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ABSTRACT 
 

Lung cancer is the leading cause of cancer-related mortality in the US. Emerging 

evidence has shown that host genetic factors can interact with environmental exposures to 

influence patient susceptibility to the diseases as well as clinical outcomes, such as survival 

and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung 

cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With 

the fast evolution of genotyping technology, genetic association studies have went through 

candidate gene approach, to pathway-based approach, to the genome wide association study 

(GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on 

studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than 

GWAS easier to identify a validation population and explore gene-gene interactions. In the 

current study, we adopted pathway-based approach focusing on two critical pathways - 

miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate 

around 30% of human genes. Polymorphisms within miRNA processing pathways and 

binding sites may influence patients’ prognosis through altered gene regulation. 

Inflammation plays an important role in cancer initiation and progression, and also has 

shown to impact patients’ clinical outcomes.  

We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis 

genes and predicted binding sites in NSCLC patients to determine associations with clinical 

outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, 

respectively. First, in 535 early-stage patients, after correcting multiple comparisons, 

FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a 
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significant inverse association with survival in early stage surgery-only patients. 

SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% 

CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only 

populations, respectively. FAS:rs2234978 was significantly associated with improved 

survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy 

populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that 

this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, 

providing biological plausibility for the observed association. We then analyzed these 

associations in 598 late-stage patients. After multiple comparison corrections, no SNPs 

remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 

96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy 

subgroup. 

To test the hypothesis that genetic variants in the inflammation-related pathways may be 

associated with survival in NSCLC patients, we first conducted a three-stage study. In the 

discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related 

SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-

DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 

95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and 

external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was 

significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 

0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the 

association reached borderline significance in the external validation population (HR: 0.80, 

95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients 
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in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct 

disease from that in ever-smokers. A two-stage study was performed using a discovery 

population from MD Anderson (411 patients) and a validation population from Mayo Clinic 

(311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that 

were significantly associated with survival were validated (p<0.05), and two more SNPs 

(CD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo 

Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction 

in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival 

tree created in MD Anderson population in the Mayo Clinic population. 

In conclusion, our results provided strong evidence that genetic variations in specific 

pathways that examined (miRNA and inflammation pathways)   influenced clinical 

outcomes in NSCLC patients, and with further functional studies, the novel loci have 

potential to be translated into clinical use.  
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1.1 Epidemiology  

1.1.1 Incidence and mortality 

Lung cancer incidence increases dramatically since last century, and it is now the second 

most common cancer in both sexes and the leading causes of cancer death  worldwide (1). 

Although the incidence rate has reduced in men (1.9% per year) and started to decline in 

women (0.3% per year), it is estimated that 226,160 new lung cancer cases  will be 

diagnosed in 2012, accounting for 14% of all new cancer  diagnoses (2, 3).  

Around 95% of all lung cancer cases are classified into two major histological types – 

non-small cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) and. NSCLCs 

develop from epithelial cells, while SCLCs originate from neuroendocrine-cells.  Around 85% 

of lung cancer cases are NSCLCs. NSCLCs can be classified into several subtypes 

according to physical and chemical characteristics of tumor cells. Adenocarcinoma is slow-

growing tumors that account for around 40% of all NSCLCs. Patients are usually diagnosed 

before the tumors reach 4 cm in diameter and have a better prognosis compared to other 

subtypes (4, 5). Around 25% to 30% of NSCLC cases are  squamous cell carcinoma, usually 

observed with a tumor larger than 4cm (4).  10-15% of NSCLC patients have large cell 

carcinoma, where the tumors are often poorly differentiated, grow rapidly, and metastasize 

early (6).  

The highest lung cancer incidence in male observed in the central and Eastern Europe, 

while African and Asian men have the lowest incident rate. In female, the highest incidence 

was found in North America, and in some part of Europe. Women in Spain is the least likely 

to develop lung cancer, where the percentage of women smoker just begin to increase (7). 

Within the same geographic location, lung cancer incidences are usually different between 
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ethnic groups, for example, in the US, black male has the highest incident rate of lung 

cancer, which is 40% higher in black men compared to white men (Cancer Facts & Figures 

2012).  

Despite of the declining mortality rate in both men and women, lung cancer is still the 

leading cause of cancer-related mortality in the US. Emerging evidence shows that early 

stage lung cancer patients received surgery have good survival; however, most of lung 

cancer patients diagnosed with un-resectable tumor, thus the overall mortality for lung 

cancer remain very high. It is expected that over a quarter of all cancer-related deaths will be 

attributed to lung cancer this year,  more than colon, breast and prostate cancer combined (2).  

 

1.1.2 Risk Factors 

1.1.2.1 Tobacco smoking 

It is estimated that tobacco smoking is related to around 80% of all cancer deaths. Ever 

since 1950s, tobacco smoking has been recognized as the leading risk factor for lung cancer. 

Smokers have at least ten-time higher risk of developing lung cancer compared to those who 

never smoked, and the excess risk was equally observed in both male and female (8). 

Factors of smoking influence lung cancer risk include duration of smoking, smoking 

intensity (i.e. number of cigarettes per day)age of initiation, inhaling habit, types of tobacco 

products and time since quitting. Data has shown that more than 90% of lung cancer cases 

are caused by tobacco smoking (9, 10). 

For current smokers, lung cancer risk is proportional to the pack-year of smoking. The 

cumulative risk for continuous smokers is 19%, compared to 1% in never smokers at age of 

75 (11).  Former smokers have lower risk of lung cancer, however, excess risk of lung 
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cancer was still observed compared to never smokers. Other type of smoking, such as pipes, 

or cigars also showed related to increased lung cancer risk. 

Lung cancer in never smokers - Although smoking is the predominant risk factors for 

lung cancer, lung cancer develops in 15% of male and 53% of female never-smokers (12, 

13). Over the past few decades, the proportion of never-smokers with lung cancer has 

increased strikingly (13). Lung cancer in never smokers has emerged as a major public 

health problem in studies tracking smoking and smoking cessation rate. Previous studies 

have reported differing tumor etiology and clinicopathological presentation according to 

smoking status in lung cancer patients with never-smokers as being more likely to be 

women, having adenocarcinomas, and having less-differentiated tumors (12-15). Genetic 

and epigenetic alterations also differ with fewer changes overall.  Tumors from never-

smokers also have a unique and predominant profile compared to those from smokers, such 

as chromosomal gains at 16p, promoter hypermethylation of hMLH1 and hMSH2, and 

distinct mutations of major oncogenes and tumor suppressor genes. For example, compared 

to smokers, never smokers have fewer mutations in K-ras and tp53 genes, while with a 

higher rate of mutation in EGFR, results in better response rate of EGFR tyrosine kinase 

inhibitors in never smokers (12-14).  These findings suggest different paths of 

carcinogenesis in ever- and never-smokers with lung cancer.  

 

1.1.2.2 Environmental and occupational exposure 

In the US, around 40% of non-smokers are currently exposed to environmental second 

hand smoke (16). Second-hand smoking leads to up to 30% increased risk for those who do 

not smoke, which is estimated to contribute to three thousands lung cancer deaths each year 
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(17). Evidence shows that second-hand smoking is comparable to smoking in the excess risk 

of lung cancer. 

Radon is another environmental risk factor for lung cancer, which commonly released 

from construction material concentrated in buildings, and is hard to be detected without 

specialized equipment.  Based on the data from U.S. Environmental Protection Agency, 

radon is responsible for over 20,000 lung cancer cases each year, which makes it a major 

risk factor for lung cancer, especially in never smokers. 

Occupational asbestos exposure is another important risk factor for lung cancer. People 

who worked in an environment with asbestos fibers have much higher risk to develop and 

die from lung cancer. Moreover, joint effect was observed for asbestos exposure with 

tobacco smoking. 

Other environmental risk factors include air pollutions, diesel exhaust, and arsenic. 

Certain forms of silica and chromium also show associations with lung cancer. 

 

1.1.2.3 Other risk factors 

People with family or personal history of cancer are at higher risk of developing lung 

cancer. First-degree relatives of lung cancer patients have higher risk and/or early onset of 

the disease. Evidence shows that persons who received radiation therapy to the chest, or to 

other cancers, have an increased risk of developing lung cancer.  
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1.2 Clinical Aspects 

1.2.1 General overview 

The most common lung cancer symptoms include: a persistent cough, chest pain, 

hoarseness, shortness of breath, wheezing, infections, bone pain, neurologic changes, and 

jaundice. Lung cancer patients are usually diagnosed with advanced stage diseases, due to 

the late presentation of symptoms or lack of symptoms (18-22).   

TNM staging system, which maintained by the American Joint Committee on Cancer 

(AJCC) and the International Union Against Cancer (UICC), is the widely accepted standard 

for NSCLC staging.  Clinical stage is defined by physical exam, biopsies, imaging tests prior 

to treatment. Patients who undergo surgical resection may also have pathologic stage based 

on histological tests of resected tumor, which can provide more accurate information about 

the extent of disease(23).  

The treatment options for NSCLC includes surgery, radiation therapy, chemotherapy, 

target therapy and other local treatments, and treatments are usually used in combinations 

(24-26). Even with advances in treatment, the overall prognosis is still poor for NSCLC, 

with an overall 5-year survival rate (percentage of patients survival at least 5 years after 

diagnosis) of  around 16% (1). In general, surgery is considered the most potentially curative 

treatment for early stage NSCLC and offers the best prognosis. Evidence shows that 

complete resection of localized tumor and associated lymph node largely benefit patients 

prognosis, and a post-operative chemotherapy could add significant benefit to patients’ 

survival (27).  

The clinicopathologic factors most often associated with prognosis include stage of 

cancer (tumor size and spread of disease), type of cancer (non-squamous histology), 
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presence of pulmonary symptoms, lymph nodes metastases, vascular invasion. Effort has 

been devoted to developing prediction modalities for patient prognosis based on these 

clinicopathologic factors; however, variations still exist within patients with same above 

mentioned characteristics (28-32).   

 

1.2.2 Prognosis and treatment by stage 

The TNM stage at diagnosis is the primary parameter used to estimate patients’ prognosis 

and treatments. Early stage patients have the most promising 5-year survival rate of 30-49%, 

while survival for late stage patients is as low as 1% for stage IV patients (the Surveillance, 

Epidemiology and End Results [SEER] databases). A validation-study series using more 

than 31,000 lung cancer cases has provided the most extensive data of survival for each 

stage of patients (Figure 1), and a 59 months survival disparity was observed between stage 

IA and stage IV patients (33). Because the large difference in prognosis between patients 

with resectable and advanced diseases (34), the prognostic factors are commonly identified 

separately (Tables 1 and 2). 
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Figure 1 Overall survival, median survival time and five-year survival by TNM stage 

 (A) clinical stage and (B) pathologic stage. (33) Reprinted by permission from J 

Thorac Oncol, copyright (2007)    
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About 30% of NSCLCs are diagnosed with early stage disease (stage I and II), which is 

considered as a localized disease and expected to have a generally good survival. Stage I 

patients are defined as those having a tumor limited to the lung without any invasion to the 

parietal pleura or main bronchi (35). Stage II NSCLC tumors are still in lung with or without 

invasion into local lymph nodes, and have not spread to distant sites. Surgical resection is 

the principle treatment for early stage NSCLCs. To obtain better outcome, chemotherapy 

(neoadjuvant/ adjuvant) and radiation therapy were performed to facilitate surgical resection 

and prevent recurrence when necessary (28, 36, 37).  However, it is estimated that 20-25% 

of stage I or II patients will eventually develop recurrent or metastatic disease. Prevention of 

recurrence is the major concern for this group of patients (28). 

A majority of NSCLC cases are diagnosed with late (stage III or IV) stage diseases, 

which are usually incurable. Typically, these patients present with metastatic disease, and 

only a few stage IIIA patients are eligible for surgery. Overall, late stage patients have a 

dismal 5-year survival rate of 5% (38). Standard treatment for these patients is platinum-

based chemotherapy, which is reported to moderately prolong patients’ survival (39, 40). 

Radiation therapy is usually performed in combination with chemotherapy either 

concurrently or sequentially.  However, the response rate to chemotherapy is only 30% with 

a duration limited to 4-6 months. Furthermore, patients are at high risk for developing severe 

toxic effects (41). Therefore, patients with late stage disease are usually administered 

palliative treatments to reduce symptoms and improve quality of life (42, 43). As curative 

options are limited for these patients, a subset of this group may benefit from targeted 

therapies and may be candidates for clinical trials.   
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Table 1: Prognostic Factors in Patients With Surgically Resected NSCLC 

Prognostic Factors Tumor-Related Factors Host-Related 
Factors 

Essential factors Stage “N” factor Weight loss 
Hypercalcemia54  Performance 

status 
Additional factors Anatomic  Sex 

 “T” factor Tumor size Age 
 Nodal level Pleural cytology  
 Intrapulmonary metastasis   
Histologic   
 Grade Cell type  
 Vessel invasion   

New or promising 
factors 

Histologic  Smoking habit 
 Cells in mitosis Angiogenesis Quality of life 
 Lymphoid infiltration  Marital status 
Clinical chemistry  Depressed mood 
 Blood group Ag Coagulation 

factors 
CYPIA-1 

 NSE Proteinuria  
 CA-125 CEA  
 TPA   
Proliferation markers   
 DNA ploidy and/or % S-phase Ki67  
 PCNA AgNOR  
 Thymidine labeling   
Cellular adhesion markers   
 CD44 Plankoglobin  
Other molecular biological markers   
    kRAS, RB gene, bcl-2, c-jun, MRP-
1, EGFr (c-erbB-1),  HGF, TPA, 
Cyclin D-1, P53, P21, c-fos, CYFRA-
21-1, KAI-1, c-erbB-2, VEGF, sIL-
2R, Cathepsin B 

  

* NSE = neuron-specific enolase; CEA = carcinoembryonic antigen; AgNOR = 
argyrophilic nucleolar organizer region; PCNA = proliferating cell nuclear antigen; RB 
= retinoblastoma; CYFRA-21 = serum assay for detection of cytokeratin 19 fragment; 
MRP = motility-related protein; kRAS = ras oncogene or protein; EGFr = epidermal 
growth factor receptor; HGF = hepatocyte growth factor; VEGF = vascular endothelial 
growth factor. Reprinted by permission from American College of Chest Physicians. (34)  
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Table 2: Prognostic Factors in Patients With Advanced NSCLC 

Prognostic Factors Tumor-Related Factors Host-Related Factors 
Essential factors Stage (III vs IV) Weight loss 

Hypercalcemia Performance status 
SVCO  

Additional factors Anatomic Sex 
 “T” factor 
 ”N” factor 
 Clinical stage IIIA vs IIIB 
 Number of sites involved 
 Pleural effusion 
 Liver metastases 

Symptoms 
Age 
 

Clinical chemistry/hematology  
 Hemoglobin  
 LDH  
 Albumin  

New or promising 
factors 

Clinical chemistry/hematology Quality of life 
 Coagulation factors Marital status 
 Proteinuria Depressed mood 
Proliferation markers CYPIA1 
 DNA ploidy and/or % S-phase  
 Ki-67  
Other molecular biologic markers  
 Replication errors 2p/3p 
 K ras 
 P53 
 c-erbB-1 
 TPA 
 NSE 

 

Other radiology  
   Thalium-201 uptake  

* SVCO = superior vena caval obstruction; NSE = neuron-specific enolase. 
Reprinted by permission from American College of Chest Physicians. (34) 
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1.3 Genetics of lung cancer  

1.3.1 Somatic alterations 

Numerous molecular genetic abnormalities have been identified in lung cancer, such as 

chromosomal aberrations, alterations in major tumor suppressor gene (TSG) or oncogenes, 

many of the alterations are of great clinical importance (44, 45).  

The most common identified mutation of lung cancers were in KRAS and the epidermal 

growth factor receptor (EGFR) tyrosine kinase gene. KRAS mutations, common form of RAS 

mutations, have been identified in lung tumors for two decades. Studies have shown that 

around 23% of all lung cancer cases carrying KRAS mutations, mostly in codons 12/13. 

Considerable efforts have been devoted to evaluate the predicting value of KRAS mutation 

on cancer drug response, which provided some evidence that KRAS might predict a poor 

response to adjuvant chemotherapy and kinase inhibitors (46-48). EGFR mutations are 

found in 15%-30% of NSCLC tumors (49).  Although just recently identified in NSCLCs, 

EGFR mutations have attracted considerable attentions from clinics. EGFR mutations, 

especially in kinase domain, have been used as predictors for treatment response of EGFR 

kinase inhibitors, such as gefitinib. Other than KRAS and EGFR, other somatic mutations, 

such as BRAF, ERBB2 and TP53, are also frequently identified in lung tumors.  

Other genetic alterations, such as chromosomal alterations, somatic copy-number 

alteration, and loss-of heterogeneity (LOH), are also frequently found in lung cancer (50-52). 

For example, the loss of chromosome 3p has been identified in nearly half of non-small cell 

tumors (53), and LOH was observed in 90% of lung squamous cell carcinoma and in 67% of 

lung adenocarcinoma (52).  
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Somatic alterations have been investigated for their associations with prognosis (44, 45). 

For example, down-regulation of 3p genes (RASSF1A, FHIT, β-catenin) were found related 

with a poorer survival in NSCLC (54-56). In addition, many studies have found the role of 

several major oncogenes and TSGs in NSCLC prognosis. NSCLC tumors harboring KRAS 

mutations are smaller and poorly differentiated, patients have a higher mortality rate (57).In 

a study of advanced stage patients, it was found that compared to patients with KRAS 

mutated tumor, patients carrying BRAF mutations experienced a better prognosis (58, 59). 

Some other genes, such as growth factors (60), apoptosis genes  (61), DNA repair gene (62-

65), telomerase activity (66), inflammatory factors (67-70), plasminogen activator (71, 72), 

and matrix metalloproteinases (73) have also been described for their prognostic value.  

 

1.3.2 Genetic susceptibility 

Evidence of familial aggregation of lung cancer suggested a role of genetic components 

to lung cancer (74-77) . For example, in a family-based study, a 2.4-fold increased risk of 

lung cancer was observed for the individuals whose relatives had developed lung cancer, the 

effect remained significant even after controlling for other risk factors (75). And in a recent 

large scale family linkage study of lung cancer, it was found that among 26,000 lung cancer 

patients screened in the study, 13.7% had at least one first-degree relative also developed 

lung cancer. The excess risk of lung cancer patients’ relatives suggested the potential 

heritability of lung cancer. Association studies also provided supporting evidence of genetic 

component in the initiation and progression of lung cancer. Knowledge of lung cancer 

susceptibility genetic loci is the key for the understanding of the underlying mechanism of 

disease initiations and progressions. In general, lung cancer susceptibility genes were 
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categorized into high or moderate/ low risk (or penetrance) genes, for which family-based 

linkage analysis or genetic association studies were performed. 

