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The female reproductive tract (FRT) develops midway through embryogenesis, 

and consists of oviducts, uterine horns, cervix and upper part of the vagina. The 

uterine horns are composed of an epithelial layer, luminal (LE) and glandular 

epithelium (GE), surrounded by a mesenchymal layer, the stroma and 

myometrium. Interestingly, in most mammals the GE forms after birth and it only 

becomes fully differentiated as the female reaches sexual maturity. Uterine 

glands (UG) are made up of GE and are present in all mammals. They secrete 

nutrients, cytokines and several other proteins, termed histotroph, that are 

necessary for embryo implantation and development. Experiments in ewes and 

mice have revealed that females who lack UGs are infertile mainly due to 

impaired implantation and early pregnancy loss, suggesting that UGs are 

essential for fertility. Fortunately for us, UGs develop after birth allowing us to 

peer into the genetic mechanism of tubulogenesis and branching 

morphogenesis; two processes that are disrupted in various adenocarcinomas 

(cancer derived from glands).  

We created 3D replicas of the epithelium lining the FRT using optical 

projection tomography and characterized UG development in mice using lineage-

tracing experiments. Our findings indicate that mouse UGs develop as simple 

tubular structures and later grow multiple secretory units that stem from the main 

duct.  

The main aim of this project was to study the role of SOX9 in the UGs. 

Preliminary studies revealed that Sox9 is mostly found in the nucleus of the GE. 
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This observation led to the hypothesis that Sox9 plays a role in the formation 

and/or differentiation of the GE. To study the role of Sox9 in UGs differentiation, 

we conditionally knocked out and overexpressed Sox9 in both the LE and GE 

using the progesterone receptor (Pgr) promoter. Overexpressing Sox9 in the 

uterine epithelium, parts of the stroma, and myometrium led to formation of 

multiple cystic structures inside the endometrium. Histological analysis revealed 

that these structures appeared morphologically similar to structures present in 

histological tissue sections obtained from patients with endometrial polyps. We 

have accounted for the presence of simple and complex hyperplasia with atypia, 

metaplasia, thick-walled blood vessels, and stromal fibrosis; all “hallmarks” that 

indicate overexpressing Sox9 leads to development of a polyp-like morphology. 

Therefore, we can propose the use of Sox9-cOE mice to study development of 

endometrial cystic lesions and disease progression into hyperplastic lesions.  
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Chapter I. Introduction 

 

The Mammalian Female Reproductive Tract 

 

In therian mammals, fertilization, implantation and embryo development 

take place inside the mother’s reproductive tract. During evolution, the 

mammalian female reproductive tract (FRT) adapted to incorporate a novel 

strategy: to shelter and nourish the new life developing inside the body instead of 

exposing the fetus to outside hazards. In mammals, conception is initiated by sex 

hormones that ready the female for pregnancy. Upon hormonal cues, inside the 

ovary, depending on the species, one or multiple oocytes mature and is/are 

released into the oviduct interspace. In the oviduct, fimbriae covered with cilia 

collect and transport the oocytes into the uterus1,2. After mating, sperm enters the 

FRT, travels through the uterus and towards the oviduct/fallopian tube where it 

encounters and fertilizes the oocytes. In laboratory mice, mating and subsequent 

fertilization usually take place during the night, therefore, we consider the embryo 

the next day around noon to be at embryonic day (E0.5). Muscle contractions in 

the oviduct move the embryo into the uterus through the uterotubal junction2. By 

the time the embryo reaches the uterine cavity (~E3.5), it has undergone several 

cleavage divisions and is considered to be at the blastocyst stage. Before 

attaching to the uterine wall, the embryo breaks free from the zona pellucida, a 

protective layer surrounding the embryo. Once outside this protective layer, the 

embryo must attach to the epithelium lining the uterine cavity and burrow into the 
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stroma, where it will remain for the rest of gestation. Before encasing itself in the 

mother’s womb, the embryo obtains many of the nutrients it requires from the 

milieu of the uterine cavity3. Experiments in pigs have shown that the uterine 

glands (UG) secrete various nutrients, cytokines and several other proteins, 

termed histotroph, into the uterine cavity4. Therefore, UGs secrete the nutrients 

essential for embryo viability during the first critical stages of development.  

 

Formation of the Female Reproductive Tract 

 

The FRT develops from the Müllerian duct (paramesonephric duct). In 

mice, around Tail Somite (TS) Stage 19 or E11.5, cells in the coelomic epithelium 

apparently invaginate next to the Wolfian duct (mesonephric duct). The Müllerian 

duct elongates adjacent to the Wolfian duct until it reaches the urogenital sinus at 

TS345. In females, the Müllerian duct differentiates into the FRT, while in males, 

fetal Sertoli cells of the testis secrete anti-Müllerian Hormone (AMH), a member 

of the Transforming Growth Factor- superfamily, which induces Müllerian duct 

regression6. In females, the absence of testosterone leads to Wolfian duct 

degeneration, while the Müllerian duct gives rise to the oviducts, uterine horns, 

cervix and upper part of the vagina7. All four sections derived from the Müllerian 

duct connect with each other and form functional compartments or parenchyma. 

Interestingly, the cells that make up each compartment, although derived from 

the same progenitor pool, appear remarkably morphologically different from one 

another. The oviducts, which connect to their respective uterine horns, show 
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varying cellular morphology throughout their subcompartments: the infundibulum, 

the ampulla and the isthmus1,8. The infundibulum is made up of tall fimbriae 

covered in cilia used to collect the oocytes and transport them into the ampulla. 

The ampulla contains both tall columnar epithelium covered in cilia and secretory 

cells1,9. The next subcompartment is the isthmus, an area containing mostly 

secretory epithelia encircled by a dense muscle layer, the myometrium. The 

myometrium helps generate peristaltic contractions that push the embryo past 

the uterotubal junction and into the uterine horns2. The uterine horns are made of 

a functional layer called the endometrium surrounded by a myometrium and 

covered by the serosa. The uterine epithelium regulates the passage of 

molecules between the endometrium and the uterine lumen10. The epithelium 

covering the uterine lumen is called the luminal epithelium (LE), while the 

glandular epithelium (GE) extends out from the LE into the stroma, the region 

between the LE and the myometrium (Figure 1). Upon hatching from the zona 

pellucida, the embryo attaches to the LE, burrows into the stroma and later 

establishes the fetal-placental network. The placenta provides direct access to all 

the nutrients, oxygen and waste exchange the developing fetus will require for 

full gestation11,12. Molecular signals trigger a cascade of reactions that generate 

heavy contractions of the myometrium that help push the fetus into the cervical 

canal at parturition13. The cervix is divided into two parallel hollowed epithelial 

tubes surrounded by a thick myometrium. Both cervical tubes open into the 

vagina.  
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Figure 1: The human and mouse female reproductive system. (A) Illustration 

of the human reproductive system 

(http://genericlook.com/img/uploads/anatomy/uterus.jpg). (B) The adult female 

reproductive tract of the mouse. (C) H&E stain histological cross section of the 

adult mouse uterus. (D) Illustration of the mouse uterus, showing the position 

where the embryo implants (http://www.informatics.jax.org/greenbook/images/12-

11.jpg). GE, glandular epithelium; LE, luminal epithelium; M, mesometrial side; A, 

antimesometrial side; Ant, anterior; Post, posterior.  
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The FRT is a highly complex organ that contains multiple functional areas. 

During FRT development, various signaling pathways must work together to 

create a fully functional organ. In most mammals, the FRT is not completely 

developed at birth, instead it will transform from a partially compartmentalized 

tube into a highly patterned organ capable of ensuring the continuation of the 

species.  

 

Estrous Cycle 

 

The rise and fall of circulating hormones, especially estrogen (E2) and 

progesterone (P4) play a critical role in the preparation of the endometrium to 

receive the embryo. In mice, E2 induces proliferation of the uterine epithelium on 

day 1 of the estrous cycle. By day 3, P4 secreted from the corpus lutea results in 

proliferation of the stromal cells. On day 4, there is a spike in E2 that allows 

implantation of the embryo within the endometrium14,15.  

The endometrium undergoes a hormone-dependent cyclic wave of 

extensive proliferation to assure it will accommodate the fertilized embryos16-18. If 

fertilization does not take place, the endometrium undergoes abrupt apoptosis. 

The hormonally controlled process of regeneration followed by cell death is 

termed the estrous cycle, and it occurs in most mammals. Humans, primates (old 

world monkeys and apes), bats (phyllostomid and mollosid), and elephant 

shrews go through the menstrual cycle, where part of the endometrium in shed at 

the end of the cycle19,20. Female mice do not menstruate but instead go through 
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estrous cycle. The estrous cycle in mice lasts 4-5 days, if kept on a constant 

light-dark cycle. Generally, proestrus is considered to be the first phase of a new 

estrous cycle. During proestrus, mostly epithelial cells, and some stromal cells, 

proliferate while very few cells undergo apoptosis. During estrus, the females 

are considered to be in “heat” and if the conditions are right, oocytes will mature 

and be released where they will wait to be fertilized. If fertilization does not take 

place, metestrus ensues. During metestrus, a high number of cells in both the 

epithelium and stroma undergo apoptosis and are shed into the uterine cavity18. 

The endometrium then transitions into diestrus. During diestrus very few 

epithelial cells undergo cell division, while many stromal cells proliferate. The 

estrous cycle induces morphological changes in the uterus. During estrus, the 

uterus expands to almost triple its size during diestrus18. Maximal thickness and 

secretory activity of the uterine epithelium is observed during estrus21. 

Dysregulation of the estrous cycle can have dire consequences to the organism. 

 

Diseases of the Female Reproductive Tract 

 

Hormonal imbalance is the primary cause of female infertility. Additionally, 

studies have demonstrated that hormone treatments of an undeveloped FRT can 

lead to infertility22 and disruption of normal uterine gland development23. 

Hormones, particularly estrogen, stimulate cell division and have been shown to 

promote endometrial cancer formation24,25. Most endometrial cancers of the 

female reproductive organs arise from the uterine epithelium25. In 2012, it is 
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estimated that 47,130 women will be diagnosed with endometrial cancer in the 

United States and 8,010 of these women will succumb to it26. Adenocarcinoma 

is the most prevalent type of endometrial cancer and arises from uncontrolled 

growth of the GE. Adenocarcinoma development occurs in stages27. The first 

stage is widely thought to be the manifestation of uterine lesions known as 

endometrial hyperplasia, subclassified into simple or complex. In simple 

hyperplasia, the uterine glands become cystically dilated, showing 

pseudostratified epithelium, while the stroma appears normal and contains small 

blood vessels uniformly spaced. In complex hyperplasia the uterine glands 

appear irregular in shape and size and often contain numerous side buds, while 

the stroma appears normal. Various studies have demonstrated that the 

presence of cytological atypia accompanying either simple or complex 

hyperplasia indicates progression to adenocarcinoma. In Atypical hyperplasia, 

glands lose the normal columnar epithelium morphology and the nucleus 

becomes rounder. Upon transition into adenocarcinoma, the glands are seen 

growing together with hardly any stroma observed between them. Silverberg 

calculated that the progression rate to adenocarcinoma is 4.3% from simple 

hyperplasia, 16.1% from complex hyperplasia, 7.4% from atypical simple 

hyperplasia, and 47% from atypical complex hyperplasia27.   

Endometrial polyposis is another type of endometrial lesion frequently 

diagnosed in women28. Endometrial polyps are described as benign growths that 

develop in the endometrium. The size of the polyps range from a few millimeters 

up to several centimeters. 20-25% of menopausal and postmenopausal women 
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will develop endometrial polyps29. Although mostly benign, endometrial polyps 

can transform into endometrial cancer30. The cellular morphology observed in 

histological samples obtained from endometrial polyps shows hyperplastic 

lesions, however, unlike in simple hyperplasia, polyps also display fibrotic stroma 

and thick-walled blood vessels. Treatment for endometrial polyps requires a 

minor operative hysteroscopy31. The polyps are identified and removed using a 

scope inserted through the vagina. Early discovery and removal is the key factor 

for treating endometrial polyps before they transform into endometrial cancer; 

therefore, understanding the molecular mechanisms that promote the 

transformation from benign lesions to cancer will assist with diagnosis and more 

effective treatment of endometrial cancers.   

Both adenocarcinomas and endometrial polyps arise from a faulty genetic 

program in the GE, thought to be the result of unopposed estrogenic stimulation32 

(Giuntoli & Zacur, Endometrial hyperplasia, uptodate.com, 2011). Therefore, to 

fully understand the steps that are necessary for disease formation and 

development, it is important to understand the process of UG development. 

 

Uterine Gland Development 

 

 Uterine glands are present in all studied mammals. Experiments in ewes 

and mice have revealed that females who lack UGs are infertile mainly due to 

impaired implantation and early pregnancy loss, suggesting that UGs are 

essential for fertility33. In humans, histotroph is thought to nourish the developing 
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fetus for the first trimester until the feto-placental network is established34, yet, 

little is known about UG development and function.  

UGs are an essential part of the uterine parenchyma, they secrete 

histotroph that aids implantation and nurtures the developing embryo.  It is widely 

believed that the GE originates from the LE, the simple columnar epithelium that 

lines the uterine cavity. Extracellular signals, derived most likely from the stroma, 

induce epithelial cells to bud out from the LE and invaginate into the stroma, 

forming a tubular structure that later coil and branch35. Interestingly, in most 

mammals, even though the GE initially differentiates after birth, it only becomes 

fully differentiated as the female reaches sexual maturity. The uterine glands are 

known to secrete factors that are essential for proper embryo implantation, 

leukemia inhibiting factor (LIF) and calcitonin36,37. In mice, it has been reported 

that UG formation commences around postnatal day (P6) and is completed by 

P1438. UGs invaginate into the surrounding mesenchyme (stroma) forming a 

coiled tubular duct that opens to the lumen. In ewes and pigs, it has been 

observed that UGs branch as they extend into the stoma39.  

In many mammals, including mice, UGs develop after birth facilitating 

investigations of the cellular mechanisms that drive UG development, also 

termed adenogenesis.  
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Morphological Patterning of the Female Reproductive Tract 

 

Like many forming organs, the Müllerian duct develops as a simple tubular 

structure composed of an inner epithelium surrounded by a mesenchyme7. 

Paracrine signals between the epithelium and mesenchyme, known as epithelial-

mesenchymal crosstalk, are essential for proper formation and development of 

the FRT40. Orchestrated epithelial-mesenchymal interactions induce cell 

differentiation and establish membrane domains that set up cell polarity. 

Experiments have shown that the mesenchyme actively specifies which type of 

epithelium will develop8,41.  

The uterine epithelium is induced to adopt a columnar morphology, while 

both the vaginal and cervical epithelium, develops stratified morphology. In 

contrast with other organs, cytodifferentiation of the FRT is not completed until 

the female reaches sexual maturity. The uterus undergoes extensive remodeling 

during postnatal differentiation, increasing in both length and width, while 

expanding internally to accommodate such changes. At the same time, epithelial 

buds observed in the LE, are the nascent UGs. Initial budding is followed by 

invagination and formation of the main glandular duct. The initial formation of the 

UGs is similar to adenogenesis in many other organs. Therefore, I will introduce 

the cellular mechanisms that are known to play a role in the formation of 

glandular structures in other organs.  
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Tubulogenesis during UG Development 

 

The formation of epithelial tubes is an evolutionary conserved process that 

is genetically programmed. It is widely thought that cells form tubular structures 

to increase surface area without having to increase in size, while at the same 

time decreasing the distance that molecules need to travel inside the organ. 

Tubulogenesis takes place during the formation of the neural tube, lung, kidney, 

gut, and FRT42,43. Studies in various organisms have elucidated some of the 

common genetic programs used to create such tubular structures (Figure 2). The 

principal signal likely required for tubulogenesis is acquisition of polarized 

epithelium42,43. There are tubes that develop from non-polarized epithelium 

packed together into a three-dimensional cluster that do not contain a lumen, 

however, after initial formation, cells acquire apical-basal polarity (Figure 2B).   

Apical-basal polarity establishes cell compartments and membrane 

domains. The apical membrane faces the lumen while the basal membrane lies 

adjacent to the extracellular matrix (ECM). The formation of the baso-lateral 

domains is in part generated by E-Cadherin44. Canine kidney cells in suspension 

show a mixed distribution of apical-basal membrane proteins. E-cadherin 

localizes to the lateral membrane domain and promotes cell-cell contacts and 

generation of tight junctions. Other tight junction proteins localized to the lateral 

domain and create a partial paracellular seal. Once the epithelium forms a 

barrier, apical-basal polarity is established after ECM accumulates on one side of 

the cell. Polarized epithelium shows distinct cytoskeleton organization.  
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Figure 2: Models of tubulogenesis. (A) Invagination of a polarized epithelium. 

(B) Initial bud formation and subsequent formation of a glandular lumen in non-

polarized cells. (C) Model of apical-driven epithelial invagination proposed by 

Sawyer, 2010. Adapted from Hogan et. al., Nature Reviews, 2002 and Sawyer, 

Developmental Biology, 2010. 
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Cell-cell contact and cell-ECM contacts orient the cells. The apical domain 

usually is structurally and functionally different from the basal domain. This 

difference establishes the polarization that enables cells to transport ions and 

other factors across the epithelium. 

Acquisition of cell polarity appears to be a requirement for proper 

tubulogenesis (Figure 2). Additionally there are other cellular mechanisms that 

play a role in tubulogenesis. To date, there are seven ways described to 

generate tubular structures in many animals42:  

1- Wrapping: Epithelial sheet rolls up into a tubular structure as described 

during neural tube formation. 

2- Budding: Spatial thickening of the polarized epithelial sheet followed by 

invagination. Branching morphogenesis often follows formation of a main 

tubular structure. Observed during lung, kidney, mammary gland and 

Drosophila salivary gland development.  

3- Cavitation: Hollowing of a previously formed cylindrical structure by 

eliminating the cells in the center. Observed during mammalian salivary 

gland development. 

4- Cord hollowing: Similar to cavitation, although cells migrate into the 

luminal walls instead of undergoing apoptosis. Observed during zebrafish 

gut development. 

5- Cell hollowing: A single cell creates a lumen. Observed during 

Drosophila tracheal development. 



 16 

6- Cell wrapping: Cells form a doughnut shape, attaching to themselves 

and thus forming a center where the lumen will eventually form. Observed 

during C. elegans digestive tract development. 

7- Cell assembly: Two separated rows of cells first specify cell regional 

membrane domains; then both rows fuse together to form a tubular 

structure. Observed during Drosophila heart tube formation. 

Here, I will focus my attention on budding, since it appears to be the 

primary cellular mechanism used during uterine adenogenesis. During budding, 

polarized epithelia invaginate into the stroma forming a tubular structure that will 

give rise to the main duct. The Müllerian duct itself forms from a tube that 

invaginates next to the Wolfian duct.  

Salivary gland morphogenesis in Drosophila has been studied in great 

detail45. Here, signals from the neighboring cells trigger a differentiation program 

in some epithelial cells. Upon specification, the nuclei migrate basally while the 

apical membranes constrict. Forkhead (fkh) is known to regulate constriction of 

the apical membrane in the fly. In fkh mutants, the nuclei move basally, however, 

tubulogenesis is impaired due to failure of apical membrane constriction. 

Therefore, basal migration of the nuclei concomitant with apical membrane 

constriction seems to play an important role during tubulogenesis46. FOXA2, an 

orthologue of FKH, has been reported to regulate UG formation47. Mice, in which 

Foxa2 was conditionally knocked out in the postnatal uterus, showed reduced 

numbers of UGs.  
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Glandular structures that arise from budding usually develop additional 

branches that stem off the main duct by subsequent epithelial invaginations. The 

morphological process of creating additional branches out of the main duct is 

termed branching morphogenesis.  

