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Ribbon synapses are found in sensory systems and are characterized by ‘ribbon-like’ 

organelles that tether synaptic vesicles. The synaptic ribbons co-localize with sites of 

calcium entry and vesicle fusion, forming ribbon-style active zones. The ability of ribbon 

synapses to maintain rapid and sustained neurotransmission is critical for vision, hearing and 

balance. At retinal ribbon synapses, three vesicle pools have been proposed. A rapid pool of 

vesicles that are docked at the plasma membrane, and whose fusion is limited only by 

calcium entry, a releasable pool of ATP-primed vesicles whose size also correlates with the 

number of ribbon-tethered vesicles, and a reserve pool of non-ribbon-tethered cytoplasmic 

vesicles. However evidence of vesicle fusion at sites away from ribbon-style active zones 

questions this organization. Another fundamental question underlying the mechanism of  

vesicle fusion at these synapses is the role of SNARE (Soluble N-ethylmaleimide sensitive 

factor Attachment Protein Receptor) proteins. Vesicles at conventional neurons undergo 

SNARE complex-mediated fusion. However a recent study has suggested that ribbon 

synapses involved in hearing can operate independently of neuronal SNAREs.  We used the 

well-characterized goldfish bipolar neuron to investigate the organization of vesicle pools 



 
 

vi 
 

and the role of SNARE proteins at a retinal ribbon synapse. We blocked functional refilling 

of the releasable pool and then stimulated bipolar terminals with brief depolarizations that 

triggered the fusion of the rapid pool of vesicles. We found that the rapid pool draws 

vesicles from the releasable pool and that both pools undergo release at ribbon-style active 

zones. To assess the functional role of SNARE proteins at retinal ribbon synapses, we used 

peptides derived from SNARE proteins that compete with endogenous proteins for SNARE 

complex formation. The SNARE peptides blocked fusion of reserve vesicles but not vesicles 

in the rapid and releasable pools, possibly because both rapid and releasable vesicles were 

associated with preformed SNARE complexes. However, an activity-dependent block in 

refilling of the releasable pool was seen, suggesting that new SNARE complexes must be 

formed before vesicles can join a fusion-competent pool. Taken together, our results suggest 

that SNARE complex-mediated exocytosis of serially-organized vesicle pools at ribbon-

style active zones is important in the neurotransmission of vision. 
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CHAPTER I 

 

GENERAL INTRODUCTION 
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One of the most intriguing questions in neuroscience is how do nerve cells process 

and transmit information?  The search for the answer began more than one hundred and 

twenty years ago (1886-90), when work by several neuroanatomists including Ramon Y 

Cajal, His, Purkinje and Forel suggested that nerve cells were independent biological units 

(1, 2). In 1891 Wilhelm von Waldeyer coined the term ‘neuron’ derived from the Greek 

word for sinew for the unitary nerve cell (3). The "neuron doctrine" was proposed by Cajal 

which  asserts that “nerve tissue is composed of individual cells, which are genetic, 

anatomic, functional and trophic units”. One of the assumptions of the neuron theory was 

that “neurons must enter into functional connections by contiguity, not continuity”(4). These 

sites of ‘contiguity’ were suggested to be sites where transmission of information occurred 

and were termed as ‘synapses’ by Sherrington in 1897(5).  

Our current understanding of neurotransmission is that nerve cells communicate with 

each other by two main mechanisms: via chemical messengers molecules called 

neurotransmitters at chemical synapses and the direct transmission of electrical signals via 

gap junctions at electrical synapses (1). In a chemical synapse, neurotransmitter release 

occurs extremely rapidly (within milliseconds) and is restricted to an area of less than a 

micrometer square (6). Transmission of signals occurs via calcium-dependent fusion of 

neurotransmitter- laden vesicles with the outer membrane of the nerve cell; a process called 

exocytosis. Exocytosis is mediated by several protein-protein interactions.  

A unique type of chemical synapse called ‘ribbon synapse’ is found in sensory 

neurons. Specialized organelles, so called ribbons to which synaptic vesicles tether, are 

found in the pre synaptic neurons of these synapses. These specialized synapses are found in 

photoreceptors and bipolar cells in the retina (7–10), other sensory systems such as the 
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cochlea and vestibular organ of balance (11), the electro-sensory organs and the receptors in 

the lateral line in fish (12). They are also found in pinealocytes of the pineal gland (13). 

Ribbon synapses are unique because they have the ability to respond to stimuli that are 

graded and can accurately transmit information over a broad range of stimulus intensities 

and over prolonged time periods. A human photoreceptor cell, which releases 

neurotransmitter tonically can detect a single photon of light and can also transmit changes 

in the intensity of light over a wide dynamic range of 1010 (14–16).  

The overall aim of this dissertation is to study the mechanisms underlying 

neurotransmitter release at these specialized ribbon synapses, specifically the functional 

organization of synaptic vesicles. In this chapter I will briefly introduce 1) the synaptic 

vesicle cycle: the basic pre synaptic mechanism underlying neurotransmitter release and the 

proteins regulating it.  2) Different types of synaptic release. 3) Synaptic vesicle pools and 4) 

a short note on ribbon synapses. More detailed backgrounds of the relevant topics are found 

in the introductions to the respective chapters. Finally, I will propose the working hypothesis 

of this thesis, which will be tested in the following chapters.  

The synaptic vesicle cycle 

In its most classical and simplest form neurotransmitter release occurs during the 

synaptic vesicle cycle at the presynaptic nerve terminal. The synaptic vesicle cycle helps the 

neuron maintain repetitive release by recycling vesicles. The first step of this cycle is the 

active transport of the neurotransmitter into secretory vesicles relying on a proton gradient 

(17). A cohort of vesicles then dock at the active zone. The active zone is site at which 

protein-protein interactions that mediate exocytosis occur and is also the site of voltage 

dependent calcium channels.  Once docked, the vesicles undergo multiple ‘priming’ steps in 
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preparation for release. The docking and priming steps of the cycle are regulated by several 

proteins and nucleotides (18–24). The final step in fusion requires the depolarization of the 

neuron which opens the voltage gated calcium channels and allows for an influx of calcium 

that triggers exocytosis. A number of proteins have been identified that aid in this process 

(6, 25–27). After exocytosis the vesicles are retrieved via endocytosis. Endocytosis occurs 

either via a fast pathway where the vesicle is reused locally without entering an endosomal 

recycling step or via a  slower process where the protein clathrin assists in retrieving the 

vesicle, which then recycles via an endosomal pathway (28)  completing the synaptic vesicle 

cycle.          