 

1.3.2.1 Linkage analysis 

The traditional strategy to identify high penetrance gene is the family-based linkage 

analysis followed by positional cloning. Family-based analysis can avoid potential bias 

caused by environmental factors, and has successfully mapped lots of genes associated with 

monogenic disorder including common cancers(78). High risk gene has a great impact on 

cancer risk for people carrying the variant allele, however, the frequency of variant allele of 

high-risk gene is very low in population, and thus the population attributable risk is low. 

Most of the high-risk genes are tumor suppressor genes (TSGs) discovered in the study of 

cancer syndromes, and show an autosomal dominant inherited fashion (Mendelian pattern) 

(79). 

There are several gene mutation identified as potential high risk for lung cancer.  For 

example, TP53 mutations identified in family members with Li-Fraumeni syndrome were 

significantly associated with higher lung cancer risk and earlier age at onset. A family 

linkage study mapped a higher risk region to chromosome 6q23-25 (80), fine mapping of 

sequential studies further narrow it to RGS17gene (81, 82). 

 

1.3.2.2 Genetic association studies 

Despite the great impact of high-penetrance genes on cancer development of individuals 

carrying mutated genes, it only accounts for 10% of cancers, and the remaining 90% of 

cancer were considered developing in a polygenic fashion with a complex interaction of 
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both environmental factors and multiple small and subtle genetic changes. Although only 

small proportion of people carrying low penetrance genes will develop cancer, and the effect 

of these low-penetrance genes usually cannot be distinguished clearly from environmental 

effect, the high prevalence of these low-penetrance genes in general population makes their 

identification of great impact in public health.  Traditional family-based linkage analysis 

failed to identify this type of genes due to population heterogeneity and environmental 

confounders.(79) During the past decades, population-based association study has proved its 

value in discovering low/moderate penetrance loci. Based on “common disease common 

variant” hypothesis, association study identifies cancer susceptibility loci by comparing the 

frequency of the genetic variants between cancer patients and healthy controls. Numerous 

studies, particularly recent genome-wide association studies (GWAS), have unequivocally 

identified many low penetrance genetic loci for a variety of cancers(83). 

Single nucleotide polymorphisms (SNP) are most commonly investigated form of genetic 

variations in cancer association studies. Evidence shows that SNPs would affect host gene 

either in terms of gene expression or protein activities, and have impact on lung cancer 

susceptibility and outcomes (84-86). Association studies can be either family- or population-

based. By comparing the allele frequency of candidate loci between cases and healthy 

controls, population-based association studies are more widely used in cancer gene 

identification than family-based association study, in which elderly relatives of cancer 

patients are hard to recruit. Population-based association study has gone through a fast 

evolvement in the past decades, from candidate gene approach to pathway-based approach 

to genome-wide association approach (87, 88), and have been widely adopted in the 
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identification of low penetrate common alleles responsible for cancer susceptibility as well 

as patients’ prognostic markers. 

 

Candidate gene and pathway-based approach - Candidate gene approach is the earliest 

approach used to identify cancer susceptibility genes. This hypothesis driven approach is 

largely depending on a priori knowledge of SNPs and gene function. Most of the genes 

selected as candidate are genes encoding proteins within major known functional pathways 

and the SNPs are functional SNPs. Since the number of SNPs is limited, the genotyping cost 

is relatively low, and the sample size requirement is small. Pathway-based approach is an 

extension for candidate gene approach. Instead of analyzing a single gene or single variant, 

this approach focuses on gene variants of a whole biological or functional pathway. 

Pathway-based approach increases the coverage of analyzed region, but is still hypothesis-

driven and based on existing knowledge. Because of the increasing number of variant 

genotyped, the cost of genotyping increases and chance of false discovery also increases. (86)  

With its own strength of being based on prior knowledge of disease biology, candidate 

gene and pathway based approaches have been widely adopted to identify genetic predictors 

for lung cancer susceptibility loci (86). DNA repair pathway gene polymorphisms are most 

commonly identified to be associated with susceptibility of lung cancer (89-92). For 

example, polymorphisms in XRCC1 have repeatedly been identified to associate with lung 

cancer susceptibility (93-96). In a meta-analysis of 28 published epidemiological studies on 

nucleotide excision repair pathway gene, it was found that ERCC2751Gln/Gln and 

XPA 23G/G genotype were significantly associated with altered lung cancer risk (97). 

Besides the above mentioned studies, numerous studies on other pathways, such as cell 
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cycle (98-100), growth signaling (101-103), and apoptosis (85) pathways, have been 

identified as lung cancer susceptibility loci. Over past a few decades, studies have started to 

used candidate gene/ pathway-based approaches to investigate lung cancer outcomes, such 

as polymorphisms in DNA repair pathway (104-107), AKT/mTOR pathway (108-110), 

miRNA pathway (111-113), have showed evidence to related to survival in lung cancer 

patients.  

 

Genome-wide association studies (GWAS) - not depending on any current knowledge, 

GWAS is a discovery-driven approach, providing a thorough screening of whole 

genome(114). Due to the large number of association tested, the requirement for statistical 

significance is very stringent (P-value<10-8) and a multi-stage study design is usually 

performed to control for false discovery through successive validation steps (115).  

Recent reports have clearly demonstrated the power of GWAS in identifying novel 

genetic loci of common diseases (83). Till date, fifteen GWAS studies have been reported 

on lung cancer (116-131). Compared to the identification of cancer susceptibility loci, only 

four studies have performed on lung cancer outcomes (124, 126, 127, 130). GWAS on 

outcomes studies has its limitations. The bottleneck is the requirement of large populations 

identified from multi-institutions to provide sufficient statistical power for GWAS analysis. 

And for outcome analysis, to obtain adequate clinical characteristics from all populations, 

such as histology, treatment regimens, and following-up information, is the pre-requisite for 

conducting such studies. Due to the heterogeneity nature of treatment regimens for lung 

cancer patients as well as the lack of comparable clinical/ follow-up data,  to identify a 

comparable validation populations is usually a challenge, which largely hindered the 
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progress of GWAS on lung cancer outcomes (83).  In this scenario, to initiate multi-

institutional collaborations for a well-designed GWAS of stage or treatment-specific 

analysis of patients’ outcomes is warranted.  

 Meanwhile, pathway-based approaches have its unique advantage as a powerful tool for 

outcome study. With limited number of candidate loci, the pathway-based approach required 

a much smaller sample size, and therefore is cost-effective and much easier to identify a 

validation population (132-137). Moreover, since pathway-based approaches are developed 

based on prior established knowledge of disease, it provides more coverage on the specific 

interested functional pathways relevant to disease, and is easier to discover gene-gene 

network interactions and study complex underlying biological network (132-137). In this 

context, a large scale pathway-based genetic variation study focusing on interesting 

biological pathways is both necessary and desirable for outcomes studies. 

 

1.4 MicroRNA  

MicroRNAs (miRNAs) are a class of small non-coding RNAs approximately 22 

nucleotides in length. Emerging evidence has shown that miRNAs function as oncogenes or 

tumor suppressor genes depending on the context (138-140) and have been shown to be 

potential biomarkers for cancer risk assessment, clinical treatment response, and prognosis 

(141).  

 

1.4.1 MiRNA biogenesis 

MiRNAs undergo a complex processing procedure to produce the mature, functional unit. 

The initial step is the generation of pri-miRNA from the miRNA gene transcript through a 
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series of RNases. These pri-mRNA transcripts are then cleaved by Drosha, an RNase III 

endonuclease, producing an 85-nucleotide hairpin structure termed pre-miRNA. After 

exportation into the cytoplasm by Exportin-5/Ran-GTP complex, pre-miRNAs are further 

processed by DICER into an 18-25 nucleotide intermediate duplex. A single strand of this 

mature miRNA then becomes part of the RNA-inducing silencing complex (RISC) together 

with various other proteins, such as TARBP2, AGO2, GEMIN3, and GEMIN4.  This 

complex then binds to the target mRNA to regulate gene function either through cleavage of 

the transcript by the RISC complex or induction of translational silencing through RNA-

RNA interactions(142). Impaired miRNA processing has been reported to reduce stable 

miRNA levels and promote tumorigenesis (143), and genetic variations in several miRNA 

processing genes have been reported to influence the risk of several cancers, including 

bladder, esophageal and kidney cancer(144-146).  
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(147) Reprinted by permission from Macmillan Publishers Ltd: Nat Cell Biol, 

copyright (2009)   

Figure 2 The scheme of miRNA biogenesis and regulation 
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1.4.2 miRNA binding site polymorphisms 

Although miRNA genes are highly conserved with very few known genetic variations in 

the mature miRNA regions, the frequency of variations within miRNA target sites, which 

are located in less conserved 3’ untranslated regions (UTRs), is much greater(148). Genetic 

variations within these sites are of interest because single nucleotide polymorphisms (SNPs) 

in the miRNA binding site may either disrupt the binding ability on an existing binding site 

or create a previous non-existing binding site, thus altering normal gene expression. 

Recently, there has been an increasing interest in exploring miRNA binding site 

polymorphisms and their association with human diseases, ranging from mental disorders to 

cancers (149). Given the significant role of miRNA regulation, the fast growth of this field 

might revolutionize the way of cancer risk and prognosis prediction, and also help clinician 

to tailor personalized cancer therapy.  

 

1.4.3 miRNA and cancer 

Impaired miRNA processing has been reported to reduce stable miRNA levels and 

promote tumorigenesis (143). Genetic variations in several miRNA processing genes have 

been reported to influence the risk of several cancers, including bladder, esophageal, kidney, 

and ovarian cancers (144, 146, 150, 151). In addition, variation in miRNA binding sites 

within 3’ untranslated regions (3’UTR) of target genes may also affect miRNA-mRNA 

interaction and target gene expression, leading to altered cancer risk (152-157). 

Evidence has shown that miRNAs are related to cancer prognosis including lung cancer. 

For examples, Yanaihara et al have reported that high hsa-miR-155 and low hsa-let-7a-2 

expression correlated with poor survival (141), and distinct miRNA expression profile was 
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repeatedly observed between normal and tumor tissue of lung cancer patients (141, 158, 

159).  

 

1.5 Inflammation pathways 

Inflammation is an important cellular process that is activated in response to tissue 

damage, infections and other cellular processes (figure 2). However, a growing body of 

evidence supported a relationship between inflammation and cancer, with many cancers 

initiated at the site of inflammation. Products of the inflammatory response, such as free 

oxygen radicals, may induce harmful DNA alterations resulting in carcinogenesis and 

formation of invasive and/or metastatic phenotypes (160-165). Inflammatory cells and 

related signaling molecules could also be utilized by tumor to facilitate its progression and 

metastasis by generating a favorable micro-environment as well as promoting genetic 

instability and angiogenesis (161).  
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Figure 3inflammation pathways in response to a danger signal 

(135) 
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The lung is a frequent site of infection and occasional site of chronic inflammation owing 

to environmental exposures. Furthermore, accumulating evidence shows that inflammation 

is associated with prognosis of various cancers, including lung cancer (166-169).  

Poorer survival was found in cancer patients with elevated inflammatory markers. For 

example, high regulated Cox-2, which is a major enzyme involved in inflammatory response, 

is found in lung cancer, and associated with immune suppression, VEGF over expression, 

and also promotes angiogenesis and tumor invasions (67-70). Many studies have provided 

evidence that Cox-2 expression is a prognostic factor for NSCLC (68, 170, 171). In a study 

if 162 resected NSCLCs, more than 7 years difference in the median survival time was 

observed between patients with highest and lowest Cox-2 expression level (170, 171). Also, 

It is found that elevated circulating levels of C-reactive protein, an acute-phase reactant in 

inflammatory response, were associated with poor survival in NSCLC patients (168, 169). A 

few studies have explored associations between selected inflammation gene polymorphisms 

and lung cancer prognosis, with inconsistent results because of small sample sizes (172, 

173). 
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1.6  Hypothesis and rationale 

1.6.1 Hypothesis 1: miRNA-related genetic variations are associated with  survival and 

recurrence in NSCLC patients  

MicroRNAs (miRNA) post-transcriptionally regulate over 30% of human genes, miRNA 

was found de-regulated in most of human tumors. Evidence also showed miRNA are related 

to lung cancer prognosis. Given its important role, in this study, we hypothesized that 

miRNA-related polymorphisms, including polymorphism in miRNA processing genes, and 

miRNA binding sites in major cancer-related genes, could influence various cellular 

processes, such as tumor cell survival and drug response, thus have an impact on the clinical 

outcomes in NSCLC patients. 

 

1.6.2 Hypothesis 2: Genetic variations in the inflammation pathways are associated with 

survival in late stage NSCLC patients 

Lung cancer patients are usually diagnosed with advanced stage disease, which 

commonly treated with chemotherapy combination regimens. Inflammation has a well-

established role with carcinogenesis, and it is estimated that inflammation contributes to 15% 

of cancer deaths. Evidence showed that inflammatory molecules and effectors not only 

increases the risk of developing cancer, but promotes tumor progression and mediate cancer 

patients’ response to treatment and prognosis .   Thus, we hypothesized that polymorphisms 

in major inflammation-related genes may affect inflammatory responses thus influence 

survival in late stage NSCLC patients 
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1.6.3 Hypothesis 3: Genetic variants in the inflammation pathway are associated with 

survival in never smokers among NSCLC patients  

Lung cancer in never-smokers (LCINS) is increasingly recognized as a distinct disease 

from that in ever-smokers owing to substantial differences in etiology, clinical 

characteristics, and prognosis. Identification of specific prognostic and predictive markers 

for lung cancer in never-smokers beyond the general markers for lung cancer is warranted. 

Inflammation plays an important role in cancer initiation and progression, as well as 

influence clinical outcomes. In the present study, we hypothesized that inflammation-related 

genetic variants could influence host gene function and inflammatory responses, thus would 

have impact on NSCLC patients’ prognosis through smoking independent mechanisms. 
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Chapter 2: Material and Methods 
 

  



28 
 

2.1 Study populations and data collection 

MD Anderson discovery population: Patients from The University of Texas MD 

Anderson Cancer Center included in this study were part of an ongoing lung study that has 

been recruiting since 1995. All patients were non-Hispanic white, had histologically 

confirmed (AJCC v6.) NSCLC.  A structured questionnaire was used to collect 

epidemiologic and demographic data during an in-person interview with each patient. In 

addition, genomic DNA was extracted from peripheral blood samples obtained from each 

patient using the QIAamp DNA extraction kit (Qiagen, Valencia, CA), following standard 

protocol. Clinical and follow-up data were obtained from medical records. Each patient 

signed an informed consent form, and this study was approved by the MD Anderson 

Institutional Review Board. 

Harvard University population: The details of the Harvard population have been 

described in detail previously (174). In brief,  this lung cancer study was initiated in 1992; 

patients were recruited at the Massachusetts General Hospital. All participants in that study 

were at least 18 years old white patients with a confirmed primary lung cancer. An 

interviewer-administered questionnaire was used to collect epidemiologic data 

(demographics, occupational exposures, smoking history) for each patient. Peripheral blood 

was drawn from each patient for DNA extraction.  

Mayo Clinic population: Patients at Mayo Clinic had newly diagnosed, histopathological 

confirmed primary NSCLC. A structured questionnaire was used to collect detailed 

epidemiological data on the patients. These patients participated in a long-term follow-up 

study from 1997 to 2008 described in detail previously (175, 176). Medical records were 
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reviewed for clinical and epidemiological data abstraction. All analyses were restricted to 

Caucasian patients to minimize effects of population structure. 

 

2.2 SNP selection, genotyping and quality control 

2.2.1 miRNA related SNPs 

Gene and SNP selection: We had previously constructed a custom Illumina iSelect chip 

containing a comprehensive panel of approximately 10,000 SNPs from 998 cancer-related 

genes.  The detailed description of this chip, including the SNP and gene selection schema, 

has been described previously (177). Eight miRNA processing genes (DDX20, DGCR8, 

DICER1, RNASEN, EIF2C1, GEMIN4, RAN, and XPO5) were among the 998 genes on 

this chip with 77 tagging (10 kb flanking and within each gene, linkage coefficient r2>0.8) 

and potential functional SNPs genotyped. We used the PolymiRTS database (Bao, Zhou et 

al. 2007) to identify SNPs in predicted binding sites for the 998 genes included on the chip 

and identified a total 163 SNPs from 133 genes with these criteria.  All the selected SNPs 

had a minor allele frequency (MAF) greater than 0.01 in the Caucasian population. Table 3 

listed the genes we selected in our study, and supplementary table 1 provides the entire list 

of all SNP analyzed. 
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Table 3:miRNA Processing and predicted targets genes 
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Genotyping and quality control: Genomic DNA was extracted from peripheral blood 

samples using the QIAamp DNA extraction kit (Qiagen, Valencia, CA) following 

manufacturer’s protocol. SNPs genotyping was performed using iSelect Infinium II 

genotyping platform (Illumina, San Diego, CA, USA) according to the standard Infinium II 

assay protocol. Only SNPs with a cluster call rate >0.95 were included in the analysis. 

DAVID gene ontology database (http://david.abcc.ncifcrf.gov/home.jsp) was used to 

analyze gene function clustering. 

