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Worsening glycemia, prediabetes and diabetes, is one of the essential diseases in public 

health, considering their high prevalence, the enormous impact on multiple organs, and the 

economic burden on the community. Various factors can affect the pathogenesis of 

worsening glycemia, and this study focused on macronutrient intake, genes, and their 

interactions with metabolome data. 616 self-reported Mexican American participants in Starr 

County were recruited with informed consent. 308 identified and 2,471 unidentified 

metabolites were used for the analysis, and all the metabolites were inverse normalized with 

less than half of the missing rate. Each of the five glycemic and lipid traits was selected, and 

insulin and HOMA-IR were only log-transformed to correct skewed distribution. 

Macronutrient intake was calculated from 110-item food frequency questionnaires by the 

formula of nutrient density. All the analyses were adjusted for age, gender, and BMI as 

covariates. The analyses to find associations across glycemic and lipid traits, nutrients, and 

metabolites used linear regression models. We also compared the mean difference of 

metabolites across the glycemic status group with ANOVA model adjusted covariates. 

Genetic associations on the metabolites were calculated by GMMAT, and gene-environment 



interactions were investigated by MAGEE. 3-hydroxybutyric acid, CAR (5:1), DG 

(18:1_18:1), DG (32:0), DG (32:1), DG (34:1), DG (34:2), PC (32:1), and 9 unidentified 

metabolites were associated with macronutrient intake, glycemic traits, and lipid traits. 28 

identified and 232 unidentified metabolites were associated with specific SNPs in the cutoff 

of 5.0E-08. Among the metabolites, DG (32:1) was associated with the SNPs located on the 

LRFN2 gene (top signal p-value 8.95E-09), and the other 16 metabolite-gene pairs were 

newly found.  In the SNP-nutrient interactions, 13 SNP-nutrient interaction pairs on 

identified metabolites and 40 SNP- nutrient interaction pairs on unidentified metabolites 

were significant, but no significant SNPs overlapped compared to the GMMAT results. 

Moreover, more than half of the significant signals by MAGEE were located on noncoding 

DNA regions, so further study should be needed to reveal their functions.  
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BACKGROUND  

Literature Review  

Prediabetes and Diabetes: Definition and Classifications   

 Diabetes mellitus (DM) is defined as a high blood glucose state derived from the 

malfunction of the endocrine system (1). The essential organ of the endocrine system is the 

pancreas, so diabetes mellitus has mainly two different types depending on the underlying 

reason for the beta cell dysfunction in the pancreas (2). If the host immune system attacks an 

destroys the beta cell in the pancreas, this condition becomes the type I DM. Since this is one 

of the autoimmune diseases, the onset age of type I DM is usually under the 15-year-old, 

which is relatively younger than that of type II DM (3). Patients with type II DM do not show 

structural failure in the pancreas but have a functional loss in insulin secretion in the pancreas 

combined with the insulin resistance of the tissue (4). This dysfunction in glucose control is a 

chronic change, so there is a transitional and reversible status between normal and type II 

DM: prediabetes (3). Compared to diabetes documented in ancient Egyptian manuscripts and 

recorded since the 1st century, prediabetes is relatively recent, emerging in the late 1970s (5, 

6). 

 Prediabetes and diabetes are diagnosed based on fasting glucose, 2-hour post-load 

glucose, and HbA1c (7). The American Diabetes Association(ADA) has established the 

following criteria for the diagnosis of diabetes: A fasting plasma glucose level measured after 

a minimum of 8 hours of fasting that is equal to or greater than 126 mg/dL (7.0 mmol/L); A 

2-hour post-load glucose level checked after taking 75g anhydrous glucose with water that is 

equal to or greater than 200 mg/dL (11.1 mmol/L); A HbA1c level measured by NGSP 
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certified and standardized to the DCCT assay that is equal to greater than 6.5 percent (48 

mmol/mol); A random plasma glucose that is equal to or greater than 200 mg/dL (11.1 

mmol/L) with the symptoms of hyperglycemia or hyperglycemic crisis (7). If one meets any 

of these criteria, the person is diagnosed with diabetes. Prediabetes is also defined between 

normoglycemia and the detecting criteria of diabetes. The detailed standards are as follows: 

A fasting plasma glucose from 100 mg/dL (5.6 mmol/L) to 125 mg/dL (6.9mmol/L) or 2-

hour post-load glucose from 140 mg/dL (7.8 mmol/L) to 199 mg/dL (11.0 mmol/L) or 

HbA1c level from 5.7 percent (39 mmol/mol) to 6.4 percent (47 mmol/mol) (7).    

Prevalence and the burden of prediabetes and diabetes 

Diabetes mellitus is one of the most common chronic diseases worldwide, and about 

424.9 million (8.8 percent) people have diabetes in 2017 (8). Even though various preventive 

interventions have been developed to decrease worsening glycemia, the International 

Diabetes Federation (IDF) estimates that about 628.6 million people (9.9 percent) with 

diabetes based on the increasing trend in 2045 (8). Thus, the healthcare cost worldwide for 

diabetes was also estimated to increase from 232 billion U.S. dollars in 2007 to 727 billion 

U.S. dollars in 2017 (8). In both 1980 and 2014, the United States ranked third among 200 

countries after China and India regarding the number of individuals affected by diabetes (9). 

Diabetes mellitus was the seventh leading cause of death in the United States (U.S.) 

from 2015 to 2019 (10). Moreover, it is also a major risk factor for heart disease, the leading 

cause of death in the U.S. (10, 11). Likewise, diabetes mellitus can cause multiple organ 

damage and other conditions such as kidney failure, blindness, and peripheral neuropathy 

(12). According to the IDF Report 2017, the U.S. spent the largest healthcare cost for 
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diabetes compared to other 200 countries, with more than 11000 U.S. dollars as mean per 

capita spending per year (13). Thus, preventing diabetes is the main public health issue 

considering the economic and critical burden. 

Nevertheless, lay people still fail to recognize the importance of blood sugar 

regulation. According to the National Diabetes Statistics Report, about one out of five adult 

patients with diabetes did not know their condition related to glucose control in 2018 (14). 

Recently, prediabetes has been considered an essential condition in preventing diabetes 

because it is a reversible condition to normal status by lifestyle modification. However, this 

specific health condition is also not well known to the public, so more than 80% of adults 

with prediabetes did not realize their glycemic intolerance status (14).  

The risk of diabetes differs depending on the race, and Hispanics showed the second 

highest prevalence after American Indian/Alaska Native among US adults in 2017-2018 (14). 

Thus, diabetes is the fifth leading cause of death in the Hispanic U.S. population (11). In 

particular, Mexican Americans showed the highest prevalence of diabetes among Hispanics 

(14). Because the Hispanic or Latino population is the second-largest race in the U.S. in 

2019, the burden of diabetes from this population needs to be decreased through proper 

preventive interventions (15).  

The conundrum of prediabetes and diabetes 

As described above, three different diagnostic criteria of prediabetes exist: HbA1c, 

fasting blood sugar, and 2-hour post-load oral glucose tolerance. Individuals diagnosed with 

HbA1c may be considered normal according to other standards, fasting blood sugar and 2-

hour post-load glucose, due to variations in glucose metabolism that are not accounted for in 
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those standards. Table 1 shows the distribution of glucose intolerance groups divided by each 

diabetes diagnostic criteria in Starr County, Texas. The percentage of the normal group 

showed a variance from 42.7% to 61.6%, and that of the prediabetes group showed a 

variance from 27.6% to 51.1%. The number of participants diagnosed with diabetes by all 

three criteria above was only 15, yet 88 participants met at least one of the criteria. 

Moreover, only 58 participants with prediabetes met all three criteria among 433 

participants diagnosed with at least one standard. Lay people could be confused by these 

inconsistent results in understanding their glucose intolerance condition. Incomplete 

comprehension hinders individuals struggling with high blood glucose from adhering to the 

treatment, as lifestyle modification is the most important aspect of managing worsening 

glycemia. 

Table 1. The distribution of glycemic status group in Starr County, Texas 

 

 Fasting Glucose  

n (%) 

2-hour OGTT  

n (%) 

HbA1c 

n (%) 

Normal 263 (42.7%) 373 (61.6%) 346 (56.2%) 

Prediabetes 315 (51.1%) 167 (27.6%) 235 (38.1%) 

Diabetes 38 (6.2%) 66 (10.9%) 35 (5.7%) 

Total 616 606a 616 

*Abbreviations: OGTT: Oral glucose tolerance test; HbA1c: Hemoglobin A1C    

a. There were 10 missing people in the 2-hour OGTT criteria since they were already 

diagnosed with diabetes by fasting glucose, so the 2-hour OGTT did not perform for safety.  

 



5 

 

 Another difficulty in diabetes care is the different diagnostic standards across the 

expert group. We explained the diagnostic standard from American Diabetes Association 

above, but WHO does not use HbA1c for the diagnosis of prediabetes,  and the cutoff of 

normoglycemia based on the fasting plasma glucose is up to 110 mg/dL that is 10 mg/dL is 

higher than the standard from ADA (6). International Expert Committee(IEC) is another 

expert group that only uses HbA1c to detect prediabetes; the cutoff level of HbA1c is from 

6.0 to 6.4 percent (6). Thus, the prevalence of prediabetes in the U.S. adults aged 20 or older 

can be changed from 4.3 percent to 43.5 percent in the same population analysis based on the 

National Health and Nutrition Examination Survey 2015-2016 data (6). Thus, we need 

additional knowledge about prediabetes and diabetes to improve the management of these 

specific conditions.  

Diet and glucose metabolism 

A diet should be considered in the analysis of glucose metabolism since glucose 

comes from the degradation of carbohydrates, fat, and protein, which are the essential 

nutrients of a diet. Previous studies have established the association between certain diet 

patterns and diabetes. For example, the “prudent” diet pattern, which consists of higher 

consumption of fruits and vegetables, shows a reduced risk of diabetes, and the 

“conservative” pattern, which contains butter, potatoes, and whole milk, is found to be 

associated with an increased risk of diabetes (16). Low-fat, Mediterranean, low-glycemic 

index, vegetarian, and lower-carbohydrate eating patterns are also suggested for improving 

glycemic controls and insulin resistance (17-19). Willett et al. proclaimed that the quality of a 

vegetable-based diet should be considered to improve glycemic control (20). 
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On the other hand, Panagiotakos et al. found the Mediterranean diet did not show a 

statistically significant difference in glucose, insulin, or homeostatic model assessment of 

insulin resistance (HOMA-IR) in multiple regression analysis (21). However, most of this 

nutritional research investigated non-Hispanic groups, so these specific diet patterns could be 

the barrier to dietary preventive intervention for Hispanics since they are unfamiliar with 

these diet patterns. Titus et al. assessed the barriers to managing type II DM for Hispanics, 

and the respondents counted their diet and exercise as the most difficult factors in their 

glucose management (22). The Hispanic Community Health Study/Study of 

Latinos(HCHS/SOL) searched how much Hispanic and Latino groups can follow the 2010 

Dietary Guidelines for Americans (DGA), and sodium and fatty acid guidelines were the 

most vulnerable parts to follow (23). Since these two nutrients have been known to be 

important factors in glucose intolerance, these results suggest the need for advanced study 

and diet guidelines based on the nutrient components. 

Gene and glucose metabolism 

Another factor, genes, should also be considered since glucose metabolism in 

individuals can be different depending on the genetic variants of each individual. The 

heritability of type II DM is estimated from 30 to 70 percent, and about 20 percent can be 

counted from common variants (24).  The variance of the metabolic response in each diet 

could be related to the genetic factor. So far, more than 700 loci have been recognized as the 

genetic variants associated with type 2 diabetes in the population-based single nucleotide 

polymorphisms(SNPs) analysis (24, 25). One of the essential genes related to type II DM is 

the TCF7L2 gene located on chromosome 10q25.3, and this gene and Wnt signaling pathway 
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affect insulin resistance and lipid metabolism in adipocytes (2, 26, 27). Other essential genes 

associated with type II DM are PPARG on chromosome 3, KCNJ11 on chromosome 11, 

CDKAL1 on chromosome 6, SLC30A8 on chromosome 8, IGF2BP2 on chromosome 3, and 

CDKN2 A/B on chromosome 9 (2, 28-31). Glycemic traits related to type II DM have also 

been studied for their genetic association. MTNR1B on chromosome 11, G6PC2 and  SPC25 

on chromosome 2, and GCK on chromosome 7 are associated with fasting plasma glucose 

(32-36). GCK and TCF7L2 are also related to 2-hour post-load glucose, HBB on 

chromosome 11, HK1 on chromosome 10, and TMC6 and TMC8 on chromosome 17 show 

top signals associated with HbA1c in the Hispanic race (34, 37-40). However, most of the 

studies considered only genetic associations, and there are few studies investigating gene- 

environmental interaction on glycemic metabolism due to a lack of method. Recent 

advancements in statistical techniques have enabled us to identify gene-environmental 

interactions, so this study will investigate gene-nutrient interactions on metabolites.  

Untargeted metabolomics 

 Metabolomics, a study investigating the metabolites of a biological system from cell 

to organism, has been used to reveal unknown metabolism in the human body (41). 

Metabolomics has the advantage of identifying proteins produced from human genes and 

understanding the byproducts generated in environments such as food or gut microbiomes 

(41). Because the metabolome has been studied since the late 1990s, researchers have 

investigated the metabolome to reveal unknown metabolites related to worsening glycemia 

(42). Leucine, Isoleucine, and aromatic amino acids showed significant associations with 

insulin resistance and type II DM (43).  Wang-Sattler et al. found that glycine, 



8 

 

lysophosphatidylcholine (LPC) (18:2), and acetylcarnitine C2 are associated with prediabetes 

(44). Zeng et al. reported five biomarkers, 20-Hydroxy-leukotriene E4, Lysopc (20:4), 5-

methoxytryptamine, Endomorphine-1, and Lysopc (20:3) are associated with the transition 

from prediabetes to normal glucose regulation in 108 participants(45). Guasch-Ferre et al. 

identified that isoleucine, leucine, valine, tyrosine, and phenylalanine were associated with 

an increased risk of type II DM in 2016 (46). Her research team added additional results in 

2022, and alanine, glutamate, lysine, methionine, mannose, trehalose, pyruvate, four different 

forms of acylcarnitine, diacylglycerol, triacylglycerols, phosphatidylethanolamine, and 

ceramides were also positive associations with the risk of type II DM (47). Despite these 

findings, Hispanics were still an understudied population in metabolomics, so additional 

studies on this population are needed.  

Public Health Significance 

 This study aims to discover how diet and genetic interaction can impact glucose 

metabolism through untargeted metabolomics. The metabolites that are significantly 

associated with diet and having genetic interaction could compensate for the gap in our 

knowledge about glucose metabolism. Diet is one of the controllable essential factors in 

glucose metabolism, so this additional knowledge could also provide scientific evidence to 

create more effective prediabetes prevention strategies considering the individual genetic 

factor. With more effective prediabetes prevention strategies, the prevalence of diabetes in 

the vulnerable population should decrease because prediabetes is a condition that can be 

reversed to normal status. 
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Hypothesis, Research Question, Specific Aims or Objectives 

This study investigated the diet and genetic interaction on glycemic metabolism with 

untargeted metabolomics data. Based on this knowledge, the long-term goal of this study is 

to establish scientific evidence to develop preventive interventions for prediabetes. In 

particular, this study includes diet, which can be modified by various methods such as 

cooking classes and dietary education. Hence, if there are any novel metabolites on glycemic 

metabolism related to diet and genetic interaction, it could be considerable surrogate 

outcomes to modify the diet plan for preventing prediabetes. The objective is to identify diet 

by genetic interaction on glucose metabolism with untargeted metabolomics data. The central 

hypothesis is that diet and genetic interactions can affect metabolites in glucose metabolism. 

Based on this hypothesis, the aims are:  

Aim 1: To identify plasma metabolites associated with prediabetes-related traits and 

macronutrient intake among Mexican Americans in Starr County, Texas. 

Aim 2: To identify genetic variants affecting plasma metabolites. 

Aim 3: To investigate the interaction between genetic variation and nutrient intake on 

plasma metabolites. 

This study is expected to identify diet by genetic interaction on glucose metabolism. 

Based on this outcome, it could provide additional knowledge on glucose metabolism. As 

mentioned above, the gap between the different standards and metabolism of glucose 

intolerance could be explained via diet by genetic interaction. Moreover, this discovery could 

suggest scientific evidence for developing dietary prevention for prediabetes. For example, if 
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a high-fat diet with specific genes is attributed to glucose intolerance, dietary prevention 

could be constructed by a low-fat diet for people with particular risk genes. 
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METHODS 

Study Design 

 A cross-sectional design is selected for this study, despite its inherent weaknesses 

such as temporal ambiguity. However, this design offers advantages in terms of cost and time 

efficiency. Additionally, it enables us to estimate the impact of the disease on the general 

population. Given that prediabetes and diabetes are common diseases and the participants 

share common factors such as diet and genes, a cross-sectional design can be suitable for this 

study. While measurement error resulting from plasma traits may be a significant concern, 

we can mitigate its impact using a standardized manual for measuring them. The data 

collected for this study is primary data obtained from participants residing in Starr County. 

