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Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for 

quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in 

the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial 

variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, 

insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved 

methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-

Locker acquisition technique was implemented with a novel and truly centric k-space segmentation 

scheme. In addition, an original multi-step curve fitting procedure was developed to increase the 

accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal 

resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new 

clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of 

these proposed methods was verified by simulations and phantom studies. As part of this work, the 

proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury 

(SCI). These methods have shown robust results and allow quantitative assessment of regions with very 

low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and 

analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.  
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1.1 Motivations 

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a MRI technique to 

investigate the vascular structure and function. The current applications of DCE-MRI include cancer 

imaging [1,2], angiogenesis study [3,4], and inflammatory pathology that affects the blood-brain barrier 

(BBB) [5-7] and blood-spinal cord barrier (BSCB) [8,9]. Compared to other medical imaging modalities, 

DCE-MRI has the advantage of good spatial resolution and is free from ionizing radiation. The most 

common contrast agent in DCE-MRI is the gadolinium (Gd)-labeled tracer. Gd is paramagnetic and can 

interact with nearby water protons to reduce the spin-lattice relaxation time (T1) of neighboring tissue. 

DCE-MRI can provide quantitative information of the micro-vascular permeability. Following 

administration of the Gd tracer, a series of T1-weighted images are acquired repeatedly. The change of 

tracer concentration as a function of time is computed from the T1-weighted images. By applying 

appropriate pharmacokinetic model to the dynamics of tracer concentration, the transfer rates of Gd 

tracer can be estimated as a quantitative measure of the vascular permeability. 

However, substantial variability in the pharmacokinetic parameters has been observed in 

DCE-MRI analyses [10-12]. The variability is worse in the central nervous system (CNS) because the 

presence of BBB and BSCB prevent Gd tracer from entering the parenchymal tissue. This leads to 

relatively small increase in intensity and can aggravate the inconsistency in the DCE-MRI results. The 

main purpose of this thesis work is to point out some of the weaknesses in the acquisition and analysis 

of DCE-MRI; and develop new methods to overcome some of these limitations to improve accuracy of 

the results. This leads to the following central objective: 

 

Central Objective 

 

Develop improved acquisition and analysis techniques of DCE-MRI for detecting micro-vascular 

permeability in the CNS as a result of pathology. These improved techniques should enhance the 

data quality and the accuracy of the DCE-MRI results. 
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1.2 Specific Aims 

 

The specific aims to achieve my central objective are listed below: 

 

Implement an improved 3D Look-Locker sequence and develop a multi-step curve fitting 

procedure to acquire accurate T1 map. T1 value is a necessary parameter to compute tracer 

concentration from the DCE-MRI images. Fast and accurate T1 mapping technique can therefore 

improve the DCE-MRI results. 

 

Implement 3D view-sharing acquisition and reconstruct the images using a novel normalization 

factor to acquire rapid T1 weighted images in dynamic contrast-enhanced MRI. Insufficient 

temporal resolution can lead to inconsistent DCE-MRI results. View sharing acquisition can increase the 

temporal resolution of the DCE-MRI images. 

 

Develop a local search clustering algorithm that groups similar concentration-time curves into 

clusters for reducing apparent noise and enhancing the accuracy of dynamic contrast-enhanced 

MRI parameters. The voxel-by-voxel analysis that is commonly employed in the DCE-MRI analysis is 

susceptible to noise and could lead to spurious results. Suitable clustering technique can reduce apparent 

noise without losing inherent heterogeneity of permeability within the tissue. 

 

Apply the improved dynamic contrast-enhanced MRI techniques to study the permeability of 

blood-spinal cord barrier in experimental spinal cord injury. Compromise BSCB is one of the 

secondary pathologies of spinal cord injury. The role of BSCB in experimental spinal cord injury is a 

major area of research in our laboratory.  
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1.3 Background 

 

1.3.1 Two-Compartment Tracer Kinetic Model 

The most commonly used tracer kinetic model in the DCE-MRI analysis is the two-

compartment Kety model [13,14]. This model is based on the Gd tracer leakage from the vasculature 

into the extravascular extracellular space (EES). This tracer influx rate between the blood plasma and 

EES is determined by the transfer constant       . The tracer can flow from the EES back to the 

vasculature. The tracer flux rate between the EES and the blood plasma is the rate constant    . The 

transfer constant        is the amount of influx tracer per unit time, whereas the rate constant     is the 

amount of out-flow tracer per unit time divided by the EES fractional volume   . The two-compartment 

model is depicted in Fig. 1.1. 

Based on the two-compartment model, the change in tracer concentration in the tissue,      can 

be described by the following equation: 

     

  
                   (1.1) 

In this differential equation, the tracer concentration in the plasma,     serves as a source function of 

tracer. The solution of Eq. 1.1 is expressed as: 

    ( )        ∫      (    )   ( 
 )   

 

 

 (1.2) 

By determining the tracer concentration-time course,     ( )  from the DCE-MRI data, the 

pharmacokinetic parameters can be estimated by fitting Eq. 1.2 to the data. 

Figure 1.1 Two-compartment pharmacokinetic model that describes the dynamics of tracer 

concentration. The tracer can flow between the plasma and the EES of tissue at the rates 𝐾      

and 𝑘  .  
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1.3.2 Pre-Contrast T1 measurement in DCE-MRI 

 DCE-MRI studies exploit the reduction in the T1 relaxation time as a result of the leakage of 

the contrast agent into the parenchyma. Therefore, DCE-MRI involves acquisition of T1-weighted 

images. Spoiled gradient echo (SPGR) sequence is commonly used to acquire the T1-weighted images 

in the DCE-MRI protocol. Under steady state condition, the signal,   acquired with SPGR sequence can 

be expressed as: 

    

        ⁄

            ⁄
          ⁄  (1.3) 

where TR and TE are the repetition and echo times,   is the flip angle, T2 is the spin-spin or transverse 

relaxation time, and    is a weighting constant. Since      , the last exponential term in Eq. 1.3 is 

considered to be unity. Assuming      , under first order approximation, Eq. 1.3 can be written as: 

    

    

      
(
  

  
)    (     ) (1.4) 

where       ⁄  is the T1 relaxation rate. After tracer administration, the T1 value is reduced. 

Conversely, R1 is increased by the paramagnetic Gd and the change in R1 can be approximated by the 

following equation: 

             (1.5) 

    is the tracer concentration and      is the change in T1 relaxation rate per unit tracer concentration. 

In the presence of tracer, the change in the post-contrast signal from the pre-contrast signal can be 

approximated as: 

     (            ) (1.6) 

Let T1,0 be the intrinsic relaxation time and    the pre-contrast signal. The tracer concentration at time   

after tracer administration can then be calculated from Eq. 1.6 and Eq. 1.4: 

   ( )  
 

          
(
 ( )    

  
) (1.7) 

Therefore, measurement of tracer concentration requires calculating the fractional change in the signal 

following tracer administration, the change in T1 relaxation rate per tracer concentration       and the 

intrinsic T1,0. Generally,       is assumed to be constant within the range of anatomical T1 values and 

can be determined in a separate study. However, T1,0 values are considerably different among different 

tissue types and different pathologies. Applying a universal T1,0 to Eq. 1.7 is therefore inappropriate and 

can lead to incorrect tracer concentration measurement. For this reason, the concurrent intrinsic T1 map 

is essential to obtain accurate tracer concentration for quantitative DCE-MRI. 
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1.3.3 Extended DCE-MRI Model 

 In earlier studies, it was assumed that the change of signal was only due to the tracer in the 

EES and that the intravascular tracer had no contribution [14,15]. In reality, the signal change arises 

from Gd tracer in both the EES and the capillaries. Within any region of interest (ROI), the tracer 

concentration is composed of the tissue component and the blood component: 

((    )      ( )       ( ))  
 

          
(
 ( )    

  
) (1.8) 

where     ( ) and   ( ) are the tracer concentration in the tissue and in blood.    is the proton fraction 

of blood in the ROI in which: 

   
     

 

(    )      
       

  (1.9) 

   is the fractional volume of plasma in the ROI, and     
  and   

  are the inherent proton densities of 

tissue and blood respectively. 

Eq. 1.8 is mathematically identical to the formula described in some studies [16,17] in which 

the concentration    ( ) was modified as follow: 

   ( )  (    )      ( )       ( ) (1.10) 

According to this model, however, Gd tracer is not separated into compartments within the ROI. This 

would imply that tracer confined in the vessel can also affect the tissue relaxation. This would violate 

the two-compartment model. Therefore, using the plasma volume fraction    as included in Eq. 1.10 is 

incorrect. The plasma proton fraction    as in Eq. 1.8 will be used hereafter in this work instead. 

 Combining Eq. 1.2 and Eq. 1.8, the pharmacokinetic parameters can be computed by fitting the 

following equation to the DCE-MRI data with three parameters:       ,     and   . 

 ( )    
  

            (     ( )  (    )   
     ∫      (    )   ( 

 )   
 

 

) (1.11) 

 

1.3.4 Variability in DCE-MRI Analysis 

It has been demonstrated that the estimated pharmacokinetic parameters show considerable 

variations. A study by Buckley found systematic errors in the estimated        and    using three 

different pharmacokinetic models [10]. In clinical studies, large within-patient variance of the        

and     estimates was observed in different tumor types and in normal tissues [11,18]. In addition to the 

uncertainty from the multi-parameter nonlinear curve fitting employed in DCE-MRI, insufficient 

temporal resolution and low signal-to-noise ratio (SNR) are both considered to be factors in the 

observed high variability. 
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 Previous studies have shown temporal resolution can have large effect on the accuracy of the 

estimation [19-21]. The estimation error is sensitive to the temporal resolution because of the rapid 

change in image enhancement following tracer administration. To improve curve fitting accuracy, it is 

necessary to maximize the sampling rate of the DCE-MRI acquisition. 

 Image acquisition in DCE-MRI usually employs very short TR to reduce the acquisition time. 

This however will reduce the SNR of the images. The situation is worse in CNS imaging where the 

intensity change is expected to be low because of the presence of barrier. The combination of low SNR 

and small signal change will further impair the accuracy of the estimated parameters. Consequently, 

reducing the noise of DCE-MRI data is essential for accurate estimation of pharmacokinetic parameters. 

 

1.3.5 Spinal Cord Injury 

 SCI is the traumatic insult to the spinal cord and is a major health problem both in the USA 

and worldwide. Compromised BSCB integrity is observed during the secondary phase of the SCI that 

occurs subsequent to the initial traumatic insult [9,22,23]. The compromised BSCB increases 

transportation of substances from the vasculature to the spinal cord microenvironment. These substances 

may include potentially harmful molecules and cells that have adverse effects on the spinal cord. It is 

important to study the spatial and temporal extent of the BSCB permeability after SCI for proper patient 

management. DCE-MRI is the preferred modality to investigate the permeability of BSCB because it is 

minimally invasive. Improvement in the DCE-MRI analysis can enhance our understanding of the role 

of BSCB compromise on the evolution of secondary injury. 
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1.4 Methods and Materials 

 The focus of this thesis work is on techniques development of DCE-MRI as well as its in vivo 

application. The techniques include MRI pulse sequence programming and developing software routines 

for various data analyses. These methods were verified by simulations and MRI studies on both 

phantoms and animals. All MRI protocols were performed on a USR70/30 horizontal bore 7T MR 

scanner (Bruker BioSpin, Karlsruhe, Germany). MRI pulse sequences were implemented on the 

ParaVision 5.1 software package (Bruker BioSpin, Karlsruhe, Germany). Data processing and computer 

simulations were written in IDL 8.1 (ITT Visual Information Solutions, Boulder, CO). Curve fitting 

procedures were performed using the MPFIT routines [24]. 
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CHAPTER 2 

 

IMPROVED LOOK-LOCKER ACQUISITION SCHEME AND CURVE FITTING 

PROCEDURE FOR T1 ESTIMATION 
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2.1 Introduction 

 The T1 relaxation time is one of the most fundamental parameters in MRI. The accurate 

measurement of T1 is particularly important in various quantitative MRI techniques, including arterial 

spin labeling for perfusion assessments and DCE-MRI for determination of micro-vascular permeability. 

As described in Eq. 1.7, calculation of the tracer concentration requires the intrinsic T1 value. Therefore, 

it is necessary to include T1 map acquisition in each DCE-MRI protocol. 

 Traditionally, T1 map is generated through the inversion recovery spin echo (IRSE) method. In 

this method, after the inversion pulse, spin echo signal is acquired at different inversion times (TI) to 

sample the magnetization recovery. And the IRSE is considered to be the gold standard for T1 

measurement [25]. However, T1 measurement based on IRSE involves long scan time and is generally 

impractical for in vivo study. Different methods have been proposed to accelerate T1 measurement and 

can be divided into two approaches: 1) excitation using variable flip angles [26] and 2) fast sampling of 

the inversion recovery curve [27].  

 The variable flip angle (VFA) method requires a set of SPGR images acquired with a 

minimum of two different flip angles. Because short TR is employed during SPGR acquisition, VFA 

method can significantly reduce the acquisition time compared to the IRSE sequence. However, the 

uncertainty in the flip angle due to the radio frequency field (B1) inhomogeneity results in significant 

error to the T1 estimation [28,29]. To accommodate the effect of B1 inhomogeneity, a separate B1 map 

acquisition is usually required. In addition, the choice of flip angles can also impact the accuracy of T1 

measurement in VFA [30,31]. 

 The Look-Locker [32] technique is a widely used fast T1 mapping method. In this method, the 

inversion recovery data are acquired by continuously sampling the recovering magnetization using very 

small flip angle following spin inversion. The continuous data sampling can significantly reduce 

acquisition time. Multi-slice 2D LL acquisition [33-35] has the time advantage over 3D LL acquisition 

but suffers from low SNR and unwanted cross-talk. In order to reduce the acquisition time of 3D 

imaging, Henderson et al. [36] presented a 3D LL method that is as time efficient as the 2D LL 

sequence [37]. Many variants have since been proposed to improve the quality of 3D LL T1 mapping 

[31,37-40]. Conventional 3D LL encoding scheme is centrically segmented along one phase encoding 

direction. However, 1D centric segmentation is not optimal and can introduce reconstruction artifacts 

that degrade the accuracy T1 measurements. 

 One of the uncertainties associated with LL T1 estimation arises from the B1 inhomogeneity. If 

the transmitted radio frequency (RF) angles are different from the ones applied to curve fitting, the final 

T1 estimation will be incorrect. Some studies [33,34] have suggested obtaining the actual flip angle map 

by multi-parameter curve fitting to the LL data. Then, the flip angle map is smoothed by simple 

averaging. The smoothed angle is considered to be the actual angle and is applied to the final curve 
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fitting. This method however fails to remove the incorrect angles and these false angles can still affect 

the accuracy of the results. 

