jack-in-the-Box, Dinosaur, and Silly Face Clip Art 
Objects.  Bottom Row:  Top Hat, Floral Arrangement, Airplane, Wooden Cart, Burning 
Bush, and Jet Ski Clip Art Objects. 
 
Test Procedures 

 The subjects were tested with 150 trials of colored squares (30 trials each of display 

sizes 2, 4, 6, 8, 10) and 189 trials of clip art (30 trials each of display sizes 2 and 4, and 43 

trials each of display size 6, 8, and 10).  The viewing time in both conditions was 1000 ms.  

The delay for colored squares was 900 ms and the delay for clip art was 1000 ms.  In both 

cases the intertrial interval (ITI) was 2000 ms. Colors and clip art were tested in separate 

sessions, but all display sizes were intermixed within a session.  As shown in Figure 2.5, trials 

began with the presentation of the sample display for 1000-ms.  Following the delay (900 or 

1000-ms) two stimuli were presented in the test display.  One stimulus matched an item 

presented in the sample display in both identity and location.  The other stimulus had changed 

in identity.  Using the touchscreen, subjects were instructed to touch the stimulus that they 

thought had changed.   
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Figure 2.5.  Change Detection Task Design.  Figure shows two clip art trials.  Objects 
and displays are not to scale with those used in the experiment. 
 
Analysis, Results, & Discussion    

 As shown in Figure 2.6, performance decreased as display size increased for both 

colored squares and clip art stimuli.  A repeated-measures analysis of variance (ANOVA) of 

display size × object type showed a significant effect of display size [F(4,20) =24.05, p < 

0.001].  There was not a significant effect of object type.   
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Figure 2.6: Percent Correct by Stimulus Type and Display Size for Colors and Clip Art.  
Error bars represent standard error of the mean. 
  

 Estimating capacity. Percent correct data was used to estimate visual short-term 

memory capacity using a formula developed by Eng et al. (2005).  This formula (Equation 2.1) 

takes in the empirical accuracy (A) and the display size presented (N) to solve for capacity (C) 

at that display size. 

 

Equation 2.1:               

 

 

As per Eng et al.’s (2005) method, each individual subject’s capacity for each stimulus type 

was estimated by taking the mean of their capacities for each display size (shown in Figure 
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2.7).  Capacity estimates from the display size of two were not included in the mean because 

two is thought to be less than the average human subject’s capacity and would have thus 

lowered the overall estimate.  Mean capacity estimates were 2.46 ± 0.35 for colored squares 

and 2.78 ± 0.39 for clip art.    
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Figure 2.7: Capacity by Stimulus Type and Display Size.  Error bars represent standard 
error of the mean.   
  

Continuous-Resource Model.  The results were analyzed according to the continuous- 

resource model.  This model represents memory performance in terms of d’ (from signal 

detection theory).  d’ is a measure of memory sensitivity and the formula to calculate d’ is 

shown in Equation 2.2 (Macmillan & Creelman, 2005).  H is the hit rate, and FA is the false 

alarm rate.   
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Equation 2.2:      

 

 The difference of the z scores of the hits and false alarms are divided by the square 

root of 2 because the task is a two-alternative forced-choice task (2AFC) and there are two 

ways to make a correct response: by remembering that one is the same as the sample display 

(and picking the other) or by noticing the object that has changed and choosing it.  Hits and 

false alarms were defined based on stimulus location in the test display.  Locations were 

numbered from 1 to 16 (colors) or 20 (clip art) as the locations went from left to right and then 

down into the row below, and so on.  A hit was defined as a correct response to the lower 

numbered location in the test display.  So if test stimuli were displayed in locations 2 and 9 and 

the stimulus in 2 was the changed object, a correct response to location 2 would constitute a 

hit.  A false alarm was defined as a response to the lower numbered location when that 

location did not contain the changed item.  The definitions of a “hit” and a “false alarm” are 

arbitrary but equivalent to the obverse.   d’ values for each stimulus type and display size are 

plotted in Figure 2.8.   
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Figure 2.8: Power Law Fits for d’ for Colors and Clip Art.   

 

 The d’ values for each stimulus type were fit with power law functions using Microsoft 

Excel 2007.  First, individual subjects’ d’ values were plotted.  These plots were fit with power 

law functions using the trendline function in Excel.  The mean power law functions (displayed 

in Figure 2.8.) were produced by taking the mean of the d’ values produced by each individual 

subject’s best fit power law function (by solving for each d’ using the known display sizes), and 

then fitting a power law to those means, again using the trendline function in Excel.    The 

power law functions were found to provide a good fit to the d’ values (r2 values were 0.75 for 

colors and 0.70 for clip art).  r2 values were obtained by conducting a regression analysis 

comparing all subjects’ combined empirical d’ values to their combined predicted d’ values.  

Predicted d’ values were obtained from individual subjects’ power law fits.  The r2 values of 
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0.75 (colors) and 0.70 (clip art) were found to be highly significant [Colors: F(1,28) = 81.97, p < 

0.0001; Clip Art: F(1,28) = 65.42, p < 0.0001].       

 Not surprisingly, the results of Experiment 1 demonstrate that visual short-term 

memory performance falls as a function of display size.  Memory is worse when there are 

more items to remember.  The capacity measures found here are consistent with values 

published previously using the same procedures.  For instance, Eng et al. (2005) found 

capacity measures of 2.4-2.5 for colored squares, values that are essentially identical to our 

value of 2.46 ± 0.35.    However, the capacity measures obtained in this experiment are 

somewhat lower than the value popularized in the literature of 4±1 (e.g. Cowan, 2001; Cowan, 

2005). However, the procedures of Cowan and others are slightly different than the 

procedures employed here.  These prior studies have often used a “change/no change” 

procedure where the subject is presented with the same number of items in both the sample 

and test display.  In half the trials a change occurs, and in the other half there is no change 

(Alvarez & Cavanagh, 2004).  The subject is asked to judge whether or not a change has 

occurred.  This procedure is potentially easier than the two alternative forced choice task used 

here because the presence of all the sample items in the test display may provide contextual 

cues which enhance VSTM performance.    

While it is important to estimate capacity at multiple display sizes and take the mean to 

get a true estimate of an individual subject’s capacity, there needs to be some amount of 

consistency across capacity measures for varying display sizes.  Interestingly, as shown in 

Figure 2.9 there was considerable within-subject variability in capacity estimates across 

display sizes.  For example, S6’s capacity estimates in the clip art condition ranged from 1.65 

(in the four item display) to 5.29 (in the ten item display).   From the perspective of the fixed 

capacity’s hallmark, the magic number 4 ± 1, it is reasonable to expect that capacity estimates 

across display sizes for an individual subject should fall within one standard deviation of that 

subject’s mean capacity estimate, because for the majority of the population, capacity 
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estimates supposedly fall within one standard deviation of the magic number four.  Thus, 

taking the example of S6, the subject’s mean capacity estimate for clip art was 2.94, such that 

a capacity estimate of 5.29 in the ten item display well exceeds one standard deviation 

(2.94+1.53 = 4.37). Such variability in capacity measures is difficult to reconcile with the 

construct of a capacity-limited storage mechanism.  If visual stimuli are truly stored in a “slot-

like storage system” then why should the capacity of that storage system vary so widely?  The 

variance cannot be attributed to the different display sizes, because the equation used to 

compute capacity (Equation 2.1) takes display size in to account.   
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Figure 2.9: Individual Subject Variability in Capacity Measures for A) Colors and B) Clip 
Art.   
 
 
 Another concern regarding the fixed-capacity model is that the model predicts that 

percent correct at display sizes less than capacity (e.g., 2) should be perfect (100%).  If the 

subject has more than enough slots than needed to accommodate the items in the display 

then they should perform with 100% accuracy.  However, two subjects had less than perfect 
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performance in the easiest two-item display size condition.  S3 was 93.3% accurate (capacity 

of 1.27) for colors and S4 was 96% accurate (capacity of 1.43) for clip art.   

The continuous-resource model provides a good fit to the results of Experiment 1.     

For both the clip art and the colored squares, the r2 values were high, showing that power law 

functions provided a good fit to the group means of d’ values.  In addition, the mean power of 

the power law functions (0.79 ± 0.07) is very similar to the power value (0.74 ± 0.06) reportedly 

recently by Bays & Husain (2008).  Thus, not only does the continuous-resource model 

provide a good fit to the data, but the fit is strikingly similar to one reported by another group 

providing some converging evidence in favor of the continuous-resource model of VSTM.   

 

EXPERIMENT 2 

Methods  

Subjects 

 Seven subjects ranging in age from 23 to 32 (mean age 26) participated in Experiment 

2.  There were five females and two males.  Five subjects had also participated in Experiment 

1.  These subjects participated in a total of 11, 1-hour sessions as part of a larger study.  The 

other two subjects participated in 8, 1-hour sessions, again as part of a larger study.  The 

results presented here are from two 1-hour sessions which all seven subjects completed in 

their entirety.   

Apparatus 

 The apparatus was the same as described in Experiment 1. 

Stimuli 

 In Experiment 2, subjects were tested with four types of stimuli (three of which are 

shown in Figure 2.10); Clip Art (shown in Figure 2.4), Kanji characters, Kaleidoscope images, 

and Snodgrass black and white line drawings.  The Kanji characters and Snodgrass line 

drawings were drawn from a set of 256 stimuli and the clip art and kaleidoscope images were 
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drawn from a set of 976.  The clip art sessions included two of the same sessions tested in 

Experiment 1.  The smaller display sizes (two and four) tested in Experiment 1 were tested in 

a separate  session, and those results will not be included in this experiment.  The stimuli were 

presented in twenty possible locations (defined by points on two invisible concentric circles) 

and subtended a visual angle of 1.3 degrees.     