Study Subjects and Setting 

 Participants were recruited by the local staff in Starr County from 2018 to 2019. All 

the local staff were trained to measure the anthropometric measurement and to ask questions 

about basic descriptive characteristics and food frequency questionnaires in standardized 

forms. All the standardized questionnaires were provided in English and Spanish. 

A total of 616 participants without prior diagnosis of diabetes were recruited. Since 

we found people newly diagnosed with diabetes through the visits to the local office, the 

participants were divided into three groups, normal, prediabetes, and diabetes. Normal group 

means the participants who show a normal range in all three diagnostic criteria of diabetes in 

the American Diabetes Association. Recruiting criteria excluded those with previously 

known diagnoses of diabetes, but 83 people showed their glycemic traits in the diagnostic 

criteria of diabetes on their first visit. In the investigation of medication use, 13 participants 
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were found using glucose-lowering medicines for losing weight or other purposes. Thus, they 

were excluded from the analysis, and 603 participants were investigated in the analyses of 

identified metabolite data. The demographic characteristics of the participants are shown in 

the supplemental table S1. The normal group shows the largest proportion of the age group 

under 40 years old (Normal vs. Prediabetes vs. Diabetes: 18.42% vs. 10.87% vs. 4.82%) and 

the least proportion of the age group above 60 compared to other groups (Normal vs. 

Prediabetes vs. Diabetes: 11.18% vs. 14.67% vs. 19.28%). 71% of the participants are 

female, and the normal group shows a larger proportion of females than others (Normal vs. 

Prediabetes vs. Diabetes: 81.58% vs. 67.12% vs. 68.67%). Since glucose intolerance is 

associated with obesity, the diabetes group shows the largest proportion of body mass index 

(BMI) greater than 30, which is the diagnostic standard of obesity (Normal vs. Prediabetes 

vs. Diabetes: 38.82% vs. 63.32% vs. 80.72%). There was a time gap between receiving 

identified metabolites and unidentified metabolites data and three missing samples on 

unidentified metabolites. Therefore, 600 participants were used for the analyses of the 

unidentified metabolites. For the lipid traits, 88 participants had taken cholesterol-lowering 

drugs, so only 528 participants were included in the investigation related to lipid traits with 

identified metabolites, and 525 participants were analyzed with unidentified metabolites. 

Also, 12 participants showed high triglyceride, so the Fridewald equation could not calculate 

their low-density lipoprotein (LDL) concentration. Thus, these participants were only 

removed in the analysis to find the association between metabolites and calculated LDL 

levels. Lastly, the sample size for the genetic association study (Aim 2) and gene-nutrient 
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interaction study (Aim 3) was limited to only 485 participants due to the available data. 

Figure 1 summarizes how the samples were selected in each analysis.  

 

Figure 1. Summary of the sample size in each analysis 

 

 

 The exposure of this study is diet and gene, and the outcome is the plasma 

metabolites associated with exposure and prediabetes-related traits. Age, sex, and body mass 

index were used as covariates for all the analyses. 

Nutrient intake and food sources were obtained using a semi-quantitative food 

frequency questionnaire and transformed into nutrient density in macronutrients. The 110-

item food frequency questionnaires were previously tested and validated in this same 

population, and their correlations compared to 3-day food records were 0.77 for energy, 0.76 
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for total fat, and 0.61 for saturated fat (48). The participants were educated about how to 

record their food frequency questionnaires from the trained local staff.  

Genetic variants were determined previously from imputed genome-wide association 

study (GWAS) data in this population. The trained nurses collected the blood of the 

participants to gather metabolomics and glycemic traits data.  

Prediabetes-associated glycemic traits are HbA1c, fasting glucose, fasting insulin, 

HOMA-IR, and 2-hour post-load glucose, and these data were gathered from the EDTA 

plasma sample. Before collecting the glycemic trait samples, the participants were directed to 

fast overnight and come to the assigned sampling location. The blood of participants was 

obtained for their fasting glucose status at first, and the participants ingested the 75g glucose 

load immediately after the fasting blood test. After 2 hours from the ingestion of the glucose 

load, the blood of participants had collected once again for assessing 2-hour post glucose 

loads. The collected blood was centrifuged, and the plasma sample was extracted from the 

EDTA tube and used for further analysis. HOMA-IR is calculated by the following formula 

(49):  

HOMA-IR = fasting glucose in mmol/L* fasting insulin in µU/mL/22.5 

Since worsening glycemia is also associated with obesity, five different lipid traits – 

cholesterol, triglycerides (TG), calculated LDL,  high-density lipoprotein(HDL), and non-

HDL- were also investigated to find the associations with metabolites(50). LDL is computed 

using the Fridewald equation (51):  

Calculated LDL = Total cholesterol − HDL − (Triglycerides/5)       
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Untargeted metabolomic profiles are obtained from EDTA plasma analyzed at the 

Michigan Regional Comprehensive Metabolomics Resource Core(Ann Arbore, MI, USA). 

The obtained EDTA samples were stored in the -80 ℃ freezer and sent in a frozen state to 

the metabolomics core. The details on the metabolomic data process using Liquid 

Chromatography with Tandem Mass Spectrometry (LC-MS) are available in (52). The 

metabolomic data for this study were checked to determine whether there was any batch 

effect across the tests, and there was no specific batch effect on the whole metabolomic data 

in both identified and unidentified metabolites. During the metabolomic data generation, we 

found the isomers of some metabolites were measured separately. Thus, those metabolites 

were marked with “_a” or “_b,” and the tested reversed-phase method was shown as “rp”.    

Data Analysis 

Aim 1. Identifying plasma metabolites associated with prediabetes-related traits and 

macronutrients  

Formatted self-administered questionnaires collected descriptive data such as age and 

sex, and body mass index was calculated based on the measured height and weight by the 

standardized measurement equipment. This descriptive data is shown with mean and standard 

deviation in Table 2. ANOVA tests were used to test whether there is any significant 

statistical difference in the quantitative data, such as age and BMI, between the (pre)diabetes 

groups. Sex was described with the proportion of each sex, and the statistical difference was 

tested with a chi-square test. The significance level of all the analyses in descriptive data is 

0.05. This table is summarized in the appendix table, and age, sex, and BMI show 

statistically significant differences across the glucose intolerance groups. 
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Metabolites with more than half of the missing values are omitted from the analysis, 

and all other metabolites are inverse-normalized. Thus, 308 identified metabolites and 2,471 

unidentified metabolites were used for all the analyses in this study. The Bonferroni method 

was used to correct all the significance levels to adjust for multiple testing. Therefore, 1.62E-

04 (0.05/308) was used as the significance threshold for the identified metabolite data, and 

2.02E-05 (0.05/2,471) was used as the significance threshold for unidentified metabolite 

data. Missing values in each variable were coded as NA and modified by available case 

analysis. The strength of this method is that it can provide more power for each analysis than 

a complete case analysis and use real data. 

Five prediabetes-related glycemic traits were tested in this study. Fasting plasma 

glucose, 2-hour post-load glucose, and HbA1c showed normal distributions, but insulin and 

HOMA-IR showed right-skewed distributions (Insulin: Shapiro-Wilk test p-value: <2.2E-16, 

Skewness 2.07, Kurtosis 9.46; HOMA-IR Shapiro-Wilk test p-value: <2.2E-16, Skewness 

2.0, Kurtosis 10.10). Thus, these two traits were log-transformed and applied to the analyses. 

Linear regression models were used to identify the association between the plasma 

metabolites and prediabetes-associated glycemic and lipid traits adjusted to age, sex, and 

BMI. Each group with different glycemic status was also coded using discrete values for 

different linear regression analyses by coding the group with normal glycemia as 1, 

prediabetes as 2, and diabetes as 3. Each glycemic group was also compared by the ANOVA 

model adjusted by age, sex, and BMI.  
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Diet data was transformed into the nutrient density in macronutrient categories such 

as carbohydrates, fat, and protein. Nutrient density was calculated based on the energy from 

each macronutrient (53). The formula for nutrient density for macronutrients is as follows:  

(Grams of total component intake *X)   / Kcal of total energy intake  

X is the kcal for 1 gram of each macronutrient. Thus, X becomes four kcal/g for 

carbohydrates and protein and nine kcal/g for all kinds of fat; total fat, saturated fat, 

monounsaturated fat, and polyunsaturated fat. In this study, the energy from alcohol was not 

included in the total energy intake. The associations between metabolites and nutrient density 

of macronutrients were analyzed with linear regression models adjusted age, sex, and BMI. 

All the analyses were calculated with R 4.1.2. version.  

Aim 2. Identifying genetic variants affecting plasma metabolites 

 Generalized linear Mixed Model Association Tests (GMMAT) were used to 

investigate genetic variants affecting plasma metabolites to address the cryptic relatedness 

and heterogeneity in the population structure (54). We used GWAS array data imputed into 

the 1000 Genomes Project Phase 3 reference panel. The imputation was done by the 

Michigan imputation server. Metabolites and covariates – age, sex, and BMI- were 

constructed as a data frame column, and each participant became a row of the data frame. 

The kinship matrix was built by the GEMMA R package (55). Genetic data were converted 

to a PLINK bed file for analysis, and major allele frequency was limited from 0.01 to 0.5. 

Since the metabolite is the quantitative trait, the GMMAT model set up a Gaussian family.  

All 308 identified metabolites and 2,471 unidentified metabolites were analyzed, and the 

cutoff value to determine significant genetic-associated metabolites was set to the nominal 
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genome-wide significance threshold of 5.0E-08. The Manhattan plots were generated by the 

R package qqman. After finding significantly associated single nucleotide 

polymorphisms(SNPs), each SNP position was checked to investigate the gene in the UCSC 

genome browser on Human (GRCh37/hg19) (56). R 4.2.2 version was used for the analyses.  

Aim 3. Investigating the interaction between genetic variation and nutrient intake on 

plasma metabolites 

Diet by gene interaction effects on metabolites was modeled using generalized linear 

models and analyzed by Mixed Model Association Test for GEne-Environment Interaction 

(MAGEE) (57). Since MAGEE also examines the gene-environment interactions based on 

the GLMMs from the GMMAT R package, the analyses could be consistent with the 

previous aim. The running time of MAGEE took more than that of GMMAT, so we selected 

the metabolites that showed significant associations with any macronutrients, glycemic traits, 

or genes. Therefore, 145 identified metabolites and 687 unidentified metabolites were tested 

to find the gene-nutrient intake interaction on metabolites. The same imputed GWAS data on 

aim 2 was used for this gene-nutrient interaction, and major allele frequencies were limited 

from 0.01 to 0.5. MAGEE can generate p-value for both interaction and joint tests, so the 

first cutoff p-value was based on the p-value of the interaction test. However, the p-value of 

the joint test was also considered to select the significant gene-environment signals. The 

cutoff value of the p-value is 5.0E-08. After the analysis, we found that the average genomic 

control(lambda) values were slightly more inflated than 1.0. Therefore, the metabolites were 

selected based on lambda values from 0.95 to 1.15 in the Q-Q plot of p-value interaction. R 

4.2.2 version was used for the analyses.  
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Ethical Considerations  

The data of this study is a part of NIH grants DK118631 Project with IRB approval. 

All participants in this study willingly enrolled and were informed of their right to withdraw 

from the study at any time and to decline invasive procedures, such as blood sampling. They 

were provided with informed consent, which outlined the benefits and risks associated with 

the study. In case of any uncertainties regarding the study process, participants were 

encouraged to ask questions to the local staff for clarification. Individuals displaying 

significantly abnormal laboratory results, such as excessively high plasma glucose levels, 

were promptly referred to a local physician to prevent potential life-threatening events. The 

local staff made efforts to minimize invasiveness during sample collection procedures. 

Furthermore, all data obtained from the study was treated as confidential. 
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RESULTS 

Aim 1. Plasma metabolites associated with prediabetes-related traits and macronutrient 

intake 

Table 2 is the summary of the demographic characteristics of the participants in this 

study. The group with diabetes showed older age and higher BMI than the group with normal 

glycemic status, and the percentage of males in the group with diabetes was higher than the 

group with normal glycemic levels. Although the mean energy intake of the group with 

diabetes is higher than that of the group with normal glycemic status, it did not show 

statistically significant differences across the glycemic level. Each macronutrient nutrient 

density was tested to determine whether there was any significant difference, but any 

macronutrient nutrient density did not show significant differences across the glycemic 

status.   
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Table 2. Demographic characteristics of the participants based on glycemic status 

 

Characteristics Normal 

(N= 152) 

Prediabetes 

(N=368) 

Diabetes 

(N=83) 

Univariate 

 P-value 

Adjusted 

P-value  

Age(years)a 47.97 ± 8.13 50.47± 7.93 51.29 ± 7.95 0.0005b   

Sex (no.(%))         

Male 28 (18.42) 121 (32.88) 26 (31.3) 0.0038c   

Female 124 (81.58) 247 (67.12) 57 (68.7)    

BMI (kg/m2)a 29.25 ± 5.58 32.64 ± 6.34   35.54 ± 7.21 <0.0001b   

Energy intake and Nutrient density 

Energy (Kcal)a 

 

      2001.73 

± 1173.54 

2190.02 

± 1323.95 

 2232.94 

± 1346.12 

 

0.134b 

 

0.116d 

Protein (%)a 16.75 ± 5.00 17.22 ± 3.97 16.72 ± 3.64 0.880d 0.879e 

Carbohydrates 

(%)a 

46.24 ± 10.46 45.02 ± 8.86 45.58 ± 7.81 0.507d 0.503e 

Total Fat (%)a  37.01 ± 7.20  37.76 ± 6.37 37.69 ± 5.76 0.406d 0.403e 

Saturated Fat 

(%)a 

 11.03 ± 2.45  11.17 ± 2.27  11.04 ± 1.85 0.977d 0.977e 

Monounsaturated 

Fat (%)a 

  

15.40 ± 3.33 

  

15.65 ± 2.91 

 

15.76 ± 2.61 

 

0.390d 

 

0.390e 

Polyunsaturated 

Fat (%)a 

  

7.30 ± 1.82 

  

7.64 ± 1.79 

 

7.63 ± 2.35 

 

0.102d 

 

0.101e 

a Mean ± S.D. 

b p-value from univariate ANOVA model 

c p-value from the chi-square test 

d p-value from ANOVA model adjusted age, sex, and BMI 

e p-value from ANOVA model adjusted energy intake, age, sex, and BMI 
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a. Identified metabolites 

a.1.Glycemic traits and glycemic status group 

A total of 23 metabolites, including branched amino acids such as leucine and 

isoleucine, showed associations with fasting glucose. Additionally, 49 metabolites were 

found to be associated with 2-hour post-load glucose, while 14 metabolites were related to 

HbA1c. 49 metabolites were associated with log-transformed insulin, and 51 metabolites 

were related to log-transformed HOMA-IR (Supplemental Table S2-S6). Notably, all 

metabolites associated with HbA1c were also related to at least one other measure of 

glycemic traits. Table 3 summarizes the metabolites list associated with three diagnostic 

glycemic features; fasting glucose, 2-hour post-load glucose, and HbA1c. Behenic acid was 

positively associated with fasting glucose, but choline was negatively associated with fasting 

glucose (Behenic acid: β 0.00676, p-value 7.67E-05; Choline: β -0.007, p-value 2.28E-05). 

Most metabolites were positively associated with each glycemic trait, but 

phosphatidylcholine (PC) (35:3) showed a negative association with 2-hour post-load glucose 

(β -0.00385, p-value 2.79E-05). 2-deoxyglucose was also negatively associated with fasting 

glucose and HbA1c, and glutamine exhibited negative associations with all three diagnostic 

glycemic traits (2-deoxyglucose: fasting glucose β -0.0089 p-value 6.57E-07, HbA1c β -

0.2445 p-value 3.23E-07; glutamine: fasting glucose β -0.0069 p-value 5.53E-05, 2-hour 

post-load glucose β -0.0039 p-value 2.21E-05, HbA1c β -0.1962 p-value 2.69E-05). 3-

methyl-2-oxovaleric acid, DG (18:1_18:1), DG (32:0), DG (34:1), DG (34:2), glutamine, 

ketoleucine, and leucine were found to be associated with all five glycemic traits. These eight 

metabolites also showed significant associations with the hyperglycemic groups in the linear 
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models with glycemic status, ANOVA models comparing the normal and diabetes groups, 

and ANOVA models comparing the non-diabetes and diabetes groups (Supplemental tables 

7-10). Additionally, 34 metabolites showed significant differences when comparing the 

normal group to all hyperglycemic statuses, including prediabetes and diabetes. 