 To reduce the reconstruction artifacts during Look-Locker acquisition, I propose to modify the 

3D LL acquisition so that the k-space segmentation is centric encoded along both phase encoding 

directions. I also propose a multi-step curve fitting algorithm in which the RF angles are smoothed and 

filtered based on the χ
2
 weighting. This procedure can help remove the incorrect angles from entering 

the final curve fitting and can improve the accuracy of T1 mapping. 
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2.2 Innovations 

 

2.2.1 3D Look-Locker Elliptical Centric Segmentation Scheme 

 In the 3D LL acquisition, an inversion pulse is first applied to invert the longitudinal 

magnetization. A train of small flip angle RF pulses are then applied to collect SPGR images 

continuously during the magnetization recovery. However, because different k-space lines are sampled 

at different magnetization states, artifacts will occur in the reconstructed signal. Traditionally, the ky 

lines for a given kz are centrically acquired to reduce the reconstruction artifacts but that is not optimal. 

It has been demonstrated that elliptical centric encoding segmentation can produce images superior to 

those obtained from single direction centric encoding segmentation [41]. Therefore, I implemented the 

elliptical centric segmentation in 3D LL acquisition to minimize reconstruction artifacts. 

 Fig. 2.1 illustrates the proposed 3D LL pulse sequence. The k-space is scanned in multiple 

shots. After each inversion pulse, multiple lines (NTL) in k-space and the entire set of time points (Ntime) 

are acquired. k-space lines within one shot are acquired one after another from the center toward the 

periphery of k-space. Acquisition is then followed by the same group of k-space lines at the next time 

point, so on and so forth. Comparison between the traditional LL acquisition scheme and the elliptical 

Figure 2.1 Schematic diagram of the 3D LL sequence. The acquisition is divided into multiple 

shots. Within each shot (external bracket), NTL of k-space lines are sampled at each time point 

(internal bracket). During reconstruction, all k-space lines within the internal bracket form a 

single image. 
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centric acquisition scheme is shown in Fig. 2.2. Since an image from LL acquisition is composed of 

k-space data acquired at different acquisition time points (acqtp), the choice of the effective acqtp of the 

image is important in the curve fitting procedure. Since the center of k-space contributes most to the 

signal intensity, the acqtp where the center of k-space is sampled (i.e.       {             

  }) is assigned as the effective acqtp of the reconstructed image. Comparing the two segmentation 

methods, the elliptical segmentation ensures k-space data at the most central will have the same acqtp 

and thus will improve curve fitting accuracy. 

 Assuming perfect spoiling of the transverse magnetization and that the acquisition has reached 

steady state, the transverse magnetization at acqtp   of a LL acquisition can be derived and expressed as 

follow: 

  ( )        {
  (    )

  

 
  

(                )
[  (      )           

 
              (    )

  
]} 

(2.1) 

Figure 2.2 Examples of different k-space segmentation schemes in the LL sequence. ky and kz are 

the two phase encoding directions whereas kx is the fully sampled frequency encoding direction. 

The different background colors represent different shots i.e. data with the same background are 

acquired after the same inversion pulse. The numbers represent the order in which they are 

acquired within the shot. The acquisition time point at which data 1 are taken is assigned as the 

effective acquisition time point of the reconstructed signal. a) The traditional centric acquisition 

scheme is limited to ky centric encoding only. b) The proposed centric encoding scheme ensures 

that the center most data in both ky and kz are all acquired at the same acquisition time point. 
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  and   are the flip and inversion angles respectively and    is the equilibrium magnetization. The 

delay time  ,    and    are defined in Fig. 2.1. The derivation of Eq. 2.1 is presented in the Appendix. 

 

2.2.2 Multi-Step Curve Fitting Procedure with Chi-Square Weighted Angle Map Filtering 

 The T1 values can be estimated by fitting the LL data in Eq. 2.1 with only    and T1, provided 

that the RF angles are known. However, the actual RF pulse angles are not necessarily the same as the 

prescribed angles. In addition, the flip angles show spatial dependence because of B1 inhomogeneity. 

Incorrect angles can lead to inaccuracy in the estimated T1 values. Curve fitting using four parameters  , 

 ,    and T1 can take into account the variation in the actual angles. However, the increased number of 

parameters in the curve fitting makes it very sensitive to data fluctuation and can also produce incorrect 

T1. To solve this problem, I developed a multi-step curve fitting method that uses the χ
2
 weighting to 

remove the incorrect angle estimates. 

First, a four-parameter fit is used on a coarse resolution image series (e.g. 4 × 4 × 4-voxel 

average) to obtain the initial   and   maps. Since both angles are expected to vary smoothly, the use of 

coarse resolution is justified. Assuming that the correct angle estimates can produce better fit to the 

curve, the angle that yields high χ
2
 is likely to be incorrect and should be removed; whereas angle that 

yields low χ
2
 should be weighted more. Therefore, the angle maps are averaged and filtered based on 

their respective χ
2
 weightings of the fit. The angle in each voxel is computed within an averaging kernel 

using the following equation: 

  {
∑ (    ̅    )   

∑ (    ̅    ) 

|       ̅} (2.2) 

where 

    ̅ √  
   

  
  represents the weighting of the fit in region  ,  ̅  is the average standard deviation of the 

corresponding signals.  ̅  is the mean of all    within the kernel. Instead of directly using   
 , the 
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modified form    is used to remove the contribution from the signal standard deviation. This is because 

the signal standard deviation is mostly a result of different tissue types as the averaging kernel is 

composed of multiple voxels. The signal standard deviation has relatively small influence on the curve 

fitting accuracy but can change the χ
2
 value dramatically and therefore should be removed. The 

summation only includes non-zero angles that have its corresponding    below     ̅. Generally, about 

5% of data can be considered to be spurious statistically. The factor 2.0 was chosen because it was 

found empirically that about 7% of angles would be discarded with this factor. The maps of the angles 

are further smoothed with a median filter (e.g. 5 × 5 × 5 kernel) to further remove any unphysical 

fluctuation. Using the smoothed   and   maps as the actual angle maps, the final full resolution T1 map 

is calculated using the two-parameter curve fit with    and T1. 
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2.3 Methods and Materials 

  

2.3.1 Simulations 

A 3D digital image with 64 × 64 × 64 voxels was created to investigate the effectiveness of the 

proposed LL modifications. The image was composed of structures with four basic shapes and each 

structure is assigned a unique T1 value: a sphere (800 msec), a cube (1000 msec), a cylinder (2800 msec) 

and an ellipsoid (1200 msec). The T1 value in each voxel was then randomized with a Gaussian 

distribution with a standard deviation of 100 msec. In addition, each of the four structures has a different 

magnitude to create edges between them. The T1 map of the 3D image is depicted in Fig. 2.3a. 

The evolution of magnetization during a LL acquisition was simulated using Eq. 2.1 with the 

following parameters: τ = 8 msec, td = 10 msec, tr = 1000 msec, α = 8°, Ntime = 10, NTL = 16. These 

parameters were similar to those used in the actual LL study. Two types of noise were added to the 

simulated images: intensity based Gaussian noise, and uniformly distributed white noise. Gaussian noise 

with standard deviation of 1%, 2.5%, 5%, or 10% of the image intensity was applied. White noise was 

generated with standard deviation equaled 0.5% or 1% of the mean intensity of the image at the first 

acquisition time point (highest intensity among all time points). An example of the simulated LL image 

is shown in Fig. 2.3b. The k-space data were then computed at all 160 acquisition time points. k-space 

segmentation was performed using both the traditional 1D centric encoding and the elliptical centric 

encoding methods. The segmented LL data were reconstructed and T1 maps were calculated using the 

reconstructed images. 

  

Figure 2.3 Digital phantom with four structures used for simulations. a) Representative slice of 

the T1 map; b) corresponding LL image with the addition of 5% Gaussian noise and 1% white 

noise at the first acquisition time point. Well defined edges can be seen in the LL image. 
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 To investigate the performance of the proposed χ
2
 weighted multi-step curve fitting procedure, 

an artificial B1 field was created with a smoothly varying function: 

  (     )  (         (    ) )

 (          (    ) )  (         (    ) )
 (2.3) 

The spatially varying flip angle map was then calculated by multiplying Eq. 2.3 with nominal 8° flip 

angle. The simulated LL data were created with the same procedure except the nominal angle was 

replaced by this flip angle map. 5% Gaussian noise plus 1% white noise was used to create the noisy 

k-space data. After image reconstruction, T1 was estimated using the multi-step curve fitting procedure 

with χ
2
 weighted angle maps. For comparison, T1 was also calculated using the simple averaging angle 

maps. 

One of the factors that is often overlooked during LL acquisition protocol is the necessity of 

bringing the magnetization to steady state before data acquisition. Therefore, simulation was performed 

using the SpinWright Bloch equation simulator [42] to determine the number of dummy scans needed to 

bring the magnetization to steady state. The same parameters as stated above were employed for this 

simulation. T1 values of 1200 msec, 1800 msec and 3000 msec were investigated. 

 Finally, simulations were performed to determine the effect of T1 on the accuracy in DCE-

MRI analysis. A 2D Shepp-Logan phantom (Fig. 2.4) was employed to simulate the DCE-MRI data. It 

has 64 × 64 pixels and is separated into six regions, each with different permeability parameters. The 

combinations of parameters used are listed in Table 2.1. A pixel-by-pixel variation of 120 msec was 

applied on the T1 values and a 2.5% variation was applied on the permeability parameters. The DCE-

MRI signals were computed using Eq. 1.11. The time resolution was set to 30 sec and 82 post-contrast 

data were created. After the DCE-MRI images were generated, 4% Gaussian noise plus 1% white noise 

were applied. All simulation parameters used were similar to those in the actual DCE-MRI study of SCI. 

When computing the tracer concentration, instead of applying the actual T1 value, T1 variations 

from -30% to +30% were used. Analysis was performed on each T1 variation level to investigate the 

propagation of error from incorrect T1 to the pharmacokinetic parameter estimates. 

 

 

 

 

 

 

 

 



18 

 

 

 

 

  
region fb K

trans
 (min

-1
) kep (min

-1
) T1 (msec) 

1 0.03 0.004 0.015 1200 

2 0.01 0.012 0.072 1600 

3 0.03 0.008 0.045 1200 

4 0.03 0.003 0.012 800 

5 0.08 0.004 0.033 2800 

6 0.04 0.002 0.032 800 

Figure 2.4 The 64 × 64 Shepp-Logan phantom used for simulation. 

Table 2.1 The pharmacokinetic parameters applied to the Shepp-Logan phantom (Fig. 2.4). 
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2.3.2 Phantom Study 

 T1 map of a water phantom was acquired to assess the performance of the modified 3D LL 

sequence and the χ
2
 weighted multi-step procedure. The phantom was created with 0.1 mM NiCl2 doped 

water filling a 26 mm diameter plastic cylinder. The elliptical segmented LL acquisition was 

implemented on the MRI scanner. MRI scan was performed using a 71 mm diameter birdcage resonator 

for both RF transmission and signal reception. Different LL parameter combinations were used to 

examine the consistency of the LL method. In particular, the effects of different train length NTL and 

number of time points Ntime were investigated. The common acquisition parameters to all scans were: 

(TE = 2 msec, td = 10 msec, tr = 1000 msec, α = 7.5°, Ndummy = 5, matrix size = 64 × 64 × 64, field-of-view 

(FOV) = 40 × 40 × 40 mm
3
). Multi-step curve fitting procedure was employed to compute T1 using the χ

2
 

weighted angle maps as well as the simple averaging angle maps for comparison. T1 was also computed 

using an IRSE acquisition and it was considered to be the actual T1 of the phantom. Only a single slice 

at the phantom center was acquired to reduce the total acquisition time. The acquisition parameters of 

the IRSE acquisition were: (TE/TR = 6.5/10,000 msec, TI = 50, 150, 300, 450, 600, 750, 900, 1050, 

1250, 1500, 2000 msec, matrix size = 64 × 64, in-plane FOV = 40 × 40 mm
2
, slice thickness = 2.5 mm). 

 The transmitted flip angle in the LL sequence is affected by the B1 inhomogeneity. The 

discrepancy between the nominal angle and the actual angle can affect the final T1 estimation. One 

advantage of LL acquisition is that the actual flip angle can be estimated by the χ
2
 weighted multi-step 

curve fitting procedure. Since the accuracy of the flip angle is important in T1 estimation, it is necessary 

to acquire the actual B1 inhomogeneity map to verify the estimated flip angle from the multi-step curve 

fitting procedure. For this purpose, the actual flip angle imaging (AFI) sequence was implemented 

[43,44] to map the B1 inhomogeneity. The AFI acquisition involved two SPGR sequences with different 

TRs. Both RF spoiler and additional gradient spoiler as described in [43] were incorporated into the 

sequence to improve the quality of the B1 map. The acquisition parameters employed were: (TE = 

2 msec, TR = 20 msec and 100 msec, matrix size = 64 × 32 × 32 interpolated to 64 × 64 × 64, FOV same as 

in T1 acquisition). Different flip angles were used to investigate their effect on the acquired B1 map. 
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2.4 Results 

 

2.4.1 Simulations 

 The performance of LL reconstruction was examined in two ways: its impacts on the image 

intensity at each acquisition time point and on the final T1 estimation. 

Table 2.2 summarizes the relative root mean square (RMS) errors of images at each 

acquisition time point with 2.5% Gaussian noise and 0.5% white noise. Table 2.3 summarizes the 

relative RMS error of images with 5% Gaussian noise and 1% white noise. The two noise levels 

represent approximately the range of noise in a normal 3D LL acquisition. The trend of RMS errors 

across all noise levels tested was similar. Large RMS error was observed in images 3 to 6, 

corresponding to acquisition time points 32, 49, 65 and 81. These images have low SNR because they 

were acquired around the null points of the inversion recovery curve. For the T1 values chosen for the 

simulation, the null points were between acquisition time points 45 to 85. At the acquisition time point 

where the SNR is high, the average RMS error of the whole image using LL acquisition is comparable 

to that resulted from introducing noise to the images. This implies that at high SNR, the LL acquisition 

did not affect the overall image quality. However, the RMS error was noticeably higher using LL 

acquisition if the image SNR was low. In addition to low SNR, high RMS error was also observed at the 

edges between different intensity. Reconstruction artifact is more prominent at the edges because edges 

correspond to high spatial frequency. Since the high frequency components in LL acquisition are 

acquired at different magnetization from the center of k-space, the RMS error at the edges are higher. 

Fig. 2.5 shows an example of the LL signal obtained from an interface between two structures. It 

illustrates that the errors in image intensities can mislead the curve fitting procedure into providing a 

false inversion recovery curve. Comparing the elliptical segmented LL acquisition with the traditional 

encoding scheme, the elliptical segmentation scheme yielded smaller RMS error at the intensity 

interfaces. 

 Fig. 2.5 also shows that error in the image intensity can translate into error in the final T1 

estimation. In general, the T1 estimation depends heavily on the data around the null point of the 

inversion recovery curve. Since the elliptical segmented LL acquisition yields smaller error surrounding 

the null point, it is expected to estimate T1 more accurately than the traditional LL segmentation scheme. 