 

Figure 2.10: Experiment 2 Stimuli.  Top Row: Kanji Characters.  Middle Row: 
Kaleidoscope Images.  Bottom Row: Snodgrass Line Drawings (Envelope, Stool, 
Television, Axe, Mountain, and Necklace). 
 
 
Test Procedures 

 Over the course of two sessions (conducted on different days), subjects were tested 

with 90 trials of each stimulus type (30 each of display sizes 6, 8, 10).  The viewing time and 

delay were both 1000 ms and the intertrial interval was 2000 ms.  All display sizes and 

stimulus types were intermixed within a session.   

 

Results, & Discussion    

 As shown in Figure 2.11, performance decreased as display size increased, for Kanji 

characters, kaleidoscopes, Snodgrass line drawings, and clip art.  A repeated measures 

ANOVA of display size × stimulus type revealed a significant effect of both display size 
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[F(2,12) = 18.5, p < 0.001] and stimulus type [F(3, 18) = 16.412, p < 0.001].  There was not a 

significant interaction.  Subjects performed best with Snodgrass line drawings and clip art and 

performed worst with Kanji characters and kaleidoscopes.   
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Figure 2.11: Percent Correct by Stimulus Type and Display Size for Kanji, 
Kaleidoscopes, Snodgrass, and Clip Art.  Error bars represent standard error of the 
mean. 
 
 
 Estimating capacity.  Capacity measures were calculated using Equation 2.1.  Mean 

capacity limits for each display size and stimulus type are shown in Figure 2.12.  As with 

accuracy, capacity measures were higher for Snodgrass line drawings (mean of 2.73 ± 0.22) 

and clip art (2.55 ± 0.09) than for Kanji (1.59 ± 0.10) and kaleidoscopes (1.39 ± 0.37).   
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Figure 2.12: Capacity Measures by Stimulus Type and Display Size.  Error Bars 
represent Standard Error of the Mean. 
 

A repeated measures ANOVA of display size × stimulus type revealed a significant effect of 

stimulus type [F(3, 18) = 12.93, p < 0.001].  As predicted by the fixed-capacity model, there 

was no significant effect of display size, because capacity measures are supposed to be 

independent of display size.   

 However, once again, as in Experiment 1, there was a good deal of within subject 

variability in capacities for a given stimulus across the three display sizes tested.  As shown in 

Figure 2.13, some subjects showed somewhat stable performance across display sizes, 

whereas others were widely variable.  For instance, when tested with Kanji characters, S2’s 

capacity measures range from 1.62 in the 6 item display size to 4.83 in the 10 item display 

size.  Worse yet, is the finding of negative capacities in the 10 item display size for S3 and S6.  
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Performance of 50% correct (chance performance) at any display size yields a capacity limit of 

0.  S3 and S6 were 43.33 and 40% correct respectively at display size 10, resulting in negative 

capacities.  Finding a capacity limit of 0 or less is conceptually implausible.  Formulas used to 

compute capacity are supposed to take display size into account.  The notion of a fixed-

capacity originates from the desire to understand the limitations of VSTM, and in order to do 

so, one must challenge subjects by testing them in conditions which push the limits of their 

VSTM abilities.  It is a very unsatisfactory finding that performance by some subjects at large 

display sizes is indicative of them having stored nothing in VSTM (as suggested by a capacity 

measure ≤ 0).   
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Figure 2.13: Individual Subject Variability in Capacity Estimates for A) Kanji Characters, 
B) Kaleidoscope Images, C) Snodgrass Line Drawings, and D) Clip Art.  
 
 

A main assumption of the fixed-capacity model seems to fail.  The assumption is that 

capacity measures should be stable across display sizes.  Of the seven subjects tested in 

Experiment 2, six showed capacity measures with differences of 1.5 or greater across display 

sizes for at least one stimulus type.  With capacity measures on average being 2.06 (mean of 

the four stimulus types), a difference in capacity of 1.5 or greater represents a substantial 

change in capacity of 75% or greater for a single stimulus type.  Even taking the perspective of 

a flexible fixed-capacity model (which varies by stimulus type) one cannot reconcile 75% 

changes in capacity across display sizes for any given stimulus type with the notion of a 

capacity limited slot-like storage system.  Such inconsistency questions the very existence of 
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such a system. Taking the example of S2 with Kanji characters, why is it that when the subject 

has six kanji characters to remember there are “slots” for only 1.62 characters, whereas with 

ten display items size, there are “slots” for 4 or more?  Small disparities in capacity measures 

could be attributed to sampling noise, but huge changes such as S2’s near tripling in capacity 

(from 1.62 to 4.83) are incompatible with a slot-like storage system of fixed capacity.  

Our findings also reject the more rigid interpretation of the fixed-capacity model, the 

idea that capacity should not depend on stimulus type / visual complexity, as we found clear 

differences in capacity measures across the four stimulus types tested.  Eng et al. (2005) 

would argue that with longer viewing times, these differences should wash out, and capacity 

measures would equate.  Although we only tested one viewing time (1 second), Eng et al.’s 

claim that capacity measures level out with extended viewing times tells us very little about 

how memory works.  They allowed their subjects to view the sample display for as long as 

they wanted and then concluded that capacity measures were equal after adequate time 

viewing the stimuli.  They proposed that increasing the viewing time allowed subjects sufficient 

time to adequately perceive the objects (thereby improving performance), but since they do 

not report the durations that subjects chose to view the items it is unclear whether the increase 

in viewing time was necessary for perception, or rather more likely provided additional study 

time and/or a reduction in proactive interference from earlier trials leading to enhanced 

performance with difficult stimuli.   Furthermore, in order to directly compare memory for 

different types of stimuli, all other variables must be held constant.  Thus, our finding of 

capacity (and performance differences) across stimulus types is likely a more valid finding 

given that our experiment was more tightly controlled.   

 Continuous-resource model.  As described in Experiment 1, d’ values were computed 

based on the accuracy results presented in Figure 2.11.  The d’ values are plotted in Figure 

2.14.  As shown in the figure, the values were all well fit by power law functions, with high r2 

values (0.87 for Kanji, 0.85 for kaleidoscopes, 0.87 for Snodgrass, and 0.99 for Clip Art), and 
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highly significant p values [Kanji: F(1,19) = 38.27, p < 0.0001; Kaleidoscopes: F(1,19) = 35.66, 

p <0.0001; Snodgrass: F(1,19) = 29.77, p < 0.0001; Clip Art: F(1,19) = 110.23, p < 0.0001]. 
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Figure 2.14.  Power Law Fits for d’ values for Kanji, Kaleidoscopes, Snodgrass Line 
Drawings, and Clip Art.  Error bars represent standard error of the mean. 
 
 
 Thus it seems that the continuous-resource model may provide a better fit to our 

results than does the fixed-capacity model.  The relatively simple predictions of the 

continuous- resource model, that d’ should fall as a function of display size, and that the 

decline in d’ should be well fit by a power law function were met for all four stimulus types 

tested.   

 One advantage of the continuous-resource model over the fixed-capacity model is its 

ties to the neural basis of memory.  While it is difficult to posit a neural mechanism that could 

give rise to a slot-like storage system,  the continuous-resource model’s predictions of noisy 
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representations and probabilistic decisions are very much in line with what is known about 

neurobiological computations in general (e.g., Bays & Husain, 2008; Beck et al., 2008; Ma et 

al., 2006, Ma et al., 2008).  What remains to be seen is whether or not the continuous-

resource model can account for VSTM in another species, the rhesus monkey. 
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CHAPTER 3: TRAINING RHESUS MONKEYS TO PERFORM CHANGE DETECTION 
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Introduction 

 The purpose of this experiment was to train and test rhesus monkeys in the change 

detection task.  In order to hasten the monkeys’ acquisition of the task, they were trained in the 

simplest possible version of the task.  During their initial training, the monkeys had a minimal 

number of stimuli to remember (two), a long time to view and encode the stimuli (5000-ms) 

and a very brief retention delay (50-ms).   

As the task was originally established for use with humans, it was important to 

demonstrate that rhesus monkeys could learn the task, and perform in a way analogous to  

human subjects.  Humans can be instructed to look for all types of changes prior to performing 

the task.  Monkeys, however, must learn the rules through the contingencies of reinforcement.   

Specifically, it was necessary to demonstrate that they understood a concept of “change” as 

evidenced by an ability to detect changes that they were not explicitly trained to detect.  In 

many other behavioral tasks with animals, they are found to learn a strategy which is very 

specific to their training conditions.  One example is the finding of item-specific learning 

strategies in pigeons and monkeys trained to perform a same/different task (e.g. Wright & 

Katz, 2006, Elmore et al., 2009).  Instead of learning the concept of “same” and “different”, the 

animals memorized correct responses to individual pairs of stimuli.  Because a similar 

response memorization strategy could occur with monkeys trained in change detection, we 

tested monkeys with novel colors and shapes, and novel types of change including shape, 

location, and size changes to see if their learning of change would be general. 

In addition, the monkeys were trained with very short delays (50-ms) to enhance 

acquisition, therefore tests were conducted to demonstrate that they were performing the task 

using mnemonic processing as opposed to an attentional capture mechanism (e.g., Cusack, 

2009; Pashler, 1988; Yantis, 1993).   The bottom-up process of attentional capture can occur 

when a stimulus abruptly changes or from the sudden onset or offset of a stimulus.  An internal 

mechanism guides attention to this locus of change.  If the monkeys’ performance could be 
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explained by attentional capture, then they would unlikely be using short-term memory to 

encode the stimuli.   For this test, the monkeys were abruptly (i.e., without gradually increasing 

the delay through training) transferred to sessions composed of trials with variable delays 

ranging from 100 to 6400-ms.  The delays which ranged from 800-ms to 6400-ms are 

considerably beyond the time scale of attentional capture (as studied in humans).  If an 

attentional capture mechanism was responsible for the monkeys’ performance, then 

performance should have fallen abruptly to chance at delays of 800-ms or greater.   