Table 3. Summary of three diagnostic glycemic traits associated with identified metabolites 

list 

 
Fasting 

glucose only 

associated 

metabolites 

2-hour post-load 

glucose only 

associated metabolites 

Fasting glucose and 2-

hour post-load glucose 

associated metabolites 

Fasting glucose 

and HbA1c 

associated 

metabolites 

All three 

diagnostic 

glycemic traits 

associated 

metabolites 
Behenic acid 

Choline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ƴ-Glutamylisoleucine 

Arachidic acid 

Citramalic acid 

DG(32:1) 

Docosapentaenoic acid 

Docosatrienoic acid 

Docosenoic acid 

Dodecenoic acid 

Eicosadienoic acid 

Eicosatetraenoic acid 

Eicosatrienoic acid 

Eicosenoic acid 

EPA 

Hydroxydodecanoic acid 

Hydroxyhexadecanoic 

acid 

Hydroxyphenyllactic acid 

Margaric acid 

MG (14:0) 

Myristoleic acid 

N-Acetylneuraminic acid 

Octadecadienoic acid 

Octadecatrienoic acid 

Oleic acid 

Palmitic acid 

Palmitoleic acid 

PC (32:1) 

PC (34:4) 

PC (35:3) 

Stearic acid 

2-Hydroxybutyric acid 

Ƴ-Glutamylleucine 

DHA 

Docosatetraenoic acid 

Heptadecanedioic acid 

Hydroxytetradecanoic acid 

Nonadecenoic acid 

 

2-Deoxyglucose 

 3-Hydroxybutyric 

acid 

3-Methyl-2-

oxovaleric acid 

DG (18:1_18:1) 

DG (32:0) 

DG (34:1) 

DG (34:2) 

DG (36:3) 

Glutamine 

Isoleucine 

Ketoleucine 

Leucine 

Leucine-Isoleucine 

MG (16:0)_rp_a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. underlined metabolites: negative association 

b. Abbreviation: DG: Diacylglycerol; EPA: Eicosapentaenoic acid; MG: Monoacylglycerol;  

PC Phosphatidylcholine; DHA: Docosahexaenoic acid 
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 Table 4 summarizes 19 metabolites that exhibit a significant mean difference between 

the normal and prediabetes groups, as determined by an ANOVA model adjusted for age, 

sex, and BMI. Among these metabolites, leucine, leucine-isoleucine, isoleucine, 3-methyl-2-

oxovaleric acid, γ-glutamylleucine, eicosatrienoic acid, and hydroxytetradecanoic acid 

demonstrated to increase as worsening glycemia. Figure 2 provides a visual representation of 

the distribution of these seven metabolites across the various glycemic groups. On the other 

hand, N-Acetylserine, S-Allylcysteine, N-Acetylleucine, Proline-Phenylalanine, and 

Phenylalanine-Tryptophan exhibited a significant difference solely in the comparison 

between the normal and prediabetes groups. 

Table 4. Comparison of mean difference of identified metabolites between normal and 

prediabetes groups 

Metabolites p-value 

Leucine-Isoleucine 7.08E-08 

5’-Methylthioadenosine 1.84E-07 

Isoleucine 2.39E-07 

Ƴ-Glutamyltyrosine 2.45E-07 

Ƴ-Glutamylleucine 3.43E-07 

N-Acetylserine 5.28E-07 

Uric acid 9.24E-07 

Leucine 1.23E-06 

S-Allylcysteine 1.27E-05 

N-Acetylleucine 1.39E-05 

Ƴ-Glutamylisoleucine 2.85E-05 

Proline-Phenylalanine 4.57E-05 

Phenylalanine -Tryptophan 5.01E-05 

3-Methyl-2-oxovaleric acid 5.83E-05 

Glutamic acid- Phenylalanine 5.91E-05 

Hydroxytetradecanoic acid 9.57E-05 

Eicosatrienoic acid 0.000106 

3-Methylbutyrylcarnitine 0.000118 

CAR(5:0) isomers 0.000152 

a Abbreviation: CAR: Carnitine 
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Figure 2. Identified metabolites significantly differed in comparing normal and prediabetes 

with a linear trend 

 

a.2. Lipid traits 

We found 37 identified metabolites associated with cholesterol, 14 metabolites related to 

HDL, 39 metabolites associated with triglyceride, 14 metabolites associated with calculated 

LDL, and 42 metabolites related to non-HDL (Supplemental tables 11-15). No metabolites 

were associated with all five lipid traits together, but DG (18:1_18:1), DG (32:0), DG (32:1), 

DG (34:1), DG (34:2), DG (36:3), and MG (18:1) were found to be statistically positively 

associated with plasma cholesterol, triglycerides, non-HDL and negatively associated with 

HDL. Table 5 summarizes these associations in detail. Sphingomyelin (SM)(d32:2) was the 

only metabolite that overlapped between HDL and calculated LDL, but it did not show any 

significant association with triglycerides. A comprehensive summary of all the results about 
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the association between the metabolites and lipid traits can be found in supplemental tables 

11-15. 

Table 5. Summary of identified metabolites associated with cholesterol, triglycerides, non-

HDL, and HDL 

 

 Cholesterol Triglycerides Non-HDL HDL 

DG (18:1_18:1) 

β 

p-value 

 

0.0082 

5.50E-10 

 

0.0073 

9.53E-67 

 

0.0125 

2.07E-21 

 

-0.0396 

6.18E-21 

DG (32:0) 

β 

p-value 

 

0.0081 

4.55E-10 

 

0.0073 

3.06E-68 

 

0.0113 

8.57E-18 

 

-0.0276 

1.06E-10 

DG (32:1) 

β 

p-value 

 

0.0060 

4.41E-06 

 

0.0075 

2.21E-72 

 

0.0100 

5.10E-14 

 

-0.0368 

2.27E-18 

DG (34:1) 

β 

p-value 

 

0.0077 

2.95E-09 

 

0.0077 

1.26E-78 

 

0.0120 

2.61E-20 

 

-0.0394 

2.29E-21 

DG (34:2) 

β 

p-value 

 

0.0063 

1.57E-06 

 

0.0079 

5.39E-84 

 

0.0115 

2.15E-18 

 

-0.0493 

1.09E-33 

DG (36:3) 

β 

p-value 

 

0.0066 

8.63E-07 

 

0.0075 

3.56E-68 

 

0.0119 

1.14E-18 

 

-0.0497 

1.37E-32 

MG (18:1) 

β 

p-value 

 

0.0083 

2.20E-08 

 

0.0067 

1.66E-42 

 

0.0113 

1.76E-13 

 

-0.0219 

1.08E-05 

a Abbreviation: DG: Diacylglycerol; MG: Monoacylglycerol 

 

a.3. Macronutrients  

Table 6 summarizes the metabolites associated with each nutritional intake, with 9 

metabolites showing associations with specific macronutrient nutrient densities. 

Diacylglycerol (DG) (32:1) showed a positive association with carbohydrate intake but a 
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negative association with total fat, monounsaturated fat, and cholesterol. Another form of 

diacylglycerol, DG (18:1_18:1), was also positively associated with carbohydrate nutrient 

density. Similarly, phosphatidylcholine (PC) (32:1) showed a positive association with 

carbohydrate nutrient density but negative associations with total fat, monounsaturated fat, 

and polyunsaturated fat. Conversely, aminobutyric acid exhibited a negative association with 

carbohydrate nutrient density but a positive association with total fat nutrient density. 

Carnitine (5:1) and 3-hydroxybutyric acid were positively associated with protein nutrient 

density. Although DG (32:0), DG (32:1), DG (34:1), DG (34:2), DG (18:1_18:1), and 3-

hydroxybutyric acid did not show a statistically significant difference in the comparison 

between normal and prediabetes, these metabolites exhibited a continuous increase as the 

glycemic status worsened (Figure 3). 

Figure 3. Identified metabolites associated with nutrient intake and worsening glycemia 

status 
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Table 6. Association between nutrient density and identified metabolites 

 

Nutrient density Metabolites Standardized β P-value 

Carbohydrates DG(32:1) 

Aminobutyric acid 

PC(32:1) 

DG(18:1_18:1) 

0.0207 

-0.0186 

0.0168 

0.0168 

1.67E-06 

2.70E-05 

1.27E-04 

1.37E-04 

Protein CAR(5:1) 

3-Hydroxybutyric acid 

0.0427 

0.0380 

4.15E-06 

1.06E-04 

Total fat DG(32:1) 

PC(32:1) 

Aminobutyric acid 

-0.0278 

-0.0252 

0.0246 

4.78E-06 

4.05E-05 

7.68E-05 

Monounsaturated 

fat 

DG(32:1) 

PC(32:1) 

DG(32:0) 

DG(34:2) 

DG(34:1) 

-0.0715 

-0.0559 

-0.0524 

-0.0521 

-0.0507 

5.12E-08 

2.74E-05 

7.28E-05 

8.30E-05 

1.21E-04 

Polyunsaturated fat PC(32:1) -0.0808 1.23E-04 

a Abbreviation: CAR Carnitine; DG Diacylglycerol; PC Phosphatidylcholine 
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b. Unidentified metabolites 

b.1. Glycemic traits and glycemic status group 

Among 2,471 unidentified metabolites, 47 were associated with fasting glucose, and 

208 were related to 2-hour post-load glucose. 29 metabolites were significantly associated 

with HbA1c, and 253 were associated with log-transformed insulin. 241 metabolites were 

related to log-transformed HOMA-IR. Table 7 and Figure 4 summarize unidentified 

metabolites associated with three diagnostic glycemic traits. 19 metabolites were associated 

with all three diagnostic glycemic traits and summarized in table 6, but no metabolites were 

related to 2-hour post-load glucose and HbA1c.   

 

Figure 4. The number of unidentified metabolites associated with three diagnostic glycemic 

traits  

 

 



30 

 

Table 7. 19 unidentified metabolites associated with all three diagnostic glycemic traits 

 
Unidentified 

metabolites 

Fasting plasma 

glucose 

2-hour post-load 

glucose 

HbA1c 

β p-value β p-value β p-value 

UNK_441.0745_0.632 0.0167 3.47E-24 0.0045 4.43E-07 0.3466 3.30E-14 

UNK_340.1072_2.37 0.0170 2.73E-25 0.0048 5.47E-08 0.3381 1.27E-13 

UNK_277.0742_0.946 0.0167 1.22E-26 0.0051 9.88E-10 0.3483 1.11E-15 

UNK_115.0401_2.585 0.0103 3.48E-10 0.0063 4.65E-13 0.2345 1.7E-07 

UNK_154.0839_1.838 0.0084 1.56E-07 0.0049 1.37E-08 0.2058 2.37E-06 

UNK_86.0967_1.836 0.0078 4.72E-07 0.0044 1.41E-07 0.1879 8.62E-06 

UNK_132.1023_1.96 0.0086 1.81E-08 0.0045  5.67E-08 0.2138 3.44E-07 

UNK_634.4449_12.16 -0.0090 1.04E-07 -0.0045 6.19E-07 -0.2572 2.22E-08 

UNK_86.0968_1.96 0.0077 3.61E-07 0.0045 3.13E-08 0.1894 5.07E-06 

UNK_154.0839_1.959 0.0088 1.84E-08 0.0043 2.14E-07 0.2056 1.40E-06 

UNK_432.2383_1.956 0.0078 2.59E-07 0.0040 1.06E-06 0.1773 1.91E-05 

UNK_455.2266_1.957 0.0079 2.99E-07 0.0042 4.56E-07 0.1874 8.64E-06 

UNK_183.0274_2.587 0.0093 2.38E-08 0.0064 3.49E-13 0.2119 3.05E-06 

UNK_253.0695_2.583 0.0101 7.87E-10 0.0069 1.52E-15 0.2256 4.97E-07 

UNK_315.0407_2.584 0.0101 8.88E-10 0.0066 4.72E-14 0.2180 1.30E-06 

UNK_349.0819_2.12 0.0102 3.29E-09 0.0068 4.62E-14 0.2207 2.70E-06 

UNK_568.3814_1.928 -0.0086 7.20E-08 -0.0043 5.14E-07 -0.1956 7.57E-06 

UNK_229.0695_2.119 0.0091 1.21E-07 0.0060 4.55E-11 0.2030 1.72E-05 

UNK_411.044_1.065 0.0108 1.30E-10 0.0039 1.48E-05 0.2465 9.13E-08 
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In the analyses of the comparison across the glycemic statuses, the linear model with 

each glycemic group identified the significant associated 73 metabolites, and 87 metabolites 

showed significant mean difference with the comparison between normal and prediabetes 

groups by the ANOVA model. Additionally, the analyses found 196 metabolites associated 

with the comparison between normal versus diabetes, 140 metabolites related to the 

comparison between normal versus the group with hyperglycemia, including prediabetes and 

diabetes together, and 87 metabolites associated with the comparison between non-diabetic 

group (Normal and the group with prediabetes) and the group with diabetes. Table 8 

summarizes the 17 unidentified metabolites list associated with all these comparisons across 

the groups with different glycemic statuses.     
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Table 8. Unidentified metabolites significantly associated with the comparisons across the 

groups with different glycemic statuses 

 
Unidentified Metabolites  Associated other traits 

UNK_594.3774_11.499 2HR, log-transformed insulin, log-transformed HOMA-IR, BMI 

UNK_788.5804_14.159 2HR, log-transformed insulin, log-transformed HOMA-IR, HDL, TG, BMI 

UNK_146.0462_0.63 2HR, log-transformed insulin, log-transformed HOMA-IR, HDL, TG, BMI 

UNK_477.1044_1.958 2HR, log-transformed insulin, log-transformed HOMA-IR,  

non-HDL 

UNK_409.2345_9.292 2HR, log-transformed insulin, log-transformed HOMA-IR, TG, BMI 

UNK_439.255_1.956 2HR, log-transformed insulin, log-transformed HOMA-IR, TG, non-HDL, 

BMI 

UNK_273.1109_8.681 2HR, BMI 

UNK_613.3594_9.663 2HR, BMI 

UNK_1036.0408_2.585 FPG, 2HR, log-transformed insulin, log-transformed HOMA-IR, 

Cholesterol, HDL, TG, non-HDL, BMI 

UNK_132.1023_1.836 FPG, 2HR, log-transformed insulin, log-transformed HOMA-IR, HDL, TG, 

BMI 

UNK_463.0889_0.959 FPG, 2HR, log-transformed insulin, log-transformed HOMA-IR, HDL, TG, 

non-HDL, BMI 

UNK_202.1086_5.755 FPG, 2HR, log-transformed insulin, log-transformed HOMA-IR, HDL, TG, 

non-HDL, BMI 

UNK_215.0333_0.64 FPG, HbA1c, BMI 

UNK_432.2382_1.836 FPG, log-transformed insulin, log-transformed HOMA-IR, HDL, TG, BMI 

UNK_439.255_1.837 FPG, log-transformed insulin, log-transformed HOMA-IR, HDL, TG, BMI 

UNK_301.1431_1.836 FPG, log-transformed insulin, log-transformed HOMA-IR, HDL, TG, BMI 

UNK_547.3289_1.927 FPG, log-transformed insulin, log-transformed HOMA-IR, TG, non-HDL, 

BMI 

*Abbreviation: FPG: Fasting plasma glucose; 2HR: 2-hour post-load glucose  
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b.2. Lipid traits 

 Five different lipid traits were tested to find the association between unidentified 

metabolites and lipid traits by linear regression models adjusting covariates. 148 metabolites 

were associated with cholesterol, and 45 metabolites were related to HDL. The analyses also 

found 231 metabolites associated with triglyceride, 70 metabolites related to calculated LDL, 

and 149 metabolites associated with non-HDL. Among the unidentified metabolites 

associated with any lipid traits, the metabolites related to any glycemic traits were 

summarized in Table 8 above.    

b.3. Macronutrients  

  A total of 30 different unidentified metabolites were associated with at least one 

macronutrient intake by the linear regression models adjusted covariates. 15 unidentified 

metabolites were significantly associated with more than one macronutrient intake. Thus, 20 

unidentified metabolites were associated with carbohydrate intake, and 5 were related to 

protein intake. Total fat intake was associated with 12 unidentified metabolites, saturated fat 

with 4, monounsaturated fat with 15, and polyunsaturated fat with 4. Table 9 summarizes the 

results of the significant association between macronutrients and unidentified metabolites.  
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Table 9. Unidentified metabolites associated with macronutrients intake 

 

Nutrient Unidentified Metabolites β p-value 

Carbohydrates UNK_812.5807_13.719 -0.029 2.55E-11 

Carbohydrates UNK_838.596_14.365 -0.025 1.68E-08 

Carbohydrates UNK_840.6118_14.553 -0.023 1.58E-07 

Carbohydrates UNK_810.5651_13.586 -0.023 2.36E-07 

Carbohydrates UNK_842.5312_14.302 -0.022 4.33E-07 

Carbohydrates UNK_818.5314_14.432 -0.022 7.93E-07 

Carbohydrates UNK_522.1793_7.702 -0.021 1.31E-06 

Carbohydrates UNK_854.592_13.697 0.021 1.86E-06 

Carbohydrates UNK_512.1888_8.096 -0.021 1.97E-06 

Carbohydrates UNK_836.5795_13.891 -0.021 2.41E-06 

Carbohydrates UNK_908.5997_14.55 -0.021 2.73E-06 

Carbohydrates UNK_172.133_1.067 -0.020 4.55E-06 

Carbohydrates UNK_764.5585_14.913 -0.020 8.23E-06 

Carbohydrates UNK_688.492_13.189 0.020 8.54E-06 

Carbohydrates UNK_816.5879_14.523 -0.020 9.54E-06 

Carbohydrates UNK_211.1702_9.742 -0.020 1.01E-05 

Carbohydrates UNK_768.5546_14.354 0.019 1.07E-05 

Carbohydrates UNK_488.1922_8.038 -0.019 1.28E-05 

Carbohydrates UNK_856.6088_14.313 0.019 1.95E-05 

Carbohydrates UNK_712.4921_13.037 0.019 1.96E-05 

Protein UNK_812.5807_13.719 0.050 1.72E-07 

Protein UNK_842.5312_14.302 0.046 1.09E-06 

Protein UNK_838.596_14.365 0.043 7.84E-06 

Protein UNK_818.5314_14.432 0.042 1.36E-05 

Protein UNK_255.0878_6.244 0.041 1.77E-05 

Total Fat UNK_812.5807_13.719 0.037 2.89E-09 

Total Fat UNK_838.596_14.365 0.031 5.55E-07 

Total Fat UNK_840.6118_14.553 0.031 7.04E-07 

Total Fat UNK_211.1702_9.742 0.030 1.80E-06 

Total Fat UNK_908.5997_14.55 0.028 5.43E-06 

Total Fat UNK_836.5795_13.891 0.028 5.43E-06 

Total Fat UNK_810.5651_13.586 0.028 5.75E-06 

Total Fat UNK_688.492_13.189 -0.027 7.99E-06 

Total Fat UNK_768.5546_14.354 -0.027 1.14E-05 

Total Fat UNK_692.487_10.741 -0.026 1.71E-05 

Total Fat UNK_854.592_13.697 -0.027 1.80E-05 

Total Fat UNK_522.1793_7.702 0.026 2.00E-05 

Saturated Fat UNK_522.1793_7.702 0.088 8.19E-07 
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Saturated Fat UNK_571.2809_9.24 0.083 5.05E-06 