The average relative RMS error in T1 estimation at different noise levels are plotted in Fig. 2.6. T1 

computation using the elliptical segmented data generally yielded smaller RMS error compared to using 

the traditional encoding data. In addition, greater improvement was observed at the edges with the 

elliptical segmentation scheme. The RMS error of both LL schemes however started to converge as the 

Gaussian noise level was increased to 10%. 



21 

 

 

 

 The relative RMS errors of T1 estimation in the presence of inhomogeneous B1 were listed in 

Table 2.4. B1 inhomogeneity increased the uncertainty in T1 estimation. The elliptical segmented LL 

images reduced the T1 estimation error by 2% at the edges and 1% overall compared to the traditional 

segmented LL images. The curve fitting procedure with χ
2
 weighted filtering yielded errors that were 

about 0.3% lower overall and 0.6% lower at the edges compared to that using the simple averaging 

angle maps. 

 Using the SpinWright simulator, it is found that the number of required dummy scans in a LL 

acquisition depends on the intrinsic T1 value of the sample. It was found that Ndummy = 3 was enough to 

drive the magnetization to within 0.1% difference in magnitude if the T1 value was 1200 msec and 

Ndummy = 5 was needed for T1 = 1800 msec. However, if the T1 value was 3000 msec, Ndummy = 7 was 

needed to reach steady state. Since T1 of in vivo brain structure is expected to be less than 1800 msec in 

a 7T MRI scanner, five dummy scans would suffice in the LL acquisition. 

 Table 2.5 summarizes the percent difference in the pharmacokinetic parameters when incorrect 

T1 was applied to perform the analysis. Underestimation of T1 (negative T1 difference) caused increase 

in        and    estimations. Both        and    were changed by about the same factor when a 

particular T1 bias was applied.     did not appear to be affected by the incorrect T1 at any bias level. 

Table 2.5 only showed results obtained from noiseless data. The average differences from data with 

noise (data not show) were almost identical to differences from noiseless data. The error introduced by 

noise would be added on to the bias introduced by the incorrect T1.  



22 

 

 

 

 

  

 org + n trad LL cen LL 

acqtp whole whole edges whole Edges 

1 2.6% 5.0% 7.7% 4.5% 6.4% 

2 2.7% 5.8% 9.3% 5.1% 7.8% 

3 3.4% 105.5% 35.1% 94.7% 35.3% 

4 107.1% 1035.4% 1216.6% 980.7% 1086.2% 

5 19.8% 65.7% 114.5% 60.0% 107.1% 

6 62.8% 134.6% 206.9% 115.4% 159.3% 

7 3.2% 3.9% 5.1% 3.9% 4.8% 

8 2.9% 3.0% 3.5% 3.2% 3.7% 

9 2.8% 2.7% 3.0% 2.9% 3.2% 

10 2.7% 2.5% 2.7% 2.7% 2.9% 

Table 2.2 The relative RMS error of intensity at different acqtp between the original images and 

the images plus noise (org+n), the reconstructed images using the traditional LL sequence (trad 

LL), and the reconstructed images using the proposed 2D centric segmented LL sequence (cen 

LL). 2.5% Gaussian noise and 0.5% white noise was added to the images. Images 3 to 6 are 

around the null points of the inversion recovery curve and showed higher RMS error. The RMS 

error is generally higher at the edges compared to the whole image. 
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 org + n trad LL cen LL 

acqtp whole whole edges whole edges 

1 5.1% 5.8% 8.3% 5.6% 7.3% 

2 5.4% 6.5% 9.7% 6.1% 8.4% 

3 8.9% 104.9% 35.2% 92.4% 35.0% 

4 214.1% 1073.7% 1239.7% 1029.4% 1112.8% 

5 44.2% 88.8% 147.2% 71.5% 109.4% 

6 138.0% 262.1% 369.3% 222.0% 307.7% 

7 6.4% 7.0% 8.4% 7.4% 8.6% 

8 5.8% 5.7% 6.3% 6.2% 6.7% 

9 5.6% 5.2% 5.6% 5.7% 6.1% 

10 5.5% 5.0% 5.2% 5.5% 5.7% 

Table 2.3 The relative RMS error of intensity between the original images and org+n, trad LL, 

and cen LL. 5% Gaussian noise and 1% white noise was added to the images. 
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Figure 2.5 Representative simulated LL data obtained near the edge between the ellipsoid and 

the sphere in Fig. 2.3. The plot includes the original noiseless data (Org), the LL data using the 

tradition 1D segmentation (Trad LL) and using the elliptical centric segmentation (Cen LL). The 

inversion recovery curves fitted to the LL data showed deviations from the Org data and will 

cause error to the estimated T1 value. The accuracy of T1 estimation depends heavily on the data 

near the null point of the inversion recovery curve. On average, Cen LL data yielded smaller error 

surrounding the null point and thus yielded smaller error in the final T1 estimation. 
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Figure 2.6 Relative RMS error (%) in T1 estimation with 1% white noise and different levels of 

Gaussian noise. T1 values were calculated from the original images, the reconstructed images 

using traditional 1D segmentation (Trad LL) and the elliptical centric segmentation (Cen LL). 

Both the average error of the entire image (whole) and the error at the edges (edge) are presented.  

On average, T1 value estimated from Cen LL yielded smaller error compared to that computed 

from Trad LL. Addition of 0.5% white noise (data not shown) instead of 1% white noise also 

showed similar error pattern using different levels of Gaussian noise. 
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 Trad LL Cen LL 

 whole edges whole edges 

simple avg. 8.1% 12.1% 7.2% 10.0% 

χ
2
 wgt. 7.9% 11.5% 6.9% 9.4% 

T1 diff. fb diff. K
trans

 diff. kep diff. 

-30% +42% +44% 0% 

-20% +24% +26% 0% 

-10% +11% +11% 0% 

+10% -10% -9% 0% 

+20% -17% -17% 0% 

+30% -23% -24% 0% 

Table 2.5 The average relative differences between the estimated pharmacokinetic parameters 

and the truth (pixel-by-pixel analysis, noiseless data). Different levels of T1 bias were applied to 

see its influence on the estimations. 

Table 2.4 The relative RMS error of the T1 estimation from the simulated data. The reconstructed 

images were created with the traditional LL sequence (Trad LL) and the 2D centric segmented 

LL sequence (Cen LL). 5% Gaussian noise and 1% white noise was added to the images. Multi-

step curve fitting procedures with simple averaging angle maps (simple avg.) and with χ
2
 

weighted angle maps (χ
2
 wgt.) were performed to calculate the T1 values. 
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2.4.2 Phantom Study 

 Table 2.6 summarizes the average T1 values of the Ni-doped water phantom using different LL 

parameters. The parameters were adjusted to ascertain that the acquisitions covered most of the 

inversion recovery curve. The T1 estimated from the IRSE acquisition was equal to 781.4 ± 1.4 msec and 

would be considered as the “true” T1. The T1 estimations from the LL acquisitions agreed well with the 

true T1 and were all within their respective standard deviations. Shorter train length and more time 

points in general can yield more precise result as suggested by the reduced standard deviation. Fig. 2.7 

shows an example of the T1 distribution with the use of the parameters listed in Table 2.6(a). Although 

the appearances of the T1 map are similar using either of the methods in most cases, applying the χ
2
 

weighted angle maps would generally yield sharper T1 distribution relative to the simple averaging 

angle map. In some cases, the variation in curve fitting may cause incorrect estimation of RF angles. 

The incorrect angle estimation can result in a non-Gaussian deviation as shown in Fig. 2.8. This T1 

deviation was observed using the simple averaging angle maps, but was removed when the χ
2
 weighted 

angle maps were used. When only five time points were acquired as listed in Table 2.6(f), more 

noticeable T1 error was observed. Moreover, a false 540 msec peak occurred in the histogram in 

Fig. 2.9a and a region of hypo intense area appeared in the T1 image in Fig. 2.9b. Although the χ
2
 

weighted filtering did not remove this error completely, the amplitude of the low T1 false peak was 

reduced significantly, suggested that it was more immune to the incorrect angle estimation. 

 Computed from the multi-step curve fitting procedure, almost all estimated inversion angles in 

the LL phantom study were between 179° and 180°. Unlike the inversion angle, the estimated flip angle 

was different from the prescribed value and varied spatially. Examples of the corresponding flip angle 

B1 maps are depicted in Fig. 2.10. The B1 acquisitions using AFI showed good reproducibility as all the 

computed B1 maps were within 0.5% on average. The results in this experiment showed that the B1 

value (in percentage of the prescribed angle) was significantly different when different flip angle was 

applied to acquire the B1 map, and the value of B1 increased with decreasing applied flip angle. When 

65° flip angle was applied, the average value of the B1 map was 75 ± 3% of the prescribed 65°. The 45° 

and 25° AFI yielded an average B1 of 86 ± 3% and 93 ± 4% respectively. The B1 flip angle map 

computed from T1 LL curve fitting also showed good reproducibility and appeared to show similar 

spatial pattern as the B1 map acquired with AFI. The LL fitted B1 map, which used flip angle of 7.5°, on 

average had B1 value of 104 ± 5%. Unfortunately, AFI method lacks the sensitivity to measure the B1 

values when the flip angle is very low or very high [44]. As a result, the 7.5° B1 map (Fig. 2.10d, 

average = 45 ± 33%) failed to show meaningful inhomogeneity pattern. 
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LL parameters simple avg. χ
2
 wgt. 

(a) NTL = 16, τ = 10 ms, Ntime = 10 780.0 ± 9.4 msec 780.4 ± 8.6 msec 

(b) NTL = 8, τ = 15 ms, Ntime = 10 779.4 ± 8.6 msec 779.8 ± 8.1 msec 

(c) NTL = 4, τ = 20 ms, Ntime = 10 780.0 ± 12.1 msec 776.0 ± 7.0 msec 

(d) NTL = 16, τ = 10 ms, Ntime = 8 778.2 ± 9.9 msec 778.6 ± 9.4 msec 

(e) NTL = 16, τ = 16.7 ms, Ntime = 6 782.1 ± 10.9 msec 783.2 ± 10.3 msec 

(f) NTL = 16, τ = 20 ms, Ntime = 5 742.8 ± 105.3 msec 768.4 ± 66.7 msec 

  

Table 2.6 T1 values estimated from Ni-doped water phantom with different LL parameters. The 

T1 value was calculated using multi-step curve fitting procedure with simple averaging filtered 

angle maps (simple avg.) and with χ
2
 weighted filtered angle maps (χ

2
 wgt.) The IRSE acquisition 

yielded T1 = 781.4 ± 1.4 msec for the phantom. 
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Figure 2.7 a) T1 distribution of the Ni-doped water phantom from LL acquisition shown in 

Table 2.6(a) (NTL = 16, τ = 10 ms, Ntime = 10). T1 was estimated using multi-step curve fitting 

procedure with simple averaging angle map (simple avg) and χ
2
 weighted filtered angle map 

(chi-sq wgt). The T1 maps using simple avg and chi-sq wgt angle maps are shown in b and c 

respectively. Although the two T1 maps appeared similar, the χ
2
 weighted filtered angle map 

yielded sharper T1 distribution. 
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Figure 2.8 a) T1 distribution of the Ni-doped water phantom from LL acquisition shown in 

Table 2.6(c) (NTL = 4, τ = 20 ms, Ntime = 10). The T1 maps using simple avg and chi-sq wgt angle 

maps are shown in b and c respectively. Variation in curve fitting could result in incorrect 

estimation on the RF angle. Using simple avg angle map approach, the incorrect angle emerged 

as the non-Gaussian variation in the T1 distribution (blue circle in a) and in the T1 image (hyper 

intense region at the edges in b). Using the chi-sq wgt angle map, the non-Gaussian variation 

could be removed completely. 
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Figure 2.9 a) T1 distribution of the Ni-doped water phantom from LL acquisition shown in 

Table 2.6(f) (NTL = 16, τ = 20 ms, Ntime = 5). The T1 maps using simple avg and chi-sq wgt angle 

maps are shown in b and c respectively. Frequency of incorrect RF angle estimation increased 

with reduced number of LL acquisition time point Ntime. In addition, the extent of the error also 

increased, manifested as the 540 msec peak. Although not being able to completely remove the 

contribution of the incorrect angles, the chi-sq wgt angle map could reduce the error.  
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Figure 2.10 B1 maps (not in the same window and level) of the Ni-doped water phantom using 

different acquisition parameters and methods. The B1 maps acquired using AFI and flip angles of 

65°, 45°, 25° and 7.5° are shown in a-d. e) B1 map of the flip angle obtained from curve fitting of 

the T1 LL data described in Table 2.6(a). a-c and e show similar spatial pattern. However, d 

appears to show an incorrect pattern because AFI technique is insensitive to low flip angle. 
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2.5 Discussion 

The impact of intrinsic T1 on the concentration-time curve is explained by Eq. 1.7. 

Underestimation of T1 would lead to overestimation of tracer concentration which leads to higher  

       and    estimates, and vice versa. Previous studies have found that error in T1 can be detrimental 

to the result. Dale et al. found that        estimates are more sensitive to T1 error than to the intensity 

error in the DCE-MRI images [45]. Haacke et al. even suggested using a fixed T1 to avoid T1 estimation 

error [46]. Simulations in this work showed that the estimation error in        was inversely 

proportional to the error in T1 in a one-to-one ratio approximately. Therefore, it is important to minimize 

the error of T1 estimation in order to reduce uncertainty in       . 

 Inclusion of fast and accurate T1 mapping technique such as the 3D LL acquisition is desirable 

in any DCE-MRI protocol. In this work, I implemented the elliptical centric encoding segmentation 

scheme for the LL method to improve the quality of the reconstructed images. In addition, a multi-step 

curve fitting procedure that utilizes χ
2
 weighted filtering was implemented to improve the accuracy of T1 

computation. Computer simulations and phantom study were performed to verify the performance of 

these modifications. 

 The multi-shot 3D LL technique [36] can speed up total scan time by sampling multiple 

k-space lines in each shot. However, since different k-space lines for an image are acquired at different 

acquisition time points, the evolving magnetization will cause reconstruction artifacts along the phase 

encoding directions [36,47]. To reduce the reconstruction artifacts, I implemented the elliptical centric 

encoding segmentation scheme to acquire the LL data. This segmentation scheme ascertains that all the 

k-space lines closest to the center are acquired at the same magnetization state. This can reduce 

reconstruction artifacts because the center of k-space contains most intensity information. In addition, 

the effective acqtp is better correlated to the LL image under this segmentation scheme. This can further 

help the subsequent curve fitting procedure. The simulations show that the reconstruction artifacts are 

most prominent at the edges in images corresponding to time points surrounding the null point of the 

inversion recovery. Unfortunately, T1 estimation is also more sensitive to the data points that are close 

to the null point. The elliptical segmentation scheme is shown to reduce the error around the null point. 

