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Publication Number: _____________ 

Kevin Casey, B.S. 

Supervisory Professor: David Followill, Ph.D. 

 This work aimed to create a mailable and OSLD-based phantom with accuracy suitable for 

RPC audits of HDR brachytherapy sources at institutions participating in NCI-funded cooperative 

clinical trials. An 8 × 8 × 10 cm3 prototype with two slots capable of holding nanoDot Al2O3:C OSL 

dosimeters (Landauer, Glenwood, IL) was designed and built. The phantom has a single channel 

capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. 

Irradiations were performed with an 192Ir HDR source to determine correction factors for linearity 

with dose, dose rate, and the combined effect of irradiation energy and phantom construction. The 

uncertainties introduced by source positioning in the phantom and timer resolution limitations 

were also investigated. It was found that the linearity correction factor was 𝐾𝐿 = (−9.43 × 10−5 ×

𝑑𝑜𝑠𝑒) + 1.009 where dose is in cGy, which differed from that determined by the RPC for the same 

batch of dosimeters under 60Co irradiation. There was no significant dose rate effect. Separate 

energy+block correction factors were determined for both models of 192Ir sources currently in 

clinical use and these vendor-specific correction factors differed by almost 2.6%. For Nucletron 

sources, this correction factor was 1.026±0.004 (99% Confidence Interval) and for Varian sources it 

was 1.000±0.007 (99% CI). Reasonable deviations in source positioning within the phantom and the 

limited resolution of the source timer had insignificant effects on the ability to measure dose. 

Overall measurement uncertainty of the system was estimated to be ±2.5% for both Nucletron and 

Varian source audits (95% CI). This uncertainty was sufficient to establish a ±5% acceptance 

criterion for source strength audits under a formal RPC audit program. Trial audits of eight 

participating institutions resulted in an average RPC-to-institution dose ratio of 1.000 with a 

standard deviation of 0.011. 
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1. Introduction 

1.1. Statement of the Problem 

1.1.1. General Problem Area 

If the therapeutic goals of radiation therapy are to be met, the need for accurate dosimetry 

in the application of high dose-rate (HDR) brachytherapy is paramount. A typical 10 Ci 192Ir source 

may have a dose rate in excess of seven Gray per minute at a point 1 cm away from the source, 

leaving little room for error in the achievement of desired dose distributions. Just as in external 

beam radiation therapy (EBRT), satisfactory clinical outcomes in brachytherapy procedures require 

strict adherence to planned dose distributions. Substantial deviations from planned doses may 

result in reduced local control of the tumor or unacceptable damage to normal critical organs. 

Furthermore, HDR brachytherapy has been employed in a number of recent National 

Cancer Institute (NCI) funded multi-institutional cooperative clinical trials1-3. The cooperative 

groups’ requirements that participating institutions be rigorously credentialed prior to participation 

underscore the need for effective and efficient brachytherapy QA procedures. The success of such 

multicenter trials relies on the consistency and comparability of patient treatment across all 

participating institutions. Thus, the ability to calculate and deliver a prescribed dose must be 

evaluated and monitored carefully for trials that may span dozens or even hundreds of individual 

clinics. 

1.1.2. Specific Problem Area 

 The Radiological Physics Center (RPC) is an organization funded by the NCI and set up 

specifically to monitor dosimetry practices at institutions participating in cooperative clinical trials. 

The RPC employs a variety of quality assurance audit tools to accomplish this goal. One of the 

primary audit activities of the RPC is a mailed optically-stimulated luminescence dosimetry (OSLD) 

program4 for independent verification of an institution’s external beam radiation therapy (EBRT) 

reference calibration. However, the RPC currently lacks a similar tool for any kind of remote 

brachytherapy audits, including HDR brachytherapy. As a result, the RPC’s HDR credentialing 

procedures currently consist of questionnaires, independent plan reviews, and occasional site visits 

to participating institutions which are both time-consuming and expensive. 
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 Optically-stimulated luminescence dosimeters (OSLDs) have certain features that make 

them a promising candidate to form the basis of a remote audit program for HDR brachytherapy. 

Homnick et al.5 have demonstrated that post-irradiation exposure to reasonable temperature and 

humidity changes does not significantly affect dosimeter readings. Aguirre et al.6 compared OSLD to 

thermoluminescent dosimeter (TLD) results and developed a method for working with the large 

numbers of individual OSLD nanoDots required for the RPC’s EBRT audit program. Several recent 

RPC studies have demonstrated the high accuracy and acceptably low uncertainty of the OSLD 

system versus both the older TLD standard and ion chamber measurements5-8. Additionally, an 

OSLD packaging under the brand name nanoDot and supplied by Landauer, Inc. (Glenwood, IL) 

contains a thin (approximately 0.3 mm thick and 5 mm in diameter) sheet of Al2O3:C material which 

may be approximated as planar; this geometry makes this particular dosimeter suitable for 

measurements of brachytherapy sources which have high spatial dose gradients. 

 Although both single-crystal9 and planar-type10, 11 OSL dosimeters have been characterized 

for 192Ir irradiation, there is a lack of published data in the literature regarding the use of OSLDs as 

remote audit dosimeters for HDR brachytherapy. Ochoa et al.12 and Roué et al.13 designed similar 

systems for performing source strength and dose calculation audits, however in both works the 

phantom designs relied on TLD powder-filled capsules. Since steep spatial dose gradients are a 

defining characteristic of 192Ir HDR sources, TLD capsules with a thickness of perhaps 2-3 mm are 

not ideal for measuring dose in the region around such sources14. On the other hand, an OSLD-

based mailable tool using near-planar nanoDot dosimeters sidesteps this limitation. A novel 

phantom with the ability to provide accurate HDR source strength audits would be an important 

addition to the RPC’s ability to adequately credential institutions performing HDR under the 

auspices of NCI-funded clinical trials. 

1.2. Background 

1.2.1. High Dose-Rate Brachytherapy 

 Brachytherapy – from the Greek brachys meaning “short-distance” and thus meaning 

“treatment at a short distance” – is a type of radiation therapy involving the use of sealed 

radioactive sources placed inside the body in close proximity to the target. These sources may be 

applied by intracavitary, interstitial, or intravascular means. The first brachytherapy treatments for 

cancer began shortly after Marie and Pierre Curie isolated radium in 189815. The use of both radium 
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needles and radon-filled glass capillary tubes proceeded throughout the first half of the 20th 

century until concerns about personnel doses and the rise of megavoltage external beam therapy 

caused the popularity of brachytherapy in general to wane in the 1950s and 60s16. 

 However, the new availability of man-made radioisotopes following the advent of civilian 

nuclear energy and the invention of remote afterloading technology began to revitalize 

brachytherapy in the 1960s. Originally introduced by Walstam in 1962 and Henschke et al. in 

196416, and utilized and refined early on at Memorial Sloan-Kettering Cancer Center15, remote 

afterloading addressed many of the shielding and personnel exposure concerns inherent to 

brachytherapy at the time while also making high dose-rate (HDR) brachytherapy possible. 

 The dominant radioisotope in use today in HDR procedures, defined by ICRU Report 3817 as 

any brachytherapy procedure with a dose rate of 2.0 cGy/min or higher, is Iridium-192. 192Ir has a 

half-life of 73.83 days and decays via β decay (∼95% branching ratio) to excited states of 192Pt and 

electron capture (∼5%) to excited states of 192Os18. It has a complex emission spectrum but the 

average energy of emitted photons is commonly assumed to be around 370 keV19. A major 

advantage is its high specific activity such that seeds with dimensions on the order of millimeters 

can be manufactured and achieve acceptably high dose rates. 

 High dose-rate brachytherapy has several advantages when compared to low dose-rate 

(LDR) brachytherapy. HDR treatments are typically performed on an outpatient basis and require 

far less time than LDR treatments, improving patient throughput and reducing cost20. Unlike a 

patient with permanent LDR seed implants, a patient treated with HDR does not continue to emit 

radiation after leaving the treatment center. Modern planning and afterloading techniques also 

enable more precise dose distribution than LDR implants21 and afterloaders reduce the radiation 

exposure to hospital personnel to negligible levels. On the other hand, LDR techniques may have 

certain radiobiological advantages which are lost with higher dose rates, and the relative efficacy of 

each remains unresolved. 

 Similarly, HDR brachytherapy offers advantages that are unmatched by external beam 

radiation therapy (EBRT). By definition, brachytherapy sources are placed as close to the tumor as 

possible. With precise physical placement and the rapid fall-off of dose due to the inverse square 

law, brachytherapy offers increased concentration of dose in the tumor and better sparing of 

surrounding organs at risk than do even the most conformal EBRT techniques. Furthermore, a 
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typical HDR treatment regimen which requires perhaps one week, compared to a fractionated EBRT 

schedule spread over four to six weeks, prohibits significant tumor-cell proliferation during 

treatment itself20. On the other hand, HDR brachytherapy is in practice accessible to relatively few 

tumor sites compared to EBRT and can treat primary tumors only without any chance of including 

involved regional lymph nodes. 

 Clinical usage of high dose-rate brachytherapy for certain cancers has been increasing in 

recent years. In 1999, 13.3% of patients with carcinoma of the cervix in the United States received 

HDR brachytherapy22. By 2010, that number had increased to 85%23 as HDR largely supplanted LDR 

in the treatment of cervical cancer. Similarly, a survey of breast cancer patients treated between 

2002 and 2007 showed a tenfold increase in the number receiving brachytherapy (generally high 

dose-rate accelerated partial breast irradiation) over that time period24. Overall, Nag et al.25 found 

just 15.6% of radiotherapy facilities providing afterloaded HDR brachytherapy in 1995. A 2008 

survey26 of radiation oncology residents, on the other hand, found that 95.9% reported receiving 

training in HDR brachytherapy. 

1.2.2. Radiological Physics Center 

 The RPC was founded in 196827 under the advice of the American Association of Physicists 

in Medicine (AAPM), which still acts as an advisory body for the center. Since that time, the 

National Cancer Institute (NCI) has continually provided funding to the RPC to support its mission of 

ensuring dosimetric accuracy and consistency among institutions participating in NCI-funded 

cooperative clinical trials. In accordance with this mission, the RPC works closely with the 

Cooperative Groups and other quality assurance centers through the Advanced Technologies 

Consortium. 

 A major component of the RPC’s quality assurance outreach program is the mailed 

dosimeter program, initiated in 1977 using thermoluminescent dosimeters (TLDs) in a specially-

designed miniphantom28. The program was transitioned to an OSLD standard in 20105. Examples of 

the acrylic miniphantoms used for the external beam program are shown in Figure 1.1. The new 

OSLD system was shown by Aguirre et al.7 to have an uncertainty of 1.8% (1 standard deviation) 

under standard external-beam irradiation conditions, exceeding the accuracy of the older TLD 

system. Disagreement between the institution’s reported dose and the RPC’s dosimeter readings of 

5% or more triggers an on-site audit by RPC staff in order to investigate the discrepancy. In 2010, 
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the RPC’s external beam audit program monitored more than 1,700 institutions in the United States 

and internationally, comprising approximately 14,000 individual beam audits per year29. The 

program has been highly successful at uncovering discrepancies, with approximately 15-20% of 

institutions having one or more unacceptable measurements in any given year30. 

 
Figure 1.1: Examples of the acrylic blocks used for the RPC's external beam remote audit program. From left to right: an 

electron block, a photon block for 5-6 MV, and a photon block for 12-20 MV. 

 In contrast, and despite HDR’s growing use in clinical trials, the RPC does not currently have 

a mailable audit system for HDR brachytherapy. The current extent of HDR audit activities at the 

RPC is measurements of source strength during on-site visits (approximately 20 per year), physicist 

questionnaires, plan reviews, and institutional completion of a standard benchmark plan27. On-site 

source strength measurements provide an accurate independent evaluation of an institution’s 

radioactive source, but are infrequent, expensive, time-consuming, and omit important steps in the 

patient treatment workflow. The RPC’s brachytherapy treatment planning benchmarks have 

uncovered institutional misunderstandings and incorrect brachytherapy dosimetry parameters31, 

but a mailable tool that provides an accurate audit of source strength as well as a tangible 

evaluation of both planning and treatment delivery – analogous to the current external beam audit 

program – is desirable. 
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1.2.3. Optically Stimulated Luminescence 

1.2.3.1. Developmental History 

 The potential for using optically-stimulated luminescence as a dosimetry tool was first 

recognized in the 1950s32. However, the difficulties in identifying materials with suitable properties 

slowed research in OSLDs for much of the 20th century. Various compounds were proposed and 

some even used for specialty purposes, however drawbacks such as strong fading, unacceptable 

band-gap widths, high effective atomic numbers, low sensitivity, manufacturing difficulties, or some 

combination thereof rendered each new compound largely unsuitable for medical dosimetry use33. 

It was not until Al2O3:C was identified and developed in the early 1990s34 that a practical and 

accurate OSLD material became available. Al2O3 was initially proposed as a thermoluminescent (TL) 

material35 in 1957 and various dopants were investigated through the years33. The advent of 

carbon-doped aluminum oxide in the late 1980s34, initially intended as an ultra-sensitive 

thermoluminescent material, elevated the sensitivity of the compound to levels suitable for 

accurate medical dosimetry. High sensitivity and other desirable properties have resulted in Al2O3:C 

becoming the dominant OSL material for dosimetric measurements in use today. The first 

commercially-available OSLD was introduced by Landauer in 1998. Today OSLDs are available in a 

variety of physical formats intended for different applications. One such packaging, the nanoDot by 

Landauer, is a small OSLD in a light-tight case intended for medical dosimetry; nanoDots were used 

extensively in this work and are discussed at length below. 

1.2.3.2. OSL Mechanism 

 The thermoluminescent and optically-stimulated luminescence phenomena are understood 

in the context of an energy band model of electrons in crystalline solids. Specifically, the energy 

bands that are important to TL and OSL processes are known as the valence and conduction bands. 

