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FZD6, MATN2 AND SLC25A32, POSSIBLE CANDIDATE GENES IN 
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Nevena Cvjetkovic, B.S. 

Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth 

defect with a multifactorial etiology.  Despite decades of research, the genetic underpinnings 

of NSCLP still remain largely unexplained.  A genome wide association study (GWAS) of a 

large NSCLP African American family with seven affected individuals across three 

generations found evidence for linkage at 8q21.3-24.12 (LOD = 2.98).  This region 

contained three biologically relevant candidate genes: Frizzled-6 (FZD6) (LOD = 2.8), 

Matrilin-2 (MATN2) (LOD = 2.3), and Solute Carrier Family 25, Member 32 (SLC26A32) 

(LOD = 1.6).   Sequencing of the coding regions and the 5’ and 3’ UTRs of these genes in 

two affected family members identified a rare intronic variant, rs138557689 (c.-

153+432A>C), in FZD6.  The rs138557689/C allele segregated with the NSCLP phenotype; 

in silico analysis predicted and EMSA analysis showed that the 138557689/C allele creates 

new DNA binding sites.  FZD6 is part of the WNT pathway, which is involved in 

craniofacial development, including midface development and upper lip fusion.  Our novel 

findings suggest that an alteration in FZD6 gene regulation may perturb this tightly 

controlled biological pathway and in turn contribute to the development of NSCLP in this 

family.  Studies are underway to further define how the rs138557689/C variant affects 

expression of FZD6. 
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INTRODUCTION 

Isolated or nonsyndromic cleft lip with or without cleft palate (NSCLP) is the fourth 

most common  birth defect affecting more than 4,000 births each year in the United States  

[1,2,3].  Despite the improvements in treatment, NSCLP has considerable medical and 

financial implications for the affected individuals and their families, and the effects on 

speech, hearing, and appearance can lead to adverse psychosocial and psychiatric outcomes 

[4,5,6].  Individuals with NSCLP require multidisciplinary team care through adulthood and 

continue to demonstrate increased morbidity and mortality rates compared to the general 

population [7,8].  

Cleft lip and palate has been recognized and documented throughout history.  First 

evidence of clefting was noted in an Egyptian mummy dating from 2400 to 1300 BC [9].  A 

2000-year-old statue of a Columbian king, a 2000-year old African mask, a Ming dynasty 

painting, and a 20
th

 century Russian painting all depicted orofacial clefts [9].  What appears 

to be the first documented treatment of cleft lip and palate was performed in 390AD by a 

Chinese physician [10].   

Many different explanations for causation of cleft lip and palate have evolved among 

the various cultures and populations in the world.   Causes are often attributed to maternal 

impressions or supernatural events [11].  The term “hare-lip” to describe cleft lip originated 

from beliefs that clefting results from eating or looking at a rabbit [12,13].  A prevailing 

belief in many cultures is that a child will be born with a birth defect, including cleft lip and 

palate, if a woman pities or makes fun of an affected individual while pregnant [13,14,15].  

Supernatural causes, such as the effect of the moon (lunar eclipse), are alleged causes of 

cleft lip and palate in Mexican folklore and among Hispanic populations [14,15,16], while 

populations in India and Nigeria ascribed the cleft to “God's will”, evil and ancestral spirits, 
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or sins committed in past lives [17,18].  Thesis work of Fogh-Andersen in 1942 was the first 

to widely recognize the hereditary component of CLP [19]. 

Despite the fact that NSCLP has been part of human life for many centuries, and the 

fact that many beliefs for the causation of this birth defect exist, the etiology of NSCLP is 

still largely unknown.  Continual research in this area is needed to help elucidate the 

underlying etiologies of this common birth defect in order to improve genetic counseling for 

recurrence, diagnosis, prevention, and treatment, as well as to improve our understanding of 

the development of clefts.  

 

Classification of Clefts 

Orofacial clefts are divided into two groups based on developmental origin:  anterior 

and posterior clefts [20].  Anterior cleft anomalies include cleft lip (CL) only, or cleft lip and 

primary palate (CLP) [20].  Anterior clefts can extend through the lip and alveolar part of 

the maxilla (primary or hard palate) to the incisive fossa [20].   Posterior cleft anomalies, 

which include clefts of the secondary or soft palate, present as cleft palate only (CPO) [9,20]  

Posterior clefts extend through the soft and hard sections of the palate to the incisive fossa 

[20]. 

Clefts can further be divided into syndromic or nonsyndromic.  Syndromic clefts are 

distinguished by the presence of other congenital malformations and may be associated with 

specific genes, chromosomal abnormalities, or maternal teratogenic exposures [21].  

Approximately 30% of CLP and 50% of CPO are associated with other syndromes or 

anomalies, and there are currently over 400 different conditions listed on Online Mendelian 

Inheritance of Man in which clefts occur (http://www.ncbi.nlm.nih.gov/omim) [21].  Table 1 
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is an abbreviated list of syndromes which have CLP or CPO as a phenotypic finding and the 

genes associated with them.  The remaining 70% of cases of CLP and 50% of cases of CPO 

are isolated, and therefore are referred to as nonsyndromic [21].  Nonsyndromic CLP 

(NSCLP) is the focus of this study.    

 

 

A cleft can be unilateral, occurring on one side of the face, or bilateral, occurring on 

both sides of the face.  Unilateral clefts account for 90% of CLP (~60% of which occur on 

the left side) while bilateral clefts account for the remaining 10% [21].   

 Recurrence of syndromic CLP depends on the underlying genetic condition, while 

recurrence risk for NSCLP depends on several factors including number of affected 

individuals in family, relation of affected family member, and laterality of the cleft [22].  
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The empirical recurrence risk for siblings is 2-3% in a case of unilateral CLP and 3-5% in 

the case of bilateral CLP [22].   