As a result, the T1 values evaluated from the elliptical segmented LL images are more accurate 

compared to the traditional LL segmentation scheme. The improvement can be seen in LL images with 

up to 5% Gaussian noise level, which is within the expected noise level of 3D images. Therefore, 

applying the elliptical segmentation scheme can improve the image quality of in vivo T1 mapping. 

 The actual flip angle received is always different from the prescribed angle and it varies 

spatially due to B1 inhomogeneity [33]. In principle, B1 inhomogeneity map can be acquired using 

different techniques [44,48-50] to correct for the actual RF angles. However, it is observed that the B1 

map depends on the applied flip angle and B1 mapping technique is insensitive to small flip angle such 



34 

 

 

 

as the angle used in the LL acquisition. Therefore, it is important to accurately obtain the actual flip 

angle map from LL curve fitting. Similar to T1 estimation, the accuracy of RF angle estimation is also 

sensitive to data fluctuation. Under the assumption that more accurate angle estimation can yield better 

curve fit, I developed the χ
2
 weighted filtering procedure to obtain the angle maps of the LL acquisition. 

The filtering and smoothing are justified because the angle map is expected to be smooth and any rapid 

spatial variation is unlikely to be real. The simple averaging angle map as mentioned in [33] can dilute 

the error, but cannot remove it. Simulation has shown that using the χ
 2
 weighted angle maps produced 

more accurate results than simple averaging angle maps. In the phantom study, non-Gaussian deviation 

can be seen using the averaging angle map. The χ
2
 weighted smoothing and filtering method was shown 

to provide more accurate and precise results by removing some of these incorrect angles. 

 There are several other factors to consider when performing the LL study. It was shown that 

the choice of TI can affect the result of T1 estimation with IRSE sequence [51]. In this study, a 2% 

difference was seen in mean T1 on the same phantom when using different set of TI’s (data not shown). 

Similar discrepancy in mean T1 was observed when different combination of τ and Ntime were used in the 

LL acquisition. It is also found in the study that insufficient number of time points can increase the 

estimation error. In the phantom experiment, it appeared that at least six time points are needed to 

produce accurate result. Inadequate number of dummy scans can also affect the accuracy of the LL 

acquisition. Simulation showed that about five dummy scans are needed for in vivo LL T1 study. In 

addition to scanning parameters, drifting field strength and temperature fluctuating can both change the 

intrinsic T1 values and should be considered during T1 mapping. 

 In this work, I designed an elliptical centric encoded k-space segmentation scheme to acquire 

LL data and it showed improvement in image quality in simulations. I programmed the acquisition 

sequence on the Bruker 7T MRI scanner and performed the phantom study with the implemented LL 

sequence. I also developed the multi-step curve fitting procedure to calculate the T1 value from the LL 

data. This technique was shown to yield more accurate and precise results. The accurate T1 map should 

provide more robust results in DCE-MRI. 
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CHAPTER 3 

 

IMPLEMENTATION OF VIEW SHARING ACQUISITION IN DYNAMIC CONTRAST-

ENHANCED MRI AND RECONSTRUCTION USING NORMALIZATION FACTOR 
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3.1 Introduction 

 It is known that the temporal resolution of the DCE-MRI image series has an influence on the 

estimation of pharmacokinetic parameters [19-21]. Poor temporal resolution in the post-contrast phase 

can introduce large uncertainty in the pharmacokinetic parameter estimates. Temporal resolution is 

especially important in the first few minutes following tracer administration, where the signal changes 

rapidly.  

Multi-slice sequences [2,6,52-54] in general have scan time advantage over 3D imaging. 

These 2D imaging techniques however suffer from low SNR and must settle for large slice thickness. In 

addition, the interpretation can be affected by flow artifacts that are specific to 2D sequences. 

Conventional 3D sequences [5,55] have superior SNR, but its acquisition matrix size is usually small to 

accommodate reasonable temporal resolution. Small acquisition matrix however can lead to poor 

resolution and large truncation artifacts. 

 One solution to circumvent, to some extent, this trade-off of spatial and temporal resolution is 

to apply view sharing method. View sharing acquisition techniques can increase the temporal resolution 

in DCE-MRI without sacrificing the spatial resolution [56,57]. The acquisition time of view sharing 

technique is reduced by sampling only a portion of the k-space during each time point. And the spatial 

resolution is maintained by interpolating missing k-space from other time frames. 

 The keyhole imaging method was initially proposed to accelerate dynamic MRI acquisition 

[58,59]. In the keyhole technique, only the center of k-space is acquired during the dynamic phase. The 

full resolution images are then reconstructed using the outer k-space from a reference image. This 

acquisition scheme neglects the change in the outer k-space and can degrade the spatial resolution. 

Many newer view sharing techniques were implemented since then. To reduce the blurring problem, 

these techniques also acquire the outer k-space during the dynamic phase, but usually with lower 

sampling frequency. For example, Song et al. integrated the radial view-interleaved acquisition with 

k-space-weighted image contrast to improve the view sharing reconstruction [57]. The Unaliasing by 

Fourier-Encoding the Overlaps Using the Temporal Dimension [60] was proposed to accelerate 3D 

cardiac imaging. This method acquires data in an interleaved fashion and removes the aliasing artifacts 

with a k-space filtering procedure. The 3D k-t Broad-use Linear Acquisition Speed-up Technique 

(BLAST) [61,62] method was developed to reduce the aliasing artifact by applying a spatiotemporal 

filter derived from the low resolution training data. 

 The 3D Time-resolved imaging of contrast kinetics (TRICKS) is a method that is widely used 

in contrast angiography [63]. This method separates the k-space into multiple segments and the 

segments are sampled alternatively during the dynamic phase. Although this method has shown good 

results in angiography, the 3D TRICKS is designed to make qualitative examinations and is not 

optimized for quantitative DCE-MRI study. 
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In this work, a modified 3D elliptical encoded TRICKS acquisition method is implemented on 

the Bruker 7T MRI scanner. The acquisition order of the k-space segment is designed to better sample 

the DCE-MRI dynamic. In addition, a normalization factor is devised to scale the substituted k-space 

appropriately in order to improve the reconstruction quality of the DCE-MRI images. This method will 

enable the acquisition of high temporal resolution DCE-MRI images. 
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3.2 Innovations 

 

3.2.1 View Sharing Acquisition 

 The 3D TRICKS method divides the k-space into four segments that are sampled alternately 

to monitor the contrast dynamic [63]. Since the center of k-space contains more contrast information, 

central k-space is sampled more frequently than the outer k-space. Image at a particular time point is 

reconstructed using the current k-space segment and the missing k-space is filled from adjacent time 

points. Originally, the 3D TRICKS method only segments the k-space along a single phase encoding 

direction (ky). Since then, elliptical segmentation is developed to improve the quality of the 

reconstructed images. My implementation of the view sharing acquisition was based on the 3D elliptical 

encoded TRICKS technique. 

Following tracer administration, the tracer circulates through the vasculature and results in 

increased intensity in the T1 weighted images. Depending on the location and duration of the injection, 

the rapid increase in signal intensity can occur within few tens of seconds to couple of minutes after the 

initial administration. To simplify, this period is denoted as the tracer influx phase. The influx phase is 

particularly important in calculating the arterial input function (AIF). In my view sharing acquisition 

scheme, only the segment of center k-space is sampled during the influx phase in order to better capture 

the rapid signal changes. As an example, the view sharing acquisition scheme is illustrated in Fig. 3.1. 

The k-space is divided into four segments based on the distance from the center. Multiple fully sampled 

data are acquired before administering the tracer. After tracer administration, only one segment out of 

the four is acquired at each post-contrast time point. During the influx phase (first 1 min post-contrast), a 

series of segment 1 are acquired to sample the rapid intensity change. The outer segments are sampled 

alternatively with segment 1 thereafter, while segment 2 is sampled more frequently than segment 3 and 

4. 

 

3.2.2 k-space Normalization Factor 

 The missing k-space in each post-contrast time point is filled with the k-space segments from 

other time points. Each missing segment is calculated from two adjacent time points, one before and one 

after the current time point. The substituted k-space data are usually interpolated based on the temporal 

distance between the time points. Assuming that the missing k-space of the current time point is more 

similar to the k-space of the closer time point, the k-space from the closer time point is weighted more 

in the calculation. 
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 However, the signal is different at different time points due to the contrast agent. The k-space 

interpolation alone does not account for this change in signal, which may cause artifacts in the 

reconstructed images. In this work, I propose to normalize the substituted k-space data to account for the 

change in intensity. We consider the difference in signal between two time points i and j as: 

        (   )      

The proposed k-space normalization approach assumes that the signal difference of the entire image is 

approximately governed by a multiplication factor   . Under this assumption, the whole k-space would 

be altered by the same factor   . Since the central k-space is least affected by noise, the normalization 

factor would scale the center of k-space from the substituted time frames to the same magnitude as the 

center of k-space at the current time frame. The same scaling factor is applied to the entire substituted 

k-space data. 

 For notational purpose, the two substituted k-space segments  , that are needed to reconstruct 

image    at time point  , would be taken from time points   
  and   

 .   
  represents the forward time point 

where segment   is sampled that is closest to time point   and   
  represents the backward time point. 

The substituted data are then interpolated and normalized using the following equation: 

Figure 3.1 Modified 3D view sharing acquisition scheme. a) The elliptical k-space segmentation 

scheme. b) Acquisition order of the DCE-MRI. The number in a cell represents the segment 

number being acquired. The pre-contrast baseline image is fully sampled. During the influx 

phase, only segment 1 is acquired repeatedly, which allows more sampling of the fast changing 

signal. Each post-contrast image is reconstructed using the segment from its corresponding time 

point plus interpolation of other segments from neighboring time points. For example, image 7 

requires segment 2 from time point 4 and 8, segment 3 from time point 6 and 14, and segment 4 

from time point 0 and 10. 
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where the first factor is the interpolation factor and the second factor: 

  (  
 )  

∑ |  ( )|   

∑ |  (  
 )|   

 (3.2) 

is the normalization factor. ∑ |  ( )|    represents the sum of the magnitude of the 3 × 3 × 3 data 

encompassing the center of k-space. However, outer k-space segments lack the central k-space. 

Therefore, their center of k-space is approximated from the neighboring segment 1: 

∑ |  ( )|
   

 {

∑ |  (   )    (   )|
   

      

∑ |  ( )|
   

      
 (3.3) 

The normalization factor is proposed to adjust the overall intensity in all the substituted segments to the 

intensity at the current time point in order to reduce reconstruction artifacts. 
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3.3 Methods and Materials 

 A phantom study was designed to assess the performance of the proposed normalization factor 

in DCE-MRI view sharing acquisition. The 3D digital phantom described in section 2.3.1 was used in 

this simulation study. The intensity change of the phantom was designed to simulate the signal change 

in the actual DCE-MRI study of SCI. Each object was assigned with a set of parameters: sphere 

(       ,                  ,              ,            ), cube (       ,        

          ,               ,            ), cylinder (        ,                  , 

              ,           ) and ellipsoid (        ,                  ,     

          ,            ). The parameters were then randomized with a Gaussian distribution 

with a standard deviation of 2.5% for the pharmacokinetic parameters and 100 msec for T1. Each of the 

four structures also has a different magnitude to create the effect of edges between them. A bi-

exponential function was used to model the AIF [64]: 

  ( )                        (3.4) 

These parameters of the AIF were obtained from the SCI experiment. Detail of the AIF extraction is 

described in section 5.3.1. DCE-MRI images were generated using Eq. 1.11. To simulate the sampling 

rate similar to that in the SCI experiment, a temporal resolution of 30 sec was chosen and 42 post-

contrast images were simulated. The influx phase was set to 1 min; therefore segment 1 was acquired 

during the first two post-contrast time points. Different levels of Gaussian noise and white noise were 

applied to the images to investigate the effect of noise to the view sharing acquired data. Comparison 

was made between the traditional 3D TRICKS with single phase encoded segmentation, the 3D TICKS 

acquisition with elliptical segmentation, and the proposed elliptical segmented method with k-space 

normalization. 
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3.4 Results 

 The simulated DCE-MRI reconstructed images were compared to the noiseless original 

images. The relative RMS error was used as the metric to evaluate the performance of different view 

sharing acquisitions and reconstruction methods.  The relative RMS error of the reconstructed images 

with 2.5% Gaussian noise and 0.5% white noise, which was approximately the lower noise limit in the 

3D MRI images, are shown in Table 3.1. The RMS error of images with 5% Gaussian noise and 1% 

white noise, which was expected to be the upper noise limit of the 3D MRI images, are shown in 

Table 3.2. In general, the RMS error was highest at the first post-contrast time point for all acquisition 

methods. The RMS error then decreased as more segments were acquired and reached a plateau 

thereafter. On average, the view sharing acquisition scheme can reduce speckle noise because of 

temporal averaging using k-space data from two different time points. When the noise level was high 

(see Table 3.2), the noise reduction of temporal averaging masked the errors due to artifacts. All view 

sharing acquisition schemes produced images with RMS error less than the original-plus-noise images 

throughout all time points. However, at lower noise level (see Table 3.1), the RMS error from 

reconstruction artifacts were apparent at the early post-contrast phase especially near the edges. Because 

different k-space segments were collected at different signals, the reconstruction artifact was expected to 

be more severe at the edges. The larger RMS errors near the edges were observed mostly in the first few 

post-contrast time points and were not observed at later time points. 

 Comparing the three different methods, the proposed elliptical segmented scheme using a 

normalization factor yielded the smallest RMS error in the first few post-contrast time points. It helped 

reduce reconstruction artifacts, especially error at the edges. Using the proposed normalization factor, 

the average RMS error was reduced by up to 0.6% at the lower noise level (2.5% Gaussian noise + 0.5% 

white noise) and 0.4% at the higher noise level (5% Gaussian noise + 1% white noise). Neither the 

segmentation scheme nor the reconstruction method seemed to affect the image quality after the early 

post-contrast phase. 
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 org+n TRICKS ES-TRICKS Norm-ES 

phase whole whole edges whole edges whole edges 

1 2.5% 2.7% 4.2% 2.4% 3.5% 2.2% 2.9% 

2 2.5% 2.2% 3.2% 2.1% 2.8% 2.0% 2.3% 

3 2.5% 2.0% 2.4% 2.0% 2.2% 1.9% 1.9% 

4 2.5% 1.9% 2.3% 2.0% 2.1% 2.0% 2.0% 

rest 
2.5% 

±0.1% 

2.0% 

±0.1% 

1.9% 

±0.1% 

2.0% 

±0.1% 

1.9% 

±0.1% 

2.0% 

±0.1% 

1.9% 

±0.1% 

Table 3.1 The relative RMS error in intensity between the reference original images and the 

images with noise (org+ n), the reconstructed images using traditional TRICKS (TRICKS), 

elliptical segmented TRICKS (ES-TRICKS), and the elliptical segmented TRICKS with 

normalization factor (Norm-ES). 2.5% Gaussian noise plus 0.5% white noise are applied to the 

image at each time point. The first four acquisition phases showed more variation in terms of 

RMS error compared to the rest of the reconstructed images. The error in the rest of the phases 

reached a plateau and thus only the averages of phases 5 to 42 are shown (rest). 
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 org+n TRICKS ES-TRICKS Norm-ES 

phase whole whole edges whole edges whole edges 

1 5.1% 3.7% 4.8% 3.5% 4.3% 3.5% 3.9% 

2 5.1% 3.7% 4.1% 3.6% 3.9% 3.5% 3.6% 

Rest 
5.1% 

±0.1% 

4.0% 

±0.2% 

3.8% 

±0.1% 

4.0% 

±0.2% 

3.9% 

±0.1% 

4.0% 

±0.2% 

3.9% 

±0.2% 

Table 3.2 The relative RMS error in intensity in images with 5% Gaussian noise plus 1% white 

noise added to the image at each time point. The first two times points showed higher error than 

the rest. The error oscillated around the same level thereafter. 
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3.5 Discussion 

 To obtain the dynamics of tracer concentration, a series of post-contrast T1-weighted images 

must be acquired rapidly. In order to accelerate the acquisition speed without losing spatial resolution, a 

view sharing acquisition scheme based on the elliptical segmented 3D TRICKS method was 

implemented. The acquisition order was re-designed so that only the center of k-space was acquired 

during the influx phase to better sample the rapid signal change and the outer segments were sampled 

alternatively with the center thereafter. In addition, a k-space normalization method to correct for 

intensity changes in the view sharing data was also developed. 