 

2.2.2 inflammation related SNPs 

Gene and SNP selection: Compilation of the genes involved in the inflammatory response 

was performed based on a published panel of inflammation-associated genes (135) and a 

database of diabetes and inflammation genes (T1DBase [http://www.t1dbase.org]; 

University of Cambridge, Cambridge, UK). Tagging SNPs for candidate genes based on 

data from an European population were identified using data from the International HapMap 

Project, based on National Center for Biotechnology Information B36 assembly and dbSNP 

b126. For each gene, sequences 10 kb before the transcription start site and 10 kb after the 

transcription end site were included in the tag SNP selection using the Tagger pairwise 

method (Broad Institute, Cambridge, MA, USA) with an r2 threshold of 0.8 and minor allele 

frequency of at least 0.05 (178). The complied SNP list was sent to Illumina (San Diego, CA, 

USA) for designability analysis using their array design tool. Only SNPs that exceeded the 

threshold score (>0.4) were considered designable. In total, 11,930 SNPs (supplementary 

table 1) were included for construction of an Infinium II iSelect Custom Genotyping 

BeadChip (Illumina).  
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Table 4:  Inflammation-related pathways selected 

Pathway No. of genes No. of SNPs 

Adhesion-extravasation-migration 12 108 

Apoptosis signaling 67 834 

Complement cascade 3 8 

Cytokine signaling 266 3139 

Glucocorticoid/PPAR signaling 24 258 

Innate pathogen detection 53 542 

Leukocyte signaling 132 2023 

MAPK signaling 156 2854 

Natural killer cell signaling 31 296 

Phagocytosis-Ag presentation 41 488 

PI3K/AKT signaling 45 580 

ROS/glutathione/cytotoxic granules 25 231 

TNF superfamily signaling 49 569 

Total 904 11930 

PPAR=peroxisome proliferator-activated receptor; MAPK=mitogen-
activated protein kinase; PI3K=phosphatidylinositol 3-kinase; 
ROS=reactive oxygen species; TNF=tumor necrosis factor. 
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Genotyping and quality control: Genotyping for inflammation SNPs were performed at 

MD Anderson Cancer Center, Mayo Clinics and Harvard University using different 

platforms for discovery and validation purpose: 

1) MD Anderson: detailed genotyping and quality control methods used in the 

discovery phase have been previously described (179). Briefly, genotyping was performed 

according to the standard Infinium II assay protocol for the iSelect HD BeadChips 

(Illumina). Quality control measures were applied to the datasets, excluding any DNA 

samples or SNPs with a call rate (percentage of data available for all SNPs or samples) 

<95%. For patients with direct relatives also enrolled in the study, only 1 patient within the 

relationship, the one whose DNA sample had a higher SNP call rate, was included in the 

final analysis. SNPs with MAF <0.01 were excluded. For validation purpose, genotyping for 

SNPs selected in the discovery phase was done either through the design of a custom 

Illumina Infinium iSelect BeadChip or using existing Illumina HumanHap300/ 

HumanHap317/ HumanHap660 genotyping data. Quality control for the Illumina Infinium 

iSelect BeadChip was performed on the basis of sample and SNP call rates; we removed any 

samples or SNPs with a call rate <95%. Detailed quality control measures for the Illumina 

HumanHap300/HumanHap317/HumanHap660 BeadChip have been described previously; 

these were also based on genotyping call rate (call rate >95% for all samples and SNPs 

included). SNPs with MAF <0.01 were also excluded (180).  

2) Mayo clinics: SNPs selected for validation at Mayo Clinic were genotyped at Mayo 

Clinic’s Genotyping Core Facility using a Fluidigm Dynamic Array (South San Francisco, 

CA, USA) and a HumanHap317 BeadChip (Illumina) according to a standard protocol and 

using quality control measures. 
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3) Harvard University: Genotyping for externally validated SNPs was performed using 

the Illumina HumanHap610 chip following standard protocol, as previously described (123). 

Quality control measures were similar to those used in the MD Anderson populations: only 

SNPs and samples with a genotyping call rate >95% and SNPs with MAF >0.01 were 

included in the analysis. 

 

2.3 Statistical analyses 

Demographic and clinical variables by vital status were selected compared using the χ2 

and Fisher’s exact test. The multivariable Cox proportional hazards regression models, with 

corresponding hazard ratios (HRs) and 95% confidence intervals (CIs), were used to 

estimate the effect of single SNPs on overall survival (the time between diagnosis and death 

or last follow-up) and progression (time from start of treatment to progression or last follow-

up) based on the best fitting model. Kaplan-Meier survival curves and corresponding log-

rank tests were used to estimate the effect of each SNP on time to death. Patients who had 

smoked fewer than 100 cigarettes over their lifetime were defined as never-smokers; ever-

smokers were defined as patients who had smoked more or equal to 100 cigarettes over their 

lifetime, including former smokers (those who had quit smoking more than 1 year before 

diagnosis), and current smokers and recent quitters (those who had quit smoking within a 

year before diagnosis). Meta-analysis of the different populations was performed to obtain 

summary HRs and 95% CIs. Heterogeneity was tested using chi-square-based Q-statistics. A 

fixed-effect model was used when heterogeneity was absent (P for heterogeneity >0.05). 

The cumulative effect of the top 2 validated SNPs within each population was determined 

by counting the number of unfavorable genotypes (UFGs) each patient carried and using 
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patients without any UFGs within that population as a reference group. All the statistical 

analyses above were performing using STATA software (Stata Corporation, College Station, 

TX). Survival tree analysis was performed to identify higher-order gene-gene interactions 

affecting progression and/or survival using the STREE program 

(http://masal.med.yale.edu/stree/). STREE uses a log-rank statistic method to select the 

optimal split and subsequent split of the data set, each terminal node represented a group of 

patients who had the same genotype combination and risk profile. Multiple hypothesis 

testing was performed using R package with a q value (181), adjustment for multiple 

comparisons was based on a false discovery rate (FDR) of 5%. Bootstrap re-sampling 

method (by generating sample with duplicates for 1000 times) was used to internal validate 

the associations remained significant after multiple comparison (q<0.05). In case multiple 

SNPs were highly linked (R2>0.8), only one was kept for multiple SNPs analysis.  

Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/index.shtml) and SIFT (http://sift.bii.a-

star.edu.sg/) were used in silico to predict the influence of the validated missense SNP on 

protein function (182, 183).  

 

2.4 Luciferase reporter assay 

Selected miRNA binding site SNPs, FAS:rs2234978 and SP1:rs17695156, were 

evaluated in vitro using the dual-luciferase reporter assay. Due to the characteristics of the 

genomic sequence of the 3’UTR of FZD4, this region was unable to be cloned.  

Luciferase reporter constructs for wildtype and variant allele containing binding site 

regions were generated. Briefly, a part of 3’UTR of each gene was amplified by PCR from 

genomic DNA and then cloning restriction sites were generated by nested PCR. The FAS 
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SNP (rs2234978) is located in exon 7, which serves as 3’UTR of a nonsense-mediated 

mRNA decay transcript (NCBI dbSNP database; www.ncbi.nlm.nih.gov/projects/SNP). 

Therefore, the entire exon sequence was generated by oligo hybridization. The PCR product 

or DNA fragment was digested with XbaI and FseI restriction enzymes (New England 

Biolabs, Ipswich, MA) and ligated into similarly digested pGL3 vector attached to 3’ end of 

luciferase reporting gene. The variant allele containing vectors were generated by site-

directed mutagenesis. All the constructs were sequenced to ensure the correct sequence. 

Primers and oligos used in reporter construct cloning are available upon request. Two lung 

cancer cell lines NCI-H460 (large cell carcinoma) and NCI-H2444 (adenocarcinoma) were 

cultured in RPMI-1640 medium (Mediatech, Manassas, VA) supplemented with 10% fetal 

bovine serum (Invitrogen, Carlsbad, CA) in 48-well tissue culture plates. Cells were 

transfected with 0.5 mg of each reporter construct, 5 pmol of negative control (scrambled 

sequence), or predicted targeting miRNAs (Sigma-Aldrich, St. Louis, MO) and 8 ng of 

pGL4 (Ambion, Austin, TX) Renilla luciferase reporter using Lipofectamine 2000 

(Invitrogen). After 36 hours of incubation, cell lysates were harvested and measured for 

luciferase activity using the Dual-Luciferase Reporter Assay System (Promega, Madison, 

WI) and a FLUOstar Optima microplate reader (BMG Labtech, Cary, NC). Each assay was 

repeated independently at least two times with four replicates. The firefly luciferase activity 

was normalized to the Renilla luciferase activity to derive the relative luciferase activity.  
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3.1 miRNA-related genetic variations and clinical outcomes in NSCLC patients 

 

3.1.1 miRNA-related genetic variations and survival and recurrence in early stage NSCLC 

patients 

3.1.1.1 Patients characteristics  

This study included 535 early stage (I and II) NSCLC patients with an overall median 

survival time of 90.2 months and median follow-up time of 62.1 months. Characteristics of 

the study population are shown in Table 5. Mean ages for surgery-only and surgery plus 

chemotherapy treated patients were 65.8 years and 62.9 years, respectively. At the time of 

analysis, 322 (60%) of the patients were alive and 360 (67%) did not have a progression of 

their disease. Nearly equal numbers of male and female participants were included (49% and 

51% respectively) with a majority of the study population consisting of Caucasian patients 

(88%). The clinical stage distribution is stage IA (46%), stage IB (35%), stage IIA (5%) and 

stage IIB (14%). A majority of the NSCLC cases were adenocarcinomas (59%) with 28% 

squamous cell carcinoma and the remaining 13% unclassified or other NSCLC. Of the 535 

participants, 340 patients received surgery-only, 127 patients were treated with surgery plus 

neoadjuvant and/or adjuvant chemotherapy, and the remainder (68 patients) treated with 

only radiation therapy with/without surgery.  
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Table 5: Host characteristics of early stage NSCLCs 

Variables All early stage Surgery only Surgery & chemo 
 No. of patients (%) No. of patients (%) No. of patients (%) 
Total Patients 535 340 127 
Median survival time(mos) 90.2 102.0 118.3 
Median follow-up time(mos) 62.1 71.6 50.7 
Age, mean(sd) 65.7(10.1) 65.8(9.9) 62.9(10.2) 
Gender    

Male 262(49) 166(49) 68(54) 
Female 273(51) 174(51) 59(46) 

Ethnicity    
Caucasian 469(88) 305(90) 109(86) 

African-American 42(8) 25(7) 10(8) 
Others 24(4) 10(3) 8(6) 

Pack year, mean(sd) 44.9(36.6) 45.1(37.6) 39.4(35.2) 
Histology    

Adenocarcinoma 315(59) 213(63) 74(58) 
Squamous cell carcinoma 149(28) 87(26) 34(27) 

Unclassified or other 71(13) 40(12) 19(15) 
Clinical stage    

Stage IA 245(46) 181(53) 23(18) 
Stage IB 188(35) 113(33) 55(43) 

Stage IIA 26(5) 10(3) 14(11) 
Stage IIB 76(14) 36(11) 35(28) 

Treatment    
Surgery only 340(64) 340(100) N/A 

Surgery & other treatment 142(27) N/A 127(100) 
Treatment without surgery 53(10) N/A N/A 

Surgery result    
Complete 470(98) 340(100) 123(97) 
Residual 12(2) N/A 4(3) 

Vital status    
Alive 213(40) 210(62) 88(69) 
Dead 322(60) 130(38) 39(31) 

Progression    
No 360(67) 233(69) 85(67) 
Yes 175(33) 107(31) 42(33) 
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3.1.1.2 Associations between individual SNPs and NSCLC clinical outcomes 

Among all the variants analyzed, 11 processing and 23 binding site SNPs were 

significantly associated with altered risk of dying. The most significant association with 

survival for early stage NSCLC was FAS:rs2234978 (HR:0.59, 95% CI:0.44-0.77, 

P=1.67×10-4, q=0.018), which remained significant after multiple comparison corrections, 

and resulted in  a significant increase in median survival time (MST) from 59 to 118 months 

(log rank P=1.0×10-4; Figure 4a).  
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Figure 4 Kaplan-Meier estimates of FAS:rs2234978 on overall survival: 

(a) total population; (b) surgery-only patients; (c) surgery plus chemotherapy patients. MST: 
median survival time in months. N=A/B, A: number of patients with event, B: total number 
of patients. 
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Five SNPs in processing genes and 23 SNPs in binding sites were significantly 

associated with time to progression. The most significant association, which remained 

significant after correcting for multiple comparisons, was SP1:rs17695156 (HR:2.22, 

95%CI:1.44-3.41, P=3.00×10-4, q=0.034). Patients with at least one variant allele had more 

than 224 months decreased median progression-free time compared to patients who had 

common homozygous genotype (45.3 months vs >270 months, log rank P=7.0×10-4, Figure 

5). 

 

 
 

Figure 5 Kaplan-Meier estimates on effect of SP1:rs17695156 on time to progression 
among early stage patients.  

MPFT: median progression-free time in months. N=A/B, A: number of patients with event, 
B: number of all patients.   
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3.1.1.1 Effects of treatments on association of clinical outcomes 

Different treatment regimens may function through different mechanisms to affect 

clinical outcomes. We performed subgroup analysis focusing on two groups of patients with 

relatively homogeneous treatment regimens: surgery-only and surgery plus chemotherapy.  

 

Effect on overall survival 

Eighteen SNPs were significantly associated with overall survival in surgery-only 

patients. FZD4:rs713065 (HR:0.46, 95% CI:0.32-0.65, P=2×10-5, q=0.002), located in the 3’ 

UTR of FZD4, remained significant after adjustment for multiple comparisons. Patients with 

at least one variant allele have significantly decreased risk of death and increased MST from 

59 to 117 months compared those patients with the common genotype(log rank P=1.05×10-5; 

Figure 6a). Notably, in agreement with the overall population, for patients who received 

surgery plus chemotherapy, FAS:rs2234978 (HR:0.19, 95% CI:0.07-0.46, P=1.84×10-5) 

displayed the most significant association with survival. Patients with at least one variant 

allele had 81% lower risk of death (HR:0.19, 95% CI:0.07-0.46) with their MST increased 

by 2-fold, compared to patients who carry the homozygous common genotype (65 months 

vs. 137 months, log rank P=1.05×10-4, Figure 4c). The association of this SNP with survival 

was borderline significant after correction for multiple comparisons in surgery-only patients 

(HR:0.59, 95% CI:0.42-0.84, P=0.004, q=0.069), with increased median survival time (61 

months vs. 102 months, log rank P=4.02×10-3, Figure 4b). 
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Figure 6 Kaplan-Meier estimates of effect of FZD4:rs713065 on overall survival 

(a) total population; (b) surgery-only patients. (c) surgery plus chemotherapy patients.  MST: 
median survival time in months. N=A/B, A: number of patients with event, B: total number 
of patients. 
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By comparing the findings between two subgroups, we identified two distinct clusters of 

SNPs that showed statistically significant association with survival in only one specific 

treatment subgroup. Seventeen SNPs (13 binding site and 4 processing SNPs) were found to 

have significant effects on risk of dying in surgery-only patients but no significant 

associations with survival in patients receiving surgery plus chemotherapy. In contrast, 28 

SNPs (18 binding site and 10 processing SNPs) were found to be significantly associated 

with risk of death only in patients receiving surgery plus chemotherapy, but not in surgery-

only patients. Intriguingly, within each cluster of SNPs, we identified SNPs with differential 

directions of their effect. A group of 29 SNPs has the same trend in both treatment 

subgroups (either protective or adverse), while 15 SNPs conferred opposite effects between 

two subgroups (Table 6). For example, FZD4:rs713065 was associated with significantly 

decreased risk of dying and prolonged survival time in surgery-only patients; however, in 

the surgery plus chemotherapy subgroup, this SNP was associated with increased risk of 

dying and a shortened median survival time (Figure 6b and 6c). Significant dose-dependent 

effects on risk of dying were identified in the two treatment subgroups with patients carrying 

increased number of UFGs showing a significant trend toward poorer survival and shortened 

median survival time (P for trend<1×10-4, Figure 7a and 7b).   
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Table 6: Effect of selected SNPs on survival in early stage NSCLC patients 

 Curative Intent Surgery-only Surgery & chemotherapy 
Gene SNP HR (95%CI)** P HR (95%CI)** P HR (95%CI)** P 
FAS rs2234978 0.59(0.44-0.77) 2×10-4* 0.59(0.42-0.84) 4×10-3 0.19(0.07-0.46) 3×10-4* 

FZD4 rs713065 0.68(0.51-0.90) 0.01 0.46(0.32-0.65) 2×10-5* 1.50(0.71-3.19) 0.29 
PON1 rs854552 1.94(1.29-2.92) 2×10-3 2.29(1.36-3.88) 2×10-3 2.00(0.87-4.60) 0.10 

WNT2B rs3790611 1.62(0.97-2.71) 0.06 2.60(1.39-4.86) 3×10-3 0.45(0.09-2.11) 0.31 
DDX20 rs197412 1.66(1.18-2.32) 3×10-3 1.87(1.24-2.82) 3×10-3 0.97(0.32-2.98) 0.96 
ATP5A1 rs12954944 1.52(1.07-2.16) 0.02 1.74(1.14-2.65) 0.01 0.60(0.20-1.87) 0.38 
DGCR8 rs11089328 1.38(0.96-1.98) 0.08 1.79(1.14-2.79) 0.01 0.90(0.31-2.62) 0.84 
SMC1L2 rs3747238 1.55(1.11-2.16) 0.01 1.77(1.17-2.68) 0.01 0.96(0.37-2.47) 0.93 

RAN rs872396 1.50(1.08-2.09) 0.02 1.79(1.17-2.75) 0.01 1.28(0.57-2.85) 0.55 
CDK4 rs1048691 0.43(0.21-0.89) 0.02 0.31(0.11-0.86) 0.02 1.33(0.38-4.63) 0.65 

DROSHA rs7719666 0.87(0.72-1.06) 0.16 0.74(0.57-0.96) 0.02 1.09(0.68-1.74) 0.73 
NEIL2 rs1043180 1.50(1.07-2.10) 0.02 1.63(1.07-2.47) 0.02 1.39(0.63-3.06) 0.42 

RPS6KA3 rs12010722 0.83(0.67-1.03) 0.08 0.73(0.55-0.97) 0.03 0.91(0.54-1.53) 0.72 
SST rs4988514 0.75(0.51-1.10) 0.15 0.60(0.37-0.98) 0.04 1.16(0.48-2.80) 0.75 

ADH5 rs7669660 0.78(0.56-1.08) 0.13 0.63(0.41-0.97) 0.04 1.00(0.43-2.34) 0.99 
RPA1 rs1131636 0.94(0.77-1.15) 0.57 0.75(0.58-0.98) 0.04 0.77(0.47-1.27) 0.30 

GSTM3 rs15864 0.82(0.65-1.02) 0.08 0.75(0.56-0.99) 0.04 0.96(0.50-1.86) 0.91 
TLR2 rs7695605 1.28(0.97-1.70) 0.09 1.44(1.01-2.05) 0.05 1.58(0.80-3.13) 0.19 

SULT1C1 rs1047312 1.15(0.98-1.35) 0.08 1.08(0.88-1.32) 0.45 2.01(1.30-3.10) 2×10-3 
DROSHA rs669702 1.26(0.91-1.75) 0.16 1.08(0.71-1.66) 0.72 3.49(1.59-7.64) 2×10-3 