 

Branching Morphogenesis 

 

In mice and humans, there are conflicting reports when it comes to UG 

branching. In the lung, kidney and mammary glands branching morphogenesis 

has been well characterized48. During tubulogenesis, buds are formed on the 

main duct. Nascent buds extend out of the main duct forming primary branches, 

which themselves can further branch multiple times forming complex glandular 

structures.  Branching morphogenesis takes place during UG development in 

pigs and sheep49,50. 

Several signaling pathways, particularly Wnt and Receptor Tyrosine 

Kinases, are known to play a role in branching morphogenesis51-54. In addition, 

there are various mutant mice that show developmental defects in uterine 

adenogenesis. Therefore, we can use them to create a picture of the molecular 

signals that may regulate UG development.  
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Molecular Pathways that Contribute to Uterine Gland Development 

 

Creation of the main glandular duct requires multiple signaling pathways 

that establish apical-basal membrane domains, shape cell morphology for 

invagination, and regulate cell proliferation. Later, other signaling pathways are 

essential for the generation of glandular branching.  

Several Wnt ligands are expressed in the developing and adult 

reproductive tract55. The Wnt genes encode secreted cysteine-rich glycoproteins 

that bind to seven-pass transmembrane receptors called Frizzled (Fz) and Lrp 

co-receptors and initiate a series of downstream events inside the cell56. In the 

canonical Wnt signaling pathway, Disheveled (DVL) becomes activated upon 

ligand binding to its respective receptor. Activation of DVL inactivates glycogen 

synthase kinase-3 (GSK3), a kinase that phosphorylates and targets -catenin 

for degradation57. Cytoplasmic levels of -catenin rise and subsequently 

translocate into the nucleus and form a heterodimer complex with transcription 

factor (TCF) or lymphoid enhancer-binding factor (LEF) binding proteins. -

Catenin/TCF/LEF complexes have been shown regulate genes involved in cell 

fate specification and proliferation. In the “noncanonical” Wnt signaling pathway, 

activation of the receptor by its specific ligand can either regulate downstream 

pathways that reorganize the cytoskeleton through actin and microtubular 

reorganization, or result in a surge of Ca2+ ions that activate other pathways.   

Wnt4 is initially required for Müllerian duct formation58. Once the uterus is 

formed, conditional deletion of Wnt4 leads to a reduction in the number of UGs. 
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In addition, loss of Wnt4 disrupts tubulogenesis during renal tube formation59. 

Furthermore, in the mouse mammary gland, Wnt4 is proposed to be a major 

inducer of glandular branching53. Wnt5a knockout mice lack the cervix and upper 

vagina, and show defects in adenogenesis60. Wnt7a knockouts lack UGs, and 

oviduct and they show a posteriorization of the uterine epithelium that becomes 

stratified epithelium similar to that found in the cervix and vagina61. Wnt11 was 

shown to be required for ureteric bud branching morphogenesis52. Therefore Wnt 

signaling potentially regulates uterine adenogenesis by regulating the expression 

of genes that mediate tubulogenesis and branching morphogenesis.  

Among the receptor tyrosine kinase (RTK) superfamily of signaling 

pathways, fibroblast growth factor (FGF) and epidermal growth factor (EGF) have 

been reported to regulate adenogenesis62. Binding of ligand to the receptor leads 

to a conformational shift that activates its intracellular kinase domain that 

subsequently induces multiple downstream signaling cascades that results in 

various biological responses, including proliferation, differentiation, migration and 

inhibition of apoptosis63. There are four FGF receptors (FGFR), and alternative 

splicing of the third immunoglobulin (Ig) domain controls the ligand-receptor 

specificity. Epithelial cells mostly express the b-splice variant (IIIb), while the c-

splice form (IIIc) is usually found on mesenchymal cells. Mutations in FGFR2 that 

encode for a receptor that is activated in the absent of the ligand have been 

found in a subset of endometrial cancers64.  Fgf7 and Fgf10 regulate neonatal 

uterine development in sheep62.  Moreover, in the ovine endometrium, Fgf7 is 

expressed in the myometrium, while Fgf10 is expressed in the stroma. They both 
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bind and activate FGFR2-IIIb, which is expressed in the LE and GE65. During 

lung formation Fgf10 is expressed in the mesenchyme surrounding the growing 

epithelial branch tip, while Fgfr2 is expressed in the epithelium and also the 

mammary epithelium as it invaginates51,66,67. Ex vivo studies of submandibular 

gland development determined that FGF7 functions as an autocrine signal that 

promotes budding, while FGF10 promotes elongation of the duct54. Both FGF7 

and FGF10 downstream signals were shown to be mediated by ERK1/2. 

Therefore, FGF7, secreted from the myometrium, most likely promotes branching 

morphogenesis, while FGF10, secreted from the stroma regulates UG 

elongation. 

Both Wnt and Fgf signaling regulate epithelial-mesenchymal interactions 

that induce cellular differentiation and specify morphological changes that play a 

key role during uterine development. Additional to the epithelial-mesenchymal 

interactions, circulating hormones secreted by the ovary and pituitary, exert a 

major influence on the endometrium. 

The focus of this thesis is on the transcription factor SOX9. Our initial 

observation demonstrated that SOX9 was expressed in the UGs (Figure 3). 

Interestingly, SOX9 appears to be regulated by both Wnt and FGF pathways. 

During chondrocyte differentiation, SOX9 was reported to bind, phosphorylate 

and trigger degradation of -Catenin68. Conversely, activated -Catenin 

repressed Sox9 transcription by inhibiting SF1 from binding to the testis-specific 

enhancer of SOX9 core (TESCO) region69. In the intestinal epithelium, Sox9 is 

activated by the -Catenin-TCF4 complex70.  
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Figure 3: SOX9 is expressed in the uterine glands of both mice and women. 

Immunofluorescent staining performed using -SOX9 antibody. (A) Adult mouse 

uterus expresses SOX9 (green) mostly in the GE. (B) SOX9 is present in the 

human uterine glands. SOX9, green; DAPI, blue; GE, glandular epithelium; LE, 

luminal epithelium. 
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Therefore, it appears that -Catenin can both repress and activate Sox9, while 

SOX9 seems to promote -Catenin degradation. Sox9 was shown to be 

upregulated by RTK activation71. Specifically, binding of FGF9 to FGFR2 can 

activate Sox9 transcription72. Moreover, a recent study demonstrated that Sox9 

expression was specifically induced by EGFR activation through the MEK/ERK 

pathway73. Thus, it appears that both pathways converge onto SOX9 in certain 

tissues. 

 

SOX Gene Family 

 

SOX9 is part of the Sry (sex determination region Y)- related HMG box 

(SOX) family. The SOX genes are critical in multiple developmental and 

physiological processes74. Members of the SOX family contain a conserved high 

mobility group (HMG) DNA binding domain. There are 22 known SOX genes in 

both humans and mice, which are subdivided into 9 subgroups (A, B1, B2, C, D, 

E, F, G, H)74. SOX9 is part of the SOXE subgroup, along with Sox8 and Sox10. 

These genes share a very conserved amino acid sequence in the HMG domain 

and a transactivation domain at the N-terminus. SoxE genes appear to have 

duplicated early during evolution since they have been detected in lampreys75. It 

appears that over time the SOXE genes have acquired other important roles in 

the development of many organs. Sox9 mutant mice die early during 

embryogenesis76, while Sox10 mutants show defects in neural crest 

differentiation77. Sox8 mutant mice are viable and show no detectable phenotypic 
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abnormality, which is thought to be in part to a shared functional redundancy 

between all three members of the SOXE group78. All three members seem to 

have overlapping spatio-temporal expression patterns during development. For 

example, Sox9 is highly expressed initially during embryonic development of the 

pancreas and Sox8 and Sox10 appear to be also expressed although a low 

levels79.  

  In humans, mutations in SOX9 result in Campomelic Dysplasia, a 

disorder associated with bowing of the bones and male to female sex-reversal80. 

Sox9 is required for the condensation of the mesenchyme that differentiates into 

chondrocytes81. SOX9 regulates Col2a1, Col11a2, Col9a1, Aggrecan, and 

Cartilage link protein82-86. In mammalian males, Sox9 is expressed right after Sry 

and is essential in testis formation87. Immunofluorescent staining revealed that 

SOX9 is present in the mouse uterine epithelium, but appeared to be 

concentrated in the nuclei of the GE (Figure 3A). Moreover, human endometrial 

samples also express nuclear SOX9 in the GE (Figure 3B). These observations 

suggest a role for SOX9 in the LE and GE and the overall hypothesis of this 

thesis. 

 

Hypothesis 

 

SOX9 is required for uterine gland development and/or differentiation 
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Chapter II: Three-Dimensional Visualization of the Female Reproductive 

Tract 

 

Introduction 

 

The function of the FRT is to protect and nurture the developing embryo 

inside the mother. In the mouse, the blastocyst implants and develops on the 

antimesometrial side of the uterus. UGs are an essential part of the uterine 

parenchyma, they secrete histotroph that is required for implantation and 

provides nutrients to the developing embryo. In humans, histotroph is thought to 

nourish the developing fetus for the first trimester until the feto-placental network 

is established34. UGs are present in all studied mammals.  

In mice, UG formation initiates around postnatal day (P6) and is complete 

by P1438. This process is termed adenogenesis. UGs invaginate into the 

surrounding mesenchyme (stroma) forming a coiled tubular duct that is open to 

the lumen. During tubulogenesis, buds are formed on the main duct. Nascent 

buds extend out of the main duct forming primary branches, which themselves 

can further branch multiple times forming complex glandular structures. In ewes 

and pigs, it has been observed that UGs branch as they extend into the stoma39. 

In mice and humans, there are conflicting reports regarding UG branching. To 

date, little is known of about the three-dimensional (3D) structure of the UGs. The 

UGs are relatively small and the dense muscle layers that surround the 

endometrium makes it difficult to visualize their structure. In the past, various 
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artistic renderings of the UGs have been generated based on histological 

sections and 3D reconstructions88. However, this is very tedious and time 

consuming, making a comprehensive analysis of UG formation and structure 

difficult.  

In our lab, we are actively searching for novel ways to visualize organ 

development and differentiation to uncover cell behaviors and understand how 

cells become organized to form complex structures89,90. We have created 3D 

models of fetal mouse testicular cords during development by compiling multiple 

Z-stacks images91. Computer generated (CG) models have enabled us to 

visualize structures that are not easily detected in histological sections. To 

elucidate the 3D structure of the UGs, we performed whole mount 

immunofluorescent staining using -E-Cadherin antibody to mark fluorescently 

the entire uterine epithelium. By collaborating with Dr. Jichao Chen (M.D. 

Anderson Cancer Center), we used optical projection tomography (OPT) to 

create CG 3D-replicas of the structural framework of the epithelium in the FRT. 

This allowed us to visualize UG structure and position in the uterus.  

To create detailed 3D replica of UGs at the cellular level, we devised a 

genetic strategy to mark the UGs. Since our initial finding indicated that SOX9 

was expressed in the GE, we mated Sox9-Cre mice92 to Rosa-26-Reporter--H2B-

mCherry-EGFP-GPI (R26R-RG) mice93 to mark fluorescently the GE. By using 

this genetic strategy we were able to express mCherry fluorescent protein-

conjugated to histone H2B, allowing us to mark GE nuclei. This fluorescent 

protein was visualized using confocal microscopy. By generating multiple Z-stack 
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images we were able to recreate the 3D structure of the UGs at cellular 

resolution. 

 

Material and Methods 

 

Mice 

 

Rosa-26 Reporter-H2B-mCherry-EGFP-GPI (R26R-RG)93 and Sox9-Cre92 

mice were generously provided by Dr. Haruhiko Akiyama (Kyoto University). All 

mice were maintained on a C57BL/6J x 129/SvEv mixed genetic background. All 

animals were maintained in compliance with the Public Health Service Policy on 

Humane Care and Use of Laboratory Animals, the U.S. Department of Health 

and Humane Services Guide for the Care and Use of Laboratory Animals, and 

the United States Department of Agriculture Animal Welfare Act. All protocols 

were pre-approved by the University of Texas M.D. Anderson Cancer Center 

Institutional Animal Care and Use Committee. 

 

Polymerase Chain Reaction  

 

DNA was extracted from the tip of the tail. Tails were placed in 1.5 ml 

microcentrifuge tubes containing 300 µl of tail digestion buffer (10 mM Tris pH 8, 

5 mM EDTA pH 8, 0.1 M NaCl, 1% SDS), 5 µl of a 40 mg/ml Proteinase K 

solution was added to the tube and placed in a 65°C bath overnight. The next 
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day the tubes were mixed, 250 µl of phenol/chloroform added and vortexed 

again. The tubes were centrifuged at 13,200 revolutions per minute (rpm) for 10 

minutes in a microcentrifuge (Eppendorf, 5415D). 300 µl of the supernatant was 

transferred into a clean 1.5 ml microcentrifuge tube. 300 µl of 100% isopropanol 

was added and mixed well to precipitate DNA and centrifuged at 13,200 rpm for 

10 minutes. The supernatant was carefully decanted and 300 µl of 70% ethanol 

was added to the tube to wash off remaining salts from the DNA pellet. The tubes 

were centrifuged at 13,200 rpm for 2 minutes. The supernatant was decanted 

and the tubes were placed upside-down on the bench to air dry. Once dried 100 

µl of TE (10 mM Tris pH 8, 1 mM EDTA pH 8) buffer was added to dissolve the 

DNA. DNA concentration was calculated using a NanoDrop Spectrophotometer.  

For each 20 µl PCR reaction, we mixed 100 ng of tail DNA, 0.5 µl of 10 

mM dNTPs (250 µM total or 62.5 µM each), 0.5 µl of 10 mM of each forward and 

reverse primer (250 µM), 2 µl of Gene Choice (#608607) 10x Standard Buffer 

(1.5 mM MgCl2 final), 0.2 µl of Gene Choice (#608601) DNA Taq polymerase (1 

unit). We added water to fill a 20 µl final volume. We used a Bio-Rad DNA engine 

peltier thermal cycler to amplify the region of interest.  

 

Cre primers: (Sox9-Cre) 

Cre forward: 5’ GGACATGTTCAGGGATCGCCAGGC 3’ 

Cre reverse: 5’ CGACGATGAAGCATGTTTAGCTG 3’ 
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PCR was performed with a 95°C denaturing step for 5 minutes, followed 

by a second 95°C denature for 30 seconds, a 57°C annealing step for 45 

seconds and a 72°C elongation step for 45 seconds. Steps 2-4 were cycled 30 

times. Lastly, a final incubation of 72°C for 5 minutes allowed complete 

elongation of the region of interest. Using Cre forward and reverse primers, we 

detected a 219 bp Cre DNA product in a 1.5% agarose gel. 

 

GFP primers (R26R-RG): 

GFP forward: 5’ ACCCTGAAGTTCATCTGCACCACCG 3’ 

GFP reverse: 5’-CGTCGTCCTTGAAGAAGATGGTGCG3’ 

 

PCR was performed with a 95°C denaturing step for 5 minutes, followed 

by a second 95°C denature for 30 seconds, a 57°C annealing step for 45 

seconds and a 72°C elongation step for 45 seconds. Steps 2-4 were cycled 30 

times. Lastly, a final incubation of 72°C for 5 minutes allowed complete 

elongation of the region of interest. Using Cre forward and reverse primers, we 

detected a 173 bp DNA product in a 1.5% agarose gel. 

The PCR products were mixed with loading buffer (Bromophenol Blue 

Sucrose Solution, 0.25% w/v bromophenol blue, 40% w/v sucrose) and placed 

into a well in a 1.5% agarose gel (Agarose HS-Denville Scientific Inc.) containing 

ethidium bromide (10 mg/ml, FisherBiotech, BP102-5). The agarose gel was run 

for 30 minutes at 100 Volts (~ 400 mA) and later analyzed using an ultraviolet 
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lamp. On each run, a 100 base pair DNA ladder (Invitrogen, cat# 15628-050) 

was used as a marker to assess band size.  

 

Whole Mount Immunofluorescence 

  

 The samples were processed following a protocol generously provided by 

Dr. Allison Stewart (M.D. Anderson Cancer Center). FRTs were dissected and 

fixed overnight in 4% Paraformaldehyde (PFA) (Electron Microscopy Sciences, 

cat#19210) at 4°C. The next day, the tissues were washed twice for 30 minutes 

in cold PBS. Later, the tissues were dehydrated using sequential methanol 

dehydration steps (25% MeOH, 50% MeOH, 75% MeOH, 100% MeOH) by 

leaving them 10 minutes at 4°C during each step. Once dehydrated, the tissues 

were transferred into a MeOH/ 30% H2O2 (4:1) solution overnight at 4°C to 

bleach the tissues. H2O2 is usually used to block endogenous peroxidase activity, 

however, Dr. Jichao Chen (M.D. Anderson Cancer Center) recommended we 

perform this additional step to better clear the samples. The tissues were 

rehydrated by reversing the dehydration steps and then were transferred into 

blocking solution (1% BSA, 11% Sucrose, in PBS) for 5 minutes, 3 times. Rat -

mouse-E-Cadherin (Invitrogen, Cat# 131900) (1:100) was added to the last 

blocking solution and the tissues were left rocking overnight at 4°C. The next 

day, the tissues were washed 3 times for 5 minutes in PBS. The tissues were 

transferred into blocking solution containing the secondary antibody (AlexaFluor 

546, Cat# A11081) (1:200). The tissues were placed in a brown glass vial to 
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reduce light exposure. The next day, the tissues were washed 3 times for 2 hours 

in PBS. The tissues were dehydrated following sequential steps described 

earlier. The tissues were transferred into a MeOH: BABB (1:2 benzyl alcohol 

(Sigma-Aldrich, Cat# B2263)/ benzyl benzoate (Sigma-Aldrich, Cat# W213810) 

(1:1) for 1 hour. Later, the tissues were transferred into BABB and left overnight 

at 4°C. This cleared the tissue and allowed us to determine if the antibody had 

labeled the epithelium of the FRT. The tissues were then transferred into MeOH/ 

BABB (1:1) for 1 hour and later transferred into 100% MeOH and left overnight at 

4°C. The samples were delivered to Dr. Jichao Chen for OPT imaging. 

 

Clearing the FRT using ScaleA2 

 

We dissected FRT from Sox9-RG females and placed them in 4% PFA 

overnight. The next day, the tissues were washed 3 times in PBS for 15 minutes. 

The tissues were transferred into a 15 ml conical tube containing ScaleA294 (4M 

Urea, 10% Glycerol, 0.1% Triton X-100) solution and left for four days at 4°C. 

After the tissues were cleared in ScaleA2 solution, the fluorescent proteins were 

viewed by fluorescent microscopy. 

 

Immunofluorescent Staining 

 

FRTs were dissected and placed in 15 ml conical tubes containing 4% 

PFA and wrapped with aluminum foil to reduce light exposure. The next day, the 
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tissues were washed twice for 30 minutes in cold PBS. Later, the PBS was 

discarded and replaced with a 15% sucrose solution and left until the tissues 

sank to the bottom of the tube. The previous step was repeated using a 30% 

sucrose solution. The sucrose was discarded and replaced with a 30% sucrose/ 

OCT compound (FisherScientific, Cat# 14-373-65) (1:1) solution and left for 1 

hour at 4ºC. The tissues were embedded and frozen in OCT on top of dry ice. 

Frozen blocks were sectioned using a Cryostat. The thickness of the 

sections varied from 20 - 80 µm. The tissue sections were placed on a slide and 

air dried for 5 minutes. The slides were placed inside a Coplin staining jar 

containing cold acetone for 5 minutes. The slides were transferred into another 

Coplin staining glass containing 1% Triton X-100 in PBS and left for 10 minutes. 