Temporal resolution of the DCE-MRI data has great impact on the accuracy of the results. 

View sharing techniques in DCE-MRI can increase the temporal resolution while maintaining the 

spatial resolution. In addition to increased temporal resolution, view sharing acquisition can also reduce 

speckle noise in the MR images because of the nature of temporal averaging. This can be very beneficial 

in DCE-MRI analysis because of its high sensitivity to noise. One of the disadvantages of view sharing 

method is the potential reconstruction artifacts. Because the different sections of the k-space data are 

acquired at different post-contrast phases, the reconstruction artifacts will be prominent at the edges 

between different structures. In this work, the k-space normalization method in view sharing acquisition 

was introduced to reduce the artifacts that can improve the DCE-MRI accuracy. 

From the simulation results of this study, the artifacts were more severe in the first few post-

contrast phases where rapid change in signal intensity occurred. The proposed k-space normalization 

method introduces a scaling factor to bring the intensity of the substituted k-space segments to the 

intensity level at the current time frame. Applying the proposed normalization factor was shown to 

reduce the overall error of the reconstructed images. This improvement was especially noticeable at the 

edges during the early post-contrast time points. 

To summarize, I implemented the view sharing acquisition method on the Bruker 7T MRI 

scanner. The view sharing acquisition allows rapid data acquisition and can reduce random noise in the 

DCE-MRI images. Reconstruction with a k-space normalization factor was proposed and its application 

showed improvement in image quality during the fast changing early post-contrast phase. 
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CHAPTER 4 

 

LOCAL SEARCH CLUSTERING ALGORITHM FOR DYNAMIC CONTRAST-ENHANCED 

MRI ANALYSIS ON CENTRAL NERVOUS SYSTEM 
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4.1 Introduction 

 Fast image acquisition in DCE-MRI requires very short TR. Reduced TR sacrifices the SNR 

in the image and results in poor contrast-to-noise ratio (CNR). The poor CNR in DCE-MRI makes it 

difficult to obtain consistent results. Traditionally, ROI is drawn and the average permeability within the 

ROI is computed. However, the results can vary considerably from one observer to the other [65].  

 To reduce the variability in the DCE-MRI results, some authors have relied on pattern 

recognition methods to classify DCE-MRI data. Measurements such as rate of early enhancement, area 

under the curve and time to peak are all used in DCE-MRI analysis. Lavini et al. proposed a pattern 

recognition method that utilized five classifiers to place the voxels into seven categories [12]. However, 

these techniques are qualitative analyses and are not sensitive to small permeability changes. The curve 

pattern analysis (CPA) was proposed by Guo et al. as an alternative to the compartment model [66]. In 

this method, four CPA parameters are computed based on the pattern of the concentration-time curve 

instead of the pharmacokinetic parameters. Unfortunately, the proposed parameters have poor 

correlations to the        value. 

 Another way to reduce parameter variability is to increase the effective CNR by data 

clustering. Several authors have developed automatic clustering algorithms to extract specific features 

from the tracer concentration-time curve. Chen et al. proposed the fuzzy c-means clustering based 

technique to DCE-MRI of breast lesions [67]. Stoutjesdijk et al. applied the mean shift multi-

dimensional clustering technique to assign spatially contiguous voxels to clusters [68]. Similarly, 

Castellani et al. applied the mean shift clustering approach to cluster data based on four features in the 

concentration-time curve [69]. The self-organized map was implemented by Nattkemper et al. to 

distinguish between malignant and benign tumors based on multiple features of the concentration-time 

curve [70]. These techniques operate on the feature space of the concentration-time curve where the 

whole curve is reduced to few parameters. 

 In the DCE-MRI of CNS, however, the BBB and the BSCB can limit the tracer from entering 

the parenchymal tissue. This leads to very low increase in signal intensity in the post-contrast images 

and further aggravates the already low CNR. The insufficient CNR makes it difficult to effectively 

extract the necessary features from individual concentration-time curve and thus the aforementioned 

clustering techniques may not be suitable. 

 To circumvent the low sensitivity of CNS imaging, a local search clustering algorithm that 

groups proximal voxels with similar tracer uptake curves and T1 values was developed. The proposed 

clustering algorithm is aimed to produce reliable segmentations without sacrificing heterogeneity in 

vascular permeability. The apparent CNR in the clustered segments increases and therefore improves 

the consistency of pharmacokinetic parameter estimation. 
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4.2 Innovations 

 

Local Search Clustering Algorithm 

 The proposed local search clustering algorithm takes into account the whole concentration-

time curve instead of selective features. This can reduce the bias associated with certain time points 

when only specific features are used. The algorithm also considers the T1 value of the voxel as a 

classifier so that the cluster would contain only one tissue type. A seed growing procedure is employed 

to recruit local voxels into a cluster. 

 The algorithm begins with a t-test that identifies all voxels with higher intensity in the post-

contrast phase compared to the baseline. All positive voxels are potential seed points. First, the 

algorithm starts with a center seed point. It then searches for new members of a cluster by expanding 

from the seed, one voxel outward in each cycle. After each cycle, all members of the current cluster 

form a “seed collection” and the seed point of the cluster is replaced by this seed collection. The 

expansions and replacements continue until stopping condition is reached. To be included in the cluster, 

the cost function of voxel   within the search region must satisfy the cost threshold: 
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Three classifying terms are used to compute the cost function: the post-contrast relative intensity change, 

the T1 and the distance classifiers. The first two terms are the intensity classifiers which ascertain that 

the relative intensity change-time courses are similar in all voxels within the same cluster.   ( ) is the 

relative intensity change of voxel   at post-contrast time point   computed from: 

  ( )  
  ( )    ( )

  ( )
 (4.2) 

    is the standard deviation of the change in relative intensity averaged through each time point 

assuming 5% error in the signal: 

    √       (    ̅) (4.3) 

The relative intensity standard deviation of a seed collection        is computed through ordinary 

multi-sample standard deviation instead of the assumed 5%. To control the possible inflation of        

as voxels in the seed collection accumulate,        is capped at 7.5% of the signal error. The combined 

relative intensity standard deviation is: 
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where       is the number of voxel in the seed collection.    and     are number of time points in their 

respective summation. The first intensity classifier term is summed through all time points (  ) while 

the second term is only summed to    after tracer administration (   ), which is defined to be 8 min. 

There are two reasons that the first 8 min post-contrast phase is weighed more, because: 1) this is the 

more important phase in terms of pharmacokinetic parameter computation; 2) most clinical DCE-MRI 

protocol is completed within 10 min; therefore, the early post-contrast phase is more clinically relevant. 

The third term in Eq. 4.1 is the T1 classifier. The T1 classifier ensures that all clustered voxels have 

similar T1. As mentioned in chapter 2 (see Table 2.5), the T1 value has an impact on the accuracy of 

DCE-MRI analysis. Similar T1 in a cluster is therefore necessary to maintain the accuracy of the results. 

The final term in Eq. 4.1 is the distance classifier, where    ( -    ) is the minimum distance between 

voxel   and the seed point or the surface of the seed collection. The distance classifier was used to 

ensure that clustered voxels are localized since there may not be physiological relevance to have a 

cluster with distant isolated parts.     and      are user defined weighting factors, whereas       is the 

threshold of the cost function. Adjusting    ,      and       can change the relative weighting of each 

classifier in the cost function and the performance of the clustering. Although the starting center seed 

point must pass the t-test for positive change in intensity, any voxel with properties that satisfy Eq. 4.1 

can be a member of a cluster. 

 All voxels within the search region that satisfy the cost limit will form the new seed collection 

for the current segment.      ,         and         will be recalculated based on these new voxels. It is 

possible that some voxels that were members of the seed collection from previous search cycle no 

longer satisfy the cost limit in the current cycle after the seed collection updates. In this scenario, the 

memberships of those voxels would be withdrawn. After a stopping condition is met, the algorithm will 

search for the voxel within the current cluster that yields the smallest cost function    in Eq. 4.1. This 

voxel will be the refreshed center seed point for the current segment. If the refreshed center point is 

different from the previous center points, the operation will start from scratch with this refreshed center 

point and all current seed collection in the current cluster will be discarded. On the other hand, if the 

refreshed center point is the same as one of the previous center points, this cluster will be finalized and 

the procedure will continue with another new cluster starting from another new center seed point. 

 Several stopping conditions are employed to break the loop of cluster recruitment, if: 1) the 

total number of seed collection is less than a pre-defined value after a search cycle; 2) the surface of the 

seed collection does not grow outward after a search cycle; 3) the refreshed center seed point cycles 

back to one of the previous center seed point (if not stopped, the algorithm will run into an infinite loop); 
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4) the number of voxels in the seed collection exceeds some pre-defined number to retain heterogeneity 

of the data. 

The final step of the clustering algorithm is to find a pre-existing cluster for all the remaining 

unclustered voxels that passed the t-test. A left-out voxel   can join an immediate neighboring cluster if 

the cost function satisfies Eq. 4.1 with no contribution from the distance classifier (the distance classifier 

is null because the voxel and the cluster here must be neighbors) and usually a slight relaxation on the 

threshold      . When multiple clusters satisfy the limit, the voxel will join the cluster that yields the 

lowest cost function. 

A flow chart of the segment formation procedure with the proposed cluster algorithm is 

depicted in Fig. 4.1. 
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Figure 4.1 Schematic representation of the process of cluster formation using the local search 

clustering algorithm. The dashed boxes are the four stopping conditions that can break the loop of 

cluster recruitment. 
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4.3 Methods and Materials 

 The effectiveness of the clustering algorithm and its impact on the DCE-MRI analysis was 

investigated by simulations. The simulations were prepared to imitate the DCE-MRI experiment of SCI 

so all the applied parameters were similar to those found in the actual experiment. The 2D Shepp-Logan 

phantom shown in Fig. 2.4 was employed for simulations. In order to investigate the effect of contrast 

uptake on the estimation accuracy, different        and     were applied to different structures but the 

same    was used. The applied pharmacokinetic parameters are listed in Table 4.1. A pixel-by-pixel 

variation of 120 msec was applied to the T1 values and a 2.5% variation was applied to the permeability 

parameters. A bi-exponential function described in Eq. 3.4 was used to model the AIF. The time 

resolution was set to be 30 sec and 82 post-contrast data were created. After the DCE-MRI images were 

generated, 4% Gaussian noise plus 1% white noise were applied. The level of noise was chosen 

assuming data were acquire with the view sharing acquisition and the inherent noise level was 5% 

Gaussian distributed. 

 The following parameters were used to perform the clustering algorithm: T1 = 250 msec, 

Dis = 2 pixel, fthre = 3. The minimum number of pixels to form a cluster was set to 3 to ensure adequate 

CNR. The threshold used to group the left-out pixel was also set to 3. After the data were clustered, the 

average intensity change and average T1 were computed in each cluster. DCE-MRI analysis was 

performed on the average data of the clustered ROIs. For comparison, the results were compared against 

the results obtained from the pixel-by-pixel analysis. 
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region           (min

-1
)     (min

-1
) T1 (msec) 

1 0.03 0.006 0.025 800 

2 0.03 0.008 0.016 1200 

3 0.03 0.003 0.045 1600 

4 0.03 0.004 0.043 800 

5 0.03 0.002 0.042 1400 

6 0.03 0.012 0.030 2200 

Table 4.1 The pharmacokinetic parameters applied to the Shepp-Logan phantom (Fig. 2.4) in the 

simulations. 𝑓  is proton fraction of blood, 𝐾      is the transfer constant, and 𝑘   is the rate 

constant in the region. 
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4.4 Results 

 Fig. 4.2 illustrates a representative relative intensity-time curve from the simulation that shows 

a typical example of noise affecting the final curve fitting result. Although the curve fit yielded a χ
2
 

value that had less than 0.01% chance of being incorrect, the final results of the pharmacokinetic 

parameters were deviated by 37% for   , 15% for        and 49% for    . 

 Fig. 4.3 shows the        map of the simulated data. The results from pixel-by-pixel analysis 

(Fig. 4.3b) appeared noisy and the boundaries between region 1 and region 2 were smeared. The pink 

pixels in Fig. 4.3b represented pixels where the curve fit errors were above 95% in the χ
2
 distribution. 

Even with these pixels removed, the result still showed high variability. Fig. 4.3c showed the results 

using the clustered ROIs. This result appears closer to the truth and it preserves the contrast between 

boundaries. The pink pixels in Fig. 4.3c represent unclustered pixels. The unclustered pixels were 

mostly from regions with small number of similar pixels. 

 The relative RMS errors of the pharmacokinetic parameter estimation are summarized in 

Table 4.2. On average, the estimation of    was found to be the most error prone, whereas        

estimate on average had the smallest RMS error among the three. In general, the RMS error increased 

with decreased permeability, or       . In high permeability region (region 6), the RMS error in        

and     was relatively small; while the RMS error was high in low permeability region (region 5). The 

low permeability in region 5 led to low CNR, and consequently led to poor curve fitting to the data. The 

RMS error could be reduced by removing curve fits that yielded high χ
2
 values (95% cutoff). However, 

the improvement was less than 1% in        and about 2% in    . With the exception of     in region 3, 

analysis on the clustered data produced smaller RMS errors in all parameters compared to analysis on 

individual pixel. The error for clustered data was high in region 3 because only three of the seven pixels 

were clustered, the small cluster led to low CNR and thus increased the estimation uncertainty. On 

average, the local search clustering algorithm reduced the RMS error by more than half compared to the 

pixel-by-pixel analysis. 
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Figure 4.2 Example of a DCE-MRI relative intensity change vs. time curve. The addition of 

noise to the data can affect the performance of curve fitting, leading the fitted curve to deviate 

from the original data. 



