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Abstract 

Drug resistance poses a significant challenge in cancer treatment. Despite the initial effectiveness of therapies such as chemotherapy, targeted 
therapy and immunotherapy, many patients eventually develop resistance. To gain deep insights into the underlying mechanisms, single-cell 
profiling has been performed to interrogate drug resistance at cell le v el. Herein, w e ha v e built the DRMref database ( https://ccsm.uth.edu/ 
DRMref/) to provide comprehensive characterization of drug resistance using single-cell data from drug treatment settings. The current version 
of DRMref includes 42 single-cell datasets from 30 studies, co v ering 382 samples, 13 major cancer types, 26 cancer subtypes, 35 treatment 
regimens and 42 drugs. All datasets in DRMref are browsable and searchable, with detailed annotations pro vided. Mean while, DRMref includes 
analyses of cellular composition, intratumoral heterogeneity, epithelial–mesenchymal transition, cell–cell interaction and differentially expressed 
genes in resist ant cells. Not ably, DRMref in v estigates the drug resist ance mechanisms (e.g . Aberration of Drug’ s Therapeutic T arget, Drug 
Inactiv ation b y Str uct ure Modification, etc.) in resistant cells. A dditional enrichment analy sis of hallmark / KEGG (Ky oto Ency clopedia of Genes 
and Genomes) / GO (Gene Ontology) pathw a y s, as w ell as the identification of microRNA, motif and transcription f actors in v olv ed in resistant cells, 
is provided in DRMref for user’s exploration. Overall, DRMref serves as a unique single-cell-based resource for st udying dr ug resistance, drug 
combination therapy and discovering novel drug targets. 
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Introduction 

Drug resistance has become a major concern in healthcare ( 1 ). 
For instance, a meta-analysis of 570 phase II single-agent clin- 
ical studies found that the median response rate to chemother- 
apy was only 11.9%. Even in the context of personalized 
targeted therapy, the response rate was as low as 30% ( 2 ). 
With the rapid development of sequencing technology, single- 
cell RNA sequencing (scRNA-seq) has become a revolution- 
ary technique, enabling high-resolution investigations of tu- 
mor cell resistance at the cellular and cell type levels ( 3–12 ). 
For example, scRNA-seq analysis of prostate tumor tissue re- 
vealed that the activation of noncanonical Wnt signaling con- 
tributes to the cellular resistance of tumor cells against an- 
drogen receptor inhibitors ( 5 ). Another study profiled scRNA- 
seq of drug-resistant multiple myeloma samples and identified 
that peptidylprolyl isomerase A (PPIA), a key enzyme in the 
protein-folding response pathway, could serve as a potential 
novel target for resistant tumor cells ( 7 ). To overcome the ALK 

inhibitor-related resistance in lung cancer therapeutics, Heo 
et al. analyzed scRNA-seq data and identified cytidine deami- 
nase as a potential druggable target to eliminate resistant cells 
( 13 ). Those findings highlight the remarkable capability of 
scRNA-seq in exploiting the precise mechanisms underlying 
drug resistance, ultimately leading to the identification of ef- 
fective targets and the development of optimized therapeutic 
strategies. 

Currently, there are several drug-related databases avail- 
able. For example, the DRESIS database collects validated 
drug resistance molecules belonging to different drug resis- 
tance mechanisms by retrieving published literature, and ex- 
plicitly describes clinically / experimentally verified resistance 
data for a large number of drugs ( 14 ). The CTR-DB database 
utilizes pretreatment bulk RNA-seq data to characterize can- 
cer drug response ( 15 ). CeDR Atlas is primarily based on 
scRNA-seq data to utilize the Connectivity Map resource for 
drug response prediction ( 16 ). CREAMMIST provides an in- 
tegrative summary of the dose–response curve across datasets 
based on cancer cell line data ( 17 ). CancerDR is a resource en- 
compassing 148 anticancer drugs and their pharmacological 
profiles across 952 cancer cell lines ( 18 ). GEAR presents ge- 
nomic elements, including genes, single-nucleotide polymor- 
phisms and microRNAs (miRNAs) that are associated with 
drug resistance via literature mining ( 19 ). KinaseMD mines 
the existing literature and provides annotations of mutations 
and their corresponding kinase inhibitor responses in four 
types of protein substructures that have been associated with 
kinase inhibitor resistance ( 20 ). However, there is still a lack 
of comprehensive characterization of drug resistance mecha- 
nisms using single-cell data obtained from drug treatment set- 
tings. To this end, we built the DRMref, a reference atlas of 
drug resistance mechanisms based on a collection of single- 
cell datasets, to elucidate resistance mechanisms across differ- 
ent cell types. Our database reveals the intricate landscape of 
drug resistance, facilitates a deep understanding of resistance 
complexity at single-cell level and aids in the development of 
improved therapeutic interventions. 