 

Birth Prevalence  

Cleft lip with or without palate is estimated to occur in approximately 1/700 to 

1/1000 births but the prevalence of clefts varies by ethnicity [21,23].  The frequency of 

NSCLP appears to be highest among Native Americans (~3.6/1000 births) followed by 

Japanese (~2.1/1000 births) and Chinese (~1.7/1000 births) populations, and appears to be 

the lowest among African derived populations (~0.3/1000 births) [9].   In Texas, the 

prevalence of NSCLP is 0.67/1000 for Non-Hispanic Whites, 0.63/1000 for US-born 

Hispanics, 0.65/1000 for non-US born Hispanics, and 0.40/1000 for African Americans [1].   

Birth prevalence of NSCLP also varies by gender with a 2:1 male to female ratio 

[24].   An association between NSCLP and socioeconomic status is implicated by studies 

which show groups from rural, lower socioeconomic areas having a higher birth prevalence 

of NSCLP compared to ethnically similar groups within higher socioeconomic status [21].   

The birth prevalence of isolated CPO is approximately 1/2000 births and does not 

appear to differ much between various ethnicities [21].   In contrast to NSCLP, there is a 

female predominance of isolated CPO with a 3:2 female to male ratio [25].  

 

Normal Development of the lip and palate 

Understanding of normal development of the upper lip, primary, and secondary 

palates is important to help explain the reason for the altered development seen in CLP.  

Normal craniofacial development is a complex process directed by intricate pathways 
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important for cell induction, differentiation, proliferation, migration, patterning, and 

apoptosis [8,26].  Molecular pathways, including the Bmp, Fgf, Shh, and Wnt pathways, 

coordinate craniofacial development through both synergistic and antagonistic signaling 

[26].  Numerous genes, which code for growth factors, transcription factors, cell adhesion 

molecules, and signaling molecules, strictly regulate the development of the face 

[19,27,28,29,30].  Theoretically, perturbations within any of these genes and pathways could 

alter craniofacial morphogenesis and result in clefting.     

 The human face begins developing in the 4th week of embryogenesis [28].  Neural 

crest cells (NCCs), which are the major source of connective tissue components, migrate 

from the neural folds and combine with the core mesoderm and the epithelia to establish five 

facial primordia [20,26].  As depicted in Fig. 1a, the primodia consist of a single frontonasal 

prominence, two mandibular and two maxillary prominences, all of which surround the 

primitive oral cavity [8,28].  Ectodermal thickenings form nasal placodes and results in the 

formation of nasal pits by the end of week 4.  The nasal pits further divide the frontonasal 

prominence into two horseshoe-shaped medial and lateral nasal processes (Fig. 1b) [8,26].     

Rapid growth of the underlying mesenchyme of the facial primordia causes the 

medial nasal prominences to merge with each other and with the maxillary and lateral nasal 

prominences between the 7
th

 to 10
th

 week of embryogenesis [20].  The contact epithelia 

between the prominences are broken up by cell apoptosis to give rise to the intermaxillary 

segment from which the philtrum of the upper lip, the premaxillary part of the maxilla and 

the primary palate are formed (Fig. 1c) [20,26].   

 The secondary palate, which comprises majority of the soft palate, except for the 

anterior portion that holds the incisor teeth, has a different developmental origin [20].  
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Palatal shelves, which originate from the maxillary processes, appear in the 6
th

 week of 

development and grow downward, vertical to the sides of the developing tongue (Fig. 1d)  

[8,9].  The palatal shelves then elevate to a horizontal position above the tongue (Fig. 1e), 

and fuse together (Fig. 1f) [8,20].  This is thought to occur earlier in females then in males 

[9].  Additionally, the two palatal shelves merge with the primary palate and the nasal 

septum dividing the oral from the nasal cavity [8].  This process is complete by the end of 

the 10
th

 week [9,20]. 

 

 

Development of Cleft Lip and Palate 

Cleft lip and palate can result when any of the multifaceted factors involved in 

normal facial morphogenesis are disrupted or altered.  These may include failure of fusion of 
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the processes that form the face, distortions in epithelial movement, deficiency in epithelial 

and mesenchymal transformation (EMT), or failure in apoptosis [26]. 

Deficiency of mesenchyme in the maxillary prominence(s) and the median palatal 

process leads to anterior clefts [20].  Failure of one maxillary prominence to unite with the 

two merged medial nasal prominences results in unilateral cleft of the upper lip, while 

failure of both maxillary prominences to unite with the merged medial nasal prominences 

results in bilateral cleft of the upper lip [9,20].   

Defective development of the secondary palate leads to posterior palatal clefts [20].  

This is mainly due to the failure of mesenchymal masses in the lateral palatal processes to 

meet and fuse with each other and the nasal septum [9,20].      

 

Treatment of NSCLP 

Treatment of a patient with CLP requires a multidisciplinary approach which 

includes craniofacial and maxillofacial surgery, dentistry and orthodontic, audiology, 

otolaryngology, speech and language, nursing, pediatrics, genetics, and social services [31].  

Many different surgical protocols exist to repair CLP and treat ensuing complications [21].  

Currently, however, there is not an internationally accepted protocol for CLP repair [32].   

Surgical repair of the CLP usually occurs within the first six months of life, the 

general rule being to perform surgical repair when the child is approximately 10 weeks of 

age, weighs at least 10 lb, and has achieved serum hemoglobin of 10 mg/ml [33].   There are 

various techniques of CLP repair which have been refined throughout time and some of 

these include LeMesurier (1955), Tennison (1952), Millard (1950), Skoog (1969), Randall 
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(1990) and Brauer (1985).  The choice of technique, however, most often depends on 

surgeon preference and severity of cleft [21]. 

 

Etiology of NSCLP 

  NSCLP does not follow a traditional Mendelian pattern of inheritance but is believed 

to result from a combination of several genetic variants which act in an additive fashion and 

interact with the environment to produce the phenotype [21].  NSCLP is therefore 

considered to be a multifactorial disorder that results from the interaction of both genetic 

and environmental factors [21].  Genetic evidence for NSCLP comes from multiple studies.  