The slides were tapped on a flat surface to remove excess PBS and 100 µl of 

Phalloidin (1:20) was added on top of the tissue sections. The tissue sections 

were incubated with Phalloidin for 30 minutes. The tissue sections were washed 

twice with PBS for 10 minutes. DAPI with Vectashield was added on top of the 

tissue sections and covered with a coverslip.  
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Results 

 

Generating 3D Replicas of the Female Reproductive Tract Using Optical 

Projection Tomography 

 

We used OPT to create CG 3D-replicas of the epithelium of the FRT. A 

caveat of using OPT is that the samples must be small enough to fit in a cylinder 

with a diameter of around a centimeter. Therefore, for our initial experiment we 

used P11 FRTs. We performed whole mount immunofluorescent staining using 

-E-Cadherin antibody to label the uterine epithelium. Using fluorescent 

microscopy, we confirmed that the epithelium of the FRT was stained before 

analyzing the samples using the OPT machine. After the sample was analyzed 

and all the optical sections were compiled into one large file, we used the Imaris 

software to generate a CG 3D-replica of the FRT (Figure 4).  

Using the Imaris software, we enhanced the background signal to 

visualize the surface of the FRT (Figure 4A). An optical section along the 

longitudinal axis of the FRT showed the difference between the marked 

epithelium and the background signal (Figure 4B). Inside the uterus, we could 

discern multiple UGs present along the entire length of the uterine horn. By 

removing the background signal we were able to observe that UGs extend 

radially on the ventral (antimesometrial) side of the uterus (Figure 4C, D). At P11, 

the UGs extend out from the LE as simple cylindrical tubes. No UGs were 

present on the mesometrial side of the uterus. 
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Figure 4: OPT imaging of the FRT at P11. (A) The surface of the entire FRT, 

composed of ovary (ov), oviduct (ovd), and uterus (ut), is shown by enhancing 

the background signal. (B-D) The epithelium lining the FRT marked by 

wholemount immunofluorescent staining using an α-E-Cadherin antibody. (B) An 

optical longitudinal section with enhanced background signal shows the uterine 

epithelium (red) lining the inside of the oviduct and uterus. (C, D) Images of the 

epithelium of the oviduct (above) and uterus (below). Black arrows point to a 

novel structure discovered in the mouse uterus, the uterine rail. A, anterior; P, 

posterior; D, dorsal; V, ventral. 
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We created an optical cross section of the uterus and enhanced the background 

to show that if one divides the uterine cavity into four sections (I, II, III, IV), along 

the mesometrial to antimesometrial axis, the first section (I), closest to the 

mesometrial side, is for the most part devoid of UGs (Figure 5A). Most UGs can 

be observed on the antimesometrial side (sections III & IV) of the uterus, the site 

of embryo implantation.  

Surprisingly, we detected a prominent structure that has not been 

described in the literature (Figure 4, arrowheads, Figure 5, flanked by yellow 

lines). The LE closest to the mesometrial side of the uterus appears to have a 

unique structure along the length of the uterine horn. By remaining fixed along 

the anterior-posterior axis, the epithelium on the mesometrial side forms a 

structure that resembles a handrail, so we decided to name this dorsal structure 

the “uterine rail”. If we trace an imaginary circle along the dorsal-ventral axis, 

where the mesometrial side lies at zero degrees, the uterine rail appears to 

extend 20-30 degrees laterally (40-60 degrees total) from the middle of the 

uterine lumen, creating a U-shaped epithelium that resembles a hand rail or 

chef’s hat and comprises ~15% of the circumference of an imaginary circle 

tracing the endometrium (Figure 5B). Identification of the uterine rail in 3D 

images facilitated seeing this structure in uterine histological cross-sections when 

the mesometrial-antimesometrial orientation is positioned dorsal-ventral. 
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Generating 3D Images of Uterine Glands at Cellular Resolution by Confocal 

Microscopy 

 

The main focus of my research is to study UG development. Using OPT, 

we were able to demarcate the entire epithelium of the FRT, although at poor 

cellular resolution. To create a CG replica of the UGs at cellular resolution, we 

took advantage of the high-resolution quality obtained by using confocal 

microscopy. We found that SOX9 is expressed in most of the GE and some of 

the LE, which will be discussed later. Therefore, we generated Sox9-Cre; Rosa 

26 Reporter-H2B-mCherry-EGFP-GPI (Sox9-RG) mice to mark cells derived from 

SOX9 expressing epithelium, anticipating that most of the GE would be labeled 

with the fluorescent proteins (FP). Upon Cre-mediated activation of the Rosa 26 

allele, cells expressing Sox9 also turned on expression of a red fluorescent 

protein (mCherry) conjugated to histone H2B and a green fluorescent protein 

(GFP) that attaches to the cell membrane.  

By using Sox9-RG mice, I cannot assert that all cells that expressed the 

FPs were expressing Sox9 at the time of dissection. Instead, the cells showing a 

positive signal were either expressing Sox9 or were derived from a parental cell 

that had expressed Sox9 previously. Thus, I shall refer to the cells showing FP 

signal Sox9-lineage positive (Sox9-LP) cells. 

Although, later I will describe in more detail the observations we made 

using the Sox9-RG mice, in this section I will describe our initial findings for adult 

tissues.  
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Figure 5: Visualizing the structure of the uterine epithelium at P11. (A, B) 

Optical cross-section of the mouse uterus stained with α-E-Cadherin antibody 

(red) with enhanced background signal. (A) The uterine lumen is divided into four 

sections to display the presence or absence of UGs between dorsal 

(mesometrial) and ventral (antimesometrial) side. (B) The uterine rail is present 

within ~50° from the middle of the uterine cavity forming a structure that 

resembles a hand rail or a chef’s hat. (C) Imaging to only show the epithelium of 

the uterus. UGs extend radially within the ventral side of the uterus. (D) View 

from the dorsal side to show the uterine rail delineated by yellow dashed lines. 

UG, uterine glands.  
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The uteri of 8-week-old females were dissected, fixed, and frozen to prevent the 

leaking of the FPs from the cell. To quickly assess the 3D structure of the UG, we 

placed a few of the uteri in a ScaleA294. This solution decreases the background 

noise, allowing us to view the fluorescent signal present in the nuclei of SOX9-LP 

cells. We were able to visualize the structure of the UGs. Adult UGs featured a 

main duct with primary buds or branches (Figure 6B). The images clearly show 

that branching morphogenesis takes place in the development of the mouse 

UGs. However, the resolution was not high enough to create high-resolution CG 

3D replicas.  

To generate a CG 3D replica of the UGs, we sectioned frozen uteri of 

Sox9-RG females at 60 µm. Using confocal microscopy, we took multiple Z-stack 

images of these tissue sections. We were able to detect the mCherry inside the 

nuclei of Sox9-LP cells using low laser power. The GFP was not as easy to 

detect. In fact, in order to detect the GFP, the laser power had to be turned up 

very high, which then caused the detectors to pick up autofluorescent signals 

from the tissue.  

 Using Sox9-RG females, we were able to generate the first 3D CG replica 

of UGs at cellular resolution (Figure 6C-G). We observed that the lumens of the 

branches connect to the main ductal lumen (Figure 6E, G). Various primary 

branches are present as small round structures (Figure 6D, E) and as longer 

cylinder-shaped buds (Figure 6F, G) that stem from the main duct. Additionally, 

we noticed that the circumference of each bud was made up of roughly the same 

number of cells, approximately 12 cells (Figure 6E, G).  
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Figure 6: Visualization of the adult uterine glands at cellular resolution in 

Sox9-RG mice. (A) Genetic strategy used to express a red fluorescent protein 

conjugated to histone H2B in the nuclei of UGs. (B) UG visualized by confocal 

fluorescent microscopy (C-G) 3D images of UGs generated by reconstructing Z-

stack images taken using confocal microscopy. (C) Uterine sections; nuclei of 

SOX9-LP cells (red) and all nuclei stained by DAPI (blue). (D) The signal 

detected from the blue channel (DAPI) was removed to show only nuclei of 

SOX9-LP cells. (E) Magnified image from D (box) used to count the number of 

cells in the circumference of the glandular buds. (F) Nuclei of SOX9-LPs in UGs. 

(G) Magnified image from F of the UG showing the number of cells making up 

the circumference of the primary branches is maintained as they lengthen from 

the main glandular duct. GE, glandular epithelium; LE, luminal epithelium. 
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Figure 7: Model of uterine gland development. Uterine glands develop as 

simple ducts, which later form primary branches that elongate from the main 

duct. 
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Therefore, it appears that primary branches initially develop as round structures 

containing a lumen that subsequently lengthen from the main glandular duct as 

cylinder-like structures (Figure 7).  

 

Discussion 

 

Whole mount immunofluorescence followed by OPT imaging allowed us to 

create 3D replicas of the epithelium lining the mouse FRT at P11. We observed 

UGs present along the entire uterine horn. UGs are exocrine glands that secrete 

histotroph into their lumen, which is transported into the uterine cavity4. 

Histologically, UGs are classified as simple tubular glands39. In simple glands the 

main duct remains unbranched, while the secretory portion attached to the duct 

can itself branch95. Conversely, in compound glands, the ducts branch to 

accommodate more secretory units. In the uterus of pigs, sheep and mice, the 

main glandular duct forms postnatally, while branching morphogenesis is only 

thought to take place in pigs and sheep39. Therefore, histologically the UGs of 

pigs and sheep are considered simple branched tubular, while mouse UGs are 

considered as simple tubular (unbranched). At P11, we observed that UGs were 

present as simple tubular (unbranched) structures; however, examination at later 

time-points revealed that UGs develop into simple branched tubular structures.  

OPT imaging also allowed us to visualize the 3D structure of the oviductal 

epithelium. The oviduct is composed of three subcompartments: the 

infundibulum, the ampulla and the isthmus1,8. The twists and coils present in the 
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oviduct make it difficult to accurately measure the length grossly. Moreover, a 

thin membrane is attached to the coiled oviduct which needs to be cut before the 

oviduct can be stretched for accurate measuring.  A 3D replica of the mouse 

oviduct will allow us to accurately measure the difference in length and width 

between each of the subcompartments that make up the oviduct. 

OPT imaging allowed us to detect a novel structure, the uterine rail. This 

structure is present at the mesometrial (dorsal) side of the mouse uterine horn. 

By generating digital cross sections of the uterine horn, we were able to 

determine that the uterine epithelium on the mesometrial side expands laterally 

forming the uterine rail. This structure resembled a chef’s hat. Moreover, UGs 

were not present near the uterine rail at P11. In the future, we would like to 

visualize adult FRTs using OPT imaging to determine the structure of the uterine 

rail in the adult uterus. From what we can appreciate in the 3D replicas of the 

FRT at P11, this structure possibly functions as a frame that confers support to 

the uterus. It would be interesting to uncover if this structure is present in other 

mammals with bicornuate uteri. Additionally, we are would like to identify mutant 

mouse lines that lack this structure, to gather more information about its function. 

By reconstructing mouse uterine sections, a previous study had shown 

that UG were mostly distributed on the antimesometrial side of the uterus88. Our 

3D replicas confirmed these findings and also show that the UGs extend radially 

on the antimesometrial side. These observations suggest that there may be a 

morphogenic gradient in the mouse uterus that forms this mesometrial-

antimesometrial difference96. Morphogenic gradients control evolutionary 
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conserved signaling pathways that regulate tissue patterning96. Perhaps, 

secreted molecules from the antimesometrial side are creating a morphogenic 

gradient that promotes UG development. Alternatively, secreted molecules from 

the mesometrial side could be actively preventing UG development.  

By confocal microscopy, we were able to visualize multiple secretory units 

in adult mouse UGs. This observation contrasted with what was known about 

mouse UGs39. Histologically, exocrine glands are categorized into simple or 

compound95. In the mouse lung, kidney and mammary glands, tubulogenesis is 

followed by branching morphogenesis which leads to the branching of the main 

duct and formation of multiple secretory units in each duct48. We analyzed the 

structural framework of several UGs (n=17) at cellular resolution. These samples 

revealed for the most part, UGs are composed of one main duct with multiple 

secretory units.  Occasionally, we observed two UGs that appeared to meet near 

the uterine cavity, which would make them compound; however, for the most 

part, UGs were observed as simple branched ducts.  

The secretory portion of exocrine glands can be tubular (cylindrically-

shaped) or acinar (sac-like)95. We observed that the secretory units were 

cylindrical-shaped. Moreover, we counted the number of nuclei around the 

circumference of the secretory units. We estimated that the circumference of 

each secretory unit was composed of 12-14 cells. Quantification of the cells of 

UGs in the future will contribute to an understanding of the cellular mechanisms 

that lead to their development, e.g. number of cell doublings. 
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In other organs, the secretory portions can themselves be unbranched or 

branched. Our findings indicate that at P11, mouse UGs are unbranched, 

however, multiple secretory units branch from the main duct. These, secretory 

units, for the most part, do not branch. The observation that most UGs appeared 

as single tubes at P11 (n=1) and that all adult uteri examined contained UGs that 

were branched suggests that branching morphogenesis in mice takes place 

sometime after P11.   

In adult mouse UGs we observed that UGs were branched. The next step 

will be to create a detailed-timeline of UG branching morphogenesis. Using 

Sox9-RG mice, we could potentially collect multiple samples at various time 

points to determine when branching morphogenesis takes place in mouse UGs. 

Furthermore, advances in cell culturing techniques are allowing us to visualize 

how tissue morphogenesis takes place in vitro97. In the future, we would like to 

culture GE using in vitro culturing systems that mimic the 3D matrix found in the 

uterus. The methods used to isolate and grow mouse uterine epithelium in vitro 

have already been determined98. Therefore, culturing uterine epithelium prior to 

glandular differentiation will allow us to visualize budding, tubulogenesis and 

branching morphogenesis. Moreover, in vitro culturing will enable us to study the 

molecular pathways that induce bud outgrowth in UGs.  
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Chapter III: Uterine Epithelial Knockout of Sox9 

 

Introduction 

 

 UGs secrete factors essential for embryo implantation and development4. 

In mice, UGs initially develop around P6 and are differentiated by P1439. The 

cellular mechanisms that promote invagination of the uterine epithelium, 

subsequent tubulogenesis, and glandular differentiation is still poorly 

understood39. In this thesis, we focus on the role of SOX9 in UG development. 

Our initial observation indicated that SOX9 was expressed mainly in the UGs 

(Figure 3). Moreover, SOX9 was localized inside the nucleus of the GE, the cells 

that compose the UGs. SOX9 is a transcription factor essential for embryo 

development and correlated with disease progression99. SOX9 expression is 

essential for proper differentiation of the prostate epithelium100. Sox9 is also 

expressed in lung epithelia during organogenesis; however, mice in which this 

gene was conditionally inactivated were phenotypically normal101. To elucidate 

the role of SOX9 in the UGs, we decided to determine the spatio-temporal 

expression of SOX9 during FRT development and UG differentiation.  

Furthermore, we conditionally inactivated Sox9 in the uterine epithelium to 

determine its role in UGs development. Sox9 mutant mice die early during 

embryogenesis76 and Sox9 heterozygotes die soon after birth102. Therefore, to 

analyze the function of SOX9 in UG development and differentiation we required 

a genetic strategy to conditionally inactivate Sox9 in the uterine epithelium. We 
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used the progesterone receptor (Pgr) promoter to conditionally inactivate Sox9 in 

the uterine epithelium. Although this was the best tool available, one potential 

pitfall was that Sox9 would be inactivated after the UGs had formed. Additionally, 

SOX8, SOX9, and SOX10 have known compensatory roles during testicular 

development and neural crest differentiation78,103,104.  

 

Cre/lox System 

 

The Cre/lox system is a genetic tool mostly used to conditionally knock out 

a specific sequence in a specific cell type. Usually, loxP sites are inserted 

flanking an essential exon of the gene of interest, which upon recombination, 

translate into a non-functional protein. A loxP site is a 34 base pair sequence 

composed of reverse 13 bp palindromic repeats flanking an 8 bp core sequence. 

Cre recombinase is a Type I topoisomerase, isolated from P1 bacteriophage, 

which catalyzes DNA recombination between loxP (locus of crossing over, P1) 

sites. Depending on the orientation of the loxP sites, Cre will either delete or 

invert the DNA segment they flank105.  

This same strategy can be used to overexpress a protein in a specific cell 

type. Here, a “strong” promoter sequence is used to transcribe our cDNA of 

interest. By placing a polyA stop signal flanked by loxP sites before the cDNA, 

transcription stops and the cDNA remains untranscribed. Upon Cre-mediated 

excision of the stop signal, transcription of the cDNA can take place. The cDNA 

of interest, in theory, is then expressed in specific cell types, and their progeny. 
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We used a Cre-loxP genetic strategy to conditionally inactivate and 

overexpress Sox9 in the uterine epithelium. We took advantage of the Pgr-Cre 

mouse line that expresses Cre recombinase in the LE and GE starting around 

P14. Pgr-Cre mice were crossed with Sox9 fx/fx mice to generate Pgr-Cre; Sox9 

fx/fx females. Upon Cre-mediated recombination, the 3rd exon of the Sox9 gene 

should be deleted, thus inactivating the protein.  

 

Material and Methods 

 

Mice 

 

Pgr-Cre mice were obtained from Dr. Franco DeMayo at Baylor Medical 

Center106. Sox9 fx/fx mice were obtained from Dr. Andreas Schedl (University of 

Nice, France)107, Rosa 26 Reporter-H2B-mCherry-EGFP-GPI (R26R-RG)93 were 

obtained from Dr. Go Shioi (RIKEN Center for Developmental Biology, Kobe, 

Japan). Sox9-Cre92 and Sox9-ires-enhanced green fluorescent protein (EGFP) 

mice108 were generated in our laboratory in collaboration with Dr. Haruhiko 

Akiyama (University of Kyoto, Japan). R26R-LacZ mice were obtained from Dr. 

Philippe Soriano (Baylor College of Medicine). All mice were maintained on a 

C57BL/6J x 129/SvEv mixed genetic background. All animals were maintained in 

accordance with the Public Health Service Policy on Humane Care and Use of 

Laboratory Animals, the U.S. Department of Health and Humane Services Guide 
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for the Care and Use of Laboratory Animals, and the United States Department 

of Agriculture Animal Welfare Act. All protocols were approved by the University 

of Texas M.D. Anderson Cancer Center Institutional Animal Care and Use 

Committee. 

 

Polymerase Chain Reaction  

 

 DNA was extracted following the protocol described in Chapter II. PCR 

was performed using the following primers. 

 

Cre primers: (Sox9-Cre and Pgr-Cre) 

Cre forward: 5’ GGACATGTTCAGGGATCGCCAGGC 3’ 

Cre reverse: 5’ CGACGATGAAGCATGTTTAGCTG 3’ 

 

PCR was performed with a 95°C denaturing step for 5 minutes, followed 

by a second 95°C denature for 30 seconds, a 57°C annealing step for 45 

seconds and a 72°C elongation step for 45 seconds. Steps 2-4 were cycled 30 

times. Lastly, a final incubation of 72°C for 5 minutes allowed complete 

elongation of the region of interest. Using Cre forward and reverse primers, we 

detected a 219 bp Cre DNA product on a 1.5% agarose gel. 

 

Sox9 fx/fx primers: 

Sox9-Forward: GGGGCTTGTCTCCTTCAGAG 
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Sox9-Reverse: TGGTAATGAGTCATACACAGTAC 

 

PCR was performed with a 95°C denaturing step for 5 minutes, followed 

by a second 95°C denature for 30 seconds, a 65°C annealing step for 45 

seconds and a 72°C elongation step for 45 seconds and cycled 30 times. Lastly, 

a final incubation of 72°C for 5 minutes allowed complete elongation of the region 

of interest. Using Sox9 forward and reverse primers, we detected a 150 bp wild-

type and a 170 bp fx band DNA product on a 1.5% agarose gel.  

