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displays many functional similarities to alterations in mam-
malian nociceptors associated with the clinical problem of 
chronic pain. Moreover, in  Aplysia  and mammals the same 
cell signaling pathways trigger persistent enhancement of 
excitability and synaptic transmission following noxious 
stimulation, and these highly conserved pathways are also 
used to induce memory traces in neural circuits of diverse 
species. This functional and molecular overlap in distantly 
related lineages and neuronal types supports the proposal 
that fundamental plasticity mechanisms important for mem-
ory, chronic pain, and other lasting alterations evolved from 
adaptive responses to peripheral injury in the earliest neu-
rons. Molluscan preparations should become increasingly 
useful for comparative studies across phyla that can provide 
insight into cellular functions of clinically important genes. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Mollusca, the second largest animal phylum after Ar-
thropoda, has contributed influential experimental prep-
arations to neuroscience. Large, identifiable neuronal so-
mata and axons in selected molluscs have been exploited 
as ‘model systems’ to reveal basic mechanisms of neuro-
nal function and plasticity, with some of these discoveries 
becoming foundations of neurophysiology [Gilbert et al., 
1990; Kandel, 2001; Chase, 2002]. Until recently, however, 
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 Abstract 

 Molluscan preparations have yielded seminal discoveries
in neuroscience, but the experimental advantages of this 
group have not, until now, been complemented by ade-
quate molecular or genomic information for comparisons to 
genetically defined model organisms in other phyla. The re-
cent sequencing of the transcriptome and genome of  Aply-
sia californica , however, will enable extensive comparative 
studies at the molecular level. Among other benefits, this 
will bring the power of individually identifiable and manipu-
lable neurons to bear upon questions of cellular function for 
evolutionarily conserved genes associated with clinically im-
portant neural dysfunction. Because of the slower rate of 
gene evolution in this molluscan lineage, more homologs of 
genes associated with human disease are present in  Aplysia  
than in leading model organisms from Arthropoda  (Dro-
sophila)  or Nematoda  (Caenorhabditis elegans) . Research has 
hardly begun in molluscs on the cellular functions of gene 
products that in humans are associated with neurological 
diseases. On the other hand, much is known about molecu-
lar and cellular mechanisms of long-term neuronal plasticity. 
Persistent nociceptive sensitization of nociceptors in  Aplysia  
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little could be said about how the neural and behavioral 
phenomena described in molluscs were related evolu-
tionarily to formally similar phenomena in humans. A 
major limitation was a paucity of the molecular and ge-
nomic information needed to identify conserved genes 
and lineage-specific innovations in molluscs. Moreover, 
although much research on molluscan nervous systems 
has been supported by agencies devoted to human health, 
few studies have explicitly investigated molluscan coun-
terparts of clinically important processes. Nonetheless, 
some of the basic neuronal mechanisms and associated 
genes being described in molluscs appear to have func-
tional and/or molecular equivalents that are of consider-
able clinical significance in humans. Here we consider 
the use of molluscs to explore conserved and convergent 
mechanisms that might contribute to selected clinical 
problems, with particular emphasis on the problem of 
chronic pain and the possible role of evolutionarily con-
served mechanisms shared with memory.

  Molluscan Neurogenomics 

 The divergence among major bilaterian lineages prob-
ably occurred in the Upper Precambrian period (at least 
550 million years ago) [Valentine, 2004]. Comparisons of 
molluscs to other lineages have been slowed, however, by 
a lack of genetically tractable models and a dearth of ge-
nomic information about this phylum. Genome-wide in-
formation from at least 2–3 molluscan species is needed 
to establish evolutionary relationships between mollus-
can and mammalian genes, molecular pathways, and 
their functions. Recently the first genomic information 
from a mollusc became available, with the publication
of the neuronal transcriptome and mitochondrial ge-
nome of the opisthobranch gastropod,  Aplysia californica  
[Knudsen et al., 2006; Moroz et al., 2006]. This enabled 
genome-scale profiling of individual, functionally char-
acterized neurons and isolated neuronal processes, open-
ing the way for analyses of the genomic bases of neuronal 
identity and plasticity in uniquely identified cells. In par-
allel, the  Aplysia  genome project was initiated [Moroz et 
al., 2004], and by 2008 the first stage of sequencing of this 
genome was completed (http://www.ncbi.nlm.nih.gov/
nuccore/AASC00000000.2). In addition, the compact ge-
nome of a limpet,  Lottia gigantea  (in the basal gastro-
pod lineage), has also been sequenced (unpublished, see 
http://genome.jgi-psf.org/Lotgi1/Lotgi1.info.html), pro-
viding an important comparative reference. These ad-
vances complement well-known neurophysiological ad-

vantages of  Aplysia  with the ability to specify large gene 
groups involved in phenomena of interest and to discern 
patterns of evolution involving these gene products both 
in molluscs and across phyla.