These studies show that NSCLP aggregates in families, that there is a family history for 

clefting in 24-33% of NSCLP patients with a 10 to 32-fold increase in recurrence risk to first 

degree relatives, that the heritability of NSCLP in the NHW population is approximately 

76%, and that the rate of concordance is higher in monozygotic (25-40%) than dizygotic (3-

6%) twins [9,21,34,35,36,37,38,39].  Various environmental factors have also been 

associated with an increased risk for NSCLP including smoking, alcohol, diet, infections, 

fever, drugs, and teratogenic agents during early pregnancy [21,40,41,42,43].    

Only a handful of genes associated with NSCLP have been identified to date and 

these comprise approximately 20% of the genetic causes of NSCLP [44].   Interferon 

regulator factor 6 (IRF6) is one of the genes that has shown an association with NSCLP in 

multiple populations [45,46,47,48,49,50].  Mutations in IRF6 are also known to cause van 

der Woude syndrome [51].  Various other genes, which include growth factors (TGFα, 

TGFβ), transcription factors (MSX1, TBX22), genes involved in xenobiotics (CYP1A1, 

GSTM1, NAT2), and other genes (RARA, MTHFR, CRISPLD2), have also been associated 
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with NSCLP [52,53,54,55,56,57,58,59,60,61].  The constant identification of novel genes 

for the pathogenesis of NSCLP across various populations highlights the genetic 

heterogeneity of this complex birth defect.     

 

Gene identification in NSCLP 

Multiple genetic approaches have been used to identify the genes and pathways 

contributing to NSCLP.  These approaches include assessment of mouse models, linkage 

analysis using large multiplex families and affected relative pairs, association studies using 

family-based or case-control samples, identification of chromosomal anomalies or 

microdeletions in affected cases, and candidate gene studies [62].   

Recently, genome-wide association studies (GWAS) have expanded the research in 

NSCLP and markedly helped in the identification of new candidate genes.  GWAS studies 

use known single nucleotide polymorphisms (SNPs) that cover the genome to identify 

regions that are linked to and/or associated with NSCLP [62].  Identification of candidate 

genes by GWAS permits further analysis of individual genes through direct sequencing [62].   

Sequencing of the candidate genes allows for identification of sequence variants within the 

gene which could potentially contribute to the development of NSCLP [62].  The sequence 

variants can be located within protein coding regions as well as noncoding regions, which 

include promoter/enhancer regions, or introns of the gene [63].  

 

8q21.3-24.12 Chromosomal Region 

A GWAS study performed in 2009 identified a major locus for NSCLP on 

chromosome 8q24 but the region with highest linkage did not contain any protein coding 
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genes [64].  Subsequent GWAS studies confirmed the association with the 8q24 locus and 

identified additional loci including 10q25, 7q22, 20q12, and 1p22 [62].  A smaller GWAS 

study reported by Chiquet et al. evaluated 10 multiplex NSCLP families including one large 

African-American family with 11 affecteds across 3 generations (Fig. 2).  It was performed 

to confirm existing and identify new NSCLP chromosomal regions [65].  The study found 

evidence for linkage on 8q21.3-24.12 (LOD=2.98) [65].  Further evaluation of this region 

using linkage analysis generated a maximum multipoint LOD score of 2.8 for SNPs in 

Frizzled 6 (FZD6), 2.3 in Matrilin-2 (MATN2), and 1.6 in Solute carrier family 25, member 

32 (SLC26A32), prompting further analysis of these three genes and their connection to 

NSCLP. 
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Frizzled-6 and WNT pathway 

Human Frizzled-6 (FZD6) gene maps to chromosome 8q22.3-q23.1 and encodes a 

706 amino-acid seven-pass transmembrane protein with a cystine-rich domain in the N-

terminal extracellular region, two-N linked glycosylation sites, and two cystine residues in 

the second and third extracellular loops [66].   A total of 7 exons, 6 of which are coding, 

comprise the FZD6 gene [66].  FZD6 amino acid sequence is well conserved between mouse 

and human genes with an amino acid identity of 83.3% [66]. 

FZD6 is part of the Frizzled gene family which code for a group of receptors critical 

for initiation of wingless-type (WNT) signaling pathway [67].  The Frizzled receptors share 

conserved features which include a cystine-rich domain in the N-terminal extracellular 

region implicated in the binding of WNT ligands, N-linked glycosylation sites, two cystine 

residues in the second and third extracellular loops, and a Ser/Thr-x-Val motif in the C-

terminus which acts as a binding site for the cytoplasmic protein containing the PDZ domain 

[66,68,69]. 

FZD6 codes for three mRNA isoforms that are detected in both adult and fetal 

tissues [70].   FZD6 was shown to be important for hair patterning in both Drosophila and 

mice as well as mice claw morphogenesis and appears to act within the WNT/PCP (planar 

cell polarity) pathway [71,72,73].  Mutations in FZD6 have been associated with isolated 

autosomal recessive nail dysplasia and open neural tube defects in humans [71,74,75].  

  WNT signaling regulates differentiation and proliferation of a variety of cell types 

during development and is an important regulator of various functions within the cells [76].  

Signaling by the WNT pathway directs cell proliferation, cell polarity, and cell fate 

determination during embryogenesis and homeostasis, regulates multiple developmental 
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processes, and plays a critical role in embryogenesis through both canonical (β-catenin 

dependent) and noncanonical (WNT/PCP and Ca2+/CAMKII) signaling [76,77].   

The canonical/ β-catenin pathway is the best understood.  As depicted in Fig. 3a, 

when a WNT ligand is absent, cytoplasmic β-catenin forms a complex with the scaffolding 

protein Axin, the tumor suppressor adenomatous polyposis coli gene product (APC), 

glycogen syntahse kinase 3B (GSK3B) and casein kinase 1 (CK1), and is phosphorylated by 

CK1 and subsequently by GSK3B [67].  Phosphorylated β-catenin is then recognized by the 

E3 ubiquitin ligase (UB), and is targeted for degradation within the proteosome [78].  This 

degradation, in turn, prevents β-catenin from reaching the nucleus, where the WNT target 

genes are repressed by the DNA-bound T cell factor/lymphoid  enyhancer factor (TCF-

TLE)/Groucho and histone deacetylases (HDAC) [67]. 