Electrons in the valence band are essentially bound to the lattice structure, whereas electrons in 

the conduction band are free to move within the lattice36. Between these two levels sits the 

“forbidden band” or band gap, in which no electrons can exist37. Ionizing radiation passing through 

the crystal with sufficient energy can excite electrons from the valence band into the conduction 

band, leaving behind a positively-charged hole in the valence band. This is depicted as Process 1 in 

Figure 1.2. Electrons in the conduction band can subsequently fall back to the valence band and 

recombine with holes, or they can fall into localized energy levels present within the band gap38. 
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These localized energy levels, or “traps”, exist in the energy band structure due to the introduction 

of impurities in the crystal lattice. It is the trapping of electrons in these localized levels, and their 

subsequent liberation, that gives rise to both the TL and OSL phenomena. In an ideal TL or OSL 

material, the number of electrons trapped in intermediate energy levels between the valence and 

conduction bands is directly proportional to the radiation dose absorbed by the material. 

 
Figure 1.2: Energy band diagram of a dosimetric OSL material. 

 An electron elevated to the conduction band is free to move within the lattice structure but 

will soon fall into a trap or recombine with a hole. The process by which electrons fall from the 

conduction band and recombine with a hole without being caught in a trap is called prompt 

recombination and produces radioluminescence (RL). Prompt recombination and subsequent RL is 

depicted as Process 2 in Figure 1.2. There have been attempts to use the RL signal produced by 

Al2O3:C as a real-time active dosimeter39, 40, but this approach faces difficulties since prompt 

recombination competes with all other trapping processes38. Mathematical models of the RL signal 

during dosimeter irradiation have been developed41. 

  Electrons in the conduction band may also fall into so-called “shallow” traps – localized 

energy levels close to the conduction band38.  This is indicated as Process 3 in Figure 1.2. The 

proximity of shallow traps to the conduction band makes it relatively easy for electrons to escape 
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these levels and jump back to the conduction band. In fact, the gap between shallow traps and the 

conduction band is so narrow that the probability of an electron escaping from the traps is 

considerable even at room temperatures. This results in a gradual loss of stored signal in the 

dosimeter, as electrons excited to the shallow traps by irradiation migrate to the conduction band 

and recombine after irradiation ends. For this reason, it is customary to wait for a period of hours 

or even days after irradiation before reading the signal stored in an OSLD. Another implication of 

shallow trap emptying at room temperature is that actual OSL signal can briefly rise upon first being 

read. This is due to electrons liberated from “dosimetric” traps during the reading process falling 

into empty shallow traps. As the shallow traps saturate with charges, OSL signal gradually rises and 

eventually stabilizes. 

 Another competing process is the capture of conduction-band electrons by “deep” traps38, 

labeled as Process 5 in Figure 1.2. In contrast to shallow traps, the energy gap between the deep 

traps and the conduction band is sufficiently large enough to make it unlikely that normal readout 

procedures will liberate electrons in these traps. This has the unwanted effect of making the 

dosimeter’s sensitivity dependent in some way on its irradiation history. In its initial unirradiated 

state, the deep traps in a sample of material are vacant. As the dosimeter is irradiated, charges fall 

into the deep traps and are unlikely to ever be liberated, resulting in the removal of the deep traps 

as a competing process to normal dosimetric functioning. This has the effect of making the 

dosimeter slightly more sensitive over time. 

 The most important traps in an OSL material are those located between shallow and deep 

traps in the energy spectrum. These are known as the “dosimetric” traps, and they are the energy 

levels exploited for the purposes of dosimetry. This process is labeled as Process 4 in Figure 1.2. The 

intermediate energy of dosimetric traps means that they are acceptably stable at room 

temperature yet do not require extremely high temperatures (in the case of TL) or high-frequency 

light (in the case of OSL) in order to be liberated. 

1.2.3.3. Al2O3:C 

 Aluminum oxide doped with carbon is easily the most important OSL dosimeter material in 

use today. Al2O3 crystals can be grown using a number of different methods33 and when grown in 

the presence of carbon, all of these methods produce Al2O3:C with numerous oxygen vacancies in 

the lattice structure. When an oxygen vacancy is occupied by two electrons it is known as an F-
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center, and when it is occupied by a single electron it is known as an F+-center, being positively-

charged with respect to the overall lattice33. Concentrations of the two types of defects in typical 

commercially-available dosimeters are approximately 1017 cm-3 and 1015-1016 cm-3, respectively34. 

The F- and F+-centers act as recombination centers and are responsible for the emission of light by 

OSL. Electrons liberated from trapping centers by incident light recombine with the positively-

charged F+-centers. The result is an excited state of an F-center, which relaxes to its ground state. It 

is this relaxation that produces the emitted observed luminescence centered at 420 nm38, 42. 

 Al2O3:C has many properties which make it an excellent choice for medical dosimetry. Its 

response has been shown to be linear up to 50 Gy43. Because of its very high sensitivity, only a small 

proportion of the total trapped charges need to be liberated from dosimetric traps in order to 

obtain a readable signal. This means that the dosimeter can be read for a very short period of time 

and subsequently reread later with only a small correction made for depletion38. A relatively 

inexpensive and repeatable manufacturing process has been developed so commercially-available 

dosimeters have highly uniform sensitivity and properties38. Jursinic10 has shown that sensitivity 

remains essentially unchanged up to accumulated doses up to 20 Gy, so Al2O3:C dosimeters can be 

reliably bleached and reused up to this threshold. A relative disadvantage of Al2O3:C is its effective 

atomic number of 11.2844, which makes it oversensitive to low-energy radiation34. 

 The reusability and rereadability of Al2O3:C OSL dosimeters are considerable advantages 

over standard LiF TLDs29. In addition, OSLDs do not require temperature and weight control as do 

TLDs, overall reading time is reduced, and the cost per reading is much lower. Furthermore, OSLDs 

are commercially available in a wide range of physical sizes and packages, including the planar style 

used in this work. 

1.3. Hypothesis and Specific Aims 

1.3.1. Hypothesis 

 The hypothesis of this work is that a mailable, OSLD-compatible 192Ir HDR brachytherapy 

phantom suitable for RPC monitoring of clinical trial sites can be developed with the ability to 

measure HDR dose accurately to within ±5%. 
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1.3.2. Specific Aims 

 In order to test the hypothesis, this project has three specific aims: 

 1) Design and construct a phantom prototype – In order to be a useful remote audit tool, 

the phantom must be physically durable and reasonably sized so that it can be reliably mailed to 

participating institutions. It shall be simple and intuitive in design such that any instructions 

included in the program will be easily understood and implemented by participating physicists. It 

shall also be designed for use with commercially-available nanoDot OSL dosimeters, for which the 

RPC already has substantial infrastructure and expertise. And finally, its attenuation and scattering 

properties shall be as similar as possible to that of water for gamma rays in the 192Ir energy 

spectrum in order to minimize deviations from the conditions specified in the TG-43 protocol. 

 2) Characterize the OSLD + phantom system – All the properties of dosimeters irradiated in 

the phantom as well as the phantom’s physical properties must be well known in order to achieve 

overall system accuracy. Correction factors for dosimeter signal fading over time, reading linearity 

with delivered dose, and dose-rate dependence must be calculated. A phantom correction factor 

must be determined to convert results from in-phantom measurements to the TG-43 standard. The 

effects of variations in source and OSLD positioning within the phantom must be understood. 

 3) Determine the measurement accuracy of the system and demonstrate feasibility as a 

remote audit tool – The system must be able to measure dose with accuracy suitable for 

monitoring of clinical trial sites. The uncertainty in measured doses must be known. This 

uncertainty must be low enough such that a ±5% acceptance criterion – matching that of the RPC’s 

external beam audit program – may be established for the HDR audit program as well. The system 

must be an accurate, practical, and easy-to-use tool when sent to outside institutions to audit HDR 

brachytherapy source strength and planning workflows. 
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2. Methods and Materials 

2.1. Phantom Prototype 

 The phantom prototype was designed with the goals of a remote audit program in mind. 

The logistics of a mailable system make it infeasible to scale the phantom to a size sufficient for full 

scatter conditions, which Pérez-Calatayud et al.45 estimated to be a sphere of radius 40 cm. 

Previous studies have investigated 192Ir dosimetry in both spherical45 and cylindrical46 sizes ranging 

down to 10 cm radius, in both cases showing poor adherence to results obtained using an 

unbounded phantom. With the understanding that any phantom which accurately approximates 

the scatter conditions of an infinite phantom would necessarily be too large to form the basis of a 

mailed dosimetry program, it was decided that the prototype should be kept small and any effects 

resulting from the lack of full scatter accounted for in a block correction factor. However, the 

phantom should also be large enough so that the source and dosimeter(s) are at clinically-relevant 

distances from each other and at least some backscatter may be captured. 

 In terms of material, a solid phantom was preferable over a water-filled phantom as a 

requirement that participating institutions properly fill and drain a water phantom complicates 

instructions and might introduce extra uncertainties. Additionally, OSLD nanoDots are not 

waterproof and a water-filled phantom presents certain difficulties in loading, unloading, and 

protecting the dosimeters. However, a solid material that does not significantly perturb dose when 

compared to water for an 192Ir energy spectrum is desirable as the TG-43 formalism for 

brachytherapy dosimetry requires the medium to be water or water-equivalent. Lastly, the material 

of the phantom must address the unique demands of a mailed program in that it should be 

physically durable, relatively inexpensive, and reasonably machinable. 

 It was decided that the phantom should have a single channel drilled into it to facilitate the 

insertion of a single tandem HDR source train. A single channel is preferable to a configuration with 

multiple HDR channels because it reduces complexity and the time required for planning and 

irradiation while also being sufficient to accurately audit source strength. The diameter of the 

channel was chosen so that it would admit a standard-size catheter of a type that any clinic 

providing common HDR clinical treatments should have on hand. A long channel length was chosen 

so that a plan with enough dwell positions to provide a flat isodose line in the region of the 
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dosimeter could be created. While a single dwell position might have reduced the time required for 

planning and irradiation, a curved isodose line across the profile of the dosimeter is undesirable as 

this may introduce extra uncertainty in the nanoDot reading and thus the dose measurement. 

 A phantom capable of holding multiple dosimeters was preferable to single-dosimeter 

designs. Having more than a single dosimeter in the phantom provides multiple independent 

measurements and, in certain arrangements, mitigates the effects of some types of positioning 

uncertainty. The distance between the dosimeters and the source should be on the order of 

clinically relevant distances. Lastly, the dosimeters must be positioned and the phantom designed 

such that the nanoDots are easy to load and remove, as it is expected that the phantoms will be 

reused constantly as part of an RPC audit program. 

2.2. OSL Dosimeters 

2.2.1. nanoDots 

 This study and the proposed remote audit program both utilize a specific Al2O3:C OSLD 

packaging offered by Landauer under the nanoDot brand name (Landauer , Inc., Glenwood, IL) and 

shown in Figure 2.1. NanoDots have been used by the RPC for its external beam audit program with 

tremendous success4. Overall single standard deviation uncertainty of external beam dose 

measurements using nanoDot OSLDs in the RPC’s program has been calculated as 1.8%7. The RPC 

already has considerable expertise and infrastructure in place for the deployment of nanoDot 

dosimeters, with more than 10,000 individual dosimeters in circulation as part of the external beam 

program as of 2012. NanoDots have been shown to be unaffected in any significant way by 

reasonable temperature and humidity changes encountered during the mailing process5. 
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Figure 2.1: Examples of the nanoDot OSL dosimeters used in this work. From left to right: nanoDot front showing label 
with unique identification number, nanoDot back showing unique barcode, and nanoDot with active dosimeter (white 

circular area) pushed out of cassette and exposed. 

Each nanoDot consists of a light-tight plastic cassette with a slide-out tray that holds a small 

disc of active dosimeter material. The external dimensions of the cassette are 10 × 10 × 2 mm3. The 

disc of dosimeter material is 5 mm in diameter and may be considered nearly planar, with a 

thickness of approximately 0.3 mm (see Figure 2.2). During the manufacturing process, batches of 

Al2O3:C powder are mixed with an organic binding agent and printed on a tape of plastic substrate. 

Discs are then punched from the tape for use as individual dosimeters. This mixing process ensures 

that all of the Al2O3:C powder has the same sensitivity and properties, however differences in the 

amount of OSL powder deposited on each disc means that the characteristics of individual 

dosimeters may vary. 

 
Figure 2.2: An OSLD nanoDot cassette, pictured edge-on to show its 2 mm thickness. The active dosimeter inside the 

cassette is approximately 0.3 mm thick. 
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 An important property of nanoDots and all Al2O3:C material in general is reusability. 

Jursinic10 found sensitivity unchanged up to a cumulative dose of 20 Gy, but the RPC uses 10 Gy as a 

threshold and that cumulative dose was not exceeded for any individual dosimeter used in this 

work. Between irradiations, each nanoDot was optically annealed for a minimum of 24 hours using 

a custom-built cabinet with four 54-watt fluorescent bulbs. Each lamp emits an average of 4700 lm 

at 4100 K. The lamps are fitted with a UV filter which blocks all light with a wavelength of less than 

395 nm. 

2.2.1.1. Element Correction Factor 

 Although the manufacturing process is designed to minimize variations within a single 

batch, some differences in the sensitivities of individual nanoDots are inevitable. These may be due 

to random fluctuations, differences in the amount of Al2O3 deposited on each dosimeter, or even 

slight amounts of damage that may occur before the nanoDot is commissioned. In order to ensure 

consistency in measurements made with different dosimeters, an Element Correction Factor (ECF) 

is calculated for each individual dosimeter. To determine ECFs, a large sample of dosimeters from 

each batch is irradiated with a 60Co source under controlled conditions to a known low dose 

(approximately 25 cGy). Then, each individual dosimeter is read and its raw reading compared to 

the average raw reading of the entire sample of dosimeters. The ratio of these readings is the 

Element Correction Factor. ECFs for individual dosimeters can deviate from unity by more than 

±9%. Every time a dosimeter is read, its average raw reading is multiplied by that nanoDot’s unique 

ECF in order to correct for variations in the nanoDot sensitivity throughout the entire batch of 

dosimeters. 

2.2.2. OSLD Reading 

2.2.2.1. MicroStar Reader 

 Landauer’s microStar reader (Landauer, Inc., Glenwood, IL), shown in Figure 2.3, is used for 

reading nanoDot dosimeters. The reader features a light-tight chamber into which a single nanoDot 

may be inserted via a pull-out tray. Inside the chamber is an array of 36 LEDs and a photomultiplier 

tube. After a nanoDot is placed in the chamber and the reading procedure initiated, a mechanism 

inside the reader pushes the dosimeter disc out of the nanoDot cassette and turns on the LED 

array. Light from the array stimulates emission from the dosimeter material, which is collected by 
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the photomultiplier tube. This process is known as continuous-wave OSL, or CW-OSL. The microStar 

reader interfaces with a personal computer so that readings may be easily recorded. 