 

Methods 

Animals  

Two adult males rhesus monkeys (Macaca mulatta), M1 and M2, were the subjects.  

M1 and M2 were eight and twelve years old respectively at the start of the study.  Both 

monkeys had prior experience in same/different and list-memory tasks, however these tasks 

were conducted in a different chamber with different stimuli, different display configurations 

and different response templates.  The monkeys were tested five days per week for sessions 

that lasted a maximum of two hours per day.  They were not fed or given water in the morning 

before their session, but were fed a ration of primate chow and water in their home cages after 

the daily session.  On weekends (non-testing days), the monkeys were provided supplemental 

fruits and vegetables.  Animal procedures were in compliance with the National Institutes of 

Health guidelines and were approved by the University of Texas Health Science Center at 

Houston’s Institutional Animal Care and Use Committee.     

Apparatus   

Chambers. Custom-made aluminum test chambers were used to test the monkeys.  

The chambers were 47.5 cm wide × 53.13 cm deep × 66.25 cm high.  Restraints were not 

used; the monkeys were able to move freely within the confines of the test chamber.  A sound 

machine (Homedics, Commerce Township, MI) located outside of the chamber was used to 
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produce white noise to mask extraneous noise.  A 17” computer monitor (EIZO) equipped with 

an infrared touchscreen (Unitouch, ELO, Round Rock, TX) was fitted in the back wall of the 

chamber 30 cm above the chamber floor on which the monkeys sat.  The touchscreen was 

used to detect touch responses to the computer monitor.  On the left side of the back wall of 

the chamber, 14 cm below the touchscreen, was a pellet cup (5.6 cm in diameter, 2.5 cm 

deep) which received delivery of banana pellets (Bio-Serv, 300-mg, Frenchtown, NJ) from a 

pellet dispenser (Gerbrands, G5-120, Arlington, MA) located outside of the chamber. Cherry-

Koolaid was dispensed via plastic tubing to a metal spout located 8 cm below the touch screen 

on the right side of the chamber’s back wall.   

 Stimuli and Display Parameters. The monkeys were initially trained with 4 different 

colored circle stimuli that were 4 cm in diameter.  The RGB 24-bit values for these stimuli 

were: Red – 255, 0, 0; Aqua – 0, 255, 255; Yellow – 255, 255, 0; and Purple – 180, 0, 255. 

Later, during testing, 4 additional colors were added, whose RGB 24-bit values were: Blue – 0, 

0, 255; Green – 0, 255, 0; Magenta – 255, 0, 255; and Orange – 255, 128, 0.  All eight colors 

are shown in Figure 3.1.   

 

Figure 3.1: Colored Circle Stimuli.  Top row: training colors.  Bottom row: test colors. 

 

Novel shapes used for testing included butterfly, club, heart, pentagon, rectangle, star, 

and triangle.  The stimuli were presented within an invisible 4 × 4 matrix on the computer 
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monitor, which was aligned to a clear Plexiglas template placed in front of the monitor.  The 

template had 16-circular 4-cm cutouts that the monkeys were required to reach through in 

order to touch the stimuli.   

 Experimental Control.  Microsoft Visual Basic 6.0 was used to create, control and 

record experimental sessions.  An ATI graphics adaptor video card was used to control the 

monitor.  The green light, pellet dispenser, and juice system were controlled and operated by a 

computer-controlled relay interface (Model PI0-12; Metrabyte, Taunton, MA).   

Training Procedures.  Because both monkeys were naïve to the change detection 

procedures, they began with a pretraining procedure designed to acclimate them to the new 

chamber and template.  They completed 96-trial pretraining sessions in which achromatic 

circular stimuli were randomly presented (1 circle per trial) for 3 seconds in the 16 positions on 

the invisible by 4×4 grid.  On each trial, the circle would change from white to grey or from grey 

to white after a 50-ms delay.  Monkeys were provided banana pellets or Cherry Kool-aid for 

making a touch response to the circle after it had changed.  Pretraining trials were separated 

by a 15-second intertrial interval (ITI).  During the ITI, two green (25 watt) light bulbs located 

outside of the chamber provided illumination through a small gap between the touchscreen 

and the monitor.   

M1 was averse to the new chamber and did not respond reliably until he had 

completed 10 sessions of pretraining.  During this time, extensive hand shaping (reinforcing 

successive approximations to the required response, controlled by the experimenter) was 

required to encourage responding.  M1 also completed three sessions of the familiar 

same/different task in the new chamber (with the template removed) which improved his 

responding.  In the last phase of pretraining, the achromatic circles were replaced with the four 

training colors (red, yellow, aqua, purple).  M1 then completed three 96-trial sessions wherein 

a single randomly selected color was presented for 3000 ms and then changed to one of the 

three other colors after the 50ms delay.  The first response following the change was 
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reinforced.  The other monkey, M2, was more willing to make responses in the new chamber.  

He only required two pretraining sessions, one with achromatic circles and one with colored 

circles before starting change-detection training.   

Change detection training began immediately following pretraining.  Figure 3.2 shows 

two examples of change-detection trials.  The trials commenced with a 5000-ms presentation 

of two different colored circles in two randomly selected positions on the invisible 4×4 matrix 

(sample display).  The trials were counterbalanced such that there was an equal likelihood of 

each color appearing as a sample stimulus or changed-to color.  Following a 50-ms delay (with 

a blank screen), the two circles reappeared, but one had changed in color.  

 

 

 

Figure 3.2: Progression of the Change Detection Task.  Two trials are shown.   
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The monkeys’ task was to touch the circle that had changed color and banana pellet 

and Cherry Kool-aid reinforcers were provided pseudorandomly following correct responses.  

The pellet and juice ratios were determined based on the monkeys’ preferences, so M1 

received juice on 70% of correct trials and pellets on the other 30% whereas M2 received 50% 

juice and 50% pellets.  All other experimental details were the same as described for 

pretraining including session length (96 trials).  The monkeys were allowed two hours to 

complete a session in a given day.  If they did not complete the session within two hours, it 

was continued the following day, but this rarely occurred.   

During the course of acquisition, several procedural manipulations were used in an 

attempt to hasten acquisition of the task.  Both monkeys had a shorter 0-ms delay for a 

maximum of 14 days during training.  M2 experienced this short delay early in acquisition 

period whereas M1 had the 0-s delay introduced in the middle of his training.   In addition, M2 

had a shorter 5-s ITI during the first 48 training sessions.  Both monkeys had a correction 

procedure, where incorrect trials were repeated until a correct response was made.  The 

correction procedure was started on the third session of training and continued until the 

monkeys achieved ≥ 80% correct on a session.  Sessions with 0-ms delays were not counted 

towards this 80% criterion.  After the criterion was met, the correction procedure was removed 

and training continued until the monkeys again performed 80% correct on a session, at which 

point they met criterion for acquisition, and could begin testing.         

Tests 

 Color transfer. Once criterion for acquisition had been met, monkeys were tested for 

transfer to novel colors over the course of six consecutive test sessions.  Each session was 96 

trials in length with twelve test trials composed from a set of four novel colors (blue, green, 

magenta, and orange) randomly dispersed throughout.  The other 84 trials were baseline 

trials, composed from the training colors.  On test trials, each of the novel color stimuli 

appeared as one of the two circles in the sample array on six trials and appeared as the 
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change-to stimulus in three of the six test trials where that color was not in the sample array.  

Correct responses on both test and baseline trials were always reinforced.   

 Variable delay testing. After the novel color transfer test, the four novel colors were 

incorporated into training trials, and the monkeys were trained with all eight colors with the 

correction procedure.  Training continued until the monkeys performed ≥ 80% correct, at which 

point the correction procedure was removed.  The monkeys then continued training until they 

once again performed ≥ 80% correct.  Then, the monkeys were tested with novel variable 

delays over the course of 24 sessions.  The original training delay was intermixed with novel 

delays of 100, 200, 400, 800, 1600, 3200, and 6400-ms such that there were twelve trials of 

each delay per session.  Reinforcement was provided following all correct responses.  

 Color-change detection with novel shapes.  Three tests evaluated the monkeys’ ability 

to judge color changes with novel shapes.  Each test lasted six sessions, with fourteen test 

trials per session interleaved with 82 baseline training trials.  Example trials from all three tests 

are depicted in Figure 3.3.  In Shape Test 1, one novel shape was displayed in two different 

colors on a given trial.  After the delay, one of the stimuli changed in color.  In Shape Test 2, 

two different shapes were displayed in two different colors and one changed color after the 

delay.  Finally, in Shape Test 3, two different shapes were displayed in two different colors in 

the sample display, and after the delay, one changed in both shape and color.   
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Figure 3.3: Color Changes with Novel Shapes Trial Types (Shape Tests 1-3).    

 

Shape-change detection.  In Shape Tests 4, 5A, and 5B, the monkeys were tested to 

see if they would spontaneously transfer to shape changes after having only been trained with 

color changes.  Example trials from all three tests are depicted in Figure 3.4. Both Tests 4 and 

5 were tested for six sessions with fourteen test trials per session.  However, in Test 5 there 

were two trial types (5A and 5B) with seven trials of each type tested per session.  Trials in 

Shape Test 4 included two shapes presented in two different colors, and then following the 

delay, one changed shape (but not color).  In Shape Test 5A, two stimuli of the same shape 

and color were presented in the sample display, and then after the delay one changed in 



 

 

49 

shape.  Lastly, in Shape Test 5B, two different shapes were displayed in the same color, and 

after the delay, one changed shape.  

  

 

Figure 3.4: Shape Change Trial Types (Shape Tests 4, 5A, 5B). 