Transcription of WNT target genes is activated in the presence of WNT ligand.  As 

shown in Fig. 3b, the WNT ligand binds to a receptor complex formed between Frizzled and 

low-density lipoprotein receptor related protein 5 or 6 (LRP5/6).  This complex then recruits 

a scaffolding protein Dishevelled (Dvl) and leads to LRP5/6 phosphorylation and Axin 

recruitment [67,77].  This interrupts Axin-mediated phosphorylation and subsequent 

degradation of β-catenin, and allows β-catenin to build up in the nucleus where it can 

activate  TCF/LEF and initiate transcription of WNT responsive genes [67].  
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In contrast to other Frizzled receptors, FZD6 protein lacks the Ser/Thr-X-Val motif 

at the C-terminal common to other frizzled receptors and has been shown to repress 

canonical WNT signaling through the noncanonical Ca2+/CaMKII pathway by inhibiting 

the TCF/LEF binding activity and down-regulating β-catenin targeted transcription of WNT 

genes [66,70].  Removal of FZD6’s N or C terminal sequences, however, abolishes the 

repressive activity of the protein [70]. 

Mutations in the WNT pathway have been linked to a variety of birth defects, 

cancers, and other diseases [67].  Importantly, WNT signaling has been shown to play a role 

in craniofacial development, including regional specification in the vertebrate face, neural 

crest induction and differentiation, mid-face development and upper lip fusion in mice, and 
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facial morphogenesis in mice [26,79,80,81,82,83,84,85].  Craniofacial abnormalities, 

including orofacial clefts, are found in WNT knockout mice and zebrafish [86,87].  An 

association with individual WNT genes and NSCLP has been found in humans (WNT3, 

WNT3A, WNT5A, WNT7A, WNT8A, WNT9B and WNT11) [87,88,89,90].  Based on this 

information, FZD6 is a strong candidate gene for NSCLP.  Coding mutations or variants in 

the regulatory regions of FZD6 may alter the tightly regulated WNT pathway, and in turn 

contribute to NSCLP.    

 

Matrilin-2 and the extracellular matrix assembly 

Matrilin-2 (MATN2) gene maps to chromosome 8q22.1-q22.3 and encodes a 956 

amino-acid protein whose structure consists of a putative signal peptide, two von 

Willerbrand factor A (vWFA)-like domains parted by ten epidermal growth factor (EGF)-

like domains, a unique segment not seen in other matrilins, and an α-helical coiled-coil (CC) 

domain [91,92,93].   MATN2 has 19 exons and is transcribed from two alternative 

promoters, one of which is an upstream housekeeping-type promoter functional in 

fibroblasts and other cell types, and a downstream TATA-like promoter restricted to only 

embryo fibroblast and certain cell lines [94].   Matrilin-2 protein functions as a part of a 

tightly regulated pathway in the extracellular matrix (ECM) assembly and it is found in a 

wide variety of connective tissue cells, smooth muscle cells, and both the dermis and the 

epidermis in humans [93,95].  Human and mice Matrilin-2 proteins show 86.5% identity 

[93].   

Matrilin-2 belongs to a family of four ECM proteins (matrilin-1, -2, -3, and -4), all of 

which share a structure made of vWFA and EGF domains, and a α-helical CC segment [92].  
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The matrilin genes also share a phase I, U-12-type AT-AC intron that is located in a strictly 

conserved position that separates the two exons for the CC domain [94].  While matrilin-1 

and matrilin-3 are expressed mainly in cartilage and skeletal tissue, matrilin-2 and -4 have 

wider tissue distribution, including some non-skeletal tissues [91].  Matrilins -1, -2, and -3 

can form filamentous networks that can connect to collagen fibers [93].  While Matrilin-2 is 

expressed in the mesoderm and epithelium in mice it is expressed in the dermal side of the 

basement membrane at the dermal-epidermal junction, as well as in keratinocytes and 

fibroblasts in humans [95].     

Mutations in MATN3 gene were found to be associated with autosomal dominant 

forms of multiple epiphyseal dysplasia (MED) and mutations in MATN1 have been 

associated with osteoarthritis and relapsing polychondritis.  MATN2 and MATN4, to date, 

have not been associated with any disease [92,96].  Knock-out mice lacking Matn2 have 

been shown to develop without any obvious abnormalities [97].  Few disorders, including 

Klippel-Fiel syndrome with laryngeal malformations and Cohen syndrome (which consists 

of facial, oral, ocular, and limb deformities, and well as intellectual disability), have been 

linked to the 8q22 position [93].  MATN2, however, has not been identified as a candidate 

gene  in these syndromes [93].   

Despite the lack of obvious craniofacial phenotype in Matn2 knock-out mice, 

interactions of ECM components, growth factors, and embryonic tissues are known to be 

involved in the normal development of cranial priomordia and orofacial structures [98,99] 

and alterations in the ECM components could potentially lead to NSCLP.  
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Solute carrier family 25, member 32 and Folate metabolism 

Solute carrier family 25, member 32 (SLC25A32) gene, also called Mitochondrial 

Folate Transporter (MTF), is located on chromosome 8q21.2.   SLC25A32 consists of 7 

exons and encodes a 315 amino-acid protein transporter which shuttles folates from the 

cytoplasm into the mitochondria [100].  The protein consists of six transmembrane domains: 

three loops facing the mitochondrial matrix and three repeats of an energy transfer sequence 

[100].  The protein does not contain an ATP-binding motif and probably functions as an 

ATP-independent transporter [100].   

Solute carriers are comprised of 43 identified families which control the movement 

of various substances across the cell membrane [101].  Members of the solute carrier family 

25 (SLC25) are known to transfer a variety of substances across the mitochondrial 

membrane, and are therefore referred to as mitochondrial solute carriers [102].  The 

SLC25A32 protein is shown to transport folate across the mitochondrial membrane [100].   