 
Figure 2.3: The microStar OSLD reader with tray pulled out. NanoDot OSLDs are read by inserting a single dosimeter 
into the black adapter jig pictured, then inserting the jig into the tray. The tray is pushed in and the knob turned to 

initiate the reading process. 

 The light emitted by the LED array for stimulation must not interfere with the light released 

as a result of stimulation, or else the reading results will be highly inaccurate. To account for this, 

the reader has two optical bandpass filters. The first filter, a Schott OG515, filters light emitted by 

the LEDs. The LED-filter combination has a peak emission at 540 nm10. A second filter, a Hoya B-

370, is placed in front of the photomultiplier, and the PMT-filter combination has peak sensitivity at 

420 nm10. This matches the dominant emission band of Al2O3:C arising from F-center luminescence. 

2.2.2.2. Standards and Controls 

 Prior to each reading session, certain nanoDots known as “standards” are irradiated to an 

accurately-measured dose close to 100 cGy under carefully controlled conditions. The standards are 

placed in a custom acrylic miniphantom which is placed in a 60Co beam with a 10 × 10 cm2 field size. 
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The SSD to the top of the platform is 80 cm and the standard OSLDs are at the midpoint of the 1.5 

cm thick phantom, meaning that source-to-dosimeter distance is 79.25 cm. The timer end effect of 

the 60Co unit console is 0.01 min and is accounted for in the irradiation of the standards. The actual 

dose delivered to each standard is determined with the formula: 

 𝐷𝑜𝑠𝑒 = 𝑂𝑢𝑡𝑝𝑢𝑡 ×  𝑒�
− 𝑙𝑛2 × 𝑑

365.25 × 5.26�  × (𝑡𝑖𝑚𝑒 + 𝑒𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡) (2.1) 

where Output is the machine output at calibration in cGy/min, d is the number of days elapsed 

from calibration to irradiation, time is the console-reported beam on time in minutes, and end 

effect is 0.01 min for all irradiations to account for source transit time. The half life of 60Co is 5.26 

years. The irradiation of all standards was performed on the Cobalt V2 unit at M.D. Anderson 

Cancer Center, which was calibrated on October 15, 2005 and found to have an output of 147.90 

cGy/min at 79.25 cm. At the start of each reading session, a standard is read. A separate standard is 

read at the end of the session. The average reading from the two standards is used to establish the 

reading system’s sensitivity (that is, dose per raw reading) which will be discussed in detail below. 

 Also read during an OSLD reading session are nanoDots known as “controls”. Controls are 

irradiated under very similar conditions to standards, with the main difference being that controls 

are irradiated in groups of up to 30 at a time using a special rotating jig. The jig rotates at 10 rpm 

while the controls are under irradiation, to ensure uniform dose to all of the dosimeters.  The dose 

delivered to the controls is approximately 90 cGy, compared to approximately 100 cGy delivered to 

standards. All controls were irradiated on the Cobalt C unit at M.D. Anderson Cancer Center, which 

was calibrated on October 15, 2005 with an inverse-square corrected output of 84.73 cGy/min. 

Actual dose was calculated for controls using Equation 2.1, with the only difference being that end 

effect = -0.01 min for the Cobalt C unit. 

 Controls are read at the beginning and end of a session along with standards, as well as in 

the middle of a session if many (more than a dozen or so) experimental dosimeters are being read 

during the session. The purpose of reading controls is to identify any substantial drift which may 

occur in the sensitivity of the OSLD reader over the course of a reading session. If the drift direction 

of the controls differs from that of the standards, or if either drifts in excess of ±1.5% over the 

course of a session, consideration may be given to rereading the dosimeters or establishing a linear 

correction factor to account for the drift. 
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2.2.2.3. Reading Procedure 

 Before reading any dosimeters, the microStar reader is allowed to warm up for a period of 

at least 30 minutes. A series of constancy checks are then performed on the reader. The number of 

counts acquired by the PMT with the LED array off during a certain time period, known as dark 

counts, is recorded. Then, the number of counts collected by the PMT when exposed to an internal 
14C source, known as PMT counts, is recorded. Finally, LED counts, which is the number of counts 

collected by the PMT while the LED array is switched on, is collected. Dark counts, PMT counts, and 

LED counts are measured a minimum of three times each and the three readings are compared and 

the overall averages compared to tests from previous sessions to verify that the reader is 

functioning properly. 

 After constancy checks are completed, one standard and one control dosimeter are read as 

outlined above. Then, reading of experimental OSLDs commences. To read an OSLD, the barcode on 

the nanoDot is scanned for record-keeping purposes. Then, the nanoDot is fitted into a specially-

designed holder and placed in the reader’s tray. The tray is slid into the reader, which is light-tight. 

Turning a knob on the reader’s face slides the dosimeter material out of the nanoDot cassette and 

turns on the LED array. The dosimeter is stimulated for a period of 7 seconds after which the LED 

array turns off and the knob is turned back to its home position, which returns the dosimeter disc 

to the light-tight nanoDot cassette. While the dosimeter is being stimulated, the PMT integrates all 

incident photon counts and the system reports this number once the 7-second reading is complete. 

 The reading process is repeated in its entirety three times for each dosimeter. Subsequent 

readings of an OSLD cause a measureable depletion of the emitted OSL signal. The RPC has 

developed an empirical depletion correction factor (DCF) to account for this phenomenon: 

 𝐷𝐶𝐹 =  
1

(−5.148 × 10−6) ∙ 𝑛2 + (−1.277 × 10−3) ∙ 𝑛 + 1
       𝑛 = 0,1,2 … (2.2) 

where n is the reading number. All raw OSLD readings in this experiment were corrected with this 

factor. A control nanoDot is often read near the middle of the session as mentioned above. Lastly, 

one control and then one standard are read at the end of the session, after all experimental OSLDs 

have been read. 
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2.3. HDR Sources 

2.3.1. Nucletron MicroSelectron v2 

 For the majority of irradiations performed in this work, a microSelectron-HDR afterloader 

(Nucletron, Columbia, MD) (shown in Figure 2.6) and microSelectron-HDR “version 2” 192Ir source 

(Nucletron model number 105.002, Nucletron, Columbia, MD) housed at the University of Texas 

M.D. Anderson Cancer Center were used. Daskalov et al.47 described this source in detail and a 

schematic drawing is shown in Figure 2.4. The design, introduced in 1998, consists of a cylinder of 

pure iridium metal 0.65 mm in diameter and 3.6 mm long. The radioactive 192Ir is distributed 

uniformly throughout the iridium core. The source is encapsulated by 0.125 mm of AISI 316L 

stainless steel (68% Fe, 17% Cr, 12% Ni, 2% Mn, and 1% Si by weight, density = 8.02 g/cm3), giving a 

total source and encapsulation diameter of 0.90 mm. The encapsulated source is welded to the end 

of a woven steel cable with diameter 0.7 mm. M.D. Anderson policy dictates that the 192Ir sources 

are replaced approximately every four months with each new source having an activity at 

installation of approximately 10 Ci. The microSelectron-HDR afterloader has 18 channels and a 

cable length of 1500 mm. Oncentra TCS software version 3.1.3.800 (Nucletron, Columbia, MD) was 

used to control the afterloader and source. 

 
Figure 2.4: The Nucletron microSelectron-v2 HDR source in detail. All dimensions are in mm. 

 Prior to irradiating any dosimeters, source positioning accuracy was confirmed to within ±1 

mm by irradiating a strip of radiochromic film marked in 1 mm increments supplied by the source 

manufacturer (see Figure 2.5). Next, a source calibration was performed to verify the institution’s 

existing calibration. A Precision Radiation Measurement HDRC-1 well-type ionization chamber, 

serial number 9117, was used for the calibration. The well chamber was connected to a Standard 

Imaging MAX-4000 electrometer, serial number E061502. A 6 French endobronchial catheter was 

attached to channel 1 of the afterloader and the other end inserted into the well chamber. The 

source was stepped through 7 dwell positions at 0.5 cm increments. At each position, the current 
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reading of the electrometer was allowed to stabilize for a few seconds and then recorded. This 

process was repeated three times to give three current readings at each of the seven positions 

inside the well chamber. All three measurements were averaged together and the position 

corresponding to the highest average current selected as the point of maximum sensitivity of the 

well chamber. 

 
Figure 2.5: The radiochromic film used to verify the afterloader's source positioning accuracy prior to irradiation. If the 
source is positioned correctly, the center of the darkened spot on the radiochromic film should be at exactly 1300 mm. 

 Once the maximum current was measured in the well chamber, the formalism of DeWerd 

and Thomadsen48 was used to calculate the air-kerma strength of the source: 

 𝑆𝐾 = 𝐼 × 𝑃𝑒𝑙𝑒𝑐 × 𝐶𝑇,𝑃 × 𝑁𝑅𝐾 × 𝐴𝑖𝑜𝑛 × 𝑃𝑖𝑜𝑛  (2.3) 

where SK is the air-kerma strength of the source, I is the measured current, Pelec is the electrometer 

scale correction factor, CT,P is a correction for ambient temperature and pressure, NRK is the ADCL-

provided calibration factor for the well chamber, Aion is the ADCL-provided correction for collection 

efficiency, and Pion is the correction for collection efficiency at the time of measurement. The ADCL 

calibration report for the well chamber provided Aion = 0.994 and the RPC has already determined 

the relationship between Pion and source strength for the particular well chamber used. For the 

purposes of these calculations, Pion = 1.005 was used. CT,P was calculated from measurements made 

at the time of calibration using the following equation: 

 𝐶𝑇,𝑃 =
273.2 + 𝑇

295.2
×

760 
𝑃

 (2.4) 

where T is the temperature inside the well chamber during calibration in degrees Celsius and P is 

the atmospheric pressure in mm Hg. Pelec and NRK were provided by the ADCL calibration reports for 

the electrometer and well chamber, respectively. These values were Pelec = 1.000 × 10-9 A/rdg and 

NRK = 3.859 × 1011 U/A (where 1 U = 1 𝜇𝐺𝑦∙𝑚
2

ℎ
). 
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Figure 2.6: The Nucletron microSelectron-HDR afterloader at M.D. Anderson Cancer Center. 

 The maximum average current recorded in the well chamber during calibration was 55.377 

nA. Using Equation 2.3 and this current reading, an air-kerma strength of 21549 U was calculated. 

At the time of calibration, the treatment control system software reported an air-kerma strength of 

21336 U. Thus, the calculated source strength differed from the machine-reported strength by 

approximately 1%. The measured air-kerma strength was used for all subsequent calculations and 

irradiations. A new calibration was performed using the same methods each time the source was 

replaced. Reports of each calibration performed are available in Appendix 6.2. 

2.3.2. Varian VariSource VS2000 

 Additional dosimeter irradiations were performed on a Varian VariSource iX afterloader 

(Varian Medical Systems, Palo Alto, CA) and Varian Model VS2000 192Ir source (Varian Medical 

Systems, Palo Alto, CA) housed at The Methodist Hospital in Houston, TX. This source, introduced in 

2000, has been described by Angelopoulos et al.49 A schematic drawing is shown in Figure 2.7. The 

VS2000 source and the Nucletron source described above make up the large majority of the 192Ir 

sources in clinical use for HDR brachytherapy in the United States today. A single VS2000 source 
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consists of two 2.5 mm long, 0.34 mm diameter cylindrical seeds of pure iridium. The radioactive 
192Ir is distributed evenly in each of the seeds. The seeds are adjacent to one another in tandem and 

encapsulated at the end of a metal wire. The wire is 0.59 mm in diameter giving an encapsulation 

thickness of 0.125 mm surrounding the Iridium. The composition of the wire is 55.6% Ni and 44.4% 

Ti by weight (density = 6.5 g/cm3). It is notable that the physical geometry of the sources and the 

composition of the encapsulation differ between the Varian and Nucletron sources. 

 
Figure 2.7: The Varian VS2000 source in detail. All dimensions are in mm. 

 The Varian source was calibrated on March 23, 2012 using the same procedures and 

equipment as were used to calibrate the Nucletron source. The maximum average current 

produced in the well chamber was 47.172 nA. Using Equation 2.3, this gives an air-kerma strength 

at calibration of 17961 U. Using the RPC’s 192Ir air-kerma-to-activity conversion factor of 4028 U/Ci 

gives a nominal activity for the Varian source of 4.459 Ci at calibration. At the time of irradiation, 

the Varian console reported a nominal activity of 4.454 Ci. The difference between the measured 

and reported activities is thus approximately 0.1%. Again the measured air-kerma strength was 

used as the gold standard for all calculations involving the Varian source. The calibration report 

may be found in Appendix 6.2. 

2.3.3. Treatment Plan 

 For the irradiations in this study, a simple HDR treatment plan – hereafter known as the 

“standard plan” – was created using BrachyVision version 8.9.15 (Varian Medical Systems, Palo 

Alto, CA). As do all HDR brachytherapy planning systems in common clinical use at this time in the 

United States, BrachyVision uses the methodology and assumptions of AAPM Task Group 4319. The 

BrachyVision installation used to create the standard plan was commissioned using the 192Ir TG-43 

parameters published by Daskalov et al.47 for the Nucletron source. 

 The standard plan uses 10 dwell positions, spaced 5 mm apart, in a single tandem 

applicator. A dose of 100 cGy in a single fraction was prescribed to two reference lines parallel to 

the applicator and 2 cm away laterally. The treatment planning software was instructed to calculate 
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dwell times individually for each source position with the two reference line objectives weighted 

equally. The software was allowed to optimize for 5 minutes. The source strength in the system was 

set to 40300 U, which for 192Ir corresponds roughly to a 10 Ci source. The isodose lines for the 

standard plan are shown in Figure 2.8. 

 
Figure 2.8: The isodose lines of the "standard plan". Doses are in cGy. 