   Aplysia  Neurogenomics, Evolution, and Genes 

Related to Neurological Diseases 

 Prominent among the experimental advantages that 
have established  Aplysia  as a leading model system for an-
alyzing cellular bases of behavior and plasticity [Kandel, 
1976, 2001] are its relatively simple CNS of nine central 
ganglia containing only about 10,000 neurons [Cash and 
Carew, 1989], many of which are readily identifiable by 
soma size and location ( fig. 1 ), electrophysiological prop-
erties ( fig. 2 ), synaptic connections ( fig. 2 ) and behavioral 
effects. More than 200 neurons and hundreds of monosyn-
aptic connections have been individually identified in 
feeding, locomotor, respiratory, and defensive systems. 
Compared to  Drosophila melanogaster  and  Caenorhabdi-
tis elegans , the two dominant models in molecular neuro-
biology, three features distinguish  Aplysia  as a model sys-
tem: its large neurons, the relatively slow rate of evolution 
of genes in this lineage (with preservation of an ancestral 
subset of gene homologs linked to human diseases), and its 
use of DNA methylation for transcriptional regulation.

  The giant sizes of opisthobranch and pulmonate neu-
ronal somata (200–600  � m somata are common) and 
growth cones (sometimes 1600  � m) [Lovell et al., 2006; 
Lovell and Moroz, 2006] contrast dramatically with those 
of  C. elegans  and  Drosophila , in which most somata are 
only 2–5  � m in diameter. Large, individually identifiable 
neurons facilitate combined physiological, microchemi-
cal and genomic measurements [Kandel, 2001; Moccia et 
al., 2003; Drake et al., 2005; Jezzini et al., 2005; Moroz et 
al., 2005, 2006; Lovell et al., 2006]. Although giant neu-
rons are also found in other groups (e.g., leeches and crus-
taceans), the cell bodies of gastropod neurons are fully 
excitable and, despite their large size, these neurons are 
electrotonically compact [Adams et al., 1980], permitting 
unequalled intracellular recordings of synaptic and ac-
tion potentials from the somata (sometimes simultane-
ously from multiple neurons in vivo or in vitro for hours 
at a time). Moreover, the large neurons tolerate repeated 
microelectrode impalements over several days. These 
features help drive advances not only in linking neuronal 
properties to behavior, but in understanding the general 
cell biology of neurons. For example, neurons from  Aply-
sia  and other molluscs have provided insights into axonal 
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regeneration [e.g., Gitler and Spira, 1998; Erez and Spira, 
2008], and the cellular functions of human molecules re-
lated to disorders such as Alzheimer’s disease, which are 
being illuminated by testing the effects of injections (e.g., 
of amyloid precursor protein, beta-amyloid peptide, tau) 
into giant gastropod somata and cephalopod axons [Sat-

pute-Krishnan et al., 2003; Samarova et al., 2005; Shem-
esh et al., 2008].

  The number of gene homologs shared by mammals 
with molluscs is greater than the number shared by mam-
mals with  Drosophila  or  C. elegans . Phylogenetic analyses 
( fig. 1 A) position  Aplysia  as a sister group to the arthro-
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  Fig. 1.  Features of a molluscan model organism,  Aplysia califor-
nica .  A  Phylogenetic relationships of gastropods  (Aplysia)  to other 
prominent model organisms: insects  (Drosophila) , nematodes 
 (Caenorhabditis elegans) , sea urchins  (Strongylocentrotus) , ascid-
ians  (Ciona) , vertebrates (represented by dog,  Canis,  and zebra-
fish,  Danio ), and cnidarians (hydrozoan  Hydra ). The evolution-
ary distance (indicated as relative branch length) from  Canis  or 
 Danio  to  Aplysia  is shorter than the distance from the vertebrates 
to  Drosophila  or  C. elegans , suggesting that the amino acid re-
placement rate has been lower in the lineage leading to the gastro-
pod  Aplysia  than in the lineages leading to  Drosophila  and  C. el-
egans.   B  Nociceptive sensory neurons in the right ventrocaudal 

(VC) cluster revealed by in situ hybridization staining for a sen-
sory neuron-specific neuropeptide, sensorin. A somatotopic map 
(‘Aplunculus’) of the ipsilateral body surface is represented in the 
cluster. Note that sensorin mRNA is found in neurites and axons 
throughout the pedal ganglion.  C  Expression of huntingtin occurs 
in the giant mucus release motor neuron, LPl1, and other neurons 
in the left pleural ganglion (in situ hybridization). Scale: 450 �m. 
 D  In situ hybridization shows choline acetyltransferase mRNA (a 
marker for cholinergic neurons) in diverse neurons, including 
LPl1, in the left pleural and pedal ganglia. Panels  A ,  C  and  D  are 
modified from Moroz et al. [2006]; panel  B  is modified from Wal-
ters et al. [2004]. 
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pod/nematode clade. This figure illustrates that the evo-
lutionary distance (represented by branch length) from 
 Aplysia  to mammals is shorter than the distance from ei-
ther  Drosophila  or  C. elegans  to mammals. This indicates 
that the amino acid replacement rate has been lower in 
the lineage leading to  Aplysia  than in the lineages leading 
to  Drosophila  and  C. elegans . Additional comparative 
analysis of evolutionarily conserved genes supports this 
hypothesis [Moroz et al., 2006]. Greater similarity was 
also found between mammalian and  Aplysia  proteins, 
confirming that the amino acid replacement rate has 
been lower in the molluscan lineage than in the lineages 
leading to  Drosophila  and  C. elegans .