 

 

 

 

  

Figure 4.3 The 𝐾      maps of the simulation. a) The original 𝐾      map. b) The 𝐾      map 

calculated with pixel-by-pixel analysis. c) The 𝐾      map obtained from analysis of the clustered 

data. The pink pixels are pixels with high fitting errors (in b) or unclustered pixels (in c) and are 

considered unknown. 
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  px×px p×p cutoff cluster 

region 1 

(322 px) 
   45.1% 45.1% 14.3% 

       13.8% 13.8% 4.5% 

    26.3% 26.3% 6.3% 

remark  no pixel cut  

region 2 

(1346 px) 
   30.6% 29.9% 8.6% 

       8.6% 8.1% 3.4% 

    25.8% 22.8% 5.9% 

remark  22 pixel cut 3 px unclustered 

region 3 

(7 px) 
   14.3% 14.3% 11.1% 

       14.0% 14.0% 7.7% 

    16.3% 16.3% 17.1% 

remark  no pixel cut 4 px unclustered 

region 4 

(14 px) 
   38.1% 38.1% 24.0% 

       23.2% 23.2% 5.8% 

    29.2% 29.2% 7.3% 

remark  no pixel cut  

region 5 

(158 px) 
   25.0% 24.6% 5.2% 

       27.0% 27.1% 9.9% 

    38.6% 38.9% 8.6% 

remark  2 pixel cut  

region 6 

(178 px) 
   26.5% 18.9% 8.4% 

       8.1% 4.7% 2.9% 

    18.2% 7.3% 3.8% 

remark  5 pixel cut 20 px unclustered 

overall    32.7% 31.8% 9.7% 

       12.1% 11.7% 4.4% 

    26.5% 24.2% 6.2% 

remark  1.4% px cut 1.3% unclustered 

Table 4.2 Relative RMS error of the pharmacokinetic estimates using pixel-by-pixel analysis 

(px×px), with high χ
2
 cutoff (p×p cutoff) and using the clustered data (cluster). The curve fitting 

procedure was reliable as the estimates using noiseless data yielded error of less than 0.5%. 
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4.5 Discussion 

A local search clustering algorithm was developed to segment relative intensity-time curves of 

the DCE-MRI data. Unlike some other DCE-MRI clustering techniques [12,67,70] that aim at extracting 

a particular feature, the purpose of our clustering algorithm is to enhance the apparent sensitivity to Gd 

induced signal enhancement for detecting subtle changes in the barrier permeability. Simulation was 

performed to verify the necessity of clustering in low permeability DCE-MRI study. 

In general, the DCE-MRI analysis is sensitive to noise in the concentration-time curve and can 

result in incorrect pharmacokinetic parameter estimation. Previous studies have demonstrated the effect 

of image noise on the results [45]. Galbraith et al. has reported more than 20% within-patient coefficient 

of variation (CV) in        and     estimates [11]. Poor reproducibility was also observed in a clinical 

study by Padhani et al. [18]. Jackson et al. reported an acceptable reproducibility (< 7% CV) in a glioma 

study [71]. But their study involved highly permeable tumor vasculature where sufficient CNR is 

expected. The current simulation employed a noise level of 4% Gaussian noise and 1% white noise in 

the DCE-MRI images. At high permeability (                ), the RMS error in        using 

pixel-by-pixel analysis was about 8% (see region 6 in Table 4.2). And this was considered to be 

acceptable in [71]. However, at low permeability (                ), the RMS error in        and 

    was above 10% using pixel-by-pixel analysis. And the error was even above 20% in some regions 

(see region 4 and 5 in Table 4.2). One may reduce the amount of erroneous estimations by disregarding 

the estimates that yield high χ
2
 values. However, as shown in Fig. 4.2, even if the fitted curve is a good 

match to the data, the result can still deviate much from the truth. Clustering for curve fitting can reduce 

the apparent noise within the clustered data. As a result, the errors were reduced by a half compared to 

analysis on individual pixel. 

 The algorithm assumes that permeability abnormality in CNS is spatially contiguous and is 

confined to small region. Under this assumption, the algorithm is allowed to form clusters locally in 

small regions. One disadvantage of the local search algorithm is that it has difficulty clustering small 

isolated regions as in region 3 and region 6 of the simulation. However, even if they were to be 

clustered, the small number of voxels would imply low CNR. This can increase the uncertainty of the 

estimated pharmacokinetic parameters. One way to circumvent this problem is to perform a global 

search with the distance classifier removed. However, global search demands extensive processing time 

and usually requires the number of clusters predefined to reduce the computation time. A predefined 

number of clusters can potentially impair the heterogeneity of DCE-MRI data. Besides, there is no 

physiological reason to group distant voxels into the same cluster. 

In this work, a local search clustering algorithm was implemented to reduce the apparent noise 

of DCE-MRI data. Clustering for curve fitting is especially useful in CNS DCE-MRI where the contrast 

uptake is low and the resulting pharmacokinetic parameters are highly sensitive to noise. Simulations 
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have shown that the clustering algorithm can effectively reduce the error of the parameter estimates 

compared to using pixel-by-pixel analysis. 
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CHAPTER 5 

 

ASSESSMENT OF BLOOD-SPINAL CORD BARRIER PERMEABILITY IN 

EXPERIMENTAL SPINAL CORD INJURY USING DYNAMIC CONTRAST-ENHANCED 

MRI 
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5.1 Introduction 

 This chapter describes the application of the improved acquisition and analysis of DCE-MRI 

techniques described in the previous chapters to investigate the BSCB permeability in experimental SCI. 

The long standing interest of our laboratory in the role of vasculature in SCI motivated this particular 

study. 

 The direct damage to the spinal cord that results from the initial impact is referred to as the 

primary injury in traumatic SCI. The initial compression on the spinal cord damages the blood vessels, 

axons and neurons. Release of excitatory amino acids from the disrupted neural membranes and the 

compromise of the BSCB initiates a secondary cascade that damages tissue away from the site of 

primary injury [72-75]. 

 The secondary processes take place within minutes to hours following the primary insult. 

Secondary injury spreads both spatially and temporally, causing damage to tissue away from the site of 

primary insult. Vascular insult that includes BSCB barrier compromise is thought to be an important 

component of the secondary injury. The BSCB is a selective barrier that protects the spinal cord tissue 

by inhibiting blood borne substances from entering. Compromised BSCB allows abnormal leakage of 

intravascular cells and proteins into the tissue and can be harmful to the CNS [22,76,77]. The 

compromise of BSCB is not just confined to the initial site of injury, but spreads spatially [23,72,78-80]. 

With greater understanding of the spatial and temporal extent of increased BSCB permeability after SCI, 

it may be possible to develop treatments to arrest or attenuate its progression and repair the vasculature. 

 The BSCB permeability can be evaluated quantitatively with DCE-MRI [4,8,9,53,64,81]. 

Because DCE-MRI is minimally invasive, it has the advantage over other modalities that involve 

radiation such as computed tomography and positron emission tomography. However, even though the 

BSCB is compromised, the barrier is not completely dysfunctional, especially distal to the site of injury. 

At the distal locations, the intravascular tracer is still not allowed to enter the tissue freely; and as a 

result, the CNR in the DCE-MRI images is relatively low in the spinal cord tissue. This low CNR 

compounded with T1 uncertainty and curve fitting variability will have negative influence on the 

accuracy of the permeability assessment. 
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5.2 Methods and Materials 

 The protocol of this study was reviewed and approved by the Institutional Animal Welfare 

Committee. The guidelines provided by the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals were strictly followed. 

 

5.2.1 Animals and Spinal Cord Injury Procedure 

 A total of 12 male Sprague-Dawley rats weighing 300-350 g were used in this study. All 

surgical procedures in this experiment were performed by trained professionals. Detailed surgical 

procedure was described in [82,83]. To perform the experimental SCI, the animal was first anesthetized 

at 5% isoflurane, 30% oxygen and medical grade air through an endotracheal tube for induction, and 

maintained under anesthesia with a mixture of 2.5% isoflurane, 30% oxygen, and medical grade air. 

Laminectomy was performed at the thoracic level 7 (T7). A moderately severe contusion injury was 

then inflicted to the exposed spinal cord using an Infinite Horizon Impactor (Precision Systems and 

Instrumentation, LLC, Lexington, KY). The injury device delivered a force of 150 kdyn with a dwell 

time of 1 sec to the spinal cord. In order to improve the SNR of the spinal cord images, a 11 × 35 mm RF 

coil was implanted over the injury location, stabilized with sutures, and tuned to the operating frequency 

of the MRI receiver. 

 

5.2.2 Pre-MRI Preparation 

 MRI scans were performed 5 days post-injury. Prior to the MRI protocol, the left jugular vein 

was cannulated with a catheter for delivering the Gd tracer. Throughout the MRI session, the animal 

was anesthetized with 2.5% isoflurane, 30% oxygen and medical grade air through an endotracheal tube. 

The animal was then placed on a Plexiglas bed in supine position and secured by taping. An external 

coupling coil that was inductively coupled to the implanted coils was placed on the back of the animal 

for both RF pulse transmission and reception of the MR signal. Respiration and rectal temperature were 

monitored during the experiment with a physiologic monitoring unit (SA Instruments, Stony Brook, 

NY). The monitor unit consisted of a feedback heating mechanism to maintain the body temperature at 

37°C. A pulse oximeter (Nonin Medical, Plymouth, MN) was used to monitor heart rate and oxygen 

saturation in the blood. 

 

5.2.3 MRI Acquisition Protocol 

 A 2D dual echo fast spin echo (FSE) sequence (TR/TE = 3200/ 21, 64 msec) was acquired 

with 25.6 × 25.6 mm
2
 FOV and a matrix size of 256 × 256. Twenty three axial slices of 1 mm thickness 

centered on the injury epicenter were acquired. The FSE images served as anatomical images that were 

used to identify and assess the lesion in the spinal cord. The T1 map, B1 map and the DCE-MRI images 
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were all acquired in 3D with FOV of 32× 25.6 × 25.6 mm
3
 and the frequency encoding direction (first 

dimension) was along the length of the spinal cord to avoid wrap around artifact. The low resolution B1 

map was acquired to provide an approximated flip angle map for T1 curve fitting. The B1 map was 

acquired using the AFI described in section 2.3.2 (TR/TE = 20, 100/ 2.25 msec, flip angle = 45°, matrix 

size = 64 × 32 × 32 interpolated to 64 × 128 × 128). T1 map was acquired using the modified 3D LL 

sequence with elliptical segmentation (τ = 11 msec, td = 10 msec, tr = 1200 msec, TE = 2.3 msec, α = 7.5°, 

Ntime = 8, NTL = 16, Ndummy = 5, matrix size = 64 × 64 × 64 interpolated to 64 × 128 × 128). T1 weighted 

DCE-MRI images were acquired using the view sharing scheme described in chapter 3 (TR/TE = 

10/2.5 msec, flip angle = 10°, matrix size = 64 × 128 × 128). Four fully sampled baseline images were 

acquired before tracer administration. A dose of 0.2 mmol/kg bolus of Omniscan (GE Healthcare, Oslo, 

Norway) was then injected within 2 sec through the catheter into the jugular vein while the data 

acquisition was in progress. A total of eighty post-contrast phase images were acquired. 
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5.3 Procedures of DCE-MRI Analysis 

 Multiple procedures were performed step by step to calculate the pharmacokinetic parameters. 

Briefly, T1 map was first generated using the χ
2
 weighed multi-step curve fitting procedure. The DCE-

MRI data were constructed using the proposed normalization factor. The population AIF was then 

extracted from the DCE-MRI images. Segmentation was performed with the local search clustering 

algorithm. The clustered segments underwent a filtering process to remove sinusoidal artifacts. Finally, 

the extended compartment model described in Eq. 1.11 was fitted to the filtered DCE-MRI segments to 

obtain the pharmacokinetic parameters. 

 Several parameters were considered to be constants in this study and were adapted from the 

published literatures. The change in T1 relaxation rate per tracer concentration of Omniscan was 

deduced from [84,85] and was set to 4.0 sec
-1

mM
-1

. The T1 relaxation rate of blood was 0.45 sec
-1

 and 

the hematocrit fraction was 0.45. Both of these values were obtained from [86]. 

 

5.3.1 Extraction of Arterial Input Function 

 AIF or Cb in Eq. 1.11 is required to calculate the contrast dynamic described by the two-

compartment model. Accurate Cb is needed to separate the plasma contribution from the tissue uptake in 

the concentration-time course; and it is also the source of tracer uptake as: 

    
 

     
    (5.1) 

 AIF was extracted from the DCE-MRI data automatically using a method similar to that 

described in [2,16]. First, the algorithm searched for voxels with their relative intensity-time curves 

monotonically falling after the first 30 sec of post-contrast phase. It is expected that the AIF reaches its 

peak within the first 10 sec following tracer administration. Therefore, a voxel composed of vessels 

should have the relative intensity-time curve in its washout phase of the tracer. These voxels were 

considered to be the possible candidate voxels for extracting the AIF. Only the top 128 candidates that 

yielded the highest peak tracer concentration (enhancement within the first 2 min post-contrast phase) 

were chosen for the next step. Ideally, each of these voxels would contain vessels only. Unfortunately, 

the small size of vessels introduces significant partial volume effect. Therefore, the concentrations in 

these candidate voxels are generally lower than the concentration in an actual vessel. Assuming that the 

voxel composed of only vessel should have the highest peak tracer concentration, the peak tracer 

concentration of all candidate voxels were normalized to the highest peak tracer concentration within all 

the candidates. Normalization can reduce the effect of partial volume and avoid the underestimation of 

intravascular tracer concentration. The concentration of a candidate voxel   ( )  was normalized to 

       ( ) following: 
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       ( )  
∑     ( )      

∑   ( )      
  ( ) (5.2) 

The first 2 min of post-contrast phase corresponded to three time points in our DCE scan. 2 min was 

chosen instead of shorter time because multiple time points are needed to reduce the effect of noise. To 

further reduce the effect of noise on normalization, the reference concentration-time curve     ( ) must 

have the highest peak concentration that satisfied the following requirement: there must be at least one 

other vessel curve with peak concentration within 2% above and at least one within 2% below the 

reference peak concentration. This constraint ensured that the chosen peak concentration was not a 

result of random noise. After normalization, only half of the vessel candidates that yielded the lowest 

washed out concentrations were used to compute the AIF. 

 The AIF was then fitted to a bi-exponential function [64]. Since it has been shown that using 

the average AIF from the entire group produces more consistent result [16], the population AIF was 

computed and applied to all subjects in the study. 