 After optimization, the point dose reported by BrachyVision at a point 2 cm away from the 

central channel laterally and on a line bisecting the source train was recorded. This point 

corresponds to the center of the dosimeter slot in the phantom and is regarded as the point of 

measurement. The actual dose reported by BrachyVision at this point was 100.6 cGy, and this 

number was subsequently used as the actual dose delivered to the point of measurement for all 

irradiations using the standard plan. To obtain the dose at the point of measurement for the same 

plan using the Varian VS2000 source, TG-43 calculations were used since BrachyVision had not been 

commissioned for use with that source. For these calculations, the TG-43 parameters published by 

Taylor and Rogers50 for the Varian source were used. The result of TG-43 calculation was a dose of 
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101.76 cGy at the point of measurement and this was likewise used as the actual dose delivered by 

the standard plan when irradiating with a Varian source.  

 The standard plan was used as a basis for all irradiations performed in this study by scaling 

the dwell times. Depending on the current source strength, new dwell times were calculated to 

deliver the desired dose to the point of measurement using the following relationship: 

 𝑡𝑛′ = �
40300 𝑈

𝑆𝑆
� × �

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑜𝑠𝑒
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑜𝑠𝑒

� × 𝑡𝑛      𝑛 = 1 … 10 (2.5) 

where SS is the current source strength in U, desired dose is the desired dose in cGy, tn is the 

standard plan’s dwell time for position n, and 𝑡𝑛′  is the new dwell time for position n. Standard dose 

is the dose delivered to the point of measurement using the unmodified standard plan and a source 

strength of 40300 U; it is equal to 100.6 cGy for Nucletron sources and 101.76 cGy for Varian 

sources as detailed above. 

2.4. OSL Dose Calculations 

2.4.1. Dose Calculation Equation 

 The equation to calculate dose from an OSL reading is as follows: 

 𝐷𝑜𝑠𝑒 =  (𝑎𝑣𝑔. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑑𝑔. ) × 𝐸𝐶𝐹 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝐾𝐹 × 𝐾𝐿 × 𝐾𝐵 (2.6) 

where average corrected reading is the average of the three depletion-corrected independent 

readings of the dosimeter, ECF is the element correction factor as discussed above, Sensitivity is the 

system sensitivity for the reading session, KF is the fading correction factor, KL is the linearity 

correction factor, and KB is the block correction factor which is unique to the phantom used in this 

work. 

 The average corrected reading is the average PMT counts from three separate readings of 

the same dosimeter. The second and third readings are corrected individually using Equation 2.2. If 

the percent standard deviation of the three depletion-corrected readings was greater than 0.8%, 

the individual reading for that particular dosimeter which was inconsistent with the others was not 

used. If the deviation among the three readings was acceptable, the readings were averaged and 

the result became the average corrected reading for that dosimeter. 
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 In practice, dose is always calculated on the basis of the average calculation from two 

dosimeters irradiated at the same time in the phantom. This greatly reduces uncertainty due to 

relative source positioning (see Section 4.5.2.). The cylindrical symmetry of any single-channel 

tandem HDR treatment plan ensures that the only variation in the dose delivered to the phantom’s 

two dosimeter slots will be due to lateral variations in source positioning. The intended use of the 

phantom calls for always loading two dosimeters and averaging their measurements, and all 

statistics and results quoted in this work are based on that assumption. In general, the word 

“measurement” will be used here to indicate the average from two dosimeters irradiated at the 

same time, and any discussion of individual dosimeter readings will be clearly specified. 

2.4.2. System Sensitivity 

 System sensitivity is determined anew for each OSLD reading session. In order to determine 

sensitivity, one standard dosimeter is read at the beginning of the session, and a separate standard 

read at the end of the session. Each standard is read three times and depletion corrected using 

Equation 2.2 as are all OSLD readings. Then, system sensitivity is calculated using the following 

formula: 

 𝑆𝑦𝑠𝑡𝑒𝑚 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐷𝑜𝑠𝑒 𝑡𝑜 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑎𝑣𝑔(𝑎𝑣𝑔. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑎𝑑𝑖𝑛𝑔) × 𝐾𝐹𝑠𝑡𝑑 × 𝐾𝐿𝑠𝑡𝑑
 (2.7) 

where Expected Dose to Standard is the actual dose delivered to the standards as calculated by 

Equation 2.1. Average(average corrected reading) is the average of the two depletion-corrected 

standards readings, one at each end of the session. 𝐾𝐹𝑠𝑡𝑑 is the fading correction factor for the two 

standards read (two standards irradiated on the same day, and thus to the same dose, are always 

used), and 𝐾𝐿𝑠𝑡𝑑 is the linearity correction factor for the standards. For the batch of nanoDot 

dosimeters used in this work, 𝐾𝐿𝑠𝑡𝑑 has already been established by the RPC: 

 𝐾𝐿𝑠𝑡𝑑 = (−1.374 × 10−4 × 𝑟𝑎𝑤 𝑑𝑜𝑠𝑒) + 1.013 (2.8) 

where raw dose is the dose delivered to the standard in cGy as determined by Equation 2.1. This is 

the linearity correction factor currently in use for all standards coming from the batch of 

dosimeters used in this work and shall not be redetermined here. It should be noted that in 

practice, 𝐾𝐿𝑠𝑡𝑑 ≈ 1 in general in this experiment, since the only standards used were those 

irradiated to approximately 100 cGy. 



25 
 

2.4.3. Fading Correction Factor 

 Previous experiments at the RPC4 have already determined the fading correction factor for 

the batch of nanoDot dosimeters used in this experiment. Dosimeters were irradiated to identical 

doses on different days ranging from 1 to 120 days prior to reading and all were read at the same 

time. The relationship between OSL signal and days after irradiation can be described thusly: 

 𝐾𝐹 =
1

1.005 × 𝑑−0.0072 (2.9) 

where d is the number of days since irradiation. This is the correction factor used to correct for 

fading for every standard, control, and experimental dosimeter used in this study. 

 No dosimeter in this study was read before at least 5 days had elapsed since irradiation. 

This is to allow the response to decay into the flatter and more stable part of the fading curve prior 

to reading. 

2.4.4. Linearity Correction Factor 

 The literature has shown that Al2O3:C sensitivity is dependent on dose10, 51. However, 

previous determinations of the extent of this dependency typically investigated higher energy 

radiation than the 192Ir spectrum and used experimental setups substantially different from the 

phantom prototype presented here. For example, the RPC’s own 𝐾𝐿𝑠𝑡𝑑 was determined from 

irradiations of OSLDs placed in a custom acrylic miniphantom using a 60Co source. As a result, it was 

determined that dose response should be investigated anew using the setup specific to this work 

and a unique linearity correction factor, KL, determined for use with the system described here. 

 Three independent sets of irradiations were used to determine the linearity correction 

factor of the system. Prior to each set, Equation 2.5 was used to calculate dwell times necessary to 

deliver nominal doses ranging from 50.3 (100.6 ÷ 2) cGy to 402.4 (100.6 × 4) cGy where 100.6 cGy is 

the dose at the point of measurement under the standard plan with a Nucletron source. Each set of 

irradiations was performed in less than one hour, so no correction for the decay of the source 

during irradiation was made (the decay in source strength over a time of one hour is less than 

0.04%). The number of individual dosimeters irradiated at each dose level is shown in Table 2.1. 
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Table 2.1: Number of individual dosimeters irradiated to specific doses for each of three linearity trials. 

Trial # Dose Total 50 75 100 200 300 400 
1 4 0 10 4 4 4 26 
2 4 0 8 4 4 4 24 
3 0 8 8 6 6 0 28 

Total 8 8 26 14 14 8 78 

 Each dosimeter was read and depletion corrected, and the ECF applied. Then, the nominal 

dose was divided by the corrected average counts for each dosimeter to obtain a quantity called 

dose response �𝑑𝑜𝑠𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑑𝑜𝑠𝑒
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑎𝑣𝑔 𝑐𝑜𝑢𝑛𝑡𝑠

�. In this case, nominal dose was the 

intended dose delivered to the dosimeter as used in Equation 2.5 to calculate dwell times. The dose 

response value for each dosimeter was then plotted versus the nominal dose. A linear regression 

was applied to obtain a relationship between dose response and nominal dose. After the fit was 

obtained, the line was normalized to the predicted dose response value at 100 cGy. This normalized 

dose-response-versus-nominal-dose curve is known as KL and it is important to note that KL ≡ 1.000 

at 100 cGy. 

 The KL lines calculated individually from each of the three data sets were in good 

agreement so the data were combined for the overall final KL determination. The same process was 

applied to the combined data set as was used for the individual data sets. Thus, the final KL line 

calculated is in effect an average of the three linearity trials which have been weighted by the 

number of dosimeters used for each trial. 

2.4.5. Block Correction Factor 

 The block correction factor (also known as the energy correction factor) is unique to the 

OSLD dose calculations performed in this work. Because this project aims to produce a mailable and 

OSLD-compatible phantom, a small plastic phantom is much more practical than a spherical water 

phantom with a radius of perhaps 30 cm. Therefore the block correction factor, KB, is necessary to 

convert the quantity measured by this experiment, which is dose to polystyrene in a specific 

phantom geometry, to the standard for brachytherapy dosimetry as dictated by TG-43, which is 

dose to water in a large water phantom. 

 Both the physical density of high-impact polystyrene (ρ = 1.04 g/cm3) and the mean atomic 

number52 (Z = 5.29, 92.3% C and 7.7% H by weight) differ from that of water (ρ = 1.00 g/cm3, Z = 
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6.60, 88.8% O and 11.2% H by weight). However, Meli et al.53 found the photon energy spectrum of 

an 192Ir source in polystyrene to be “essentially identical” to that of water at depths of 1, 5, and 10 

cm. On the other hand, Pérez-Calatayud et al.45 found that the radial dose function of an 192Ir 

source in a small (r = 10 cm) spherical polystyrene phantom falls off very quickly in moving away 

from the center when compared to that of an unbounded water phantom. This is due to the loss of 

dose due to scattered photons in the smaller phantom. Dose lost due to lack of full scatter 

conditions is constant and thus may be corrected for. 

 The nanoDot dosimeters used in this work also have some angular dependence. Kerns et 

al.54 found approximately 2% lower response in nanoDots irradiated at a 45° angle, increasing to 

almost 4% lower at 90°, using a 6 MV photon beam. This is relevant because the end positions in 

the source train of the standard plan used in this study, which have the longest dwell times and 

contribute the most to the dose at the point of measurement, are at an angle of approximately 42° 

from the dosimeter. However, since the geometry of the source and dosimeter setup cannot 

change, a correction factor to account for any angular dependence effect is appropriate. 

 Lastly, and most importantly, Al2O3:C is known to over-respond at energies lower than the 

662 keV gamma emission of 137Cs due to its relatively high effective atomic number and density33. 

Jursinic10 found a 6% increase in the sensitivity of Al2O3:C OSL dosimeters under 192Ir irradiation 

when compared to 6 MV x-rays. Since the RPC uses 60Co (average energy = 1.25 MeV) to irradiate 

the standard OSLDs which ultimately determine system sensitivity (as discussed above), the 

increased sensitivity of OSL material to the 192Ir energy spectrum must be accounted for. However, 

since the phantom in this project is designed and intended for 192Ir HDR sources and will only be 

used for the dosimetry of that isotope, a constant energy correction factor may be determined and 

applied. This correction factor can at the same time account for potential angular dependence 

effects and loss of signal due to lack of full scatter conditions. All of these corrections combined 

into a single term are what we refer to as the block correction factor, KB. 

 In order to determine KB, 20 measurements were made during a single session using a 

Nucletron source. Each dosimeter was irradiated to the same dose using identical dwell times. The 

entire irradiation session was completed in less than one hour, during which the 192Ir source is 

calculated to have decayed less than 0.04% so no attempt to correct for source decay during the 

session was made. The dosimeters were read and the raw readings recorded. Then, rearranging 

Equation 2.6 gives an expression for KB: 
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 𝐾𝐵 =  
𝐷𝑜𝑠𝑒

(𝑎𝑣𝑔. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑑𝑔. ) × 𝐸𝐶𝐹 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝐾𝐹 × 𝐾𝐿
 (2.10) 

In this equation, Dose refers to the expected dose at the point of measurement using the standard 

plan as reported by the treatment planning system. The linearity correction factor KL is also based 

on the expected dose. All other terms are as previously explained. 

 For each of the 20 measurements, the quantity [(𝑎𝑣𝑔. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑑𝑔. ) × 𝐸𝐶𝐹 ×

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝐾𝐹 × 𝐾𝐿] – the denominator in Equation 2.10 – was calculated. This quantity is the 

fading- and linearity-corrected dose to polystyrene in the phantom geometry. This dose is also 

based on the assumption of irradiation under a 60Co-equivalent spectrum, as the Sensitivity 

calculation at the time of OSLD reading is referenced to that spectrum. However, ideally the Dose 

calculated from Equation 2.6 would be the dose to water in a large phantom with sensitivity 

referenced to the 192Ir energy spectrum. Converting the in-phantom Dose to one following these 

assumptions and conditions would allow for direct comparison between doses as measured by 

OSLDs in the phantom and doses calculated by TG-43, which is the algorithm most commonly used 

by commercially-available treatment planning systems. Thus, from Equation 2.10 we know that KB 

must have units of 
[𝐷𝑜𝑠𝑒]𝐻2𝑂

 𝐼𝑟−192

[𝐷𝑜𝑠𝑒]𝑝ℎ𝑎𝑛𝑡𝑜𝑚
𝐶𝑜−60 , that is, dose to water in a large phantom (i.e., TG-43 stipulations) 

from an 192Ir source divided by dose to polystyrene in the HDR phantom geometry from a 60Co 

source. By measuring a block correction factor with these units, the final result of Equation 2.6 is a 

measurement of TG-43-consistent dose to water under 192Ir irradiation, a quantity comparable to 

that provided by commercial HDR planning systems. 

 After a KB value was calculated individually from each of the 20 measurements, the values 

were averaged to give the average overall system KB. It was discovered during preliminary 

calculations that the average KB calculated based on irradiations with a Nucletron source gave 

unacceptably inaccurate results for irradiations performed with the Varian source. For a sample of 

10 measurements made with a Varian source, the doses calculated from OSLD readings using 

𝐾𝐵𝑁𝑢𝑐𝑙𝑒𝑡𝑟𝑜𝑛 were approximately 2% higher than the expected doses determined from TG-43 

calculations. None of the ten measurements produced a value below the expected dose. The 

reasons for this difference are discussed in Section 4.2. 