  The initial analysis of  Aplysia  gene families revealed 
unexpected examples of gene loss in  Drosophila  and  C. el-
egans  from a common ancestor of bilaterian animals. In-
deed, following the phylogeny outlined in  figure 1 A, the 
presence of a gene ortholog shared between  Aplysia  and 
mammals, combined with its absence from the genomes 
of  Drosophila  or  C. elegans , indicate a loss of the orthologs 

in these lineages rather than its improbable independent 
origins in molluscs and deuterostomes. Consequently, 
less derived characteristics of the  Aplysia  genome might 
explain a greater conservation of genes related to devel-
opment (e.g., the transcription factor Churchill), immu-
nity, and human disease in  Aplysia  [Moroz et al., 2006; 
Panchin and Moroz, 2008] compared to  Drosophila  and 
 C. elegans.  This suggests that efforts to discern molecular 
and cellular functions of numerous genes related to hu-
man disease could eventually make greater use of  Aplysia  
than  Drosophila  or  C. elegans  as model systems.

   Table 1  lists some of the human disease-related genes 
found in the  Aplysia  transcriptome. Using an annotated 
subset of neuronal transcripts, numerous orthologs of 
genes implicated in more than a hundred neurological 
diseases were identified, including genes relevant to Par-
kinson’s disease (e.g., Parkin) and Alzheimer’s disease 
(e.g., presenilins and amyloid precursor protein), as well 
as fragile X mental retardation protein, huntingtin, the 
aging-related hormone Klotho, cytokines, and inflam-

Table 1. Selected examples of Aplysia homologs of human genes relevant to neurological diseases, with comparisons to other genom-
ic models in Metazoa. The genes marked by asterisks (*) illustrate predicted cases of gene loss in one (*) or more (**) lineages of bila-
terian animals. The numbers below each organism name indicate the E value1 for comparison of predicted homologous proteins using 
the standard BLAST search

Gene symbol ID Human disease name, OMIM No. and chromosome location Aplysia Drosophila C. elegans Hydra

APP NM_000484 Alzheimer disease, familial, early-onset, APP-related APP 104760 21q21.3-q22.05 2.00e–35 1.00e–15 4.00e–14 3.00e–41
PSEN2 NM_000447 Alzheimer disease, familial, early-onset PSEN2 600759 1q31-q42 9.00e–98 6.00e–79 2.00e–61 3.00e–69
OPHN1 NM_002547 Mental retardation, X-linked, 60 OPHN1 300127 Xq12 5.00e–39 1.00e–50 6.00e–46 3.00e–28
NTRK1 NM_002529 Insensitivity to pain, congenital, with anhidrosis NTRK1 191315 1q21-q22 4.00e–46 3.00e–67 2.00e–54 3.00e–44
FMR1* NM_002024 Fragile X syndrome FMR1 309550 Xq27.3 3.00e–46 9.00e–70 – 2.00e–36
HD* NM_002111 Huntington disease HD 143100 4p16.3 9.00e–55 5.00e–16 – –
CSTB** NM_000100 Epilepsy, progressive myoclonic type 1 CSTB 601145 21q22.3 7.00e–28 – – 2.00e–25
CLN8* NM_018941 Epilepsy, progressive, with mental retardation CLN8 600143 8pter-p22 3.00e–14 – 1.00e–35 –
HPRT1** NM_000194 Lesch-Nyhan syndrome HPRT1 308000 Xq26-q27.2 8.00e–96 – – 2.00e–72
SMN1** NM_000344 Spinal muscular atrophy type 1 SMN1 600354 5q12.2-q13.3 5.00e–20 – – 2.00e–16
UCHL1 NM_004181 Parkinson disease UCHL1 191342 4p14 6.00e–41 1.00e–35 2.00e–07 7.00e–13
MAPT NM_005910 Dementia, frontotemporal, with parkinsonism MAPT 157140 17q21.1 2.00e–24 3.00e–12 2.00e–16 –
TTPA* NM_000370 Ataxia with isolated vitamin E deficiency TTPA 600415 8q13.1-q13.3 2.00e–26 4.00e–27 – 4.00e–09
ATM* NM_138293 Ataxia-telangiectasia ATM 208900 11q22.3 2.00e–06 – 1.00e–23 –
UBE3A* NM_130839 Angelman syndrome UBE3A 601623 15q11-q13 1.00e–175 1.00e–145 – 1.00e–88
GALC* NM_000153 Krabbe disease GALC 245200 14q24.3-q32.1 1.00e–41 – 1.00e–19 –
GM2A* NM_000405 GM2-gangliosidosis, AB variant GM2A 272750 5q31.3-q33.1 1.00e–26 – 6.00e–27 1.00e–25
TIMM8A* NM_004085 Deafness, X-linked type 1, progressive TIMM8A 304700 Xq22 8.00e–26 2.00e–13 – 1.00e–23
WFS1* NM_006005 Wolfram syndrome WFS1 222300 4p16.1 3.00e–26 7.00e–11 – –
FCMD* NM_006731 Fukuyama congenital muscular dystrophy FCMD 253800 9q31-q33 2.00e–06 – 1.00e–34 –
KIF1B NM_183416 Charcot-Marie–Tooth neuropathy type 2A KIF1B 605995 1p36 3.00e–74 1.00e–129 1.00e–60 4.00e–74
SIX3 NM_005413 Holoprosencephaly type 2 SIX3 157170 2p21 6.00e–79 6.00e–61 2.00e–48 2.00e–85