Exocytosis is aided by four families of proteins: SNARE (Soluble N-

ethylmaleimide-sensitive factor Attachment protein Receptor) proteins, SM (Sec1/Munc 18-

like) proteins, Rab proteins and Rab effector proteins (26). The SNARE proteins, syntaxin, 

SNAP 25, (both traditionally considered to be found on the plasma membrane, or target 

SNAREs / t SNAREs) and synaptobrevin, also called VAMP, (found on the vesicle or v-

SNAREs) form the minimum fusion machinery for neuronal exocytosis. These three 

proteins form a stable complex called the SNARE complex, allowing the vesicles to fuse 

with the plasma membrane. The SNARE proteins contain a 60 residue sequence called the 

SNARE domain which interacts with each other to form a tight coiled helical bundle. 

Syntaxin and synaptobrevin contribute one domain each while SNAP 25 contributes two. 

The formation of this SNARE complex is thought to bring the two membranes (vesicle and 

plasma membrane) together, destabilize the negatively charged membranes, allow 

intermixing of the hydrophobic lipid interiors and thus provide the energy for membrane 

fusion (29).  
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Fig 1.1 The classical view of the synaptic vesicle cycle. Synaptic vesicles contain 
neurotransmitter transporters that load the vesicles with neurotransmitters. Mobilized 

vesicles are translocated to the plasma membrane where they dock at the active zone. 
Docked vesicles then undergo priming steps. Docking and priming render the vesicle fusion-

competent. A rise in intracellular calcium via influx through voltage-gated calcium channels 
results in binding of calcium to calcium sensors and triggering vesicle fusion which causes 
release of neurotransmitter into the synaptic cleft. Following full- fusion the vesicle 

membrane is retrieved endocytosis. 
Richmond, J. Synaptic function (December 7, 2007) 

(Copyright: © 2007 Janet Richmond.) This is an open-access article distributed under the terms of the 

Creative Commons Attribution License. 

 

The SM proteins interact with the SNARE complex to aid in fusion (26), however 

their exact mechanism of action is still under study. SM proteins are composed of an ~ 600 

amino acid conserved sequence that forms a clasp like structure (30). The SM protein 

Munc18-1 "clasps"  the SNARE protein syntaxin 1.  Syntaxin 1 can exist in a "closed " 

confirmation where its own N-terminal folds back on its SNARE domain.  In its closed form 



 
 

6 
 

syntaxin is unable to interact with the other SNARE binding partners. Munc 18-1 is known 

to bind to syntaxin and stabilize the “closed” conformation of syntaxin (31).The Rab 

proteins are GTP binding proteins and the Rab-effectors are complexes and their interaction 

with Rab proteins are GTP dependent. Both Rab proteins and Rab effectors are thought to be 

involved in the docking step of the synaptic vesicle cycle (32).  

Two other families of proteins, Complexins and Synaptotagmins are also known to 

be essential in exocytosis.  A single molecule of Complexin binds to a single assembled 

SNARE complex (33). Complexins consist of four (Complexin I- IV ), 134-160 residue 

proteins, of which Complexin III and IV are the isoforms present in retinal ribbon synapses 

(34). The complexins are thought to act at a late step in exocytosis, just prior to calcium 

mediated fusion of vesicles (35). One suggested role is to clamp/stabilize assembled SNARE 

complexes and prevent fusion. This clamp is removed when calcium activates 

Synaptotagmin (a calcium binding protein) and interacts with the SNARE complex (36–38). 

In support of complexin's role in inhibiting fusion, glutametergic motor neurons of 

Drosophila complexin null mutants show increased spontaneous release (39). However a 

study from mouse  complexin 1/2 and complexin 1/2/3 knockouts  showed  decreased 

spontaneous and evoked  release in glutametergic hippocampal neurons and brainstem 

glycinergic/GABAergic neurons (40). These results suggest that complexins can act both as 

a facilitator and inhibitor of exocytosis. A series of recent studies suggest that a switch in 

Complexin's conformation may change its role from a inhibitor to a facilitator of fusion (41–

43) . 

Synaptotagmins  (Syt) are calcium-binding proteins that have two C2  Ca2+-binding -

domains (44). Synaptotagmins are mostly present on synaptic vesicles (but can also be 
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found on the plasma membrane) and  are the calcium sensors (Syt 1 , 2 and 9) for 

neuroexocytosis (26, 45–47) .  However  in hair cells, otoferlins are the calcium sensors (48, 

49).  Knocking out Synaptotagmin 1/2  in mice results is the loss of  calcium-triggered 

exocytosis (50, 51) suggesting their role is synchronous release. Synaptotagmins have also 

been suggested to have a role in aligning releasable vesicles in proximity to calcium 

channels (52). 

Types of synaptic release 

Synaptic release triggered by calcium can be further classified into evoked release 

and spontaneous release. Evoked release commences within sub milliseconds of the calcium 

influx (53–56). This fast and synchronous release can be measured from post synaptic 

currents. These post synaptic currents have been fitted by a double exponential function, 

suggesting a fast phase followed by a slower phase of release (55, 57, 58). Evoked release 

may also have an asynchronous phase which sets in after a delay. While often thought to be 

negligible in excitatory synapses (however delayed asynchronous transmission has been 

reported in excitatory synapses (59, 60)) , asynchronous release may be the principal form of 

release during high frequency trains in some inhibitory synapses (61–63).  