 

Location change detection. The monkeys were tested for seven sessions (with twelve 

test trials per session) with changes in location.  In this test, two colored circles were 

presented in the sample display, and after the delay, one of the circles moved to a new 

location (Figure 3.5).  The monkeys received reinforcement for touching the circle that had 

changed location. 
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Figure 3.5: Location Change Detection Test Example Trial 

 

Size change detection. The monkeys were next tested with 25% changes in size for six 

sessions (with fourteen test trials per session).  The colored shapes were used in this test and 

after the delay, one shape either increased or decreased in size by 25% (seven trials of each 

per session).  Example trials are shown in Figure 3.6.  The monkeys received reinforcement 

for touching the shape that had changed size. 

 

Figure 3.6: Size Change Detection Test Trial Types 
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Results 

Acquisition 

 M1 and M2 met criterion for acquisition in 53 and 51 sessions respectively.  As shown 

in Figure 3.7, both monkeys showed a rise in performance to 81% correct (early on for M2 and 

later for M1), but this occurred during their training with a 0-ms delay and was not counted 

towards the acquisition criterion.  
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Figure 3.7: Acquisition of the Change Detection Task.  

 

Interestingly, both monkeys frequently made touch responses to the sample display 

prior to the change (mean of 2.49 ± 0.32 times per trial).  An analysis was performed to 

determine if touch responses to the sample array influenced the monkeys’ choices after the 

stimulus change.  Specifically, the analysis questioned whether performance would differ if the 
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monkey had been touching the object that would change or the object that would remain 

unchanged.  Interestingly, the monkeys were different in this regard.  M2 did not perform 

differently based on the object he had been touching prior to the change (81.7% for changed 

item vs. 83% for unchanged item; paired sample t-test, t(2) = 0.227, p = 0.841).  M1, however, 

performed better (88.4% correct) when he had been touching the unchanged item vs. the 

changed item (74.2% correct).  This difference was significant (paired samples t-test, t(2) = 

7.407, p = 0.02).     

Color Transfer 

 As shown in Figure 3.8, both monkeys showed transfer equivalent to baseline when 

tested with novel colors as determined by paired samples t-tests (M1: t(5) = 1.09, p = 0.33; M2 

t(5) = 0.48, p = 0.65).  M1 and M2 averaged 72.2% and 83.3% correct respectively with novel 

colors and 78.8 and 80.7% correct respectively on baseline trials.  This good transfer with 

novel colors was not the result of learning across the six test sessions, because first session 

performance for M1 and M2 was 83.0% and 92.0% correct respectively both of which are 

significantly greater than chance (binomial tests, ps ≤ 0.01).   
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Figure 3.8: Novel Color Transfer Test Performance.  Error bars represent standard error 
of the mean.   
 

Variable Delay Testing 

 Figure 3.9 shows performance from the variable delay test.  Statistical analyses 

indicated the presence of a significant effect of delay for both monkeys [Separate one-way 

repeated measures ANOVAs: M1 – F(7,23) = 8.02, p < 0.001; M2 – F(7,23) = 9.20, p < 0.001].  

In short, performance decreased as a function of delay, as delay increased from 50 to 6400 

ms.  Correlation analyses demonstrate that learning did not occur across the 24 test sessions, 

as mean performance was not significantly correlated with session for either monkey (M1: r = -

0.31, p = 0.14; M2: r = 0.18, p = 0.39).  Single sample t-tests against chance (50%) were 

conducted to determine if performance was significantly greater than chance at all delays 

tested, which indeed they were (all ts(23) ≥ 2.46, all ps ≤ 0.02).  To summarize, the analysis 
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demonstrates that the monkeys’ performance was stable across sessions and significantly 

greater than chance at all delays.  This indicates that training was not necessary for the 

monkeys to perform change detection at delays longer than their 50-ms training delay.   
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Figure 3.9: Variable Probe Delay Test Performance.  Error bars represent standard error 
of the mean.   
 

 Color-change detection with novel shapes.  The results of the three color-change 

detection with novel shapes tests (Shape Tests 1-3) are shown in Figure 3.10. Both monkeys 

performed significantly better on baseline trials than on transfer trials in Shape Test 1 [paired 

sample t-tests; M1: t(5) = 3.92, p = 0.01; M2: t(5) = 2.49, p = 0.05].  In fact, neither monkeys’ 

transfer performance was statistically better than chance (50%) [single sample t-tests: M1: t(5) 

= 0.56, p =0.6; M2: t(5) = 0.34, p = 0.75].  In Shape Test 2, M1’s transfer performance was not 

significantly different from baseline [t(5) = 0.68, p = 052].  M2, however, performed significantly 
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better on baseline trials than on transfer trials [paired sample t-test, t(5) = 2.82, p = 0.04].  

M2’s transfer performance in Shape Test 2 (61.9%) was significantly better than chance [t(5) = 

2.57, p = 0.05].   Neither monkey showed a significant difference in performance between 

baseline and transfer in Shape Test 3 [M1: t(5) = 1.08, p = 0.33; M2: t(5) = 1.60, p = 0.17].  

 

Shape Test 1 Shape Test 2 Shape Test 3

P
e

rc
e

n
t 
C

o
rr

e
c
t

20

40

60

80

100 Baseline

M1 Transfer

M2 Transfer

 

Figure 3.10: Color Change with Novel Shapes Performance.  Error bars represent 
standard error of the mean. 
  

Shape-change detection. The results of the shape-change detection tests (Shape 

Tests 4 & 5) are displayed in Figure 3.11. In Shape Test 4, both monkeys showed 

performance equivalent to baseline (full transfer) on transfer trials [M1: t(5) = 0.89, p = 0.41; 

M2: t(5) = 0.49, p 0.64].  The monkeys again did not show significant differences between 

baseline and transfer trials in Shape Test 5A [M1: t(5) = 2.29, p = 0.07; M2: t(5) = 0.44, p = 



 

 

56 

0.68].  However, both monkeys performed significantly worse on transfer trials than on 

baseline in Shape Test 5B [M1: t(5) = 3.74, p = 0.01; M2: t(5) = 6.45, p = 0.001].  M1’s 

performance (54.76%) was not significantly different from chance [t(5) = 1.10, p = 0.32]. M2’s 

performance (61.87%) was significantly better than chance [t(5) = 4.03, p = 0.01]. 
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Figure 3.11: Shape Change Test Performance.  Error bars represent standard error of 
the mean.  
 
 

Location-change detection. As shown in Figure 3.12, in the Location Change Test, both 

monkeys’ transfer performance was not significantly different from baseline [M1: t(6) = 1.28, p 

= 0.24; M2: t(6) = 0.65, p = 0.54].   
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Figure 3.12: Location Change Test Performance.  Error bars represent standard error of 
the mean. 
  

Size-change detection.  As shown in Figure 3.13, both monkeys performed significantly 

worse on size change trials than on baseline trials [M1: t(5) = 5.89, p = 0.002; M2: t(5) = 5.34, 

p = 0.003.  In fact, M1’s size change performance (55.95%) was not significantly different from 

chance (50%) [single sample t-test, t(5) = 1.05, p = 0.34].  However, M2’s size change 

performance (61.90%) was significantly better than chance [t(5) = 4.03, p = 0.01].   
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Figure 3.13: Size Change Test Performance.  Error bars represent standard error of the 
mean.   
 

Discussion 

 Both monkeys learned to perform the task and met criterion for acquisition in a similar 

number of sessions (51 and 53 sessions).  This time to acquisition is comparable to what has 

been shown in other monkey memory tasks like same/different and delayed matching to 

sample (e.g., Katz et al., 2002; Mishkin & Delacour, 1975; Wright et al., 2003; Wright, 1999) .  

Both monkeys also showed full transfer (transfer equivalent to baseline) to novel color stimuli 

and mostly good transfer to color changes with novel shapes, demonstrating that learning was 

not tied to the four different colored training circles.  However, it should be noted that the 

monkeys performed at chance (52.8%) in Shape Test 1, which was their first experience with 

novel shapes.  The monkeys may have been averse to the novelty of the shapes, or confused 
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by the sample displays which included two stimuli of the same color (the monkeys had never 

seen a sample display with both stimuli presented in the same color before this). However, 

they quickly overcame this aversion as they both performed very well in Shape Tests 2 and 3 

which also tested them for their ability to detect color changes with novel shapes. 

Importantly, when the monkeys were abruptly tested with delays longer than their 50-

ms training delay (ranging from 100 to 6400-ms), they performed above chance at all delays.  

The 50-ms delay falls within the time frame of attentional capture as studied in humans.   

However, the monkeys’ performance did not fall abruptly as delays increased beyond 800-ms, 

which are delays longer than the limits of attentional capture (Cusack et al., 2009; Pashler, 

1988).  In fact, their performance gradually declined as the delay interval increased, a result 

that would be expected in a memory task.  Thus, it is highly unlikely that the monkeys’ 

performance of the change detection task was mediated by an attentional capture mechanism, 

but rather must have been mediated by VSTM.   

In addition, tests with shape changes and location changes showed that the monkeys 

could readily transfer to novel types of change.  This was a particularly important result 

because it demonstrated that despite the fact that the monkeys were only explicitly trained to 

detect color changes, they were able to spontaneously transfer their knowledge of the task to 

the novel changes of shape and location.  Transfer was equivalent to baseline in Shape Tests 

4 and 5A and in the location change test.  It should be noted, however, that both monkeys did 

not perform very well in Shape Test 5B.  It is unclear why the monkeys had trouble in this test, 

as they had already demonstrated good performance with shape changes in Shape Tests 4 

and 5A. 