To accomplish this, we annotated and analyzed 42 single- 
cell datasets with drug resistance information from 30 stud- 
ies, 14 of which have both pre- and post-treatment sam- 
ples, encompassing 26 cancer subtypes obtained from Gene 
Expression Omnibus (GEO) database and PubMed queries. 
These datasets are accompanied by crucial drug response in- 

formation under three major drug categories: chemotherapy, 
targeted therapy and immunotherapy. For those single-cell 
datasets, we performed rigorous preprocessing steps, includ- 
ing quality control and the elimination of batch effects. We 
then identified resistance-related differentially expressed genes 
(R-DEGs) by comparing resistant cells with sensitive cells 
in each of the cell types. To gain insights into the drug re- 
sistance mechanisms of these R-DEGs, we conducted func- 
tional annotations using enrichment analysis, covering six 
well-known drug resistance mechanisms: ‘Unusual Activation 
of Pro-survival Pathway’, ‘Irregularity in Drug Uptake and 
Drug Efflux’, ‘Aberration of the Drug’s Therapeutic Target’, 
‘Epigenetic Alteration of DNA, RNA or Protein’, ‘Drug Inacti- 
vation by Structure Modification’ and ‘Regulation by the Dis- 
ease Microenvironment’ ( 14 ). We also performed enrichment 
analysis on hallmark ( 21 ,22 ), KEGG (Kyoto Encyclopedia of 
Genes and Genomes) ( 23 ) and GO (Gene Ontology) ( 24 ) bi- 
ological process (BP) pathways, as well as transcription fac- 
tor (TF) and miRNA regulatory analysis, for a more in-depth 
annotation of R-DEGs. Moreover, to provide a deep under- 
standing of the malignant cell activity, we compared intratu- 
moral heterogeneity (ITH) and epithelial–mesenchymal tran- 
sition (EMT) scores between the resistant and sensitive cells. 
Given that tumor microenvironment (TME) has been indi- 
cated to be associated with drug resistance, we further exam- 
ined alterations in the TME during drug resistance by com- 
paring the compositions of all cell types. In-depth analysis of 
cell–cell interactions was performed to investigate the impact 
of the surrounding microenvironment on cellular responses to 
drugs. As explained here, DRMref provides a comprehensive 
knowledge of drug resistance mechanisms. 

Materials and methods 

Data collection and preprocessing 

First, we downloaded the Food and Drug Administration 
(FDA)-approved drug list ( https:// www.fda.gov/ ). To system- 
atically collect scRNA-seq data, we searched previously pub- 
lished studies from PubMed by using the keyword ‘(drug 
name) AND ((single cell) OR (scRNA))’ and ‘(drug resistance) 
AND ((single cell) OR (scRNA))’. Only samples from Homo 
sapiens with available drug response information were in- 
cluded. Overall, we collected 42 scRNA-seq datasets from 30 
studies, 14 of which have both pre- and post-treatment sam- 
ples, covering 382 samples, 13 major cancer types, 26 can- 
cer subtypes, 35 treatment regimens and 42 drugs (Supple- 
mentary Table S1). According to the drug response informa- 
tion, cells of the nonresponsive samples collected from pre- or 
post-treatment conditions are labeled as resistant cells, while 
cells of the responsive samples are labeled as sensitive cells. 
The drug resistance information for each sample and each 
dataset is available in the ‘Download’ section of the DRM- 
ref database. 

For scRNA-seq data preprocessing, cells with the number of 
expressed genes < 500 and with the mitochondrial gene ratio 
> 10% were excluded from most datasets. Datasets with batch 
effects were further processed using Harmony ( 25 ), which is 
a commonly used method to overcome bias within datasets 
from different sources. Detailed preprocessing steps for each 
dataset are provided in the ‘Download’ section of the DRM- 
ref database. All preprocessing was performed by Seurat 4.3.0 
( 26 ). 

https://www.fda.gov/
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Cell clustering and annotation in scRNA-seq data 

Cell clustering of scRNA-seq data was performed based on the 
normalized gene expression profile using the ‘SCTransform’ 
function of the Seurat package ( 26 ) in R. Cell type annotation 
was determined using totally 86 markers provided by the orig- 
inal and relevant studies (Supplementary Table S2). Uniform 

manifold approximation and projection (UMAP) was used to 
visualize the cell clusters, cell types and drug response (resis- 
tant and sensitive). 