Spontaneous release is independent of membrane depolarizations such as action 

potentials. It represents fusion of single synaptic vesicles, giving rise to ‘mini’ post synaptic 

changes (64). Spontaneous release may be driven by stochastic calcium channel opening, 

basal intra-cellular calcium or spontaneous calcium transients from intra- cellular stores 

(65).  
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Synaptic vesicle pools 

 At the electron microscope level all synaptic vesicles look similar.  However, 

vesicles may be found in different sub cellular spaces, such as docked to the plasma 

membrane or attached to a synaptic ribbon (see below, fig 1.2).  The concept of vesicle 

pools comes from the finding that not all vesicles are functionally equal; some vesicles are 

released more easily than others (reviewed in Denker and Rizzoli, 2010). How readily a 

vesicle is released depends on many factors including its proximity to the plasma membrane 

and calcium channels, whether it is docked and whether it has undergone all the necessary 

priming steps. Therefore populations of vesicles may be located at different anatomical sub-

cellular spaces and be biochemically distinct from each other. A recent study has suggested 

that vesicles which undergo spontaneous release are biochemically different from those that 

respond to evoked release. Specifically a synaptic vesicle protein VAMP7 was present in 

higher levels in the spontaneously releasing pool compared to the pool of vesicles 

undergoing evoked release (67) 

 The first hint that vesicles may be arranged in pools came from experiments in cat 

sympathetic ganglion (68). Birks and MacIntosh found that there were at least two fractions 

to the acetylcholine released from the cervical ganglia: a smaller ‘readily releasable’ fraction 

and a larger non-readily releasable fraction. The smaller fraction was also more rapidly 

depleted in response to high frequency stimulations. Based on these findings they proposed 

that there were different intracellular locations of these different fractions of acetylcholine 

and considered that there may be an interrelationship between the different fractions . 

Vesicle pools have been studied in many neuronal preparations such as Drosophila 

neuromuscular junctions, hippocampal synapses, a giant synapse in the auditory pathway 
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called the calyx of Held and even in ribbon synapses such as salamander photoreceptors, 

goldfish bipolar cells and hair cells, reviewed in Rizzoli and Betz (69).  For all these 

synapses, three major synaptic pools have been proposed. There is no consensus on the 

nomenclature for these pools in the literature and to avoid any confusion in this thesis, I will 

be referring to these three pools as the rapid pool (which has previously been referred to as 

the readily-releasing pool, rapidly releasing pool, immediately-releasing pool or the ultrafast 

pool); the releasable pool (has also been called as the recycling pool) and the reserve pool 

(has also been called the cytoplasmic pool).  

The simplest interpretation of three functional pools is that their vesicles are 

localized to three different distances from the active zones or the vicinity of the calcium 

channels (69). The model assumes that the further away a cohort of vesicles is from an 

active zone the slower it is likely to release. While the rapid pool by definition must be able 

to undergo immediate release and therefore consists of vesicles docked at the active zones 

and primed for release, the vesicles in the releasable and reserve pools may be located at 

varying distances from the release sites and recruited to the active zone. Therefore higher 

levels of stimulation are required for the releasable and the reserve pool vesicles to undergo 

fusion. It is important to note that there may be intermixing of vesicles between the pools 

such that the pools are in dynamic equilibrium. Also, vesicles in one pool may be a subset of 

a larger pool. Some general characteristics of the three pools are listed below. 

The Rapid Pool: These vesicles are generally thought to be anatomically closest to the 

plasma membrane, “docked” at the active zone and available for immediate release. The 

rapid pool is generally composed of ~1-2% of the total vesicles. These rapid pool vesicles 

can be released by 5-10 high frequency action potentials in conventional synapses such as 
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hippocampal neurons and the calyx of Held (70, 71) and 8- 30 milliseconds of 

depolarization in retinal ribbon style neurons (72–74). In the hippocampal neurons, calyx of 

Held and retinal bipolar neurons, the number of docked vesicles from anatomical studies has 

correlated well with the size of the rapid pool as estimated from physiological experiments 

(75–77).  

The Releasable pool: The role of releasable pool vesicles is to maintain release once the 

rapid pool has been depleted. In the rat calyx of Held and drosophila neuromuscular 

junction, this pool is thought to be able to sustain release at physiological intensities of 

stimulation (78, 79).  In the retinal bipolar neuron this pool has been defined as the cohort of 

vesicles which have already undergone all the ATP-dependent priming steps required for 

fusion (80, 81). The releasable pool contains ~ 10-20% of the synaptic vesicles, and in non-

ribbon synapses are found scattered in the cytoplasm and are more mobile than the rapid and 

reserve pools (reviewed in Rizzoli and Betz, 2005). In ribbon synapses, the anatomical 

location of the releasable pool is contentious (82, 83).  

The Reserve pool: The reserve pool serves as the depot for synaptic vesicles. It is composed 

of most of the vesicles (~80-90%) in the synapse. This pool serves to refill the other two 

pools and therefore participates in exocytosis during high stimulation protocols (78, 79, 84). 

These vesicles are found scattered in the cytoplasm (75, 76). They have low mobility in non-

ribbon synapses, whereas in ribbon synapses they are highly mobile (85–87).  Table 1.1 

shows comparison of the characteristics of the three pools in four different neurons. 

 In non-ribbon synapses, synapsins (a family of neuron specific phosphoproteins) 

help to cluster synaptic vesicles by tethering them to each other and to the actin cytoskeletal 

meshwork (88). While it was originally thought that in non-ribbon synapses synapsins help 
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to cluster the reserve pool (88), experiments from synapsin knock-out animals have 

suggested that synapsins  play a role in the size and exocytosis of the releasable pool (89, 

90) and also in the formation of the rapid pool during neurodevelopment (91). Synapsins are 

absent in ribbon synapses (92–94). In ribbon synapses, electron micrographs have shown 

that a pool of vesicles is tethered to electron dense ribbon like structures (75, 95, 96).  

 The study of synaptic vesicle pools continues to be a very exciting field in 

neuroscience and several studies have suggested the existence of newer pools: 1) The 

“spontaneously releasing pool” is defined  to be composed of vesicles that undergo 

spontaneous release (97–99). However another recent study has suggested that evoked and 

spontaneous release draws from the same vesicle pool (100). 2) The “surface pool” is a 

cohort of vesicles that are fused onto the plasma membrane and are ready for endocytosis. 

These vesicles are not a part of the rapid pool as they have already undergone exocytosis. 

These “stranded” vesicles are left on the plasma membrane till further stimulation can 

initiate their retrieval (101). The size of this surface pool has been quantified based on 

surface expression of vesicle associated proteins like synaptotagmin (102, 103). Finally 3) 

the “super pool” is composed of vesicles which can be exchanged between synaptic boutons 

(104–107). However the super pool may be a subset of the reserve pool as suggested by the 

finding that synaptic vesicle proteins associated with vesicles from the reserve pool in one 

synapse can be exchanged with vesicles at another synapse (107). 
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Table 1.1 A comparison of vesicle pool sizes and their properties in four different 

neuron systems. 