Saturated Fat UNK_838.596_14.365 0.079 1.31E-05 

Saturated Fat UNK_812.5807_13.719 0.078 1.87E-05 

Monounsaturated Fat UNK_812.5807_13.719 0.081 1.42E-09 

Monounsaturated Fat UNK_838.596_14.365 0.070 1.85E-07 

Monounsaturated Fat UNK_840.6118_14.553 0.070 2.42E-07 

Monounsaturated Fat UNK_836.5795_13.891 0.068 3.89E-07 

Monounsaturated Fat UNK_810.5651_13.586 0.067 8.31E-07 

Monounsaturated Fat UNK_761.5806_13.137 0.064 2.85E-06 

Monounsaturated Fat UNK_211.1702_9.742 0.064 2.93E-06 

Monounsaturated Fat UNK_908.5997_14.55 0.062 4.81E-06 

Monounsaturated Fat UNK_688.492_13.189 -0.060 6.81E-06 

Monounsaturated Fat UNK_748.5149_12.666 -0.060 1.06E-05 

Monounsaturated Fat UNK_764.5585_14.913 0.060 1.10E-05 

Monounsaturated Fat UNK_692.487_10.741 -0.059 1.15E-05 

Monounsaturated Fat UNK_768.5546_14.354 -0.059 1.16E-05 

Monounsaturated Fat UNK_722.4985_12.556 -0.058 1.78E-05 

Polyunsaturated Fat UNK_508.3414_10.993 -0.105 8.67E-07 

Polyunsaturated Fat UNK_790.5593_13.439 -0.095 5.18E-06 

Polyunsaturated Fat UNK_723.4015_6.717 -0.096 6.80E-06 

Polyunsaturated Fat UNK_1040.6362_12.167 -0.089 7.33E-06 
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Aim 2. Genetic variants affecting plasma metabolites 

a. Identified metabolites 

A total of 28 metabolites showed statistically significant genetic associations on 1337 

SNPs and 34 genes by GMMAT adjusted age, gender, and BMI. The lambda values of the 

QQ plot of significant identified metabolites were from 0.970 to 1.015. Among these 28 

metabolites, biliverdin, bilirubin, CAR(4:0), DG (32:1), eicosatetraenoic acid, EPA, N-

acetylleucine, and 2-hydroxybutyric acid were associated with glycemic traits, CAR(6:0), 

DG(32:1), eicosatetraenoic acid, LPC(10:4)_rp_b, LPE(18:0)_rp_a, PC(34:2), and pipecolic 

acid were associated with lipid traits, and LPC(20:0) and 2-aminooctanoic acid were related 

to BMI only. 23 metabolites-gene association pairs were repetitive from previous other 

studies. Moreover, there were novel findings between the identified metabolites and specific 

SNPs. DG (32:1) showed significant signals in Leucine Rich Repeat And Fibronectin Type III 

Domain Containing 2(LRFN2) gene on chromosome 6, and CAR (4:0) was associated with 

multiple SNPs on the CABP1 and SPPL3 genes. CAR (6:0) was known to be related to 

SLAC44A5, ACADM, RABGGTB, and MSH4 genes, and a new association was found on 

1:76392437 on the ASB17 gene on chromosome 1. CAR (9:0), LPC(20:0), LPC(20:4)_rp_b, 

LPE(18:0)_rp_a, LPE(18:2)_rp_b_1, methyl-3-hydroxybenzoate, and sphingosine also found 

new genetic associations on single variants. Table 10 summarizes the top signals on 

GMMAT, and Figure 5 illustrates the example QQ plots and Manhattan plots for each 

metabolite. 

 



37 

 

Table 10. Summary of top signals of genetic-associated identified metabolites and related 

genes 
Metabolite SNP A1 A2 AF SCORE P-value Gene 

Bilirubin 2:234664586 A ATC 0.70 -104.42 3.78E-13 UGT1A 

Bilirubin 2:234665983 G A 0.70 -104.42 3.78E-13 UGT1A 

Biliverdin 2:234664586 A ATC 0.70 -117.164 2.96E-15 UGT1A 

Biliverdin 2:234665983 G A 0.70 -117.164 2.96E-15 UGT1A 

CAR(10:1) 1:76125211 A C 0.71 82.7998 2.88E-09 SLC44A5 

CAR(10:1) 1:76159225 A G 0.71 81.4464 5.26E-09 CR936677 

CAR(10:1) 1:76203479 AT A 0.72 78.6027 5.97E-09 ACADM 

CAR(4:0) 12:121176083 A G 0.67 -191.866 4.67E-41 ACADS  

CAR(4:0) 12:121155622 T C 0.71 -169.191 1.03E-34 UNC119B 

CAR(4:0) 12:121130046 G A 0.70 -170.211 5.23E-34 MLEC 

CAR(4:0) 12:121084587 G A 0.67 99.3045 1.40E-11 CABP1  

CAR(4:0) 12:121200609 C T 0.60 99.1632 2.44E-11 SPPL3 

CAR(4:0) 12:121144144 C G 0.58 88.9084 1.59E-08 - 

CAR(6:0) 1:76168340 G A 0.71 98.7168 4.80E-12 CR936677 

CAR(6:0) 1:76106961 T A 0.70 98.8327 4.91E-12 SLC44A5 

CAR(6:0) 1:76192582 T C 0.71 97.0787 7.16E-12 ACADM 

CAR(6:0) 1:76259677 A ACCTAA

GAGTGA

GACTTAA

CCCACTT

TTAAATT

GTTCT 

0.73 84.0802 1.29E-09 RABGGTB 

CAR(6:0) 1:76392437 C T 0.74 81.3674 4.79E-09 ASB17 

CAR(6:0) 1:76353294 C T 0.72 78.3059 3.78E-08 MSH4 

CAR(8:0) 1:76125211 A C 0.71 84.6046 1.47E-09 SLC44A5 

CAR(8:0) 1:76203479 AT A 0.72 80.8179 2.43E-09 ACADM 

CAR(8:0) 1:76159225 A G 0.71 82.1185 4.44E-09 CR936677 

CAR(9:0) 2:211074909 C T 0.72 -134.98 1.82E-23 ACADL 

CAR(9:0) 2:211007287 C T 0.66 -141.331 3.48E-22 KANSL1L 

CAR(9:0) 2:210878117 T C 0.65 -132.894 4.09E-20 RPE 

CAR(9:0) 2:210846713 C T 0.59 -117.31 9.58E-15 UNC80 

CAR(9:0) 2:211156513 T TA 0.60 -118.271 2.79E-14 MYL1 

Cholic acid 9:98344706 T A 0.83 63.229 2.97E-08 - 

DG(32:1) 6:40532893 C G 0.57 87.0426 8.95E-09 LRFN2 

Dodecadienoic 

acid 

4:149061102 T C 0.97 30.2017 3.93E-08 NR3C2 

Eicosatetraenoic 

acid 

11:61603510 C A 0.57 -85.2784 2.61E-09  FADS2 

EPA 11:61609750 C T 0.58 -78.5615 4.37E-08  FADS2 

LPC(20:0) 2:70693652 C A 0.84 53.4816 2.78E-08 TGFA 

LPC(20:4)_rp_b 11:61603510 C A 0.57 -151.442 1.43E-25  FADS2 
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LPC(20:4)_rp_b 11:61537648 T TG 0.76 -81.1916 2.12E-10 MYRF 

LPC(20:4)_rp_b 11:46130135 TATA

A 

T 0.65 84.5867 7.21E-09 PHF21A 

LPC(20:4)_rp_b 11:45939934 G C 0.75 72.7936 2.36E-08 PEX17 

LPC(20:4)_rp_b 11:45944186 TCGG

GGG 

T 0.75 72.7936 2.36E-08 LARGE2 

LPC(20:4)_rp_b 11:45934549 AT A 0.72 76.9388 3.02E-08 PEX16 

LPE(18:0)_rp_a 1:115252909 TATA

A 

T 0.75 58.6886 2.02E-08 NRAS 

LPE(18:2)_rp_b_1 11:61603510 C A 0.57 95.1667 4.37E-11  FADS2 

Methyl-3-

hydroxybenzoate 

22:34113903 C A 0.85 64.3352 2.87E-08 LARGE1 

N-Acetylleucine 2:73634622 TA T 0.78 -74.2579 3.23E-12 ALMS1 

N-Acetylleucine 2:73867862 C G 0.77 -74.5299 1.15E-11 NAT8 

PC(34:2) 11:61603510 C A 0.57 87.8791 1.42E-09  FADS2 

PC(36:2) 11:46250265 GTAG

A 

G 0.64 79.2683 3.94E-08 - 

PC(40:8) 11:61603510 C A 0.57 -116.079 5.30E-16  FADS2 

Pipecolic acid 4:181225524 T C 0.62 -80.4734 4.10E-08 - 

Sphingosine 1:200702431 C T 0.59 95.2974 7.89E-10 CAMSAP2 

Tetracosenoic acid 22:23786757 A T 0.54 -87.3145 2.27E-08 - 

1-Methylxanthine 8:18272377 C T 0.66 87.4537 4.79E-09 - 

1,3-Dimethyluric 

acid 

13:112843248 T C 0.63 -74.7115 4.44E-08 - 

2-Aminooctanoic 

acid 

2:73805172 G A 0.78 93.8725 2.74E-14 ALMS1 

2-Aminooctanoic 

acid 

2:73867862 C G 0.78 92.4061 8.21E-14 NAT8 

2-Aminooctanoic 

acid 

2:73845709 T C 0.57 99.6788 7.40E-12 - 

2-Aminooctanoic 

acid 

2:73928366 G C 0.56 94.1025 1.97E-10 NAT8B 

2-Aminooctanoic 

acid 

2:73959960 G T 0.57 91.2276 7.66E-10 TPRKB 

2-Hydroxybutyric 

acid 

8:76334681 G C 0.95 37.6949 2.40E-08 HNF4G 

2-Hydroxybutyric 

acid 

8:76319588 A G 0.95 35.7059 4.89E-08 - 

a. Boldly marked gene: possible novel association in this study. 
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Figure 5. Examples of QQ and Manhattan plots of genetically associated identified 

metabolites 

 

(a) Bilirubin 

  

 

(b) CAR (6:0) 
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(c) CAR (9:0) 

      

(d) DG (32:1) 
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b. Unidentified metabolites  

A total of 232 metabolites showed significant genetic associations with 2,117 distinct 

SNPs by GMMAT adjusted age, gender, and BMI. Since these unidentified metabolites did 

not have detailed information yet, we selected 32 metabolites associated with any glycemic 

traits or the comparison across the groups with glycemic status. A total of 11 different genes 

were located on the significant SNPs associated with these 32 metabolites. These metabolites 

list and their genetically related SNPs are summarized in Table 11. Bilirubin and biliverdin 

were significantly associated with the SNPs located in UGT1A family genes on chromosome 

2 among identified metabolites, and UNK_255.1138_6.985, UNK_299.1393_7.568, 

UNK_341.1108_6.44, UNK_341.1109_6.621, UNK_341.1109_6.735, and 

UNK_357.0772_6.62 were also genetically associated with the SNPs on these genes. Figure 

6 illustrates the examples of QQ and Manhattan plots of unidentified metabolites.  
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Table 11. Summary of top signals of genetic-associated unidentified metabolites and related 

genes 
Metabolites SNP A1 A2 AF SCORE VAR p-value Gene 

UNK_1195.8522_11.509 1:40922240 C T 0.65 87.90 255.493 3.81E-08 ZFP69B 

UNK_139.113_8.618 18:58392436 A G 0.51 -87.58 247.574 2.60E-08 - 

UNK_152.009_1.214 4:10005435 G A 0.74 85.57 233.877 2.20E-08 SLC2A9 

UNK_255.1138_6.985 2:234664586 A ATC 0.70 -82.36 213.214 1.70E-08 UGT1A 

UNK_255.1138_6.985 2:234665983 G A 0.70 -82.36 213.214 1.70E-08 UGT1A 

UNK_257.2473_11.687 7:26381618 C T 0.82 -69.50 159.092 3.58E-08 SNX10 

UNK_259.2431_11.486 11:61603510 C A 0.57 -90.73 205.622 2.49E-10 FADS2 

UNK_285.2071_10.349 12:21331549 C T 0.86 -58.96 112.344 2.66E-08 SLCO1B1 

UNK_297.2784_11.374 6:132711678 G T 0.88 54.48 97.5177 3.45E-08 MOXD1 

UNK_299.1393_7.568 2:234664586 A ATC 0.70 -98.22 219.423 3.33E-11 UGT1A 

UNK_299.1393_7.568 2:234665983 G A 0.70 -98.22 219.423 3.33E-11 UGT1A 

UNK_301.2174_11.263 11:61609750 C T 0.58 -88.59 217.889 1.95E-09 FADS2 

UNK_313.2732_11.408 6:116491302 A G 0.74 -74.37 172.554 1.50E-08 NT5DC1 

UNK_341.1108_6.44 2:234664586 A ATC 0.70 -105.90 218.973 8.27E-13 UGT1A 

UNK_341.1108_6.44 2:234665983 G A 0.70 -105.90 218.973 8.27E-13 UGT1A 

UNK_341.1109_6.621 2:234664586 A ATC 0.7 -114.28 220.268 1.36E-14 UGT1A 

UNK_341.1109_6.621 2:234665983 G A 0.7 -114.28 220.268 1.36E-14 UGT1A 

UNK_341.1109_6.735 2:234664586 A ATC 0.70 -110.89 219.972 7.64E-14 UGT1A 

UNK_341.1109_6.735 2:234665983 G A 0.70 -110.89 219.972 7.64E-14 UGT1A 

UNK_343.1946_11.516 11:61603510 C A 0.57 -86.74 208.554 1.89E-09 FADS2 

UNK_343.1946_11.516 11:44712698 C G 0.75 74.91 179.21 2.20E-08 - 

UNK_356.0376_1.226 4:10004805 C T 0.74 86.76 243.848 2.76E-08 SLC2A9 

UNK_357.0772_6.62 2:234664586 A ATC 0.70 -106.33 217.123 5.35E-13 UGT1A 

UNK_357.0772_6.62 2:234665983 G A 0.70 -106.33 217.123 5.35E-13 UGT1A 

UNK_359.1674_11.513 11:61603510 C A 0.57 -95.70 207.84 3.18E-11 FADS2 
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UNK_371.2206_11.488 11:61603510 C A 0.57 -89.84 202.362 2.70E-10 FADS2 

UNK_371.2206_11.488 11:44712698 C G 0.75 72.34 175.805 4.87E-08 - 

UNK_400.1706_11.512 11:61603510 C A 0.57 -103.92 198.627 1.67E-13 FADS2 

UNK_403.3205_9.707 12:21331549 C T 0.86 -74.82 116.914 4.51E-12 SLCO1B1 

UNK_403.3205_9.707 12:21399955 A G 0.86 -67.33 116.91 4.75E-10 - 

UNK_554.3474_1.927 3:189534621 T C 0.72 90.59 256.163 1.51E-08 TP63 

UNK_568.3814_1.928 12:4940628 A G 0.88 63.44 130.829 2.91E-08 GALNT8 

UNK_613.3594_9.663 12:21331549 C T 0.86 -93.82 116.281 3.31E-18 SLCO1B1 

UNK_613.3594_9.663 12:21399955 A G 0.86 -88.88 116.61 1.86E-16 - 

UNK_637.3558_9.707 12:21331549 C T 0.86 -89.67 117.483 1.30E-16  SLCO1B1 

UNK_651.371_9.996 12:21331549 C T 0.86 -64.23 119.252 4.07E-09 SLCO1B1 

UNK_681.3474_9.665 12:21331549 C T 0.86 -87.83 117.545 5.44E-16 SLCO1B1 

UNK_681.3474_9.665 12:21399955 A G 0.86 -83.10 117.686 1.86E-14 - 

UNK_762.5079_13.262 15:58726744 G C 0.56 -98.07 241.358 2.74E-10 - 

UNK_810.5651_13.586 11:61603510 C A 0.57 -92.93 203.218 7.09E-11 FADS2 

UNK_838.596_14.365 11:61609750 C T 0.58 -87.54 199.652 5.80E-10 FADS2 

UNK_850.5618_13.042 11:61593816 C T 0.57 -112.25 209.746 9.15E-15 FADS2 

UNK_850.5618_13.042 11:61640379 A G 0.58 -96.12 242.243 6.58E-10 - 

UNK_890.6257_14.785 14:67975822 C A 0.54 168.49 244.628 4.65E-27 TMEM229B 

UNK_890.6257_14.785 14:67987543 C T 0.59 137.69 230.648 1.23E-19 - 
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Figure 6. Examples of QQ and Manhattan plots of genetically associated unidentified 

metabolites 

 