The monkeys did not transfer well in the size change test, their performance was at 

(M1) or near (M2) chance.  The size change test was atypical compared to the others tests 

because it was the only test in which identical (in shape and color) stimuli were presented in 

the test display in identical locations as the sample display.  Furthermore, the difficulty of this 
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test may have been confounded by the somewhat subtle (25% increase/decrease) size 

changes used.  In a follow-up test with M1 using 50% size changes, his performance was 

73.57% which was not significantly different from his baseline performance of 81.67% [t(5) = 

1.07, p = 0.33].  Thus, it seems that through some combination of the additional experience 

and more salient size changes, at least one monkey was able to accurately transfer to size 

changes.   

To summarize, this experiment demonstrated that monkeys readily learned to perform 

the change detection task, performed it using short-term memory, and developed some 

generalized concept of “change” as evidenced by their good performance with novel changes.  

These findings confirm that the change detection task originally developed for use with 

humans is also a suitable memory task for rhesus monkeys.  Although the monkeys had to 

learn the rules of the task through the contingencies of reinforcement, they nonetheless 

demonstrate the ability to perform the task in an analogous way to humans.  In addition, their 

ability to perform with multiple types of change is advantageous, as most human change 

detection tasks employ multiple stimulus/change types like colored squares, random polygons, 

and Snodgrass drawings (e.g. Alvarez & Cavanagh, 2004; Eng, Chen, & Jiang, 2005).  Thus, 

a direct comparison of human and monkey change detection performance is possible, using 

similar parameters to those tested previously in the literature. 
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CHAPTER 4: VISUAL SHORT-TERM MEMORY IN RHESUS MONKEYS 
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Introduction 

Change detection is a task that is imminently suitable for studies of animal memory.  

We demonstrated in Chapter 3 that rhesus monkeys readily learned the change detection task 

and solved the task by looking for change in a general sense, indicating that they perform the 

basic change detection task in a manner analogous to a human subject.  Change detection 

has been shown to test non-verbal, visual memory such that a lack of verbal processing by 

rhesus monkeys should not confer a disadvantage relative to humans (Luck & Vogel, 1997; 

Alvarez & Cavanagh, 2004).  Also, two other groups have tested rhesus monkeys with change 

detection tasks and found good performance with large memory displays (Heyselaar et al., 

2011; Buschman et al., 2011).  However, neither of these groups compared their monkey 

results to human change detection performance.   

 Testing rhesus monkeys in change detection also provides the opportunity to evaluate 

the two competing models of VSTM, the fixed-capacity model and the continuous-resource 

model for the first time in a non-human species.  A finding of converging evidence from both 

monkeys and humans favorable to one model might improve our understanding of VSTM in 

general.  Improving our conceptual understanding of VSTM could guide future investigations 

that seek to understand the neural basis of VSTM, and many of these studies could be carried 

out in rhesus monkeys.  They are the premier medical model for humans, and invasive studies 

such as lesions, electrophysiological recordings, inactivation, stimulation, and pharmacological 

and neurotransmitter manipulations could be performed on rhesus monkeys.    

Studies with rhesus monkeys performing visual list memory tasks have shown 

qualitative similarities between monkeys and humans.  Both species show serial position 

functions with primacy and recency effects that depend on the delay (Wright et al., 1985; 

Wright, 2007).  Possibly, rhesus monkeys would show qualitative similarities to human in 

change detection as well. Thus, the purpose of this experiment was to test rhesus monkeys in 

the change detection task with similar parameters to those tested with humans in Chapter 2 
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(Experiment 1).  The same rhesus monkeys (Chapter 3) were tested with the same stimuli and 

some of the same display sizes used to test human subjects in Chapter 2.   

      

Methods  

Subjects  

The subjects were the two adult male rhesus monkeys (described in Chapter 3).  All 

animal procedures were in compliance with the National Institute of Health guidelines and 

were approved by the University of Texas Health Science Center at Houston Institutional 

Animal Care and Use Committee. 

Apparatus 

 The apparatus was the same as described in Chapter 3. 

Stimuli 

 The stimuli were eight 4-cm diameter colored circles (aqua, blue, green, magenta, 

orange, purple, red, yellow) and 976 different clip art images.  Example clip art images are 

shown in Chapter 2 and the colored circles are displayed in Chapter 3.  The stimuli were 

displayed on the same 4×4 grid described in Chapter 3 and subtended a visual angle of 

approximately 5.75 degrees based on the average distance of the monkey from the screen.  

Training and Test Procedures 

 Colored circles. Following the completion of the training and testing sessions described 

in Chapter 3, the monkeys were trained for 65 sessions (M1) and 18 sessions (M2) with 

increasingly larger display sizes.  They first trained with sessions containing three items per 

displays (57 sessions for M1, 10 sessions for M2).  M1 was trained with many more sessions 

because he had started the experiment earlier than M2 and was training on 3-item displays 

during the period in which the software for testing intermixed display sizes was developed.  

Performance was comparable between the two monkeys despite the difference in training 

duration as M1’s final day of training performance was 82% correct and M2’s performance was 
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77%.  They were next trained with four sessions of intermixed trials with display sizes of 2, 3, 

and 4 and then four sessions of intermixed trials with display sizes of 2, 3, 4, and 5.  Finally, 

they were tested for four sessions with display sizes of 2, 3, 4, 5, and 6.  The results from the 

display sizes of 2, 4, and 6 are analyzed here.  Across the four sessions, the monkeys were 

tested with a total of 76 trials per display size 2, 4, and 6.    

 Clip art.  After the completion of the colored circles tests, the monkeys were gradually 

transitioned to performing the task with clip art images.  They were first tested for six sessions 

with twelve clip art transfer trials inserted, as in the transfer tests of Chapter 3.  Both monkeys 

transferred well; baseline performance for M1 and M2 was 85.3% and 85.2% correct 

respectively and transfer performance was 74.8% and 69.4% correct respectively.  However 

transfer performance was not statistically equivalent to baseline [M1: t(5) = 3.57, p = 0.02; M2: 

t(5) = 3.20, p = 0.02], such that additional training with clip art images was necessary.    

Following the transfer test, the monkeys were gradually transitioned to performing the task 

with all clip art images over the course of three sessions.  Across these three 96-trial sessions, 

the number of clip art trials was increased from 32 to 48 to 64 and the number of colored circle 

trials was decreased accordingly.  On the fourth session, the monkeys began performing the 

two-item display change detection task entirely with clip art images.  After 11 sessions (M1) 

and 10 sessions (M2) the display sizes were again gradually increased over the course of 

three sessions.  During the course of these training sessions both monkeys achieved a 

performance criterion of 80% correct or greater.  The display size increase occurred more 

quickly than with colored circles because the monkeys were accustomed to large display sizes 

at this point.  On the fourth session, testing with display sizes of 2, 4, and 6 clip art objects 

began.   

The different display sizes were randomly intermixed.  The images were selected 

without replacement such that they were trial unique for two sessions.  A total of eighteen 96-

trial sessions were tested.  A total of 144 trials per display size were included in the analysis.  
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In these trials the monkeys had a viewing time of 5000 ms and a 50-ms delay as in their 

training in Chapter 3.  Other trials with viewing times ranging from 1000 to 4500 ms and delays 

ranging from 200 to 1000ms were tested but were not included in the analysis of this 

experiment in order to make it comparable to the test conducted with colored circles.      

  

Results 

 As predicted, the monkeys’ performance was high with two-item displays but fell as the 

display size increased for both colored circles and clip Art (Figure 4.1).  Separate repeated-

measures ANOVA of display size × stimulus type showed a significant effect of display size for 

both monkeys [M1: F(2,6) = 20.258, p = 0.002; M2: F(2,6) = 12.469, p= 0.007). In addition, M2 

showed a significant effect of stimulus type [F(1,3) = 11.14, p = 0.04], but M1 did not.  M2 

performed better with clip art stimuli than with colored circles.    
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Figure 4.1.  Percent Correct in Change Detection Task for A) Colored Circles and B) Clip 
Art.  Error Bars Represent Standard Error of the Mean. 
 
  

Estimating capacity.  Capacity measures were calculated using Equation 2.1 (Chapter 

2).  Mean capacity estimates for each stimulus type and display size are displayed in Figure 

4.2.  Mean capacity for colors was found to be 0.71 ± 0.24 and mean capacity for clip art was 

1.02 ± 0.19.  Thus the monkeys’ VSTM capacity was found to be approximately one item or 

less.   
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Figure 4.2: VSTM Capacity Estimates for Rhesus Monkeys with Colored Circles & Clip 
Art.   
 
 Color analysis.  Ten 96-trial sessions of two-item display change detection were 

analyzed to determine the extent to which the monkeys confused similar colors.  These data 

were collected before the tests with two, four, and six item displays described above.  This 

analysis sought to determine whether or not the monkeys were more likely to make mistakes 

when one color changed to a similar color vs. when one color changed to a less similar color.  

In order to test this, a multidimensional scaling analysis was performed.  This algorithm works 

by transforming the 8-dimensional accuracy matrix (8 colors) into a 2-dimensional space.  This 

2-dimensional perceptual space displays the colors on two axes which maintain the distance 

structure in the original matrix as well as possible.  Thus, in reading the plot (Figure 4.3) the 

arbitrary units of “distance” are tied to performance when one color changed to another.   
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Figure 4.3.  Multidimensional Scaling of Performance for Sample Colors Changing to 
Test Colors.   
 
 
Small distances between colors indicate that performance was low when one color changed to 

another.  For instance, M1 performed at chance when magenta changed to purple and vice 

versa (52% correct).  Likewise, M2’s performance was near chance when blue changed to 

purple and vice versa (57%).  However, M1’s performance was perfect when red changed to 

green and vice versa (100% correct) and M2’s performance was perfect when green changed 

to orange and vice versa (100% correct).  A large proportion of the variance is accounted for 

by color confusion as r2 values were 0.61 for M1 and 0.56 for M2.  Stress values were 0.303 

and 0.332 for M1 and M2 respectively.       
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 Continuous-Resource Model.  As with humans, we computed d’ values from the 

monkeys’ performance using Equation 2.2.  Mean d’ values for both stimulus types are plotted 

in Figure 4.4.   
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Figure 4.4: Power Law fits for d’ for Colored Circles and Clip Art. 