 

 

 

Frog NMJ * Hippocampal 

bouton 

Calyx of held Mb1 neuron 

Rapid 

pool 

Depleted by 

0.5s of 30Hz 
stimulation 
(108) 

Depleted by 2s of 

20Hz stimulation/ 
hypertonic saline 
(76, 109) 

Depleted by 100Hz 

stimulations/ 10ms 
depolarization. Has 
two components: fast 

(3ms time constant 
of release) and slow 

(30ms time constant 
of release) (110–
112) 

Depleted by 8-30 

ms 
depolarizations 
(72) 

size 

(number) 

~ 10,000 

(113, 114) 

~ 5-20 (76) ~ 1,500-4,000 (112, 

115, 116) 

~ 1,100 (72, 75) 

Refilling- 
Rate 

depends of 
refilling of 

releasable 
pool (114) 

 Time constant: 
10-16s  (117, 118) 

Fast component: 
within seconds. Slow 

component: 100ms 
(112, 119) 

Time constant : 
4-12s.  In the 

presence of high 
(Ca2+) i : 400ms 
(72) 

Refilled 

from 

Releasable 

pool  (114) 

newly retrieved 

vesicles and from 
the releasable pool 

(120) 

Possibly the 

recycling pool (112) 

- 

Releasable 

pool 

Depleted by 
10s of 30Hz 

stimulation. 
(114) 

Undergoes fusion 
in response to high 

K+ stimulation 
/400-600 repeated 
field stimulations 

(121, 122) 

Can undergo release 
in response to 5-

20Hz stimulation for 
minutes/ high K+ 

stimulation (79) 

Depleted by 
250ms - 1s 

depolarizations 
(80, 123) 

size 
(number) 

~ 75,000  
(108, 114) 

~ 30-45 (121) ~ 7,000-10,000 (69, 
79) 

~ 5,500 (75, 123) 

Refilling- 

rate  

Can cycle 

continuously 
at 2Hz 
stimulation, 

(114) 

Can continuously 

recycle with high 
K + 

depolarizations 

(121) 

Slow refilling (79) Refilling time 

constant of 8s. 
(80, 84, 124) 

Refilled 
from 

Recycled 
vesicles (114) 

Can recycle from 
retrieved vesicles 

(121, 125, 126) 

reserve vesicles (79) Thought to be 
from reserve 

vesicles (84) 
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 Frog NMJ Hippocampal 

bouton 

Calyx of held Mb1 neuron 

Reserve 

pool 

Recruited after 
10-15s of high 

frequency 
stimulation 

(113) 

Vesicles reluctant to 
fuse (121, 125) 

Vesicles reluctant 
to fuse (79) 

Undergoes fusion 
in response to 

trains of 
depolarizations 

(84) 

size ~ 400,000 (69) ~ 170-200 (127) ~ 70,000 - 
180,000 (79, 128) 

~ 480,00- ~910,00 
(75) 

refilling Time constant 

of recycling is 
several 
minutes (114) 

Slow (121, 129) - - 

Mixing 

between 
pools 

Slow mixing 

between 
releasable and 

reserve pool 
over hours 
(113) 

Mixing between 

rapid and releasable 
is fast. Mixing 

between releasable 
and reserve pools is 
slow (120, 121) 

Mixing between 

rapid and 
releasable pools 

maybe fast. 
Mixing between 
releasable and 

reserve pools may 
be slow (79, 112) 

Low mixing 

between 
releasable and 

reserve pools (87) 

 *Note on pool sizes of NMJ : There are ~ 300 active zones at the frog NMJ and the active 

zones are ~ six times larger than other preparations.  The number of docked vesicles per 
active zone at the NMJ  is ~ 40 (69) 
 

 

Ribbon Synapses 

The ribbon synapses are named after “ribbon” like, electron-dense organelles found 

in the pre-synaptic neurons of these synapses. Ribbons come in various shapes and sizes. In 

the photoreceptor and bipolar cells they are more sheet like while in the inner hair cells in 

the cochlea they can be  spherical , planar or oblong (130–132) . The exact molecular 

composition of the ribbon is not well understood. The only protein which exclusively 

localizes to the ribbon is RIBEYE (133–135). This is a 120 kDa protein which is a splice 

variant of a transcriptional repressor, CtBP2. Other proteins such as the GTPase Rab3 (136) 

,scaffolding proteins Bassoon and Piccolo (135, 137–140), transcription factor CTBP1(135) 
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and calcium sensor protein GCAP2 (141) have been found to be a part of the ribbon 

complex.  

 

 

Fig 1.2 Ultrastructure of Retinal ribbon synapses  Top - Electron Micrograph of the ultra 

structure of a the synaptic ribbon of a rod photoreceptor in an isolated cell.  Magnification 
Bar = 200 nm (with permission from Thoreson, Rabl, Townes-Anderson, & Heidelberger, 

2004). Bottom – Synaptic ribbon in a Mb1Goldfish bipolar neuron. Note the halo of 
vesicles around the synaptic ribbon  (124). 

 

Synaptic ribbons form the so called ribbon-style active zones. Electron micrographs 

show a pool of synaptic vesicles tethered via fine filament like structure to synaptic ribbons 

(96, 143–145). These vesicles have been shown to participate in evoked release (86, 87). 
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Calcium channels are found clustered near ribbons -immunocytochemical studies show that 

calcium channels co-localize with ribbon-associated proteins such as bassoon (146) and 

RIBEYE (135). Calcium imaging studies performed in retinal bipolar neurons and frog 

sacculus hair cells also show that the synaptic ribbons co-localize with the site of calcium 

entry and therefore form "ribbon-style" active zones (85, 134, 147).  

There are several differences between ribbon style active zones and conventional 

active zones. Conventional synapses release neurotransmitter in response to action 

potentials. By comparison ribbon synapses in general release neurotransmitters responding 

to graded changes in membrane depolarization, or in a manner that is proportional to the 

level of depolarization of the neuron. However exceptions do exists in conventional 

synapses: in the mammalian mossy fiber and the neocortical layer 5 pyramidal cell axons, 

graded changes in membrane potential can propagate over 1 mm distances and modulate 

action potential dependent neurotransmitter release (148). Certain proteins regulating 

exocytosis also differ between ribbon and conventional synapses. For example in ribbon 

synapses, synapsins are absent (92), syntaxin 3 is present in the SNARE complex in place of 

syntaxin 1 (149–151), otoferlin has been proposed to be the calcium sensor instead of 

synaptotagmin in hair cell ribbon synapse (48, 49) and complexins 3 and 4 are unique to 

retinal ribbon synapses (34, 152, 153). 