 

X-gal Staining of Female Reproductive Tracts 

 

Sox9-Cre mice were crossed to Gtrosa26tm1Sor (R26R) females to mark 

Sox9-expressing cells and their progeny in the uterine epithelium. FRTs were 

collected at various developmental and post-parturition time-points. The FRT was 

dissected in cold PBS and then transferred into 4% paraformaldehyde (4% PFA) 

for 1 hour at 4ºC, followed by 3 x 15 minute rinses in 0.02% NP-40 (Calbiochem, 

492015)/0.01% deoxycholic acid (Sigma, D-6750) in PBS. The FRTs were then 

transferred into staining solution (10% NP-40, 1% deoxycholic acid, 1 M MgCl2, 

0.1 M EDTA, pH 8, 0.5 M K3Fe(CN)6 (Sigma-Aldrich 244023) = 8.25 g/50 ml, 0.5 

M K4Fe(CN)6  (Sigma-Aldrich  P3289) = 10.5 g/50 ml, and 40 mg/ml X-gal (Gold 

Biotechnology, cat# X4281C) ) and stained overnight at 37ºC. The following 

morning the FRTs were washed with 0.02% NP40/0.01% deoxycholate in PBS. 
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The FRTs were dehydrated using sequential methanol (MeOH) 

dehydration steps (25% MeOH, 50% MeOH, 75% MeOH, 100% MeOH), 15 

minutes in each step at 4ºC. Following the dehydration steps, the tissues were 

cleared inside a glass tube by adding a 1:1 BABB (benzyl alcohol- benzyl 

benzoate) /MeOH solution and incubated for 2 hours at 4ºC. The BABB/MeOH 

was discarded appropriately and a BABB solution was added and incubated for 

more than 2 hours at 4ºC. The tissues were viewed and photographed under the 

Leica microscope. 

 

Hematoxylin and Eosin (H&E) Staining 

 

The female reproductive organs were dissected and immediately placed in 

cold PBS. Depending on the size, the tissues were transferred into 15 ml conical 

tubes or 1.5 ml tubes containing 4% PFA (Electron Microscopy Sciences, 

cat#19210) and left overnight on a nutator mixer at 4ºC. The next day the tissues 

were washed with 70% ethanol 3 times for 15 minutes on the nutator at 4ºC. The 

tissues were enclosed inside a tissue cassette (Fisherbrand histosette II tissue 

cassettes, cat # 15182701E). The cassettes were then placed in a Leica TP 

1020- automatic tissue processor and processed in 70% ethanol for 30 minutes, 

80% ethanol for 30 minutes, 90% ethanol for 30 minutes, and 95% ethanol (1) for 

30 minutes. 95% ethanol (2) for 8 hours and 3 dehydration steps of 100% 

ethanol for 30 minutes each. After the ethanol dehydration steps the cassettes 

were transferred into a Histoclear (National Diagnostics, # HS-200) for 30 
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minutes followed by another Histoclear wash for 30 minutes. Lastly, the 

cassettes were transferred into a vacuumed chamber containing melted paraffin 

for 8 hours followed by a second vacuumed chamber containing melted paraffin 

for 2 hours. 

The tissues were released from the tissue cassette and embedded in 

paraffin (McCormick paraplast tissue embedding medium, Ref# 501006) using a 

Leica EG 1160 embedding station set at a temperature of 61°C. The tissues 

were placed in a metal cast either perpendicular to the bottom for transverse 

sections or on the side for longitudinal sections. 

Serial sections of the uterus were cut using the Leica RM 2255 microtome. 

Cross-sections of the uterus were made starting in the most anterior end 

(oviduct) to the most posterior end (cervix). Sections were cut with a width of 6 

m, air-dried and then left at 42ºC overnight.  

Before staining, tissue sections were deparaffinized 3 times in Histoclear 

solution for 5 minutes. Sections were washed twice with 100% ethanol 

(Pharmco-Aaper, cat# E200) for 3 minutes, twice with 95% ethanol (Pharmco-

Aaper, cat# E190) for 3 minutes, and a final 70% ethanol wash for 5 minutes. 

After the ethanol wash the slides were rinsed in tap water and then transferred to 

distilled water for 1 minute.  

The tissue sections were stained with Harris Hematoxylin (Protocol, Cat# 

245-651) for 5 minute, quickly rinsed in tap water, and then dipped 10 times in 

1% acid alcohol (1% hydrochloric acid/70% ethanol). The tissue sections were 

then placed under running tap water for 15 minutes. After the tap water wash, the 
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sections were verified for proper retention of the hematoxylin, dark blue nucleus 

with a clear background. Overstained slides were dipped in 1% acid alcohol and 

checked for proper dark blue nuclear stain. The tissue sections were transferred 

from into 0.5% eosin (Sigma Eosin Y solution, aqueous, Cat# HT110-2-128) 

solution for 5 minutes. The excess eosin was washed off by a series of ethanol 

washes, 10-15 dips in 70% ethanol, 10-15 dips in two consecutive 95% ethanol 

solutions, and 10-15 dips in two consecutive 100% ethanol solutions. The tissue 

sections were transferred into a three times for two minutes washes in Histoclear 

solution. Lastly, 2-3 drops of Permount (Fisher Scientific, SP15-500) were placed 

on top of the tissue sections and a coverslip was carefully positioned on top of 

the slide. 

 

Masson’s Trichrome Staining 

 

Sections were washed twice with 100% for 3 minutes, twice with 95% 

ethanol (Pharmco-Aaper, cat# E190) for 3 minutes, and a final 70% ethanol wash 

for 5 minutes. After the ethanol wash the slides were rinsed in tap water and then 

transferred to distilled water for 1 minute.  

To stain collagen fibers we used the Accustain Trichrome Stain Kit 

(Sigma-Aldrich, Cat# HT15) and followed the protocol suggested by the 

company.  
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Alcian Blue Staining 

 

 We performed Alcian Blue staining to detect sulfated and carboxylated 

acid mucopolysaccharides. Tissue slides were deparaffinized and rehydrated 

following the same protocol described in H&E. The tissue sections were placed in 

a 3% acetic acid solution (Fisher Scientific, Cat # BP1185-500) for 3 minutes. 

The slides were transferred into an Alcian blue solution containing 1% Alcian 

Blue 8GX Stain (Sigma, Cat# A3157) and 3% acetic acid diluted in water for 30 

minutes at room temperature. Later, the slides were washed in tap water for 10 

minutes and then rinsed in distilled water. The tissue sections were 

counterstained in a nuclear red solution for 5 minutes. The slides were washed in 

tap water for 1 minute and dehydrated in 95% ethanol. Later, the slides were 

transferred into 3 x Histoclear for 2 minutes and sealed with Permount. 

 

Immunofluorescent Staining 

 

Tissue sections were placed in an oven for 30 min at 55ºC, then 

deparaffinized and rehydrated as for H&E histology. The sections were placed in 

a 10mM Sodium Citrate (Fisher Scientific, Cat# S279-3) epitope retrieval solution 

heated in a microwave oven for 20 minutes, and cooled for 45 minutes at room 

temperature. The sections were washed with PBS for 5 minutes, then placed in 

3% H2O2 (Dako) for 10 minutes. The sections were washed with PBS for 5 
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minutes. Several primary antibodies used here were produced in mice; therefore, 

we incubated tissue sections in mouse IgG for 1 hour at room temperature. 

Following the masking of native IgG, the tissue sections were placed in serum-

free protein blocking solution made up 3% BSA, 1%Triton-X 100, in PBS for 30 

minutes at room temperature. The excess blocking solution was absorbed using 

a Kimwipe before the primary antibody was added. The following primary 

antibodies and dilutions were used: 

-SOX9- Millipore Cat# AB5535 - 1:200 

-E-Cadherin- BD Biosciences Cat# 610181 - 1:200 

-FOXA2- Abcam- Cat# ab40874 - 1:200 

-TRPV4- Abcam- Cat# ab39260 – 1:100 

-Ki67- Abcam- Cat# ab8191- 1:100 

-Phosphohistone H3- Millipore Cat# 06-570- 1:200 

Alexa Fluor 488 Phalloidin- Invitrogen Cat# A12379 - 1:20 

 

 The primary antibody solution was added directly on top of the tissue 

sections and incubated overnight at 4ºC. The next day, the tissue sections were 

washed 3 times with PBS for 10 minutes to remove non-specific binding. After 

the PBS washes the sections were incubated with a 1:400 dilution of the 

secondary antibody.  

The tissue sections were washed 3 times with PBS/tween for 5 minutes to 

remove non-specific secondary antibody binding. One drop of Vectashield 

mounting media (Vector, #H-1200) containing 4', 6-diamidino-2-phenylindole 
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(DAPI) was placed directly on top of each tissue section. The sections were 

mounted with coverslips with then imaged. After imaging sections were stored at 

4ºC.  

 

TUNEL Staining 

  

 To determine the number of cells undergoing programmed cell death, we 

performed TUNEL staining. Fragmented double stranded DNA can be identified 

by labeling free 3’-OH terminal ends using this protocol.  Tissue slides were 

deparaffinized and rehydrated following the same protocol described in H&E.  

The slides were incubated with Proteinase K (20 µg/ ml in 10 mM Tris-HCl 

pH 8.0) for 20 minutes at 37ºC. The slides were washed 3 times in PBS for 5 

minutes. After washing off the Proteinase K, the slides were transferred into 

permeabilization solution (0.1% Triton X-100 in 0.1% sodium citrate) for 2 

minutes on ice. We added 50 µl TUNEL reaction mixture (5 µl of TUNEL-Enzyme 

solution (Roche Applied Science, Cat# 1767305) and 45 µl TUNEL-Label 

solution (Roche Applied Science, Cat #1767291)) and incubated for 1 hour at 

37ºC in the dark. The slides were washed 3 times in PBS for 10 minutes. Drops 

of Vectashield mounting media were added directly on top of the tissue sections 

and covered with a coverslip. 
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Results 

 

Spatio-Temporal Expression of Sox9 during Uterine Gland Development 

 

In the adult uterus, SOX9 was present mostly localized in the nucleus of 

the GE (Figure 3). In Chapter IV (Figure 24), I show immunofluorescent staining 

that demonstrates that SOX9 is present primarily in the GE at various time point 

during the development of the FRT. To visualize spatio-temporal expression of 

Sox9 in the uterine epithelium, we used a mouse line in which an ires-enhanced 

green fluorescent protein (EGFP) sequence was knocked into the 3’ untranslated 

region of the endogenous Sox9 gene108. Cells expressing Sox9 should also 

express green fluorescent protein (GFP), which can be detected using 

fluorescent microscopy. We mated male and female homozygous Sox9-EGFP 

mice and dissected the reproductive tract of 16.5 days post-coitum Sox9-EGFP 

females. 

In embryonic day (E) 16.5 females, the Müllerian duct is present while the 

Wolfian duct degenerates due to a lack of testosterone. We observed GFP signal 

present in the epithelium of the Müllerian duct (Figure 8A, B). This observation 

suggests that Sox9 is expressed in progenitor cells of the female reproductive 

tract. GFP fluorescence was also observed in the developing female gonads; 

however, the gonads are known to contain various endogenous fluorophores that 

emit fluorescent signal under ultra violet light. This auto-fluorescence is caused 

by increased levels of NADH and FAD during meiotic maturation109.  
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Figure 8: Expression of Sox9-EGFP during uterine gland development. (A, 

H) Brightfield images, (B-G, I), fluorescent images. (A) Anterior region of E16.5 

FRT. (B) Fluorescent image of Panel A, showing GFP signal detected in the 

epithelium of the Müllerian duct. (C) P1 FRT shows GFP signal in the uterine 

epithelium and in the oviduct. (D) P6 uterus shows GFP signal in the uterine 

epithelium. Epithelial invaginations can be observed. (E-G) P8 FRT. (E) Multiple 

buds are observed sprouting from the luminal epithelium. (F) Higher 

magnification showing the surface of the luminal epithelium. Greater GFP signal 

is detected in the creased epithelium and in the nascent. (G) GFP signal is 

detected in the cervical epithelium. (H, I) P21 uterus opened to reveal the surface 

of the luminal epithelium. (I) Epithelial creases and uterine glands show greater 

GFP signal. cvx, cervix; g, gonad; ge, glandular epithelium; le, luminal epithelium; 

md, Müllerian duct; ovd, oviduct; ut, uterus. Scale bar, 500 m 
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 At P1, the GFP signal was observed in the uterine epithelium (Figure 8C). 

Interestingly, at P6, as the uterus remodels during postnatal development, we 

detected greater GFP signal in the epithelial invaginations forming radially along 

the length of the uterus (Figure 8D). These epithelial invaginations extend along 

the surface of the uterine epithelium forming epithelial creases, also termed 

uterine folds. At P8 a large number of epithelial buds were observed protruding 

from the LE (Figure 8E). Opening the uteri revealed that the GFP signal was 

pronounced in the epithelial creases and the nascent UGs (Figure 8F). Nascent 

glands were seen at P8 but not at P6. We also detected GFP in the cervical 

epithelium (Figure 8G). Therefore, Sox9 was expressed in the epithelia of the 

female reproductive tract.  

 At P21, we detected strong GFP signal in the GE and the creases of the 

LE. We observed multiple UGs that extended perpendicularly from the creases in 

the epithelium. These observations corresponded with our initial findings that 

SOX9 levels were predominantly present in the GE and suggested that SOX9 

somehow regulates invagination of the uterine epithelium and subsequent UG 

formation. 

 

Analysis of SOX9-Lineage Positive Cells during Uterine Gland Development 

 

The GFP expressed in the Sox9-EGFP mouse line is easily degraded, 

rendering us unable to visualize the fluorescent signal by confocal microscopy. 

Fortunately, RFP expressed from Sox9-RG is adequately maintained during 
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tissue processing, allowing us to take advantage of tissue sections from 

postnatal Sox9-RG females to visualize the location of SOX9-lineage positive 

(LP) cells during uterine differentiation. At P6, most SOX9-LP cells were detected 

close to where the uterine epithelium is beginning to invaginate (Figure 9A). 

Removing the DAPI signal allowed us to visualize solely the red nuclei of SOX9-

LP cells (Figure 9B). We observed that most SOX9-LP cells were present in the 

LE, although some cells were present in the stroma (Figure 9B).   

As UGs develop and differentiate, a greater number of SOX9-LP cells 

were present in the GE and to a lesser extent in the LE (Figure 9C-F). In adult 

females, SOX9-LP cells constitute almost the entire GE (Figure 6, 9G, H). 

Additionally, some SOX9-LP cells were also present in sections of the LE. Our 

findings demonstrated that SOX9-LP cells, although initially found in the LE, 

appear to relocate themselves into the forming UGs and eventually compose the 

entire GE.  

To generate a detailed picture where SOX9-LP cells are positioned during 

UG formation we examined several uteri from P6 to P10. We were unable to 

observe any UGs at P6, only the start of the creases that formed in the uterine 

epithelium (Figure 9A). We observed a nascent UG at P7 (Figure 10A-D). The 

entire nascent UG was composed of SOX9-LP cells (Figure 10D). Additionally, 

SOX9-LP cells were part of the invaginating epithelium (Figure 10A-F). The 

invaginating epithelium forms the creases we observed at P21 (Figure 8H-I).  
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Figure 9: Sox9-lineage positive (Sox9-LP) cells mark the adult UGs. (A - H) 

Frozen sections made from uteri dissected from Sox9-RG females. Fluorescent 

images captured using confocal microscopy and rendered using Imaris software. 

(A, B) Section of the uterus dissected at P6. (A) mCherry FP (red) and DAPI 

(blue). (B) Only the red channel is shown for Panel A to highlight the SOX9-LP 

cells. (C, E) Uterine sections from P35 females, showing mCherry FP and DAPI 

signals. (D, F) Only red channel is shown in D for Panel C and in F for Panel E. 

(G, H) Uterine sections derived from 8-week-old females. (G) mCherry FP and 

DAPI signals. (H). Only red channel is shown in H for Panel G. GE, glandular 

epithelium; LE, luminal epithelium. Scale bar, 50 µm.  
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Figure 10: SOX9-Lineage Positive cells contribute to UG formation. (A-H) 

Frozen sections derived from P7 Sox9-RG females stained with Phalloidin 

(green) and DAPI (blue). (A, C) Red, blue, and green channels. (B, D) Red and 

green channels. Blue arrowhead shows a mitotic figure in the luminal epithelium 

near the invaginated epithelium. (C, D) Nascent UG in the stroma. (E, F) Red 

and green channels. Arrowheads point to the nuclei of SOX9-LP cells found 

close to the basement membrane. (G, H) View of the apical membrane. (G) Red, 

blue, and green channels. (H) Removal of the green signal (cytoskeleton) from 

Panel G. Nuclei of SOX9-LP cells (arrowheads) appear to be closer to the 

basement membrane. SOX9-LP cells, red; DAPI, blue; Phalloidin, green; 

basement membrane (dashed lined).  
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The nuclei of SOX9-LP cells were positioned near the basal membrane and 

appear to extend into the stroma (Figure 10A, B, E, F, black arrowheads). 

Moreover, by looking at the surface of the LE, we noticed that the actin 

cytoskeleton of SOX9-LP cells, stained green by Phalloidin, masked the red 

nuclei, indicating that the nuclei were positioned closer to the basal membrane 

(Figure 10G, H). Therefore, we have provided additional evidence that correlates 

the presence of SOX9 with the invaginations of the uterine epithelium.  

 

SOX9 Expression in the Adult Uterus during the Estrous Cycle 

 

 We determined that SOX9 was expressed during the embryonic and 

postnatal development of the mouse FRT. In adult females, SOX9 was present in 

the ampulla of the oviduct and in the UGs of the uterus (Figure 8C, D). Once 

females reach adulthood, the uterus undergoes considerable morphological 

changes during the estrous cycle18. Driven primarily by the influence of 

circulating hormones, various genes are upregulated and downregulated during 

the estrous cycle. Two independent datasets detected higher levels of Sox9 

mRNA during the secretory phase in the human endometrium110,111. To 

determine if SOX9 fluctuates during the estrous cycle, we dissected uteri of B6 

females at specific stages of the estrous cycle. By performing daily vaginal 

smears on B6 females, we were able to determine the stage of the estrous cycle. 

We collected various uteri at proestrus, estrus, metestrus, and diestrus.  
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We sectioned longitudinally along the length of the uteri. Longitudinal 

uterine sections were taken and stained using -SOX9. We observed that UGs, 

stained by SOX9, were found primarily in the antimesometrial side of the uterus, 

corroborating our findings from Chapter I. We observed that SOX9 was present 

in the GE all through the estrous cycle (Figure 11A-H). In comparison to all the 

other stages of the estrous cycle, a relatively small number of LE cells stained 

positive for SOX9 during diestrus (Figure 11G, H). Therefore, it appears that 

SOX9 is maintained in the GE while its expression fluctuates during the different 

stages of the estrous cycle.  

Two independent datasets detected higher levels of Sox9 mRNA during 

the secretory phase in the human endometrium110,111. In mice, the maximal 

secretory activity of the uterine takes place during estrus21. We observed greater 

number of cells expressing SOX9 during estrus. Thus, it seems SOX9 levels are 

higher during the secretory phase in both human and mice. 

While assaying for changes in levels of SOX9 in the adult uterus, we also 

found that mitotic figures in the LE seem to be, for the most part, devoid of SOX9 

(Figure 11, black arrows). We only observed a few mitotic figures that were 

SOX9 positive (Figure 11, red arrowhead). At P7, we made a similar observation 

(Figure 10A, blue arrowhead). This suggests that cells with nuclear SOX9 are 

less likely to be in mitosis.  
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Figure 11: SOX9 levels fluctuate throughout the estrous cycle. (A-H) 

Immunofluorescent staining of the uterus using an α-SOX9 antibody (green). 