 From this experiment, the population AIF was fitted to the following bi-exponential form: 

  ( )                           (5.3) 

The unit of the concentration is in mM and   is expressed in min. Although having the same magnitude, 

the coefficients in Eq. 5.3 are slightly different from those reported in [64]. These differences are 

expected due to the differences in the DCE-MRI protocol and higher tracer dose administered in this 

study. 

 

5.3.2 DCE-MRI Clustering 

 The DCE-MRI data were clustered to increase the apparent CNR in order to improve the 

consistency of the results. Manual contouring of the spinal cord was performed on twenty-seven slices 

(13.5mm) centered at the lesion epicenter. The contouring was needed to avoid the inclusion of the 

meninges during the analysis. The clusters were generated using the local search clustering algorithm 

with the following parameters: (T1 = 250 msec, Dis = 2.5 vox, fthre = 3, Nmin to form segment = 4, Nmax 

to stop recruit = 9). The threshold to group the left-out voxel was also set to 3. 

 

5.3.3 Sinusoidal Artifact Removal 

 One common artifact observed in the DCE-MRI images is the presence of signal oscillations 

that appeared in random part of the spinal cord. This oscillating artifact is not related to BSCB 

permeability and can significantly compromise the final results. Since the signal oscillations appeared 

periodic, a multi-taper spectral analysis described in [87,88] was applied to remove the oscillating 

components in the data. The multi-taper spectral analysis was used to estimate the spectrum of a finite 

discrete time series with statistical significance. 
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 The multi-taper spectral analysis was performed on the clustered relative intensity-time curve 

tapered by the discrete prolate spheroidal sequences (DPSS). First, the average increase in intensity was 

subtracted from the relative intensity-time curve to emphasize the periodic components. The relative 

intensity-time curve was then zero padded from 80 time points to 256 time points to increase the 

pseudo-resolution of the data in the frequency space. DPSS (Ntime = 256, NtimeWband = 7) were multiplied 

with the processed curve before being transformed to the frequency space. If the F-statistics of a 

frequency exceeded the 5% cutoff, it would become a potential sinusoidal component. To further verify 

if this potential frequency component was indeed statistically significant, the non-padded tapered curve 

(Ntime = 80) was phase-shifted to this potential frequency before Fourier transformation. If this potential 

frequency in the non-padded frequency space also had its F-statistics exceed the 5% cutoff, it was 

considered as an actual periodic component in the relative intensity-time curve. The amplitude and 

phase of this frequency component were then computed in the non-padded transformed space. All actual 

periodic components identified were removed from the relative intensity-time curve for the final DCE-

MRI analysis. 

 As an example, a relative intensity-time curve of a clustered data was shown in Fig. 5.1. As 

shown in this figure, there was an obvious sinusoidal component present in the relative intensity-time 

course. This periodic component was unlikely to be the result of change in BSCB permeability and it 

would affect the final results if it is not accounted for. In this example, the multi-taper spectral analysis 

identified the periodic component with period of 27 min and amplitude of 0.16 in relative intensity 

change as statistically significant. The periodic component was removed from the intensity-time curve 

and this curve was used to compute the final pharmacokinetic parameters. 
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Figure 5.1 The time evolution of change in relative intensity of a clustered segment. The average 

change in the cluster at each time point (red rhombus) is presented with its standard deviation. 

The multi-taper analysis was able to identify the sinusoidal component (blue dashed line) in the 

relative intensity-time curve. The difference (green circle) obtained by subtracting the periodic 

curve from the data was used for final curve fitting. 
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5.3.4 Curve Fitting Requirement 

 The pharmacokinetic parameters of each cluster were computed with three-parameter curve 

fitting (  ,        and    ) using Eq. 1.11. In order to reduce the estimation error as a result of false 

curve fitting, multiple requirements were incorporated to eliminate concentration-time curves that 

showed high χ
2
 values. The estimated        and     of a cluster were rejected if 1) the three-parameter 

fit yielded the overall χ
2
 statistics above 10% cutoff and 2) the fitted curve in the first 8 min post-

contrast phase had χ
2
 above 10% cutoff. Extra requirement is applied on the first 8 min because the final 

curve fit is most sensitive to the early post-contrast phase and the early phase is also more clinically 

relevant. Fig. 5.2 shows two examples of curves fitted to their respective DCE-MRI data clusters. One 

data set passed the χ
2
 requirement, while the other one did not and was rejected. In Fig. 5.2, the general 

curve fit of the rejected data was visually acceptable and it passed the overall χ
2
 requirement. However, 

its early phase deviated greatly from the rest of the data and that did not pass the χ
2
 requirement in the 

first 8 min post-contrast phase. 

 Within a voxel, both the tissue uptake and the AIF contribute to the relative intensity change. 

Because the tissue uptake rate could be very small, there were voxels with relative intensity-time curves 

that showed more AIF than tissue uptake characteristics. The tissue uptake component in these cases is 

very difficult to resolve. Extra requirements were therefore applied to disregard curves that exhibited 

more AIF characteristics. First, the relative intensity of the cluster was fitted to the AIF function to 

obtain the χ
2
 value of the AIF fit. The χ

2
 value of the regular three-parameter fit was then compared to 

the χ
2
 value of the AIF fit. If the χ

2
 value of the AIF fit was smaller, that would imply the concentration-

time curve was better fit to the AIF than tissue uptake. The estimated        and     were therefore 

rejected. In addition, the curve with small tissue uptake was expected to have slowly rising intensity. 

Therefore, the fitted curve was rejected if it did not ascend for more than 3 min. Curves that ascended 

for less than 3 min would imply very high        and     and were likely to be results of venous blood 

or cerebrospinal fluid (CSF). Fig. 5.3 shows an example of a rejected curve that did not show obvious 

tissue uptake. This curve was rejected because the three-parameter fitted curve was monotonically 

decreasing throughout the whole DCE-MRI course. 

 On average, about 16% of the clustered voxels were rejected. All the rejected segments and 

unclustered voxels would be treated as regions with unknown pharmacokinetic parameters. 
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Figure 5.2 Examples of relative intensity change-time curves of two clustered segments and their 

respective fitted curves. The curve fit to segment A was accepted because it passed all the χ
2
 

requirements. The curve fit to segment B however was rejected. The fitted curve for segment B 

passed the χ
2
 requirement for the whole curve but the χ

2
 value in the first 8min was above the 

statistical cutoff. It can be seen that the data of segment B in the early phase deviated greatly 

from the rest of the data. It would be very difficult to fit a valid two-compartment model to this 

data and therefore the curve fitting result of segment B was disregarded. 
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Figure 5.3 Example of relative intensity change-time curve with the 3-parameter curve fit 

(compartment model) and the 1-parameter curve fit (AIF only). Both curve fits passed the χ
2
 

cutoff and the 3-parameter fit was a better fit than the 1-paramenter fit. However, the 3-parameter 

fit did not pass the requirement of rising curve as it lacked the trend of increasing enhancement 

throughout the whole experiment period. It would be difficult to distinguish if there is any uptake 

component in this data set and therefore the result from this data set was disregarded. 
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5.4 Results 

 

5.4.1 In Vivo Spinal Cord T1 Map 

 Fig. 5.4 shows an example of the T1 maps of two spinal cord sections and representative LL 

data. All the curves in the example show good agreement with the data. Based on the examination of 

several slices located more than 1.5 cm away from the injury epicenter, the average T1 value of the gray 

matter (GM) was 1252 ± 69 ms; and the average white matter (WM) T1 value was 1098 ± 85 ms. These 

values were in reasonable agreement with other published literature [89]. The epicenter which appeared 

hyper-intense on the T2-weighted images had higher T1 values, indicating a possible edematous 

environment. 

 When examining the results using different flip angle maps, the proposed χ
2
 weighted multi-

step curve fitting procedure generally produced better fit to the LL recovery data compared to using the 

prescribed angle (7.5°) and the angle corrected by the B1 map obtained from the AFI acquisition. 

Fig. 5.5 illustrates the effect of flip angle on the curve fitting result. The curve fits of the lesion data in 

Fig. 5.4b are plotted using different angles obtained from three different methods. In this example, the 

multi-step method produced flip angle of 9.8° and resulted in T1 of 1640 msec. The B1 corrected angle 

was 8°, and yielded T1 of 1380 msec. Although the B1 map corrected some of the flip angle discrepancy, 

it was not sufficient as the estimated T1 was still very close to the normal GM T1 value. 

 Although the variation in the inversion angle was found to be higher than that in the phantom 

study, the variation had a relatively small effect on the T1 estimation. 
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Figure 5.4 T1 map of the spinal cord cross section and examples of representative LL recovery 

curves. The spinal cord images shown were located at a) 15 mm caudal to the epicenter and b) at 

the injury epicenter. c) T1 recovery curves of three different tissue types are shown. Computed 

using the χ
2
 weighted multi-step method, the GM data yielded T1 = 1258 msec, γ = 177.0°, α = 

10.4°; the white matter data yielded T1 = 979 msec, γ = 178.6°, α = 10.8° and the lesion data 

yielded T1 = 1648 msec, γ = 178.2°, α = 9.8°. 
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Figure 5.5 T1 recovery curves of the lesion data in Fig. 5.4b using three different flip angles for 

curve fitting. All three curves were fitted with γ = 180°, and were computed with the identical 

two-parameter fitting procedure. The nominal fit used the prescribed 7.5°, yielded T1 = 

1258 msec with χ
2
 = 4.6. The flip angle used in the B1 corrected fit was corrected by the acquired 

B1 map. The corrected angle was 8.0° and the results were T1 = 1383 msec with χ
2
 = 2.9. With the 

χ
2
 weighted multi-step method, the estimated flip angle was 9.8° and the results were T1 = 

1646 msec with χ
2
 = 0.3. 
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5.4.2 DCE-MRI Analysis 

 Representative images of the DCE-MRI time series at the injury epicenter are shown in 

Fig. 5.6. In the DCE-MRI scans, the meninges consistently exhibited substantial enhancement due to the 

absence of BSCB in this structure. The parenchyma however showed relatively little enhancement even 

in the presence of injury. Tracer uptake in the CSF around the meninges was shown to be independent 

of the injury [8]. Careful contouring is therefore necessary to exclude the highly permeable surrounding 

meninges from the spinal cord tissue; otherwise, the tissue permeability would be overestimated by the 

contamination of meninges permeability. 

  On average, 72% of voxels inside the contoured spinal cord showed positive change in 

intensity (p < 0.05) after tracer administration. After segmentation, 81% of voxels were clustered into 

segments. About 7% more voxels were being clustered than the number of positively enhanced voxels. 

As mentioned before, although clustering starts with a positive enhanced voxel, the algorithm is allowed 

to include voxels that did not pass the t-test. The clustered voxels that did not pass the t-test were likely 

recruited by clusters with only slight increase in intensity. 

 Out of the three parameters calculated from the DCE-MRI analysis, the transfer constant 

       is closely related to the BSCB permeability to the tracer. The rate constant     is a combination 

of two biological effects: 1) the ability to clear out the tracer after it entered the spinal cord and, 2) the 

fractional volume of EES. 

 Overall, about 68% of the contoured spinal cord showed positive        and     values. 

Fig. 5.7 shows examples of        and     maps overlaid on the spinal cord T1 map. In Fig. 5.7a, high 

       value can be observed at the epicenter of SCI and the value decreased in slices away from the 

epicenter. Within the same slice, the dorsal side always had higher        value than the ventral side. 

Fig. 5.7b shows the     spatial distribution of the spinal cord. The calculated     distribution was 

completely opposite to that of        as the     value was lower at the epicenter and at the dorsal part 

Figure 5.6 DCE-MRI images of the spinal cord at the injury epicenter: 1) Pre-contrast baseline 

image; b-d) Post-contrast images at 20 sec, 100 sec and 20 min after tracer delivery. The meninges 

surrounding the spinal cord enhanced shortly after tracer administration, while the muscle at the 

dorsal (top of images) enhanced relatively slower. The enhancement within the spinal cord 

parenchyma was smaller by comparison. 
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of the spinal cord. 

 To further investigate the distributions of        and     at different locations within the 

spinal cord, the average percentile values as a function of distance from epicenter were calculated. The 

percentile of the parameter was computed based on the volume of each spinal cord segment in each 

subject. The average percentile was the averaged percentile over all the animals included in this study. 

Fig. 5.8 shows the average percentile values of the        estimate and Fig. 5.9 shows the average 

percentile values of    . The injury epicenter (0 mm) was identified from the location of laminectomy. 

Each segment was composed of 1.5 mm or three slices of spinal cord MRI. From Fig. 5.8, the BSCB 

permeability declined away from the epicenter. In addition, the permeability in the caudal section 

appeared to be higher than that in the rostral section. Fig. 5.9 shows lower     around the epicenter, and 

higher     away from it. The rate constant was slightly higher in the rostral region, but it appears that 

the asymmetry was mostly a result of the unusual bloom in     value around the rostral 1.5 mm section. 

Unlike the        distribution, which had similar percentile range along the spinal cord, the percentile 

range of     values was smaller at the epicenter and noticeably wider away from it. 

 The average percentiles of        and     are summarized in Table 5.1 and Table 5.2 

respectively. In terms of percent standard deviation, the inter-subject variation of     was on average 

higher than       . The inter-subject variation of        was generally higher at the epicenter.     

variation on the other hand was generally lower around the epicenter. The unusually high     around 

the +1.5 mm section also presented higher inter-subject variation than its neighboring regions.  



 

 

 

 

  

Figure 5.7 Example of pharmacokinetic parameters of the spinal cord after SCI. Injury was at the 

epicenter in the dorsal side (top of image) of the spinal cord. From caudal to rostral, each image 

is separated by 1.5 mm. a) The 𝐾      map overlaid on the T1 map. High 𝐾      value was seen at 

the dorsal part of the spinal cord and at the injury epicenter. b) The 𝑘   map of the same regions 

of the spinal cord. Contrary to 𝐾     , 𝑘   value was lower at the epicenter and dorsal of the 

spinal cord. 
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Figure 5.8 The different percentiles of the 𝐾      values (in min
-1

), averaged over all animals. 