Folate metabolism is a complex process consisting of multiple genes and pathways.  

Folate is absorbed from the environment, transported across the cell membrane, and 

compartmentalized between the mitochondria and the cell cytoplasm before it is transported 

into the mitochondria [103].  The transport of folate into the mitochondria involves various 

transporters and carriers, including the SLC25A32 transporter [100,103].   

The importance of folate in prevention of birth defects has been investigated since 

folate fortification reduced the occurrence of spina bifida, an open neural tube defect 

(ONTD), by approximately 70% [104].  Because ONTDs and NSCLP both develop from 

migrating neural crest cells, studies have been performed to assess the role of folic acid in 

NSCLP in hopes to validate the hypothesis that folic acid deficiency may also contribute to 
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NSCLP [105,106].  Observational studies of folic acid supplementation and the recurrence 

of NSCLP have not reliably shown the same decrease as with ONTD.   A few meta-analysis 

studies, however, showed decreases of 18-23% in the risk of NSCLP with supplementation 

of folic acid and/or multivitamins during pregnancy [107,108].   Studies also suggest that 

variations in the folate pathway genes may contribute to NSCLP [105].  Disturbances in the 

folate transport, therefore, may also contribute to NSCLP.       

 

Significance of this study 

NSCLP is a common birth defect caused by both genetic and environmental factors.  

Despite decades of research, genetic contributions to NSCLP have yet to be explained, and 

there remains the need to identify candidate genes.  The goal of this project is to further 

elucidate the genetic etiology of NSCLP by sequencing the coding and 5’ and 3’ UTR 

regions of three biologically relevant candidate genes, FZD6, MATN2, and SLC25A32, 

previously identified in a genome wide scan in a large multiplex African-American family.  

This family is unique because NSCLP has a low prevalence in the African American 

population yet there are numerous affected individuals in multiple generations.   Sequence 

variants in any of these three genes may disrupt the highly regulated craniofacial 

development and give rise to NSCLP.   Identification of new genes for NSCLP would not 

only benefit in diagnosis, prevention, and counseling for this birth defect, but may help in 

understanding the developmental pathways involved in craniofacial morphogenesis.   
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MATERIALS AND METHODS 

IRB Approval 

This study was approved by the Committee for the Protection of Human Subjects at 

the University of Texas Health Science Center at Houston (HSC-MS-03-090 and HSC-MS-

11-0336). 

Family  

The focus of this study is an African American NSCLP family with 11 affected 

individuals, 7 of whom were available for evaluation (Fig. 2).  All family members were 

evaluated by one author (JTH).  No other anomalies or lip pits were present in any family 

members.  DNA samples from these 7 individuals and 13 connecting or related unaffected 

family members were subjected to a previously described 6K Illumina IVb genome scan and 

linkage analysis [65].  A maximum multipoint LOD score of 3.0 can be obtained for this 

family.   

Sequencing 

The genomic structure of FZD6, MATN2, and SLC25A32 was determined using the 

NCBI GenBank (www.ncbi.nlm.nih.gov).  Forward and reverse primers were designed to 

capture the sequence of each exon and approximately 50-100 bps upstream and downstream 

of the intron/exon junction, as well as the complete 5’ and 3’ untranslated regions (UTRs) 

for all three isoforms of FZD6, two isoforms of MATN2, and SLC25A32 (Supplemental 

Tables 1-3).  DNA samples from two affected family members (Fig 2: III-15 and IV-2) were 

sequenced for each gene.  These individuals were chosen from the opposite sides of the 

family since they are less likely to share common familial variants.  After initial data 

analysis, 24 additional family members (5 affected and 19 unaffected) were sequenced for 
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rs138557689 using FZD6 primer set E1C (Supplementary Table 1). Standard PCR 

amplification conditions were used and the annealing temperatures for each primer set are 

shown in the Supplemental Tables 1-3.  Amplified PCR product was purified according to 

manufacturer’s protocol (Qiagen, Valencia, CA).  Sequencing results were compared to 

consensus sequences obtained from NCBI public database and analyzed using Sequencer 

v4.9 (Gene Codes, Ann Arbor, MI).   

Variant Analysis 

Sequence variants were identified using dbSNP 

(www.ncbi.nlm.nih.gov/projects/SNP).  Only sequence changes shared by both affected 

individuals (Fig 2: III-15 and IV-2) were considered.  SNPs identified in the potential 

regulatory regions, 5’ UTR and the first two introns of the gene, were assessed for their 

effect on DNA binding using three online in silico analyses: Alibaba2, Patch, and 

Transcription Element Search Software (TESS) [109,110,111].  SNPs identified in the 

3’UTR region were assessed for their effect on microRNA binding sites using 

microRNAMap and miRBAse databases [112,113].  SNPs identified in the coding region 

were analyzed using PolyPhen and SIFT [114,115].  

Species Conservation Analysis 

SNPs were assessed for evolutionary conservation using the UCSC Genome Browser 

Multiz Alignments of 46 Vertebrates track (www.genome.ucsc.edu/cgi-bin/hgGateway) and 

the ECR Browser tool (http://ecrbrowser.dcode.org).   SNPs were further assessed using the 

genomic evolutionary rate profiling (GERP) track within the UCSC browser to estimate the 

evolutionary constraint rates for individual nucleotide positions [116].  GERP scores are 

positive in constrained regions and negative in neutral DNA [116]. 
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Electrophoretic mobility shift assay (EMSA)  

EMSA was used to evaluate whether an ancestral or alternate allele in the SNP of 

interest altered DNA binding.  20-mer oligonucleotide sequences were hybridized 

incorporating either the ancestral or alternate allele (Integrated DNA Technologies, 

Coralville, IA) and labeled with P
32

 dCTP (40,000cpm).  The binding reaction was carried 

out in 20 uL binding buffer mix (1M Tris (pH 7.5), 1M KCl, 80% glycerol, 10% NP-40, 

0.5M EDTA, 100 mM PMSF, 1M DTT and H2O), containing 1 uL poly dGdC and 1 uL 

Cos7 cell nuclear extract, and was incubated on ice for 20 mins.  The sample was incubated 

with the radiolabeled probes for 20 mins at room temperature.  The complexes were 

resolved on a 5% polyacrylamide gel at 150V for 3hrs in TBE buffer.  Gels were dried and 

exposed at -80° C for 48 hrs.  Negative controls were run with cold oligonucleotides using 

the labeled probes and binding buffer without the nuclear extract. 