1 The Expect (E) value describes the probability due to chance that there is another alignment with a similarity greater than the given S score when 
searching a database of a particular size (in this case GeneBank_NR). It decreases exponentially as the S score of the match increases.  An E <e–5 means 
that the alignment is highly unique; smaller numbers indicate greater chances of finding corresponding homologs (here, to human disease–related genes). 
An E value of 1 means that one can expect 1 match with a similar score simply by chance – see http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Alt-
schul-1.html.
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mation-related transcripts [Moroz et al., 2006]. Although 
research on the functions of such genes in molluscs has 
just begun [e.g., Lee et al., 2003], expression patterns of 
these genes in identified neurons will suggest avenues for 
further study. For example, huntingtin is expressed in 
specific motor neurons, where it is co-localized with
FMRFamide and ACh ( fig. 1 C, D). Also biomedically in-
teresting is a gene for P2X receptors, ATP-gated channels 
that activate nociceptors to elicit pain in mammals [Burn-
stock, 2008]. These are expressed in particular neurons 
in  Aplysia , but the functions of these neurons and recep-
tors have yet to be investigated.

  A promising advantage of  Aplysia  as a model organism 
is the presence of DNA methylation [Moroz et al., 2006; 
Moroz and Kohn, unpubl. observ.]. Cytosine methylation 
is thought to play a key role in epigenetic regulatory pro-
cesses including the silencing of transposons, X-chromo-
some inactivation, and imprinting. The DNA methyl-
transferase DNMT1, a crucial protein in this process, is 
responsible for the maintenance of CpG methylation and 
has been found in flowering plants, deuterostomes, and a 
subset of protostomes [Goll and Bestor, 2005]. Surpris-
ingly, DNMT1 and DNA methyltransferases in general 
are lacking in  C. elegans, Schistosoma  [Rae and Steele, 
1979; Fantappie et al., 2001], and Diptera [Goll and Be-
stor, 2005; Goll et al., 2006], all of which have only trace 
levels, if any, of 5-methyl cytosine at CpG sites [Rae and 
Steele, 1979; Simpson et al., 1986; Suzuki and Bird, 2008]. 
Homologs for DNMT1, DMAP1 (DNA methyltransfer-
ase associating protein), and the transcriptional repressor 
MBD2 (methyl-CpG-binding domain protein 2) were 
found in the  Aplysia  EST database and genome, demon-
strating fundamental components of the CpG methyla-
tion machinery in  Aplysia . Recent data indicate that chro-
matin remodeling and DNA methylation are involved in 
memory [Levenson et al., 2006] and possibly in chronic 
pain [Hosea Blewett, 2008].

  These three features are not exclusive to  Aplysia ; large 
neurons, neurological disease-related genes, and cellular 
components for DNA methylation are found in other gas-
tropods, including  Tritonia ,  Pleurobranchaea ,  Clione, 
 and  Lymnaea , and the cephalopod molluscs, Octopus 
and Nautilus [Moroz and Kohn, unpubl. observ.]. Inte-
gration of genomics and physiological studies in indi-
vidual, functionally characterized neurons in molluscs 
offers a powerful comparative approach to address mo-
lecular and cellular aspects of selected neurological prob-
lems.

  Clearly, disorders at the network and systems levels 
contributing to complex neurological diseases are un-

likely to be informed by network and systems properties 
of molluscan nervous systems, which display striking 
differences from those of other phyla at higher levels of 
organization. On the other hand, human disorders ema-
nating from cellular and molecular properties of indi-
vidual neurons that have the same functions in molluscs 
and mammals can be illuminated by comparisons across 
these phyla. In the following sections, we discuss simi-
larities between long-term, injury-related plasticity of 
molluscan and mammalian nociceptors. These similari-
ties point to evolutionarily conserved mechanisms im-
portant for both chronic pain and memory.