To improve measurement accuracy, a set of 10 additional measurements were made using 

a Varian source in the same way as those made with the Nucletron source. KB was calculated 
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independently for Varian measurements and that value used for all subsequent experiments 

involving the Varian source. The result is two different block correction factors, 𝐾𝐵𝑁𝑢𝑐𝑙𝑒𝑡𝑟𝑜𝑛 and 

𝐾𝐵𝑉𝑎𝑟𝑖𝑎𝑛, and it is expected that the same process would need to be repeated for any new 192Ir 

sources introduced into clinical use whose geometry differs considerably from that of the Nucletron 

and Varian sources used in this study. 

2.4.6. Dose Rate Effect 

 A new source was installed in one of the clinical HDR afterloaders at M.D. Anderson Cancer 

Center on April 11, 2012. The source was calibrated following the procedure in Section 2.3.1. On 

April 12, 2012, with the air-kerma strength at 45336 U, a single measurement was made with the 

dwell times chosen using Equation 2.5 to deliver a dose of 100.6 cGy. This process was repeated a 

total of eight times at irregular intervals over the next three months as the source strength 

decayed. Each time, the dwell times were recalculated using the current source strength and 

Equation 2.5 to deliver a nominal dose of exactly 100.6 cGy. Thus it is possible to compare the 

actual doses measured after delivering the same nominal dose using the full range of clinically-

relevant source strengths. Any significant trend among the measured dose data would indicate a 

dose-rate dependence in the dosimeters. 

2.5. Phantom Characterization 

Once KL,  KB, and potential dose rate effects have been established, the ability to make 

accurate measurements of dose using the phantom is complete, as all terms in Equation 2.6 are 

now known. Dose measurements were subsequently used to investigate certain physical properties 

of the phantom/OSLD system itself. Among these are the effect of the orientation of the OSL 

dosimeters in the phantom slots, and the effect of the distal/proximal positioning of the source 

train within the channel. 

2.5.1. OSLD Orientation 

In order to ensure that careless placement of dosimeters in the phantom slots would not 

significantly affect the system’s accuracy, measurements made with OSLDs inserted into the 

phantom in various orientations were compared. Each nanoDot dosimeter has a paper label affixed 

to the outer cassette with unique identifying numbers printed on it. The label is in the same 

location and orientation on each nanoDot. The typical orientation when placing dosimeters in the 
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phantom was with the numbers facing “in” and “up”; this orientation was used in all other 

irradiations performed in this work for both Nucletron and Varian sources. In terms of orientation, 

“in” was defined as the label facing the phantom channel and HDR source, and “up” was the 

orientation having the label in position to be exposed to the air when the sections of the phantom 

were pulled apart. We define “out” and “down” as opposite of “in” and “up”, respectively. Figure 

2.9 shows a “source’s-eye view” of the eight possible OSLD orientations along with the terms used 

to define them. 

 
Figure 2.9: Source's-eye view of the eight possible OSLD orientations. 

 Two dosimeters were placed in the phantom in the standard (in and up) orientation and 

irradiated to a nominal dose of 50.7 cGy. Then, two new dosimeters were inserted, but rotated 90° 

such that the labels of both were oriented toward the proximal direction of the source wire. These 

dosimeters were irradiated to the same dose. This process was repeated with two more dosimeters 

each with the labels oriented down, and then again with the labels oriented distally. The entire 

procedure was then repeated with dosimeters facing out and rotated through all four 90° 

orientations. The end result is 8 measurements – one at each orientation – covering the 8 possible 

orientations that a nanoDot could be inserted into the phantom. 

2.5.2. Distal/Proximal Source Positioning 

The isodose lines of the standard plan and the audit instructions to plan and deliver 100 

cGy to a line (rather than a point) indicate that minor deviations in the distal/proximal positioning 

of the entire source train should have a minimal effect on dose measurements. In order to quantify 

this effect, measurements were made after moving the entire 10-position source train in discrete 
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steps away from the distal end of the phantom channel. All other irradiations in this work were 

carried out with the catheter inserted fully into the phantom channel and adjacent to the end of 

the channel and the source train occupying the 10 most distal dwell positions available. 

 
Figure 2.10: The test set up to measure the effect of distal/proximal positioning errors. For each test, the catheter 

(blue) is inserted fully into the channel (dark gray). The entire source train (10 individual sources in yellow) is shifted 
toward the proximal end of the catheter in 2.5 mm steps but otherwise remains the same. The point of measurement 

remains the same for all irradiations. 

 To investigate distal/proximal positioning, a catheter was inserted until it was adjacent to 

the end of the channel and then the standard plan delivered as usual but with one key deviation: 

the entire source train was shifted proximally inside the catheter a distance of 2.5 mm. This 

procedure was repeated with the source train shifted 5.0, 7.5, and 10.0 mm proximally. Figure 2.10 

shows the entire source train being stepped back from the distal end of the catheter as the point of 

measurements remains the same. 

2.6. Trial Remote Audits 

 After the phantom was characterized, several institutions which provide 192Ir HDR 

brachytherapy were enlisted to test the system as a potential remote audit tool. Each institution 

was provided with the phantom preloaded with unirradiated OSLDs, instructions on how to set up, 

plan, and deliver 100 cGy to the dosimeters, and a form on which to record machine, source, and 

plan characteristics. During this evaluation period, a questionnaire to collect the participating 
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physicists’ opinions on the system was also provided. The physicist contact at each institution was 

informed that the system was a potential new RPC remote audit program analogous to the current 

external beam audit programs but not provided with additional context or instructions beyond 

those provided by mail along with the phantom. 

 After the phantom and dosimeters were returned to the RPC, the dose was measured by 

reading the two OSLDs, converting the readings to dose with Equation 2.6, and averaging the two 

doses together to provide a single measurement. This quantity is known as the “RPC measured 

dose” or simply “RPC dose”. The institution-reported dose at the point of measurement as 

determined by the institutional treatment planning system is known as the “institution dose”. 

Additionally, each institution’s self-reported source model, source strength, and dwell times were 

used to calculate the dose at the point of measurement using TG-43 formalism. This calculated 

quantity is hereafter known as the “TG43-calculated dose” or “TG-43 dose”. For each remote audit 

these three quantities and the RPC/institution ratio, which is the quantity of most interest, were 

calculated. The institution dose was the quantity used as the nominal dose delivered to the 

dosimeters for the purposes of calculating the linearity correction factor. The institution’s feedback 

on the program as reported on the questionnaire was recorded as well. 

2.6.1. Instructions 

 The written instruction sheet mailed with the phantom during trial remote audits is shown 

in Appendix 6.3.1. The instructions include steps on how to set up the phantom, including guidance 

on what type of catheter to use and how to insert it and secure it in place. Steps to create an 

acceptable treatment plan for dosimeter irradiation follow. The physicist is instructed to use 10 

consecutive dwell positions spaced 5 mm apart, which matches the standard plan used for 

phantom characterization. No dwell times are listed; it is suggested that the physicist performing 

the irradiation sets the treatment planning system to optimize dwell times in order to deliver 100 

cGy to a line 2 cm away from the catheter channel. An example treatment plan isodose distribution 

is shown to provide guidance. 

2.6.2. Irradiation Form 

 The Irradiation Form provides space for the physicist performing the irradiation to provide 

details about his or her system, source, and treatment plan. It is shown in Appendix 6.3.2 and is 

intended to closely resemble existing forms supplied by the RPC for similar remote audit programs. 
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The first section asks for simple demographic information about the physics contact, so that the 

RPC may contact him or her later with any additional questions. The next section includes spaces 

for the physicist to fill in information about the particular afterloader model, source, and planning 

system in use. It is also in this section that the physicist shall record the air-kerma strength of the 

source at the time of dosimeter irradiation. A final section of the irradiation form includes spaces 

for the physicist to record the planning system-generated dwell times and the reported point dose 

at the point of measurement. 

2.6.3. Questionnaire 

 Since the proposed outcome of this project is a tool suitable for use as a new RPC outreach 

program, the remote audits performed in this work also included a survey and questionnaire for 

the participating physicists to record their opinions of the program prototype. The questionnaire is 

included in Appendix 6.3.3.  Physicists were asked to record their agreement with certain 

statements on a scale of 1 to 5, with 1 indicating that they strongly disagreed with the statement 

and 5 indicating that they strongly agreed with the statement. The statements covered a variety of 

considerations, including clarity of instructions and forms, ease-of-use of the phantom, and 

understanding of the goals and relevancy of the program. Participating physicists were also asked 

to record the approximate amount of time that they spent performing the audit, and to include 

comments or suggestions on setup, planning, and general issues. 
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3. Results 

3.1. Phantom Prototype 

The final prototype was designed and manufactured as an 8 × 8 × 10 cm3 rectangular prism 

made of High Impact Polystyrene (HIPS) (Boedeker Plastics, Shiner, TX). It is shown in Figure 3.1. 

HIPS was chosen because it is very durable, relatively inexpensive compared to more specialized 

materials such as Solid Water, and easily machinable. The RPC has experience with polystyrene 

phantoms and phantom inserts in a number of previous projects55, 56. Crucially, the dosimetric 

properties of HIPS in the 192Ir energy range closely approximate those of water. Its physical density 

is 1.04 g/cm3, just 4% more dense than water. ICRU Report 4457 defines as water-equivalent any 

material which introduces uncertainties of ≤1% to absorbed dose. Meli et al.53 found the photon 

energy spectrum in polystyrene from an 192Ir source to be “essentially identical” to that found in 

water and declared polystyrene to be a suitable phantom material for 192Ir dosimetry even in the 

absence of full scatter conditions. Tedgren and Carlsson46 observed water-equivalence throughout 

a cylindrical polystyrene phantom of height 20 cm and diameter 20 cm and commented that “the 

difference between water and plastic is more pronounced for large phantoms”. 

 
Figure 3.1: The phantom prototype. The thumbscrew through which a 6 French endobronchial catheter may be 

inserted is at left. 
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 The interior of the phantom has two key features. The first is a cylindrical channel, 

approximately 85 mm long and slightly greater than 2 mm in diameter. The channel length and the 

overall phantom length were chosen so that approximately 25 mm of phantom material extends 

beyond a 45 mm-long tandem source train in both the distal and proximal directions. The channel is 

drilled into the phantom parallel to its longest dimension and with the opening centered on one of 

the 8 × 8 cm2 faces. The diameter is just large enough to admit a standard 6 French (2 mm 

diameter) endobronchial catheter. A thumbscrew is tapped into the opening of the channel; a 

catheter may be inserted longitudinally through the thumbscrew and secured from being pulled 

out of the channel by gently tightening the thumbscrew. 

 
Figure 3.2: The phantom after being pulled apart into its two sections. One nanoDot dosimeter has been inserted into 

each slot. 

 The second internal feature of the phantom is a pair of slots carved out of the material, 

positioned symmetrically on either side of the central channel. Using two dosimeters for each 
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measurement – one in each slot – greatly reduces the uncertainty introduced due to the source 

moving from side-to-side (laterally) inside the channel. Each slot is slightly larger than 10 × 10 × 2 

mm3, just large enough to admit a single nanoDot OSL dosimeter of the type used in this 

experiment. The slots are oriented with one of their long axes parallel to the central channel and 

their short axes perpendicular to it, such that they “face” the channel. Each is situated with its 

midpoint exactly 20 mm toward the edge of the phantom away from the midpoint of the diameter 

of the channel. This distance was chosen because it is on the order of typical clinically-relevant 

distances (e.g. Point A in the Manchester system58) and for planning purposes which will be 

discussed below. An additional 20 mm of polystyrene extends beyond the slots opposite the source 

to provide material for photon backscatter. The slots are centered within the phantom in the other 

two dimensions. As shown in Figure 3.2, the phantom separates lengthwise into two unequally-

sized pieces of height 44 mm and 36 mm, exposing approximately 1 mm of the top of an inserted 

dosimeter for ease in loading and removal. Note that the catheter channel is entirely buried in the 

44 mm-tall section and only its entrance is exposed to air. A cross-sectional top view of the 

phantom is shown in Figure 3.3 and additional views are presented in Appendix 6.1. 

 
Figure 3.3: A cross-sectional top view of the phantom, showing its dimensions. All measurements are in mm. Shaded 

areas are the carved-out areas forming the central channel and two OSLD slots. Additional views may be found in 
Appendix 6.1. 
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3.2. Linearity Correction Factor KL 

 The total number of dosimeters irradiated across all three trials performed in the 

determination of KL was 78, and the breakdown by trial number and delivered dose is shown in 

Table 2.1. An example of the un-normalized dose response data for Trial 2 with its corresponding 

linear fit is shown in Figure 3.4. 

 
Figure 3.4: OSLD dose response versus nominal dose, 2nd trial of 3. 

The linear fit of the dose response for each of the three Trials is shown in Equations 3.1-3.3. 

 𝐷𝑜𝑠𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (1) = (−2.103 × 10−4) × 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐷𝑜𝑠𝑒 + 2.224          𝑅2 = 0.62 (3.1) 
 
 𝐷𝑜𝑠𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (2) = (−2.013 × 10−4) × 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐷𝑜𝑠𝑒 + 2.247          𝑅2 = 0.79 (3.2) 
 
 𝐷𝑜𝑠𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (3) = (−2.268 × 10−4) × 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐷𝑜𝑠𝑒 + 2.240          𝑅2 = 0.55 (3.3) 
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Figure 3.5: Linearity correction factors determined separately for each of three trials. 

 The KL,Trial lines determined for each trial after normalization are shown in Figure 3.5. Each 

trial was individually normalized such that at a nominal dose of 100 cGy, KL = 1.000. The agreement 

among the three trials was very good. For Trials 2 and 3, the values of KL,Trial at 50 cGy were less 

than 0.06% different, and the values at 400 cGy were less than 0.37% different. The line calculated 

from Trial 1 fell between those of Trial 2 and Trial 3. 