Genotyping of NSCLP Probands and Unaffected Controls 

A custom TaqMan Genotyping Assay (Applied Biosystems, Foster City, CA) was 

designed to genotype rs138557689 using our standard protocol and was detected on ABI 

Viia7 RUO Machine (Applied Biosystems, Foster City, CA).  A total of 579 controls and 

836 NSCLP probands were genotyped.  Allele calls were determined using the Viia7 

Software (ABI) and the allele call rate was greater than 98%.  
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RESULTS 

Sequencing of the coding and 5’ and 3’ UTR regions for FZD6, MATN2, and 

SLC25A32 identified three sequence variants in III-15 and IV-2 (Fig. 4).  One sequence 

change, a homozygous deletion of nucleotide T (c.*164delT), was identified in the 3’UTR 

of SLC25A32.  This sequence variation is listed in dbSNP as rs11345830, but the frequency 

in the general population was not available.  However, this homozygous deletion is highly 

conserved among primates, is not predicted to affect microRNA binding sites, and was 

therefore excluded from further analysis.  One variant, rs113199627 was identified in the 

5’UTR of MATN2.  This is a common variant in the population (MAF=14.5%) and was also 

excluded from further analysis. 

A single base pair c.-153+432A>C change in FZD6 was present in both individuals 

(Fig. 4).  Rs138557689, a SNP in intron 1, is located 681bps upstream of the start site.   
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Based on the availability of DNA samples, 24 additional relatives were sequenced for the 

same variant.  The C allele was found to segregate with the cleft phenotype where 100% of 

the affected individuals had the CA genotype (Fig 4: II-9, III-2, III-15, III-17, IV-2, IV-6, 

IV-8).  The C allele was transmitted by 4 unaffected individuals (Fig. 4: I-3, II-13, III-4, III-

11) and there were 5 other unaffected family members with the CA genotype (Fig. 4: II-12, 

III-13, IV-5, IV-10, IV-12).  The CA genotype was present in 60% of the unaffected family 

members.  There were no affected individuals, however, with the AA genotype.    

Despite being submitted by the 1000 Genomes project and listed in NCBI, frequency 

data on rs138557689 variant was not available.  To assess the frequency of this allele, we 

genotyped 579 controls of Non-Hispanic White (NHW), Hispanic, and African American 

ethnicity, and found the C allele in 3 individuals (1 NHW and 2 African Americans) who 

were heterozygous.  No homozygous individuals for the C allele were found.   The 

frequency of the C allele was 0.8% in the African American, 0.3% in NHW, and 0% in 

Hispanic controls (Table 2A).   We then genotyped 836 probands from our NSCLP dataset 

and found the C allele in 

two African American 

individuals, who were both 

heterozygous. This 

includes one African 

American proband from 

the family described here.  

The C allele was not found 

in the NHW and Hispanic 
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NSCLP probands.  The frequency of the C allele in the NSCLP dataset was 1.2% for the 

African Americans and 0% for the NHW and Hispanics (Table 2B).  

 To assess whether this SNP was in a conserved region, we compared the sequence 

in different species.  The ancestral A allele of rs138557680 showed conservation in chimps, 

rhesus monkeys, gorillas, marmoset, mouse lemur, and opossum while the alternate C allele 

was only conserved in elephants and armadillos (Fig. 5).  These results suggest that C is a 

rare variant.  The position of the rs138557689 variant showed moderate evolutionary 

constraint (GERP score=-2.98).  This suggests that the A allele is moderately conserved at 

this location and that nucleotide changes at this position are tolerated and not selected 

against through evolution. 
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In silico analyses predicted that the alternate C allele alters DNA binding.  The 

ancestral allele was predicted to create a C/EB alpha transcription factor binding site by 

Patch.  The alternate allele was predicted to create a Sp1 site by AliBaba2, and NF-1/L 

binding site by Patch and NIP and NF-1/L binding sites by TESS.  EMSA analysis was used 

to determine whether a DNA binding site was present with either allele.  As shown in Fig. 6, 

there were two bands present for the probe containing the C allele but not for the A allele.  

These results indicate that the C allele creates new DNA binding sites. 
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DISCUSSION 

We identified a potentially functional variant, rs138557689, in intron 1 of FZD6 

gene segregating with NSCLP phenotype in a large African American family.  In silico 

analysis suggested and EMSA results showed that the alternate C allele creates transcription 

binding sites.  Additionally, the ancestral A allele is highly conserved in primates and 

moderately conserved in other vertebrates, suggesting that it may have important functional 

significance in the regulation of FZD6.  While the CA genotype for the rs138557689 variant 

appears to contribute to the development of NSCLP in this family, analyses are underway to 

assess how the variant affects gene expression. 

The rs138557689/C allele is rare in the general population and was found in less than 

1% of NHW and African American controls.  The C allele was also rare in the NSCLP 

probands being identified in only two of 1672 African American chromosomes.  Even 

though there appears to be an enrichment for the C allele in the African American 

population in our data set, there was no significant difference in the C allele frequency 

between the African American controls and NSLCP probands (p-value=1.0, Fisher exact 

test).  Based on this information the variant does not appear to be relevant at the population 

level.   However, the large number of individuals with the C allele in the African American 

family suggests that the rare rs138557689/C genotype may act as a predisposing risk factor 

for NSCLP when superimposed on the genetic background present in this family.  The 

presence of the C allele in the unaffected family members as well as controls suggests that a 

person must have a specific combination of variants in one or multiple genes to exhibit the 

phenotype.  This is consistent with the multifactorial model and is supported by the observed 

reduced penetrance in this African American family.  Our results also suggest that different 
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ethnic-specific genetic risk profiles may contribute to NSCLP, and therefore the underlying 

disease mechanisms may also be different between ethnic groups.  This is consistent with 

the observed differences in prevalence of NSCLP among different populations and the 

observed genetic heterogeneity that characterizes this complex disorder.  Ethnic-specific 

differences warrant further studies. 