GPR30 rs1133043 1.13(0.75-1.69) 0.56 0.67(0.37-1.21) 0.19 3.57(1.55-8.21) 3×10-3 
FANCD2 rs3172417 0.90(0.62-1.32) 0.59 0.71(0.42-1.19) 0.19 3.32(1.41-7.81) 0.01 
NDUFA6 rs7245 1.08(0.78-1.50) 0.64 0.83(0.52-1.31) 0.42 2.76(1.29-5.88) 0.01 

CDC7 rs12125947 1.22(0.99-1.49) 0.06 1.15(0.88-1.52) 0.3 1.90(1.14-3.17) 0.01 
PDGFC rs1425486 1.43(1.06-1.93) 0.02 1.18(0.81-1.71) 0.39 3.13(1.39-7.06) 0.01 

FOXO1A rs9532558 1.71(0.79-3.68) 0.17 1.44(0.52-4.04) 0.48 9.03(1.85-44.1) 0.01 
BIRC4 rs17330637 1.57(1.04-2.38) 0.03 1.15(0.64-2.08) 0.64 2.79(1.25-6.25) 0.01 

SMC1L2 rs3747240 1.29(0.94-1.77) 0.12 1.08(0.69-1.69) 0.73 2.59(1.30-5.19) 0.01 
TNFRSF10D rs7957 1.24(0.92-1.65) 0.15 1.01(0.69-1.49) 0.94 2.55(1.23-5.29) 0.01 
RPS6KB2 rs10274 0.83(0.68-1.02) 0.08 0.85(0.66-1.10) 0.21 0.51(0.30-0.87) 0.01 

FZD3 rs352222 0.82(0.68-1.00) 0.05 0.86(0.67-1.09) 0.21 0.46(0.25-0.82) 0.01 
DROSHA rs10035440 1.01(0.76-1.34) 0.95 1.27(0.89-1.82) 0.19 0.37(0.16-0.88) 0.02 
IGF2BP1 rs6504593 1.30(0.94-1.80) 0.11 1.24(0.83-1.87) 0.3 2.90(1.16-7.28) 0.02 
DROSHA rs673019 1.27(0.92-1.77) 0.15 1.25(0.81-1.95) 0.31 2.40(1.13-5.08) 0.02 

SP1 rs17695156 1.52(1.03-2.24) 0.03 1.20(0.68-2.13) 0.53 2.44(1.13-5.29) 0.02 
RAN rs10848238 1.40(1.06-1.86) 0.02 1.19(0.82-1.72) 0.36 2.15(1.11-4.17) 0.02 

PMS2L3 rs1167829 0.86(0.68-1.10) 0.24 0.97(0.72-1.31) 0.84 0.44(0.22-0.86) 0.02 
DROSHA rs639174 0.96(0.56-1.66) 0.89 0.80(0.39-1.65) 0.55 2.86(1.09-7.49) 0.03 
DROSHA rs2302905 1.04(0.78-1.39) 0.81 0.91(0.62-1.33) 0.62 2.25(1.11-4.58) 0.03 

MDM4 rs10900596 1.31(1.05-1.63) 0.02 1.29(0.97-1.72) 0.07 1.66(1.04-2.66) 0.03 
ICAM1 rs281437 1.44(1.09-1.89) 0.01 1.38(0.96-1.98) 0.08 2.20(1.10-4.39) 0.03 
DICER1 rs1187642 1.35(0.91-2.01) 0.14 1.00(0.58-1.73) 0.99 2.61(1.09-6.27) 0.03 
DGCR8 rs2073778 0.78(0.54-1.11) 0.16 0.89(0.57-1.39) 0.61 0.30(0.10-0.88) 0.03 
DGCR8 rs720012 0.76(0.53-1.09) 0.13 0.89(0.56-1.41) 0.62 0.30(0.10-0.90) 0.03 

RAN rs11061209 1.50(1.14-1.98) 4×10-3 1.44(1.00-2.05) 0.05 2.13(1.04-4.36) 0.04 
DNMT3B rs6058896 1.39(0.93-2.07) 0.11 1.59(0.88-2.89) 0.13 2.37(1.00-5.59) 0.05 

* Remain significant after multiple comparisons using FDR of 5% 
**Adjusted by age, gender, ethnicity, stage, pack year and treatment regimens. 
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Figure 7 Kaplan-Meier estimates of overall survival and time to progression in early 
stage NSCLC patents grouped by the number of unfavorable genotypes (UFG) 

(a) estimates for survival in surgery-only patients; (b) estimates for survival in patients 
receiving surgery plus chemotherapy; (c) estimates for time to progression in surgery-only 
patients; (d) estimates for time to progression in patients receiving surgery plus 
chemotherapy; MST: median survival time in months. MPFT: median progression-free time 
in months. N=A/B, A: number of patients with unfavorable event, B: total number of 
patients in subgroup. 
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Effect on progression  

In the subgroup analysis of treatment regimen for progression risk, SP1:rs17695156, 

which is the top SNP associated with progression in the combined population, was the most 

significant association with progression in surgery plus chemotherapy group with a 

borderline significant q value (HR:3.36, 95% CI:1.62-6.69, P=1.10×10-3, q=0.089) (Table 7). 

One processing SNP, DROSHA:rs6886834 was significantly associated with more than 6 

times increased risk for progression in surgery-only patients (HR:6.38, 95%CI:2.49-16.31, 

P=1.10×10-4, q=0.011) (Table 7). Patients who carried at least one variant allele of this SNP 

had significant reduction in progression-free time compared with patients with common 

homozygous genotype (23 months vs >270 months, log rank P=5.0×10-4; Figure 8).This 

association remained significant after correction for multiple comparisons (Table 7).  

  



49 
 

 
Table 7: Effect of selected SNPs on progression in early stage NSCLC patients 

   Curative Intent Surgery-only Surgery & chemotherapy 
Gene SNP Model HR (95%CI)** P HR (95%CI)** P HR (95%CI)** P 

DROSHA rs6886834 REC 2.28(1.20-4.32) 0.012 6.38(2.49-16.31) 1.1×10-4*   
MBD1 rs11663629 DOM 1.67(1.12-2.50) 0.012 2.33(1.35-4.02) 0.002 1.33(0.60-2.96) 0.487 

ATP6V1C1 rs2453994 DOM 1.44(1.01-2.05) 0.041 2.07(1.24-3.46) 0.006 1.10(0.53-2.28) 0.793 
RAN rs11061209 REC 1.38(0.84-2.28) 0.201 2.40(1.25-4.61) 0.008 0.87(0.29-2.62) 0.804 

DGCR8 rs1633445 ADD 1.28(0.96-1.71) 0.088 1.66(1.14-2.42) 0.009   
BAG3 rs8946 DOM 1.40(0.96-2.04) 0.084 2.20(1.21-4.00) 0.010 1.19(0.57-2.45) 0.644 

DROSHA rs502267 REC   3.11(1.29-7.51) 0.012   
CDC7 rs12125947 REC 1.91(1.27-2.88) 0.002 2.07(1.17-3.67) 0.012 2.10(0.92-4.79) 0.079 
FEN1 rs4246215 DOM 0.75(0.52-1.08) 0.118 0.51(0.29-0.88) 0.017 1.21(0.61-2.40) 0.579 

IGF2AS rs10770125 DOM 0.77(0.53-1.11) 0.161 0.54(0.32-0.90) 0.020 1.17(0.56-2.43) 0.673 
DGCR8 rs3757 ADD 1.28(0.95-1.71) 0.099 1.59(1.08-2.34) 0.020   
HSPB8 rs1133026 DOM 1.53(1.07-2.18) 0.020 1.81(1.09-3.00) 0.022 1.67(0.83-3.37) 0.148 
WNT2B rs3790611 REC 1.87(0.99-3.52) 0.052 2.79(1.15-6.73) 0.023   

ATP6V1C1 rs2248718 DOM 1.29(0.88-1.88) 0.195 1.81(1.09-3.02) 0.023 0.67(0.28-1.59) 0.362 
DROSHA rs7712155 REC 1.63(0.75-3.57) 0.218 2.94(1.16-7.45) 0.023   
DROSHA rs12186785 DOM 1.77(1.15-2.71) 0.009 1.94(1.09-3.45) 0.024 1.33(0.54-3.25) 0.531 
GSTM3 rs15864 REC 0.32(0.11-0.87) 0.025 0.19(0.05-0.81) 0.025 0.53(0.06-4.26) 0.547 

DROSHA rs10035440 DOM 0.71(0.48-1.06) 0.091 0.50(0.27-0.92) 0.025 1.33(0.66-2.68) 0.425 
RING1 rs107822 DOM 0.82(0.57-1.17) 0.269 0.54(0.31-0.93) 0.027 1.41(0.72-2.74) 0.313 
DGCR8 rs720014 ADD 1.25(0.93-1.67) 0.136 1.54(1.04-2.27) 0.031   
RRM1 rs1042927 DOM 1.27(0.78-2.06) 0.339 2.06(1.06-3.98) 0.032 0.53(0.20-1.38) 0.191 

SMC1L2 rs3747238 DOM 0.78(0.53-1.14) 0.195 0.57(0.34-0.96) 0.036 1.03(0.49-2.16) 0.931 
DROSHA rs2287584 REC 0.91(0.44-1.89) 0.801 2.40(1.05-5.52) 0.039 0.44(0.10-2.01) 0.290 

FEN1 rs174546 DOM 0.77(0.54-1.11) 0.159 0.58(0.34-0.98) 0.042 1.30(0.66-2.54) 0.445 
DDX20 rs197412 REC 1.31(0.83-2.08) 0.249 1.85(1.01-3.38) 0.045 1.20(0.45-3.18) 0.716 
FGF2 rs1048201 DOM 1.22(0.82-1.81) 0.325 1.72(1.01-2.92) 0.047 0.74(0.37-1.50) 0.408 
IL1R1 rs3917328 DOM 0.63(0.32-1.26) 0.193 0.35(0.12-0.99) 0.048 1.48(0.44-5.01) 0.528 
BIRC6 rs2710625 ADD 0.85(0.66-1.09) 0.207 0.69(0.48-0.99) 0.049 1.03(0.66-1.62) 0.895 

SP1 rs17695156 DOM 2.22(1.44-3.41) 3x10-4* 1.56(0.77-3.17) 0.213 3.36(1.62-6.96) 0.001 
CASP7 rs1127687 DOM 1.61(1.12-2.29) 0.009 1.40(0.83-2.37) 0.212 3.15(1.58-6.30) 0.001 

DROSHA rs669702 DOM 1.41(0.94-2.13) 0.099 1.39(0.78-2.48) 0.261 2.93(1.39-6.20) 0.005 
CASP7 rs10787498 ADD 0.85(0.66-1.11) 0.233 0.97(0.67-1.40) 0.871 0.50(0.30-0.86) 0.012 

ANGPTL1 rs10913632 DOM 1.77(1.14-2.73) 0.011 1.39(0.70-2.76) 0.349 2.61(1.20-5.67) 0.015 
DDX20 rs197377 DOM 1.36(0.95-1.96) 0.096 1.13(0.65-1.95) 0.663 2.21(1.16-4.18) 0.015 
ARNTL rs17452383 DOM 1.09(0.73-1.62) 0.682 0.77(0.41-1.43) 0.405 2.32(1.15-4.68) 0.019 
DICER1 rs3742330 DOM 0.53(0.29-0.95) 0.033 0.77(0.36-1.63) 0.494 0.18(0.04-0.76) 0.020 
DICER1 rs8006416 DOM 0.53(0.29-0.96) 0.037 0.80(0.38-1.70) 0.559 0.18(0.04-0.76) 0.020 
MDM4 rs10900596 REC 1.70(0.99-2.91) 0.054 0.83(0.31-2.20) 0.706 2.49(1.14-5.44) 0.022 
ICAM1 rs281437 DOM 1.56(1.09-2.23) 0.015 1.30(0.78-2.16) 0.306 2.20(1.11-4.36) 0.023 

RPS6KB2 rs10274 REC 0.54(0.31-0.94) 0.030 0.74(0.37-1.48) 0.398 0.29(0.10-0.86) 0.025 
RRM2B rs5005121 DOM 1.10(0.62-1.94) 0.746 0.67(0.30-1.48) 0.320 2.79(1.13-6.88) 0.026 
MTHFR rs10779765 REC 1.20(0.70-2.03) 0.507 1.00(0.46-2.14) 0.992 2.62(1.05-6.53) 0.038 

NDUFA6 rs7245 REC 1.19(0.79-1.80) 0.413 0.81(0.42-1.56) 0.525 2.12(1.04-4.35) 0.040 
TNFRSF10D rs7957 DOM 1.45(1.01-2.07) 0.044 1.59(0.96-2.63) 0.073 2.09(1.03-4.23) 0.040 
* Remain significant after multiple comparisons using FDR of 5% 
**Adjusted by age, gender, ethnicity, stage, pack year and treatment regimens. 
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Figure 8  Kaplan-Meier estimates on effect of DROSHA:rs6886834 on early stage 
progression among surgery-only patients 

MPFT: median progression-free time in months. N=A/B, A: number of patients with event, 
B: total number of patients in subgroup. 
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When comparing results of subgroup analysis, 28 SNPs (14 in binding sites and 14 in 

processing genes) and 16 SNPs (12 in binding sites and 4 in processing genes) were 

exclusively associated with altered risk for progression in surgery-only patients or surgery 

plus chemotherapy patients, respectively. Of these, 19 SNPs showed the same direction of 

the effects in both subgroups while 17 SNPs were found to have opposite effects in both 

subgroups (Table 7). For example, in patients received surgery plus chemotherapy, 

RRM2B:rs5005121 was associated with significantly increased risk for developing 

progressive disease and a shortened progression-free time, but in surgery-only patients, this 

SNP showed a protective effect against progression with an increased time to progression 

(Figure 6). We also observed a significant cumulative effect for each group of SNPs on 

modulating risk of progression - with increased number of UFGs, there is a gradual trend of 

increased risk for progression and corresponding shortened progression-free timein surgery-

only and surgery plus chemotherapy subgroups (P for trend<1×10-4, Figures 9c and 9d). 
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Figure 9 Kaplan-Meier estimates for the effect of RRM2B:rs5005121 genotypes on 
NSCLC progression in two treatment subgroups based on the dominant model: 

(a) surgery-only patients; (b) surgery plus chemotherapy patients. MPFT: median 
progression-free time in months. N=A/B, A: number of patients with event, B: number of 
patients in subgroup.  
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3.1.1.3 Survival tree analysis of SNPs associated with NSCLC survival 

Figure 10 shows the survival-tree structure identifying potential higher-order gene-gene 

interactions among miRNA-related genes in modulating overall survival. SNPs that 

displayed at least borderline significant association with survival after multiple comparison 

adjustment (q<0.1) were included in the analysis. The terminal nodes from the analyses were 

able to classify patients into three risk groups with significantly different survival 

probabilities. The MSTs based on these groupings varied from greater than 86 months for 

the low risk group to 41.7 months in the high risk group (log rank P<0.0001) in surgery-only 

patients, and from more than 118 months to 36.8 months for low and high risk groups 

respectively (log rank P<0.0001) in patients receiving surgery plus chemotherapy. Moreover, 

the initial split in the tree structure for each subgroup, FZD4:rs713065 and FAS:2234978, 

were also the two SNPs that remained significant after multiple comparison correction in the 

two treatment subgroup analyses. Because of the limited number of SNPs that were at least 

borderline significant after adjustment for multiple comparisons in the progression analysis, 

survival tree analysis was not performed for this endpoint. 
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Figure 10  Potential gene-gene interactions among SNPs identified in the survival 
analysis in early stage NSCLC patients 

(a) Survival tree analysis showing higher-order gene-gene interactions; (b) Kaplan-Meier 
curves of survival time for surgery-only patients in three risk groups identified by the 
survival tree analysis; (c) Kaplan-Meier curves of survival time for surgery plus 
chemotherapy patients among the three risk groups. MST: median survival time in months. 
N=A/B, A: number of patients with event, B: total number of patients. 
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3.1.1.4 Internal validation using bootstrap re-sampling method 

In order to further validate our results and to exclude potentially false positive 

associations, a bootstrap re-sampling method was also used to examine the associations that 

remained significant after correcting for multiple comparisons. For each SNP, we used 

bootstrap re-sampling. All the SNPs that were significant after multiple comparisons at an 

FDR of 5% remained significant in the bootstrap analysis for at least 450 out of 500 re-

samplings. Among them, two SNPs (FZD4:rs713065 in analysis of overall survival in 

surgery only subgroup; SP1:rs17695156 in progression analysis of all early stage patients) 

reached P<0.05 for each of the 500 iterations. FAS:rs2234978 reached P<0.01 for 500 

iterations in analysis of overall survival in all early stage patients, this finding was consistent 

in the surgery plus chemotherapy subgroup as well with over 65% of the re-sampled datasets 

remaining significant at P<0.01. Bootstrap re-sampling analysis was also performed for 

unfavorable genotype and survival tree analyses. The results were significant in all the 

subgroups analysis for entire 500 re-samplings at P<0.05. 

 

3.1.1.5 The effect of selected miRNA binding site variants on miRNA-regulation 

Since several SNPs located within predicted miRNA binding sites were significantly 

associated with clinical outcomes after correction for multiple comparisons, we then 

performed luciferase reporter assays to determine whether these predicted binding site 

variants truly result in altered miRNA regulation. FAS:rs2234978, which was consistently 

associated with a beneficial effect on prognosis, was predicted to create a new miRNA 

binding site in FAS for miR-561. Thus, we expected to observe a decrease in luciferase 

activity for variant allele-containing construct in the presence of miR-561. In both lung 

cancer cell lines, a significant decrease of luciferase signal was observed when miRNA-561 
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was transfected with variant allele-containing reporter (T) (NCI-H460:P=0.029, Figure 8a; 

NCI-H2444:P=0.025, Figure 11b), but not observed with wildtype allele (C) construct 

(P>0.5). Comparison of the luciferase activities between co-transfections of miRNA-561 

with the variant allele-containing and the wildtype-containing constructs also showed 

significant difference (NCI-H460:P=0.002, Figure 11a; NCI-H2444:P=0.004, Figure 11b). 