How does the synaptic ribbon support rapid and sustained neurotransmitter release 

over long periods of time? Several theories have been suggested which include 1) The 

ribbon itself may act as a conveyer belt to bring the vesicles to the release sites (154). In 

support of this idea, KIF3A, a subunit of the kinesin II motor protein has been found at 

ribbon synapse (155). 2) Ribbons may function as a large surface area for vesicle capture 
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and thus permit fast reloading, and may play a role in tonic release in these synapses (132). 

Compared to conventional chemical synapses such as those found in the hippocampus where 

an active zone has ~ 10 docked vesicles (127), in ribbon synapses, each ribbon tethers a 

much larger number of vesicles at the active zone. For example, in the goldfish retinal 

bipolar neuron, each ribbon tethers ~ 110 vesicles  (75) (however only ~22 of these tethered 

vesicles are actually docked to the plasma membrane). 3) Another possible function of the 

ribbons may be to tether vesicles, keeping spontaneous fusion low. 4) Ribbon have also been 

proposed as sites of vesicle priming (80). In support of this, photo bleaching the synaptic 

ribbon at a mammalian bipolar cells leads to a decreased synaptic transmission (156). After 

photo bleaching, only one round of release was observed with subsequent rounds being 

inhibited. Examination of the ultra structure shows vesicles are localized to the ribbon,  no 

different from control synapses. These findings suggest that after acute photo destruction of 

the synaptic ribbon only those vesicles which were already primed are capable of fusing. 

Photo bleaching impairs the ribbon's ability to prime vesicles resulting in inhibition of 

subsequent rounds of release. 4) The synaptic ribbon has also been proposed to be a site of 

compound fusion (96, 131, 157) - where vesicles attached to the ribbon may fuse with each 

other before or after the vesicle at the base of the ribbon fuses with the plasma membrane. 

This sort of fusion allows for reuse of the same release site. 

The number of vesicles associated with SNARE complexes, among other factors, 

regulates how quickly and reliably a nerve cell can transmit a signal. In conventional 

synapses, ~10-60 vesicles are found clustered near the plasma membrane at active zones 

(76, 77). Only the docked vesicles (closest to the plasma membrane) are thought to be 

associated with SNARE complexes. The number of vesicles and the identity of the pool of 
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vesicles in SNARE complex in ribbon synapses is unknown. Interestingly, a recent study has 

suggested that vesicle fusion not requiring neuronal SNAREs occur at hair cells (158). 

Therefore the role of neuronal SNAREs at ribbon synapses is contentious. 

The mechanism underlying continuous release at ribbon synapses remains an active 

field of study. We hypothesize that a serial organization in the vesicle pools and a large 

pool of vesicles in SNARE complex aid in the continuous neurotransmission at retinal 

ribbon style synapses. 
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1. Animals: Goldfish (Carassius auratus) 4-5 '' in size were maintained on a 12 hr light/dark 

cycle. All animal procedures conformed to the National Institute of Health (NIH) guidelines 

and were approved by the Animal Welfare Committee of the University of Texas Medical 

School at Houston. 

2. Acute Dissociation of Bipolar cell terminals: The procedure for acute dissociation of 

bipolar cell terminals was similar to that described in Heidelberger & Matthews 1992. The 

protocol we used is as follows. Goldfish were dark-adapted for 20 minutes. The animals 

were then decapitated and the eyeballs enucleated. Retinae were dissected free in 

oxygenated low calcium ringers containing in mM, NaCl 120, KCl 2.6, MgCl2 1.0, CaCl2 

0.5, Hepes 10, Glucose 10 pH 7.3, and ~ 260mosm. Each retina was cut into 8-10 pieces that 

were incubated for 30 minutes at 20°C in a digestion solution containing NaCl 115, KCl 2.5, 

MgCl2 1.0, CaCl2 0.5, Pipes 10, Glucose 10, cysteine 2.7 and papain (varying concentrations 

were used depending on lot and vendor:  see below), pH 7.25-7.3, ~ 260mosm. After 

digestion, the pieces were rinsed several times in low calcium ringers and stored at 10°C for 

up to 6-8 hours. 1- 2 pieces of retinae were mechanically triturated with a fire polished 

pipette and plated onto a 25 mm glass cover slip which was bathed in external solution. The 

external solution had the same composition as the calcium ringers solution above except the 

calcium concentration was increased to 2.5mM.  

Note on Papain: Experiments were done with either papain from Fluka (MW= 23000) or 

from Calbiochem (MW=21000). We used 8mg of the papain from Fluka. The activity of the 

Fluka papain was 3.1U/mg - 3.6U/mg (depending on lot number) where 1U defined by the 

vendor corresponds to the amount of enzyme which hydrolyzes 1micoM N-benzoyl-L-

arginine ethyl ester (BAEE, Fluka No. 12880) per minute at pH 6.2 and 25 C.  
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 For the papain from Calbiochem, we used 5 mg. The activity of the Calbiochem 

papain was 30,000 USP units /mg where 30 USP units was defined by the vendor as 1 MCU 

(milk clotting unit) = 9 HDU (hemoglobin digestion units)= 6 GU (gelatin units).  

 

Fig 2.1 Isolated Mb1 neuron and terminal Left - A single Mb1 neuron (scale bar = 10 

µm).  Right- A single Mb1 terminal under voltage clamp. Patch pipette and aperture used 
for collecting florescent measurements are marked. 

 

3. Electrophysiology: Goldfish terminals were identified mainly by their characteristic round 

shape, large size (diameter of 8-12 µm) and lack of an obvious nucleus. A 10 µm scale bar 

was used to confirm the size of the terminals. Some terminals had a short axon stub 

attached. During recordings the identity of the terminal was also verified by the presence of 

long-lasting voltage gated calcium channels and the lack of sodium currents (159, 160). The 

extracellular recording solution was identical to the low calcium ringers solution, except the 

calcium concentration was increased to 2.5mM. The standard internal solution contained in 

mM: Cs Gluconate 100, TEA 10, MgCl2 3.0, EGTA 5, CaCl2 2.5, Hepes 35, Na2ATP 2, and 

GTP 0.5, pH 7.25-7.3, 265-275 mOsm. This solution was calculated to buffer the 

intracellular calcium concentration to 150 nM (Maxchelator; 

http://maxchelator.stanford.edu). The buffering ability of this solution was also verified 

http://maxchelator.stanford.edu/
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experimentally – please refer to values of basal calcium in each set of experiments and a list 

of the calibration constants used in appendix A. (80, 161).  