(a) UNK_341.1108_6.44: associated with log-transformed insulin and log-

transformed HOMA-IR 

     

 

(b) UNK_301.2174_11.263: associated with 2-hour post-load glucose 
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(c) UNK_313.2732_11.408: associated with fasting plasma glucose, HbA1c, log-

transformed insulin,log-transformed HOMA-IR, groups with different glycemic 

groups by the linear model, the group with non-diabetes  Vs. the group with 

diabetes, and triglyceride 

 

(d) UNK_613.3594_9.663: associated with 2-hour post-load glucose, groups with 

different glycemic groups by the linear model, normal Vs. the group with 

diabetes, normal Vs. the group with prediabetes, normal Vs. the group with 

hyperglycemia, the group with non-diabetes Vs. the group with diabetes, and BMI 
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Aim 3. Interaction between genetic variation and nutrient intake on plasma metabolites 

a. Identified metabolites 

Carbohydrates, protein, total fat, saturated fat, monounsaturated fat, and 

polyunsaturated fat were tested separately to find the gene-nutrient density interaction on 145 

identified metabolites by MAGEE-adjusted age, gender, and BMI. A total of 30 metabolites 

showed statistically significant interactions on each macronutrient nutrient density on 195 

different SNPs. However, we also found severe inflations on the QQ plot of the interaction p-

values on 23 metabolites. Thus, the metabolites showing the lambda value of QQ plot above 

1.15 were dropped to decrease the false positive. 13 distinct SNPs- carbohydrate on Glutamic 

acid-Phenylalanine dipeptide, 3 distinct SNPs-protein on 3-methylbutyrylcarnitine, 3 

different SNPs – protein on PC (38:6),  9 SNPs- saturated fat on docosatetraenoic acid, 3 

SNPs-saturated fat on phenylacetic acid, 5:176735612 SNP- monounsaturated fat on 

eicosadienoic acid, and 3:55577710 SNP - polyunsaturated fat on 3-Methyl-2-oxovaleric acid 

were identified to show gene-nutrient interactions, and total fat nutrient density did not have 

any significant interaction on single variants. Especially,  3:6170316-protein on 3-

methylbutyrylcarnitine, 2 different SNPs – protein on PC (38:6), and 9 SNPs- saturated fat on 

docosatetraenoic acid, 5:176735612 SNP- monounsaturated fat on eicosadienoic acid also 

showed statistical significance on gene-nutrient density interaction in the join test. The single 

variants that showed significant interactions with each nutrient intake did not show 

significant genetic associations by GMMAT in the aim2. Table 12 summarizes the identified 

metabolites with single variant-nutrient density interaction results by MAGEE. Figure 7 
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shows the QQ plots and the Manhattan plots of the interaction p-values and Manhattan plots 

of the same SNPs for comparison.  
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Table 12. Significant identified metabolites with single variant-nutrient density interaction 

 
Metabolites Nutrient SNP AF β G-E P-Value 

Interaction 

P-Value 

Joint 

GMMAT 

p-value 

Gene 

Glu-Phe Carb. 19:20046102 0.03 0.122 1.36E-08 9.84E-08 0.82 ZNF93 

Glu-Phe Carb. 19:20043175 0.03 0.121 3.70E-08 2.57E-07 0.78 ZNF93 

Glu-Phe Carb. 19:20044886 0.03 0.121 3.70E-08 2.57E-07 0.78 ZNF93 

Glu-Phe Carb. 19:20019931 0.02 0.127 4.35E-08 2.58E-07 0.50 ZNF93 

Glu-Phe Carb. 19:20022056 0.02 0.127 4.35E-08 2.58E-07 0.50 ZNF93 

Glu-Phe Carb. 19:20023643 0.02 0.127 4.35E-08 2.58E-07 0.50 ZNF93 

Glu-Phe Carb. 19:20023925 0.02 0.127 4.35E-08 2.58E-07 0.50 ZNF93 

Glu-Phe Carb. 19:20033650 0.02 0.127 4.35E-08 2.58E-07 0.50 ZNF93 

Glu-Phe Carb. 19:20036176 0.02 0.127 4.35E-08 2.58E-07 0.50 ZNF93 

Glu-Phe Carb. 19:20039068 0.02 0.127 4.35E-08 2.58E-07 0.50 ZNF93 

Glu-Phe Carb. 19:20041972 0.02 0.127 4.35E-08 2.58E-07 0.50 ZNF93 

Glu-Phe Carb. 19:20054746 0.02 0.127 4.35E-08 2.58E-07 0.50 - 

Glu-Phe Carb. 19:20055370 0.02 0.127 4.35E-08 2.58E-07 0.50 - 

3-Methylbutyrylcarnitine Protein 3:6170316 0.37 -0.091 5.65E-09 4.22E-08 0.87 - 

3-Methylbutyrylcarnitine Protein 3:6170374 0.37 -0.092 6.96E-09 5.19E-08 0.90 - 

3-Methylbutyrylcarnitine Protein 3:6169451 0.40 -0.092 9.59E-09 7.05E-08 0.93 - 

PC(38:6) Protein 6:129907587 0.26 -0.103 5.24E-09 3.94E-08 0.92 ARHGAP18 

PC(38:6) Protein 6:129907597 0.26 -0.103 5.24E-09 3.94E-08 0.92 ARHGAP18 

PC(38:6) Protein 6:129902753 0.26 -0.102 7.90E-09 5.83E-08 0.99 ARHGAP18 

Docosatetraenoic acid Sat. Fat 10:1514015 0.64 -0.168 4.52E-09 1.99E-08 0.30 ADARB2 

Docosatetraenoic acid Sat. Fat 10:1514105 0.64 -0.168 4.52E-09 1.99E-08 0.30 ADARB2 

Docosatetraenoic acid Sat. Fat 10:1512458 0.63 -0.167 6.33E-09 2.61E-08 0.27 ADARB2 

Docosatetraenoic acid Sat. Fat 10:1511786 0.65 -0.167 6.38E-09 3.20E-08 0.37 ADARB2 

Docosatetraenoic acid Sat. Fat 10:1511150 0.65 -0.167 6.41E-09 2.95E-08 0.32 ADARB2 

Docosatetraenoic acid Sat. Fat 10:1513202 0.65 -0.167 6.41E-09 2.95E-08 0.32 ADARB2 

Docosatetraenoic acid Sat. Fat 10:1513616 0.65 -0.167 6.41E-09 2.95E-08 0.32 ADARB2 

Docosatetraenoic acid Sat. Fat 10:1514074 0.65 -0.167 6.41E-09 2.95E-08 0.32 ADARB2 
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Docosatetraenoic acid Sat. Fat 10:1510047 0.63 -0.165 9.76E-09 4.34E-08 0.31 ADARB2 

Phenylacetic acid Sat. Fat 3:53345623 0.24 -0.180 2.74E-08 1.89E-07 0.78 DCP1A 

Phenylacetic acid Sat. Fat 3:53332363 0.24 -0.180 3.11E-08 2.09E-07 0.73 DCP1A 

Phenylacetic acid Sat. Fat 3:53360412 0.24 -0.180 3.11E-08 2.09E-07 0.73 DCP1A 

Eicosadienoic acid Mon. Fat 5:176735612 0.33 0.131 9.88E-09 2.84E-08 0.16 MXD3 

3-Methyl-2-oxovaleric 

acid 

Poly. Fat 3:55577710 0.71 -0.198 3.03E-08 1.63E-07 0.44 ERC2 

*Abbreviation: Carb: Carbohydrate; Sat.Fat: Saturated Fat; Mon.Fat: Monounsaturated Fat; 

Poly. Fat: Polyunsaturated Fat; PC: Phosphatidylcholine 
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Figure 7. Example QQ plots and the Manhattan plots of the interaction p-values for the 

significant gene-nutrient interactions on identified metabolites by MAGEE 

compared to the results of GMMAT 

(a) Protein 

a.(1) Protein on 3-Methylbutyrylcarnitine

 
a.(2) Protein on PC (38:6) 

 



51 

 

(b) Saturated fat on docosatetraenoic acid 

       

(c) Monounsaturated fat on eicosadienoic acid
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b. Unidentified metabolites 

687 unidentified metabolites that showed any association with glycemic traits, lipid 

traits, genetic association by GMMAT, and macronutrients were selected to find gene-

nutrient interaction. 112 unidentified metabolites were related to one of 807 single variants-

nutrient interaction pairs. After removing the severely inflated unidentified metabolites by 

lambda value of the QQ plots of p-value interactions, 32 unidentified metabolites were left.  

Thus, there were 39 single variants-carbohydrate interaction pairs associated with seven 

distinct unidentified metabolites, eleven single variants-protein interaction pairs on six 

metabolites, 58 SNPs - total fat interaction pairs on five metabolites, 17 SNPs – saturated fat 

interaction pairs on five metabolites, 38 single variants – monounsaturated fat interaction 

pairs on five metabolites, and 20 SNPs – polyunsaturated fat interaction pairs on four 

metabolites. 1:14463067 interacted with total fat and monounsaturated fat on  

UNK_422.2188_3.625. This unidentified metabolite was related to log-transformed insulin 

and log-transformed HOMA-IR. 14 same SNPs also showed significant interactions with 

total fat and monounsaturated fat on UNK_881.6741_15.005, and this unidentified 

metabolite was related to 2-hour post-load glucose, log-transformed insulin, log-transformed 

HOMA-IR, the comparison of glycemic status by the linear model, the comparison between 

normal Vs. diabetes, normal Vs. hyperglycemic group, HDL, and triglyceride. 14 metabolites 

having genetic associations were significant interactions with nutrient density by MAGEE, 

but no SNPs overlapped across two different methods. 25 SNPs – carbohydrate interaction 

pairs on UNK_319.129_6.441, 3:6249007 SNP – protein interaction fairs on 

UNK_625.204_12.115, 12 distinct SNPs on chromosome 11– saturated fat interaction pairs 
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on UNK_1008.7684_0.55, 1:187747584 SNP – total fat interaction pair, and 20:40382240 

SNP – saturated fat interaction pairs on UNK_1195.8522_11.509 also showed significant 

interaction results with joint tests, none of them were located on the coding region. Table 13 

summarizes important top signals on one macronutrient by MAGEE.  

13 SNPs showed significant interactions with total fat and monounsaturated fat intake 

on UNK_881.6741_15.005, and 1:14463067 located on the KAZN gene also showed 

significant interactions with total fat and monounsaturated fat intake on 

UNK_422.2188_3.625. Table 14 summarizes these significant same SNP-nutrient 

interactions on total fat and monounsaturated fat by MAGEE. Figure 8 shows the example 

QQ and Manhattan plots of the gene-nutrient interaction on unidentified metabolites.  
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Table 13. Significant unidentified metabolites with single variants- one nutrient interaction 

 
Metabolites Nutrient SNP Effect 

Allele 
AF β  

G-nut. 

P-Value 

Interaction 

P-Value 

Joint 

GMMAT  

p-value 

UNK_319.129_6.441 Carb. 5:30599586 G 0.21 0.048 1.84E-08 2.08E-08 0.055 

UNK_319.129_6.441 Carb. 5:30600589 A 0.22 0.048 1.65E-08 1.79E-08 0.052 

UNK_319.129_6.441 Carb. 5:30602495 C 0.22 0.048 1.65E-08 1.79E-08 0.052 

UNK_319.129_6.441 Carb. 5:30602910 T 0.22 0.048 1.65E-08 1.79E-08 0.052 

UNK_319.129_6.441 Carb. 5:30604771 C 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30607792 C 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30608507 T 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30611219 TA 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30611639 A 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30612899 T 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30613836 A 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30615569 T 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30617557 C 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30617938 T 0.22 0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30623762 C 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30628417 T 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30629256 T 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30629646 A 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30630563 T 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30634884 G 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30635164 G 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30641038 T 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30641512 C 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_319.129_6.441 Carb. 5:30645124 T 0.78 -0.048 2.03E-08 1.98E-08 0.046 

UNK_319.129_6.441 Carb. 5:30649097 A 0.78 -0.048 1.90E-08 1.97E-08 0.050 

UNK_625.204_12.115 Protein 3:6249007 T 0.10 0.158 2.17E-08 1.38E-08 0.030 

UNK_1008.7684_0.55 Sat. Fat 11:103681759 T 0.04 0.370 3.32E-08 3.09E-08 0.048 

UNK_1008.7684_0.55 Sat. Fat 11:103683709 G 0.04 0.370 3.32E-08 3.09E-08 0.048 

UNK_1008.7684_0.55 Sat. Fat 11:103689442 A 0.04 0.364 4.53E-08 4.11E-08 0.046 

UNK_1008.7684_0.55 Sat. Fat 11:103693019 G 0.04 0.364 4.53E-08 4.11E-08 0.046 

UNK_1008.7684_0.55 Sat. Fat 11:103694149 A 0.04 0.370 3.32E-08 3.09E-08 0.048 

UNK_1008.7684_0.55 Sat. Fat 11:103700803 A 0.04 0.370 3.32E-08 3.09E-08 0.048 

UNK_1008.7684_0.55 Sat. Fat 11:103702022 C 0.04 0.364 4.53E-08 4.11E-08 0.046 

UNK_1008.7684_0.55 Sat. Fat 11:103702225 C 0.04 0.370 3.32E-08 3.09E-08 0.048 

UNK_1008.7684_0.55 Sat. Fat 11:103710896 T 0.04 0.364 4.53E-08 4.11E-08 0.046 

UNK_1008.7684_0.55 Sat. Fat 11:103714138 C 0.04 0.370 3.32E-08 3.09E-08 0.048 

UNK_1008.7684_0.55 Sat. Fat 11:103715726 C 0.04 0.364 4.53E-08 4.11E-08 0.046 

UNK_1008.7684_0.55 Sat. Fat 11:103717473 T 0.04 0.370 3.32E-08 3.09E-08 0.048 
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UNK_1195.8522_11.509 Sat. Fat 20:40382240 C 0.51 0.147 3.84E-08 4.71E-08 0.063 

*Abbreviation: Carb: Carbohydrate; Sat.Fat: Saturated Fat 
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Table 14. Significant unidentified metabolites with single variants- two nutrient interactions 

 
Metabolites SNP Effect 

Allele 

AF Nutrient β  

G-nut. 