SP1:rs17695156 was predicted to disrupt a conserved miRNA site; however, in our in vitro 

assays the miRNA-induced suppression of luciferase activity was observed in both variant 

and wildtype allele-containing constructs co-transfected with miRNA-545. There was no 

significant difference in reporter activities between the two alleles and the extent of signal 

decrease varied between cell lines (data not shown). 
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Figure 11 Effect of the FAS variant allele on miR-561 targeting and luciferase reporter 
expression: 

(a) Relative luciferase reporter activity of the wildtype and variant FAS allele in the presence 
of control (Ctrl) or miR-561 in lung cancer cell line NCI-H460; (b) Relative luciferase 
reporter activity of the wildtype and variant FAS allele in the presence of control (Ctrl) or 
miR-561 in lung cancer cell line NCI-H2444. 
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3.1.2 miRNA-related genetic variations and survival in late stage NSCLC patients 

3.1.2.1 Patients characteristics  

598 stage III and stage IV patients were identified in our study. Around half of all the 

patients had a adenocarcinoma histology, and majority patients are ever smokers (81%). 

Around 56% of all patients have been treated with any form of chemotherapy. Median 

survival time for late stage patients are 11.8 months. Between vital groups (dead vs. alive), 

at the time of this analysis, there are significant differences in the distribution of gender (P 

=0.002), clinical stage (P =0.004), and performance status (P =0.001), all of which have 

been included in the adjustment for multi-variant analysis. Histology, ethnicity, smoking 

status, and age were not significant different between patients who have died and still alive. 

(Table 8) 
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Table 8: Host characteristics of late stage NSCLCs 

Variables Dead, No (%) Alive, No (%)  P-value 

Total Patients 456 142   
Age, mean(sd) 59.6(10.0) 59.7(10.6)  0.884 
Gender     

Male 262(57) 61(43)   
Female 194(43) 81(57)  0.002 

Ethnicity     
Caucasian 358(79) 112(79)   
African-American 72(16) 23(16)   
Others 26(6) 7(5)  0.940 

Pack year, mean(sd) 37(31) 37(30)  0.925 
Smoking status     

Never 84(18) 28(20)   
Former 184(40) 59(42)   
Current & RQ 188(41) 55(39)  0.860 

Histology     
Adenocarcinoma 231(51) 73(51)   
Squamous cell ca 88(19) 37(26)   
Unclassified/other 137(29) 32(23)  0.246 

Clinical stage     
Stage IIIA 57(13) 25(18)   
Stage IIIB(dry) 100(22) 42(30)   
Stage IIB(wet) 25(5) 14(10)   
Stage IV 274(60) 61(43)  0.004 

Performance status     
0 96(21) 47(33)   
1 254(56) 80(56)   
2-4 66(14) 8( 6)   
missing 40( 9) 7( 5)  0.001 
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3.1.1.6 Associations between individual SNPs and late stage patients survival 

All 240 SNPs have been analyzed with survival in the 598 late stage NSCLC patients, 9 

processing and 17 binding site SNPs were significantly associated with survival. The top 

SNP was rs15561 (HR=1.70, 95%CI=1.22-2.36), in predicted miRNA binding site of gene 

NAT1. The most significant processing gene SNP is rs7735863 (HR=1.38, 96%CI=1.1-1.74), 

an intronic SNP in DROSHA. However, none SNP remained significant after correcting 

multiple comparisons.  

When comparing the SNPs remained significant after multiple comparison correction 

identified in early stage patients, rs713065 was significant associated with decreased risk for 

death in the late stage patients (HR=0.78, 95%CI=0.64-0.94). However, this association has 

not passed the multiple comparison criteria.  
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3.1.1.7 Associations between individual SNPs and survival in late stage patients treated with 

chemotherapy  

Because the majority of patients have been treated with chemotherapy, we then 

performed a subgroup analysis focusing on patients treated with chemotherapy. A total of 24 

SNP (20 binding site, 4 processing gene) were significantly associated with survival in this 

subgroup, among them five binding site SNPs remained significant after correcting for 

multiple comparisons (Table 9).  

The most significant SNP was rs4796033 (HR=1.41, 96%CI=1.13-1.75), which is in 

RAD51L3. Patients had at least one variant of this SNP had around 8 month shortened MST 

(log-rank P= 3.2×10-4, Figure 12a).  

Interestingly, rs15561 (HR=1.98, 96%CI=1.32-2.94), which is the top SNPs in the overall 

late stage patients, remained significant after correcting for multiple comparisons. This SNP 

was also significantly associated with an altered survival time – patients carrying 

homogeneous variant genotype have six month shorter MST compared to those who have 

common allele (log-rank P= 6.4×10-3, Figure 12b). Another NAT1 SNP rs4986993 remained 

significant after multiple comparisons, which is in highly linked with rs15561 (R2=1.00).  

Rs10278782 (HR=1.58, 96%CI=1.21-1.06), in gene CAV2, was also significant after 

multiple comparison corrections. Also, compared to patients carrying at least one variant 

allele, those patients with two variants allele have around 4 months shortened survival time 

(Log-rank P=6.6×10-3, Figure 12c). Rs17749202 (HR=2.03, 96%CI=1.29-3.17), binding 

sites SNP in WNT11, showed a significant risk effect after multiple comparison corrections, 

patients had a GG genotype had 5 month shortened median survival time compare to those 
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carrying at least one A allele, and the difference was significant (Log-rank P=0.016, Figure 

12c) 

In the UFG analysis, significant cumulative effect was also observed for the four 

(removed rs4986993) SNPs, with increased in the number of UFG patients carries, a 

progressively increased risk was observed (P for trend =2.36×10-7). Patients had at least two 

UFGs had nearly four-fold increased risk for death (P=1.6×10-11) with a 9.2 month median 

survival time, compared to 21.6 month of patients without any UFG (Log-rank P=6.1×10-8).  
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Table 9: Selected SNPs with survival in late stage NSCLC patients 

Gene SNP Model HR(95%CI) P-value Q-value 

RAD51L3 rs4796033 DOM 1.93(1.42-2.63) 2.86×10-5* 0.003 

NAT1 rs15561 REC 1.98(1.32-2.94) 8.36×10-4* 0.025 

NAT1 rs4986993 REC 1.98(1.32-2.94) 8.36×10-4* 0.025 

CAV2 rs10278782 DOM 1.58(1.21-2.06) 7.05×10-4* 0.025 

WNT11 rs17749202 REC 2.03(1.29-3.17) 2.01×10-3* 0.047 

* Remain significant after multiple comparisons using FDR of 5% 
**Adjusted by age, gender, clinical stage, and performance status. 
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Figure 12 Kaplan-Meier estimates for the effect of selected SNPs on NSCLC survival in 
patients treated chemotherapy: 

(A) RAD51L3:rs4796033; (B) NAT1:rs15561; (C) CAV2:rs10278782; (D) 
WNT11:rs17749202. MST: median survival time in months. N=A/B, A: number of patients 
with event, B: number of patients in subgroup. 
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3.1.1.8 Internal validation using bootstrap re-sampling method 

We then also adopted a bootstrap re-sampling method was to further examine the 

associations that remained significant after correcting for multiple comparison at an FDR of 

5%. For these five each SNP and also UFG analysis, we did bootstrap re-sampling for 500 

times with duplicates. All the SNPs that were significant after multiple comparisons 

remained significant in the bootstrap analysis for at least 465 out of 500 re-samplings at a P-

value less than 0.05.  

 

 

3.1.2 Discussion 

In this study, we identified genetic variants in miRNA processing genes and binding sites 

for cancer-related genes that modulated overall survival and progression in early stage 

NSCLC patients. Because majority of late stage patients have metastatic disease at the time 

of diagnosis, thus analysis was only performed on survival for late stage patients. Panels of 

treatment subgroup-specific predictive markers were identified and the significance of top 

associations in our study was confirmed by controlling for false discoveries through multiple 

comparison corrections and internal validation. FAS: rs2234978 was identified as a potential 

prognostic factor in our results and functional data provides evidence that this SNP alters 

miRNA regulation of FAS. These results suggested that identified genetic variants in 

miRNA processing genes and miRNA binding sites may serve as potential prognostic 

markers for patients’ clinical outcomes and predictive markers of response to treatment for 

future investigation and clinical applications.   
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Several studies have identified associations between polymorphisms in miRNA-binding 

sites and human disease, including cancer (149, 184, 185). In the current study, we identified 

miRNA-binding site SNPs that significantly modulated risk of either death or progression.  

Specifically, FAS:rs2234978 was observed to be significantly associated with decreased risk 

of death. We found a reduction in risk of dying in surgery only patients who carried the 

variant allele of this SNP. This protective effect was even stronger in patient treated with 

surgery plus chemotherapy. Moreover, its appearance at the top of the tree structure in the 

survival tree analysis also confirmed this locus as an important marker responsible for the 

largest proportion of the variation in predicting patient’s overall survival. These consistent 

associations highlighted the potential importance of this SNP in modulating NSCLC risk of 

dying and its potential prognostic role. FAS (member 6 of TNF receptor superfamily) is a 

cell-surface receptor of the tumor necrosis family which plays an important role in the 

regulation of apoptosis signaling. Interestingly, rs2234978 is a synonymous SNP located in 

the seventh exon of FAS on chromosome 10q23. Typically, miRNA binding sites are located 

in 3’UTRs, which for FAS is located in exon 9 of the full length transcript. However, 

alternative splicing of FAS results in several transcribed isoforms that are involved in 

nonsense-mediated mRNA decay (NMD), including the transcript where exon 7 serves as 

the 3’UTR. NMD plays important roles in limiting the synthesis of truncated or mutant 

proteins which can negatively regulate the apoptosis mediated by the full length protein as 

well as global gene expression (NCBI dbSNP database). The nucleotide change from this 

polymorphism is predicted to create a new miRNA binding site for miR-561, resulting in 

decreased expression of the FAS alternative transcripts. We validated this function in vitro 

by luciferase assay in two lung cancer cell lines. Since the NMD transcripts may negatively 
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regulate normal FAS expression, this would ultimately result in increased level of FAS in 

tissues that express the targeting miRNA. It has also been reported that cisplatin treatment 

can increase FAS-mediated apoptosis (186). It is possible that in patients who carry the 

variant allele, higher expression of FAS in the presence of cisplatin treatment could increase 

tumor cell death resulting in better overall survival independent of treatment regimen, and 

this locus might even be synergistic with chemotherapy, thus conferred an more extreme 

protective effect. However, further studies will be needed to confirm whether this SNP has 

any influence on FAS protein level in vivo and whether it affects apoptotic activity in normal 

and tumor cells during treatment. FZD4:rs713065 is the only SNP associated with 

significant decreased risk of dying after adjustment for multiple comparisons in surgery-only 

patients. This SNP was also the top split in the survival tree analysis of survival for this 

subgroup, which suggests its importance in predicting survival for NSCLC patients. FZD4 

(frizzled homolog 4) is a member of the frizzled gene family of trans-membrane receptors, 

which help to transduce WNT signals and activate downstream WNT-pathway components. 

WNT is a major pathway involved in normal and cancer stem cell development (187). This 

FZD4 binding site SNP may down-regulate FZD4 expression by creating a miRNA binding 

site, thereby inhibiting transduction of the WNT signal. This effect could lead to enhanced 

survival in these patients due to decreased WNT signaling. Moreover, this SNP showed an 

opposite effect, although not significant, on survival in subgroup treated with surgery plus 

chemotherapy, thus indicating the interaction of these variant with chemotherapy on 

regulation of Wnt signaling. However, in vitro assessment of the effect of this variant on 

miRNA binding was not possible due to difficult sequencing characteristics of this region. 

Other appropriate functional assays will be needed to explore the function of this SNP.  
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We further evaluated in a late stage population of all the associations remained 

significant in early stage patients. However, none of them were significant at FDR<0.05 

level, indicating a stronger effect of these identified SNPs in early stage NSCLCs.  One 

NAT1 binding site SNP, showed significant effect on survival in all late stage patients and 

remained significant after multiple comparison corrections in chemotherapy subgroup. 

NAT1 encoded an enzyme catalyzing an acetyl group from acetyl-CoA transfer. This 

enzyme assists drug metabolism as well as other xenobiotic and folate catabolism (188, 189). 

Thus, it is possible that the real causal SNP would influence chemotherapy compound 

metabolism through modulating NAT1 function, and influencing chemotherapy response 

and eventually have an impact on patients’ survival, especially in late stage patients, who are 

standardly treated with chemotherapy.  

 

In the progression analysis, since majority of late stage patients had metastatic disease at 

the time of diagnosis, analysis was only performed in early stage patients. SP1:rs17695156 

showed significant association after multiple comparison corrections with increased risk for 

disease progression in the overall study population and surgery plus chemotherapy patients. 

SP1 is a transcription factor, which can regulate the expression of many genes, thus having a 

general, regulatory role within the cell. This SNP is predicted to disrupt a conserved miRNA 

site; however, in our in vitro experiments, we did not observe any significant difference 

between the two alleles in miRNA-induced repression of reporter activities. Nevertheless, it 

is possible that the SNP might show differential effect of miRNA targeting in vivo, where 

the expression of various cellular components are at physiological levels. Alternatively, this 
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3’UTR SNP might affect SP1 expression independent of its putative role as a miRNA target 

site (e.g. affecting RNA stability or post-transcriptional regulation). Any alterations in SP1, 

because of its key regulatory role, would potentially have an effect on mechanisms of 

disease progression. A variant in DROSHA, a key biosynthesis pathway component, was 

associated with significantly increased risk for progression. This result suggests that this 

SNP, or variant tagged by it, may alter normal function of DROSHA, thus influencing 

overall miRNA processing and affecting different downstream biological processes.  

 

The different patterns of associations with clinical outcomes among the two treatment 

subgroups observed in our study suggest that treatment context is important and the 

interactions between SNPs and response to treatment may play a major role. In this study, 

we identified panels of SNPs exclusively associated with clinical outcomes in either of the 

two subgroups with relatively homogeneous treatment regimens. These panels consist of 

markers from major pathways related to cancer and provide potential treatment-specific 

predictive markers for future investigation. Furthermore, we identified SNPs with different 

trends of associations for patients treated with different treatment regimens. This indicates 

that miRNA-related regulation of these genes function differently in the context of the 

cellular response to chemotherapeutic agents. This suggests that a subgroup of patients may 

benefit from chemotherapy, while other patients would not receive this same benefit based 

on their genetic background, which may take into consideration in the selection of treatment 

regimens. 

 



70 
 

Cancer is a multi-factorial disease, meaning that a single gene may not have great 

influence on disease risk or clinical outcomes. For the miRNA-related pathway, each 

miRNA can regulate a group of genes and miRNA processing genes work together to 

produce mature miRNA. Moreover, if these binding site SNPs are present in several 

important genes within a cancer-related pathway, we would predict that the cumulative 

effect would be much greater than the effect of an individual SNP in isolation. Therefore, it 

is reasonable to analyze the potential cumulative effect of these SNPs related to miRNA 

function on clinical outcomes. In our study, we observed a strong polygenetic effect and 

multiple potential gene-gene interactions for these miRNA-related SNPs. Similar analyses 

have been shown in several previous studies to have sufficient power in analyzing patients 

for cancer risk and clinical outcomes (190, 191). Interestingly, the most significant SNPs in 

the main effect analysis were also those predicted to be involved in potential gene-gene 

analyses, demonstrating that these top miRNA-related SNPs identified in our study are not 

only important genetic factors individually but they also function in a network to influence 

patient’s overall prognosis. 

 

Overall, the current study provides evidence that genetic variants in the miRNA 

processing pathway and miRNA binding sites influence clinical outcomes for early stage 

NSCLC patients. Specifically, we identified the potential prognostic role of FAS in 

predicting overall survival in these patients and supported this observation with in vitro 

functional genomic analyses. These findings can help to identify patients who will receive 

the most benefit from specific curative therapy regimens, thereby aiming to maximize 

treatment efficacy. These results provide a basis for future personalized medicine whereby 
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those early stage NSCLC patients with high probability for favorable outcomes can be 

identified and appropriately treated.  
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3.2 Genetic variations in inflammation related genes and survival in late stage 

NSCLC patients 

 

3.2.1 Patient characteristics 

A total of 502 patients were included in discovery phase from the MD Anderson 

population, all of which were non-Hispanic Caucasians, were included in the discovery 

phase (Table 10). At the time of analysis, 68% of the patients had died. The median follow-

up time for the discovery-phase patients was 30.5 months, with a median survival time 

(MST) of 16.5 months. The differences in mean age at diagnosis and sex distribution 

between patients who had died and those who were alive at the time of analysis were not 

significant (Table 10). Half of the patients in the discovery population received radiation 

therapy. At the time of analysis, more patients who were current or former smokers than 

patients who had never smoked were alive, and more patients with stage III disease than 

patients with stage IV disease were alive (P < 0.05; Table 10) . The internal validation 

population included 335 patients, with a MFT of 89.6 months and a MST of 16.8 months 

(Table 10). Of these patients, 56% had received radiation therapy. At the time of analysis, 

more female patients than male patients were alive, and more patients with stage III disease 

than patients with stage IV disease were alive (P < 0.05).  