  Long-Term Nociceptive Sensitization in Molluscs: 

Functional Similarities to Chronic Pain in Mammals 

 Most animals exhibit defensive behavioral responses 
to noxious (damaging or potentially damaging) stimuli. 
Despite the diversity of body plans and behaviors across 
Metazoa, ensembles of nociceptive responses often show 
common patterns [Walters, 1994]. These include rapid lo-
cal withdrawal followed by escape responses that are ac-
companied by inhibition of behaviors, such as feeding, 
that can interfere with escape. Typically, these active de-
fensive behaviors are followed by prolonged immobility 
and enhanced vigilance, as indicated by sensitization of 
subsequent defensive responses. This nociceptive sensiti-
zation magnifies subsequent responses to innocuous and 
noxious stimuli, and lowers response thresholds so that 
innocuous stimuli come to elicit responses that normally 
would only be evoked by noxious stimuli. Magnified de-
fensive responses (withdrawal and escape locomotion) 
during nociceptive sensitization have been examined ex-
tensively in gastropod molluscs [e.g., Carew et al., 1971; 
Balaban, 1980; Walters, 1987b]. Moreover, the appear-
ance of new defensive responses to innocuous stimula-
tion during nociceptive sensitization has also been ob-
served in  Aplysia  [Erickson and Walters, 1988]. These 
sensitizing effects in molluscs [Walters, 1987a, 1994] are 
formally similar to the alterations of defensive responses 
in mammals that are used experimentally as indices for 
pain hypersensitivity following prior noxious stimula-
tion; i.e., hyperalgesia, defined as an enhancement of nor-
mal pain responses to noxious stimuli, and allodynia, de-
fined as the elicitation of pain by normally innocuous 
stimuli.

  Pain is defined as an unpleasant sensory and emotion-
al experience associated with actual or potential tissue 
damage [Merskey and Bogduk, 1994]. Behavioral indices 
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of pain are used because the subjective component can-
not be measured directly. The sensory (nociceptive) com-
ponent is also a necessary part of the human pain experi-
ence under most conditions, and these mechanisms can 
be determined experimentally and compared across phy-
la [Walters, 2008]. Investigation of nociceptive mecha-
nisms has begun in a few invertebrates, including the 
leech [Nicholls and Baylor, 1968; Pastor et al., 1996],  Dro-
sophila  [Tracey et al., 2003; Babcock et al., 2009],  C. ele-
gans  [reviewed by Tobin and Bargmann, 2004] and, as 
described below,  Aplysia .

  Human pain caused by injury usually persists no lon-
ger than the period of healing. Such pain is generally con-
sidered to be adaptive, as suggested by the high morbid-
ity and short lives of the rare individuals born without 
functioning nociceptors [Woolf and Ma, 2007]. In con-
trast to acute pain, chronic pain can persist long after ap-
parent healing, bringing no obvious benefit to sufferers. 
Chronic pain is quite common, occurring in  � 20% of the 
world’s population [Breivik et al., 2006], and it remains 
highly resistant to treatment. Mechanisms underlying 
the persistence of chronic pain are unknown; however, 
some forms of chronic pain are associated with persistent 
hyperexcitability of nociceptors, which might play a large 
role in driving such pain [Ali et al., 1999; Sung and Am-
bron, 2004; Ochoa et al., 2005; Shim et al., 2005; Walters, 
2008; Walters et al., 2008]. As reviewed below, in  Aplysia  
long-term hyperexcitability (LTH) of nociceptors has 
been associated with a form of memory, long-term sensi-
tization of defensive behavior.

  Mechanosensory neurons comprising the left E (LE) 
cluster in the abdominal ganglion [Byrne et al., 1974] and 
the ventrocaudal (VC) cluster in each pleural ganglion 
[Walters et al., 1983] have been investigated intensively in 
studies of learning and memory mechanisms [see Kan-
del, 2001]. Somata in the large, apparently homogeneous 
pleural VC clusters conveniently form a somatotopic map 
of the ipsilateral body surface, an ‘aplunculus’ ( fig. 1 B) 
[Walters et al., 2004]. Although the VC neurons and LE 
neurons (which innervate the siphon) are often regarded 
as receptors for light touch by investigators of learning 
and memory [e.g., Antonov et al., 2001], there are two 
reasons why these primary sensory neurons are properly 
considered to be nociceptors. First, except when sensi-
tized, they exhibit relatively high thresholds, graded re-
sponses to increasing stimulus intensities, and maximal 
responses to pinching stimuli that cause clear tissue dam-
age. Second, these cells share a property that among 
mechanosensory neurons is unique to nociceptors – sen-
sitization to repeated stimulation     ( fig. 2 B); other mecha-

nosensory neurons adapt without sensitizing when re-
peatedly activated [Illich and Walters, 1997]. This sensi-
tization by prior noxious stimulation, along with maximal 
activation by noxious stimuli, are characteristic features 
of nociceptors [Woolf and Ma, 2007].