 

Power law functions were generated as described in Chapter 2.  For both stimulus 

types the power law functions provided a good fit to the d’ values; r2 values were 0.98 and 0.99 

for colored circles and clip art respectively.  These r2 values were extremely significant 

[Colored Circles: F(1,4) = 165.76, p = 0.0002; Clip Art: F(1,4) = 11143.51, p < 0.0001]. 

 Comparison to Human Subjects.  The data from rhesus monkeys were compared to 

the data collected from human subjects in Chapter 2, Experiment 1.  Overall performance is 

compared in Figure 4.5.  On average, humans outperformed monkeys by 16.5% on clip art 
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trials and by 22.0% on colored circle trials.  A repeated-measures ANOVA of display size × 

stimulus type × species was conducted.  This ANOVA demonstrated that there was a 

significant effect of display size [F(2,24) = 39.045, p < 0.001], a significant effect of species 

[F(1,12) = 60.159, p = 0.001], as well as a significant interaction of stimulus type and species 

[F(1,12) = 6.679; p = 0.024].  The interaction results from the fact that one monkey (M2) 

performed significantly better with clip art than with colors.   
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Figure 4.5: Comparison of Change Detection Performance by Humans and Rhesus 
Monkeys with Colors and Clip Art. 
 
 
 Capacity Estimates.  Capacity estimates between the two species were also compared 

(Figure 4.6).  Mean capacity estimates for humans were 2.46 ± 0.35 for colors and 2.78 ± 0.39 

for clip art, whereas mean capacity estimates for monkeys were 0.71 ± 0.24 and 1.02 ± 0.19 
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for colors and clip art respectively.  Thus, based on a fixed-capacity model of VSTM, humans 

could store approximately 1.5 more visual items than could rhesus monkeys.   
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Figure 4.6: Comparison of Capacity Estimates for Humans and Rhesus Monkeys.  Error 
bars represent standard error of the mean.  
 
 

Continuous-Resource Model.  Monkey and human performance was also compared 

using d’ measures as per the continuous-resource model.    d’ values and power law fits for 

both species are compared in Figure 4.7.  Although the humans clearly outperformed the 

monkeys, the exponents of the power law functions fall within a similar range, and the 

functions actually differ primarily by the coefficient suggesting a similar shape to the functions 

but difference in absolute level.  For clip art, the human exponent was -0.72 and the monkey 

exponent was -0.69.  For colors, the human exponent was -0.86 and the monkey exponent 

was -0.98.  The full equations of the power law functions are listed in the legend of Figure 4.7.   
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Figure 4.7.  Comparison of d’ values and power law fits for Humans and Rhesus 
Monkeys. 
 

Discussion 

 The monkeys performed well in the tests with colored circles and clip art, but the 

capacity estimates generated from their performance are shockingly low.  The mean capacity 

values of 0.71 ± 0.24 for colors and 1.02 ± 0.19 for clip art indicate that according to a fixed-

capacity model of VSTM monkeys can only maintain one item of visual information in VSTM at 

a time.  While it is perhaps not surprising that their capacity limits are lower than those 

obtained for humans, a limit of a single stimulus seems unusually low.  In fact, such a finding is 

difficult to reconcile with previous work with rhesus monkeys demonstrating that they can 
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accurately maintain four or more visual or auditory stimuli in memory during a list memory task 

(Wright, 2007).  Although stimuli are presented sequentially in list memory tasks, list memory 

would still be impossible to perform at that level of accuracy with a VSTM capacity less than or 

equal to one.  In fact, one would predict that performance should be at chance in list memory if 

capacity were only one.   

 Another problem with a fixed-capacity model interpretation of VSTM arises from the 

multi-dimensional scaling analysis done on the colored circle data from monkeys.  Fixed-

capacity models describe VSTM as a high-resolution storage system in which stimuli are 

stored perfectly, or not stored at all.  The fact that monkeys confused similar colors (e.g. purple 

and magenta) is not consistent with such a high-resolution storage system because stimuli 

that are stored perfectly should not be confusable.   

 The continuous-resource model perhaps provides a more satisfactory framework for 

VSTM in both rhesus monkeys and humans.  As shown in Figure 4.7, both species d’ values 

were extremely well fit by power law functions, as predicted by the model.  Furthermore, the 

continuous-resource model provides a good explanation for the color confusion results from 

monkeys.    Because the continuous-resource model predicts noisy representations in 

memory, it is easy to imagine how a noisy representation of magenta could be confused for 

purple and likewise for other similar colors.   

 Another advantage of the continuous-resource model is that it provides a lens through 

which to see the striking qualitative similarities that occur between monkeys and humans.  

While the behavioral performance shows the qualitative (and obvious) similarity of a decline in 

performance as display size increases, the continuous-resource model power law fits allow us 

to see that the decline in performance can be fit by the exact same type of function with very 

similar power values for both species.   

 Although the continuous-resource model allows us to see the qualitative similarities 

between the two species, there is a difference in time course that should be noted.  The 
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human subjects were tested with 1000-ms viewing times and 900/1000-ms delays.  However, 

the rhesus monkeys were tested with 5000-ms viewing times and 50-ms delays.  Thus, a more 

stringent test of the models and of the qualitative similarities we found between species would 

be to test the monkeys with the same viewing time and delay used with humans, which will be 

pursued in Chapter 5.  Another minor procedural difference was that humans were tested with 

a set of six colored squares and monkeys were tested with a set of eight colored circles.  This 

difference will also be addressed in Chapter 5.   
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CHAPTER 5: CLOSER MATCHED TESTING CONDITIONS FOR RHESUS MONKEYS 
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Introduction    

Chapter 4 demonstrated qualitative similarities in VSTM performance between 

monkeys and humans, with the same stimuli and overlap in display sizes. Nevertheless, the 

viewing time and delay period differed between the two species (1000-ms viewing time and 

delay for humans, 5000-ms viewing time and 50-ms delay for monkeys) and monkeys were 

tested with a set of eight colored circles, while the humans were tested with a set of six 

colored squares.  The critical difference here is the set size, or the number of items in the 

stimulus pool used to compose trials.  When the monkeys were tested with the eight item set 

of colored circles in Chapter 4, they were tested with display sizes of two, four, and six.  As 

such, each of the eight colors appeared a maximum of one time per trial.  However, since the 

human trials were drawn from a set of six colors, for display sizes of six, eight, and ten there 

was at least one color that appeared more than once per trial.  The color repetition within trials 

may make the task more difficult because subjects have to keep track of locations in addition 

to colors to accurately identify the changed stimulus.  

 Also, for both the six and eight item color sets the colors repeat across trials.  This 

leads to the development of proactive interference across trials.  For instance, Makovski & 

Jiang (2008) showed using change detection with humans that the repetition of colors across 

trials results in diminished performance.  The same type of effect has been shown in a non-

human species, the pigeon, during a delayed same/different task with color pictures (e.g. 

Wright et al., in press).  Given that the six item colored square set is smaller, there is more 

repetition across trials resulting in a greater build-up of proactive interference, thus making the 

task more difficult. 

 In order to equate the difficulty, and make parameters as similar as possible the 

monkeys were switched to a task using the same set of six colored squares used to test 

humans (see Appendix).  They were tested with display sizes of two, three, four, five, and six.     
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This test provided a five point function to which to fit the power law functions, as was done with 

humans.  In addition, three display sizes (two, four, and six) were also tested in humans, 

thereby permitting a direct comparison between species for these values.  These tests provide 

more direct comparisons with humans given the use of the same viewing times and delays 

(1000-ms for both viewing time and delay), and testing the monkeys across five display sizes, 

as was done with humans. 

Methods 

The subjects were the same two rhesus monkeys used in Chapters 3 and 4.  The 

stimuli and apparatus were also the same as in the previous chapters.  All animal procedures 

were in compliance with National Institute of Health’s guidelines and were approved by the 

University of Texas Health Science Center at Houston Institutional Animal Care and Use 

Committee.   

Testing 

 The monkeys were tested with ten alternating 96-trial sessions of both colored squares 

and clip art.  Within each session display sizes of two, three, four, five, and six were 

intermixed.  The delay was always 1000-ms and the viewing time ranged from 1000-5000ms 

at 500 ms increments in order to provide variability to the monkeys.  The variability served to 

encourage them to maintain vigilance throughout the session.  Trials with a viewing time of 

1000-ms constituted the majority (approximately 56%) of trials tested in each session and 

were the only trials included in the analysis presented here.  As a result a total of 108 trials per 

display size were tested across the ten sessions per stimulus type. 

 

Results & Discussion 

   As shown in Figure 5.1, performance declined as a function of display size for both 

monkeys.  Separate repeated measures ANOVAs of display size × stimulus type showed a 

significant effect of display size for both monkeys [M1: F(4, 36) = 11.65, p < 0.001; M2: F(4,36) 
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= 4.33, p = 0.006] as well as a significant effect of stimulus type [M1: F(1,9) = 67.87, p < 0.001; 

F(1,9) = 6.80, p = 0.03].  The monkeys performed better with clip art (10.57% difference) than 

with colored squares. 
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Figure 5.1: Percent Correct in Change Detection Task for A) Colored Squares and B) 
Clip Art.  Error bars represent standard error of the mean.  
 
 
 Estimating capacity.  Capacity estimates were calculated using Equation 2.1.  Mean 

capacity estimates for each stimulus type and display size are shown in Figure 5.2.  Mean 

capacity for colored squares was 0.33 ± 0.10 and mean capacity for clip art was 0.84 ± 0.08.  