In the Harvard population (the external validation set), 371 patients were included, with a 

MFT of 60 months and a MST of 12.2 months. The patients who were alive at the time of 

analysis were slighter younger at diagnosis than were those who had died (Table 10). One 

hundred fifty-three of the 371 patients (41%) had received radiation therapy. The 



73 
 

distributions of sex, smoking status, and clinical stage were similar between patients who 

had died and those who were alive at the time of analysis.  
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Table 10: Characteristics of the study populations at the time of analysis 

 MD Anderson Discovery MD Anderson Validation Harvard Validation 
Variables Dead(%) Alive(%) P Dead(%) Alive(%) P Dead(%) Alive(%) P 

MST (months) 16.5  16.8  12.2  
MFT (months) 30.5  89.6  60.0  
Age, mean(sd) 60.7(11.2) 62.4(10.5) 0.099 59.3(10.4) 57.5(9.0) 0.374 63.58(10.55) 60.45(10.76) 0.053 
Sex          

Male 166(49) 80(49)  196(64) 12(41)  171(54) 22(42)  
Female 174(51) 82(51) 0.907 110(36) 17(59) 0.016 147(46) 31(58) 0.098 

Smoking status          
Never 129(38) 41(25)  4(1) 0(0)  25(8) 8(15)  
Former 117(34) 74(46)  145(47) 13(45)  154(48) 23(43)  
Current & RQ  94(28) 47(29) 0.012 157(51) 16(55) 0.782 139(44) 22(42) 0.227 

Clinical stage          
Stage III 99(29) 72(44)  142(46) 20(69)  118(37) 22(42)  
Stage IV 241(71) 90(56) 0.001 164(54) 9(31) 0.020 200(63) 31(58) 0.540 

Radiotherapy          
Yes 160(47) 92(57)  165(54) 22(76)  128(72) 25(47)  
No 180(53) 70(43) 0.041 141(46) 7(24) 0.023 90(28) 28(53) 0.344 

Total 340 162  306 29  318 53  
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3.2.2 Effects of inflammation-related SNPs on overall survival 

A detailed workflow of our genotyping procedures is presented in Figure 13. A total of 

11,930 SNPs from 904 genes were genotyped (see Figure 1), of which 11,689 passed quality 

control measures and were included in the MD Anderson discovery phase analysis. We 

observed that 1,123 SNPs had significant associations with overall survival in this group (P 

< 0.05). Among these, 267 SNPs were found in previously published GWAS chips, for 

which data were ready for analysis. Of the remainder, 443 SNPs were associated with linked 

SNPs (r2 > 0.8) in previously published GWAS chips; we genotyped the 40 for which the 

association was significant (P < 0.2). We also genotyped 413 SNPs that were not found in, 

or were not associated with linked SNPs in previously published GWAS chips. After 

genotyping (or using existing genotype data) the 657 of these SNPs that passed quality 

control measures in the internal validation population, we confirmed the association with 

overall survival for 49 SNPs (HRs both >1 or <1, P < 0.05). We then performed a fast-track 

external validation of 32 of the 49 internally validated SNPs (those that had existing data 

available in previously published GWAS chips in the Harvard population. Seventeen SNPs 

were found to have consistent effects on overall survival in all 3 populations (Table 11). 
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Figure 13 Study design and workflow. 

SNP indicates single nucleotide polymorphism; QC, quality control; MAF, minor allele 
frequency; GWAS, genome-wide association study 
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Table 11: Inflammation-related single nucleotide polymorphisms (SNPs) that were found to affect overall survival in patients 
with late-stage non-small cell lung cancer 

SNP Gene Model 

MD Anderson Harvard Combined 
Phet Discovery Validation 

HR (95% CI)* P HR (95% CI)* P HR (95% CI)* P HR (95% CI)** P 
rs2071554 HLA-DOB DOM 1.46 (1.02-2.09) 0.040 1.51 (1.02-2.25) 0.041 1.52 (1.01-2.29) 0.045 1.49 (1.19-1.87) 4.32×10-4 0.99 
rs2900420 KLRK1 DOM 0.76 (0.60-0.96) 0.021 0.77 (0.61-0.99) 0.038 0.80 (0.63-1.02) 0.069 0.78 (0.68-0.89) 3.51×10-4 0.94 
rs12141256 FAF1 DOM 0.75 (0.57-0.97) 0.031 0.71 (0.52-0.97) 0.033 0.87 (0.66-1.13) 0.295 0.78 (0.66-0.91) 2.27×10-3 0.60 
rs1986649 FOXO1A DOM 0.76 (0.60-0.96) 0.020 0.75 (0.59-0.95) 0.018 0.88 (0.69-1.13) 0.322 0.79 (0.69-0.91) 9.43×10-4 0.58 
rs7972757 KLRK1 DOM 0.73 (0.55-0.98) 0.035 0.67 (0.49-0.92) 0.012 0.87 (0.66-1.15) 0.331 0.76 (0.64-0.90) 1.42×10-3 0.45 
rs17446614 FOXO1A DOM 0.72 (0.56-0.93) 0.011 0.69 (0.53-0.90) 0.006 0.89 (0.68-1.16) 0.386 0.76 (0.65-0.88) 3.34×10-4 0.36 
rs216136 CSF1R ADD 1.21 (1.03-1.42) 0.023 1.17 (1.00-1.37) 0.046 1.07 (0.91-1.25) 0.410 1.15 (1.05-1.25) 3.46×10-3 0.53 
rs2189521 IL21R REC 1.41 (1.03-1.94) 0.032 1.43 (1.08-1.89) 0.014 1.13 (0.85-1.50) 0.415 1.31 (1.10-1.55) 1.85×10-3 0.44 
rs1509 CAPN10 ADD 0.83 (0.69-0.99) 0.038 0.83 (0.68-1.00) 0.048 0.93 (0.78-1.11) 0.433 0.86 (0.78-0.96) 5.53×10-3 0.57 
rs10964912 IFNA14 REC 1.49 (1.01-2.19) 0.044 2.00 (1.26-3.17) 0.003 1.16 (0.78-1.72) 0.462 1.47 (1.16-1.86) 1.38×10-3 0.21 
rs971768 IL17RA DOM 1.47 (1.09-1.98) 0.012 1.46 (1.00-2.12) 0.047 1.16 (0.78-1.74) 0.465 1.38 (1.13-1.69) 1.71×10-3 0.63 
rs10000856 IRF2 ADD 1.26 (1.07-1.50) 0.007 1.22 (1.03-1.44) 0.020 1.06 (0.90-1.25) 0.506 1.18 (1.07-1.29) 1.07×10-3 0.29 
rs2133092 TLN2 DOM 1.30 (1.04-1.63) 0.023 1.30 (1.03-1.64) 0.027 1.08 (0.84-1.38) 0.543 1.23 (1.07-1.41) 2.88×10-3 0.47 
rs11903566 PRKCE DOM 1.60 (1.15-2.24) 0.006 1.45 (1.04-2.03) 0.029 1.11 (0.74-1.67) 0.625 1.41 (1.15-1.73) 1.05×10-3 0.38 
rs908742 PRKCZ DOM 1.28 (1.03-1.60) 0.024 1.33 (1.06-1.67) 0.015 1.03 (0.82-1.29) 0.794 1.21 (1.06-1.37) 4.44×10-3 0.23 
rs3749166 CAPN10 REC 1.41 (1.04-1.92) 0.029 1.42 (1.02-1.99) 0.038 1.00 (0.71-1.41) 0.992 1.27 (1.06-1.54) 0.012 0.25 

* Adjusted for age, sex, smoking status, clinical stage, and treatment regimen.  
** Combined (meta-analysis) is based on the fixed-effects model.  
Abbreviations: Chr indicates chromosome; HR, hazard ratio; CI, confidence interval; P-het, P for heterogeneity test; DOM, dominant model; REC, 
recessive model; and ADD, additive model. Boldface indicates P < 0.1. 
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Rs2071554, a missense variation in the first exon of HLA-DOB (major 

histocompatibility complex class II, DO beta), was associated with poorer survival in all 3 

populations, with similar HRs (Figure 14a). In the discovery population (HR = 1.46, 95% CI 

= 1.02- 2.09, P = 0.040), patients carrying at least 1 variant allele (AG or AA) had a 

significantly survival disparity of six months from 17 months to 11 months, compared with 

those who were homozygous for the common allele (GG), whose median overall survival 

time was 17 months (P for log rank test = 0.009; Figure 15a).  
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Figure 14 Forest plot for meta-analysis of the association of single nucleotide 
polymorphisms 

(A) HLA-DOB:rs2071554 and (B) KLRK1:rs2900420, as well as (C) unfavorable genotypes 
(UFGs), with overall survival in discovery and internal validation populations  
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Figure 15 Kaplan-Meier estimates of HLA-DOB:rs2071554 genotypes and risk of 
death in late-stage patients treated with chemotherapy 

(A) MD Anderson discovery; (B) MD Anderson validation; (C) Harvard validation. N=A/B, 
A: number of patients dead, B: number of all patients. MST: median survival time 
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In the internal validation population, rs2071554 was also associated with shortened 

overall survival (HR = 1.51, 95% CI = 1.02- 2.25, P = 0.041), and a non-significant, but 

appreciable seven month shortened survival time (Figure 15b). A similar effect was 

observed in the external validation population. The variant allele was associated with 

shortened overall survival (HR = 1.52, 95% CI = 1.01- 2.29, P = 0.045); patients carrying at 

least 1 copy of the variant allele had a shorter median overall survival time than patients 

who were homozygous for the common allele (P for log-rank test = 0.007; Figure 15c).  

Meta-analysis of the association of rs2071554 with overall survival under the fixed 

effects model showed a P value of 4.3×10-4 (HR = 1.49, 95% CI = 1.19-1.87, P for 

heterogeneity = 0.988 Figure 14a). Rs2071554 is a missense variation that results in an 

arginine to glutamine substitution in the first exon of HLA-DOB a gene involved in 

phagocytosis and antigen presentation. To determine the potential consequences of this 

variant, we used Polyphen2 and SIFT to in silicon evaluate the influence of rs2071554 on 

protein structure and function. In Polyphen2 analysis of this missense SNP, the amino acid 

change had a Polyphen2 score of 0.923 (sensitivity: 0.80; specificity: 0.94), suggesting that 

it may damage protein function; SIFT confirmed this SNP to be deleterious (SIFT score = 

0.02). 

KLRK1:rs2900420, which is located in the 3’ flanking region of the KLRK1 (killer cell 

lectin-like receptor subfamily K, member 1) gene, a component of the natural killer cell 

signaling pathway, was associated with prolonged overall survival in the discovery 

population (HR = 0.76, 95% CI = 0.60-0.96, P = 0.021) and in the internal validation 

population (HR = 0.77, 95% CI = 0.61-0.99, P = 0.038; Figure 14b). Significant overall 

survival time advantages were observed for patients who carried at least 1 variant allele 
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compared with patients who were homozygous for the common allele (discovery phase: GG, 

15 months; AG and AA, 20 months; P for log-rank test = 0.011; internal validation phase: 

GG, 15 months; AG and AA, 18 months; P for log-rank test = 0.087). In the Harvard 

population, the association of rs2900420 with overall survival reached borderline 

significance (HR = 0.80, 95% CI = 0.63-1.02, P = 0.069), and in the meta-analysis, the 

effect was highly significant at 3.5×10-4 (HR = 0.78, 95% CI = 0.68-0.89, P for 

heterogeneity = 0.945).  

Because most of the patients had died at the time of analysis, one year and three year 

survival were evaluated for these two validated SNPs in the MD Anderson population; 

similar results were found for the 2 SNPs at both durations (data not shown). 

 

3.2.3 Stratified analyses 

We next performed stratified analyses for rs2071554 and rs2900420 by smoking status. 

Similar effects on overall survival were observed in ever-smokers compared with the overall 

population group for each phase for both rs2071554 (discovery: HR = 1.68, 95% CI = 1.05-

2.71, P = 0.092; internal validation: HR = 1.52, 95% CI = 1.02-2.26, P = 0.040; external 

validation: HR = 1.47, 95% CI = 0.96-2.25, P = 0.074) and rs2900420 (discovery: HR = 

0.68, 95% CI = 0.50-0.93, P = 0.014; internal validation: HR = 0.79, 95% CI = 0.61-1.00, P 

= 0.52; external validation: HR = 0.81, 95% CI = 0.63-1.03, P = 0.086). Because of the 

limited number of never-smokers, stratified analysis was not performed for this group. 

When populations were stratified by stage at diagnosis, the two SNPs showed the same 
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effects on overall survival in stage III and stage IV patients as those observed in the overall 

population for each population (data not shown).   

Because the majority of the patients received platinum-based chemotherapy regimens, 

we further did a subgroup analysis of the two SNPs in patients treated with platinum-based 

chemotherapy, and yield similar effect as in overall populations (data not shown).    

 

3.2.4 Cumulative effects of the top two SNPs 

In the cumulative effects analysis, UFGs were defined as GA or AA for rs2071554 and 

GG for rs2900420. Using patients without any UFGs as a reference group within each 

population, we observed a significant “gene-dosage” effect of these SNPs on overall 

survival: the more UFGs a patient carried, the greater the deleterious effects on overall 

survival (discovery: HR = 1.36, 95% CI = 1.11-1.66, P-trend= 0.003; internal validation: HR 

= 1.36, 95% CI = 1.10-1.68,  P-trend = 0.005; external validation: HR = 1.29, 95% CI = 

1.05-1.58, P-trend = 0.015; Figure 14c). 
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3.2.5 Discussion 

NSCLC patients with advanced stage disease are treated with primary chemotherapy as 

standard of care (192). Evidence has demonstrated that inflammation plays a role not only in 

lung cancer development, but also clinical outcomes such as response to chemotherapy (2, 

193, 194). Thus, it follows that change in patients’ inflammatory responses due to germline 

genetic polymorphisms might lead to variations in prognosis. In this analysis, we 

systematically evaluated the effect of SNPs from major inflammation-related genes on 

overall survival of advanced NSCLC patients who received primary chemotherapy without 

resection of their tumor.  In our 3-phase pathway-based association study, we found 2 

potential prognostic biomarkers for late-stage NSCLC: a HLA-DOB SNP was associated 

with poor survival in all 3 populations, and a KLRK1 SNP was associated with prolonged 

overall survival in the MD Anderson populations (the association reached borderline 

significance in the Harvard population). 

HLA-DOB is the beta subunit of the HLA-DO (DO) class II paralogs. It functions as 

negative regulator of major histocompatibility complex class II molecules by inhibiting 

HLA-DM (DM) molecules in a pH-dependent manner. The DO:DM ratio dictates major 

histocompatibility complex class II restricted-antigen presentation efficiency. Evidence has 

shown that dysregulation of the antigen presentation pathway related to the inflammatory 

response is involved in cancer development (195). Moreover, major histocompatibility 

complex class II molecules are key immune response molecules, which have been reported 

to have a positive relationship with prognosis in various cancers (196, 197). In our study, we 

found that the missense SNP HLA-DOB:rs2071554 may damage protein structure and 

function, and we found that it had a robust adverse effect on survival across all 3 populations. 
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Hazard ratios indicated that patients with at least 1 variant allele of this SNP had nearly a 50% 

increase in risk of death compared with patients carrying no copies of the allele, and Kaplan-

Meier survival analysis showed correspondingly decreased median overall survival times for 

carriers of the SNP. Our results suggest a potential prognostic role of this gene in lung 

cancer patients, making it worthy of future deep sequencing and functional analysis in vitro.  

KLRK1 (member 1 of the killer cell lectin-like receptor subfamily K) encodes for a 

transmembrane protein that interacts with various ligands to activate natural killer and T 

cells, leading to lysis of tumor cells. This gene has been shown to be involved in 

chemoresistance (198). Studies have reported that lung adenocarcinoma cells were able to 

escape from the innate immune response of natural killer cells by expressing heterogeneous 

ligands for KLRK1 (199). This gene has been identified as a promising target for 

immunotherapy for cancer (200, 201). KLRK1:rs2900420 is located 3 kilobases 3’ to the 

KLRK1 gene. In our study, it was associated with prolonged overall survival in the MD 

Anderson populations and its association with prolonged overall survival was nearly 

significant in the Harvard population. It is very likely that with a larger sample size the 

results would have reached statistical significance in the external validation population. 

Further exploration of the potential underlying biological mechanism(s) of this association 

would increase our understanding of this relationship. 

This is the largest study to date to investigate the effects of inflammation-related genetic 

variations on clinical outcome. The major strength of this study was the 3-phase screening 

and validation approach using 2 independent patient populations, which were drawn from 

the largest lung cancer clinical outcome studies in the United States. Because the study 

populations were both well defined, with extensive clinical data collection, we were able to 
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identify a large sample of patients with relatively homogeneous treatment regimens to 

identify the most favorable replication population. This is of key importance when 

identifying biomarkers predictive of clinical outcome in pathway-based association studies.  

Furthermore, instead of limiting our study to top SNPs, an approach usually adopted in 

pathway-based association studies to reduce cost and labor, we extensively genotyped 

almost all significant SNPs during our internal validation. This strict validation approach 

substantially improved the power of our study to detect candidate loci for subsequent 

analysis. In addition, we developed a comprehensive panel of inflammation-related genetic 

variations, which covered major cellular processes involved in inflammation responses and 

regulations. With this extensive coverage, our results provided a broad overview of the role 

of genetic variation in these essential genes within the overall inflammation network in 

modulating patients’ clinical outcomes.  

In conclusion, we identified and validated 2 potential genetic markers within the 

inflammation pathway that may affect clinical outcome in patients with late-stage NSCLC 

treated with chemotherapy. Given the important role of inflammation throughout the cancer 

continuum, these genetic markers may be good potential prognostic markers to help in 

tailoring treatment regimens in the clinic.  
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3.3 Genetic variations in inflammation pathway and survival in NSCLC patients in 

never smokers 

 

3.3.1 Patient characteristics 

In the MD Anderson study, we identified 411 never-smokers with NSCLC (Table 12). 

Sixty-seven percent of them were women, and adenocarcinoma was the most common 

histology (77%). The mean age at diagnosis was 61.5 years. The median survival time (MST) 

was 23.2 months, and the median follow-up time (MFT) was 54.2 months. Most of the cases 

(77%) were diagnosed at a late stage (stage III/ IV). Fifty-three percent of the patients 

received chemotherapy only, 33% underwent surgery, and 24% received radiation-therapy. 

At the time of the current study, 276 (67%) of the patients had died. In the Mayo Clinic 

study, 311 never-smokers with NSCLC were identified and included as the validation 

population (Table 12). The mean age was 61.7 years, with the majority being female (73%). 

Sixty-one percent of the patients had late-stage disease at diagnosis. Fifty-nine percent of the 

patients received chemotherapy, 53% underwent surgery, and 25% received radiation-

therapy. At the time of this study, 59% of the patients had died. Because of the greater 

proportions of patients with early-stage disease and who had undergone surgery in the Mayo 

Clinic population than in the MD Anderson population, the MST (44.6 months) and MFT 

(73.6 months) were longer in the former population than in the latter. 
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Table 12: Characteristics of the never-smokers with lung cancer 

 MD Anderson 

 

Mayo Clinic 

 
Characteristic No. of patients (%) No. of patients (%) 
MST, months 23.2 44.6 
MFT, months 54.2 73.6 
Mean age, years (SD) 61.5(13.0) 61.7(13.1) 
Sex   

Male 135(33) 84(27) 
Female 276(67) 227(73) 

Stage   
I 93(23) 105(34) 
II 15(4) 15(5) 
III 91(22) 90(29) 
IV 212(52) 101(32) 

Histology   
Adenocarcinoma 316(77) 213(68) 
Squamous cell carcinoma 28(7) 14(5) 
Non-small cell carcinoma 41(10) 18(6) 
Bronchoalveolar carcinoma 20(5) 11(4) 
Other 6(1) 55(18) 

Treatment   
Surgery 135(33) 165(53) 
Radiation therapy 100(24) 77(25) 
Chemotherapy 218(53) 182(59) 
Concurrent chemoradiation 38(9) 36(12) 

Vital status   
Dead 276(67) 182(59) 
Alive 135(33) 129(41) 

Total 411 311 

SD=standard deviation. 
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3.3.2 Main effect of individual SNP on survival in the discovery, replication, and 

combined analysis 

In the discovery phase, after carrying out quality control measures, 11,689 SNPs were 

included in our analysis. Of these SNPs, 1,538 were significantly associated with overall 

survival (p<0.05), with 14 of these variants being significant at the p<10-4 level. 