P-Value 

Interaction 

P-Value 

Joint 

GMMAT 

p-value 

UNK_881.6741_15.005 1:187747584 T 0.27 Total Fat -0.063 3.69E-09 2.63E-08 0.638 

  Mon. Fat -0.144 3.05E-09 2.11E-08 

UNK_881.6741_15.005 1:187737758 T 0.28 Total Fat -0.062 9.48E-09 6.93E-08 0.806 

  Mon. Fat -0.133 3.83E-08 2.66E-07 

UNK_881.6741_15.005 1:187737754 G 0.28 Total Fat -0.060 1.66E-08 1.19E-07 0.782 

  Mon. Fat -0.130 3.91E-08 2.69E-07 

UNK_881.6741_15.005 1:187689364 C 0.24 Total Fat -0.060 3.51E-08 2.19E-07 0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 

UNK_881.6741_15.005 1:187689404 A 0.24 Total Fat -0.060 3.51E-08 2.19E-07  0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 

UNK_881.6741_15.005 1:187692534 A 0.24 Total Fat -0.060 3.51E-08 2.19E-07 0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 

UNK_881.6741_15.005 1:187693050 A 0.24 Total Fat -0.060 3.51E-08 2.19E-07 0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 

UNK_881.6741_15.005 1:187695514 G 0.24 Total Fat -0.060 3.51E-08 2.19E-07 0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 

UNK_881.6741_15.005 1:187698135 T 0.24 Total Fat -0.060 3.51E-08 2.19E-07 0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 

UNK_881.6741_15.005 1:187699089 A 0.24 Total Fat -0.060 3.51E-08 2.19E-07 0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 

UNK_881.6741_15.005 1:187699094 A 0.24 Total Fat -0.060 3.51E-08 2.19E-07 0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 

UNK_881.6741_15.005 1:187699305 C 0.24 Total Fat -0.060 3.51E-08 2.19E-07 0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 
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UNK_881.6741_15.005 1:187701595 C 0.24 Total Fat -0.060 3.51E-08 2.19E-07 0.549 

  Mon. Fat -0.132 4.62E-08 2.76E-07 

UNK_422.2188_3.625 1:14463067 A 0.77 Total Fat 0.060 4.21E-08 2.85E-07 0.808 

  Mon. Fat 0.136 1.15E-08 8.20E-08 

*Abbreviation: Mon.Fat: Monounsaturated Fat 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

Figure 8. Example QQ plots and the Manhattan plots of the interaction p-values for the 

significant gene-nutrient interactions on unidentified metabolites by MAGEE 

compared to the results of GMMAT 

 

(a) Carbohydrate on UNK_319.129_6.441 
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(b) Protein on UNK_625.204_12.115 

 

(c) Saturated fat on UNK_1008.7684_0.55 
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(d) Saturated fat on UNK_1195.8522_11.509 
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(e) Total fat and monounsaturated fat on UNK_881.6741_15.005 

 

                   

 

 

 

 

 

 



62 

 

(f) Total fat on monounsaturated fat on UNK_422.2188_3.625 
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DISCUSSION 

 We found 23 identified and 47 unidentified metabolites associated with fasting 

glucose, 49 identified and 208 unidentified metabolites associated with 2-hour post-load 

glucose, 14 identified and 29 unidentified metabolites related to HbA1c, 49 identified and 

253 unidentified metabolites related to log-transformed insulin, and 51 identified and 241 

unidentified metabolites associated with log-transformed HOMA-IR. In the comparison 

related to five different lipid traits, 37 identified and 148 unidentified metabolites were 

related to cholesterol, 14 identified and 45 unidentified metabolites were associated with 

HDL, 39 identified and 231 unidentified metabolites were associated with triglyceride, 14 

identified and 70 unidentified metabolites were related to calculated LDL, and 42 identified 

and 149 unidentified metabolites were associated with non-HDL. When we compared the 

participants divided into groups based on their glycemic statuses with linear and ANOVA 

models, 19 identified and 87 unidentified metabolites had significant associations in 

comparing the group with normal glycemia and prediabetes. 9 identified and 2 unidentified 

metabolites were associated with macronutrient nutrient density.  
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Figure 9. Summary of association across macronutrient intake, identified metabolites, plasma 

glycemic traits, and plasma lipid traits 

 
a Abbreviation: CAR Carnitine; DG Diacylglycerol; PC Phosphatidylcholine; TG 

Triglyceride 

 

Figure 9 summarizes these associations among the identified metabolites across 

nutrient intake, metabolites, glycemic, and lipid traits. Orange cells mean macronutrient 

intake, blue cells are the identified metabolites, green cells point to five glycemic traits, and 

yellow cells represent plasma lipid traits in Figure 9. Increased protein intake showed 

positive associations with 3-hydroxybutyric acid and CAR (5:1), and an increase of 3-

hydroxybutyric acid was also positively related to the rise in fasting glucose, 2-hour post-

load glucose, HbA1c, cholesterol, triglyceride, and non-HDL. CAR (5:1) was also positively 

associated with cholesterol and non-HDL but had no significant association with glycemic 

traits. We did not find any metabolites related to saturated fat, and the total fat was negatively 
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associated with DG (32:1) and PC (32:1) in the same direction as the association with 

monounsaturated fat. Although it may appear to contradict previous research results, the 

higher average intake of monounsaturated fat compared to Hispanics in the United States 

could be the reason for this result. According to the recent NHANES statistics from 2017 to 

2020, the average monounsaturated fat intake per 1,000 kcal in Hispanic adults aged 20 and 

above in their study is 11.7 % (58). Still, the participants in our study reported 15.62 % of the 

energy coming from monounsaturated fat, so the higher portion of monounsaturated fat could 

impact the direction of association between total fat and identified metabolites since total fat 

included all the kinds of fat, including monounsaturated fat. Moreover, monounsaturated fat 

showed significant associations with five different metabolites, DG (32:0), DG (32:1), DG 

(34:1), DG (34:2), and PC (32:1), and the absolute value of each beta on the 

monounsaturated fat is greater than that of carbohydrates and total fat. Thus, decreasing 

monounsaturated fat intake could impact the glycemic and lipid traits more extensively than 

changing other macronutrient intakes.  

 We found five different diacylglycerols associated with nutrient intake and glycemic 

and lipid traits; DG (18:1_18:1), DG (32:0), DG (32:1), DG (34:1), and DG (34:2). 

Diacylglycerol is marked as DG or DAG in various articles and a neutral lipid formed by 

glycerol connected to two fatty acids chains by ester bonds (59). It involves multiple 

metabolic pathways, such as lipogenesis in the endoplasmic reticulum and activation of 

protein kinase C in the plasma membrane in the cell (60). Increased intracellular 

diacylglycerol impacts protein kinase C(PKC) and D(PKD) and generates different responses 

depending on the types of tissues. For example, PKCε inhibits ketogenesis and increases 
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gluconeogenesis in the liver, and it also inhibits insulin sensitivity in the skeletal muscle (59). 

In previous experimental studies, diacylglycerol provoked by a high-fat diet can affect 

insulin resistance (61, 62). Most of the studies have studied intracellular diacylglycerols since 

extracellular diacylglycerols can be digested into monoacylglycerol, but our study showed 

carbohydrate and fat intake were associated with these extracellular diacylglycerols.  

 3-hydroxybutyric acid, known as β – hydroxybutyrate, is a metabolite produced 

during ketone body metabolism (63). This compound increases in concentration during 

prolonged periods of fasting and serves as a crucial energy source for the human body, 

particularly the brain. According to Møller, during starvation, 3-hydroxybutyric acid supplies 

approximately 60 percent of the brain's energy compared to normal feeding conditions (64). 

Furthermore, this energy resource plays a significant role in various cellular processes, 

including cell signaling and metabolic pathways associated with inflammation, cancer cell 

cycle, oxidative stress, and angiogenesis (63-65). The activation of hydroxy-carboxylic acid 

receptors (HCAR) and inhibition of free fatty acid receptors (FFAR) have been linked to 

increased inflammation and the development of type 2 diabetes (64). Thus, these cellular 

pathways might explain the positive correlation between 3-hydroxybutyric acid and three 

diagnostic markers for prediabetes and diabetes. The result of this study suggests that a high 

protein intake could potentially stimulate these signaling pathways. Additionally, branched 

amino acids, such as leucine, exhibit a statistically significant association with each glycemic 

trait, although they are not directly linked to protein intake. This finding implies that the 

plasma concentration of branched amino acids could be influenced by factors other than food 

intake, such as the gut microbiome. 
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 In our study, CAR (5:1), known as tiglyl carnitine related to leucine, isoleucine, and 

valine metabolism, was only associated with cholesterol and non-HDL. CAR (5:1) was also 

found as a biomarker of protein intake and low-fat milk intake, so this replication could 

validate the study result (66, 67). This metabolite also showed associations with short-term 

diet resistance and metabolic change after a short-term high-fat diet (68, 69).     

 PC (32:1) was associated with 2-hour post-load glucose levels and the logarithmically 

transformed insulin levels. Furthermore, this metabolite serves as a predictive lipid 

biomarker for both type 2 diabetes and gestational diabetes (70, 71). It is also among the 

metabolites that significantly change in response to prolonged sitting in individuals with type 

2 diabetes, suggesting a potential influence on skeletal muscle activity (72). Kumar et al. 

demonstrated that phosphatidylcholine derived from phosphatidylethanolamine in intestinal 

epithelial exosomes could impact insulin response, triggering these pathways by a high-fat 

diet (73). Gao et al. studied PC derived from various food sources, such as squid, soy, and 

eggs, revealing differing effects on inducing insulin resistance depending on the specific food 

source (74). We observed a negative association between monounsaturated fat intake and PC 

32:1, indicating that further experimental investigations focusing on specific dietary fat 

compositions could unveil the associated biological pathways. 

Among 30 unidentified metabolites associated with macronutrient intake, 9 were 

related to 2-hour post-load glucose, log-transformed insulin, log-transformed HOMA-IR, 

cholesterol, triglyceride, and non-HDL. Figure 10 summarizes the associations across 

nutrient intake, unidentified metabolites, and glycemic and lipid traits. We found that 

UNK_838.596_14.365 and UNK_810.5651_13.586 were negatively associated with 
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carbohydrates but positively associated with total and monounsaturated fat. These 

unidentified metabolites were also significantly associated with SNP 11:61609750 and 

11:61603510, located on the FADS2 gene. However, UNK_838.596_14.365 were also 

positively associated with protein and saturated fat intake, and these results need additional 

studies since low saturated fat intake is usually considered beneficial for glucose intolerance.   

We also found that increased polyunsaturated fat intake could induce the decrease of the 

UNK_1040.6362_12.167 level, but this was associated with increased non-HDL levels. Since 

polyunsaturated fat is also considered healthy, this result should be investigated with 

additional studies.   

 

Figure 10. Summary of association across macronutrient intake, unidentified metabolites, 

plasma glycemic traits, and plasma lipid traits 
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We found 28 genetically associated identified metabolites and 232 genetically 

associated unidentified metabolites. Considering the previous results in Aim 1, biliverdin, 

CAR(4:0), CAR (6:0), DG (32:1), eicosatetraenoic acid, EPA, LPC (20:0), LPC (20:4), LPE 

(18:0), N-acetylleucine, PC (34:2), pipecolic acid, 2-aminooctanoic acid, 2-hydroxybutyric 

acid, and 32 unidentified metabolites were overlapped metabolites associated with any 

glycemic or lipid traits. Especially the SNP located on 6:40532893 associated with DG (32:1) 

is on the LRFN2 gene and has not been reported yet. The LRFN2 gene is known to encode 

synaptic cell adhesion protein in the brain and be related to memory deficit and Alzheimer’s 

disease (75). Still, multiple SNPs on this gene have been repetitively reported related to type 

2 diabetes, BMI, waist-hip ratio, visceral adipose tissue adjustment, triglyceride, HDL, and 

non-HDL (76-88). Thus, the novel finding about the genetic association of the SNP on the 

LRFN2 gene with DG (32:1) could be the clue why the multiple SNPs on this gene have been 

found the significant associations with the traits related to metabolic disease.  

 33 SNP-nutrient significant interactions on identified metabolites and 183 SNP-

nutrient interactions on unidentified metabolites were found in this study. Among these SNP-

nutrition interaction pairs, 13 SNP-nutrient pairs on identified metabolites and 40 SNP – 

nutrient pairs on unidentified metabolites also showed significantly low p-value on the joint 

tests. However, none of the same SNPs exhibited significant results in both GMMAT and 

MAGEE. Thus, we can conclude that the SNPs genetically associated with specific 

metabolites by GMMAT in this study had no gene-nutrient interactions, and the SNPs 

interacted with nutrition by MAGEE could suggest having SNP-nutrient interactions on the 

particular metabolites.   
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Strengths and limitations 

 One of the strengths of this study is the participants consisted of the Mexican 

American population in the U.S. borderline area. The Mexican American population is 

relatively understudied compared to the European in genetic studies, but this population has 

increased in the U.S. (15, 89). Specifically, 45 percent of the participants in Starr County 

reported uninsured health insurance, and more than half of the participants answered their 

household incomes were below $30,000 per year (90). Thus, the economic burden related to 

health on this population could be greater than others in the U.S. These combined analyses of 

nutrient intake, metabolomics, and genetics in this study could provide the essential evidence 

to develop additional preventive interventions on worsening glycemia targeting this 

population. Since we focused on macronutrients rather than specific diet patterns, the change 

in the nutrition component based on the Mexican diet could be more applicable in developing 

preventive interventions for worsening glycemia (91). Another strength of this study is that 

we could find novel associations between metabolite and distinct SNPs. Among the results of 

identified metabolites in Aim 2, CAR (9:0), DG (32:1), dodecadienoic acid, LPC (20:0), LPC 

(20:4), LPE (18:2), sphingosine, and 2-hydroxybutyric acid have not been reported any 

genetic associations before to my knowledge. These novel associations could be reliable 

since we also found other repetitive genetic associations on bilirubin, biliverdin, CAR (10:1), 

CAR (4:0), CAR (6:0), CAR (8:0), Eicosatetraenoic acid, EPA, N-Acetylleucine, PC (34:2), 

PC(40:8), 2-aminooctanoic acid. To my knowledge, this is the first study to test single 

variant-nutrient interaction on the metabolites of Mexican Americans. Previous gene-

environmental interaction studies usually tested specific target genetic regions, but this study 
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tested single variant–nutrient interactions across whole imputed GWAS data. Thus, the 

results from MAGEE in Aim 3 could be found on the gene-nutrient interactions in different 

SNPs.  

 Still, this study has some limitations. First, recall bias can still disrupt the 

macronutrient data from the food frequency questionnaire even though it was previously 

validated in this population (92). Even though we educated the participants about checking 

their food frequency questionnaire to decrease the impact of recall bias, it was inevitable in 

the nutrient study. Second, the cross-sectional design cannot determine the causality due to 

the temporal ambiguity, so additional studies need to reveal the causal associations. Third, 

the statistical power could be weakened since the sample size of the study decreased from the 

original proposal due to unpredictable medicine use and sample loss. During the follow-up 

period on the participants, we found that 13 people used glucose-lowering drugs such as 

metformin, and 88 people used cholesterol-lowering medications. We did not find the genetic 

data from 131 participants in this study, so the decreased statistical power from the sample 

size might be one of the reasons for exhibiting unstable MAGEE results. MAGEE was 

originally developed for the large sample-size investigation of more than 2000, so we need 

additional studies with increasing sample sizes in the Mexican-American population to 

validate our study results(93). The decreased sample size was another barrier to finding rare 

variants, so we limited the allele frequency from 0.01 to 0.5 and did not proceed with the 

investigation with exome sequencing data. Last, we have not determined the name of 

unidentified metabolites yet, so identifying unknown metabolites should be added to this 

study.     
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CONCLUSION 

Diabetes mellitus is one of the main issues in public health because of the perspective 

of high prevalence, complications in multiple organs, economic burden, and presence of 

reversible intermediate stage by lifestyle modification. Since diet and genes can cause 

worsening glycemia, this study investigated how these factors affect metabolome data and 

are associated. 308 identified metabolites and 2,471 unidentified metabolites were used for 

the analyses, and 3-hydroxybutyric acid, CAR (5:1), DG (18:1_18:1), DG (32:0), DG(32:1), 

DG(34:1), DG(34:2), PC (32:1), and 9 unidentified metabolites had significant associations 

between macronutrient intake and glycemic and lipid traits. 19 identified and 87 unidentified 

metabolites were significant mean differences in the comparison between the group with 

normoglycemia and the group with prediabetes. Among 28 identified and 232 unidentified 

metabolites related to SNPs, the SNPs on the LRFN2 gene were associated with DG (32:1), 

which had associations with carbohydrate, total fat, and monounsaturated fat intake. 

Although we can test SNP-macronutrient interactions by MAGEE, all these significant SNPs 

were located in the noncoding DNA regions. Thus, additional studies are needed to reveal the 

exact information on these loci.   