  Another similarity between rat and  Aplysia  nocicep-
tors is their shared capacity to store long-term cellular 
‘memory’ of noxious stimulation. Persistent inflamma-
tory signals impinging on peripheral branches of noci-
ceptors, rather than long-term alterations intrinsic to the 
nociceptors, are often assumed to drive persistent pain in 
mammals [e.g., Marchand et al., 2005]. Peripheral injury 
and inflammation alter gene expression within nocicep-
tors, however, upregulating some ion channels and 
growth factor receptors [Waxman et al., 1994; Mannion 
et al., 1999; Woolf and Costigan, 1999; Ji et al., 2002]. 
Moreover, peripheral nerve injury and inflammation 
produce regenerative and collateral growth of nociceptor 
axons [Shea and Perl, 1985; Doucette and Diamond, 1987; 
Lu and Richardson, 1991] and a transcription-dependent 
enhancement of the nociceptor’s growth state that con-
tinues to be expressed in vitro after isolation of the neu-
rons [Smith and Skene, 1997]. In addition, LTH of disso-
ciated sensory neurons following prior injury or inflam-
mation has been documented [Ma and LaMotte, 2005; 
Walters et al., 2008]. Although such observations provide 
strong evidence for intrinsic cellular ‘memory’, they do 
not exclude the possibility that the memory lasts only 
long enough to amplify LTH initiated by the trauma of 
dissociation [Zheng et al., 2007].

  Evidence that  Aplysia  sensory neurons display long-
term alterations such as those associated with hyperalge-
sia in mammalian nociceptors came with the finding that 
nociceptors activated intensely by tail shock display syn-
aptic facilitation and hyperexcitability of their cell soma 
lasting at least a day ( fig. 2 C) [Walters, 1987a]. Peripheral 
injury, produced by either pinching and cutting the tail 
or by crushing the nerve that innervates the tail, produc-
es effects on the nociceptors that last weeks or longer. 
These include axonal regeneration [Steffensen et al., 1995] 
and sprouting of neurites near a site of peripheral injury 
and within central ganglia [Billy and Walters, 1989; Stef-
fensen et al., 1995]. Peripheral injury also causes a de-
crease in mechanosensory threshold in the damaged re-
gion [Billy and Walters, 1989; Dulin et al., 1995], a de-
crease in electrical threshold of the nociceptor axon near 
a site of injury or of intense, transient depolarization 
[Weragoda et al., 2004], and an increase in excitability of 
the nociceptor soma [Walters et al., 1991]. Soma hyperex-
citability promotes afterdischarge ( fig. 2 C) to afferent
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action potentials, amplifying nociceptive input to the 
CNS [Gasull et al., 2005]. Finally, peripheral injury can 
produce synaptic facilitation ( fig. 2 C) [Walters et al., 
1991]. The existence of intrinsic mechanisms for hyper-
excitability in  Aplysia  nociceptors is demonstrated by the 
induction of LTH in isolated, dissociated neurons by 
transection of their neurites ( fig. 2 D) [Ambron et al., 

1996; Bedi et al., 1998] or transient depolarization [Kun-
jilwar et al., 2009]. Additional evidence comes from the 
expression of LTH after peripheral injury or transient de-
polarization in ganglia-nerve preparations under low-
Ca 2+  conditions likely to block continuing release of neu-
romodulators [Weragoda et al., 2004; Gasull et al., 2005; 
Kunjilwar et al., 2009].
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  Fig. 2.  Sensorin-expressing neurons in  Aplysia  are ‘true’ nocicep-
tors and exhibit long-term nociceptive sensitization.  A  Body re-
gions innervated by different sensory clusters. Sensory neurons 
innervating the siphon (LE cluster) and tail (VC cluster) have re-
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tize) following the pinch (B1 and B2) [modified from Illich and 
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neuron (MN) [modified from Walters, 1987b].  D  Intrinsic injury 
signals are sufficient to produce SN hyperexcitability. Example 
showing how the spike accommodation normally seen in control 
SNs is greatly reduced in a dissociated SN one day after transec-
tion of its neurites [modified from Ambron et al., 1996]. 
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  Functional similarities of long-term plasticity in  Aply-
sia  and rat nociceptors after injury suggested that severe 
noxious stimulation might switch diverse types of noci-
ceptors into a persistent, intrinsically maintained hyper-
functional state. This idea is being tested in a rat model 
of chronic pain induced by spinal cord injury. Chronic 
neuropathic pain after central damage, which occurs in 
a majority of human patients after spinal cord injury, was 
not previously thought to involve changes in nociceptors. 
A novel prediction was that prolonged exposure of the 
central axons and terminals of nociceptors to signs of tis-
sue injury (e.g., inflammatory signals) would lead to LTH 
that could result in persistent spontaneous activity being 
generated in nociceptor somata (and enhanced growth of 
their processes), even when isolated from extrinsic in-
puts. Preliminary support for this prediction [Walters et 
al., 2008] raises the possibility that nociceptors might be 
a useful target for treating this often intractable form of 
chronic pain.