Nuclei were stained with DAPI (black). B, D, F, and H are higher magnification 

images of A, C, E, and G, respectively. (A, B) Proestrus. (C, D) Estrus. (E, F) 

Metestrus. (G, H) Diestrus. Most mitotic figures (black arrowheads) are negative 

for SOX9. Red arrowhead shows one mitotic figure that contained SOX9. SOX9, 

green. Scale bar, 50 m 
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Affects of Parturition on Uterine Gland Homeostasis 

  

As the fetus grows inside the mother’s womb, it puts a strain on the 

uterus. The human endometrium is fully regenerated by the 16th day post 

parturition (PPD)112. Tissue regeneration of the mouse endometrium PPD is 

poorly understood. To determine if the UGs are affected by the developing fetus 

places on the endometrium, we used Sox9-EGFP mice to observe the UGs 

during pregnancy and after birth during endometrial regeneration. Using the 

Sox9-EGFP mouse line, we were able to detect UGs present in the uterus of 

pregnant females (16.5 days post-coitus, dpc) (Figure 12A, B). Our observations 

indicate that UGs are maintained in inter-implantation regions of the uteri (Figure 

12A). Therefore, we can conclude that UGs are present in the uterus between 

implantation sites two days prior to parturition (18.5 dpc) and that they appear 

normal. 

To determine what happens to the UGs after parturition, we generated 

Sox9-Cre; Rosa-26-Reporter-LacZ (Sox9-R26R-LacZ) females. We mated these 

females to B6 wild-type males and dissected the uteri at 10.5 dpc and at post-

parturition day 1 (PPD1). Cells that express Sox9 and their progeny will express 

-galactosidase. The uteri were placed in a solution that contained X-gal. -

galactosidase converted the X-gal into an indigo-colored compound that marked 

SOX9-LP cells.  
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Figure 12: UGs are maintained in inter-implantation sites. (A, B) Fluorescent 

image of uteri from pregnant 16.5 dpc Sox9-EGFP females. UGs (red 

arrowhead) are found between implantation sites (*). (B) Because the uterus is 

stretched, single UGs were observed spaced around the uterus. (C-F) LacZ-

stained and BABB cleared uteri from pregnant Sox9-LacZ females. Lineage-

tracing analysis showed SOX9-lineage positive cells present in implantation sites 

(*) but were absent after parturition (E, F). SOX9-LP cells in the inter-implantation 

sites (red arrowhead) extend toward the implantation sites that lack SOX9-LP 

cells. M, mesometrial side; A, antimesometrial side; P, placenta; E, embryo. 

Scale bar, 1 mm. 
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We detected LacZ signal along the entire length of the uteri of pregnant females 

in both the antimesometrial and mesometrial regions (Figure 12C, D). LacZ 

signal was detected in the inter-implantation sites (Figure 9D, red arrowhead) 

and in the implantation sites (Figure 12C, D, white asterisk).  

At PPD 1, we detected LacZ signals in most of the uterine horn (Figure 

12E). However, we did not detect any LacZ signal in the presumptive 

implantation sites (Figure 12E, F, white asterisk). Therefore, it seems that most 

of the SOX9-LP cells in the implantation sites are lost during parturition. 

Moreover, SOX9-LP cells that were maintained in the inter-implantation regions 

appear to expand rapidly after parturition, as detected in PPD1 uteri (Figure 

12E).  

We have also detected a structure present on the mesometrial side of the 

uteri. Interestingly, this structure was detected in the inter-implantation sites at 

E10.5 (Figure 12C, D), at PPD1 (Figure 12E, F, red arrowhead), and at PPD5 

(data not shown). Red blood cells appeared brown under the light microscope. At 

E10.5, brown dots can be observed in the placenta and in inter-implantation sites 

(Figure 12C, D). A greater number of brown dots were observed in the structures 

present in the inter-implantation sites at PPD1 (Figure 12, F). In these regions, 

we also detected a greater LacZ staining.  
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Generation of Pgr-Cre; Sox9 fx/fx Conditional Knockout (cKO) Mice 

   

Pgr-Cre mice were mated with Sox9 fx/fx mice. Pgr-Cre/+; Sox9 fx/+ 

males were fertile; therefore, they were mated to Sox9 fx/fx females to generate 

Pgr-Cre/+; Sox9 fx/fx males and females (Figure 13). Pgr-Cre/+; Sox9 fx/fx males 

were crossed with Sox9 fx/fx females to generate Pgr-Cre/+; Sox9 fx/fx (Sox9-

cKO) females at a higher rate. The progeny inherited the Cre allele following 

Mendelian patterns of inheritance. No statistical differences were found in weight 

or size between Sox9-cKO and control littermate females (data not shown). 

Sox9-cKO females were fertile; however, they were not used for breeding 

purposes. The Pgr-Cre allele was generated by knocking Cre into the 1st exon of 

the Pgr gene106. This insertion inactivates the Pgr gene product. Therefore, 

homozygous Pgr-Cre/ Pgr-Cre are considered Pgr knockouts.   

To analyze the effect of inactivating Sox9 in the epithelium, we focused 

our primary analysis on P21, 28, and 35, since the Cre is presumably expressed 

after P14. We dissected the female reproductive organs and measured in the 

length. No statistical difference was observed when comparing Sox9-cKO and 

control littermates (n= 56). No gross abnormalities in the FRT were observed. All 

the constituent organs (2 ovaries, 2 oviducts, 2 uterine horns, a cervix and the 

upper vagina) were present in all the FRTs dissected 

Examination at later time-points, 8 weeks, 4 month, 8 months, and 1-year-

old revealed no overt gross morphological differences between Sox9-cKO and 

control littermates (Figure 14E-H). 
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Figure 13: Genetic strategy used to conditionally knockout Sox9 in the 

uterus. Pgr-Cre heterozygotes were crossed with Sox9 fx/fx mice to generate 

Pgr-Cre; Sox9 fx/+ mice. Pgr-Cre; Sox9 fx/+ males were crossed to Sox9 fx/fx 

females to generate both Sox9-cKO (Pgr-Cre; Sox9 fx/fx) and control (Sox9 fx/fx) 

females. 
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In 8 months and 1-year-old females, I did notice that there appeared to be an 

increased number of epithelial folds in Sox-cKO (n=5) when compared to control 

uteri (n=7) (Figure 14F, H). Concomitantly, there was less space in the uterine 

cavity. This was an initial observation and still requires a more effective way to 

quantify these potential differences. Although it is a minor change, I will come 

back to this later during the discussion. 

Initial assessment showed that Sox9-cKO females appeared to be 

subfertile; however, upon increasing the number of females in the trial, we found 

that there was no statistical difference between cKO and littermates, 4.6 and 5.1 

pups/litter, respectively. 

 

Histological Analysis of Sox9-cKO Uteri 

 

To analyze the changes that take place in uterine morphology at the 

cellular-level following the inactivation of Sox9, uteri were fixed in 4% PFA and 

mounted in paraffin blocks. Tissues were sectioned in the transverse plane 

(cross-sections) and longitudinal plane of the entire reproductive tract. We 

generated approximately 10-15 tissue section slides from each female. Tissue 

sections were stained with H&E, Masson’s Trichrome or Alcian Blue. H&E stains 

nuclei dark blue and cytoplasm pink. Masson’s Trichrome stained collagen fibers 

blue, nuclei black and keratin red. Alcian blue stained mucopolysaccharides and 

glycosaminoglycans blue.  
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Figure 14: Gross morphology of Sox9-cKO uteri. (A-H) Brightfield images of 

1-year-old uteri. No major gross morphological changes were observed in the 

uterus after conditionally inactivating Sox9 (E-H) when compared controls (A-D). 
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 Tissue sections stained with H&E revealed generally subtle differences 

when comparing the cellular morphology of Sox9-cKOs and controls. At P21 and 

P28, the luminal epithelium appeared similar to controls as did the stroma and 

myometrium. As we analyzed tissue sections at later time points (8-week, 4-

month, and 8-month), we observed that the stroma of the Sox9-cKO appeared 

less dense when compared to tissue sections made from control littermates. I do 

have to point out that the thinning of the stroma observed in tissue sections 

derived from Sox9-cKO uteri was observed primarily during estrus; when the 

uteri increase in width (Figure 15D, E, asterisk). To summarize our findings using 

H&E, there were no major morphological differences between Sox9-cKO and 

control uteri from P21 to 8-month.  

 Since SOX9 is known to regulate extra cellular matrix (ECM) secretions 

we stained uterine sections using Masson’s Trichrome and Alcian Blue. Using 

Masson’s Trichrome staining, we were able to detect lower levels of collagen 

fibers, stained blue, in the uterine stroma of Sox9-cKO females (Figure 16D, E). 

Minimal differences in levels of mucopolysaccharides were observed using 

Alcian Blue staining (Figure 16F). Interestingly, in Sox9-cKO uterine sections, we 

were able to detect collagen fibers in the myometrium; therefore, the reduction in 

collagen fibers observed in the stroma could be the result of deleting Sox9 in the 

uterine epithelium.  
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Figure 15: Histology of adult Sox9-cKO uteri. (A-F) H&E stained uterine 

sections from control (A-C) and Sox9-cKO (D-F) females dissected at various 

time-points. (D, E) The stroma (*) of Sox9-cKO uteri appeared to have a lower 

density of cells. This difference was primarily observed during estrus. Cystically 

dilated glands are present in both control and Sox9-cKO uteri (red arrows). GE, 

glandular epithelium. Scale 500 m.  
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Figure 16: Reduction of collagen fibers in adult Sox9-cKO uterus. (A, B, D, 

E) Tissue sections from 4-month-old females stained by Masson’s Trichrome. A 

reduction in collagen fibers, stained blue, was detected in the Sox9-cKO 

endometrium (D, E) when compared to controls (A, B). (C, F) Tissue sections 

stained by Alcian blue. No difference in levels of mucopolysaccharides or 

glycosaminoglycans was observed between Sox9-cKO and controls. Scale bar 

50 m. 
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Discussion 

 

SOX9 Promotes the Invagination of the Uterine Epithelium and Formation 

of Uterine Glands 

 

The female reproductive tract develops from the Müllerian duct7. In XX 

embryos, the Müllerian duct forms as the mesonephric epithelium invaginates 

next to the Wolfian duct around embryonic day (E) 11.75 and reaches the cloaca 

by E13.55. The Müllerian duct differentiates into all the components of the FRT7. 

We used Sox9-EGFP mice to determine the spatio-temporal expression of Sox9 

during FRT development. In these mice, EGFP expression was driven by the 

Sox9 endogenous promoter. Therefore, detection of GFP signal by fluorescent 

microscopy indicated expression of Sox9. At E16.5, GFP was detected in the 

Müllerian duct epithelium. At postnatal day 1 (P1) GFP was present in part of the 

oviductal epithelium, the entire uterine epithelium, and the cervical epithelium. 

This suggested that expression of Sox9 was maintained in the epithelium derived 

from the Müllerian duct.   

We focused our attention to the uterine epithelium. We detected greater 

GFP signal in the epithelial invaginations forming radially along the entire uterine 

epithelium starting at P6. At P21 we observed GFP signal in the secondary 

creases forming perpendicular to the primary creases. We also detected SOX9 in 

the invaginating epithelium by immunofluorescence staining and by lineage-

tracing analysis of SOX9-LP cells, strongly suggesting that Sox9-expressing 
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cells, initially present throughout the LE resolve to sites where the uterine 

epithelium forms creases and buds. These Sox9-LP cells, initially clustered in LE 

at P6/7, make up the entire GE at 8 weeks. We can then hypothesize that SOX9 

contributes to the postnatal invagination of the uterine epithelium.  

SOX9 plays a crucial role during invagination of the mouse otic placode113. 

In Sox9 conditional knockout mice, the otic epithelium fails to invaginate. 

Furthermore, it was suggested that SOX9-downstream effectors promote 

strengthening of apical junction proteins that contribute to the invagination of the 

epithelium. In Drosophila, Forkhead (fkh) is known to regulate apical membrane 

constriction45. FOXA2 is the mammalian homologue of Fkh. FOXA2 can form a 

complex with HIF1-α and activate Sox9114. In mice, conditional inactivation of 

FOXA2 led to a decreased number of UGs47. This group conditionally inactivated 

FOXA2 by generating Pgr-Cre; Foxa2 fx/fx mice. Therefore, inactivating Foxa2 

led to a reduction in number of UGs, whereas inactivating Sox9 did not. Perhaps, 

FOXA2 lies downstream of SOX9, although, FOXA2 controls gene expression of 

other genes essential for UG formation and maintenance. It would be interesting 

to determine if the levels of SOX9 are affected in these mice.  

Another group demonstrated that inactivating HIF1- reduced levels of 

SOX9 and SOX9-downstream targets in the condensating mesenchyme115. In 

the future, we would like to explore if the FOXA2-HIF1-α complex activates Sox9 

in the uterine epithelium, which leads to epithelial invagination. Alternatively, we 

would like to determine if this complex alone is sufficient to turn on the genetic 

program that establishes the invagination of the uterine epithelium. This would 
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answer the question if SOX9 is necessary for UG formation or if it is activated by 

FOXA2 but does not play an essential role in UG formation. 

Regardless, we have linked the presence of SOX9 to epithelial 

invagination. Additionally, we have shown that SOX9 changes during the estrous 

cycle. Here, I will present three alternative hypotheses as to how SOX9 can 

potentially regulate UG development.  

SOX9 regulate genes that promote secretion of ECM: Col2a1, Col11a2, 

Col9a1, Aggrecan, and Cartilage link protein82-86. We have demonstrated that 

there is a reduction of collagen fibers in the stroma of Sox9-cKO uteri. However, 

there was no difference in the levels of mucopolysaccharides, stained by Alcian 

Blue. Therefore, it is possible SOX9 is regulating epithelial invagination and 

subsequent adenogenesis by regulating ECM secretions. Secreted collagen 

fibers accumulate near the basement membrane; therefore, SOX9-expressing 

cells could promote areas of the epithelium to become structurally firmer than the 

surrounding space. We have observed at various time-points that cells 

undergoing mitosis appear to be devoid of SOX9, which indicates that SOX9-

expressing cells do not divide as frequently as their neighboring cells. Lateral 

forces exerted by neighboring cells can potentially push the cells into the 

crevices formed between these collagen-secreting cells.  

We have correlated the presence SOX9 with the initial invagination of the 

uterine epithelium. Additionally, we have shown that the uterus appears grossly 

and histologically normal following inactivating of Sox9 in the uterine epithelium.  
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Perhaps, SOX9 is only necessary for the initial invagination of the uterine 

epithelium and subsequent formation of UGs. In mice, the process of 

adenogenesis starts at P6 and is completed by P1439. We knocked out Sox9 at 

P14, after the UGs were formed. Therefore, we require a better reagent to 

inactivate Sox9 in the uterine epithelium prior to UG formation.  

SOX9 is activated by EGFR/MEK/ERK pathway and actively degraded by 

the proteasome73. Additionally, this group also demonstrated that SOX9 

contributes to migration and invasion. In sheep, EGF and FGF7 secreted from 

the mesenchyme activate the FGFR2-IIIb found in the LE65. Activation of the 

RTKs leads to enhanced MEK/ERK signal, which phosphorylates and activates 

SOX9. Phosphorylation of SOX9 by Protein Kinase A (PKA) promotes EMT in 

neural crest cells by activating Snail2116. Furthermore, SOX9 promotes neural 

crest migration by upregulating SLUG117. Therefore, by promoting cell migration 

and invagination and possibly even lowering the rate of division, SOX9-

expressing cells promote the initial invagination of the uterine epithelium. 

However, once the UGs form, SOX9 becomes unessential for tissue 

homeostasis.  

SOX9 is known to regulate β-CATENIN. SOX9 was described to promote 

-CATENIN nuclear-export and degradation68,118. Conversely, activated -

CATENIN inhibits expression of Sox9 by binding to and sequestering SF1119. 

Uterine glands are maintained in close contact with the myometrium, where 

presumably FGF7 is expressed65. Downstream effector ERK positively regulates 

Sox9 expression, while SOX9 inhibits -CATENIN. In the neuroectoderm, Wnt 
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signaling promotes ectodermal fate specification by blocking the ability of the 

cells to respond to FGFs120. If Wnts somehow block Fgf signaling early during 

embryo development, perhaps, Wnts expressed in the LE and the stroma 

adjacent to the LE, actively block Fgf signaling from the myometrium and stroma. 

SOX9 downregulates Wnt signaling, thus, allowing Fgf signaling to prevail and 

activate downstream effector. One downstream effector is SOX9 itself. By 

allowing Fgf signal to activate gene expression, while downregulating β-

CATENIN, SOX9 possibly activate a genetic network that established a glandular 

epithelial identity. Therefore, SOX9 contributes to the differentiation of the 

glandular epithelium. 

 

SOX8 and SOX10 Compensate for the Loss of SOX9 

 

Sox9 was conditionally knocking out in the lung epithelium101. No 

phenotypical abnormalities were observed in these mice. Inactivating Sox9 

during kidney development did not affect normal development either121. However, 

inactivating both Sox8 and Sox9 disrupted the process of branching 

morphogenesis. Conditionally knocking out Sox9 did not disrupt UG 

homeostasis. All three members of the SoxE subfamily (SOX8, SOX9, and 

SOX10) are known to have overlapping expression patterns and to share a 

functional redundant redundancy78. Sox8 mutant mice are viable and show no 

detectable phenotypic abnormalities. It is thought that the other two members 

can compensate for the loss of SOX8. Preliminary studies using an antibody that 
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detected both SOX8 and SOX10, showed positive signal in the mouse uterine 

epithelium (data not shown). Microarray data demonstrated that Sox10 is 

expressed in the human endometrium111. To bypass the potential functional 

redundancy caused by the other two SoxE genes, future experiments would 

require knocking out two or possibly all three genes.  
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Chapter IV: Overexpression of Sox9 in the Uterine Epithelium Causes 

Endometrial Gland Hyperplasia 

 

Introduction 

 

In 2012, it is estimated that 47,130 women will be diagnosed with 

endometrial cancer in the United States, and this malignancy will prove to be 

fatal for 8,01026. Uterine adenocarcinoma is the most prevalent type of 

endometrial cancer arising from uncontrolled growth of the GE. SOX9 is present 

in the nuclei of the adult uterine GE. In previous chapters, we have presented 

evidence to link SOX9 with invagination of the uterine epithelium and subsequent 

formation of UGs. SOX9 has also been linked to colorectal cancer, prostate 

cancer and lung adenocarcinoma122-124. SOX9 is activated by fgf signaling. 

Mutations that result in a constitutively active form of the FGFR2-IIIb have been 

discovered 12% of endometrial cancers125. Moreover, high levels of SOX9 have 

been detected in human uterine cancers (Dr. Broaddus, personal 

communication); consequently, we hypothesized that overexpressing SOX9 

would contribute to the development of uterine cancer. To examine the possibility 

that Sox9 drives uterine tumorogenesis, we conditionally overexpressed Sox9 in 

the uterine epithelium and allowed the females to age.  

 We used the Pgr-Cre mice to overexpress Sox9 in the uterine epithelium. 

The Pgr is expressed in the mouse uterine epithelium starting at P14. Therefore, 

we anticipated Sox9 would be overexpressed in the uterine epithelium starting at 
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P14. Upon reaching sexual maturity Pgr is also expressed in the stroma and 

myometrium. Thus, we also expected ectopic expression of SOX9 in the stroma 

and myometrium. Regardless, the Pgr-Cre mouse line was the best reagent 

available at the time we started this project since Cre should not be as widely 

expressed when compared to other tissue specific Cre-expressing mouse lines. 

 Pgr-Cre mice were mated with Sox9 overexpressing mice (CAG-loxP-

mRFP1-stop-loxP-SOX9-Ires-EGFP) mice126. Upon Cre-mediated recombination 

and excision of the DNA sequence flanked by loxP sites, the SOX9 

overexpressing allele becomes constitutively activated. The progeny of cells 

where Cre-mediated recombination took place should have inherited the 

constitutively activated SOX9 overexpressing allele. We analyzed the immediate 

effect of overexpressing Sox9 in the uterine epithelium by dissecting FRTs from 

prepubescent females. Additionally, we aged females to determine the effect of 

prolonged expression of Sox9 in the epithelium, stroma, and myometrium.    