 After verifying their agreement with one another, the three linearity trials were combined 

into a single data set. A linear fit of the form 𝑑𝑜𝑠𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = (𝛼 × 𝑑) + 𝛽 where d is the nominal 

dose was applied to the combined non-normalized data. The values of the fit parameters were 

𝛼 = −2.090 × 10−4 and 𝛽 = 2.236 with R2 = 0.58. The combined data dose response plot is shown 

in Figure 3.6. 
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Figure 3.6: The dose response for linearity trials 1 through 3. Data points for each trial are shown in different colors but 

considered as a single combined data set for the purposes of linear fitting. 

 This fit was then normalized to 1.000 at 100 cGy and the resulting normalized linear fit is 

the final linearity correction factor, KL. This plot is shown in Figure 3.7 and Figure 3.8 along with the 

68% and 95% confidence intervals of the fit. Assuming that OSLD readings follow a normal 

distribution, these confidence intervals represent one and two standard deviations, respectively. 

The final fit equation for KL is given in Equation 3.4: 

 𝐾𝐿 = (−9.433 × 10−5 × 𝑑𝑜𝑠𝑒) + 1.009 (3.4) 

where dose is the nominal dose in cGy. 

y = -2.090E-04x + 2.236E+00 
R² = 5.814E-01 

2.10

2.12

2.14

2.16

2.18

2.20

2.22

2.24

2.26

2.28

0 50 100 150 200 250 300 350 400 450

D
os

e 
Re

sp
on

se
 [μ

Gy
/r

ea
di

ng
] 

Nominal Dose [cGy] 

Dose Response, Trials 1-3 
Trial 1

Trial 2

Trial 3

Linear (dose per reading)



40 
 

 
Figure 3.7: Final linearity correction factor KL based on three independent trials. The dashed lines represent the 68% 

(1σ) and 95% (2σ) confidence intervals for the linear fit. 

 
Figure 3.8: Final linearity correction factor KL based on three independent trials. This is the same plot as Figure 3.7 but 

showing only the region between 80 and 120 cGy nominal dose. 
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The 68% confidence interval of the linear fit for KL spans approximately 0.3%, or ±0.15% in 

the region from 90 to 110 cGy, as shown in Figure 3.8. Because the proposed audit program will 

require institutions to attempt to deliver a dose of 100 cGy at the point of measurement, we may 

assume that σ = ±0.15% is the expected uncertainty in the linearity correction factor (68% CI, 

representing a single standard deviation assuming the data follow a normal distribution). This is the 

value that will be used in the final system uncertainty calculation which may be found below. 

3.3. Block Correction Factor KB 

 The results of 20 measurements to obtain the Nucletron-specific block correction factor 

𝐾𝐵𝑁𝑢𝑐𝑙𝑒𝑡𝑟𝑜𝑛 are shown in Table 3.1. 

Table 3.1: KB statistics for a Nucletron source. 

𝑲𝑩
𝑵𝒖𝒄𝒍𝒆𝒕𝒓𝒐𝒏 

n 20 
Average 1.026 

Minimum 1.017 
Maximum 1.036 

Standard Deviation 0.006 (0.6%) 
Standard Error 0.001 (0.1%) 

99% Confidence Interval 1.022 – 1.029 

Likewise, the results of 10 measurements of 𝐾𝐵𝑉𝑎𝑟𝑖𝑎𝑛 are shown in Table 3.2. 

Table 3.2: KB statistics for a Varian source. 

𝑲𝑩
𝑽𝒂𝒓𝒊𝒂𝒏 

n 10 
Average 1.000 

Minimum 0.992 
Maximum 1.013 

Standard Deviation 0.007 (0.7%) 
Standard Error 0.002 (0.2%) 

99% Confidence Interval 0.993 – 1.007 

 The difference between 𝐾𝐵𝑁𝑢𝑐𝑙𝑒𝑡𝑟𝑜𝑛 = 1.026 and 𝐾𝐵𝑉𝑎𝑟𝑖𝑎𝑛 = 1.000 is approximately 2.6%; 

the reasons for this difference are discussed below. For all dose measurements performed in this 

work and the trial audits, the appropriate KB was selected based on the source model used to 

irradiate the dosimeters. A histogram of all KB measurements for both the Nucletron and Varian 

source is shown in Figure 3.9. 
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Figure 3.9: Histogram showing both 𝑲𝑩

𝑵𝒖𝒄𝒍𝒆𝒕𝒓𝒐𝒏 (n=20) and 𝑲𝑩
𝑽𝒂𝒓𝒊𝒂𝒏 (n=10) values. 

 

3.4. Dose Rate Effect 

 The measured-to-expected dose ratios for a number of independent irradiations collected 

over the course of the study are shown in Figure 3.10 plotted against the calibrated source strength 

at the time of irradiation. All irradiations were performed with a Nucletron source. 
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Figure 3.10: The measured-to-expected dose ratio of several measurements plotted versus the source strength at the 

time of measurement. These data were collected with the same Nucletron source as it decayed over time. 

 An F-test found that there is no statistically-significant difference between the slope of the 

linear best fit line for these data and 0 (p = 0.88). 

3.5. Phantom Characterization 

3.5.1. OSLD Orientation 

 Average doses among the measurements made at each of the 8 possible OSLD orientations 

ranged from 50.77 cGy to 51.41 cGy. A one-way analysis of variance (ANOVA) showed no 

statistically significant difference between the means of each individual orientation and the overall 

mean (p = 0.998). This finding is consistent with expectations as the front and back of the nanoDot 

cassette are made of the same material in the same thickness, and the active dosimeter is assumed 

to be positioned at the midway point of the cassette width. The active dosimeter is off center in the 

large face of the cassette, however any deviation due to this positioning should be minimal as the 

shift is relatively small (approximately 1 mm off center in each dimension) and the isodose 

distribution in the region of the active dosimeter is rather flat by design. 
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3.5.2. Source Position 

 The relative dose measurements made with the source train in various positions along the 

distal/proximal axis are shown in Figure 3.11. 

 
Figure 3.11: The effect of variations in placement of the source train along the distal/proximal axis. Both experimental 

results and TG-43 calculations are shown. 

 Ending the source train 5 mm short of the intended farthest distal extent resulted in a 

negligible change in dose. An error of 10 mm in placing the catheter results in an overdose of 

approximately 1%, well less than the estimated overall accuracy limits of the system. The minimal 

effect of a 10 mm shift in the position of the source train is in line with expectations because of the 

nature of the standard plan used for irradiation. The dwell times of the plan were optimized to 

deliver 100 cGy to a line 4.5 cm long and 2 cm away from the central channel so the 100 cGy 

isodose line follows this prescription line closely for almost its entire 4.5 cm extent. Thus even 

relatively large shifts in the positioning of the source train in the distal/proximal direction still result 

in some dose close to 100 cGy being delivered to the point of measurement. 
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3.6. Retrospective Dose Calculations 

 Using the correction factors KL, 𝐾𝐵𝑁𝑢𝑐𝑙𝑒𝑡𝑟𝑜𝑛, and 𝐾𝐵𝑉𝑎𝑟𝑖𝑎𝑛, the measured OSLD dose was 

retrospectively calculated for several irradiations performed during the course of this study, 

regardless of purpose. The measured doses were compared to the expected doses, which was the 

dose calculated using TG-43, the actual dwell times used during irradiation, and the calibrated 

source strength. The results are given in Table 3.3. 

Table 3.3: Results from retrospective dose calculations of 23 measurements made for various purposes over the course 
of this work. 

Data Set Source n Average Measured 
Dose [cGy] 

Dose Standard 
Deviation 

Measured/Expected 
Dose [cGy] 

A Nucletron 5 104.1 1.404 1.027 
B Nucletron 4 102.5 1.320 1.005 
C Nucletron 4 102.1 0.533 1.004 
D Nucletron 4 102.7 0.910 1.013 
E Nucletron 6 100.3 0.582 0.989 

Total  23 102.2 0.938 1.007 
 

3.7. Trial Remote Audits 

3.7.1. Dosimetry  

Table 3.4: Results of eight trial remote audits at separate institutions. All doses are in cGy. 

Trial Source 
Model 

RPC Measured 
Dose [cGy] 

Institution Reported 
Dose [cGy] 

TG-43 Calculated 
Dose [cGy] RPC/Institution 

1 Nucletron 99.9 101.0 100.1 0.989 
2 Varian 100.4 99.9 100.1 1.005 
3 Varian 100.0 99.9 100.1 1.001 
4 Nucletron 100.5 100.6 100.8 0.999 
5 Nucletron 102.1 100.7 100.9 1.014 
6 Varian 98.3 100.0 98.6 0.983 
7 Nucletron 101.3 100.1 99.7 1.012 
8 Varian 99.4 99.8 99.5 0.996 

Average 1.000 
Standard Deviation 0.011 

 The results of eight remote audits are shown in Table 3.4. The RPC Measured Dose is that 

measured with OSLDs. The Institution Reported Dose is that reported by the institution’s treatment 

planning system at the point of measurement. Finally, the TG-43 Calculated Dose is that calculated 

independently using the source strength and dwell times that the institution reported to the RPC. 
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The RPC Measured Dose to Institution Reported Dose ratios range from 0.983 to 1.014 for the eight 

institutions audited. Average of all eight ratios was 1.000 with a standard deviation of 0.011. 

3.7.2. Questionnaires 

 On a scale of 1 to 5, with 1 indicating “strongly disagree” and 5 indicating “strongly agree”, 

the average response to the 11 statements on the feedback questionnaire ranged from a minimum 

of 3.9 to a maximum of 4.8. Median scores for the 11 statements ranged from 4 to 5. The average 

agreement across all respondents and all statements was 4.3 and the standard deviation was 0.7. 

Not all respondents responded to all statements. In general, higher scores indicated positive 

feelings toward the project, including favorable opinions of instruction clarity and ease-of-use, and 

interest in the tool as a potential RPC audit program. All responses to the questionnaire are 

collected in Appendix 6.4. 

 Respondents were also asked to give an estimate of the total time they spent in performing 

the audit, including planning, setup, irradiation, and completing forms. The reported times ranged 

from 15 to 120 minutes, with an average of 69 minutes. The median was 60 minutes. Lastly, 

respondents were asked to optionally provide comments, suggestions, and concerns regarding the 

project. These free-form responses are included in full in Appendix 6.4 as well. 
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4. Discussion 

4.1. Linearity Correction Factor 

 The linearity correction factor determined here differs from that determined by the RPC for 

the same batch of dosimeters and used in the external beam remote audit program, reprinted here 

from Equation 2.8. 

 𝐾𝐿𝑅𝑃𝐶 = (−1.374 × 10−4 × 𝑑𝑜𝑠𝑒) + 1.013 (2.8) 

The linearity correction factor and the RPC’s correction factor for the same batch of 

dosimeters are shown in Figure 4.1 along with the underlying data. 

 
Figure 4.1: A comparison of the linearity correction factor determined in this work and that determined by the RPC for 

the same batch of dosimeters. 

 The RPC has previously documented variations in linearity within a single batch of 

dosimeters after irradiation under different spectra59. The possibility that some relationship exists 

between linearity and irradiation energy contradicts certain RPC assumptions and further 

investigation is needed in this area. However, the important implication here is that for each new 

batch of dosimeters commissioned for use with the HDR phantom created in this project, a new 

linearity correction factor must be determined using the methods outlined in Section 2.4.4. It 

y = -1.374E-04x + 1.013E+00 
R² = 8.553E-01 

y = -9.433E-05x + 1.009E+00 
R² = 5.814E-01 

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0 50 100 150 200 250 300 350 400 450

K L
 

Nominal Dose [cGy] 

Linearity Correction Factor Comparison 
RPC (Co-60)

This Work (HDR)

Linear (RPC (Co-60))

Linear (This Work (HDR))



48 
 

cannot be assumed that KL for HDR sources will necessarily match the RPC’s 60Co-based linearity 

correction factor for the same batch of dosimeters. 

 In the process of commissioning the phantom described here as a new RPC audit program, 

linearity measurements were made using a different batch of dosimeters from the batch used 

throughout this work. Again, the HDR linearity correction factor differed from that determined for 

the same batch of dosimeters using a 60Co beam. Cobalt-60 and HDR linearity correction factors are 

shown for both the batch used in this work and the new batch in Figure 4.2. 

 
Figure 4.2: Comparison of linearity correction factors determined for two different OSLD batches. Dashed lines 

represent the batch used throughout this work. Dotted lines represent a new batch currently being commissioned at 
the RPC. Blue lines represent correction factors determined using a 60Co beam and a specially-designed acrylic block. 
Red lines represent correction factors determined using an 192Ir HDR source and the phantom described in this work. 

 In the case of both batches, the slope of the HDR linearity correction factor was less than 

that of the 60Co KL. It is important to note that for each new batch of dosimeters to be used with 

the HDR phantom created in this project, a new linearity correction factor will need to be 

determined as KL cannot be expected to match the RPC’s linearity correction factor for the same 

batch. 
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4.2. Block Correction Factor 

 Jursinic10 found OSLDs to be 6% more sensitive under 192Ir irradiation when compared to 6 

MV x-rays. This disagrees with the block correction factors determined in this work, which were 

1.026 and 1.000 for Nucletron and Varian sources, respectively. Energy correction is assumed to be 

a major component of those two block correction factors. However, in contrast to the energy 

correction of Jursinic, the factors determined here also account for several other corrections, as 

detailed in Section 2.4.5. Among these are the differences between dosimetry in polystyrene and in 

water, the angular dependence of OSLD nanoDots, and a phantom size that is too small to provide 

full scatter conditions. All of these considerations are irrelevant to the work of Jursinic. 

A key finding is the need for vendor-specific block correction factors to improve the 

accuracy of dose measurements. This result likely arises from differences in source geometry and 

encapsulation. The Nucletron source consists of cylindrical core of iridium of length 3.60 mm and 

diameter 0.65 mm47. The density of iridium is 22.56 g/cm3. The radioactive 192Ir is distributed 

uniformly in the core, which is encapsulated by a 0.125 mm-thick sheath of AISI 316L stainless steel 

(68% Fe, 17% Cr, 12% Ni, 2% Mn, 1% Si by weight). The density of the steel encapsulation is 8.02 

g/cm3. 

 The Varian source consists of two cylindrical iridium sources with hemispherical ends 

situated in tandem49. Each source is 2.50 mm long and 0.34 mm in diameter. The radioactive 192Ir is 

uniformly distributed in the cores. The sources are encapsulated at the end of a Ni/Ti wire (55.6% 

Ni, 44.4% Ti by weight) with a diameter of 0.59 mm. Thus the thickness of the encapsulation is 

0.125 mm around the sources. The density of the wire is 6.5 g/cm3. 