We have not determined the unidentified metabolites yet, so identifying unknown 

metabolites should be the next step for this study. Moreover, this study was obtained from 

the baseline data of a 3-year longitudinal study, so we could validate the novel findings with 

additional longitudinal data. The food intake could be changed over time, so additional food 

frequency data could improve the reliability and validity of the nutrient data. If we could 

collaborate with other Mexican American study groups to reach a sample size enough to 
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confirm the genetic association, we can check whether the novel results from this study can 

be validated and test it for the rare variants showing allele frequencies of less than one 

percent. If significant associations between macronutrients and metabolites can be confirmed 

with these further studies, we could investigate the specific metabolites, such as DG (32:1), 

and glycemic traits with experimental studies with animals to establish causality.         
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Appendix A. Supplemental tables 

Table S1. The demographic characteristics of the participants 

Characteristics Normal 

N(%) 

Prediabetes 

N(%) 

Diabetes 

N(%) 

Total 

N(%) 

Age(years)     

< 40 28 (18.42) 40 (10.87) 4 (4.82) 72 (11.94) 

40-49 59 (38.82) 132 (35.87) 31 (37.35) 222 (36.82) 

50-59 48 (31.58) 142 (38.59) 32 (38.55) 222 (36.82) 

≥ 60 17 (11.18) 54 (14.67) 16 (19.28) 87 (14.43) 

Gender     

Male 28 (18.42) 121 (32.88) 26 (31.3) 175 (29.02) 

Female 124 (81.58) 247 (67.12) 57 (68.7) 428 (70.98) 

BMI(kg/m2)     

≤ 24.9 34 (22.37) 26 (7.07) 3 (3.61) 63 (10.45) 

25.0-29.9 59 (38.82) 109 (29.62) 13 (15.66) 181 (30.02) 

≥ 30.0 59 (38.82) 233 (63.32) 67  (80.72) 359 (59.54) 

Total 152 (25.21) 368 (61.03) 83 (13.76) 603 (100.00) 
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Table S2. Association between fasting plasma glucose levels and metabolites 

Metabolites β p-value 

3-Hydroxybutyric acid 0.0122 5.54E-11 

Leucine 0.0093 1.40E-09 

3-Methyl-2-oxovaleric acid 0.0091 3.71E-09 

Leucine Isoleucine 0.0090 4.08E-09 

Ketoleucine 0.0090 5.61E-09 

DG(34:1) 0.0097 7.40E-09 

DG(34:2) 0.0091 7.17E-08 

Isoleucine 0.0081 1.66E-07 

DG(18:1_18:1) 0.0088 2.50E-07 

2-Deoxyglucose -0.0089 6.57E-07 

DG(32:0) 0.0079 2.66E-06 

MG(16:0)_rp_a 0.0084 3.03E-06 

DG(36:3) 0.0079 4.31E-06 

Heptadecanedioic acid 0.0075 1.26E-05 

Choline -0.0070 2.28E-05 

Docosatetraenoic acid 0.0070 4.02E-05 

Glutamine -0.0069 5.53E-05 

Behenic acid 0.0068 7.67E-05 

Nonadecenoic acid 0.0065 8.63E-05 

DHA 0.0068 8.73E-05 

Ƴ-Glutamylleucine 0.0059 9.45E-05 

Hydroxytetradecanoic acid 0.0067 0.000119 

2-Hydroxybutyric acid 0.0066 0.000162 
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Table S3. Association between 2-hour post-load glucose levels and metabolites 

Metabolites β p-value 

Docosatetraenoic acid 0.0071 2.80E-15 

Docosatrienoic acid 0.0070 6.21E-15 

3-Hydroxybutyric acid 0.0072 3.57E-14 

DG(34:1) 0.0066 7.14E-14 

DG(34:2) 0.0065 2.45E-13 

Eicosatrienoic acid 0.0066 3.03E-13 

DHA 0.0066 1.15E-12 

Eicosadienoic acid 0.0064 1.19E-12 

Nonadecenoic acid 0.0062 2.16E-12 

Docosapentaenoic acid 0.0063 4.71E-12 

DG(32:0) 0.0060 1.34E-11 

DG(32:1) 0.0059 2.72E-11 

3-Methyl-2-oxovaleric acid 0.0054 3.61E-11 

Ketoleucine 0.0053 8.63E-11 

Palmitic acid 0.0057 3.84E-10 

Hydroxytetradecanoic acid 0.0056 1.04E-09 

Stearic acid 0.0056 1.60E-09 

Leucine 0.0048 4.00E-09 

Margaric acid 0.0053 1.55E-08 

Leucine Isoleucine 0.0046 1.90E-08 

Isoleucine 0.0046 4.46E-08 

DG(18:1_18:1) 0.0048 1.66E-07 

MG(16:0)_rp_a 0.0049 3.47E-07 

Citramalic acid 0.0068 3.86E-07 

Palmitoleic acid 0.0043 5.53E-07 

Eicosatetraenoic acid 0.0046 6.19E-07 

DG(36:3) 0.0045 1.07E-06 

Ƴ-Glutamylleucine 0.0040 1.17E-06 

Oleic acid 0.0043 1.61E-06 

Hydroxydodecanoic acid 0.0044 2.77E-06 

Octadecatrienoic acid 0.0042 3.36E-06 

PC(34:4) 0.0042 7.64E-06 

PC(32:1) 0.0041 7.79E-06 

Hydroxyphenyllactic acid 0.0037 1.09E-05 

Octadecadienoic acid 0.0039 1.21E-05 

2-Hydroxybutyric acid 0.0041 1.27E-05 

Dodecenoic acid 0.0040 1.40E-05 

EPA 0.0040 1.41E-05 
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Ƴ-Glutamylisoleucine 0.0037 1.52E-05 

Arachidic acid 0.0040 1.94E-05 

Hydroxyhexadecanoic acid 0.0040 2.02E-05 

Glutamine -0.0039 2.21E-05 

PC(35:3) -0.0039 2.79E-05 

Eicosenoic acid 0.0037 4.88E-05 

MG(14:0) 0.0053 0.000104 

Heptadecanedioic acid 0.0035 0.000109 

Myristoleic acid 0.0034 0.000109 

Docosenoic acid 0.0052 0.000145 

N-Acetylneuraminic  acid 0.0050 0.000158 
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Table S4. Association between HbA1c levels and metabolites  

Metabolites β p-value 

DG(34:1) 0.2631 8.02E-09 

Leucine 0.2378 1.56E-08 

3-Hydroxybutyric acid 0.2841 4.74E-08 

Leucine Isoleucine 0.2240 1.03E-07 

DG(34:2) 0.2405 1.66E-07 

2-Deoxyglucose -0.2444 3.23E-07 

DG(18:1_18:1) 0.2363 4.18E-07 

DG(32:0) 0.2243 1.04E-06 

Ketoleucine 0.2014 1.88E-06 

3-Methyl-2-oxovaleric acid 0.1991 2.36E-06 

Isoleucine 0.2006 2.55E-06 

MG(16:0)_rp_a 0.2129 1.13E-05 

Glutamine -0.1962 2.69E-05 

DG(36:3) 0.1943 3.86E-05 
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Table S5. Association between log-transformed insulin levels and metabolites 

Metabolites β p-value 

DG(32:1) 0.6498 4.54E-25 

DG(34:1) 0.6496 7.24E-25 

DG(32:0) 0.6263 3.78E-23 

DG(34:2) 0.6248 5.84E-23 

Isoleucine 0.5724 1.65E-21 

Leucine-Isoleucine 0.4826 5.63E-17 

3-Methyl-2-oxovaleric acid 0.4859 6.46E-17 

N.Acetylglycine -0.5868 6.46E-16 

Leucine 0.4221 3.18E-13 

Ƴ-Glutamyltyrosine 0.4306 1.33E-12 

Hydroxyphenyllactic acid 0.4179 4.35E-12 

Ƴ-Glutamylisoleucine 0.3818 1.66E-10 

Ketoleucine 0.3736 3.11E-10 

3-Methylbutyrylcarnitine 0.3846 3.34E-10 

Phenylalanine 0.3898 3.91E-10 

DG(18:1_18:1) 0.4039 1.00E-09 

Glu Phe 0.3521 2.07E-09 

CAR(4:0) 0.3901 2.14E-09 

Ƴ-Glutamylleucine 0.3432 3.34E-09 

CAR(5:0) isomers 0.3466 7.42E-09 

CAR(3:0) 0.3758 8.81E-09 

DG(36:3) 0.3797 1.10E-08 

CAR.5:0) 0.3165 1.52E-07 

Adipic acid 0.3382 1.61E-07 

Tryptophan 0.3392 2.05E-07 

Kynurenine 0.3272 5.41E-07 

PC(32:1) 0.3316 5.51E-07 

N-Acetylleucine 0.3569 8.49E-07 

Taurochenodeoxycholic acid 0.3071 4.63E-06 

Taurocholic acid 0.3053 4.97E-06 

MG(14:0) 0.3444 6.59E-06 

MG(18:1) 0.3380 6.99E-06 

Glycocholic acid-Glycohyocholic acid 0.3354 1.02E-05 

Pro Phe 0.2584 1.13E-05 

Tyrosine 0.2869 1.19E-05 

Caffeine 0.2846 2.14E-05 

Behenic acid 0.2759 3.07E-05 

MG(16:0)_rp_a 0.2970 3.58E-05 
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Biliverdin -0.2624 3.66E-05 

Glutamine -0.2707 3.88E-05 

PC(40:6) 0.2687 5.46E-05 

N-Acetylserine 0.2641 6.06E-05 

PC(34:3) 0.2659 7.30E-05 

Uric acid 0.2346 7.32E-05 

PC(36:3) 0.2635 7.89E-05 

Glycochenodeoxycholic acid 0.2604 9.55E-05 

dUMP 0.2830 9.57E-05 

PC(32:2) 0.2593 0.000103 

N-Methyl-D-aspartic acid 0.2541 0.000119 
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Table S6. Association between log-transformed HOMA-IR levels and metabolites 

Metabolites β p-value 

DG(34:1) 0.6881 6.53E-27 

DG(32:1) 0.6722 7.87E-26 

DG(34:2) 0.6608 9.55E-25 

DG(32:0) 0.6537 2.81E-24 

Isoleucine 0.5812 2.47E-21 

3-Methyl-2-oxovaleric acid 0.5269 4.50E-19 

Leucine-Isoleucine 0.5038 9.06E-18 

N-Acetylglycine -0.5948 1.09E-15 

Leucine 0.4456 4.15E-14 

Ƴ-Glutamyltyrosine 0.4406 1.09E-12 

Hydroxyphenyllactic acid 0.4236 5.89E-12 

Ketoleucine 0.4146 6.35E-12 

DG(18:1_18:1) 0.4408 5.55E-11 

Ƴ-Glutamylisoleucine 0.3966 7.27E-11 

3-Methylbutyrylcarnitine 0.3980 1.79E-10 

Phenylalanine 0.3983 3.59E-10 

Ƴ-Glutamylleucine 0.3672 5.07E-10 

DG(36:3) 0.4147 8.55E-10 

CAR(5:0) isomers 0.3674 1.76E-09 

CAR(4:0) 0.3917 3.78E-09 

Glu Phe 0.3490 5.83E-09 

CAR(3:0) 0.3731 2.18E-08 

CAR(5:0) 0.3351 4.84E-08 

Tryptophan 0.3516 1.27E-07 

Adipic acid 0.3455 1.51E-07 

N-Acetylleucine 0.3763 3.58E-07 

PC(32:1) 0.3368 6.07E-07 

Tryptophan 0.3350 7.34E-07 

Kynurenine 0.3159 2.14E-06 

Taurocholic acid 0.3127 4.51E-06 

Taurochenodeoxycholic acid 0.3114 5.25E-06 

MG(16:0)_rp_a 0.3305 6.62E-06 

Glutamine -0.3010 7.01E-06 

MG(14:0) 0.3476 8.42E-06 

MG(18:1) 0.3414 8.79E-06 

Behenic acid 0.2989 9.26E-06 

Glycocholic acid-Glycohyocholic acid 0.3418 1.06E-05 
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Tyrosine 0.2919 1.24E-05 

3-Hydroxybutyric acid 0.2947 1.64E-05 

Pro-Phe 0.2586 1.65E-05 

Caffeine 0.2899 2.19E-05 

PC(34:3) 0.2888 2.34E-05 

PC(32:2). 0.2829 3.18E-05 

Biliverdin -0.2626 5.12E-05 

dUMP 0.2954 6.50E-05 

Glycochenodeoxycholic acid 0.2673 8.53E-05 

PC(40:6) 0.2659 9.00E-05 

N-Acetylserine 0.2570 0.000134 

PC(36:3) 0.2597 0.000137 

Chenodeoxycholic acid-Deoxycholic acid 0.2955 0.000153 

Glycodeoxycholic acid 0.2571 0.000159 
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Table S7. Associated metabolites across glucose intolerance status with a linear model 

Metabolites β p-value 

DG(34:2) 0.4364 1.63E-10 

Leucine 0.3875 6.28E-10 

Leucine Isoleucine 0.3811 1.20E-09 

Isoleucine 0.3698 5.40E-09 

DG(34:1) 0.3970 5.67E-09 

3-Hydroxybutyric acid 0.4190 9.72E-09 

3-Methyl-2-oxovaleric acid 0.3493 2.67E-08 

DG(32:0) 0.3469 4.19E-07 

Ketoleucine 0.3114 8.00E-07 

DG(32:1) 0.3303 1.45E-06 

Docosatetraenoic acid 0.3311 1.88E-06 

MG(16:0)_rp_a 0.3521 1.91E-06 

DHA 0.3319 2.65E-06 

Ƴ-Glutamylleucine 0.2785 6.30E-06 

Glutamine -0.3026 1.45E-05 

Docosatrienoic acid 0.2973 1.91E-05 

DG(36:3) 0.2971 2.52E-05 

Eicosatrienoic acid 0.2893 2.83E-05 

Hydroxytetradecanoic acid 0.2920 3.52E-05 

Nonadecenoic acid 0.2798 3.57E-05 

Stearic acid 0.2871 4.59E-05 

DG(18:1_18:1) 0.2814 5.89E-05 
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Table S8. Comparison of mean difference of metabolites between normal and all 

hyperglycemic status 

Metabolites p-value 

Leucine Isoleucine 6.42E-11 

Isoleucine 2.76E-10 

Leucine 7.68E-10 

Ƴ-Glutamyltyrosine 9.67E-10 

5’-Methylthioadenosine 3.25E-08 

Uric acid 2.38E-07 

DG(34:1) 4.00E-07 

N-Acetylserine 4.37E-07 

CAR(5:0) isomers 5.45E-07 

DG(34:2) 7.52E-07 

3-Methylbutyrylcarnitine 1.44E-06 

Glu-Phe 2.83E-06 

CAR(5:0) 4.05E-06 

S-allylcysteine 4.11E-06 

DG(32:1) 4.26E-06 

N-Acetylleucine 5.86E-06 

Pro-Phe 6.96E-06 

Phe-Trp 3.13E-05 

DG(32:0) 4.64E-05 

CAR(4:0) 6.79E-05 

Ƴ-Glutamylleucine 5.05E-10 

Ƴ-Glutamylisoleucine 2.17E-07 

3-Methyl-2-oxovaleric acid 4.06E-07 

Eicosatrienoic acid 1.87E-06 

3-Hydroxybutyric acid 4.18E-06 

Hydroxytetradecanoic acid 6.29E-06 

Phenylalanine 1.10E-05 

Hydroxyphenyllactic acid 1.56E-05 

Docosatetraenoic acid 3.03E-05 

Docosatrienoic acid 4.13E-05 

Octadecatrienoic acid 4.73E-05 

Nonadecenoic acid 8.53E-05 

Ketoleucine 0.000104 

Palmitic acid 0.000121 

 



86 

 

Table S9. Comparison of mean difference of metabolites between normal and diabetes 

groups 

 

Metabolites p-value 

Leucine 1.89E-14 

Leucine Isoleucine 1.77E-13 

DG(34:1) 2.29E-13 

DG(34:2) 7.18E-13 

Isoleucine 1.23E-12 

3-Hydroxybutyric acid 1.41E-12 

DG(32:0) 3.54E-12 

CAR(5:0) isomers 4.66E-12 

Ƴ-Glutamylleucine 5.54E-12 

Ƴ-Glutamyltyrosine 1.19E-11 

DG(32:1) 3.08E-10 

CAR(5:0) 4.80E-10 

3-Methyl-2-oxovaleric acid 9.42E-10 

Ƴ-Glutamylisoleucine 1.21E-09 

Docosatetraenoic acid 2.97E-09 

3-Methylbutyrylcarnitine 5.39E-09 

Ketoleucine 7.10E-09 

Nonadecenoic acid 2.75E-08 

Docosatrienoic acid 3.10E-08 

Tyrosine 5.24E-08 

Stearic acid 8.08E-08 

MG(16:0)_rp_a 1.38E-07 

DG(18:1_18:1) 1.57E-07 

Eicosatrienoic acid 3.17E-07 

Palmitic acid 4.90E-07 

Hydroxyphenyllactic acid 6.39E-07 

DHA 1.19E-06 

DG(36:3) 3.51E-06 

Glu Phe 3.85E-06 

Phenylalanine 3.93E-06 

Palmitoleic acid 5.89E-06 

PC(35:3) 6.67E-06 

Tyrosine 6.86E-06 

Eicosadienoic acid 1.20E-05 

Heptadecanedioic acid 1.27E-05 

Glutamine 1.29E-05 

Hydroxytetradecanoic acid 1.42E-05 

L-Urobilin 1.82E-05 
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Naproxen 2.04E-05 

5’-Methylthioadenosine 2.24E-05 

Oleic acid 2.52E-05 

2-Hydroxybutyric acid 3.83E-05 

N-Acetylneuraminic acid 5.52E-05 

Octadecadienoic acid 5.94E-05 

Uric acid 6.06E-05 

Mesobilirubinogen 9.75E-05 

Docosapentaenoic acid 0.000102 

Octadecatrienoic acid 0.000138 
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Table S10. Comparison of mean difference of metabolites between non-diabetes and diabetes 

groups 

Metabolites p-value 

DG(34:2) 1.03E-12 

DG(34:1) 2.03E-12 

3-Hydroxybutyric acid 4.80E-12 

Leucine 5.25E-12 

DG(32:0) 7.58E-12 

Leucine Isoleucine 6.95E-10 

MG(16:0)_rp_a 7.10E-10 

CAR(5:0) isomers 1.63E-09 

Isoleucine 2.25E-09 

DG(32:1) 6.27E-09 

Docosatetraenoic acid 1.23E-08 

Ƴ-Glutamylleucine 1.29E-08 

Nonadecenoic acid 6.24E-08 

Ketoleucine 9.66E-08 

3-Methyl-2-oxovaleric acid 1.22E-07 

Docosatrienoic acid 1.70E-07 

Ƴ-Glutamylisoleucine 2.75E-07 

DG(18:1_18:1) 3.57E-07 

Stearic acid 4.93E-07 

CAR(5:0) 6.29E-07 

PC(35:3) 7.34E-07 

Naproxen 7.40E-07 

Glutamine 1.09E-06 

3-Methylbutyrylcarnitine 3.26E-06 

Mesobilirubinogen 3.97E-06 

Ƴ-Glutamyltyrosine 4.79E-06 

Ile.Ile 5.25E-06 

L-Urobilin 7.75E-06 

Heptadecanedioic acid 9.81E-06 

DHA 1.65E-05 

SM(d35:1) 1.78E-05 

Eicosatrienoic acid 2.18E-05 

Tyrosine 2.23E-05 

Hydroxyphenyllactic acid 2.42E-05 

Tyrosine 3.15E-05 

DG(36:3) 3.16E-05 
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Palmitic acid 4.08E-05 