 In experiments where ATPγS was used to block functional refilling, 2mM of ATPγS 

replaced the 2mM ATP. In experiments where high mM EGTA was required, the calcium 

concentration was 2.5 mM and the EGTA concentration was increased to 7.5 mM. This 

solution was calculated to buffer the intracellular calcium to 73 nM and yield 4.7mM of free 

EGTA (Maxchelator; http://maxchelator.stanford.edu). A detailed note on the solutions 

containing peptides is given below. 

For whole-cell recordings, 5-7 MΩ pipettes were made from unfilamented 8250 

borosilicate glass (1.5 O.D, 0.86 I.D., A-M systems) and coated with sylgard to decrease 

their capacitance. A computer-controlled EPC-9 patch clamp amplifier was used for 

recordings, and capacitance measurements were made with “Pulse” software (version 8.53, 

HEKA Electronik, Lambrecht, Germany). For capacitance measurements, a sine wave 

voltage command (805 Hz, 30 mV peak to peak) was applied about a holding potential of     

-60mV. The Lindau-Neher technique (162, 163) was used to give estimates of the membrane 

capacitance (Cm), series conductance (Gs) and membrane conductance (Gm). For 

depolarizing pulses, the membrane was depolarized from the holding potential of -60mV to 

0mV. ΔCm changes less than 1 SD of the average baseline Cm were considered null 

responses. Recordings from terminals with Gs <50 nS or current at holding potential > 40 

pA were excluded from analysis. 

Wash-out of exocytotic responses: 

 Generally in our experiments, the first exocytotic response is the largest. This is 

observed even under conditions where complete pool refilling might be expected, such as in 

http://maxchelator.stanford.edu/
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the  presence of 5mM ATP. This phenomenon of decreased exocytosis over the time period 

of the recording can be attributed to wash out of exocytotic response. Wash out or run-down 

of exocytosis has been previously reported in Mb1 terminals (123) and also in other 

secretory cells (164). The slow run down may be due to loss or diffusion of soluble factors 

and small molecules aiding in pool refilling such as α-SNAP and GTP binding proteins 

during whole cell dialysis. The extent of rundown of neuronal responses is proportional on 

the resistance of the pipettes used (164–166). In our experiments we tried our best to 

minimize wash out of exocytosis by using high resistance pipettes (5-7 MΩ), loaded with a 

high concentration of the peptide.  In addition we probed the terminal within the first 60-

200s following break-in (164).  

4. SNARE complex-inhibiting peptides: Three different SNARE complex inhibiting peptides 

were used. The peptides were synthesized by Biosynthesis (Lewisville, TX).The syntaxin 

3B  peptide was derived from the N-terminal part of the SNARE domain of syntaxin 3B 

(sequence - NH2- RHKDIMRLESSIKELHDMFVDVA-OH), while a scrambled peptide 

(sequence- NH2- RIALKDDVIHMRESVDHKSFMEL-OH)  was used as a control  (151). 

Both these peptides were tagged with FITC (fluorescein isothiocyanate) at the N terminal 

using a AHX linker.  A previously designed scrambled  peptide (sequence-           

NH2-SMKIRFSVHARVELHMEDLDIDK-OH) was not used as it did not dissolve in the 

internal solution at the concentration of 0.5mM. 

 The SNAP peptide (sequence - NH2-IMEKADSNKTRIDEANQRATKMLGSG-

OH) was derived from the C terminal of the SNARE binding domain. A scramble SNAP 25 

peptide (sequence -NH2- KNKGTSDEGSDIMQKAILNEARMTRA-OH) was used as a 

control.  The Synaptobrevin peptide (sequence - NH2-RLQQTQAQVDEVVDIMRVN-OH)  
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was derived from the N terminal of the SNARE binding domain of Synaptobrevin. The 

SNAP peptide, the scrambled SNAP peptide and the Synaptobrevin peptide were not 

fluorescently tagged. 

  For each peptide solution the lyophilized peptide was dissolved in internal solution 

that was similar to the standard internal solution expect the ATP concentration was 

increased to 5 mM (in place of 2mM ATP) and  MgCl2 to 6mM (in place of 3mM MgCl2) to 

provide 1mM free Mg 2+. Once the peptide dissolved, we filtered the internal solution using  

0.2 µm PES   filters ( Nalgene 25 mm Cat# 194-2520). These filters are known to be low 

peptide binding filters. Effects of osmolarity on vesicle dynamics (161) were taken into 

consideration and the final osmolarity of the peptide containing solution was adjusted to 

~270 - 274 mosm by the addition of 2-4 µl of Millipore water. 

Note on peptide concentration: The concentration of the peptide in solution by weight was 

500mM. The calculated final concentration of the peptide used on the day of each 

experiment was lowered to 0.25 mM by diluting with equal volume of peptide - free internal 

solution. In previous experiments where short peptides have been dialyzed into CNS 

terminals, similar concentration of peptides have been found to have an effect.  In the calyx 

of held, an N terminal syntaxin1 peptide blocks neurotransmitter release at 0.25- 1 mM 

concentrations in a dose dependent manner  (167).To estimate the actual concentration of 

peptide in the internal solution our collaborator Dr. Roger Janz performed spectroscopy 

measurements on peptide internal solution samples. The scrambled peptide sample (original 

concentration 0.5 mM) was diluted 1:20 (10 µL in 200µL) and the syntaxin peptide sample  

(original concentration 0.25 mM) was diluted 1:40 (5 µL in 200µL). A wavelength of  

494nm was used to measure the optical density using spectroscopy.  Internal solution with 
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no added peptide was used as a blank/control. The final concentrations using this method 

was 0.127 mM for the scrambled peptide and 0.165 mM for the syntaxin peptide. The 

samples used had been stored for a duration of more than one year at - 80 ºC. Possible photo 

bleaching of the fluorescent peptide was not taken into consideration while making the 

above calculations. 