 As the density thickness of both the source itself and the encapsulation material is greater 

for the Nucletron source, we may expect that it attenuates the 192Ir spectrum slightly more than the 

Varian source. Indeed, Rivard et al.60 found the water-kerma of the Varian source to be 5.0±0.2% 

higher than that of the Nucletron source for equivalent spectra and attributed this difference to the 

thickness of the iridium cores. Rasmussen et al.61 noted that the Varian source emits a spectrum 

with a slightly higher average energy than the Nucletron source, likely due to less self attenuation 

in the source, and also remarked on its reduced polar anisotropy compared to the Nucletron 

source. Thus it is not unexpected that 𝐾𝐵𝑁𝑢𝑐𝑙𝑒𝑡𝑟𝑜𝑛 ≠ 𝐾𝐵𝑉𝑎𝑟𝑖𝑎𝑛. It is important to note that should any 

new source models be introduced into clinical use, it is likely that a new block correction factor will 
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need to be determined for the new source, especially if its physical dimensions and encapsulation 

differ substantially from those of the current Nucletron or Varian sources.  

 Block correction factors were also determined for a new OSLD batch currently being 

commissioned for use with the HDR phantom at the RPC. The 𝐾𝐵𝑁𝑢𝑐𝑙𝑒𝑡𝑟𝑜𝑛 for the new batch was 

found to be 1.035, or about 0.9% higher than the value found for the OSLD batch used in this work. 

Likewise, 𝐾𝐵𝑉𝑎𝑟𝑖𝑎𝑛 for the new batch was 1.004 or 0.4% higher than the value found in this work. 

The difference between the block correction factors for the two sources was 3.1% for the new 

batch, compared to 2.6% for the batch investigated in this work. In the future, it should not be 

assumed that block correction factors are independent of OSLD batch, and for each new OSLD 

batch commissioned by the RPC, new block correction factors for each source must be determined. 

4.3. Dose Rate Effect 

 This work found that OSLD-measured dose had no dependence on dose rate as represented 

by source strength, which has a direct relationship to dose rate for brachytherapy sources. This is in 

agreement with sources in the literature that also found no such dependence10, 62, 63. Thus no 

correction factor for dose rate needs to be included in Equation 2.6 to accurately calculate dose. 

The tool described here and the formalism of Equation 2.6 is sufficient to remotely audit HDR 

sources at any clinically-relevant source strength. 

4.4. Trial Audits 

4.4.1. Dosimetry 

 The dosimetry results from trial remote audits indicate that the phantom created in this 

work, when used with nanoDot OSLDs, can accurately measure dose when used in a mailable audit 

program. The average difference between dose measured using the tool and the institutionally-

reported treatment planning system for the eight institutions audited was negligible (RPC-to-

institution ratio = 1.000). Assuming that dose measurements are normally-distributed, more than 

95% of all measurements will fall within two standard deviations of the mean, which for the eight 

trial audits performed in this work was approximately ±2.2%. 

 For 193 well-chamber measurements of HDR source strength performed by the RPC from 

1994 to 2011, the average RPC-to-institution ratio was 1.009. The standard deviation was 0.014, 
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thus the 2σ percent uncertainty was approximately 2.8%. The results from the audits performed 

using the phantom developed in this work are on average closer to the institution’s reported value 

(1.000 versus 1.009) and with a smaller standard deviation (0.011 versus 0.014) than the RPC’s well-

chamber measurements. 

4.4.2. Questionnaire Feedback 

 The results from the trial audit questionnaires reveal that in general, physicists had a good 

understanding of how to plan and use the phantom and what tasks they needed to complete for a 

successful audit. Respondents’ average level of agreement with the statements on the 

questionnaire were in general between “somewhat agree” and “strongly agree”, with only the 

occasional rating lower than those levels. This indicates that the design of the phantom was 

intuitive enough and the included instructions clear enough to direct physicists to properly irradiate 

the phantom the majority of the time. 

4.5. Uncertainty Analysis 

 Equation 2.6, by which dose is calculated from an OSLD reading is repeated here: 

 𝐷𝑜𝑠𝑒 =  (𝑎𝑣𝑔. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑑𝑔. ) × 𝐸𝐶𝐹 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝐾𝐹 × 𝐾𝐿 × 𝐾𝐵 (2.6) 

where the system Sensitivity is a compound term with an equation of its own (Equation 2.7): 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐷𝑜𝑠𝑒 𝑡𝑜 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑎𝑣𝑔(𝑎𝑣𝑔. 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑎𝑑𝑖𝑛𝑔) × 𝐾𝐹 × 𝐾𝐿𝑠𝑡𝑑
 (2.7) 

Aguirre et al.7 have already determined the individual percent uncertainties for each term in 

Equation 2.7. Adding these uncertainties in quadrature gives the expected percent uncertainty in 

the system sensitivity, 𝜎𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: 

 

𝜎𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = �𝜎𝑑𝑜𝑠𝑒 𝑡𝑜 𝑠𝑡𝑑
2 + 𝜎𝑎𝑣𝑔 𝑟𝑑𝑔

2 + 𝜎𝐾𝐹
2 + 𝜎𝐾𝐿𝑠𝑡𝑑

2  

= �0.62 + 0.42 + 0.32 + 0.12 

< 0.8% 

(4.1) 

In Equation 4.1, 𝜎𝑑𝑜𝑠𝑒 𝑡𝑜 𝑠𝑡𝑑 is the percent uncertainty in the dose delivered to a standard 

dosimeter, 𝜎𝑎𝑣𝑔 𝑟𝑑𝑔 is the percent uncertainty in the average reading of a pair of standard 
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dosimeters, and 𝜎𝐾𝐹  and 𝜎𝐾𝐿𝑠𝑡𝑑 are the percent uncertainty in the fading correction factor and the 

linearity correction factor for standards and controls in the region of 90 to 110 cGy, respectively. 

The first three terms are all quoted at the level of one standard deviation, and 𝜎𝐾𝐿𝑠𝑡𝑑 is based on the 

95% confidence interval of the linear fit for 𝐾𝐿𝑠𝑡𝑑. 

Similarly, adding the uncertainties of each term in Equation 2.6 in quadrature gives the 

uncertainty in a dose measurement based on an OSLD reading: 

 𝜎𝐷𝑜𝑠𝑒 = �𝜎𝑎𝑣𝑔 𝑟𝑑𝑔,𝑖𝑛𝑠𝑡
2 + 𝜎𝐸𝐶𝐹2 + 𝜎𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦2 + 𝜎𝐾𝐹

2 + 𝜎𝐾𝐿
2 + 𝜎𝐾𝐵

2  (4.2) 

Here, 𝜎𝑎𝑣𝑔 𝑟𝑑𝑔,𝑖𝑛𝑠𝑡 refers to the percent uncertainty in an average reading of an institutional 

dosimeter, defined as any dosimeter which is not a standard or control. The percent uncertainty of 

an institutional dosimeter is different from and larger than the percent uncertainty in an average 

reading of a standard or control dosimeter mentioned above because the irradiation conditions are 

not as carefully defined. Aguirre provides this figure as well but combines it with the percent 

uncertainty in the ECF, 𝜎𝐸𝐶𝐹, in a single term. Thus we may say that 𝜎𝐸𝐶𝐹 = 0 and use Aguirre’s 

𝜎𝑎𝑣𝑔 𝑟𝑑𝑔,𝑖𝑛𝑠𝑡 = 0.57% as the combined uncertainty in the reading and the ECF. 

 The percent uncertainty in the fading correction factor is the same as that provided by 

Aguirre. However, the percent uncertainty in the linearity correction factor �𝜎𝐾𝐿� depends on the 

linearity determined specifically in this work and thus differs from Aguirre’s uncertainty. In the 

region of 90 to 110 cGy, the 68% confidence interval in KL, which represents one standard deviation 

assuming the data follow a normal distribution, is ±0.15% (see Figure 3.8) so that is the value for 

𝜎𝐾𝐿  used here. 

 Lastly we assume 𝜎𝐾𝐵 , the percent uncertainty in the block correction factor, to equal one 

standard deviation of the measured KB in percent. These numbers are 0.6% and 0.7% for the 

Nucletron- and Varian-specific block correction factors respectively (see Table 3.1 and Table 3.2). 

The individual uncertainty values may be applied to Equation 4.2 to calculate the overall 

uncertainty of the system: 

𝜎𝐷𝑜𝑠𝑒,𝑁𝑢𝑐𝑙𝑒𝑡𝑟𝑜𝑛 = �(0.57%)2 + (0)2 + (0.8%)2 + (0.3%)2 + (0.15%)2 + (0.6%)2 

= 1.2% 
(4.3) 
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𝜎𝐷𝑜𝑠𝑒,𝑉𝑎𝑟𝑖𝑎𝑛 = �(0.57)%2 + (0)2 + (0.8%)2 + (0.3%)2 + (0.15%)2 + (0.7%)2 

= 1.2% 
(4.4) 

Assuming that OSLD dose measurements follow a normal distribution, 95.45% of all 

readings will fall within two standard deviations of the mean. Thus we quote 2σ as the estimated 

uncertainty in the system. This is 2.4% for measurements of Nucletron sources and 2.5% for 

measurements of Varian sources. The complete uncertainty budget is presented in Table 4.1. 

Table 4.1: Uncertainty budget in dose calculations based on OSLD readings as calculated using Equation 2.6. All values 
given are in percentages. 

Quantity Value 
(Percent) Source 

𝜎𝑎𝑣𝑔 𝑟𝑑𝑔,𝑖𝑛𝑠𝑡 0.57 Aguirre 

𝜎𝐸𝐶𝐹 0 Aguirre (included in 𝜎𝑎𝑣𝑔 𝑟𝑑𝑔,𝑖𝑛𝑠𝑡) 

𝜎𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 0.8 Aguirre (see Equation 4.1) 

𝜎𝐾𝐹  0.3 Aguirre 

𝜎𝐾𝐿  0.15 68% Confidence Interval of KL from 90 to 
110 cGy (see Figure 3.8) 

𝜎𝐾𝐵  
0.6 0.7 1 standard deviation, measured 

Nucletron Varian 
Total (2σ) 

2.4 2.5  
Nucletron Varian 

 In the uncertainty analysis of the RPC’s original TLD mailed dosimeter program, Kirby et 

al.64 established a ±5% acceptance criterion for institutional measurements based on an estimated 

uncertainty of 5% in TLD dose calculations at the 93% confidence level. With estimated standard 

deviations of 1.2% for both Nucletron and Varian measurements, a ±5% interval represents 

approximately 4 standard deviations in the dose measurements made in this work. Assuming that 

dose measurements from OSLDs are normally-distributed, greater than 99.99% of all 

measurements are expected to fall within 4 standard deviations of the mean. As a result, the 

accuracy of measurements made using the tool presented here exceeds that found by Kirby for the 

TLD program, so establishing a ±5% acceptance criterion for HDR measurements is appropriate. 

4.5.1. Measured Uncertainty 

 In order to experimentally confirm the uncertainty analysis, the measured-to-expected 

dose ratios for 56 individual measurements were considered. This set included measurements 

made for various purposes during the course of this work, including data from trial remote audits. 
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For these data, the “expected” value is the expected dose as used in Equation 2.5 to determine 

dwell times, or, in the case of remote audits, the institutionally-reported dose from the treatment 

planning system. The “measured” dose is always the dose calculated using Equation 2.6 and OSLD 

readings. The breakdown of measurements between the two sources was 42 Nucletron, 14 Varian. 

The average measured-to-expected dose ratio for these 56 measurements was 1.001, the standard 

deviation was 0.009, and the standard error of the mean was 0.0013. The 2σ uncertainty of 1.9% is 

well within our predicted 2σ uncertainty of 2.5%. A histogram showing all 56 measurements is 

shown in Figure 4.3. 

 
Figure 4.3: Histogram of measured-to-expected dose ratios for 56 individual measurements. The data fits a normal 

distribution with μ=1.001 and σ=0.009. 

 It is important to note that the data in Figure 4.3 include measurements used to calculate 

𝐾𝐵𝑁𝑢𝑐𝑙𝑒𝑡𝑟𝑜𝑛 and 𝐾𝐵𝑉𝑎𝑟𝑖𝑎𝑛, and thus the histogram is biased in favor of values around unity. Excluding 

any data used to determine KB leaves 26 measurements (22 Nucletron, 4 Varian). The average of 

the measured-to-expected ratios excluding KB measurements was 1.002, the standard deviation 
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was 0.012, and the standard error of the mean was 0.002. Thus the 2σ uncertainty of the data 

excluding KB measurements is 2.5%, which matches our predicted value. 

 As detailed previously, the average RPC-to-institution ratio for 193 RPC well chamber 

measurements was 1.009 with a standard deviation of 0.014. The values measured with the 

phantom described here compare favorably to those results. 

4.5.2. Positional Uncertainty, Lateral Direction 

 The diameters of the Nucletron and Varian sources are 0.90 and 0.59 mm, respectively. 

While the inside diameter of 6 French catheters may vary by manufacturer and type, it is clear that 

there exists some latitude for movement of both the source inside the catheter and the catheter 

inside the phantom channel in the lateral direction (toward and away from the dosimeters). 

 By making some conservative assumptions about the physical dimensions of the phantom, 

we may estimate the maximum extent of lateral positioning deviation of the source. Let us assume 

that both the channel diameter and the OSLD slot width have an uncertainty of 5%, which indicates 

a maximum deviation of ±0.1 mm in the nominal 2.0 mm size of each. This assumed uncertainty is 

much higher than the quoted tolerance of the computer-controlled tools used to machine the 

phantom, which is ±0.001 inch, or approximately 0.025 mm. We also assume that the thickness of 

the catheter wall is negligible and that the source is essentially free to move laterally through the 

entire extent of the interior channel diameter. The assumptions are illustrated in Figure 4.4. 
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Figure 4.4: A cross-section of the interior of the phantom showing the assumptions made in order to calculate the 
maximum variance in lateral source positioning. The central channel and OSLD slots are shown in blue. The Ir-192 

source is shown at center in gray. All sizes are to scale except for the channel-to-OSLD-slot distance (20 mm). 