 

Material and Methods 

 

Mice 

 

Pgr-Cre mice106 were obtained from Dr. Franco DeMayo (Baylor Medical 

Center). Sox9 overexpressing mice (CAG-loxP-mRFP1-stop-loxP-SOX9-Ires-

EGFP) mice126 were obtained from Dr. Haruhiko Akiyama (Kyoto University). All 

mice were maintained on a C57BL/6J x 129/SvEv mixed genetic background.  All 
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animals were maintained in compliance with the Public Health Service Policy on 

Humane Care and Use of Laboratory Animals, the U.S. Department of Health 

and Humane Services Guide for the Care and Use of Laboratory Animals, and 

the United States Department of Agriculture Animal Welfare Act. All protocols 

were pre-approved by the University of Texas M.D. Anderson Cancer Center 

Institutional Animal Care and Use Committee. 

 

Polymerase Chain Reaction- See Material and Methods in Chapter III. 

H&E Staining- See Material and Methods in Chapter III. 

Masson Trichrome Staining- See Material and Methods in Chapter III. 

Alcian Blue Staining- See Material and Methods in Chapter III. 

Immunofluorescent Staining- See Material and Methods in Chapter III. 

TUNEL Staining- See Material and Methods in Chapter III. 

 

Results 

 

Generating Pgr-Cre; Sox9 Conditionally Overexpressing (cOE) Mice 

 

We observed minor morphological changes in the FRT after inactivating 

Sox9, indicating that homeostasis was not greatly affected, possibly due to the 

redundant action of the two other SoxE genes: Sox8 and Sox10. Conversely, we 

decided to continuously overexpress Sox9 using the same Pgr-Cre mouse line to 

explore the effect of overloading the system with SOX9. Pgr-Cre mice were 
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mated with CAG-loxP-mRFP1-stop-loxP-Sox9-EGFP (CAG-Sox9) mice. CAG-

Sox9 mice constitutively express RFP. Upon Cre-mediated excision of the stop 

signal Sox9 cDNA and EGFP become constitutively expressed. Pgr-Cre/+; CAG-

Sox9/+ males were crossed with homozygous CAG-Sox9/CAG-Sox9 females to 

generate Pgr-Cre/+; CAG-Sox9/CAG-Sox9 (Sox9-cOE) females (Figure 17). The 

progeny inherited the Cre allele following Mendelian patterns of inheritance. 

To analyze the effect of overexpressing Sox9 in the epithelium, we focus 

our analysis on P21, 28, and 35, since the Cre is presumably expressed after 

P14. We dissected the female reproductive organs and measured the length of 

the uteri (n= 48). No statistical difference was observed when comparing Sox9-

cOE and control littermates at these stages (data not shown). In prepubescent 

females, gross examination revealed no morphological differences between 

Sox9-cOE and control FRTs. All the constituent organs (two ovaries, two 

oviducts, two uterine horns, a cervix and the upper vagina) were present in all the 

FRTs dissected. We examined the female reproductive organs at later time-

points, 8 weeks, 8 months, and 1-year-old.  

Gross examination revealed morphological differences between control 

and Sox9-cOE uteri at 1 year (Figure 18). Under the dissecting microscope, we 

observed cystoid structures inside the uteri of 1-year-old Sox9-cOE females 

(Figure 18E-H, arrowheads). In control females, we observed 1-2 cystoid 

structures (Figure 18C, arrowhead) along the entire length of the uteri. In 

comparison, many small to large cystoid structures were present in the uteri of 

Sox9-cOE females.  
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Figure 17: Genetic strategy used to conditionally overexpress Sox9 in the 

uterus. (A) Founding mice on top were crossed to generate Pgr-Cre; CAG-Sox9-

OE mice, WT; CAG-Sox9-OE and WT; WT mice. (B) Sox9-OE allele. mRFP is 

constitutively expressed driven by the CAG promoter. (C) Mice that inherit the 

CAG-Sox9-OE allele express RFP in the entire FRT. (D) Upon Cre-mediated 

excision of the RFP sequence, cells that express Pgr also express GFP and 

Sox9 cDNA. 
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Figure 18: Gross morphology of Sox9-cOE uteri. Brightfield images of 1-year-

old uteri. (B, D, F, H) Uteri sectioned longitudinally (mesometrial side on top). (B, 

D) 1-2 cystic structures observed inside the control uteri (arrowhead). (E, G) 

Multiple cystic structures (arrowheads) present inside the uteri of Sox9-cOE 

females. (H) Note that these cystic structures were also present in the 

mesometrial side (*). Scale bar 2 mm.  
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A longitudinal incision along the length of the uterus revealed that the cystic 

structures were filled with white matter (Figure 18H, asterisk). Additionally, the 

epithelial creases appeared deeper in Sox9-cOE uteri when compared to 

controls.  

 

Histological Analysis of Sox9-cOE Uteri 

 

We performed similar histology as when comparing Sox9-cKO and control 

females. Tissues collected at various time points were sectioned in the 

transverse plane (cross-sections) and longitudinal plane of the entire 

reproductive tract. Tissue sections were stained with H&E, Masson’s Trichrome 

or Alcian Blue.  

The major morphological difference observed in Sox9-cKO tissue sections 

was that the stroma appeared less cellular that age-matched controls. 

Correspondingly, the stroma of Sox9-cOE uteri appeared denser (Figure 19C), 

indicating it had become fibrotic. The LE and GE were arranged in a simple 

columnar epithelial layer in both control and Sox9-cOE mice (Figure 19C-F). 

Examination of 8-month-old and 1-year-old Sox9-cOE uterine sections 

revealed consistent morphological abnormalities; stromal fibrosis and cystically 

dilated UGs (Figure 20). Both morphological abnormalities, although mostly 

prevalent in 8-month-old and 1-year-old Sox9-cOE uterine tissue samples, were 

also observed rarely in 8-week-old uterine sections (Figure 19C).  
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Figure 19: Histology of adult Sox9-cOE uteri. (A-F) H&E stained uterine 

sections from control (A-C) and Sox9-cOE (D-F) females dissected at various 

time-points. (D, F) The stroma of Sox9-cOE uteri appeared denser and contained 

cystically dilated UGs. GE, glandular epithelium. Scale 500 m.  
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Figure 20: Endometrial lesions observed in Sox9-cOE females. H&E 

sections from 1-year-old (A, B, F) and 8-month-old (C, D, E) Sox9-cOE females. 

Multiple cystically dilated UGs observed on cross sections (A) and longitudinal 

sections (B). (C-F) Crowded UGs showing cribriform appearance (black 

arrowheads) present in the endometrium. Thick-walled blood vessels (*) 

observed in the stroma. Scale bar, 50 µm. 
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However, uterine sections obtained from 1-year-old Sox9-cOE uterine 

sections displayed multiple large cystically dilated UGs along the length of the 

uterus (Figure 20B). These cysts appear to encroach into the endometrium, 

overloading the uteri with secretions (Figure 20F, black arrowhead). The 

secretions appeared to be confined to the cysts. We observed that the glandular 

lumen was connected to the uterine cavity; therefore we were unable to explain 

why the lumen of cystically dilated glands was overloaded with secretions. 

However, we observed secretions inside sections of the GE that appeared to 

contain ectopic lumens (Figure 20F, black arrowhead).  

Histologically, the morphological abnormalities present in Sox9-cOE 

female uteri appeared similar to that observed in human endometrial polyps27, 

although we did not discern any polyps inside the uterine cavity. Thus, we termed 

the morphology “polypoid-like”. We also noted the presence of UGs within the 

myometrium (Figure 21A). In women, the presence of ectopic UGs within the 

myometrium characterizes a medical condition known as adenomyosis127. 

Adenomyosis is a common lesion observed in human endometrial polyps. 

Additionally, we observed “thick-walled” blood vessels (Figure 20, asterisk; 

Figure 21, white arrowhead), another common key feature of endometrial polyps. 

The earliest time-point in which we observed a polypoid-like histology in Sox9-

cOE females was in tissue sections of an 8 week-old female (Figure 19C).  
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Figure 21: Endometrial polyp-like lesions observed in Sox9-cOE females. 

(A-D) Uterine sections from Sox9-cOE females stained by Phalloidin (green) and 

DAPI (blue). Showing mRFP1 in tissues were Cre was not expressed (i.e. blood 

vessels). (A, C) UGs present within the myometrium (black arrowheads). (B) 

Magnified image from (A) to display the depth of lumen in cystically dilated 

glands (asterisk). (D) Showing blood vessel present near the cystically dilated 

UG (white arrowhead). (E-H) Immunofluorescent staining of the human (E, F) 

and Sox9-cOE (G, H) mouse uterus using an α-SOX9 antibody (green). Nuclei 

were stained with DAPI (black). (E, G) An α-E-Cadherin antibody was used to 

mark the epithelium. (E, F) The GE of cystically dilated UG in a human 

endometrial polyp displays a reduction in nuclear localized Sox9 (*). (G, H) 

Likewise, mice uterine sections show a reduction in levels of Sox9. Sox9, green; 

E-Cadherin, red. Scale bar, 50 µm. 
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Therefore, it appears that by overexpressing Sox9 in the epithelium, and 

some parts of the stroma, the cells acquire the characteristic stromal fibrosis and 

cystically dilated morphology observed in tissue sections of human endometrial 

polyps.  

We performed a thorough examination of uterine slides from 8-month and 

1-year-old Sox9-cOE females and examined uterine glands that displayed 

potentially premalignant cytological and architectural abnormalities. In some 

forms, the glands were microscopically dilated, comparable to what is seen in 

human simple endometrial hyperplasia.  In other forms, the glands were in a 

more cribriform, crowded fashion, similar to what is seen in human complex 

endometrial hyperplasia. Contrary to our expectations, SOX9 was lost in part of 

the uterine glands showing cribriform lesions (Figure 21G, H; Figure 21A, B).  

We stained tissue sections displaying endometrial polypoid-like lesions 

with Phalloidin to mark the actin cytoskeleton (Figure 16A-D). We observed UGs 

within the myometrium (Figure 16, black arrowhead) and thick blood-vessels 

(white arrowhead). Overall, the cellular morphology observed in adult Sox9-cOE 

samples portrayed the “hallmarks” endometrial lesions known to be present in 

endometrial polyps. Moreover, the presence of cribriform foci indicates 

progression into premalignant endometrial lesions. Since we observed that the 

GE showing cribriform foci had sections devoid of SOX9, we decided to 

investigate if SOX9 was also downregulated (Figure 21G, H) in human 

endometrial polyps. Dr. Russell Broaddus (M.D. Anderson Cancer Center) kindly 

provided us with tissue sections derived from human endometrial polyps. 
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Immunofluorescent staining against SOX9 revealed that cystically dilated UGs 

express SOX9 in the cytoplasm but not in the nucleus (Figure 21 E, F). Unlike in 

human samples, where we detected cytoplasmic SOX9, in Sox9-cOE uterine 

sections, we observed a total loss of SOX9 in parts of the hyperplastic uterine 

glands (Figure 16G, H).  

We took high-resolution images of cribriform foci to examine the formation 

the ectopic lumens inside the GE (Figure 22). The nuclei were positioned very 

close to the basement membrane (Figure 22C-F). We observed two cells forming 

an ectopic lumen (Figure 22E, F). Their nuclei were positioned near to the 

basement membrane to which the epithelia attaches. Additionally, we noted that 

there were cells in the apical side to the epithelium that seem to maintain the 

continuum of the epithelial sheet (Figure 22E, F).  

SOX9 is known to regulate extracellular matrix (ECM) gene transcription. 

We stained uterine sections using both Mason’s Trichrome and Alcian Blue 

protocols. By Mason’s Trichrome staining, we detected an excess of collagen 

fibers in uterine sections derived from Sox9 overexpressing females (Figure 23D, 

E). Since SOX9 is well known to activate Col2a1 in chondrocytes, it is possible 

that SOX9 is upregulating genes that play a role in extracellular membrane 

deposition and secretion. The levels of mucopolysaccharides, observed by Alcian 

Blue staining, remained unchanged in Sox9-cOE uteri (Figure 23F). 
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Figure 22: Immunofluorescent staining of UGs displaying a cribriform 

appearance. (A, F) Sections stained using α-SOX9 (green) and α-E-Cadherin 

anitbodies (red). (B) Displaying only green channel to show loss of SOX9 in 

areas containing endometrial lesions (black arrowhead). (C-F) UGs showing 

crowding of the GE and formation of cribriform foci. Ectopic lumens present on 

cribriform foci. (SOX9, green; DAPI, blue; E-Cadherin, red) Scale bar, 10 µm. 
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Figure 23: Increase of collagen fibers in adult Sox9-cKO uterus. (A, B, D, E) 

Tissue sections from 4-month-old females stained by Masson’s Trichrome. An 

increase in collagen fibers, stained blue, was detected in the Sox9-cOE 

endometrium (D, E) when compared to controls (A, B). (C, F) Tissue sections 

stained by Alcian blue. No difference in levels of mucopolysaccharides or 

glycosaminoglycans was observed between Sox9-cOE and controls. Scale bar 

50 m.  
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Determining when SOX9 is Inactivated and Overexpressed Post Cre 

Expression 

 

 Pgr-Cre mice were previously generated by knocking in Cre into the 

genomic region that encodes for the first exon of the Pgr gene106. The group that 

generated this mouse line performed a lineage-tracing analysis experiment by 

crossing these mice to Rosa-26-reporter mice. They reported LacZ expression in 

the LE and GE at P14. Minimal LacZ signal was detected in the stroma and the 

myometrium. Sexually mature females (~6 weeks) showed a similar pattern of 

LacZ expression in the uterine epithelium to that observed at P14. However, 

LacZ signal was also detected in the stroma and the myometrium in adult 

females. Taking in consideration this expression pattern, we presumed that Cre 

would inactivate or overexpress Sox9 in the LE and GE around P14. We also 

realized that upon females reaching sexual maturity Sox9 should be inactivated 

in the subepithelial stroma and in the myometrium. Sox9 is not expressed in the 

stroma, thus knocking it out should not affect the normal function of the stroma. 

However, ectopic expression of Sox9 in the stroma and myometrium after 

females reached sexual maturity could have potentially altered the endometrial 

homeostasis.   

Regardless, of what has been described in the literature, we needed to 

determine when SOX9 is overexpressed in the uterine epithelium of Sox9-cOE 

females. Additionally, we needed to establish when Sox9 is ectopically 

expressed in the stroma and myometrium. At the same time, we identified when 
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SOX9 is downregulated in the Sox9-cKO females. We began examining uterine 

tissues for the presence of SOX9 at P21, presuming that one week was enough 

time to completely inactivate Sox9 in the uterine epithelium of Sox9-cKO 

females. Although we expected Sox9 levels to rise in the uterine epithelium of 

Sox9-cOE females at P21, we anticipated that ectopic expression of Sox9 in the 

stroma and myometrium should not be observed until the females reached 

sexual maturity. 

Immunofluorescent staining revealed diminished levels of SOX9 in Sox9-

cKO uteri at P21 (Figure 24A, B). We also detected low levels of ectopic 

expression of SOX9 in the myometrium and in the stroma in Sox9-cOE uterine 

sections (Figure 24M, N). At P28, we detected low levels of SOX9 in the uterine 

epithelium of Sox9-cKO females (Figure 24C, D). Conversely, we did not find 

measurable differences in the levels of SOX9 in the uterine epithelium of Sox9-

cOE females at P28 (Figure 24O-P). However, we discerned low levels of SOX9 

ectopically expressed in the uterine stroma of Sox9-cOE females at P28 (Figure 

24O-P). At P35, SOX9 was expressed in the GE of Sox9-cKO uteri, although at 

lower levels when compared to age-matched control females (Figure 24E, F, K, 

L). SOX9 was almost completely absent in the LE of Sox9-cKO uteri. The cells 

maintaining SOX9 expression in the Sox9-cKO were observed in groups or 

clumps instead of single cells randomly in the uterine epithelium (Figure 24F). In 

age-matched Sox9-cOE females, we observed a striking increase in the levels of 

SOX9 in both the LE and GE (Figure 24Q, R) when compared to control females.  
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Figure 24: Determining when Sox9 is inactivated/ overexpressed. (A-R) 

Immunofluorescent staining using α-SOX9 (green) and α-E-Cadherin (red) 

antibodies at various time-points. Uteri from Sox9-cKO (A-F), control (G-L), and 

Sox9-cOE (M-R) females. (B, D, F, H, J, L, N, P, R) DAPI signal removed to 

emphasize SOX9 (green). (A-F) Decreased levels of SOX9 observed in the LE of 

uteri from Sox9-cKO at P35 (E, F) when compared to controls (K, L). Increased 

levels of SOX9 observed in the LE and GE of uteri from Sox9-cOE at P35 (Q, R) 

when compared to controls (K, L). Ectopic expression of SOX9 detected in the 

stroma and myometrium of uteri from Sox9-cOE at P28 (O, P) and P35 (Q, R).   

Sox9, green; DAPI, blue; E-Cadherin, red. Scale bar, 50 µm. 
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We also observed cells in the stroma and myometrium that displayed nuclear 

localized SOX9. There is a possibility that the low-levels of ectopic expression of 

SOX9 observed in the stroma and myometrium could be contributing to the 

stromal fibrosis in Sox9-cOE uteri.  

 

Proliferation, Apoptosis and Morphometrical Analysis 

 

The endometrium undergoes rapid cycles of proliferation, differentiation, 

and apoptosis during the estrous cycle. To determine the stage of the estrous 

cycle the female was experiencing, we collected vaginal smears for at least three 

consecutive days. Collecting samples can affect the uterine epithelium. For 

example, after performing various vaginal smears, the probability of inflicting a 

bacterial infection increases over the number of days we collect samples; this 

creates another variable that might interfere with our results. We decided to only 

perform a vaginal smear prior to sacrificing the females. Concomitant with the 

gross examination and cellular morphology, we were able to estimate the stage 

of the estrous cycle. Nonetheless, this was a crude estimation and the cellular 

morphology changes very rapidly from one stage to the next. We even observed 

differences in proliferation and apoptosis in control female uteri dissected at the 

same stage of the estrous cycle.   

We compared tissue sections generated from mutant and control adult 

females. No major differences in cell proliferation in tissue sections stained with 

-Ki67 (Figure 25) and phosphohistone H3 (Figure 26) were detected. All three 
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genotypes, Sox9-cKO, control, and Sox9-cOE displayed high levels of Ki67-

positive staining in the LE during estrus, while during diestrus the number of 

Ki67-positive LE cells became almost negligible (Figure 25A, B, E, F, K, L). In the 

GE, we observed low numbers of Ki67-positive cells during estrus. During 

diestrus, the GE of both control and Sox9-cOE showed positive staining against 

Ki67 (Figure 25G, H, K, L) while the majority of the GE in Sox9-cKO females 

were devoid of Ki67 (Figure 25C, D). This experiment was performed in 

longitudinal sections; therefore, we were able to see that almost all UGs were 

Ki67-negative during diestrus. Additionally, there is a slight increase in the 

number of Ki67-positive cells in the LE during estrus (Figure 25A, B). However, 

when we examined the number of cells undergoing mitosis, by staining with -

phosphohistone H3 antibody, we were unable to observe any measurable 

difference between all three genotypes (Figure 26). This indicates that although 

there is a decrease in levels of Ki67 in the GE of Sox9-cKO, the uterine 

epithelium, both GE and LE, undergo similar rates of cell division.   

Metestrus is marked by a massive wave of cell apoptosis and tissue 

breakdown as both estrogen and progesterone levels decline128. To determine if 

there was any change in the number of cells undergoing apoptosis, we 

performed TUNEL staining on tissue sections derived from uteri dissected during 

metestrus. This method allowed us to detect DNA fragmentation, which was 

visualized under the fluorescent microscope. Staining revealed that all three 

genotypes contained comparable levels of fragmented DNA in the area between 

the epithelium and the stroma (Figure 27). 
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Figure 25: Proliferation in adult uteri assayed by α-Ki67 antibody staining. 