5. Fluorescence measurements of tagged peptides: In experiments with the FITC tagged 

peptides, we were able to establish that the peptides were dialyzed into the terminal. A 

computer controlled photometry system (ASI/TILL Photonics) was used to record 

fluorescence. The excitation wavelength for fluorescein was 475 nm and emission 

wavelength was 505 nm. To test whether the Syntaxin 3B peptide and the scrambled peptide 

dialyzed into the terminal at the same rate, we fit the fluorescent loading trace with a 

exponential function. The τ (time constant) of loading was not different in terminals 

dialyzed with either peptide. [Syntaxin τ = 89.1 ± 10.5 (n=6), Scrambled peptide τ = 87 ± 

12.17 (n=5), p = 0.9 for experiments where pulse trains were used]. A τ of ~ 90 suggests that  

plateau  in the fluorescence was typically reached within ~ 270 s or  4-5 minutes, after 

achieving the whole-terminal recording configuration.   

6. Intracellular calcium measurements: Spatially averaged intracellular calcium 

concentrations were made with the fluorescent calcium indicator dye bis fura2 in all 

experiments except those with the tagged syntaxin and synaptobrevin peptides. The Kd of 

bis fura2 binding to calcium is ~ 370nM (molecular probes catalogue).  0.1mM of Bis fura2 

was added to the internal solution. Alternating excitation at 360 and 388 nm was provided 

by a computer-controlled monochromator based system (ASI/T.I.L.L. Photonics, (168) and 

the emitted fluorescence (f1&f2) at 505 nm was recorded. An adjustable aperture is used to 
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position the collection field for the emitted fluorescence selectively over a single bipolar cell 

terminal. Intracellular calcium was calculated from the formula [Ca] i = keff *(ratio-ratiomin) / 

(ratiomax – ratio), (169), where ratio = f1/f2 after the subtraction of background florescence 

from each trace. Calibration constants keff, ratiomin, and ratiomax were determined by in-vitro 

calibrations with solutions containing highly buffered known concentrations of calcium. For 

calibration constants used see appendix A. 

6. In-vitro protein assay: Experiments were performed by collaborators in Roger Janz 

laboratory. Goldfish retina was homogenized in a buffer containing 1% Triton-X-100 and 

centrifuged. The supernatant was mixed with the peptide derived from syntaxin 3B or the 

scrambled control peptide (final peptide concentration 0.5 µM) and incubated for 2 hrs. at 

room temperature. The samples were then mixed with SDS-sample buffer, separated by 

SDS-PAGE without boiling of the samples and analyzed by western blot with a syntaxin 3 

antibody.  

7. Analysis: Data analysis was performed in Igor Pro (Wavemetrics Inc.) or Microsoft Excel. 

Data are expressed as mean ± s.e.m. Statistical analysis was done using Student's unpaired t-

test. P value < 0.05 is marked with * and <0.005 with **. 

 Analysis of the train pulse was done using programs written in Igor (see Appendix 

B). The programs were written with help from Ian Gemp, a summer student from 

Northwestern University. The data was then entered into either an Igor Pro or Excel 

spreadsheet for further analysis. 
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CHAPTER III 

 

RELATIONSHIP BETWEEN VESICLE POOLS 
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INTRODUCTION  

 Synaptic vesicle pools have been studied in several model systems. Examples of 

ribbon style synapses in sensory systems where vesicle pools have been identified and 

characterized include the salamander photoreceptors, rodent bipolar neurons, goldfish 

bipolar neurons and rodent hair cells (131, 132, 170–173). The retinal bipolar neuron in the 

goldfish has served as a great model for the study of vesicle pool dynamics and is the model 

cell used in all the experiments described in this thesis. In this section I will provide a 

background regarding the 1) Basic physiology of the  bipolar neuron 2) Organization of 

vesicle pools in the goldfish bipolar neuron and 3) endocytosis in the goldfish bipolar 

neuron . 

 

Basic physiology of the bipolar neuron 

In the retina, a single output cell –a ganglion cell is able to reliably transmit 

information in response to the absorption of a single photon of light by a single input cell – a 

photoreceptor  (174). Retinal bipolar cells are interneurons which play a crucial role in the 

retinal circuitry. Bipolar cells are second-order neurons, which transmit information from 

photoreceptors to third order neurons the amacrine cells or output neurons - ganglion cells. 

In the primate retina golgi staining has revealed at least nine types of bipolar cells, of which 

eight are cone bipolar cells and there is a single rod-bipolar cell type (175).  

Physiologically bipolar neurons can be broadly divided into ON and OFF bipolar 

cells depending on their response to light. The photoreceptors are depolarized and release 

glutamate (176) in the dark (177). The two types of bipolar cells respond differently to 

glutamate release. The ON bipolar cell hyperpolarizes in response to glutamate (thus it 
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depolarizes to a light response) and the OFF bipolar cell depolarizes to glutamate ,thus 

hyperpolarizing to light (178). This difference in response to glutamate is due to the 

different glutamate receptors on the two types of bipolar cells. The ON bipolar cells 

expresses metabotropic(mGluR) , specifically mGluR6 (179, 180)  while the OFF bipolar 

cells express ionotropic glutamate receptors (iGluR), specifically of the AMPA and Kainate 

type (181).The rod contacting bipolar cells are unique in that there is only one type (ON) 

whereas cone-bipolar cells may be ON or OFF. Also, irrespective of species the Rod bipolar 

cell is highly immunoreactive to Protein kinase C (PKC), which has been used as a marker 

for this neuron (182–184). ON and OFF bipolar cells also arborize to different layers in the 

retina. In general the ON bipolar cells stratify to sublamina b in the inner plexiform layer 

(IPL) where it makes synapses with the ON ganglion cell or amacrine cell. The OFF bipolar 

cell stratifies to sublamina a of the IPL where is forms synapses with the OFF ganglion cells. 

In the mammalian retina the rod bipolar cell (ON) stratifies to the sublamina b where it 

synapses with the AII amacrine cell. This pattern of stratification is relatively consistent in 

all vertebrate retina examined, specifically in mammals (185–188). 

The bipolar cells have ribbon style active zones and release glutamate (189). 

Exocytosis is driven via the activation of voltage gated calcium channels - L-type calcium 

channels in fish (159, 190). In mammals the presence of both  L and T type calcium 

channels have been suggested (191–194). In the Mb1 goldfish bipolar neuron the L-type 

channel has been identified as Cav 1.3 (195). The slow rate of calcium-dependent 

inactivation of this channel may help to main graded exocytosis in the bipolar neurons (159, 

195, 196). 

 Bipolar cell responses to membrane depolarization as measured from post synaptic 
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cells show both  transient and sustained components (58, 197–199).The bipolar cells were 

originally considered non-spiking neurons, since they do not fire Na + dependent action 

potentials, however spontaneous calcium spikes (200), light flash induced calcium spikes 

(201) and evoked calcium spikes (202) have been reported. 