Thus, based on a fixed-capacity model of VSTM, monkeys were accurately maintaining less 

than one stimulus in memory during the delay interval. 
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Figure 5.2: VSTM Capacity Estimates for Rhesus Monkeys with Colored Squares & Clip 
Art.  Error bars represent standard error of the mean.  

 

Much like the human subjects in Chapter 2, both monkeys showed more variability in 

their capacity estimates than would be predicted by a fixed-capacity model of VSTM (Figure 

5.3).  Following the logic introduced in Chapter 2, that an individual subject’s capacity 

estimates should fall within one standard deviation of their mean, the variability is too great for 

both subjects with both stimulus types.  For instance, with clip art, M1’s capacity estimate from 

the five item display size (0.47) falls below the mean (1.09) by greater than one standard 

deviation(0.42) whereas his estimate from the six item display (1.62) exceeds the mean by 

greater than one standard deviation, and the same is true for M2, as his capacity estimate 

from the five item display size (0.85) exceeds the mean (0.59) of his capacity measures by 

greater than one standard deviation (0.20).  For colored squares, the individual monkeys’ 
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capacity estimates are also shockingly low (M1: 0.43, M2: 0.23), and again show more 

variability than one would expect.  It is unreasonable to believe that they are not adequately 

storing a single stimulus in memory, particularly given that performance is significantly greater 

than chance for display sizes two through four for both monkeys with colored squares [single-

mean t-tests against chance (50%), all ps ≤ 0.02].  Put otherwise, how could M1 perform with 

almost 70% accuracy with the three item display size if he was only accurately maintaining 

0.43 stimuli?    
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Figure 5.3: Individual Monkey Capacity Estimates for A) Colored Squares and B) Clip 
Art.  Error bars represent standard error of the mean. 
 
  
 

Continuous-Resource Model.  d’ values were calculated using Equation 2.2 and are 

displayed in Figure 5.4.  Power law functions were generated as described in Chapter 2.  

Individual power law fits for clip art had r2 values of 0.74 and 0.66 for M1 and M2, and for 

colored squares the r2 values were 0.84 and 0.72 for M1 and M2 respectively.  Furthermore, 

the mean power law functions for the monkeys provided good fits to the group data with r2 

values of 0.86 and 0.94 for clip art and colored squares respectively (equations provided in 

legend of Figure 5.4). These r2 values were statistically significant [Colored Squares: F(1,8) = 

81.80, p < 0.0001; Clip Art: F(1,8) = 43.57, p =0.0002]. 
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Figure 5.4: Power Law Fits for d’ for Colored Squares and Clip Art.  Error bars represent 
standard error of the mean.   
 
 
 Comparison to Human Subjects.  The data from rhesus monkeys are compared in 

Figure 5.5 to the data from human subjects in Chapter 2, Experiment 1.  Overall performance 

is compared in Figure 5.5.  By comparing the results from the three shared display sizes (two, 

four and six items), humans outperformed monkeys by 19.24% for clip art trials and by 27.27% 

for colored square trials.  A repeated-measures ANOVA of display size (2, 4, and 6 only) × 

stimulus type × species revealed a main effect of display size [F(2,12) = 12.85, p = 0.001] and 

species [F(1,6) = 12.13, p = 0.01].  There was also a significant interaction of stimulus type × 

species [F(1,6) = 12.18, p = 0.01].  The interaction resulted from the fact that monkeys 

performed better with clip art than they did with colored squares (10.57% difference), whereas 

the human subjects did not show a significant difference between these two stimulus types.   
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Figure 5.5: Change Detection Performance by Humans & Monkeys.  Viewing Times and 
Delay Intervals are 1-second for both species.  Error bars represent standard error of 
the mean. 
  
 

Capacity Estimates.  Capacity estimates between the two species were also compared 

(Figure 5.6).  Mean capacity estimates for humans were 2.78 ± 0.39 for clip art and 2.46 ± 

0.35 for colored squares, whereas mean capacity estimates for monkeys were 0.84 ± 0.08.   

for clip art and 0.33 ± 0.10 for colors.  It should be noted that this is an indirect comparison 

because humans were tested at display sizes of 2, 4, 6, 8, and 10 whereas monkeys were 

tested at display sizes of 2, 3, 4, 5, and 6.   
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Figure 5.6: Capacity Estimates for Rhesus Monkeys & Humans with Colored Squares & 
Clip Art.  Error bars represent standard error of the mean. 
 
 
 Continuous-Resource Model.  Monkey and human performance was also compared 

using d’ measures as per the continuous-resource model.  d’ values and power law fits for 

both species are compared in Figure 5.7.  Both species’ d’ values are well characterized by 

power law functions, and the exponents of these functions fall within a close range and are 

similar across stimulus types.  For colored squares, the exponents were -0.94 and -0.86 for 

monkeys and humans respectively, and for clip art the exponents were -.70 and -1.026 for 

monkeys and humans, indicating that the shape of the curves are similar across species. An 

unpaired t-test demonstrated that there were no significant differences in exponent value 

across species [t(14) = 1.54, p = 0.15].  Not surprisingly, however, the coefficients of the power 
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law functions were significantly greater for humans [unpaired t-test, t(14) = 2.26, p = 0.04], 

indicating that overall memory sensitivity (d’) is greater in humans. 
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Figure 5.7: Comparison of d’ Values and Power Law Fits for Humans and Rhesus 
Monkeys. 
 

Thus, it seems that the continuous-resource model provided a good fit to data from both 

humans and monkeys, when both species were tested with the same parameters in terms of 

viewing time and delay.   

 Meanwhile, the results from the fixed-capacity model are increasingly troubling.  The 

low capacity values obtained for monkeys are difficult to reconcile with prior work with 

monkeys in list memory (e.g. Wright et al., 2007).  But even more troubling are the capacity 

values in relation to the results obtained here in Chapter 5.  How can monkeys perform at 

above chance levels in this task if they cannot reliably store a single item in VSTM?  One 

might argue that the fixed-capacity model is designed for humans, and thus is not applicable to 
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rhesus monkeys.  However, even within the human literature, some authors report a wide 

range of capacity estimates from low and high capacity individuals (e.g., Vogel & Machizawa, 

2004).  They report a low end of the range around 1.5 stimuli which is comparable to the 

capacity estimates obtained from M1 in the clip art condition.  Thus, if a monkey can perform 

as well as some “low capacity” individuals, then the model should be applicable.  Furthermore, 

given the behavioral similarities in how the monkeys and humans perform the task (looking for 

change in a general sense – Chapter 3), comparing monkeys and humans using the same 

model framework is warranted.  The fact that the framework of the continuous-resource model 

accurately predicts a pattern of performance (d’ values that fall in a power law fashion as a 

function of display size) both supports the notion that the same model can be used for two 

species, and that the continuous-resource model is more likely to represent what actually 

occurs in VSTM. 
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CHAPTER 6: CONCLUDING REMARKS 
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In this series of experiments, it has been shown for the first time that rhesus monkeys 

can be trained and tested in the change detection task such that their VSTM can be directly 

compared to humans.  The monkeys learned the task quickly, performed it using short-term 

memory (rather than attentional capture), and readily transferred to several novel types of 

change and thereby demonstrated that they performed the task in a manner similar to 

humans. They were shown to be looking for change in a general sense, which is similar if not 

exactly what human subjects are instructed to do.   

By comparing monkeys to humans, predictions of two predominant models of VSTM 

were tested, the fixed-capacity model and the continuous-resource model.  In our studies with 

both humans and rhesus monkeys, we identified several puzzling results that are difficult to 

justify in the context of the fixed-capacity model.  Interestingly, these problematic results 

(which will be outlined below) were resolved by taking the perspective of the continuous-

resource model.   

Inconsistent capacity measures across display sizes.  In Chapter 2, Experiment 1, 

subjects were tested with five display sizes.  The formula used to estimate capacity (Equation 

2.1) takes display size into account in order to compute capacity based on the empirical 

accuracy at a given display size.  Thus, capacity estimates from the various display sizes 

should roughly agree.  However, in Experiment 1, we found that some subjects had highly 

variable capacity estimates across display sizes.  For instance, S2’s capacity with colored 

squares ranged from 2.54 (four item display) to 5.45 (ten item display).  Likewise, S6’s 

capacity with clip art ranged from 1.65 (four item display) to 5.29 (ten item display).  While 

those are the two most extreme examples from Experiment 1, other subjects had capacity 

changes of approximately 1.5 to 2 slots across display sizes which is inconsistent with the 

notion of a capacity limited slot like storage system.  The system should reliably be storing the 

same amount of information.  The same large amount of variability across display sizes was 



 

 

91 

also seen in Experiment 2 of Chapter 2.  Six of seven human subjects showed capacity 

measures that differed by 1.5 slots or more across display sizes.  There were also more 

extreme individual examples, for instance with Kanji characters, S2’s results demonstrated 

that the subject had slots for approximately 1.62 characters in the six item condition, but had 

slots for 4.83 stimuli in the ten item condition.  The same sort of inconsistency in capacity 

estimates was identified in Chapter 5 for the monkeys.  As such it seems that both species 

show wildly variable capacity estimates when display size is varied.  This conclusion is not 

compatible with a capacity limited slot-like storage system, because such a system should by 

definition be consistent across display sizes, or at least vary in a small range consistent with 

the population variability suggested by the “magic number 4 ± 1”.  After all, testing subjects at 

varying display sizes is how capacity itself is estimated.  Because the continuous-resource 

model does not predict a fixed and completely filled slot-like storage system, the finding of 

capacity variability is not problematic for the continuous-resource model.  Also, the continuous-

resource model predicts variability in memory resource across trials (within an individual 

subject) which can help explain the variability found for both human and monkey subjects (Ma 

et al., under review).  