Variants in noncoding regions that modify transcription and expression have 

increasingly been implicated in complex diseases because they perturb transcription by 

creating or removing binding sites for specific transcription factors [21,117,118].  We found 

that the presence of the rs138557689/C allele creates DNA binding sites that could 

potentially repress or enhance the expression of FZD6.  Because the development of facial 

structures is a highly regulated process that relies on crosstalk and convergence of different 

developmental pathways, alterations in the expression of FZD6 could affect the cascade of 

molecular events that the gene is involved in.   

While the exact function of FZD6 in human craniofacial development is not well 

defined, FZD6 is diffusely expressed in the craniofacial mesenchyme of zebrafish and chick 

suggesting that it plays a role during craniofacial development [119,120].  FZD6 is part of 

the Frizzled family of genes which encode a group of G-coupled receptors critical for 

initiation of WNT signaling [66,67].  WNT signaling is a highly controlled cellular pathway 

that regulates multiple functions during development through both canonical/β-catenin and 

noncanonical signal transduction [76,77].  Importantly, WNT signaling has been shown to 

play a role in craniofacial development, including regional specification in the vertebrate 

face, neural crest induction and differentiation, and mid-face development and upper lip 

fusion in mice [26,80,81,82,83,84,85,121].  Craniofacial abnormalities, including orofacial 
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clefts, are found in WNT knock-out mice and zebrafish, while mutations in WNT3 cause 

tetra-amelia with CLP in humans [86,87,122].  Additionally, associations between WNTs 

(WNT3, WNT3A, WNT5A, WNT7A, WNT8A, WNT9B and WNT11) and NSCLP have been 

found, with strongest associations seen in WNT3 and WNT3A [87,88,89,90,123].  Unlike the 

other Frizzleds, FZD6 represses canonical WNT signaling through the noncanonical 

Ca2+/CaMKII pathway by down-regulating TCF/LEF binding activity and subsequent 

transcription of WNT target genes (Fig. 7) [70].   
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An increase in the expression of FZD6 may further repress canonical WNT signaling crucial 

for normal craniofacial development while a decrease in FZD6 expression may cause a loss 

of negative regulation of the WNT pathway.  Negative regulation of the WNT pathway is 

equally important in craniofacial development since mice that are deficient in the Dkk1 gene 

(another negative regulator of the WNT pathway) lack craniofacial structures [124]. 

FZD6 has also been shown to mediate the non-canonical planar cell polarity 

(WNT/PCP) pathway in mice (Fig. 7) [72,73,125].  The WNT/PCP pathway controls the 

polarity and orientation of the migrating neural crest cells [81,126].  During normal 

craniofacial development NCCs migrate from the neural folds to fill the facial prominences 

with mesenchyme and contribute to the formation of the nose and upper lip 

[20,26,28,127,128].  Defects in NCC formation, induction, differentiation, or migration can 

result in craniofacial abnormalities [129,130,131,132].  Therefore, a decrease in FZD6 

expression may perturb the WNT/PCP pathway and alter neural cell migration or 

mesenchymal planar cell polarity in craniofacial structures and may potentially lead to 

NSCLP.   

In summary, we report that a rare genetic variant, rs138557689, which alters DNA 

binding in FZD6, may act as a predisposing risk factor for NSCLP in a large African 

American family with 11 cases of NSCLP segregating in 3 generations.  The alteration in 

FZD6 gene regulation may perturb highly controlled biological pathways, in particular the 

WNT pathway, therefore focusing on the genes within the WNT pathway and their 

interaction with FZD6 may provide further insight into the genetic etiology of NSCLP.  

Assessing the affected and unaffected family members who have the CA genotype for the 

presence of other variants in NSCLP susceptibility genes may delineate the underlying 
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genetic risk profile contributing to development of NSCLP in this family.  This outcome 

would not only improve genetic counseling for this family but may improve the 

understanding of the biological mechanisms linking FZD6 to NSCLP.   
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APPENDIX 

 

Supplementary Table 1.  FZD6 Primers 

Name Forward Reverse Length (bp) Tm(⁰C) 

E1A CACTGCTACCTGAGCATCCA GGA AGC CAC CTC CAC CTT  318 65.1 

E1B AGA GCC AGC GCC AAG AGC TTC A AGG GTG TAG TGC TGC CGT CGA AA   874 65.1 

E1C GGG AAC CGG CTC TGA AAG GCG  CCT TAA TAA GCT TTC CAA CAG GGG CCC  466 69.4 

E1D CTA GTT GGC CTT ACG AAA ATC GAG  GAC CCA GGA CTC ATT TTC AGG  514 60.2 

E2 CAAATGTTGCTGATACACCCTC CACAACTTGAAGAAATCGGCTC 473 54.3 

E3 GAGTTCATAAGTCTGATAGAGGG CTGTAAGTTCCCTGAGAGCAAG 544 54.3 

E4A CCCCATTAACAGCCACAAGTTTT CGCCTAGCAAAAATCCAATGAAG 593 54.3 

E4B GCAACTCTGTTCACATTCCTTAC GTACAAAGTAGCGAGAAGCATCC 481 54.3 

E4C GCAGTGTGGTTTCATGCTGTTG GGCTCTTGTATTTTCTCACCTG 538 54.3 

E5 GATAAAAAATGTGTTGCACTTAGAGC GATAAAAAATGTGTTGCACTTAGAGC 486 54.3 

E6A CTGACAAAAGCAACTTAGAGTG CCTCTCTCATTGATGTTTCTGG 472 54.3 

E6C GGTCATTTCCAAATCCATGGG CAAACTTCCTTGGGGTAAGAG 427 54.3 

E7A GATAAAGGTGGACACTGGTTAG GAAGATTCCTCTAACTCTGTCC 530 54.3 

E7B GCATTGCCTACTGTTATACTGG GGACACTCTTTGAGTAAGCACC  592 54.3 

E7C CCCACTTATTGATACCTTACCATC CAAAAGCATCAGAAAATCTTGCCC 576 54.3 

E7D GCCAATCAAATGGAAAAAAGGTAG GCATTCTCCTTCAAGGTTAAAAAG  450 54.3 

E=Exon 

*Betaine was added to primer E1B during the PCR reaction. 