  Did Fundamental Mechanisms Underlying Memory 

and Chronic Pain Evolve from Ancestral Responses 

to Peripheral Injury? 

 Striking similarities exist in the behavioral and cellu-
lar responses of  Aplysia , rats, and other animals to nox-
ious stimulation [Walters, 1994, 2008]. Furthermore, 
these similarities are paralleled by functional similarities 
in their nociceptors. The similarities are likely to reflect 
contributions both from convergent, independently de-
rived mechanisms and from ancestral, evolutionarily 
conserved (homologous), molecular mechanisms. Here 
we review evidence for shared signaling pathways that 
induce nociceptive plasticity, point out that these appar-
ently homologous signals also play roles in triggering 
long-term memory in the CNS, and discuss peripheral 
injury as a ubiquitous selection pressure that might have 
shaped ancestral plasticity mechanisms.

  Both in nociceptors and memory circuits, plasticity 
mechanisms cause short- and long-term neuronal altera-
tions: enhancement of synaptic transmission [e.g., Ji et 
al., 2003; Lee and Silva, 2009], enhancement of mem-
brane excitability [e.g., Xu and Kang, 2005; Devor, 2006], 
and growth or regrowth of synapses and processes [Bai-
ley and Kandel, 2008; De Roo et al., 2008]. These altera-
tions are induced by numerous signals that are common 
to  Aplysia  sensorimotor systems, mammalian spinal sen-
sory systems, and mammalian circuits in the hippocam-
pus and other parts of the brain important for learning 

and memory. Some of the general initiating signals that 
are common to molluscan and mammalian nociceptors, 
and to neurons displaying long-term plasticity in central 
neurons of diverse animals are shown in  figure 3 . Initiat-
ing events for long-term alterations include intense depo-
larization and Ca 2+  entry consequent to membrane in-
jury or binding of excitatory amino acids, and activation 
of cell signaling pathways by binding of neuromodulators 
and growth factors released by neurons [Jankowsky and 
Patterson, 1999; Kandel, 2001; Weragoda and Walters, 
2007] and other cell types [e.g., glia, support cells, and 
inflammatory cells; Bradley and Finkbeiner, 2002; Gibbs 
et al., 2008]. Changes in gene expression are triggered by 
Ca 2+  entry accompanying action potentials propagating 
into the soma [Saha and Dudek, 2008], as well as retro-
grade signals transported to the nucleus from sites of ax-
onal injury [Gunstream et al., 1995; Ambron and Wal-
ters, 1996; Lin et al., 2003; Sung and Ambron, 2004] or 
intense synaptic stimulation [Otis et al., 2006; Lai et al., 
2008]. Long-term alterations can include effects localized 
to sites of injury or to intensely activated synapses, as well 
as global actions affecting much of the neuron from neu-
ral or endocrine signals released throughout the body 
during either injury or the formation of central memo-
ries.

  Intracellular plasticity signals common to injury and 
memory include Ca 2+  entering through ionotropic gluta-
mate receptor-gated channels opened during intense 
electrical activity [Moroz et al., 1993; Ji et al., 2003; Ha et 
al., 2006; Rao and Finkbeiner, 2007; Glanzman, 2008], 
and activation of cell signaling pathways by Ca 2+  tran-
sients and by the binding of ligands to G-protein-coupled 
receptors and receptor tyrosine kinases [Ji et al., 2003; 
Purcell and Carew, 2003; Barco et al., 2006; Pezet and 
McMahon, 2006; Lu et al., 2008]. The known down-
stream signals associated with injury and memory are 
also highly conserved, including activated protein kinase 
or lipid kinase enzymes, notably PKA, PKC, ERK and 
PI3K [Obata and Noguchi, 2004; Barco et al., 2006; Cheng 
and Ji, 2008; Sossin, 2008; Lee and Silva, 2009]. Less ex-
tensive evidence suggests that NO, cGMP, and PKG [Aley 
et al., 1998; Lewin and Walters, 1999; Sung and Ambron, 
2004; Sung et al., 2004; Zheng et al., 2007; Antonov et al., 
2007; Ota et al., 2008] and a protein kinase, TOR (mTOR 
in mammals), which promotes local protein synthesis in 
axons and dendrites [Casadio et al., 1999; Weragoda et 
al., 2004; Hu et al., 2007; Price et al., 2007; Jimenez-Diaz 
et al., 2008; Sossin, 2008; Costa-Mattioli et al., 2009], also 
contribute to both nociceptor sensitization and conven-
tional memory. Long-term effects usually require chang-
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es in gene transcription, with the transcription factor 
CREB playing an important role in prominent forms of 
long-term plasticity in mammalian brain [Alberini, 2009; 
Lee and Silva, 2009] and  Aplysia  nociceptors [Casadio et 
al., 1999; Lewin and Walters, 1999; Barco et al., 2006], and 
play a role in nociceptive plasticity of mammalian noci-
ceptors as well [Tamura et al., 2005; Teng and Tang, 2006]. 
Thus, at the subcellular and molecular levels, induction 
mechanisms for long-term plasticity appear remarkably 
similar when comparing molluscs to mammals, and 
comparing nociceptors to hippocampal neurons.