We selected 37 top SNPs for validation in the Mayo Clinic population. Eighteen SNPs 

had a consistent direction of the effect (HR same direction) in both populations (table 13). 

Of these 18, three SNPs ((interleukin 17 receptor A [IL17RA]:rs879576, bone 

morphogenetic protein 8A [BMP8A]:rs698141, and spleen tyrosine kinase [SYK]:rs290229) 

in the Mayo population were significant (p<0.05) with an additional two (CD74:rs1056400 

and CD38:rs10805347) reaching borderline significance (p<0.1) 

The most significant SNP was rs879576, a synonymous variant in the last exon of the 

proinflammatory cytokine IL17RA. Rs879576 was associated with a significantly decreased 

risk of death in the discovery phase (hazard ratio [HR], 0.57; 95% confidence interval [CI], 

0.41-0.78; p=5.49 × 10-4), validation phase (HR, 0.65; 95% CI, 0.44-0.94; p=0.023) and 

combined population (HR, 0.60; 95% CI, 0.47-0.77; p=4.13 × 10-5) (Table 13). This 

decreased risk of dying resulted in enhanced survival duration. Compared to patients with 

variant genotypes, a prolonged MST was observed in patients with the common 

homozygous genotype in both discovery (31 vs. 20 months, p=0.066, log-rank test) and 

validation (46 vs. 34 months, p=0.069, log-rank test) phases. (Figures 16a and 16b) 
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Table 13: SNPs with the same trend in both the MD Anderson and Mayo Clinic populations 

    MD Anderson(discovery) Mayo Clinic (validation) Combined analysis** 

Position Gene SNP Model HR (95% CI)* p HR (95% CI)* p HR (95% CI)** p p-het 

Chr22:15969246 IL17RA rs879576 DOM 0.57 (0.41-0.78) 5.49 × 10-4 0.65 (0.44-0.94) 0.023 0.60 (0.47-0.77) 4.13 × 10-5 0.610 

Chr9:92674234 SYK rs290229 DOM 1.58 (1.23-2.03) 3.03 × 10-4 1.43 (1.01-2.02) 0.046 1.53 (1.25-1.87) 4.15 × 10-5 0.635 

Chr1:39738348 BMP8A rs698141 DOM 1.89 (1.33-2.68) 4.04 × 10-4 1.73 (1.03-2.91) 0.038 1.84 (1.37-2.46) 4.29 × 10-5 0.789 

Chr9:21397604 IFNA8 rs4978115 REC 1.79 (1.35-2.36) 4.39 × 10-5 1.24 (0.86-1.79) 0.240 1.56 (1.25-1.95) 7.43 × 10-5 0.123 

Chr5:149800000 CD74 rs1056400 DOM 0.58 (0.43-0.78) 3.54 × 10-4 0.71 (0.48-1.04) 0.080 0.62 (0.49-0.79) 1.00 × 10-4 0.403 

Chr9:21403703 IFNA8 rs13296822 REC 1.83 (1.36-2.47) 7.76 × 10-5 1.23 (0.75-2.04) 0.412 1.65 (1.28-2.13) 1.36 × 10-4 0.188 

Chr4:15449937 CD38 rs10805347 REC 0.45 (0.28-0.72) 7.93 × 10-4 0.55 (0.28-1.07) 0.080 0.48 (0.33-0.70) 1.75 × 10-4 0.616 

Chr20:36392996 BPI rs5743539 DOM 2.77 (1.61-4.77) 2.45 × 10-4 1.59 (0.87-2.92) 0.134 2.16 (1.44-3.25) 1.90 × 10-4 0.184 

Chr13:101700000 FGF14 rs1336726 ADD 0.71 (0.58-0.86) 5.34 × 10-4 0.80 (0.60-1.07) 0.133 0.74 (0.63-0.87) 2.10 × 10-4 0.474 

Chr16:86446704 SLC7A5 rs4240803 DOM 0.66 (0.52-0.84) 8.39 × 10-4 0.82 (0.60-1.12) 0.219 0.72 (0.59-0.87) 6.78 × 10-4 0.290 

Chr9:92684769 SYK rs1755938 DOM 1.63 (1.25-2.14) 3.68 × 10-4 1.17 (0.80-1.73) 0.417 1.47 (1.17-1.83) 7.17 × 10-4 0.168 

Chr7:2744970 GNA12 rs11971014 DOM 0.59 (0.44-0.80) 4.77 × 10-4 0.87 (0.58-1.30) 0.488 0.67 (0.53-0.86) 1.18 × 10-3 0.141 

Chr21:33599261 IL10RB rs2834178 DOM 0.66 (0.51-0.84) 6.96 × 10-4 0.86 (0.63-1.18) 0.363 0.73 (0.60-0.88) 1.19 × 10-3 0.178 

Chr6:152500000 ESR1 rs9341066 DOM 1.96 (1.37-2.79) 2.01 × 10-4 1.13 (0.74-1.75) 0.568 1.57 (1.20-2.07) 1.20 × 10-3 0.056 

Chr9:92665566 SYK rs1572104 DOM 0.63 (0.49-0.81) 3.12 × 10-4 0.92 (0.65-1.31) 0.660 0.72 (0.59-0.88) 1.43 × 10-3 0.082 

Chr12:6766579 LAG3 rs11064386 DOM 1.68 (1.26-2.23) 3.74 × 10-4 1.10 (0.76-1.57) 0.618 1.42 (1.14-1.78) 1.92 × 10-3 0.070 

Chr5:172100000 DUSP1 rs4868204 DOM 0.69 (0.53-0.91) 9.40 × 10-3 0.84 (0.58-1.23) 0.373 0.74 (0.59-0.93) 8.67 × 10-3 0.421 

Chr7:41713523 INHBA rs12532252 REC 1.34 (1.00-1.79) 0.050 1.17 (0.79-1.72) 0.442 1.27 (1.01-1.61) 0.042 0.580 

*Adjusted according to age, sex, clinical stage, and treatment regimen.**Combined (Meta) analysis based on fixed effects model. Boldface: p<0·1. 
p-het=P for heterogeneity test; DOM=dominant model; REC=recessive model; ADD=additive model. 
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Figure 16 Kaplan-Meier estimates of the effect of selected SNPs on survival probability 
in never-smokers with lung cancer 

(A)IL17RA:rs879576 in the MD Anderson population(discovery phase). (B) 
IL17RA:rs879576 in the Mayo Clinic population(validation phase).(C) SYK:rs290229 in the 
MD Anderson population (discovery phase). (D) SYK:rs290229 in the Mayo Clinic 
population(validation phase).(E)BMP8A:rs698141 in the MD Anderson population 
(discovery phase). (F) BMP8A:rs698141 in the Mayo Clinic (validation 
phase).(G)CD74:rs1056400in the MD Anderson population (discovery phase). (H) 
CD74:rs1056400 in the Mayo Clinic population (validation phase). (I)CD38:rs10805347 in 
the MD Anderson population (discovery phase). (J) CD38:rs10805347 in the Mayo Clinic 
population (validation phase); MST: median survival time in months. N=A/B, A: number of 
patients with event, B: total number of patients. 
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Rs290229 is an intronic SNP in SYK, a gene that encodes for a non-receptor type Tyr 

protein kinase. This SNP was associated with a significantly increased risk of death in both 

the MD Anderson (HR, 1.58; 95% CI, 1.23-2.03; p=3.03 × 10-4), Mayo Clinic (HR, 1.43; 95% 

CI, 1.01-2.02; p=0.046), and combined (HR, 1.53; 95% CI, 1.25-1.87;p=4.15 × 10-5) 

populations. Although not significant, both study populations had the same trend of 

decreased MST (Figures 16c and 16d). 

Rs698141 is located in intron of BMP8A, a gene involved in cytokine signaling 

transduction. Patients who had at least one variant allele had a nearly two-fold increase in 

risk of death in both the MD Anderson (HR, 1.89; 95% CI, 1.33-2.68; p=4.04 × 10-4) and 

Mayo Clinic (HR, 1.73; 95% CI, 1.03-2.91; p=0.038) and combined (HR, 1.84; 95% CI, 

1.37-2.46; p=4·29 × 10-5) populations (Table 13). The MST was 23 months in patients with 

the common homozygous genotype and 16 months in patients with the heterozygous or 

homozygous variant genotypes in the MD Anderson population (p=9.1 × 10-4, log-rank test) 

(figure 1e). We also observed a similar longer MST (24 months) in the Mayo population 

(p=0.044, log-rank test) (Figure 16f). 

CD74:rs1056400 (3’-untranslated region) and CD38:rs10805347 (intronic) were 

significantly associated with an increased risk of death in the MD Anderson population but 

were borderline significant in the Mayo Clinic population (Table 13). Although not 

statistically significant, the trend of differing survival times by genotype was observed 

(Figures 16g and 16h).  
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3.3.3 Main effects of individual SNPs on survival stratified by histology and stage 

Because the majority of never-smokers with lung cancer have adenocarcinoma, we 

performed a subgroup analysis of survival in patients with adenocarcinoma. The results were 

similar to those of the overall analysis of all study patients (Table 14). We further performed 

a stratified analysis of the five top SNPs according to disease stage. Specifically, we 

combined the MD Anderson and Mayo Clinic patients and stratified them according to 

early-stage (I and II) and late-stage (III and IV) lung cancer. The results showed that all five 

SNPs were significantly associated with survival in the late-stage patients, an association 

that was comparable with or even stronger than that in the overall population. Because of the 

limited sample size and number of deaths in the early-stage patients, this association was not 

as robust. However, the same trend of effect for all five SNPs was observed in the early-

stage patients (data not shown). 
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Table 14:  Effect of selected SNPs on survival in adenocarcinoma patients 

   MD Anderson (discovery) Mayo Clinic (validation) Combined analysis**  

Gene SNP Model HR (95% CI)* p HR (95% CI)* p HR (95% CI)** p p-het 

CD74 rs1056400 DOM  0.60 (0.42-0.85) 3.95 × 10-3  0.57 (0.36-0.91) 0.017  0.59 (0.44-0.78) 1.86 × 10-4 0.902 

CD38 rs10805347 REC  0.27 (0.14-0.52) 9.77 × 10-5  0.64 (0.30-1.33) 0.228  0.40 (0.24-0.65) 2.01 × 10-4 0.093 

BMP8A rs698141 DOM  2.04 (1.38-3.04) 4.09 × 10-4  1.52 (0.80-2.87) 0.199  1.88 (1.34-2.64) 2.34 × 10-4 0.438 

SYK rs290229 DOM  1.58 (1.18-2.11) 2.20 × 10-3  1.43 (0.97-2.12) 0.073  1.52 (1.21-1.93) 4.22 × 10-4 0.696 

IL17RA rs879576 DOM  0.57 (0.40-0.83) 3.31 × 10-3  0.65 (0.42-1.00) 0.050  0.61 (0.46-0.80) 4.57 × 10-4 0.660 

 

*Adjusted according to age, sex, clinical stage, and treatment regimen. ** Combined (Meta) analysis based on fixed effects model. Boldface: 

p<0·1. p-het=P for heterogeneity test; DOM=dominant model; REC=recessive model.
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3.3.4 Main effects of individual SNPs on survival in ever-smokers 

We next analyzed overall survival in the 996 ever-smokers at MD Anderson to assess the 

effects of the five SNPs described above on survival according to smoking status. The ever-

smokers were slightly older than the never-smokers (mean age, 64.8 years vs 61.5 years) and 

had a smaller proportion of women (42% vs 67%) and adenocarcinoma cases (52% vs 77%). 

The treatment regimens in the two groups were similar. None of the SNPs validated in the 

never-smokers were significantly associated with survival in the ever-smokers (Table 15). 

We further stratified the ever–smoker patients into former and current smokers and did not 

observe any significant associations within these subgroups (data not shown). 
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Table 15:  Effect of selected SNPs on survival according to smoking status in the MD 
Anderson population 

   Never-smokers Ever-smokers 

Gene SNP Model HR (95% CI)* p HR (95% CI)* p 

SYK rs290229 DOM 1.58 (1.23-2.03) 3.03 × 10-4  1.12 (0.94-1.33) 0.214 

CD74 rs1056400 DOM 0.58 (0.43-0.78) 3.54 × 10-4  0.93 (0.75-1.15) 0.487 

BMP8A rs698141 DOM 1.89 (1.33-2.68) 4.04 × 10-4  1.06 (0.81-1.40) 0.655 

IL17RA rs879576 DOM 0.57 (0.41-0.78) 5.49 × 10-4  0.89 (0.72-1.10) 0.266 

CD38 rs10805347 REC 0.45 (0.28-0.72) 7.93 × 10-4  0.91 (0.67-1.24) 0.557 

*Adjusted according to age, sex, clinical stage, and treatment regimen. Boldface: p<0·1. 
DOM=dominant model; REC=recessive model. 
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3.3.5 Survival tree analysis 

Survival tree analysis was used to identify higher order gene-gene interactions among 

these five SNPs in modulating risk of death. Using the MD Anderson never-smoker 

population as a training set, we identified two SNPs (CD74:rs1056400 and 

BMP8A:rs698141) potentially having gene-gene interactions. Patients with the 

rs1056400_GG/rs698141_GA+AA genotype (node 3) had a 2.32-fold greater risk of death 

(HR, 2.32; 95% CI, 1.58-3.41; p=1.72 × 10-5) and significantly shorter MST (14 months vs 

23 months; p=4.5 × 10-4, log-rank test) than did patients with the 

rs1056400_GG/rs698141_GG or rs1056400_GA+AA genotype (nodes 1 and 2). This tree 

model was validated in the Mayo Clinic population: patients with the 

rs1056400_GG/rs698141_GA+AA genotype (node 3) had a nearly twofold greater risk of 

death (HR, 1.97; 95% CI, 1.11-3.50; p=0.02) and a strikingly shorter MST (by 26 months) 

than did patients with the rs1056400_GG/rs698141_GG or rs1056400_GA+AA genotype 

(nodes 1 and 2) (p=0.029, log-rank test) (Figure 17). 
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Figure 17 Potential gene-gene interactions among SNPs validated in the survival tree 
analysis 

(A) Survival tree analysis results and Kaplan-Meier estimates in the MD Anderson 
population (discovery phase). (B) Survival tree analysis results and Kaplan-Meier estimates 
in the Mayo Clinic population (validation phase). MST: median survival time in months. 
N=A/B, A: number of patients with event, B: total number of patients. 
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3.3.6 Discussion 

NSCLC in never-smokers is unique from that in ever-smokers due to distinct clinical, 

histological, and genetic characteristics. These attributes warrant specific investigation of 

never-smokers. Although we are in the era of the genome-wide association study (GWAS), 

the coverage of certain genetic region on commercial available GWAS chips is not sufficient 

for detailed genetic analysis; this limits the power of GWAS to identify all genetic 

determinants. Thus study design based on prior knowledge focusing on known cancer 

relations is indispensable. In this context, we conducted a two-stage, discovery-validation 

study to identify genetic predictors of overall survival in never-smokers with lung cancer 

using a pathway-based approach. By systematically evaluating SNPs in major inflammatory 

pathways, we found five SNPs in CD74, CD38, SYK, BMP8A, and IL17RA that were 

significantly associated with overall survival in these patients. Furthermore, we analyzed 

and validated a survival tree model in predicting survival that takes gene-gene interactions 

into consideration. In comparing the associations of SNPs with survival in ever- and never-

smokers, we provided evidence of distinct roles for inflammatory genetic determinants of 

prognosis in never-smokers with lung cancer. 

Two SNPs—IL17RA:rs879576 and BMP8A:rs698141—are related to cytokine signaling. 

IL17RA is an isoform of the interleukin (IL)-17 receptors. In the presence of IL-17 ligands, 

these receptors can activate various downstream signaling pathways to induce macrophage 

recruitment, angiogenesis, and inflammatory lung diseases.(202, 203) In our study, 

IL17RA:rs879576 was associated with a consistent protective effect against death and 

corresponding prolonged MSTs in both the MD Anderson and Mayo Clinic populations. 

This is a synonymous SNP located in the last exon of IL17RA that may influence the 
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structure and/or regulation of its host gene. BMP8A is a member of the transforming growth 

factor β superfamily (204). BMP proteins play important roles in cell differentiation, 

proliferation, survival, and apoptosis and are implicated in tumor cell migration, metastasis, 

and angiogenesis in various cancers (205-208). Rs698141 is located in the first intron of 

BMP8A, and not in any obvious functional elements. Therefore, it is most likely linked with 

other functional SNPs that result in BMP8A altered function. Authors have reported that 

tobacco smoking can lead to immunosuppression and downregulation of proinflammatory 

cytokines specifically in the lung tissues, suggesting important roles for cytokines in lung 

pathology.(209) Cytokine signaling pathway variants were predominant in our validated 

SNPs highlighted the potential roles of cytokines in determining prognosis for lung cancer in 

never-smokers.  

SYK belongs to the Syk family of tyrosine kinases and plays an oncogenic role in 

different cancers.(210) In lung cancer cells, SYK is silenced owing to hypermethylation in its 

promoter region.(211) SYK:rs290229 was associated with an increased risk of death and 

reduced survival in our populations. This SNP is located in an intron; it is possible that this 

SNP tagged another causal variant that affects the function of SYK. Further deep sequencing 

would be warranted to identify the potential casual locus responsible for this finding.  

Two other SNPs—CD38:rs10805347 and CD74:rs1056400—were borderline significant 

in our validation. CD74 is a member of a class of polypeptides involved in antigen 

presentation that is a potential therapeutic target and prognostic factor for cancer (212-215) 

with involvement in lung adenocarcinoma. Our results suggested the potential prognostic 

role of CD74:rs1056400 regarding overall survival in lung cancer patients. CD38 is a 

multifunctional single-chain type II transmembrane glycoprotein, related to the development 
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of viral infections, diabetes, and cancer.(216) Studies have shown a prognostic role for 

CD38 in leukemia patients.(217) We observed a consistent protective effect for 

CD38:rs10805347 against death, which indicated a potential role for this gene in solid 

cancers in addition to leukemia.  