Alteration of cellular composition 

We analyzed the changes in cell compositions between the re- 
sistant and sensitive cells utilizing scCODA 0.1.9 ( 27 ). This 
analysis was performed on datasets consisting of > 3 resis- 
tant and sensitive samples. The pre- and post-treatment sam- 
ples were analyzed separately, with the ‘est_fdr’ parameter set 
to 0.2. 

Comparison of ITH and EMT scores of malignant 
cells 

The ITH score was defined as the average Euclidean distance 
between each individual malignant cell and all other malig- 
nant cells, based on the first 20 principal components ob- 
tained from the normalized expression levels of highly vari- 
able genes ( 28 ). Here, the highly variable genes were iden- 
tified by the ‘SCTransform’ function in the Seurat package 
with default parameters. The EMT score of malignant cells 
was calculated using the gsva function in the GSVA pack- 
age ( 29 ), based on the ‘Epithelial–Mesenchymal Transition’ 
gene set obtained from the Molecular Signatures Database 
(MSigDB) ( 22 ). The difference in ITH scores and EMT scores 
between the resistant and sensitive cells was compared using 
the Wilcoxon test, and the results were visualized using violin 
plots. 

Cell–cell interaction analysis 

To identify the intercellular communications related to drug 
resistance, we performed cell–cell interaction analysis using 
CellPhoneDB ( 30 ), which is a publicly available repository 
of curated ligands, receptors and their interactions. Specif- 
ically, significant ligand–receptor interaction pairs were se- 
lected with a significant value of P < 0.05. The differences of 
cell–cell communications between the resistant and sensitive 
cells were visualized using heatmap, with numbers indicat- 
ing the count of cell–cell interactions that were either higher 
or lower in resistant cells compared to sensitive cells. Addi- 
tionally, dot plots were used to show the significant ligand–
receptor pairs in resistant and sensitive cells, respectively. 

Differential gene expression analysis for identifying 

drug resistance-related genes 

We performed differential gene expression analysis between 
the resistant and sensitive cells for each cell type using the 
FindMarkers function in the Seurat package. The pre- and 
post-treatment samples were analyzed separately. DEGs with 
p_val_adj < 0.05 and | avg_log 2 FC | > 0.25 between the resis- 
tant and sensitive cells were considered drug resistance-related 
genes and are displayed in the database. 

Mechanism analysis for drug resistance-related 

genes 

To explore the potential resistance mechanisms of drug 
resistance-related genes (R-DEGs), we performed enrichment 
analysis of six known drug resistance mechanisms, hallmark, 
KEGG and GO BP pathways using hypeR 1.14.0 package 
( 31 ) for upregulated genes and downregulated genes in each 
cell type, respectively. The hallmark, KEGG and GO BP gene 
sets are from the MSigDB ( 22 ). The pre- and post-treatment 
samples were analyzed separately. The gene set of six known 
drug resistance mechanisms was downloaded from DRESIS 
database. The enrichment results for the six known drug re- 
sistance mechanisms were not constrained by P -values. In the 
case of hallmark, KEGG and GO enrichment results, only 
the top 50 pathways with false discovery rate < 0.05 were 
displayed. 

Identifying miRNAs regulating drug 

resistance-related genes 

The miRDB database ( 32 ) was utilized to predict miRNAs 
that regulate drug resistance-related genes (R -DEGs). miR - 
NAs predicted to have scores exceeding 80 in the miRNA 

database were identified and can be downloaded from the 
‘Download’ section. The miRNAs responsible for regulating 
the top 10 upregulated and downregulated genes in resistant 
malignant cells were shown by bubble plots. 

Motif / TF enrichment analysis for drug 

resistance-related genes 

Motif and TF enrichment analysis was performed using Rcis- 
Target 1.18.2 package ( 33 ) based on the R-DEGs in each 
cell type. In the first step, RcisTarget selected DNA motifs 
that were significantly overrepresented in the surroundings of 
the transcription start site of the R-DEGs. This was achieved 
by utilizing a database containing genome-wide cross-species 
rankings for each motif. Subsequently, the motifs were an- 
notated to TFs, and those with a high normalized enrich- 
ment score (NES) were retained. Motifs that passed the given 
threshold NES > 3.0 were considered significant. Finally, Rcis- 
Target predicted the candidate target genes for each motif and 
gene set, i.e. genes within the gene set that are ranked above 
the leading edge. 

Drug information 

Drug information was extracted from DrugBank (version 
5.1.10) ( 34 ). For each drug resistance-related gene, we exam- 
ined whether it is a target of FDA-approved drugs. 

Database architecture 

The DRMref system is constructed based on a three-tier archi- 
tecture: client, server and database. It includes a user-friendly 
web interface, a Perl’s DBI module and a MySQL database. 
This database was developed in MySQL 3.23 with the My- 
ISAM storage engine. 