2-Hydroxybutyric acid 4.99E-05 

Eicosadienoic acid 5.10E-05 

Palmitoleic acid 0.000133 
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Table S11. Association between measured plasma cholesterol levels and metabolites 

Metabolites β p-value 

LPC(20:4)_rp_b 0.0076 4.23E-10 

DG(32:0) 0.0081 4.55E-10 

DG(18:1_18:1) 0.0081 5.50E-10 

LPC(20:3)_rp_b 0.0078 1.21E-09 

DG(34:1) 0.0077 2.95E-09 

Ketoleucine 0.0069 6.58E-09 

SM(d32:1) 0.0074 1.40E-08 

PC(34:2) -0.0071 2.10E-08 

MG(18:1) 0.0083 2.20E-08 

LPC(20:3)_rp_a 0.0078 6.40E-08 

PC(32:0) -0.0071 1.20E-07 

PC(34:4) 0.0068 2.62E-07 

SM(d32:2) 0.0060 2.93E-07 

SM(d35:1) -0.0068 3.02E-07 

CAR(18:0) 0.0064 5.35E-07 

PC(28:0) 0.0068 7.06E-07 

DG(36:3) 0.0066 8.63E-07 

3-Methyl-2-oxovaleric acid 0.0058 1.38E-06 

DG(34:2) 0.0063 1.57E-06 

SM(d38:1) -0.0062 1.98E-06 

3-Hydroxybutyric acid 0.0063 2.16E-06 

SM(d36:1) -0.0065 2.35E-06 

DG(32:1) 0.0060 4.41E-06 

LPC(14:0) 0.0071 4.94E-06 

CAR(20:0) 0.0055 8.60E-06 

LPC(15:0)_rp_a 0.0058 8.96E-06 

LPC(16:0)_rp_a 0.0064 1.18E-05 

PC(32:2)α 0.0058 2.00E-05 

LPE(18:0)_rp_a 0.0063 2.31E-05 

LPC(20:4)_rp_a 0.0063 2.53E-05 

LPC(16:1) 0.0063 2.90E-05 

Leucine 0.0049 5.32E-05 

CAR(5:1) 0.0051 8.02E-05 

Deoxyguanosine 0.0062 8.84E-05 

Cortisol 0.0052 9.19E-05 

Uridine 0.0051 0.000145 

SM(d42:2) -0.0050 0.000158 
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Table S12. Association between HDL levels and metabolites 

Metabolites β p-value 

DG(34:2) -0.0493 1.09E-33 

DG(36:3) -0.0497 1.37E-32 

DG(34:1) -0.0394 2.29E-21 

DG(18:1_18:1) -0.0395 6.18E-21 

DG(32:1) -0.0368 2.27E-18 

DG(32:0) -0.0276 1.06E-10 

Ƴ-Glutamylisoleucine -0.0198 4.82E-07 

Isoleucine -0.0199 6.53E-07 

α-Tocopherol -0.0213 1.65E-06 

MG(18:1) -0.0219 1.08E-05 

SM(d32:2) 0.0166 1.51E-05 

Ƴ-Glutamylleucine -0.0158 3.21E-05 

Cytidine -0.0182 5.04E-05 

Leucine Isoleucine -0.0155 0.000101 
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Table S13. Association between Triglyceride levels and metabolites 

Metabolites β p-value 

DG(34:2) 0.0079 5.39E-84 

DG(34:1) 0.0077 1.26E-78 

DG(32:1) 0.0075 2.21E-72 

DG(32:0) 0.0073 3.06E-68 

DG(36:3) 0.0075 3.56E-68 

DG(18:1_18:1) 0.0073 9.53E-67 

MG(18:1) 0.0067 1.66E-42 

MG(14:0) 0.0049 2.35E-20 

MG(16:0)_rp_a 0.0043 3.94E-17 

SM(d35:1) -0.0039 2.45E-16 

3-Methyl-2-oxovaleric acid 0.0032 1.87E-13 

PC(32:1) 0.0032 1.82E-11 

Isoleucine 0.0029 4.36E-11 

Ketoleucine 0.0028 4.38E-11 

Leucine Isoleucine 0.0029 4.97E-11 

Leucine 0.0027 3.41E-10 

SM(d36:1) -0.0029 3.06E-09 

PC(32:2) 0.0029 4.76E-09 

LPE(18:0)_rp_a 0.0030 1.16E-08 

3-Hydroxybutyric acid 0.0027 1.42E-08 

PC(34:3) 0.0027 4.63E-08 

PC(34:4) 0.0026 4.65E-08 

SM(d40:2) -0.0025 6.63E-08 

Cholesterol (-H2O) -0.0025 1.60E-07 

Ƴ-Glutamylleucine 0.0021 6.72E-07 

Citramalic acid 0.0026 1.82E-06 

Ƴ-Glutamylisoleucine 0.0020 3.30E-06 

SM(d38:1) -0.0022 3.43E-06 

PC(28:0) 0.0023 5.74E-06 

Cerotic acid -0.0020 2.43E-05 

PC(30:0) 0.0021 2.56E-05 

PC(36:3) 0.0020 3.01E-05 

Pipecolic acid -0.0020 3.90E-05 

3-Methylbutyrylcarnitine 0.0018 4.61E-05 

SM(d36:2) -0.0019 4.86E-05 

Hydroxyphenyllactic acid 0.0017 5.13E-05 

CAR(5:0) isomers 0.0017 7.87E-05 

LPC(14:0) 0.0022 8.43E-05 
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SM(d42:2) -0.0019 9.61E-05 
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Table S14. Association between calculated LDL levels and metabolites 

Metabolites β p-value 

LPC(20:4)_rp_b 0.0094 3.02E-10 

CAR(18:0) 0.0080 3.32E-07 

SM(d32:1) 0.0080 5.44E-07 

LPC(20:3)_rp_b 0.0077 9.06E-07 

CAR(20:0) 0.0072 2.18E-06 

SM(d36:3) 0.0072 3.20E-06 

PC(34:2) -0.0072 3.94E-06 

SM(d32:2) 0.0061 1.67E-05 

LPC(20:3)_rp_a 0.0079 1.72E-05 

CAR(12:0) 0.0068 2.20E-05 

Eicosatetraenoic acid 0.0067 2.75E-05 

CAR(14:0) 0.0062 0.00012 

PC(32:0) -0.0063 0.000121 

CAR(10:0) 0.0061 0.000155 
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Table S15. Association between non-HDL levels and metabolites 

Metabolites beta p-value 

DG(18:1_18:1) 0.0125 2.07E-21 

DG(34:1) 0.0120 2.61E-20 

DG(36:3) 0.0119 1.14E-18 

DG(34:2) 0.0115 2.15E-18 

DG(32:0) 0.0113 8.57E-18 

DG(32:1) 0.0100 5.10E-14 

MG(18:1) 0.0113 1.76E-13 

LPC(20:3)_rp_b 0.0081 7.02E-10 

Ketoleucine 0.0075 1.07E-09 

LPC(20:4)_rp_b 0.0076 1.97E-09 

CAR(18:0) 0.0076 6.35E-09 

3-Methyl-2-oxovaleric acid 0.0071 7.70E-09 

3-Hydroxybutyric acid 0.0076 2.45E-08 

LPC(20:3)_rp_a 0.0083 4.10E-08 

SM(d35:1) -0.0074 7.03E-08 

Leucine 0.0065 1.69E-07 

PC(34:2) -0.0068 2.17E-07 

Leucine Isoleucine 0.0064 2.90E-07 

CAR(20:0) 0.0063 8.14E-07 

SM(d32:1) 0.0066 1.17E-06 

PC(34:4) 0.0065 1.83E-06 

SM(d38:1) -0.0062 4.36E-06 

PC(28:0) 0.0065 4.73E-06 

LPC(14:0) 0.0073 6.23E-06 

Isoleucine 0.0057 6.58E-06 

PC(32:0) -0.0063 6.89E-06 

Ƴ-Glutamylleucine 0.0053 7.70E-06 

LPC(16:0)_rp_a 0.0067 1.31E-05 

LPC(15:0)_rp_a 0.0058 2.04E-05 

PC(32:2) 0.0059 2.09E-05 

SM(d36:1) -0.0059 2.84E-05 

LPE(18:0)_rp_a 0.0065 2.87E-05 

Eicosatrienoic acid 0.0054 5.78E-05 

SM(d32:2) 0.0047 9.18E-05 

CAR(5:1) 0.0052 9.59E-05 

CAR(14:0) 0.0052 9.98E-05 

Cortisone 0.0051 0.000121 

Indolelactic acid 0.0048 0.000124 
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Docosatetraenoic acid 0.0051 0.000127 

Deoxyguanosine 0.0063 0.000134 

Eicosatetraenoic acid 0.0052 0.000154 

CAR(6:0) 0.0051 0.000162 
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S16. Unidentified metabolites list associated with three diagnostic glycemic traits 

Fasting glucose 

only associated 

metabolites 

2-hour post-load 

glucose only 

associated 

metabolites 

HbA1C only 

associated 

metabolites  

Fasting glucose 

and 2-hour post-

load glucose 

associated 

metabolites 

Fasting glucose 

and HbA1C 

associated 

metabolites 

All three diagnostic 

glycemic traits 

associated 

metabolites 

UNK_432.2382_1.836 UNK_323.2263_12.102 UNK_207.0139_0.613 UNK_129.0607_2.142 UNK_323.0798_0.668 UNK_441.0745_0.632 

UNK_439.255_1.837 UNK_434.2102_12.104 UNK_191.0402_0.615 UNK_117.0558_3.253 UNK_215.0333_0.64 UNK_340.1072_2.37 

UNK_301.1431_1.836 UNK_343.1946_11.516 UNK_801.612_13.735 UNK_792.5547_14.394 UNK_145.0621_0.623 UNK_277.0742_0.946 

UNK_547.3289_1.927 UNK_345.1934_12.103 UNK_1197.7095_12.081 UNK_1036.0408_2.585 UNK_527.0944_0.624 UNK_115.0401_2.585 

UNK_597.3346_1.927 UNK_349.2403_12.19 UNK_132.1023_1.836 UNK_313.2732_11.408 UNK_154.0839_1.838 

UNK_763.5605_12.723 UNK_400.1706_11.512 UNK_463.0889_0.959 UNK_231.0001_2.181 UNK_86.0967_1.836 

UNK_262.1287_1.22 UNK_565.5184_11.782 UNK_202.1086_5.755 

 

UNK_132.1023_1.96 

UNK_217.0651_2.985 UNK_305.2476_11.514 UNK_329.2696_12.045 UNK_634.4449_12.16 

 UNK_359.1674_11.513 UNK_482.024_2.585 

 

UNK_86.0968_1.96 

 UNK_172.9971_2.586 UNK_131.0715_5.141 

 

UNK_154.0839_1.959 

 UNK_395.2201_11.472 UNK_387.1641_11.499 UNK_432.2383_1.956 

 UNK_657.5048_12.045 UNK_351.2301_11.5 

 

UNK_455.2266_1.957 

 UNK_659.5057_11.472 UNK_405.1906_1.845 

 

UNK_183.0274_2.587 

 UNK_725.4913_12.046 UNK_285.2071_10.349 UNK_253.0695_2.583 

 UNK_514.1668_11.472 

  

UNK_315.0407_2.584 

 UNK_963.7574_12.045 

  

UNK_349.0819_2.12 

 UNK_301.2174_11.263 

  

UNK_568.3814_1.928 

 UNK_811.6771_11.605 

  

UNK_229.0695_2.119 

 UNK_385.3109_12.278 

  

UNK_411.044_1.065 

 UNK_187.1341_8.764 

  
 

 UNK_197.1546_10.498 

  
 

 UNK_371.2206_11.488 

  
 

 UNK_271.2282_10.48 

  
 

 UNK_494.1489_7.143 

  
 

 UNK_259.2431_11.486 

  
 

 UNK_831.6585_14.897    

 UNK_363.1764_11.257    

 UNK_203.0143_1.069    

 UNK_882.6231_14.642    

 UNK_768.5546_14.354    

 UNK_856.6088_14.313    

 UNK_201.0385_1.063    

 UNK_790.5963_14.271    

 UNK_594.3774_11.499    

 UNK_788.5804_14.159    

 UNK_146.0462_0.63    
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 UNK_477.1044_1.958    

 UNK_409.2345_9.292    

 UNK_439.255_1.956    

 UNK_245.129_5.953    

 UNK_816.6104_14.5    

 UNK_444.254_12.103    

 UNK_805.6396_14.771    

 UNK_881.6741_15.005    

 UNK_204.0487_0.972    

 UNK_187.0427_1.066    

 UNK_187.0429_0.967    

 UNK_799.596_13.234    

 UNK_1010.0267_0.973    

 UNK_357.2994_11.514    

 UNK_379.2817_11.507    

 UNK_790.5392_13.932    

 UNK_204.0485_1.062    

 UNK_688.492_13.189    

 UNK_197.0804_7.936    

 UNK_527.2142_7.893    

 UNK_236.0931_5.91    

 UNK_259.1302_4.131    

 UNK_682.5178_12.103    

 UNK_786.5652_13.647    

 UNK_629.3542_9.116    

 UNK_217.0375_5.086    

 UNK_339.1982_12.102    

 UNK_131.0715_5.033    

 UNK_716.5235_13.801    

 UNK_776.5462_13.155    

 UNK_878.5931_13.884    

 UNK_356.19_11.688    

 UNK_301.2111_11.687    

 UNK_239.0582_11.541    

 UNK_809.4335_11.784    

 UNK_317.1619_11.688    

 UNK_935.5938_11.541    

 UNK_311.1672_11.687    

 UNK_527.1757_11.786    

 UNK_267.1634_11.281    

 UNK_941.6412_11.782    



99 

 

 UNK_313.1678_11.688    

 UNK_321.2108_11.782    

 UNK_641.429_11.415    

 UNK_573.1808_11.787    

 UNK_603.4653_11.782    

 UNK_327.2268_11.782    

 UNK_287.1319_11.281    

 UNK_299.1954_11.397    

 UNK_219.2106_11.398    

 UNK_341.1794_11.784    

 UNK_285.1363_11.281    

 UNK_943.6406_11.782    

 UNK_313.148_11.397    

 UNK_283.1363_11.281    

 UNK_225.0421_11.328    

 UNK_339.1836_11.784    

 UNK_363.2517_11.929    

 UNK_399.2517_11.785    

 UNK_852.6497_11.65    

 UNK_805.6592_11.651    

 UNK_770.3734_11.651    

 UNK_511.4728_11.651    

 UNK_883.7055_11.743    

 UNK_655.3664_11.303    

 UNK_573.4917_11.256    

 UNK_644.4324_11.742    

 UNK_599.5076_11.373    

 UNK_899.6794_11.743    

 UNK_1179.881_11.51    

 UNK_213.1499_9.45    

 UNK_623.5061_11.305    

 UNK_349.2364_11.744    

 UNK_649.4426_11.51    

 UNK_347.2208_11.51    

 UNK_321.2051_11.37    

 UNK_1195.8522_11.509    

 UNK_400.1484_11.745    

 UNK_930.6967_11.742    

 UNK_415.2074_11.51    

 UNK_265.217_11.33    

 UNK_1176.2343_11.655    
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 UNK_253.217_11.551    

 UNK_877.6587_11.51    

 UNK_398.1327_11.509    

 UNK_762.5079_13.262    

 UNK_792.5546_14.167    

 UNK_749.5809_13.18    

 UNK_385.1678_11.499    

 UNK_279.035_1.091    

 UNK_305.1568_4.502    

 UNK_383.1682_11.499    

 UNK_424.1703_11.499    

 UNK_899.5064_7.228    

 UNK_889.7527_12.045    

 UNK_567.5352_12.045    

 UNK_347.2259_11.908    

 UNK_273.1109_8.681    

 UNK_613.3594_9.663    

 UNK_327.1833_11.888    

 UNK_850.5955_11.468    

 UNK_257.2473_11.687    

 UNK_366.2227_12.101    

 UNK_325.1836_11.891    

 UNK_648.4623_12.045    

 UNK_973.7129_12.045    

 UNK_957.7393_12.045    

 UNK_402.1639_12.045    

 UNK_936.7426_12.045    

 UNK_905.726_12.045    

 UNK_203.1807_10.716    

 UNK_376.1705_11.539    

 UNK_387.1991_11.824    

 UNK_389.199_11.825    

 UNK_338.1914_11.688    

 UNK_416.2227_11.688    

 UNK_295.1892_11.256    

 UNK_826.5618_13.082    

 UNK_293.2482_11.69    

 UNK_355.1587_11.651    

 UNK_592.4016_11.65    

 UNK_381.1744_11.744    

 UNK_365.199_11.906    
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 UNK_304.1154_2.887    

 UNK_372.1171_11.371    

 UNK_814.5604_13.177    

 UNK_696.4421_11.78    

 UNK_385.1252_2.631    

 UNK_293.2124_10.775    

 UNK_247.1701_10.693    

 UNK_371.2257_11.823    

 UNK_337.1482_11.327    

 UNK_454.2224_12.046    

 UNK_345.2046_11.304    

 UNK_681.3474_9.665    

 UNK_505.1462_6.638    

 UNK_374.1325_11.65    

 UNK_335.1522_11.327    

  UNK_533.4552_11.65       
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