(A-L) Immunofluorescent staining using α-SOX9 (green) and α-Ki67 (red) 

antibodies on the adult mouse uterus. Ki67 marks proliferating cells. Stained with 

DAPI (blue). Minimal differences observed when comparing levels of Ki67 

positive cells between Sox9-cKO (A-D), control (E-H) and Sox9-cOE (I-L). Sox9, 

green; Ki67, red. Scale bar, 50 µm. 
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Figure 26: Immunofluorescent staining against -Phosphohistone H3 in the 

adult uteri. (A-F) (A-L) Immunofluorescent staining using α-phosphohistone H3 

(green) on the adult mouse uterus. Phosphohistone H3 is a marker of cells 

undergoing mitosis. Stained with DAPI (blue). (A, C, E) Showing uterine sections 

from Sox9-cKO, control, and Sox9-cOE during proestrus. (B, D, F) Displaying 

tissue sections dissected during diestrus. Phosphohistone H3, green; DAPI, blue. 

Scale bar 50 m. 
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Figure 27: Comparing apoptotic levels in adult uteri during metestrus. (A, B, 

D, E, G, H) TUNEL assay performed on tissue sections derived from Sox9-cKO, 

control and Sox9-cOE females sacrificed during metestrus. No major differences 

in cell death were detected after performing TUNEL staining, a marker of DNA 

fragmentation, between Sox9-cKO, control and Sox9-cOE. (C, F, I) Showing 

uterine sections stained using H&E. (C) Displaying cell morphology to point out 

the large number of vacuoles observed in the LE of Sox9-cKO females compared 

to both control (F) and Sox9-cOE (I). Arrowheads show a potential loss of 

epithelial integrity following Sox9 inactivation. TUNEL staining, green; DAPI, 

blue. Scale bar 50 m. 
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 In tissue sections stained by H&E, we observed many vacuoles in the 

basement membrane and inside the epithelial layer and in the uterine cavity 

(Figure 27C, F, I). It appears that the fragmented DNA is transported inside 

vacuoles from the basement membrane into the uterine lumen. The LE of Sox9-

cKO contained more of these vacuoles than the LE from both control and Sox9-

cOE mice (Figure 27C).  

While trying to explain why there appears to be more vacuoles in the 

Sox9-cKO uterine epithelium, we noticed a potential difference in the thickness of 

the epithelium. We measured the height of the columnar epithelium in multiple 

tissue sections and at different time-points (Figure 28). At P21 and P28 the 

height of the LE is comparable in Sox9-cKO to control, and Sox9-cOE, indicating 

that inactivating and overexpressing Sox9 does not affect the thickness of the 

epithelium in non-cycling prepubescent females. At P35, when the females begin 

to cycle, there is statistical difference (p= 0.000307) in the height of the LE 

between Sox9-cKO and control. No difference (p= 0.643484) was detected 

between control and Sox9-cOE. The LE in both control and Sox9-cOE is thicker 

than the LE in Sox9-cKO uteri. This observation suggests that Sox9 regulates 

aspects of the molecular mechanism that promotes the thickening of the LE.  

Interestingly, while in adult control females the LE is statistically thicker 

during estrus when compared to diestrus (p=0.00175) (Figure 29), in both Sox9-

cKO and Sox9-cOE, there is no statistical difference in the height of the LE when 

comparing diestrus and estrus (p=0.33 and p=0.065, respectively).  
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Figure 28: Morphometrical measurement of the LE from prepubescent 

females. Morphometrical measurements of the height of the LE at various time-

points. No significant difference between measurements made of the thickness of 

the epithelium between Sox9-COE and control at P21, P28, and P35. No 

significant difference in the thickness of the LE was detected between Sox9-cKO 

and control females at P21 (p= 0.139367) and P28 (p= 0.867993). A significant 

difference (p= 0.000307) was observed at P35.  

 . 
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Figure 29: Morphometrical measurements of the LE from adult cycling 

females. Height of the LE during diestrus and estrus of stage-matched Sox9-

cKO, control, and Sox9-cOE. In control females, the LE is significantly thicker 

during estrus (p= 0.001753). No significant changes between estrus and diestrus 

were measured in either Sox9-cKO (p= 0.330779) or Sox9-cOE (p= 0.065496). 

The height of the LE is statistically shorter in Sox9-cKO (p= 1.13762E-10) and 

taller in Sox9-cOE (p= 1.87535E-16) when compared to stage-matched controls. 
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Moreover, the LE is thicker in Sox9-cOE when compared to control 

females in both diestrus and estrus (Figure 29). The thickness of the luminal 

epithelium in Sox9-cKO uteri remains at the “base level” (comparable to that of 

the control during diestrus) throughout the entire estrous cycle. This indicates 

that in adult females SOX9 plays a role in allowing the LE to thicken upon the 

influence of hormones. Additionally, since we initially did not observe any 

significant difference between control and Sox9-cOE, presumably, the changes 

observed might be generated by the ectopic expression of Sox9 in the stroma 

and myometrium. 

 

Molecular Markers 

 

 UGs become hyperplastic after we overexpressed SOX9. To determine if 

the GE changes differentiation status, we performed immunofluorescent staining 

using an α-FOXA2 antibody (Figure 30). FOXA2 is marker for GE; it is present in 

the deeper part of the UGs, closest to the myometrium. FOXA2 was present in 

the GE of Sox9-cKO, control, and Sox9-cOE, suggesting FoxA2 expression is 

independent of SOX9. Interestingly, FOXA2 was absent in some areas that 

display cystically dilated hyperplastic UGs in both 8 month and 1-year-old tissue 

samples (Figure 30C, D, G, H). These areas of the UG also displayed a loss of 

SOX9. These observations suggest that FOXA2-expressing GE cells are 

maintained in the cystically dilated hyperplastic UGs.  
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Figure 30: Hyperplastic UGs maintain FOXA2 expression, a marker of GE. 

(A-H) Immunofluorescent staining using an α-FOXA2 antibody. Showing FOXA2 

positive immunofluorescent staining in the GE of 8-month and 1-year-old control 

and Sox9-cOE. (C, D) Cribriform UGs showed decreased levels of FOXA2. (E-H) 

Showing cystically dilated UGs also displaying a reduction in levels of FOXA2. 

FOXA2, red; DAPI, blue. Scale bar, 50 m. 
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To determine if the integrity of the LE had become compromised, we 

performed immunofluorescent staining using an α-p63 antibody (Figure 31). This 

transcription factor is expressed in stratified squamous epithelium but is absent in 

columnar epithelium. As a control, we co-stained tissue sections that contained 

parts of the cervix. The cervical epithelium is stratified and as expected, we 

detected positive staining when stained with -p63 (Figure 31E, F). We were 

unable to detect any levels of p63 in the LE or GE in all samples we examined 

(Figure 31A-F). Even 1-year-old tissue sections that display hyperplasia and 

metaplasia did not stain positive for p63. This observation suggests that although 

hyperplastic, the uterine epithelium does not become stratified.  

 

Discussion 

 

Overexpressing Sox9 Leads to Endometrial Hyperplasia 

  

We devised a genetic strategy to constitutively activate Sox9 in the FRT. Sox9 

expression was driven by the CAG promoter that can lead to ubiquitous 

expression126. The allele was activated upon Cre-mediated recombination. We 

used the Pgr promoter to drive expression of Cre. Pgr is initially expressed 

mostly in the uterine epithelium. Upon females reaching sexual maturity, 
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Figure 31: The uterine epithelium does not become stratified. (A-F) 

Immunofluorescent staining performed in uterine tissues using an α-p63 and α-

SOX9 antibodies. P63 marks squamous stratified epithelium. (A-B) Showing 1-

year-old tissue sections derived from 1-year-old Sox9-cKO (A) and control (B). 

(C, D) Tissue sections derived from 1-year-old Sox9-cOE females showing areas 

containing cystically dilated UGs. Though hyperplastic, the uterine epithelium 

does not express p63. (E, F) Tissue sections derived from 1-year-old Sox9-cOE 

females containing areas of the cervical epithelium. The cervical epithelium 

stained positive for p63. SOX9, green; P63, red. Scale bar, 50 m. 
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Pgr is expressed in the uterine epithelium, stroma and myometrium106. Before 

puberty, the uteri of Sox9-cOE females appeared morphologically normal when 

compared to control littermates. Therefore, overexpressing Sox9 in the uterine 

epithelium does not result in immediate morphological abnormalities. Gross 

examination of 8-month and 1-year-old SOX9-cOE females revealed multiple 

cystic structures present inside the uterus. These cysts resembled the cystic 

structures present in human endometrial polyps27. Histologically, these structures 

appeared as cystically dilated uterine glands present in the endometrium 

surrounded by fibrotic stroma. Another group reported that injecting N-ethyl-N-

nitrosourea (ENU) in mice containing only one functional p53 allele (p53 +/-) also 

development endometrial polyps with a similar histology to what we observed129. 

Endometrial polyps are usually benign, although they can also transform into 

endometrial cancer30. 20-25% of women over the age of 40 will eventually 

develop endometrial polyps29.  

Histologically, the aged Sox9-cOE females included stromal fibrosis, 

cystically dilated UGs, thick-walled blood vessels and adenomyosis. These cystic 

dilatations observed in our Sox9-cOE mice did not appear to grow inside the 

uterine cavity as in endometrial polyps. Nonetheless, histological analysis of 

Sox9-cOE uterine sections clearly revealed lesions characteristic of human 

endometrial polyps. 

We have also discovered regions that showed morphology associated 

with complex hyperplasia; glands that vary in size and contain numerous size 

buds. The UGs showed a crowded cytoarchitecture, although stroma was 
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observed between the epithelium, indicating that though hyperplastic, the lesions 

had not progressed to endometrial adenocarcinomas. Therefore, Sox9-cOE 

females develop cellular changes that are considered hallmarks of disease 

progression. The cytological abnormalities resembled what is seen in human 

simple endometrial hyperplasia. Moreover, we detected glands growing in a more 

cribriform, crowded fashion, similar to what is seen in human complex 

endometrial hyperplasia27. 

Endometrial polyps are known to develop into endometrioid 

adenocarcinoma30. With this in mind, it seems that the polypoid-like lesions we 

observed in Pgr-Cre; SOX9-cOE may be progressing to a disease state 

comparable to that found in humans. Further examination of more time points 

would allow us to study disease initiation and progression. Moreover, breast 

cancer patients treated with Tamoxifen are at a higher risk of developing 

endometrial polyps, simplex and complex hyperplasia, adenomyosis, and 

adenocarcinoma130-132.  It is essential to understand the aberrant cellular program 

that leads to atypical endometrial hyperplasia and endometrioid adenocarcinoma. 

Our new mouse model is an excellent candidate to track the progression of this 

disease of the FRT. 

 

Greater Epithelial Invagination Results in Hyperplastic Lesions 

 

In an effort to explain the possible cellular mechanism through which 

glandular hyperplasia manifests, we have introduced a plausible hypothesis: 
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Sox9 stimulates epithelial invagination and subsequent differentiation of luminal 

epithelium into glandular epithelium. This could explain the appearance of 

glandular hyperplasia over a certain period of time (8 weeks to approximately 

one year). In our mouse model, we have observed that the Sox9-cOE uteri 

appear to contain greater luminal space when compared to control uteri. In 

contrast, the uteri of Sox9-cKO appear to contain less luminal space when 

compared to control uteri. Perhaps, by being at the center of the -Catenin-FGF 

signaling pathway, Sox9 functions as a regulator of GE cell fate specification. A 

recent study showed that ectopic expression of both SOX9 and SLUG were 

sufficient to differentiate mammary luminal epithelium into long-term repopulating 

stem cells of the mammary glands133. Thus, continuous expression of Sox9 

results in glandular hyperplasia, because cells of the LE are specified to become 

GE. On the other hand, inactivating Sox9 leads to formation of more LE, which 

can be observed as greater LE folds inside the uterine lumen. Therefore, one can 

postulate that the rate of GE to LE increases when Sox9 is overexpressed and 

that the rate decreases when it is conditionally inactivated. This mechanism 

seems to be maintained in balance by an unknown genetic program. As females 

age and cells accumulate mutations, this genetic program may become 

unbalanced and lead to hyperplastic lesions. 

As the female mouse transitions through the estrous cycle, cells turn on 

expression of SOX9 in the LE from proestrus until metestrus, when it appears to 

revert back to basal levels. It happens that SOX9 turns on during the proliferative 

phase of the estrous cycle, perhaps promoting the formation of new GE at each 
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new cycle. Wnt5a and Wnt4 have been shown to be upregulated in the stroma in 

response to hormonal cues134. Wnts activate -CATENIN, which then activate 

genes that promote proliferation. In the GE, SOX9 potentially negatively 

regulates -CATENIN, while positively regulating its own transcription, leading to 

lower levels of cell proliferation. This correlates with our observations that mitotic 

figures were devoid of SOX9. We also detected loss of SOX9 in uterine sections 

displaying hyperplastic lesions. Inactivation of SOX9 could potentially lead to the 

increased -CATENIN activity, which results in the hyperplastic lesions observed. 

Immunohistochemistry analysis of the activated form of -CATENIN would allow 

us to determine if this is what is occurring.  

Interestingly, even though SOX9 is mainly expressed in the uterine 

epithelium, we observed morphological differences in the uterine stroma after 

inactivating Sox9, suggesting that SOX9 somehow regulates aspects of the 

epithelial-mesenchymal crosstalk. Additionally, we also detected morphological 

changes in the both the uterine epithelium and in the stroma in Sox9-cOE uteri, 

reinforcing the notion that Sox9 regulates elements of the epithelial-

mesenchymal crosstalk. The endometrial hyperplasia observed could potentially 

stem from faulty communication with the stroma, since stromal fibrosis could be 

the mediator of the hyperplasia. However, constitutive activation of Smoothened 

also leads to stromal fibrosis, albeit these mice did not develop cystic 

dilatations135. Overexpressing Sox9 using the Amhr2-Cre mouse line, which 

expresses Cre only in the stroma, would help us determine if SOX9 promotes the 
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stromal fibrosis, and if this fibrosis leads to the development of cystically dilated 

uterine glands. 
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Chapter V: Future Studies 

 

Using OPT imaging, we determined that UGs branch sometime after P11 

in the mouse uterus. By imaging FRTs at various time-points between P11 to 8 

weeks, we should be able to determine when branching morphogenesis takes 

place in the mouse uterus. Concomitantly, we will measure estrogen and 

progesterone levels to determine if the process of branching morphogenesis is 

affected by hormones.  Furthermore, we would like to culture GE using in vitro 

culturing systems that mimic the 3D matrix found in the uterus in vitro to 

determine the molecular pathways that affect branching morphogenesis97.  

We correlated the presence of SOX9 with the initial formation of the UGs. 

Recently, it was demonstrated that Sox9-expressing cells in the adult intestinal 

crypt, pancreatic duct, and bile duct contribute to organ maintenance by 

renewing various differentiated cell types, including hepatocytes136. Lineage-

tracing experiments revealed that hepatocytes formed during embryogenesis do 

not develop from Sox9-expressing cells; however, Sox9-expressing cells of the 

bile duct are able to differentiate into hepatocytes later during adulthood. This 

implies that Sox9-expressing epithelial cells give rise to organ progenitor stem 

cells that contribute to organ maintenance. Furthermore, it was recently 

demonstrated that transient expression of Sox9 and Slug are sufficient to convert 

mammary luminal epithelial cells into bipotential mammary gland stem cells133. In 

the human endometrium, it has been hypothesized that epithelial progenitor cells 

reside in the GE137. We detected SOX9 expression in the GE of human 
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endometrial samples. Therefore, it would be interesting to explore the role of 

SOX9 in the maintenance of the uterine epithelium. Our initial observations 

indicated that SOX9-LP cells are present in areas of active regeneration in the 

post-partum mouse uterus.  Perhaps, Sox9-expressing cells, sequestered in the 

UGs, are able to contribute to the maintenance of the uterine epithelium. It was 

shown that the LE divides more rapidly than the GE, suggesting that the GE 

contains epithelial progenitor cells that contribute to the re-epithelialization of the 

endometrium after menses138. 

One hypothesis is that SOX9 induces the formation of a pool of progenitor 

epithelial cells that reside in the GE. In the GE, these progenitor cells are likely 

sequestered from potentially hazardous areas (i.e. the uterine cavity) that could 

be exposed to foreign materials. Inactivating Sox9 in the lung and in the uterus 

did not compromise the organ101. We observed a similar result after conditionally 

knocking out Sox9 in the uterine epithelium. SOX8, SOX9, and SOX10 have 

known compensatory roles; therefore, future experiments would require knocking 

out two or possibly all three SoxE genes. Alternatively, the lack of an overt 

phenotype may be because our mice are kept in almost pathogen-free 

conditions, where they are not exposed to the hazards of the outside world. It is 

possible that living in clean conditions does not induce lineage-specific progenitor 

cell activity inside a protected zone. One could explore what would happen if 

mice were transferred into real world conditions like wild mice.  

I would like also to explore the role of overexpressing Sox9 exclusively in 

the uterine stroma and compare the phenotype to ours in the epithelium. We 
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observed multiple hyperplastic lesions in the uteri of Sox9-cOE females. Is the 

hyperplasia a consequence of stromal fibrosis or are these two events separate? 

This could be achieved by crossing Sox9-OE with Amhr2-Cre mice, since Amhr2 

is expressed exclusively in the mesenchymal compartment of the mouse uterus.  

I would also like to explore the cellular mechanisms that promote the 

formation of polyps inside the uterine cavity in humans. In mice, even though we 

observe very similar morphology, we are unable to detect actual polyps inside 

the uterine cavity. Today, there are other better mouse models that can be used 

to specifically express Cre in the GE. Foxa2-rtTA mice139 may be used to 

conditionally overexpress Sox9 exclusively in the GE. Additionally, I would like to 

use these mice to turn on expression of a marker in the UGs and let these mice 

age and have multiple parturitions. My aim would be to investigate if after tissue 

regeneration, cells that once were part of the GE transdifferentiated into LE. This 

would support the idea that the GE serves as a lineage-specific epithelial 

progenitor cell. I would also like to investigate in more detail the mechanism that 

maintains Sox9 expression in the GE, especially Fgf signaling originating from 

the myometrium. There are several mouse lines that can be used to express Cre 

only in the myometrium to conditionally knockout Fgf7 and Fgf10. Amhr2-Cre 

mice may be used for this purpose. 

Additionally, we have generated a great amount of data by using ChIP-

Seq for SOX9 binding site, which I would like to compare to an RNA-Seq 

analysis of the GE. We plan to isolate and sequence all mRNA present in SOX9-
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expressing cells. By comparing both data sets, we would get a better 

understanding of the signaling network controlled by SOX9. 
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Appendix: Identification of Candidate SOX9 Target Genes by Chromatin 

Immunoprecipitation Followed by ChIP-Seq 

 

Introduction 

 

SOX9 interacts with DNA through its HMG domain. It binds to the minor 

groove of the DNA double helix and induces bending of the DNA82. SOX9 

regulates the expression of its gene targets using an N-terminus transactivation 

domain140. By interacting with p300, a histone acetylase, SOX9 activates gene 

expression of its target genes141. To discover SOX9 target genes, we decided to 

determine which DNA sequences SOX9 binds to in the mouse genome. 