Results 

Overview of DRMref 

DRMref is a user-friendly and comprehensive database that 
utilizes scRNA-seq data to identify drug resistance-related 
molecular mechanisms across diverse cancer types, cell types 
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and drug categories in H. sapiens (Figure 1 ). scRNA-seq 
datasets from patient-derived clinical samples and H. sapiens - 
derived cell lines were manually collected and carefully cu- 
rated from PubMed and GEO databases, along with the cor- 
responding drug response information. The scRNA-seq data 
were downloaded and processed to a series of datasets, with 
each dataset including cells (resistant cells and sensitive cells) 
from the same therapeutic regimen and cancer subtype (with 
the finest granularity). If a certain dataset consists of cells at 
both pre- and post-treatment time points, analyses are done 
separately for cells at each time point. 

Regarding each processed dataset, we performed cell com- 
position analysis, ITH and EMT score analysis, cell communi- 
cation analysis and differential gene expression analysis. En- 
richment analysis based on six known drug resistance mech- 
anisms and three existing biological pathway databases was 
performed. Further motif and TF enrichment analysis, as well 
as miRNA prediction, was done to provide deep insights of 
drug resistance in each cell type. All the results are accessible 
and viewable through each dataset’s detailed annotation page. 
Given these in-depth analyses at single-cell level, our DRM- 
ref database will significantly enhance the understanding of 
drug resistance mechanisms. DRMref database will facilitate 
the identification of candidate predictive biomarkers, the ex- 
ploration of diverse therapeutic approaches and the discovery 
of potential combination therapies to drug resistance. 

The main functional modules of DRMref include ‘Search’ 
and ‘Browse’ (Figure 1 ). ‘Search’ supports gene and drug re- 
trieval, through which detailed annotation pages of each gene 
and related datasets can be accessed. ‘Browse’ supports brows- 
ing cancer types, drug types and functional analyses, allowing 
access to detailed annotation pages of each dataset and drug 
resistance mechanisms. All analysis results can be downloaded 
and are presented through visually informative components 
such as heatmaps, bar plots, violin plots, dot plots, etc. 

Data statistics of DRMref 

In DRMref, we collected a total of 42 scRNA-seq datasets 
with drug resistance information from 30 studies, including 22 
patient-derived datasets, 18 cell line-derived datasets, 1 PDX 

(patient-derived xenograft)-derived dataset and 1 CDX (cell 
line-derived xenograft)-derived dataset (Figure 2 A). Among 
the patient-derived datasets, 14 of them contain both pre- and 
post-treatment samples. The DRMref database encompasses a 
total of 382 samples, covering 13 major cancer types, 26 can- 
cer subtypes, 35 treatment regimens and 42 drugs spanning 
chemotherapy, targeted therapy and immunotherapy (Figure 
2 B). After quality control, we identified a total of 1 666 974 
cells and 16 cell types based on 86 marker genes (Supple- 
mentary Table S2). Among them, 33 datasets included ma- 
lignant cells (Figure 2 C), with 13 datasets profiled from pa- 
tients and 20 datasets from cell lines. Thirteen of the datasets 
comprised over 10 samples (Figure 2 D). For most datasets, 
the average number of cells per sample ranges from 2000 to 
8000 (Figure 2 E). Based on the collected datasets, we identi- 
fied 10 976 R-DEGs in total. Among them, 4076 R-DEGs were 
cancer type specific, 5107 R-DEGs were drug type specific and 
3949 R-DEGs were cell type specific for a given cancer type. 
Among all the R-DEGs, 174 of them were TFs, 249 were onco- 
genes and 1670 were drug targets. Enrichment analysis for R- 
DEGs identified 50 significant hallmark pathways, 152 KEGG 

pathways and 4188 GO BP pathways. Mechanism analysis 

of R-DEGs identified a total of 636 genes that were enriched 
in six known drug resistance mechanisms. Motif / TF enrich- 
ment analysis identified 5127 unique enriched motifs / TFs 
with 8656 target genes. Among them, 174 TFs belong to R- 
DEGs. miRNA regulatory analysis identified 2617 enriched 
miRNAs with 8501 target genes. 

DRMref search and browse 

Users can perform searches by gene name (or ensemble name) 
and drug name (Figure 3 A). When searching for a gene, the 
website will display datasets in which this gene is identified 
as the R-DEG, and users can access the detailed gene anno- 
tation page and dataset annotation page for this specific R- 
DEG. Clicking on a gene in the gene search table will redirect 
users to its detailed annotation page (Figure 3 E). Meanwhile, 
clicking on the displayed datasets in the gene search table will 
redirect to the detailed functional analysis page of the dataset 
with this R-DEG (Figure 3 F). Moreover, when searching for a 
drug, the website will display drug information and datasets 
related to that drug, and users can access the dataset analysis 
page (Figure 3 F) for further exploration and analysis. 