In the current study, we aimed at identify specific prognostic markers for never smokers. 

Although incidence is increasing, lung cancer in never smokers represents only ~10% of all 

lung cancer cases. Thus, to identify a homogeneous never smoking patient cohort with 

adequate demographic/clinical variables is a challenge. In this study, we were able to 

identify relatively large and well-characterized study populations from two study sites with 

complete collection of clinical and epidemiological data that enabled us to recruit a 

sufficient study population. This provided an important resource contributing to the 

understanding of this disease which has emerged as a major public health problem tracking 

smoking and smoking cessation rate. Interestingly, none of the five SNPs were significantly 

associated with overall survival in ever-smokers, providing additional evidence of lung 

cancer in never smoker as a distinct disease and requires identifying specific prognostic 

markers.  

Moreover, the multi-stage study design with two independent patient populations largely 

reduced the likelihood of false-positive results for the SNPs that were significant in both 

populations. Therefore, although a portion of the findings would not be judged significant 

due to multiple comparisons, the replication provides a mechanism to address these concerns, 

attenuating the need for strict multiple comparisons correction. Another significant finding 

in our study was the identification and validation of a survival tree, which has proven to be a 

powerful analytical tool regarding survival in cancer patients based on higher order gene-
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gene interactions (37-39). The survival tree analysis stratified the Mayo Clinic patients into 

significantly different risk subgroups in a manner similar to that in the MD Anderson 

patients. Beyond the effect of a single SNP on survival, the survival tree takes into account 

the complicated interactions of genes which are yet not discovered and has high predictive 

power regarding patients’ prognosis that may be clinically applicable. 

In conclusion, this is the first large-scale study to examine the association of SNPs in 800 

inflammation-related genes with survival in never-smokers with lung cancer. The identified 

individual SNPs and the survival tree may be applicable to future modeling of clinical 

outcome for prediction of survival following validation in other independent populations of 

never-smokers with lung cancer. 
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Chapter 4: Conclusions 
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Overall, the current study provides evidence that genetic variants in the miRNA and 

inflammation related pathways could influence clinical outcomes for NSCLC patients.  

We evaluated miRNA pathway SNPs for their potential prognostic role and have 

identified some significant findings. Specifically, we identified a FAS gene binding site SNP 

that may predict overall survival in these patients and supported this observation with in 

vitro functional genomic analyses. We also identified and validated potential genetic 

markers within the inflammation pathway that may affect clinical outcome in NSCLC 

patients, particularly in never smokers and late-stage patients. Moreover, we have identified 

and validated a survival tree which has proven to be a powerful analytical tool regarding 

survival in never smoker cancer patients based on higher order gene-gene interactions. 

Given the important role of miRNA and inflammation throughout the cancer continuum, 

these genetic markers may be good potential prognostic markers that can help tailor 

treatment regimens in the clinic. 

With further functional analysis and validations, these findings can help increase the 

prediction accuracy for traditional prognostic factors in predicting patients’ prognosis 

through identification of optimal treatment and follow-up care regimens. 
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Chapter 5: Strength and Limitations 
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One of the greatest strengths of our studies is the relatively large sample size. 

Studying never smoking lung cancer patients, a population that accounts for only ~10% of 

all lung cancer cases, can be difficult because identifying a homogeneous never smoking 

patient cohort with adequate demographic/clinical variables is usually a challenge. In the 

current study, we were able to identify relatively large and well-characterized study 

populations from two study sites with complete collection of clinical and epidemiological 

data that enabled us to recruit a sufficient study population. Tracking smoking and smoking 

cessation rates in large populations of lung cancer patients like this one can play a major role 

in understanding the disease. The detailed clinical information collected for these study 

subjects has enabled us to further investigate association in specific subgroups and helped us 

identify several treatment specific markers that may help to evaluate potential risks and/or 

benefits of different treatment regimens for patient subgroups with specific genotypes. 

Further studies of these SNPs in an independent population would be valuable in confirming 

our results. Moreover, the comprehensive query of SNPs from genes involved in both 

miRNA regulating and inflammatory responses provide a broad overview and investigation 

of the role of these genetic variations in modulating patients’ clinical outcomes. 

 

False discovery is an inherited issue for large scale association studies. We are aware 

that there is a chance of false discovery in our results. To correct for this beyond controlling 

for false discovery with a statistical strategy (FDR), we adopted several other approaches to 

further validate and study our findings.  Since inflammation related SNPs are tagging SNPs, 

commonly as intronic polymorphisms, we adopted a multi-stage study design with 

independent patient populations identified from three of the largest lung cancer studies in the 
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US (MD Anderson, Mayo Clinic, and Harvard University) to which largely reduced the 

likelihood of false-positive results for the SNPs that were significant in all populations. 

Therefore, although a portion of the findings would not be judged significant due to multiple 

comparisons, the replication provides a mechanism to address these concerns attenuating the 

need for strict multiple comparisons correction. Furthermore, instead of limiting our study to 

top SNPs, an approach usually adopted in pathway-based association studies to reduce cost 

and labor, we extensively genotyped almost all significant SNPs during our internal 

validation. This strict validation approach substantially improved the power of our study to 

detect candidate loci for subsequent analysis. For those potentially functional (miRNA 

binding sites, non-synonymous) SNPs, either in vitro (luciferase reporter assay) or in silicon 

(SIFT/Polyphen), functional analysis was performed to evaluate influence of these variants 

to gene or protein function to help better understanding our results. 

An additional limitation of our study is due to the location of our SNPs. Most of our 

validated SNPs are located in intron- or intra-genic regions so their function to host or 

nearby genes are not clear. As a result, further fine-mapping or deep sequencing would be 

needed to discover the causal allele. In addition, although we performed functional analysis 

for miRNA binding sties polymorphisms, assays have not been performed in protein level or 

in vivo. Following-up deeper analysis for their functions is warranted. 
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Chapter 6: Future Directions 
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In the current studies, we only focused on two critical pathways. There are other 

pathways also important for the understanding of lung cancer clinical outcomes. Thus, we 

will continue to identify and analyze more interesting pathways to gain a better overview of 

genetic variations contributing to patients’ clinical outcomes.   

We will make effort to seek collaborations and identify other independent 

populations with adequate and comparable repository of clinical and epidemiological data, 

to provide additional statistical power, and further validate our results.   At the meantime, 

with the continuous recruitment of cases and longer follow-up time in our study and other 

ongoing GWAS of lung cancer in the field, we will have sufficient power to conduct GWAS 

of clinical outcomes.  

After validated our findings, functional characterization and phenotypic analysis will 

be the major focus for our future studies. Deep sequencing or fine-mapping will be used to 

identify real causal allele tagged by intronic SNPs found in our study. Then, functional 

analysis will be designed accordingly. Luciferase assays will be designed and performed 

where feasible. For those SNPs that have already undergone functional analysis, further and 

deeper biological characterization will be done to test for their functions at the gene and 

protein level.  When sample available, phenotypic assay, such as gene expression or protein 

array, will be designed to further explore the prognostic values of the identified genes. Mice 

models can be developed in collaboration with other basic science laboratories if feasible.  

With more solid and comprehensive results as well as deeper understanding of the 

influence of the genetic variations on NSCLC clinical outcomes, these identified markers 
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could be incorporated into a prognosis prediction model to increase prediction accuracy in 

both population and individual level.   
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Appendix B: supplementary table 1 miRNA related SNPs selected 

Function Gene SNP chromosome Major 
allele 

Minor 
allele 

binding ACVR1B rs2854464 12 A G 
binding ADH5 rs7669660 4 A G 
binding ADH6 rs12507078 4 G A 
binding ALDH18A1 rs4037 10 G A 
binding ANGPT4 rs1888087 20 C A 
binding ANGPTL1 rs10913632 1 A G 
binding ARNTL rs17452383 11 A G 
binding ATG4A rs5973822 X A G 
binding ATG9A rs2276635 2 A G 
binding ATP5A1 rs12954944 18 A G 
binding ATP5L rs3194726 11 A G 
binding ATP6V1C1 rs2248718 8 G A 
binding ATP6V1C1 rs2453994 8 G A 
binding ATP6V1C1 rs4734684 8 G A 
binding BAG1 rs542912 9 C G 
binding BAG3 rs8946 10 G C 
binding BAG5 rs7154948 14 G A 
binding BAX rs4645900 19 G A 
binding BCL2L11 rs724710 2 G A 
binding BCL2L2 rs1884056 14 G A 
binding BIRC4 rs17330637 X A C 
binding BIRC5 rs1042489 17 A G 
binding BIRC5 rs2071214 17 A G 
binding BIRC6 rs2710625 2 G A 
binding BMF rs10518679 15 A G 
binding BNIP3L rs1042992 8 G A 
binding CA9 rs17259350 9 G A 
binding CASP2 rs4647342 7 A T 
binding CASP7 rs10787498 10 A C 
binding CASP7 rs1127687 10 G A 
binding CASP8 rs10931936 2 G A 
binding CAV1 rs8713 7 A C 
binding CAV1 rs9920 7 A G 
binding CAV2 rs10278782 7 A G 
binding CD34 rs7572 1 G A 
binding CD4 rs1045261 12 A G 
binding CD44 rs11821102 11 G A 
binding CDC7 rs12125947 1 A G 
binding CDK4 rs1048691 12 G A 
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binding COX4NB rs8587 16 C A 
binding DDB2 rs1050244 11 G A 
binding DNMT3B rs6058896 20 G A 
binding E2F2 rs2075993 1 A G 
binding E2F7 rs2279575 12 G A 
binding E2F7 rs7958377 12 G A 
binding EIF2C1 rs11263830 1 G A 
binding EIF2C1 rs11584005 1 A G 
binding EIF2C1 rs2057606 1 G C 
binding EIF2C1 rs595055 1 A G 
binding EIF2C1 rs617673 1 A C 
binding EPHX2 rs1042032 8 A G 
binding EPHX2 rs1042064 8 A G 
binding ERN1 rs8078549 17 G A 
binding EZH1 rs7214055 17 C G 
binding FANCD2 rs3172417 3 G A 
binding FAS rs2234978 10 G A 
binding FEN1 rs174546 11 G A 
binding FEN1 rs4246215 11 C A 
binding FGF2 rs1048201 4 G A 
binding FGF2 rs1476215 4 T A 
binding FGF2 rs6854081 4 A C 
binding FGF5 rs3733336 4 A G 
binding FGF5 rs4690150 4 C G 
binding FGF5 rs6838203 4 T A 
binding FGF9 rs546782 13 A T 
binding FLJ35220 rs8065843 17 A C 
binding FLJ38991 rs16849151 4 A C 
binding FOXO1A rs9532558 13 A G 
binding FZD3 rs352222 8 C A 
binding FZD4 rs713065 11 G A 
binding GHITM rs7576 10 A C 
binding GHRHR rs2741 7 A C 
binding GPR30 rs1133043 7 C G 
binding GPX3 rs4661 5 G A 
binding GPX7 rs1047635 1 A C 
binding GSTM3 rs15864 1 G C 
binding GSTM5 rs17024661 1 A G 
binding HSPB8 rs1133026 12 G A 
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binding ICAM1 rs281437 19 G A 
binding IGF2AS rs10770125 11 A G 
binding IGF2BP1 rs11655950 17 G A 
binding IGF2BP1 rs2969 17 G A 
binding IGF2BP1 rs6504593 17 G A 
binding IGFBP2 rs6413492 2 T A 
binding IGFBP5 rs3276 2 G A 
binding IL1R1 rs3917328 2 G A 
binding IL1R1 rs3917329 2 C A 
binding KRAS rs10771184 12 T A 
binding MBD1 rs11663629 18 A C 
binding MDM4 rs10900596 1 G A 
binding MDM4 rs4252745 1 C G 
binding MLL rs573971 11 G A 
binding MTHFR rs10779765 1 G A 
binding MTR rs2853523 1 C A 
binding NAT1 rs15561 8 C A 
binding NAT1 rs4986993 8 C A 
binding NDUFA6 rs7245 22 A G 
binding NEIL2 rs1043180 8 G A 
binding NEIL2 rs7015453 8 G A 
binding NFKBIB rs3136642 19 A G 
binding NODAL rs7909303 10 A C 
binding NOTCH1 rs3124591 9 A G 
binding NQO1 rs11641233 16 G A 
binding NQO1 rs9980 16 C G 
binding NR1I2 rs3732360 3 A G 
binding NR1I2 rs3814058 3 T C 
binding OGG1 rs1052133 3 C G 
binding PDGFC rs1425486 4 G A 
binding PGRMC2 rs4016 4 A T 
binding PLK1 rs7588 16 G A 
binding PMS2L3 rs1167829 7 G A 
binding POLH rs6941583 6 A T 
binding POLH rs9333555 6 A G 
binding PON1 rs854552 7 A G 
binding RAD51L3 rs4796033 17 G A 
binding RET rs2075912 10 G A 
binding RICTOR rs443039 5 A C 
binding RING1 rs107822 6 G A 
binding RING1 rs213210 6 A G 
binding RPA1 rs1131636 17 A G 
binding RPA1 rs5030740 17 A G 
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binding RPS6KA3 rs12010722 X G A 
binding RPS6KA3 rs7051161 X T A 
binding RPS6KB1 rs1051424 17 A G 
binding RPS6KB2 rs10274 11 G A 
binding RRM1 rs1042927 11 A C 
binding RRM2B rs16869269 8 A G 
binding RRM2B rs5005121 8 T A 
binding RXRA rs4842194 9 A G 
binding SETD1A rs11076 16 G A 
binding SIRT3 rs12226697 11 G A 
binding SMAD1 rs6537355 4 A G 
binding SMAD3 rs12900401 15 G A 
binding SMAD3 rs3743342 15 G A 
binding SMAD7 rs16950113 18 A G 
binding SMC1L2 rs3747238 22 G A 
binding SMC1L2 rs3747240 22 A G 
binding SMO rs1061280 7 A G 
binding SMO rs1061285 7 C A 
binding SNAI1 rs1047920 20 G A 
binding SP1 rs17695156 12 G A 
binding SPP1 rs1126772 4 A G 
binding SST rs4988514 3 A G 
binding SSTR1 rs12889916 14 A G 
binding SSTR2 rs7210080 17 A G 
binding SUFU rs11594179 10 G A 
binding SULT1C1 rs1047312 2 G A 
binding SULT4A1 rs138056 22 C A 
binding TLR2 rs7695605 4 G C 
binding TLR4 rs7869402 9 G A 
binding TNFRSF10D rs7957 8 A G 
binding TNFRSF21 rs9473029 6 C G 
binding TNFSF10 rs17600346 3 A G 
binding TSC1 rs2073869 9 G A 
binding TXN2 rs139999 22 C A 
binding UGT2A3 rs17147016 4 T A 
binding UGT3A2 rs10472999 5 G A 
binding VDR rs739837 12 A C 
binding VEGF rs3025039 6 G A 
binding VEGF rs3025040 6 G A 
binding WNT11 rs17749202 11 A G 
binding WNT2B rs2273368 1 G A 
binding WNT2B rs3790611 1 A G 
binding XRCC5 rs1051685 2 A G 
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processing DDX20 rs197377 1 G A 
processing DDX20 rs197383 1 A G 
processing DDX20 rs197412 1 A G 
processing DDX20 rs563002 1 A G 
processing DDX20 rs85276 1 A G 
processing DGCR8 rs11089328 22 A G 
processing DGCR8 rs1558496 22 A G 
processing DGCR8 rs1633445 22 A G 
processing DGCR8 rs1640299 22 A C 
processing DGCR8 rs2073778 22 G A 
processing DGCR8 rs2286928 22 G A 
processing DGCR8 rs3757 22 G A 
processing DGCR8 rs417309 22 G A 
processing DGCR8 rs446059 22 G A 
processing DGCR8 rs720012 22 G A 
processing DGCR8 rs720014 22 A G 
processing DGCR8 rs8139591 22 A G 
processing DGCR8 rs9606248 22 A G 
processing DICER1 rs10149095 14 A G 
processing DICER1 rs1057035 14 A G 
processing DICER1 rs11160231 14 A C 
processing DICER1 rs11624081 14 G A 
processing DICER1 rs1187642 14 G A 
processing DICER1 rs1187652 14 A G 
processing DICER1 rs12881840 14 G A 
processing DICER1 rs17784006 14 A C 
processing DICER1 rs3742330 14 A G 
processing DICER1 rs4905275 14 G A 
processing DICER1 rs8006416 14 G A 
processing GEMIN4 rs1062923 17 A G 
processing GEMIN4 rs2291778 17 C A 
processing GEMIN4 rs2740349 17 A G 
processing GEMIN4 rs2740351 17 A G 
processing GEMIN4 rs3087833 17 G A 
processing GEMIN4 rs3744741 17 G A 
processing GEMIN4 rs7813 17 A G 
processing RAN rs10773831 12 G C 
processing RAN rs10848238 12 T A 
processing RAN rs11061209 12 G A 
processing RAN rs12318549 12 G A 
processing RAN rs872396 12 A G 
processing RNASEN rs10035440 5 A G 
processing RNASEN rs10719 5 G A 



152 
 

processing RNASEN rs10805564 5 A G 
processing RNASEN rs11958935 5 A G 
processing RNASEN rs12186785 5 A G 
processing RNASEN rs13183642 5 C A 
processing RNASEN rs16901165 5 G A 
processing RNASEN rs17408716 5 A G 
processing RNASEN rs17410035 5 C A 
processing RNASEN rs2287584 5 A G 
processing RNASEN rs2302905 5 G A 
processing RNASEN rs3095825 5 A G 
processing RNASEN rs3792830 5 A G 
processing RNASEN rs3805500 5 A G 
processing RNASEN rs3805502 5 A T 
processing RNASEN rs3805525 5 A G 
processing RNASEN rs4867329 5 C A 
processing RNASEN rs502267 5 C A 
processing RNASEN rs573010 5 C A 
processing RNASEN rs639174 5 G A 
processing RNASEN rs669702 5 G A 
processing RNASEN rs673019 5 A G 
processing RNASEN rs6884823 5 G A 
processing RNASEN rs6886834 5 G A 
processing RNASEN rs7712155 5 G A 
processing RNASEN rs7719666 5 G A 
processing RNASEN rs7735863 5 G A 
processing XPO5 rs1106841 6 A C 
processing XPO5 rs17287964 6 A G 
processing XPO5 rs2227301 6 G A 
processing XPO5 rs2257082 6 G A 
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