Previously, potential SOX9 interactions sites have been uncovered using ChIP-

on-chip142. We decided to perform ChIP-Seq to discover potential genes 

regulated by SOX9. We isolated DNA fragments bound to SOX9 in both the 

uterus and testis isolated from C57BL/6J females and sequenced them using 

high-throughput sequencing. We obtained millions of short reads from both DNA 

samples (uterus and testis). Both sets of sequences were independently aligned 

with the mouse genome (assembly 2007 NCBI37/mm9) using Galaxy143. By 

comparing both data sets, we were able to discover 666 potential SOX9 target 

genes. 
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Material and Methods 

 

Chromatin Immunoprecipitation Followed by Next Generation Sequencing 

(ChIP-Seq) 

 

Approximately 30 adult (6-8 week old) uteri from females and ~20 pairs of 

testes from postnatal day 5-7 males were isolated from strain C57BL/6J. The 

organs were removed promptly and placed in cold PBS. Organs were weighed, 

placed in a petri dish, and minced into fine pieces with a razor blade. 5 ml cold 

PBS was added to each dish to resuspend the minced tissue and transferred to a 

15 ml conical tube. An additional 5 ml of cold PBS was added to the dish to 

collect the residual tissues and the suspension was transferred into the same 

tube to pool the material (total 10 ml of tissue suspension in PBS). 278 l of 37% 

formaldehyde (Sigma, cat# F8775) was added to the 10 ml tissue suspension 

and rotated at RT for 10 minutes to crosslink the protein to the DNA. To stop the 

crosslinking reaction, we added (1/3 volume) 3.4 ml of 0.5 M glycine (final 

concentration 0.125 M) into the 15 ml conical tube, and then rotated at RT for 5 

minutes. The tubes were centrifuged at 1000 g for 5 minutes at 4°C. The 

supernatant was decanted and the pellet was washed twice with cold PBS, and 

then centrifuged at 1000 g for 5 minutes at 4°C. The supernatant was decanted 

and the cell pellet was resuspended in 5 ml of cold PBS supplemented with 

protease inhibitor (Roche, Cat# 04693116001) and 1 mM PMSF. The samples 

were transferred into a 15 ml dounce and dounced 10-20 times using a “loose” 
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pestle. The dounced samples were transferred into a new 15 ml conical tube and 

centrifuged at 1000 g for 5 minutes at 4°C. The supernatant was discarded and 5 

ml of cell lysis buffer (5 mM PIPES, pH 8.0, 85 mM KCl, 0.5 % NP40) 

supplemented with PI and 1 mM PMSF was added. The samples were left to 

swell on ice for 10 minutes and transferred into a clean dounce. The samples 

were dounced 10-20 times with a “tight” pestle to break the cell membrane and 

separate the cytoplasmic content from the nuclei. The contents were transferred 

into a new 15 ml conical tube. The dounce was rinsed with 1 ml chilled lysis 

buffer with 1 mM PMSF and the residue was pooled into the same 15 ml conical 

tube. Total sample volume was 6 ml. The total number of nuclei was estimated 

by sampling 20 l of the total solution and mixing with 20 l of 0.4% trypan blue. 

The number of nuclei present was counted using a hemocytometer. The 15 ml 

conical tubes were centrifuged at 1000 g for 5 minutes at 4°C to pellet the nuclei. 

The pelleted nuclei was resuspended in nuclei lysis buffer (1% SDS, 10 mM 

EDTA, 50 mM Tris-HCl, pH 8.1) supplemented with PIs and PMSF at 1 x 106 

nuclei per 200 l. The nuclei suspension was divided into multiple 1.5 ml tubes 

(200 l per tube) and 0.1 g of glass beads (212 – 300 micron in diameter, Sigma, 

cat # G1277) per tube were added. The tubes were sonicated using the Bioruptor 

(Diagenode) for 10 cycles to achieve chromatin fragment sizes around 500 base 

pair. The samples were centrifuged at 1000 g for 5 minutes at 4°C to pellet the 

glass beads. The supernatant was transferred into a new 1.5 ml tube.  The tubes 

were centrifuged at 15000 g for 10 minutes at 4°C to remove cellular debris and 

residual glass beads. The supernatant was transferred into a new 1.5 ml tube. 
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The samples that were not used for the next step were stored at -80°C. Prior to 

the immunoprecipitation step, 250 mg of Protein A-sepharose CL-4B (GE 

Healthcare, cat # 17¬0780-01, size = 1.5 g) was added to a 15 ml conical tube. 

10 ml PBS was added to swell the beads at 4°C for >2 hours. The beads were 

washed 3 to 4 times by centrifuging the tubes at 1000 g for 5 minutes at 4°C, 

discarding the supernatant and adding 10 ml of PBS each time. Once the beads 

were washed, a 2 ml slurry (~50%) of Protein A beads was prepared. For each IP 

reaction, 50 l of the Protein A slurry was used with the addition of 1 ml of ChIP 

dilution buffer (0.01% SDS, 1.1% triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, 

pH 8.1, and 167 mM NaCl) supplemented with 1 mg/ml BSA and 1 mM PMSF. 

Each tube was incubated for an hour in ChIP dilution buffer for 1 hour at 4°C. 

This last step was repeated two times, centrifuging at 500 g for 2 min at 4°C per 

wash, discarding the supernatant each time. For each IP experiment, 100 l of 

the chromatin was diluted with 900 l of ChIP dilution buffer. The diluted 

chromatin was added to a tube containing 50 l of Protein A slurry and rotated for 

1 hour at 4°C.  The samples were centrifuged at 500 g for 2 minutes. The 

supernatant was transferred into a new 1.5 ml tube and 5 g of -SOX9 antibody 

was added to each tube. The tubes were left rotating overnight at 4°C.  

The next morning, the Chromatin-Antibody suspension was transferred to 

a tube containing Protein A slurry and rotated for 1 hour at 4°C. The samples 

were washed by centrifuging the tubes at 200 g for 2 minutes at 4°C. The 

supernatant was discarded and 1 ml of low salt immune complex wash buffer 

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH8.1, 150 mM 
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NaCl) was used to wash the Chromatin-Antibody complex for 5 minutes. The 

samples were centrifuged as described in the previous step, the supernatant was 

discarded and the Chromatin-Antibody complex was washed using a high salt 

immune complex wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM 

Tris-HCl, pH 8.1, 500 mM NaCl) for 5 minutes. The same washing steps were 

repeated using lithium chloride immune complex wash buffer (0.25 M LiCl, 1% 

IGEPAL-CA630, 1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl, pH 

8.1) and two consecutive washing steps using TE buffer (10 mM Tris-HCl, pH 

8.1, 1 mM EDTA). 125 l of freshly prepared ChIP elution buffer (1 M sodium 

bicarbonate, 10% SDS) was used to elute the Chromatin-Antibody complex from 

the Protein A beads. The tubes were placed on a nutator for 15 minutes at room 

temperature. The tubes were centrifuged at 500 g for 2 minutes at room 

temperature. The supernatant was transferred into a new 1.5 ml tube and an 

additional 125 l of ChIP elution buffer was added to the tube containing the 

beads. The previous steps were repeated and the supernatant was pooled with 

the initial 125 l sample recovered. The total volume became 250 l. A de-

crosslinking step was performed on both the experimental sample and the input 

by incubating the samples overnight in a solution containing 10 l of 5 M NaCl 

and 1 l 10 mg/ml RNase A at 65°C. The next morning, 5 l of 0.5 M EDTA, 10 l 

1 M Tris-HCl, pH 6.5, and 1 l of 10 mg/ml Proteinase K was added. The 

samples were incubated for 2 hours at 45°C. The DNA fragments were isolated 

using a phenol/chloroform extraction step followed by DNA precipitation. 20 g of 
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glycogen was added in the precipitation step to maximize DNA recovery. The 

DNA pellet was resuspended in 30 l of sterile water and stored at -20°C.  

The DNA fragments were sent to Cincinnati Children's Hospital Medical 

Center Genetic Variation and Gene Discovery Core Facility and were sequenced 

using an Illumina HiSeq2000. We obtained millions of short reads from both DNA 

samples (uterus and testis). Both sets of sequences were processed using 

Galaxy, an open, web-based platform for biomedical research. Both sets of 

sequences were processed using Galaxy, an open, web-based platform for 

biomedical research. We ran the FASTQ Groomer program (version 1.0.4)144 on 

both datasets, then mapped using Map with Bowtie for Illumina (version 1.1.2)145 

with the mouse genome (assembly 2007 NCBI37/mm9). We converted the 

format from SAM to BAM using the SAM-to-BAM program (version 1.1.2)146. We 

used MACS (version 1.0.1)147 to visualize peaks independently aligned to the 

mouse genome. 

 

Results 

 

Initially, regions of high sequence repeats (downloaded from USCS 

genome browser) were subtracted from both the uterus and testis data sets. 

Repetitive sequences were a concerned because once the program encounters 

one it can potentially realigned it multiple times in various parts of the reference 

genome where they are present, potentially creating various fabricated peaks 

that could obscure the real peaks. Initially, the program discovered 2,872 and 
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2,597 areas from testis and uteri, respectively, where the sequences seemed to 

cluster, indicating that these were potential SOX9-DNA binding regions. After 

depleting the sequences of repetitive-sequences, the program realigned our 

sequences and discovered 1,921 and 1,742 potential SOX9-DNA binding 

regions, in samples from testis and uterus, respectively. We intersected both 

datasets to uncover how many of these regions were present in both samples. 

The computer program uncovered 666 potential SOX9-DNA binding sites that 

were present in both tissues. We classified these 666 areas as potential SOX9-

DNA binding sites. Areas mapped to the mouse genome are represented by a 

black bar (Figure 32). Although we did not observe any bars near published 

SOX9-targets like Col2a1 and Amh, we were able to detect peaks near other 

important genes. Additionally, as a quality control we examined SOX9-potential 

binding sites that mapped to Chromosome Y (Figure 32C). From the 1,742 

potential SOX9-DNA binding regions obtained from the uterus, only 3 sequences 

(0.17%) mapped to the Chromosome Y.  In contrast, from the 1,921 potential 

SOX9-DNA binding regions obtained from the testis, 9 sequences (0.47%) 

mapped to the Chromosome Y.  

From the 666 SOX9-binding regions, we obtained a list of 336 potential 

SOX9-targets (table 1), defined by the University of California, Santa Cruz 

(UCSC) bioinformatics site using table browser. We pursued one candidate gene 

that stood out from the rest: Transient receptor potential cation channel, 

subfamily V, member 4 (TRPV4).  
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Figure 32: Verification of ChIP-Seq integrity. (A-E) DNA sequences, derived 

from SOX9-ChIP of uterus and testis, aligned to the mouse reference genome. 

Showing potential SOX9-binding site (band, user track) present near Col2a1 (A) 

and Amh (B). (C) Three potential SOX9-binding sites discovered on 

Chromosome Y. (D) Potential SOX9-binding sites discovered in the intronic 

region of Trpv4 (E) and Cacng2 (F). 
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1110007A13Rik AK086741 Ccdc60 Esr1 Il1rapl1 Mid1 Plxnc1 Sos2 Vwa3b

1500017E21Rik AK087719 Cd44 Fam184b Il31ra mKIAA0933 Polr2f Spag17 Vwf

2210408I21Rik AK090337 Cdc42bpb Fam19a2 Immp2l mKIAA1164 Poteg Spata17 Wbscr17

2610528E23Rik AK138135 Cdh12 Fam46c Ints4 mlr2 Ppfia2 Ssh1 Wdr76

3110070M22Rik AK144265 Cdh23 Fam63b Ipcef1 MOR Ppm1h Ssh2 Wdvcf

4921504E06Rik AK145544 Cdk5rap2 Fbxo28 Itga9 Mphosph8 Ppp1r9a Ssxb1 Wnt7b

4930468A15Rik AK146888 Cdk8 Fbxw4 Izumo1 Mrc2 Ppp2r2b Ssxb9 Wrb

4930525F21Rik AK148393 Chl1 Filip1l Jarid2 M-rdgB beta Prkch Steap1 X99384

4933404O12Rik Aldh7a1 Clca2 Flt1 Jph1 Mtrf1 Prkdc Steap2 Xkrx

5730522E02Rik Ank1 Clca5 Fnbp1 Kcnh1 Myo7a Proca1 Sympk Zc3h7a

9530059O14Rik Ank2 Cldn10 Foxj2 Kcnq1 Nalcn Ptprm Taco1 Zfp106

A130040M12Rik Ankar Cntnap3 Frmd4a Kctd16 Ncam1 Raet1a Tacr2 Zfp263

A1cf Ano2 Cntnap5a Frmd4b Kctd19 Ncoa1 Raet1c Taf1b Zfp791

A630089N07Rik Apool Col23a1 Fut8 Kif26b Nedd4l Rbm14 Tanc2 Zfp808

Abcb10 Arhgap21 Col4a6 Fxy Klph Nell1 Rbm4b Tbc1d1 Zfp821

Abhd3 Arhgap24 Col6a6 Galntl1 Ksr1 Neurabin Rgs6 Tcp10a Zfp949

Abhd6 Arsb Copz1 Gdap2 Lama1 Nkain3 Rims1 Tcp10c

abParts Asrgl1 Csda glur-1 Lamb3 Nkd1 Rims2 Tcra

Acacb Atf2 Csmd1 Gm10905 Large Noc3l Rin2 TCR-alpha chain

Acpl2 Atp7a Cyp27a1 Gm15800 Lars2 NOX1 Robo1 Tcte2

Acsl5 Atp7b D130009I18Rik Gm16980 Lats2 Nudcd2 Ror2 Timd2

Acss1 Atrnl1 D430042O09Rik Gm17002 Lcor Oprm1 Ros1 Tmc3

Actr3b Auts2 D5Ertd579e Gm525 Lctl Padi4 Rshl2a Tmed8

AK005414 av Dab2 Gm5544 Lep Parn Rsph3a Tmem164

AK015347 B230307C23Rik Dapk1 Gnb1l Lig1 Pde1c Rsph3b Tmem170

AK016100 B3galnt2 Ddr2 Gphn Limch1 Pde7b Rttn Tmem56

AK042300 Bard1 Dgki Greb1 Lin7a Pdia5 Sbk1 Tmprss15

AK043285 Bbox1 Dlgap2 Gria1 Lipc Pdss2 Sbno1 Tmtc1

AK045681 Bbx Dnahc14 Grk5 Litaf Pepd Sepsecs Trerf1

AK047857 BC068229 Dnahc7b Gsdmc Lmbrd1 Phactr2 Setbp1 Trhde

AK050844 beta3GalNAcT2 Dopey2 Gsdmc2 Lmln Phldb2 Setd4 Trim50

AK076665 Bhlhb9 Dpf3 Gzmk Lrp1b Phrf1 Sfi1 Trpm3

AK076959 Bpag1 Dpp9 H60b Lrrc69 Pign Sh3bgrl2 Trpv4

AK077481 Bzw2 Dux Hapln1 Ly86 Pisd-ps2 Sipa1l1 Ttc28

AK079660 C030034L19Rik Eef2 Hexb Magi2 Pitpnc1 Slc14a2 Tusc3

AK080816 C230081A13Rik Efna5 Hip1 Mamdc2 Pkn3 Slc39a11 Usp39

AK081244 C730048C13Rik Eftud1 Hs6st3 Map2k6 Pknox1 Slc3a1 Vmn2r16

AK084059 Cadps EG630579 Hsd11b1 Mcmbp Plcl2 Slc44a1 Vmn2r59

AK085253 Camk1d Epm2a Htr2c Mdga2 Plxdc1 Smo Vmn2r77

AK086315 Capn8 Erc2 Ifltd1 Mettl3 Plxdc2 Sorcs1 Vps45

 

 

 

 

Table 1: Potential SOX9-targets. 
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Trpv4 is expressed in the epithelia of the kidney, lung, skin, sweat glands 

and intestines148-153. Sox9 is expressed in the epithelia of all the aforementioned 

organs and in the testis154. Therefore, we decided to determine if knocking out or 

overexpressing Sox9 affected the levels of TRPV4. We performed 

immunohistochemistry using an antibody α-TRPV4.   

The levels of TRPV4 were higher in the uterine epithelium of Sox9-cOE 

females (Figure 33J, K, L) when compared to controls (Figure 33E, F, G). 

Moreover, we also detected ectopic expression of TRPV4 in the uterine stroma in 

Sox9 overexpressing mice (Figure 33J, K). We also observed a small reduction 

in the levels of TRPV4 in the uterine epithelium of Sox9-cKO females (Figure 

33A, B, C). Thus, there is a positive correlation between TRPV4 levels and SOX9 

levels, consistent with the idea that Trpv4 is a direct transcriptional target of 

SOX9. 

In previous chapters, we showed that SOX9 levels fluctuated in the LE 

throughout the estrous cycle. Immunohistochemistry analysis indicated that 

TRPV4 levels remained constant in the uterine epithelium throughout the estrous 

cycle (Figure 34). Furthermore, it appeared that TRPV4 was localized to the 

basal membrane domain, primarily in GE. SOX9 is expressed primarily in the 

GE. 
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Figure 33: Increased levels of TRPV4 detected in the adult uterine 

epithelium of Sox9-cOE females. Immunohistochemistry performed using α-

TRPV4 antibody (red) with nuclei counterstained by hematoxylin (blue). 

Compared to Sox9-cKO (A-D) and control (E-H), tissue sections derived from 

Sox9-cOE (I-L) show augmented levels of TRPV4. Scale bar 50 m. 
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Figure 34: TRPV4 levels are maintained constant through the estrous 

cycle. Immunohistochemistry analysis performed on uterine sections derived 

from adult B6 females dissected at different stages of the estrous cycle using α-

TRPV4 antibody (red). No counterstain was performed. TRPV4 detected 

primarily in the basal domain of the uterine epithelium, predominantly in the GE 

(B, E, H, K). TRPV4 levels remain unchanged though the estrous cycle in B6 

females. Scale bar 50 m. 
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Discussion 

We have shown that SOX9 potentially binds and activates expression of 

Trpv4, a voltage-dependent Ca2+ channel. In the mouse mammary cell line 

HC11, activation of TRPV4 promotes intracellular Ca2+ influx and increases 

paracellular epithelial barrier permeability by lessening lateral tight-junctions155. 

Interestingly, TRPV4 is also expressed in epithelial cells of the kidney, lung, 

skin, sweat glands and intestines148-153. Sox9 is expressed in all the 

aforementioned organs, supporting the idea that SOX9 promotes expression of 

Trpv4. 

In the HC11 cell line, TRPV4 is localized to the basolateral membrane 

domain, and activation of this receptor was shown increase paracellular 

permeability155. Furthermore, it was also demonstrated that the increase in 

paracellular permeability was in part caused by a decrease in the expression of 

claudins. Claudins play a role in maintaining cell-cell tight junctions. Cadherins 

are also responsible for establishing cell-cell contacts that control diffusion and 

confer structural integrity to the epithelium. Cadherins have a five repeat 

extracellular domain and a conserved cytoplasmic domain. Ca2+ is required for 

binding of the extracellular domains. -CATENIN along with -CATENIN bridge 

the cadherin conserved cytoplasmic domain to the actin cytoskeleton. 

Maintenance of tight junctions is essential to maintain membrane domains that 

serve to polarize the cells44.  

Activation of TRPV4 by mechano-stimulation should trigger influx of Ca2+, 

allowing intracellular ion transport, while disrupting claudin-binding. In the 
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paracellular space, reduction in levels of Ca2+ can potentially decrease adhesion 

of cadherins. During the estrous cycle, the proliferative phase is followed by 

massive apoptosis. Tight junctions need to be released during metestrus, when 

multiple fragmented cells can be detected in the basal lamina prior to being 

expelled into the uterine cavity. Using immunofluorescent staining against 

SOX9, we detected greater numbers of SOX9-positive cells starting at proestrus 

and ending during metestrus. However, we did not detect any changes in the 

levels of TRPV4 during the estrous cycle.  

In the uterus of Sox9-cOE mice, we have observed a marked increase in 

stromal fibrosis. D’Aldebert et, al. showed that activation of TRPV4 led to 

increased chemokine release and inflammation of the colon. It is possible the 

stromal fibrosis observed in Sox9-cOE mice could be a potential result from 

increased chemokines151.  

Our data indicates that the LE of Sox9-cOE females is statistically taller 

than both control and Sox9-cKO. Therefore, it is plausible that the increase in 

epithelium height is a consequence of upregulating Trpv4. In summary, these 

studies indicate that SOX9 directly binds the Trpv4 locus to regulate its 

transcription. The role of Trpv4 may be to maintain the integrity of the uterine 

epithelium.  
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