User can also browse by cancer type, drug type and func- 
tional analyses (Figure 3 B–D), retrieve DRMref datasets and 
further access the detailed functional analysis results of each 
DRMref dataset (Figure 3 F). The cancer type browse mod- 
ule displays 13 major cancer types, and the drug type browse 
module classifies drugs into three types (chemotherapy, tar- 
geted therapy and immunotherapy). Within the functional 
analyses browse module, each module displays datasets asso- 
ciated with that analysis. Additionally, the ‘Enrichment anal- 
ysis of six known drug resistance mechanisms’ module also 
displays the R-DEGs enriched in six known drug resistance 
mechanisms. The ‘Difference of cell–cell interactions between 
resistant and sensitive groups’ module also shows the R-DEGs 
involved in significant ligand–receptor pairs. The ‘Motifs and 
transcription factors (TFs) regulating drug resistance-related 
DEGs in each cell type’ module also shows the R-DEGs be- 
longing to enriched TFs. The ‘Differentially expressed drug 
target genes between the resistant and sensitive groups’ mod- 
ule also presents the R-DEGs that act as drug targets. 

Exploration of DRMref features 

Annotation of drug resistance-related genes 
On the gene annotation page (Figure 3 E), DRMref first pro- 
vides the basic information of this gene. Then, DRMref dis- 
plays the datasets with differential gene expression for this 
gene. Additionally, the dot plot was used to show the expres- 
sion status of this gene across all datasets, time points and 
cell types, where red indicates high expression in the resis- 
tant cells, while blue indicates low expression in the resistant 
cells (Supplementary Figure S1). Moreover, the gene annota- 
tions mainly include significant ligand–receptor pairs, known 
drug resistance mechanisms, miRNA, motifs and TFs related 
to this gene. We also indicate whether this gene is a TF and 
drug target. Based on the identified important genes in re- 
sistant cells, our DRMref database can identify the impor- 
tant genes mentioned in the original research report. For in- 
stance, in the case of the GSE161195 dataset, the original ar- 
ticle identified PPIA as a potential new target for overcom- 
ing drug resistance in the treatment of multiple myeloma fol- 
lowing a combination therapy involving daratumumab, carfil- 
zomib, lenalidomide and dexamethasone ( 7 ). DRMref also 
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Figure 1. Ov ervie w of DRMref. ( A ) P ublic resources and analy sis tools used in DRMref. ( B ) User interf ace of DRMref. ( C ) Comprehensiv e analy ses in 
DRMref. The platform supports searching, browsing and downloading information, including drug resistance-related mechanisms and datasets. 

identified PPIA as a significantly upregulated gene in the re- 
sistant cells. Furthermore, according to our DRMref results, 
we found that this gene is also significantly upregulated in 
other cancer types, such as post-treatment lung cancer and 
acute myeloid leukemia (GSE207422_Sin, GSE199333). An- 
other example is the PMID34715028 dataset, which pertains 
to clear cell renal cell carcinoma. It reports an upregulation 
of GZMB expression in CD8 + T cells from the group sensi- 
tive to nivolumab treatment ( 35 ). DRMref similarly identified 
a significant downregulation of GZMB expression in the re- 
sistant group. These results demonstrate that, with a uniform 

analytical workflow, DRMref not only uncovers critical infor- 
mation reported in the original studies, but also facilitates new 

knowledge insights. 

Cell type module of dataset annotation 
Based on the cell type markers (Supplementary Table S2), 16 
major cell types were annotated in DRMref. This module pro- 
vides visualization of cells with different cell types (Figure 4 A), 
and different drug responses (resistant and sensitive; Supple- 
mentary Figure S2A). For cell line datasets, we also provide 
clustering visualizations of malignant cells, along with the pro- 
portions of cells with different drug responses within each 
cluster (Supplementary Figure S2B). 

Cell composition module of dataset annotation 
Since TME has been demonstrated to be associated with 
drug resistance, this module provides the statistical results of 
cell composition between the resistant and sensitive cells for 
both pre- and post-treatment samples (Figure 4 B and Sup- 
plementary Figure S3). Immune cells play important roles 
in drug therapy and resistance ( 36–38 ). For example, nat- 
ural killer (NK) cell therapy has been under research and 
has already undergone clinical trials ( 39 ). In DRMref, we 
consistently observed a significantly increased infiltration of 
NK cells in resistant samples of breast cancer post-treated 
with paclitaxel and endometrial cancer post-treated with 
pembrolizumab (Supplementary Figure S3A and B). How- 
ever, B cells were shown as decreased in resistant samples 
of these two datasets (Supplementary Figure S3A and B). 
In contrast, for multiple myeloma treated with pomalido- 
mide + dexamethasone or lenalidomide + dexamethasone, 
NK cells were notably reduced in the post-treatment resistant 
samples (Figure 4 B and Supplementary Figure S3C). Mean- 
while, other immune cells such as CD4 + T cells, CD8 + T 