The transfer constant was highest at the epicenter and decreased away from it.  
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Figure 5.9 The different percentiles of the 𝑘   values (in min
-1

), averaged over all animals. The 

rate constant was lowest around the epicenter and increased away from it.  
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Position (mm) -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 

Maximum 
6.0 

± 3.7 

5.5 

± 2.4 

6.5 

± 2.6 

8.9 

± 3.7 

8.9 

± 4.5 

7.2 

± 3.6 

4.9 

± 2.3 

3.0 

± 1.2 

2.9 

± 2.1 

95 percentile 
3.9 

± 1.5 

4.7 

± 1.8 

5.3 

± 1.8 

7.4 

± 3.6 

7.4 

± 4.3 

5.9 

± 2.8 

4.0 

± 1.8 

2.6 

± 1.2 

2.4 

± 2.4 

90 percentile 
2.9 

± 1.3 

4.0 

± 1.7 

4.5 

± 1.9 

6.2 

± 3.1 

6.2 

± 3.5 

5.4 

± 2.6 

3.0 

± 1.8 

1.9 

± 0.9 

1.3 

± 0.8 

85 percentile 
2.5 

± 1.2 

3.5 

± 1.4 

4.0 

± 1.7 

5.6 

± 2.9 

5.4 

± 3.0 

4.5 

± 2.4 

2.5 

± 1.5 

1.5 

± 0.7 

1.1 

± 0.9 

Position (mm) -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 

Maximum 
14.0 

± 13.5 

5.5 

± 3.1 

4.1 

± 1.1 

3.5 

± 1.1 

6.0 

± 6.1 

6.9 

± 6.1 

6.8 

± 5.6 

9.7 

± 8.3 

12.6 

± 11.9 

95 percentile 
7.9 

± 9.6 

4.0 

± 1.2 

3.0 

± 0.8 

3.2 

± 1.2 

2.8 

± 1.2 

6.3 

± 6.3 

6.0 

± 6.0 

8.6 

± 8.7 

9.5 

± 11.9 

90 percentile 
4.1 

± 2.9 

3.2 

± 0.8 

2.5 

± 0.8 

2.4 

± 0.6 

2.4 

± 1.2 

5.2 

± 6.3 

3.4 

± 1.2 

4.2 

± 2.3 

3.6 

± 3.2 

85 percentile 
3.4 

± 2.7 

2.6 

± 0.8 

2.3 

± 0.8 

2.2 

± 0.6 

2.2 

± 1.1 

3.3 

± 1.6 

2.9 

± 1.0 

3.0 

± 1.4 

2.6 

± 2.2 

Table 5.1 The average percentiles of the K
trans

 values in all subjects (in 10
-3

min
-1

). 

Table 5.2 The average percentiles of the kep values in all subjects (in 10
-2

min
-1

). 
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5.5 Discussion 

 The BSCB permeability in experimental SCI is investigated. Traditionally, BSCB integrity is 

determined by administering intravascular proteins or molecules that can cross the compromised 

barriers [23,90-92]. Such method requires animals to be sacrificed for histological evaluation. In 

contrast, DCE-MRI has the advantage of collecting in vivo data that allows longitudinal assessment on 

the same animals. In addition, the size of Gd tracer (Omniscan 0.6 kDa) is smaller than the size of these 

intravascular proteins (Evans blue/albumin 70 kDa), making it more sensitive for detecting subtle 

changes in the BSCB permeability.  

 DCE-MRI enables quantitative measurement of the barrier permeability. However, as shown 

through simulations and MRI studies on phantom, DCE-MRI needs significant improvements both in 

acquisition and analysis strategies for robust estimation of the pharmacokinetic parameters. In these in 

vivo studies, we have incorporated all these improvements. I believe that this distinguishes the current 

study from the previous studies. While the current studies are in qualitative agreement with the 

published studies, a quantitative comparison is quite difficult in the absence of ground truth. 

 The pharmacokinetic parameters        and     were investigated in this study. By definition 

of the two-compartment model,        represents the vascular permeability into the tissue and     is 

equal to the clearance rate divided by the EES volume. It is expected that the permeability would be 

higher closer to the site of the primary injury. In the current study,        was higher closer to the dorsal 

side and at the epicenter as shown in Fig. 5.7.     followed an opposite trend as     was higher closer to 

the ventral side and away from the epicenter. This likely indicates higher EES volume as a result of 

necrotic tissue near the site of initial trauma.  

 To compute the average values of all animals, we decided to show different percentiles of the 

       and     values because the percentiles are less likely to be affected by low CNR and it allows the 

visualization of the distribution of these parameters along the length of the spinal cord. One interesting 

observation in this experiment is that        is on average higher towards the caudal side than to the 

rostral side. The caudal-rostral asymmetry was observed in a recent study by Cohen et al. [9], where 

their DCE-MRI showed average        value in the caudal area to be higher than that in the rostral area 

3 days after SCI. DTI study by Deo et al. has also presented caudal-rostral asymmetry [93]. They found 

that after SCI, the caudal section had lower fractional anisotropy (FA) values than the rostral section. 

Our observation of higher vascular permeability in the caudal section may be a contributing factor in 

lower FA values. It is also worth noting that some animals presented isolated area with high        

away from the epicenter. As an example, Fig. 5.7a shows an isolated region with higher        (light 

blue) in the caudal side. Interestingly, most of these isolated higher permeability regions are caudal to 

the epicenter. 
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 The asymmetric pattern after SCI was also seen in some histological studies on oxidative 

stress. Like compromised BSCB, oxidative stress is a secondary injury in SCI. Baldwin et al. have 

detected greater number of 4-hydroxynonenal/protein positive neurons in the caudal sections compared 

to the rostral sections 2 days after SCI, indicating an asymmetry in lipid peroxidation [94]. Aimone et al. 

have observed an up-regulation of osteopontin, a gene related to oxidative stress-induced angiogenesis, 

in the caudal and epicenter segments from 4 hours to 35 days after SCI [95]. 

 One possible artifact that might falsely contribute to the asymmetry was the lower SNR in the 

rostral region. As the cervical section of the spinal cord was relatively far away from the implanted coil, 

the sensitivity suffered. As shown in Table 5.1, the low SNR and CNR in the rostral distal end led to 

higher inter-subject variation in       . However, the average percentile should be rather insensitive to 

SNR as it did not take into account of low uptake values. Moreover, low SNR could not explain the 

higher        at -1.5 mm compared to +1.5 mm, where the SNR should be very similar. 

 The low     values observed at the epicenter can perhaps be explained by the larger volume 

of EES due to necrotic tissues. Conversely, the higher     values at the distal ends can be explained by 

smaller EES because of the higher population of intact cells. The range of     values was larger at both 

distal ends compared to the range at the epicenter. One of the reasons may be because the     value is 

related to both EES and clearance rate. Since the permeability is small at distal ends (almost normal 

tissue), the     could also be small. There was an increase in     that appeared localized to the region 

immediately rostral to the epicenter. The increased     in this particular area could potentially indicate 

better tissue repair at the immediate rostral region. As shown in Table 4.2, the error in     estimation is 

generally higher than in       . This leads to the high inter-subject variability in     values. Therefore, 

it is possible that the high     observed at +1.5 mm is also a result of the high     variability. 

 One of the observations made in this study was the periodic artifact in the relative intensity 

change-time curve in some clustered DCE-MRI segments. These artifacts occurred in isolated parts of 

the spinal cord and did not appear to be associated with the barrier permeability. This oscillation is 

difficult to notice in normal clinical DCE-MRI study because the period of the oscillation was relative 

long compared to the scan time. However, the oscillation can have significant effect on the 

pharmacokinetic parameters. 

 A potential source of signal oscillation is the temperature fluctuation within the rat. It is 

known that the primary relaxation mechanism in spin-lattice relaxation depends on transfer of thermal 

energy [96]. Since the intensity in DCE-MRI is directly related to T1, the change in temperature can 

have great impact on the calculation of tracer concentration. In the example shown in Fig. 5.1, the 

oscillation component had amplitude of 0.16 in relative intensity change and the average intrinsic T1 in 

this segment was 1230 msec. If the intensity oscillation was a result of T1 oscillation alone, T1 would 
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need to fluctuate between 1060 msec to 1470 msec. According to [97], such T1 fluctuation would 

approximately correspond to 20°C change in temperature. However, it is very unlikely that the 

temperature changed by this extent within the spinal cord. Further study must be conducted to 

investigate this periodic artifact. 
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Chapter 6 

 

CONCLUSIONS AND FUTURE DIRECTIONS 
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6.1 Conclusions 

 Quantitative DCE-MRI is an important tool for measuring vascular permeability. 

Unfortunately, large variability in the estimated pharmacokinetic parameters has been observed in 

published literatures. A number of factors can affect the accuracy of DCE-MRI analysis. These include 

the baseline T1 value [45], temporal sampling rate [21], spatial resolution [19], and noise. The work 

presented in this thesis has three innovative features for improving DCE-MRI. The innovations include 

1) modifications of the fast T1 mapping method; 2) view sharing method for improved temporal 

resolution; 3) clustering analysis to reduce apparent noise. These methods, through simulations and 

phantom studies were shown to yield more robust results in DCE-MRI. Finally, these methods were 

applied to investigate the BSCB permeability in experimental SCI. 

 The tracer concentration is proportional to the inverse of intrinsic longitudinal relaxation time 

(see Eq. 1.7). As a result, the uncertainty in        estimate increases with the error in T1. In this study, 

the 3D LL sequence was implemented to provide T1 estimations. I optimized the k-space segmentation 

scheme and developed a χ
2
 weighted multi-step curve fitting procedure to reduce reconstruction and 

estimation errors. These improved techniques were shown to provide more accurate T1 estimation. 

Phantom study has shown that the standard deviation of T1 measurement was less than 2% on average in 

normal circumstances. One drawback of the 3D LL sequence is the reconstruction artifact at the edges. 

The elliptical segmentation scheme should reduce the edge error to less than 4% in the actual T1 map 

(should be more than 5% using traditional segmentation method). Simulations suggested that the 

estimation error in        was inversely proportional to the error in T1 in a one-to-one ratio 

approximately. Therefore, the T1 uncertainty should lead to about 2%        uncertainty on average and 

4%        uncertainty at the edges. Previous studies have reported larger        error due to error in T1 

[45,46]. However, these studies computed the T1 error based on VFA T1 mapping. In fact, 3D LL 

acquisition was shown to be more reproducible than 3D VFA [98]. Application of the proposed 3D LL 

modifications can therefore reduce the uncertainty in       . 

 Coarse temporal resolution can increase the uncertainty in the calculated pharmacokinetic 

parameters [19-21]. In this work, a view sharing acquisition based on the elliptical 3D TRICKS method 

was implemented to increase the DCE-MRI sampling rate. In addition to the increased sampling rate, 

simulations in this work have shown that the view sharing technique can also reduce noise in the images. 

As shown in in this work (see Fig. 4.2) and previously reported in [20], data in the early post-contrast 

phase has the greatest impact on the pharmacokinetic parameters estimation. Unfortunately, the error in 

image intensity is highest in the early post-contrast period. The k-space normalization method was 

developed to reduce these reconstruction artifacts. It is shown that error in the early post-contrast phase 

can be reduced with application of the normalization factor. Consequently, this proposed view sharing 
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acquisition method with k-space normalization has the potential to provide low noise, high temporal 

resolution images with reduced artifacts. 

 Simulations in this study showed that noise in the DCE-MRI data could lead to substantial 

error in pharmacokinetic parameters. At high       , the estimated        error in a voxel was similar to 

that reported in [45]. But as the        value decreased, the accuracy of        estimation also 

decreased due to decline in CNR. After SCI, the permeability of the BSCB was still relatively low 

compared to non-CNS vasculature. This low permeability could lead to more than 10% error in        

as shown by the simulations. A local search clustering algorithm was developed to cluster relative 

intensity change-time curves into segments to improve the apparent CNR while maintaining the 

heterogeneity in the tissue uptake. The clustered segments were shown to reduce estimation error of the 

pharmacokinetic parameters compared to pixel-by-pixel or user-defined ROI analysis. 

 Finally, all the methods developed in this thesis for DCE-MRI were applied to in vivo 

investigation of BSCB permeability in experimental SCI. Multiple studies have assessed the post-SCI 

BSCB permeability using DCE-MRI because of its importance in probing the secondary injury 

[4,8,9,53,64,81]. However, in these published studies, the intrinsic T1 was not measured and a universal 

T1 was applied to compute tracer concentration. In addition, many of these studies used 2D acquisition. 

In contrast, the current experiments acquired T1 map during each DCE-MRI section and all data were 

performed using 3D acquisition. DCE-MRI data were clustered to reduce noise while preserving the 

spatial heterogeneity. By applying these new techniques, the current experiment should provide more 

accurate results in DCE-MRI. 
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6.2 Future Directions 

 The temporal resolution in the current 3D DCE-MRI acquisition was 40 sec even with the 

application of view sharing technique. In principle, faster sampling rates can be achieved at the expense 

of spatial resolution. However, reduced matrix size will lead to truncation artifact that is especially 

prominent in the post-contrast images. Moreover, a previous study has also suggested that poor spatial 

resolution would degrade the estimation of the pharmacokinetic parameters [19]. Future improvements 

in the temporal resolution are possible. For example, the introduction of compressed sensing [99] 

provides a framework for sparse data sampling, thus improving the temporal resolution. Multiple studies 

have shown the effectiveness of constrained iterative reconstruction in MRI using the compressed 

sensing technique [100-102]. Application of compressed sensing to DCE-MRI can potentially improve 

the temporal resolution even further. In addition, it is possible to incorporate concentration-time curve 

clustering into the constraint of iterative reconstruction. This can potentially reduce noise without 

compromising spatial resolution. 

 In future, a through longitudinal study of BSCB permeability can be performed using the 

proposed techniques. A more accurate quantitative result can advance our understanding of the temporal 

and spatial evolution of BSCB permeability after SCI.  
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Appendix 

 

Derivation of the Transverse Magnetization in a Look-Locker Acquisition 

 A LL sequence is composed of an inversion pulse   followed by a series of small flip angles   

to acquire the SPGR images. Let   
  be the longitudinal magnetization right before the  th

   pulse after 

the   pulse and   
  be the longitudinal magnetization right after the  th

   pulse, then: 

  
 ( )    

       (A1.1) 

The (   )
th
 pulse is applied at time   after the  th

 pulse, so: 

  
 ( )    (       ⁄ )    

          ⁄      
  (A1.2) 

Let      be the total number of   pulses applied after each inversion, and   
  be the longitudinal 

magnetization right before the   pulse. The   pulse is applied at time    after the last   pulse (    ) is 

applied, so: 

  
       

 (  )    (        ⁄ )       

           ⁄  (A1.3) 

The magnetization after the   pulse would be: 

  
 ( )    

      [  (        ⁄ )       

           ⁄ ]      (A1.4) 

Notice that Eq. A1.4 also holds in saturation recovery sequence where   is 90° instead of 180°. The first 

  pulse is applied at time    after the   pulse, therefore the longitudinal magnetization right before the 

first   pulse would be: 

  
    (        ⁄ )    

           ⁄  (A1.5) 

The following simplification is made: 

      (    ⁄ ) 

      (     ⁄ ) 

      (     ⁄ ) 

 

So, the magnetization right before the  th
   pulse would be: 

  
    (    )[         (      )    (      )   ]

 [  (    )    
       ](      )    

(A1.6) 

The series in the first term can be summed and Eq. A1.6 would yield: 

  
    (    ) [

  (      )   

        
]  [  (    )    

       ](      )    (A1.7) 

Combining Eq. A1.3 with Eq. A1.6,   
  under steady state condition can be calculated: 
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which leads to 
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Substituting   
  in Eq. A1.8 into Eq. A1.7 yields: 
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(A1.9) 

The transverse magnetization   ( ) is equal to   
     , which is represented in Eq. 2.1.  
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