*DMSO and magnesium chloride were added to primer E1C during the PCR reaction. 
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Supplementary Table 2.  MATN2 Primers 

Name Forward Reverse Length 

(bp) 
Tm(⁰C) 

E1A GCT ACT CTG AGG CAG GAG AAT GG GGC TAA TTG ATG ACA AGC GCC AAG 572 63.5 

E1B GAC TTT CCC TGC TCC CTC GGG GTA GG C CGG GCG GAA GGA GGG GTG TCC 538 65.1 

E1C GGGAGCGCTCTGGGATGGGAC CCT GTC CTC GGA GGG GTC GAA G 374 60.2 

E1D CAT CCCCGC GTC AGT GGG TGC GAG GAC GGA GCC CCA GCT TCT 499 63.1 

E2 CGGCATTTTGAGTGCAAGTGG CCAGCACATCCAACAAGGAC 417 63.5 

E3A GTAGAGACAGGGTTTTACAGTG CCTCTGCTTCTGAGAATGCT 465 63.5 

E3B CGTGCTGTCAAGAGGATGCG CCTATTGCCAGCACAGTACCTG 459 63.5 

E4 CTGCCCAGAGGAGAGAGTAG GGGATGATAACTGGGGTGGG 342 60.2 

E5 GTTACTTTGGTGAGGGCTCTG CTGAGCACTTTGTGGAAACCC 352 63.5 

E6 GCCCTCATCCTACCATTCCC GTTGAGATACAGTGGTCTATGGTC 383 63.5 

E7 CCCCTTCATGGTGTGACTC GCTTAAGATTTGCACGGAAAGG 338 60.2 

E8 GAATGATCCGTCCCGGCTTG GACCATCAGGAAACCCGGTG 375 63.5 

E9 GACACCTTCCCTGTGGCTTG GACACCTTCCCTGTGGCTTG 305 63.5 

E10 GCATGCCTTCGAGGGAGGGC GGCCCAGCAAAGCCTGGAGAC 315 63.5 

E11 GGCCCAGCAAAGCCTGGAGAC CCATTTTCTCTTTCAGGGTCC 400 60.2 

E12 CCATGGACCACTGAGCTCAGG GAGCACCCAAGGCAGGAACTG 379 63.5 

E13 CCCCATCCTGAGTATGAGAC GCAGTTAAGCCCTCTCTTCC 440 63.5 

E14 GGTTCCCCAAAGTGGTTATGCC CTGTACACTCAAAGAAGCTTACCC 625 63.5 

E15 GTTGGCATGGACTCTTCAAATC GCTGAAGCATGAGAATCACTTG 446 63.5 

E16 GCTTTTTTGAATCTTTGGTGTTACC GTAAATGTTAACTATCTTTTTGAGGG 372 63.5 

E17 CCAAGTGCTAGGAATACCAAG CTATTTCCTACTTCCTTCTTTCC 338 56.2 

E18 GGTATTTACTGGATCTGGCTGC CTTGCCCTTGCCTCTCAAAC 425 63.5 

E19A GAG TTC TAC AAA TTT ACA AGT CAG 

GG 

CA AAT GAG ATT GCA CAC TAA GGC 542 56.2 

E19B GTGAGAATGAATAAGCTATGCAAG CCACATCCTTACCAACACTTG 562 62 

E19C GAG AAA TGG CCA ACA TGC CTA TGA 
AAA AAA TGC TG 

CTA CAG GCA CCC ACT ACC ACA CCC G 595 68.2 

E=Exon 

DMSO and magnesium chloride were added to primer E2 during the PCR reaction. 
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Supplementary Table 3.  SLC25A32 Primers 

Name Forward Reverse Length (bp) Tm(⁰C) 

E1A CAT CTC GGT TGC TCT TCC GGC CGC CCC TTG TGA GCG CAA C 431 67 

E1B CCC CTC CAT CGC GCT TTC CG CAG GTT AGC CAA CGC GGA CAG 513 67 

E2 CGG GAC TCT GAC ACA AAA ATG GCC ATT TTG TTC TTC CTG ATC C 519 62 

E3 GCA AAC CAC TTC CAG CAA ATT C CTG AGG CAG GAT TAT CGC TTG 530 58.3 

E4 CCT TTT GAC CCT AAG ACT GTG C GAT ACA TCC TAT GTT AAT GGG GAC 537 58.3 

E5 GTG CTG TAA TGA GAG AGA AGA G GAC ATT TGT GTG GCT TCA 374 58.3 

E6 GAT GAG TAC TGG CTC TGC CA CGT AAT AAC TGG GAA AGC AGG 473 58.3 

E7A GAC TGC TGC TTG CTC CAT GCC GGC AGC CAT TTC AGG CAG AGG 454 58.3 

E7B GAA GCC AGA GAA CTG CTA AGT C CGA CAA AGC AAG ACT CCA TCT C 404 62 

E7C GTG AGC TTA CTT GCC TGG ATT GC CGC TAG GTA GTG CAT CCC AAC TG 543 62 

E7D GGATGGTCTCAATCTCCTGAC CAA CCT GAA TTT GAG AAA CCA ATG AAG 564 58.3 

E7E GTTGACAAGGTAAATGGAAATGAG GTT CAC TTT TTC CGT GTG GGG 517 58.3 

E7F GCT GTT GCA CTA CCA TCT ATT TG CTC AGT GCT TGG TGA CGT AC 556 52 

E=Exon 
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