cells and Mono / Macro cells also exhibited changes be- 
tween resistant and sensitive conditions (Supplementary Fig- 
ure S3C–F). These findings confirm the association between 
immune cell infiltration and the intricate development of drug 
resistance. 
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Figure 2. Data statistics of DRMref. ( A ) Dataset distribution of sample source, drug type and major cancer type. ( B ) Sample distribution regarding 
sample source, drug type and major cancer type. ( C ) The number of datasets on different cell types. ( D ) Statistics of sample sizes of datasets. ( E ) 
Statistics of a v erage cell number of datasets. 

ITH and EMT score module of dataset annotation 
When tumor cells acquire drug resistance, ITH changes and 
EMT may occur. ITH describes the diversity of cell popula- 
tions within a single tumor ( 40 ). ITH leads to a series of bi- 
ological and host environmental changes, primarily through 
alterations in transcriptome expression and cell-to-cell inter- 
actions. Tumor heterogeneity itself and these changes con- 
tribute to drug resistance ( 41 ). EMT is a crucial cellular pro- 
cess that promotes metastasis in various tumors by causing 
the loss of an epithelial cell phenotype and by increasing or 
decreasing the expression of certain genes regulated by a small 
number of EMT TFs ( 42 ). EMT is also considered a key fac- 
tor in drug resistance. Therefore, in this module, we analyzed 
the differences of ITH and EMT between the resistant malig- 
nant cells and sensitive malignant cells in both pre- and post- 
treatment samples (Supplementary Figure S4). As is known, 
ITH is closely related to treatment resistance and is described 
as the Rosetta Stone of therapy resistance ( 43 ,44 ). Previous 
studies have revealed increased ITH after the development of 
therapy resistance ( 45 ,46 ). Meanwhile, EMT, an important 
part of cell plasticity, is recognized as an important emerging 
factor in drug resistance ( 47 ,48 ). Many studies have reported 

the relationship between EMT and drug resistance in cancer 
( 49 ,50 ). Consistent with these previous studies, we found that 
most tumors had larger ITH scores and EMT scores in the 
resistant cells compared to the sensitive cells. 

Cell–cell communication module of dataset annotation 
The cell–cell interaction is an important method to charac- 
terize the TME. It can induce the release of factors related 
to immune evasion and remodeling, further promoting the 
occurrence of treatment resistance ( 36 ). The interaction be- 
tween cancer cells and nonmalignant cells within the TME 

often reshapes the environment and promotes drug resistance 
( 51 ). Therefore, in order to delve deep into the impact of 
surrounding cells on malignant cell resistance, this module 
presents significant ligand–receptor interactions between dif- 
ferent cell types in resistant and sensitive conditions. The anal- 
ysis was conducted separately for pre- and post-treatment 
samples. The heatmap illustrates the changes in the number 
of significant ligand–receptor pairs in the resistant condition 
compared to the sensitive condition (Supplementary Figure 
S5A). The difference in the number of ligand–receptor pairs 
between the resistant and sensitive groups can indicate the 
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Figure 3. The ‘Search’ and ‘Browse’ modules of DRMref. ( A ) DRMref gene and drug search module. (i) Searching the gene symbol / ensemble gene ID 

will navigate to an intermediate page that includes datasets with this gene differentially expressed in resistant cells. (ii) Searching the drug name will 
navigate to an intermediate page showing drug information and datasets with this drug. ( B ) Cancer type browse module. ( C ) Drug type browse module. 
( D ) Functional analyses browse module. ( E ) The detailed annotation page of an R-DEG. Clicking the gene name on the intermediate page will go to this 
page. ( F ) The det ailed annot ation page of a dat aset. Clicking the dat aset ID on the intermediate page will go to this page. R-DEG: drug resist ance-related 
differentially expressed gene. 