 Imperfect performance at display sizes less than capacity.  Another prediction of the 

fixed-capacity model is that performance should be perfect when the display size tested is less 

than capacity.  Because all subjects had capacity estimates greater than two in both the 

colored square and the clip art conditions, performance should have been perfect by all 

subjects with two item display sizes.  However, S3 was 93.3% accurate with colored squares 

(indicating a capacity of 1.27) and S4 was 96% accurate with clip art (indicating a capacity of 

1.43).  Imperfect performance with small display sizes is not a problem for the continuous-

resource model.  The model postulates that VSTM should be flexibly allocated among stimuli.  

Flexible allocation is not necessarily optimal, such that on occasion, even with small display 
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sizes such as two, both stimuli will not be perfectly stored and may be subsequently forgotten 

or confused.   

 Performance differences based on stimulus type.  While Experiment 1 of Chapter 2 

showed that humans performed comparably with both colored squares and clip art (no 

significant differences in performance), Experiment 2 showed that performance depended on 

the type of stimulus tested (Snodgrass and clip art were better than Kanji and kaleidoscopes).    

This result rejects the more rigid interpretation of the fixed-capacity model (e.g. Luck & Vogel, 

1997; Cowan, 2001; 2005) which states that capacity should not depend on the type of 

stimulus.  Memory slots can be filled by various types of stimuli, the only limitation is the 

number of slots available.  This model is incompatible with our results, and the flexible 

approaches to the fixed-capacity model do not provide very satisfactory solutions.  One flexible 

approach is that the fixed-capacity model should be modified by a two component limitation on 

VSTM (Alvarez & Cavanagh, 2004).  One proposed limitation is that the maximum number of 

stimuli stored had to be four or five.  The other proposed limitation was that visual information 

should vary jointly as a function of both the number of stimuli and the amount of visual 

information per stimulus.  Another proposal was that the variance in performance across 

stimulus types could be offset by increasing the viewing time for difficult stimuli (Eng et al., 

2005).  This proposal is unlikely to be a viable solution because naturally increasing the 

viewing time would improve performance, which in turn should be true for all types of stimuli. 

 It should be noted that the monkeys also showed a significant effect of stimulus type in 

Chapter 5. However, the situation is a bit more complex, as they performed worse with colored 

squares than they did with clip art.  The lower performance with colored squares could have 

been the result of the repetition of colors within and across trials rather than the actual 

differences in the types of stimuli (colored squares vs. clip art).  Repetition across trials leads 

to increases in proactive interference, and repetition within trials require the subjects to 

remember both what colors were present as well as where they were located in order to 
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perform accurately.  It is likely that the increases in difficulty associated with the six item color 

set can explain the differences in performance found in Chapter 5 because the monkeys 

showed little difference in performance between colors and clip art in Chapter 4 (much like 

humans).   

 Monkey capacity of one. The finding that VSTM capacity in monkeys is approximately 

one item or less is very difficult to reconcile with earlier findings from rhesus monkeys in list-

memory tasks.  In visual list-memory tasks, rhesus monkeys can perform the task with lists of 

four or more stimuli with performance levels of 90% correct or better (Wright, 2007).  Although 

performance at serial positions varies based on the delay, the shifts from recency to primacy 

effects as the delay lengthens would not develop if VSTM capacity were only one.  The 

comparison between change detection and list-memory tasks is somewhat indirect because in 

change detection stimuli are presented simultaneously, whereas in list memory stimuli are 

presented sequentially.  This can perhaps explain why overall performance levels differ 

between list memory and change detection.  While performance with four-item lists has been 

shown to be 90% or greater, in change detection the monkeys’ performance was about 70% 

correct with four-item displays.  This overall difference in performance can be explained using 

the continuous-resource model.  The simultaneous presentations used in change detection 

require the monkey to optimally divide his attention across space among all the stimuli in the 

sample.  In list memory, the stimuli are presented one at a time in a fixed location such that the 

monkey only needs to allocate his attention to one area of space.  Suboptimal allocation of 

attention in change detection could result in noisier representations in VSTM.  Increased noise 

in the memory representation would result in lower performance, as predicted by the 

continuous-resource model.               

 Color confusion.  Due to the large amount of trials collected from the rhesus monkeys, 

we were able to perform a multi-dimensional scaling analysis to assess the degree to which 

the monkeys made mistakes when one color changed to another.  From this analysis we 
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discovered that monkeys routinely made mistakes when one color changed to a similar color. 

For instance, M1 frequently confused purple and magenta (his performance was 52% correct 

when one changed to the other).  Likewise, M2 frequently confused purple and blue (his 

performance was 57% correct when one changed to the other).  This result is incompatible 

with the fixed-capacity model’s assertion that VSTM is a high resolution, noise free storage 

system.  The fixed-capacity model states that an item should be stored perfectly (within the 

capacity limits) or not stored at all.  Thus, it is difficult to reconcile the finding of color confusion 

within the context of the fixed-capacity model.  However, the continuous-resource model can 

easily account for the finding of color confusion.  The model predicts that stimuli are 

represented in memory with noise.  Noisy representations of similar colors should be easily 

confused, as the monkeys were found to do. 

 The continuous-resource model.  Aside from its ability to make sense of the 

problematic findings described above, the continuous-resource model also provides a good fit 

to the data, generally.  In all cases, with all types of stimuli, for both humans and monkeys, d’ 

values were extremely well fit by power law functions.  The main predictions of the continuous-

resource model are that memory sensitivity (d’) should decline with display size and that the 

decline should be well fit by a power law function.  These predictions were confirmed in all 

cases and are thus consistent with the continuous-resource model. Furthermore, the 

continuous-resource model can reconcile many of the problems identified with a fixed-capacity 

account of VSTM.  Moreover, the continuous-resource model is tied to what is known about 

computations in the nervous system.  The prediction of noisy memory representations is 

consistent with the physiological properties of the brain (Faisal et al.,2008).   

 Comparing VSTM between monkeys and humans. Qualitative similarities between 

humans and monkeys are apparent in the performance comparisons in Chapters 4 and 5, as 

they both show a decline in performance as display size increases.  There was a quantitative 

difference between species as humans outperformed monkeys by an average of 19.25% in 
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Chapter 4 and 23.25% in Chapter 5.  However, once viewed in the context of the continuous-

resource model, it is striking how qualitatively similar VSTM is between the two species.  Both 

species’ memory sensitivity (d’) values were well fit by power law functions and the power law 

functions even have similar exponents.  The qualitative similarity between species was 

expected based on what is known about brain regions involved in VSTM in both species, 

including visual cortex and the prefrontal cortex.  However, the great advantage of these 

between-species comparisons is that they provide converging evidence in favor of the 

continuous-resource model.  Thus, by testing rhesus monkeys with the same procedures and 

stimuli used with humans, we were able to gain a better understanding of human cognition by 

identifying the continuous-resource model as the more plausible account of VSTM function.        

 Future directions.  Establishing the rhesus monkey as an animal model for VSTM that 

can be tested with the same procedures as humans lays the foundation for future work 

investigating the neurobiological basis of VSTM.  Future studies using invasive techniques can 

be conducted to further investigate the brain areas that subserve VSTM, and how the regions 

work together in a unified network.  All neurobiological investigations of VSTM to date using 

change detection have been guided by the notion of a fixed capacity (e.g., Todd & Marois, 

2004; Vogel & Machizawa, 2004; Buschman et al., 2011).  All of these studies interpreted their 

results as proof for a capacity-limited storage system.  However, given Wilken & Ma’s 

contention that the “magic number 4±1” is an artifact of the noise which increases as display 

size increases, the neurobiological evidence identified in these studies may be biased by this 

artifact, and therefore misinterpreted.   

The continuous-resource model most likely provides a more plausible model 

framework and future studies should consider this framework as a guide to neurobiological 

investigations.  In fact, neural investigations of VSTM may be useful in providing further tests 

of the continuous-resource model.  Ma et al. (under review) have suggested that VSTM is 

roughly equivalent to attentional gain.  Specifically, they predict that neural gain is associated 
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with the encoding process, and that this gain varies across trials, but generally decreases as 

display size increases.  A neurophysiological investigation of neural gain in the context of a 

VSTM experiment would thus provide further support for, or potentially refute the predictions of 

the continuous-resource model.   

To conclude, this dissertation demonstrates that combining tools from comparative 

psychology, cognitive neuroscience and computational neuroscience can provide a more 

complete understanding of one functions of the brain, VSTM.  Combining the power of these 

three fields (and others) in the future will undoubtedly provide great insight into the 

mechanisms of cognition and behavior.                                     
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APPENDIX 

Procedural Note Regarding Chapter 5: 

The monkeys were first tested with display sizes of two, four, six, eight, and ten with 

both colored squares and clip art (just like humans).  This task proved to be difficult for the 

monkeys, as performance at six, eight, and ten was at or near chance.  This made the fits of 

the continuous-resource model’s power law functions rather poor, since d’ values were at or 

very near zero for the three largest display sizes, resulting in a non-curvilinear function.  In 

addition, the capacity estimates from these three display sizes were at or near zero, which is 

difficult to interpret. 

 Although it is important to test VSTM at the limits of the individual’s ability, given that 

performance was at or near chance at three of the five display sizes tested and hence three-

fifths of trials, it is likely that this test was too difficult for the monkeys and does not provide an 

ideal assessment of their VSTM abilities.  The difficulty of the test may have also hurt the 

monkeys’ motivation to perform the task since they were only receiving reinforcement on 

approximately 60% of trials at best.  Thus, the monkeys were retested with display sizes of 

two, three, four, five and six to improve performance while still obtaining a five point function 

and enabling a direct comparison with humans at the display sizes of two, four, and six.   
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