  These molecular similarities support the proposal that 
fundamental mechanisms important for memory and 
chronic pain evolved from adaptive responses to injury 
in the earliest animals [Walters, 1991]. Injury-related se-
lection pressures might be both powerful and ubiquitous; 
an animal that after injury cannot compensate for loss of 

sensory function or utilize nociceptive sensitization to 
reduce chances of further injury is likely to be less suc-
cessful biologically than one that does. Unlike pressures 
to store information about changes in the environment 
or about consequences of behavioral actions, which would 
have had little impact until neural circuits complex 
enough to store such information had evolved, injury-re-
lated selection pressures have probably operated on neu-
rons (and antecedent cells) from the earliest stages of an-
imal evolution. In other words, plasticity mechanisms 
selected as adaptive responses to injury could have ap-
peared long before the origin of nervous systems complex 
enough to support forms of learning and memory involv-
ing the integration of diverse sources of information (e.g., 
associative learning).

  It seems likely that the earliest neurons were cells with 
both sensory and motor functions in small early metazo-
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  Fig. 3.  Similarity of initial signals for induction of long-term neu-
ronal plasticity in molluscan and mammalian nociceptors (left 
side) and mammalian neurons that form memories within the 
CNS (right side). In each case local signals include intense depo-
larization of an injured segment or synaptic region (darkened ar-
eas), Ca 2+  influx, and modulation by various neuroactive sub-

stances released from nearby cells. In addition, global signals re-
leased during injury or memorable events can influence the soma 
and other parts of the neuron, at least in part by regulating gene 
transcription. These initiating events for nociceptive sensitiza-
tion and memory are mediated by common sets of highly con-
served intracellular signals (see text).           
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ans that lacked shells or hard exoskeletons. Branches of 
these neurons would have been exposed directly to pe-
ripheral trauma from inanimate, and possibly animate, 
sources. Thus, plasticity mechanisms might have been se-
lected in early neurons for their ability to (1) repair and 
regenerate damaged axonal branches, (2) compensate for 
loss of sensory function within a damaged region, (3) pro-
tect against self-inflicted damage (e.g., by suppressing 
movements of body parts with open wounds), and (4) 
boost responses to attacks by predators or parasites at-
tracted by a wound [Walters, 1991, 1994; Weragoda et al., 
2004]. The first set of mechanisms would result in re-
growth of lost axonal branches, and the other sets could 
include (1) hyperexcitability of an injured neuron’s sur-
viving branches, (2) hyperexcitability of the branches of 
nearby, undamaged sensory neurons, (3) hyperexcitabil-
ity of the soma or central branches of sensory neurons 
(which could amplify trains of sensory action potentials 
arriving from the periphery), (4) enhanced release of neu-
rotransmitters from central synapses of sensory neurons, 
and (5) growth of new synapses from surviving sensory 
neurons.

  None of the molecular signals and cellular effectors 
associated thus far with nociceptor plasticity or with 
memory is restricted to neuronal plasticity; each has 
many other roles and is found in most metazoan cells. 
Known molecular signals identified with neuronal plas-
ticity (second messengers, protein kinases, protein phos-
phatases, transcription factors) represent parts of highly 
conserved, core regulatory modules [e.g., Gerhart and 
Kirschner, 1997], which are also widely involved in devel-

opment, differentiation, adaptation to different physio-
logical conditions, and cellular responses to stress. In pri-
meval neurons, signaling modules activated by signs of 
cellular damage or tissue injury (e.g., extracellular expo-
sure to K + , amino acids, and other intracellular constitu-
ents released from ruptured cells, depolarization, Ca 2+  
influx – see  fig. 3 ) might have become linked to cellular 
effectors that could mount the adaptive neuronal re-
sponses described above. An intriguing possibility is that 
injury-activated plasticity systems, selected early in evo-
lution for peripheral functions, were ‘pre-adapted’ for lat-
er use in more complex, central forms of neural plastic-
ity. In the CNS such plasticity would then be activated
by normal and pathological release of intercellular sig-
nals – such as glutamate and growth factors – that were 
signs of tissue injury in the first multicellular organisms, 
and later became adapted for signaling between neurons 
as nervous systems evolved. Comparative studies across 
Mollusca and other phyla will be important for testing 
such evolutionary hypotheses, and should offer insights 
into the functions and dysfunctions of highly conserved 
plasticity systems that might be shared with humans.
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