macroscopic changes in cell communication that occur un- 
der resistant conditions. The dot plots show the significant 
ligand–receptor pairs in the resistant and sensitive conditions, 
respectively (Figure 4 C and Supplementary Figure S5B). Cell–
cell communication analysis using scRNA-seq data identified 
totally 46 668 significant ligand–receptor pairs for different 
cancer types and drug categories. Among them, there were 604 
unique pairs, with 198 of them associated with 115 R-DEGs. 
For example, our findings revealed that IGFBP3 was upregu- 
lated in resistant malignant cells of prostate cancer, breast can- 
cer, lung cancer and melanoma, as well as in post-treatment 
samples of lung cancer treated with sintilimab (Supplemen- 
tary Figure S1C). Notably, we identified IGFBP3–TMEM219 
as a significant ligand–receptor pair between the resistant ma- 
lignant cells and other cells in the TME of GSE207422_Sin 
dataset (Figure 4 C). As we all know, IGFBP3 contributes 
to various human diseases through IGF / IGF-IR-independent 
actions ( 52–54 ). For example, the IGFBP3 / TMEM219 axis 
holds significant clinical implications in cancer diagnosis and 
prognosis assessment ( 55 ,56 ). These results indicated that the 
altered interactions might be a potential mechanism of drug 
resistance. 

Drug resistance-related DEG module of dataset annotation 
Genes are the most fundamental factor in the study of 
drug resistance mechanisms and the basis for the analysis 

of downstream mechanisms. This module displays the sig- 
nificant DEGs between the resistant and sensitive cells (Sup- 
plementary Figure S6A). A total of 10 976 R-DEGs were 
identified across different datasets and cell types. By click- 
ing on each gene, users can access its gene annotation page, 
which provides a series of information about the gene. For in- 
stance, metastasis-associated lung adenocarcinoma transcript 
1 (MALAT1) was found as upregulated in resistant malig- 
nant cells across 17 datasets, encompassing 8 cancer types 
and 3 drug categories (Figure 4 G). Meanwhile, MALAT1 
was enriched in ‘Epigenetic Alteration of DNA, RNA or Pro- 
tein’ and ‘Regulation by the Disease Microenvironment’ drug 
resistance mechanisms. As an evolutionary conserved long 
noncoding RNA, MALAT1 is known to regulate genes in- 
volved in cancer metastasis and cell migration ( 57 ), as well 
as drug resistance ( 58–60 ). For example, it can modulate the 
chemoresistance (cisplatin, adriamycin, gefitinib and pacli- 
taxel) of non-small cell lung cancer (NSCLC) cells through 
regulating CTNND1 ( 61 ). CTNND1 is a key regulator of 
cell–cell adhesion ( 62 ,63 ) and is also shown upregulated in re- 
sistant cells (Supplementary Figure S1A), which indicate that 
the MALAT1–CTNND1 axis may serve as potential target 
to overcome NSCLC chemoresistance. Apart from MALAT1 
and CTNND1, DRMref also provides other genes and func- 
tions that play crucial roles in drug resistance, demonstrating 
that our database can be utilized to interrogate novel targets 
for improved therapeutics. 
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Figure 4. Example of dataset analysis results. ( A ) UMAP of cell types. If this dataset has both pre- and post-treatment samples, the cell types were 
annotated together. ( B ) The comparison of cell composition between the resistance and sensitive conditions at the post-treatment time point in the 
GSE161801_IMiD dataset. ( C ) The dot plot displays the partial significant ligand–receptor pairs between the malignant cells and the TME cells in the 
GSE207422_Sin dataset. ( D ) Enrichment results for five known drug resistance mechanisms in malignant cells and one known drug resistance 
mechanism in TME cells. ( E ) The bubble plot showed the top 10 upregulated genes in malignant cells along with their associated miRNAs with a 
prediction score of > 80. ( F ) The list of motifs and TFs that regulate drug resistance-related DEGs for each cell type. ( G ) Expression of MALAT1 across all 
datasets and cell types. 
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Drug resistance mechanism module of dataset annotation 
To interrogate the BPs linked with drug resistance, this module 
presents the enrichment analysis results of the six known drug 
resistance mechanisms ( 14 ) (Figure 4 D) and biological path- 
ways for the identified R-DEGs (Supplementary Figure S6B). 
DRMref also presents the gene list enriched in each drug re- 
sistance mechanism on the dataset annotation page. In total, 
636 R-DEGs were found to be enriched in these six known 
drug resistance mechanisms. The functional characteristics of 
the R-DEGs were further delineated, including their involve- 
ment in KEGG pathways, hallmark gene sets and GO BP gene 
sets. These analyses aid in the discovery of candidate biolog- 
ical pathways that are crucial for drug resistance. Here, we 
identified a total of 50 significant hallmark gene sets, 152 
KEGG pathways and 4188 GO BP gene sets. For each class 
of gene sets, a dot plot will be shown, presenting the top 50 
upregulated gene sets and the top 50 downregulated gene sets, 
respectively. 

miRNA module of dataset annotation 
To better annotate the function of drug resistance-related 
genes, this section presents miRNAs related to R -DEGs. miR - 
NAs predicted to have scores exceeding 80 in the miRDB 

database ( 32 ) were identified for each R-DEG. We identified 
2617 enriched miRNAs that target 8501 R-DEGs. On the 
dataset annotation page, we showed the top 10 upregulated 
and top 10 downregulated R-DEGs in malignant cells along 
with their associated miRNAs using bubble plots, as shown in 
Figure 4 E. Complete files containing all datasets and cell types 
can be downloaded from the ‘Download’ section. 