 Because these first three assumptions are known to be extremely conservative, it was 

assumed that the distance from the center of the channel to the center of the OSLD slot is exactly 

20 mm. Lastly, it was assumed that the nanoDot OSLD cassette was exactly 2 mm wide and that the 

active dosimeter is two-dimensional and centered along the cassette width. Combining all these 

assumptions, it is estimated that Nucletron and Varian sources may be 20±0.65 mm and 20±0.805 

mm away from the active dosimeter, respectively. 

 Using TG-43 calculations, the effect of moving the sources laterally off a line which bisects 

the two OSLD slots was quantified. The results are shown in Figure 4.5. For a Nucletron source, 

moving the source 0.8 mm toward one dosimeter resulted in an increase of dose of more than 5% 

to that dosimeter. The other dosimeter, which the source was moved away from, saw a decrease in 

dose of approximately 5%. On their own, deviations in dose of this magnitude would be 

unacceptably high. However, it is here that the dual dosimeter design of the phantom offers an 
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advantage. Even with the source 0.8 mm off center, the average of the two dosimeter 

measurements is approximately 0.2% higher than the average with the source positioned perfectly 

between the dosimeters. The corresponding figure for a Varian source 0.8 mm off center was also 

approximately 0.2%. As the intended use of the tool always involves two dosimeters whose dose 

measurements are averaged together to obtain a final result, and the dosimeter slots cannot move 

in relation to each other or the channel, even extreme lateral variations in the source positioning 

are not expected to have a significant effect on dose measurements using the tool. This is an 

important consideration in the rationale to always consider the average of two dosimeters as a 

single measurement in this work. 

 Conversely, if one of the two dosimeters irradiated at the same time is unreadable or we 

are otherwise unable to average the two readings together, Figure 4.5 shows that the variation in 

dose received by the other (good) dosimeter may be as much as ±5%. In a scenario in which only 

one of the two dosimeters is readable, there is no method by which to reasonably estimate the 

actual dose received by the other dosimeter and the uncertainty introduced is too high to provide 

an accurate HDR audit. Thus any audit for which both dosimeters are not able to be read and 

averaged together must be considered unreliable and therefore discarded. 

 
Figure 4.5: Effect on dose delivered to the OSLD points of measurement from moving the source laterally within the 

channel. Calculated using TG-43. 
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4.5.3. Timing Resolution Limitations 

 The Oncentra TCS software which controls the Nucletron afterloader allows a maximum 

resolution of 0.1 s in dwell times. Although the standard plan does not include any dwell times 

requiring greater resolution than this, in practice the plan is almost always scaled prior to 

irradiation using the current air-kerma strength of the source and Equation 2.5. This often 

necessitates dwell times which require greater resolution than 0.1 s in order to deliver the precise 

dose desired. However, the Oncentra software enforces the rounding all dwell times to the nearest 

tenth of a second. 

 In order to investigate the effect that such a limitation in timing resolution might have on 

dose measurement uncertainty, two worst-case scenarios were calculated using TG-43 and 

assuming a Nucletron source. First, the dose delivered to the point of measurement using a plan 

created by subtracting 0.05 s from each dwell time in the standard plan was calculated. In this case, 

the dose at the point of measurement was 99.40 cGy. Next, the dose delivered using a plan created 

by adding 0.05 s to each dwell time in the standard plan was calculated. This dose was 101.63 cGy. 

 The same TG-43 calculation using the standard plan with no modifications reports a dose at 

the point of measurement of 100.52 cGy. Thus, the subtraction and addition plans were -1.1% and 

+1.1% different from the expected dose using the unmodified plan, well within the estimated 

uncertainty of the system as a whole. As a rounding error of ±0.05 s in the same direction for each 

of the 10 dwell times represents a truly miraculous worst-case scenario, actual deviations in dose 

due to the software’s timing resolution will likely be much smaller. Additionally, the calculations 

reported here assume a source strength of 40300 U, or approximately 10 Ci, which is approximately 

equal to the strength at which clinical 192Ir sources are installed. As the majority of sources audited 

are likely to be weaker than this, the scaled dwell times used will necessarily be longer, and thus 

the loss of perhaps a few hundredths of a second due to rounding will have an even smaller effect 

than that reported here. 
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5. Conclusion 

5.1. Hypothesis 

 The hypothesis of this work is as follows: 

A mailable, OSLD-compatible 192Ir HDR brachytherapy phantom suitable for RPC monitoring 

of clinical trial sites can be developed with the ability to measure HDR dose accurately to within 

±5%. 

 We have shown that the proposed phantom design, when used with nanoDot OSL 

dosimeters, offers dose measurement accuracy of 2.4% and 2.5% for the Nucletron microSelectron-

HDR v2 and Varian VS2000 192Ir sources, respectively, which are the two sources in current clinical 

use in the United States. This level of accuracy is superior to that of Kirby et al.64 who established a 

±5% acceptance criterion for the RPC’s original mailed TLD external beam audit program. 

Therefore, the level of accuracy provided by the phantom described in this work is sufficient to 

establish that same criterion when comparing OSLD HDR dose measurements to institutionally-

reported dose. Measurements made with this phantom tend to be on average closer to the 

expected (i.e., institutionally-reported) value and with a smaller standard deviation than well 

chamber measurements performed during RPC site visits. 

 Furthermore, the phantom and OSLD system has other properties which make it an 

acceptable tool for RPC mailed audits. It is manufactured from durable high-impact polystyrene and 

its size and weight allow it to be mailed to institutions for a cost of a few dollars. The OSL 

dosimeters used have been shown to have acceptably predictable time- and temperature-

dependent fading properties through their current use in the RPC’s external beam audit program. 

 Operationally, the phantom is designed to be simple and intuitive to use. The treatment 

plan requested of participating institutions is straightforward and the instructions are meant to be 

clear and concise. Physicists who have participated in trial audits without any guidance other than 

the included instructions have reported spending on the order of an hour in completion of the 

entire task of planning and irradiation. 
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5.2. Future Work 

 As the audit tool proposed here becomes a full RPC program used for monitoring of clinical 

trial sites, several future considerations will need to be made. First, the work here uses dosimeters 

from only a single batch of nanoDot dosimeters, known internally at the RPC as the “O4K09” batch. 

However, Al2O3:C dosimeters are known to have batch-specific properties, and the RPC currently 

uses unique linearity correction factors for each batch in use in its external beam audit programs. If 

the phantom produced by this work is to be used with other batches of nanoDot OSL dosimeters, a 

new linearity correction factor and block correction factor will need to be determined. 

As mentioned previously, this work provides block correction factors for the two 192Ir 

source models in current clinical use in the United States as of 2012. These correction factors differ 

by about 2.6%. If new source models are introduced to the market in the future, or the current 

models are revised substantially by their manufacturers, new block correction factors will need to 

be calculated to maintain the measurement accuracy of the system. 

 Interest in new brachytherapy dose calculation algorithms has increased in recent years as 

the current TG-43 paradigm has known limitations65. Specifically, research continues toward 

incorporating tissue heterogeneity corrections in to commercial HDR treatment planning systems. 

As such systems become prevalent in clinical use, the opportunity for a heterogeneous phantom 

which makes use of the advanced algorithms will arise. As the phantom proposed here is made of 

homogeneous material, it provides no opportunity for evaluating dose calculations incorporating 

heterogeneity corrections. 

 Finally, incorporating feedback gathered from the trial audits performed in this work, as 

well as feedback collected both formally and informally from participating institutions as the RPC 

initiates its HDR brachytherapy audit program, will allow the proposed phantom to continue to 

evolve into a more “user-friendly”  tool. As improvements are made to both the phantom itself and 

the included instructions and forms, we may expect the accuracy and usefulness of the program to 

continue to increase as human mistakes and misunderstandings are minimized. The data and 

statistics collected from a full RPC program will offer further insight into the phantom’s suitability 

as a tool which both the RPC and participating physicists can rely on for accurate HDR audits. 
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6. Appendix 

6.1. Phantom Dimensions 

 
Figure 6.1: Cross-sectional view of phantom prototype, side view. Shaded areas represent voids forming the catheter 

channel and OSLD slot. All dimensions are in mm. 
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6.1. Phantom Dimensions (continued) 

 
Figure 6.2: Phantom prototype front view. The shaded area at center is the opening of the catheter channel. All 

dimensions are in mm. 
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6.2. Calibration Reports 
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6.2. Calibration Reports (continued) 
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6.2. Calibration Reports (continued) 
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6.2. Calibration Reports (continued) 
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6.3. Remote Audit Forms 

6.3.1. Instructions 
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6.3.1. Instructions (continued) 
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6.3.2. Irradiation Form 
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6.3.3. Questionnaire 
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6.3.3. Questionnaire (continued) 
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6.4. Remote Audit Questionnaire Results 

Table 6.1: Respondents' scores for each of the statements on the trial audit questionnaire. 
1 = "Strongly Disagree" and 5 = "Strongly Agree". 

The instructions for setting up the phantom were clear and easy to understand. 
5 5 5 4 4 4 4 5 

Average = 4.5 Median = 4.5 Standard Deviation = 0.5 
The phantom itself was easy to use and intuitive in its operation and setup. 

5 5 5 4 5 5 4 5 
Average = 4.8 Median = 5 Standard Deviation = 0.5 

The instructions for treatment planning were clear and easy to understand. 
4 4 5 4 3 3 4 5 

Average = 4.0 Median = 4 Standard Deviation = 0.8 
The instructions for locating “Point A” and calculating the dose there were clear and easy to 
understand. 

4 5 5 4  3 4 5 
Average = 4.3 Median = 4 Standard Deviation = 0.8 

It was clear to me what information I needed to return to the RPC. 
5 5 5   3 4 5 

Average = 4.5 Median = 5 Standard Deviation = 0.8 
The Irradiation Form was easy to understand and complete. 

5 5 5 4 5 3 4 5 
Average = 4.5 Median = 5 Standard Deviation = 0.8 

The information requested on the Irradiation Form was relevant to the audit process. 
4 5 4 4 4 4 4 5 

Average = 4.3 Median = 4 Standard Deviation = 0.5 
The Irradiation Form included all of the items that I feel are necessary for the RPC to understand 
my system and procedure. 

4 2 4 4 5 3 4 5 
Average = 3.9 Median = 4 Standard Deviation = 1.0 

I understand the goals of this new RPC audit program. 
5 4 5 3 4 5 4 5 

Average = 4.4 Median = 4.5 Standard Deviation = 0.7 
I feel that the program offers and appropriate balance between ease-of-use and clinical 
relevancy. 

4 2 5 4 5 5 4 5 
Average = 4.3 Median = 4.5 Standard Deviation = 1.0 

My clinic would be interested in this tool as an independent audit program in the future. 
4 4 4 4 5 5 4 5 

Average = 4.4 Median = 4 Standard Deviation = 0.5 
 

Table 6.2: Respondents' reported total time spent on planning, setup, and irradiation. All times in minutes. 
Approximately how much time did you spend on planning, setup, and irradiation? (in minutes) 

30 60 60 60 90 120 15 120 
Average = 69 Median = 60 Standard Deviation = 38 
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6.4. Remote Audit Questionnaire Results (continued) 

Table 6.3: Responses to the general comments/suggestions portion of the questionnaire. 
Please include any additional comments or suggestions on phantom setup and the setup 
instructions. 
The thumbscrew is difficult to tighten – never tightened enough to ‘hold’ catheter 
Instructions were clear. 
The thumbscrew did not hold my catheter in place so I had to fix it with tape. It would be helpful to 
know the distance from the tip of the thumbscrew to the end point in the phantom so I could verify 
that the catheter was inserted all the way. 
The catheter was a little difficult to push all the way in. 
It would help if the RPC provided a standard catheter without the connector. We did not have the 6 
French but had one close to it. The clamp does not really work for sizes other than 6 French. 
I didn’t realize that we would be inserting the catheter and it was sort of lucky that we had the 
proper size on hand. 
 
Please include any additional comments or suggestions on treatment planning and the planning 
instructions. 
Used planning optimization method typically used in our clinic – opt. to dose points. Reading 
instructions again – did not optimize each dwell position individually. 
Item b): Most distal dwell positions available is a bit vague. What do you mean by “available”? is 
the part that’s not very clear. Depending on the RAL & the transfer tubes used, this can impact 1st 
dwell (most distal according to your diagram) location that is “available” – perhaps this doesn’t 
have much bearing on what you’re doing. 
 
Why don’t you ask for the setback of 1st dwell location on irradiation form. You get this w/ the plan 
printout, so perhaps not necessary. 
 
c): You can define 10 dwells, but depending on how one optimizes one may actually have less than 
10 “active” dwells – since you don’t say that there must be 10 “active”, then one can interpret as 
less than 10 “active” being okay. Is this what you want? 
Some people may not know how to achieve the dose distribution asked for. In our clinic we only 
use IPSA optimization for planning clinically (inverse planning). Had I not attended the Nucletron 
training, I would not have known how to plan this. Also, as far as I know, there is several ways to 
achieve it, not sure if it matters how we go about planning though. The directions seemed more 
written for BrachyVision. 
It would help if the RPC provided dwell times instead of letting the “planner” come up with a plan 
that mimics as close as possible the desired dose distribution. 
Dwell times can easily be scaled using ratios of activity to get the desired dose. This way you 
eliminate any planning ambiguities. 
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6.4. Remote Audit Questionnaire Results (continued) 

Table 6.3: Responses to the general comments/suggestions portion of the questionnaire (continued). 
Please include any additional comments or suggestions not covered above. 
What are you hoping to achieve – a purpose statement would be good. What are the goals? 
 
As we move towards heterogeneity corrections being included it would be cool to have a phantom 
that has this being evaluated as well. I’m sure this is already being considered, etc. 
Overall, I thought this was a relatively easy test to plan and perform and that the instructions were 
well thought out. 
Some users may have Acuros/Monte Carlo based systems to correct for heterogeneities. Perhaps 
you could consider such users in the design/instructions/planning notes in the future. 
All in all, the device/jig is pretty easy to use and small enough to mail/handle. A cylindrical design 
could be better when considering gyn applicators/balloons/tandems, … etc to mimic the applicators 
being used in the clinic. 
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