Motif and TF enrichment module of dataset annotation 
TFs play crucial roles in drug resistance. Accordingly, DRM- 
ref provides information on enriched motifs and TFs derived 
from R-DEGs in each cell type and dataset (Figure 4 F). Ad- 
ditionally, as shown in Supplementary Figure S6C, we also 
provide the list of R-DEGs that act as TFs in this dataset. The 
motif / TF enrichment analysis identified 5127 unique enriched 
motifs / TFs associated with 8656 R-DEGs. Among them, 174 
TFs are related to drug resistance. In our findings, SOX4 was 
found to be enriched as a TF in malignant cells, and it was up- 
regulated in pancreatic cancer , lung cancer , breast cancer , acute 
myeloid leukemia and melanoma (Supplementary Figure S1B). 
As is known, SOX4 belongs to the SRY-related HMG box 
(SOX) TF family and is implicated in the development of vari- 
ous malignancies ( 64 ). Additionally, SOX4 was reported to in- 
duce drug resistance in colorectal cancer cells by downregulat- 
ing CYLD through the transcriptional activation of miRNA- 
17 ( 65 ). These results demonstrate that our database provides 
in-depth information regarding motifs and TFs related to drug 
resistance. 

Discussion 

As an important topic in disease therapy, drug resistance has 
been addressed by several databases from different perspec- 
tives. However, DRMref is the first reference map of drug re- 
sistance mechanisms based on collections of single-cell data, 
characterizing drug resistance-related genes across diverse tis- 
sues and cell types in H. sapiens , along with related functional 
analyses. Functional analyses include ITH score and EMT 

score in malignant cells, cell composition analysis for showing 
the alteration of cell types between the resistant and sensitive 

conditions, cell–cell communication analysis for showing the 
alteration of significant ligand–receptor interactions, miRNA 

prediction, motif and TF enrichment analysis, and pathway 
enrichment analysis. Through DRMref, users can explore in- 
tercellular interactions using the expression profiling of lig- 
ands and receptors in the TME. DRMref also provides enrich- 
ment information for six known drug resistance-related mech- 
anisms, allowing us to understand the known mechanisms of 
this drug in this type of cancer. Pathway enrichment analysis 
enables us to gain insights into the pathway changes that occur 
between resistance and sensitive cells. To date, DRMref has 
identified 10 976 resistance-related R-DEGs. Among them, 
174 are TFs, 249 are oncogenes and 1670 are drug targets. Six 
hundred thirty-six genes are enriched in six known drug resis- 
tance mechanisms. Additionally, 115 resistance-related DEGs 
are associated with 198 significant ligand–receptor pairs. 

Meanwhile, under different methods or parameters, or 
when compared to the results from the original article, the 
results of the DRMref database demonstrate a high degree 
of consistency. As shown in Supplementary Figure S7, in the 
GSE161801_IMiD dataset, the overlap rate of six cell types 
with the annotations in the original article is almost above 
90%. In the GSE161801_PI dataset, the overlap rate for four 
cell types is also nearly above 90%. In the DRMref database’s 
GSE169246_PacAteBlood dataset, there are 111 overlapping 
DEGs with the original article, accounting for 90.24% of the 
DEGs reported in the original article. Moreover, the DRM- 
ref database not only identified key genes, as highlighted 
in the original articles, but also facilitated the discovery of 
new insights by using this universal workflow and integrated 
datasets. Therefore, the results of the DRMref database are 
reliable and meaningful. 

In order to maintain DRMref as a cutting-edge drug re- 
sistance database, we will continuously collect and update 
new data every 6 months. Additionally, we welcome users 
to share publicly available drug resistance scRNA-seq data 
on our website. We will employ advanced modeling meth- 
ods and deep learning-based transformation techniques to ex- 
tract valuable insights from our database, enabling combina- 
tion analysis for investigating drug combinations and identi- 
fying targetable biomarkers. This will facilitate the develop- 
ment of enhanced therapeutics, research on drug resistance 
mechanisms, and the discovery of combinational biomarkers, 
drug response predictions and clinical drug recommendations. 
We firmly believe that DRMref will continue to serve as a 
valuable resource for drug resistance research and drug target 
discovery. 
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All data and results can be downloaded from the DRMref 
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