 

Organization of vesicle pools in the goldfish bipolar neuron 

The fish rod-dominant bipolar cell, the counterpart of the mammalian rod bipolar 

cell, is a part of the fish scotopic pathway and receives inputs predominantly from rods 

(203). The Mb1(mixed bipolar) neuron in the goldfish is an ON type bipolar cell and usually 

synapses onto a postsynaptic dyad of two amacrine cells  and rarely onto ganglion cells 

(204, 205). The Mb1 neuron has a large synaptic terminal which is 8-12μm in size (206). 

This large size of the synaptic terminal makes it amenable to patch clamp techniques and 

membrane capacitance techniques to study exocytosis. Membrane capacitance (Cm) 

measurements track membrane surface area and therefore indicate membrane addition, 

during exocytosis and its retrieval, during endocytosis (163). It is an excellent tool to study 

exo/endocytosis of populations of vesicles. The bipolar cell terminal has been well 

characterized using this technique and has yielded much information about its vesicle pools 

(132, 207) 

The diameter of a single vesicle in the Mb1 cell is ~ 29nm (75). Therefore, fusion of 

a single vesicle should increase the Cm by ~26 aF (assuming the vesicle membrane has a 

specific capacitance of 1µF/cm2, the same as the plasma membrane). The sizes of the 

different vesicle pools in the sections below are based on these calculations and correlated 

with ultrastructural findings. EM reconstruction of two Mb1 bipolar terminals has  suggested 
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that a bipolar terminal has ~ 45-60 synaptic ribbons (75), each of which tether ~ 110 

vesicles. The vesicles on the ribbon are arranged in~4- 5 rows, with each row containing 

~11 vesicles. Therefore a single ribbon may tether 55 vesicles on each side (fig3.1) 

 

The rapid pool 

The pool of vesicles closest to the plasma membrane and the calcium channels 

constitute the rapid pool. This pool was discovered by examining exocytosis response to 

brief depolarizing pulses 10-30 ms (72, 73, 208). Capacitance measurements show this pool 

to be ~30 fF in size. This 30 fF size corresponds to ~ 1100 vesicles. From correlations with 

EM reconstructions, 1100 vesicles match the number of vesicles which form the bottom 

most row of vesicles attached to the ribbon; each ribbon tether ~ 22 vesicles (75). 

The idea that the bottom most row of vesicles on the ribbon form the rapid pool is 

strengthened by two other findings -1)The rate of fusion of this pool is limited only by the 

activation kinetics of the calcium channel and 2) the rapid pool is also resistant to milli 

molar levels of intracellular  EGTA, a slow calcium buffer, but is blocked by BAPTA, 

which has the same calcium binding affinity to EGTA but is 100 times faster (72). The rapid 

pool can be depleted with an 8-30 ms depolarization from -60to 0mV. The time constant of 

refilling (τ refill) of this pool, as measured from paired-pulse depletion experiments, has been 

reported to be ~4s when 8ms pulses were used to probe for the rapid pool (72). When a 20 

ms pulse was used to deplete the rapid pool, 30% of the pool refilled with a time constant of 

0.64s and the remainder had a τ refill of 31s (208). Calcium aids in refilling of this pool (72, 

208). In the presence of high calcium (during on-going release, open calcium channel) the  τ 

refill is ~400ms, which is almost 10 times faster as compared to 4 s (72). It is not known  
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Fig 3.1 : Location and size of vesicle pools of the goldfish bipolar cell 

The top cartoon (adapted from original source) denotes the hypothesized arrangements of 
vesicles at 1 of the ~45-60 pre synaptic ribbons of the bipolar cell onto a post synaptic dyad 

(two post synaptic processes). The table gives estimates of the size in fF and vesicle number 
of each pool (72, 75, 132, 171). 

 

 

 

 

Vesicle pool     ∆C m (fF) No. of vesicles 

Rapid Pool ~ 30 -50  ~1100 

Releasable Pool ~100 -150 ~5500 

Reserve Pool         - ~480,00- ~910,00 

Rapid pool 

 

 Reserve pool 

Releasable pool 
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whether vesicles which are tethered higher up on the ribbon, or vesicles from the cytoplasm 

or recently endocytosed vesicles refill this pool. It is also not known whether vesicles from 

multiple sources can be recruited to this pool in the presence of high calcium.  

The releasable pool  

 The Mb1 terminal contains a finite set of vesicles which have undergone all the ATP 

dependent steps required for fusion (80, 81). This fusion competent pool is known as the 

releasable pool (RP). A 250 ms to 1 s depolarization from -60mV to 0 mV is sufficient to 

deplete this pool. Capacitance measurements show the size of this pool to be 80-150fF (75, 

80, 209) which corresponds well to the ~5000-6000 ribbon-tethered vesicles.  

The time constant of refilling for the releasable pool has been reported to be 6.5- 8 s 

as measured from paired pulse depletion experiments (80, 84).  One study which looked at 

diurnal variation  in the refilling of the  releasable pool  (124) found that recovery from 

paired pulse depletion could be fit with a double exponential function, and was not 

significantly altered between night and day (day: 67 % of the pool recovered  with a τ fast 

=359 ms, remainder recovered with a τ slow= 2.9s;  night: 64 % of the pool recovered  with a 

τ fast =421 ms, remainder recovered with a τ slow= 7s ).  The source of these vesicles is 

assumed to be from the reserve pool (87). ATP is required for the functional refilling of this 

vesicle pool rather than physical refilling - ATP hydrolysis does not seem to be required for 

the movement of the vesicle to a ribbon and attachment to the ribbon. ATP hydrolysis does 

seem to be required in order for a newly arrived vesicle to attain fusion competence (80). 

Based on the correlation between the size of  rapid and releasable pool from 

capacitance measurements and the anatomical number of vesicles on the ribbon it has been 

postulated that 1) the ribbon associated pool forms the releasable pool and 2) the rapid pool 



 
 

33 
 

is a subset of this releasable pool. These two assumptions have not been specifically tested. 

The above model also assumes that all release occurs at the ribbon. However, vesicle fusion 

at non-ribbon associated sites or extra-ribbon release has been reported in bipolar neurons 

(82, 83, 134). The magnitude of extra-ribbon release compared to ribbon associated release 

is contentious (82, 83).  While Midorikawa et al., 2007 (82) suggest that the magnitude of 

extra-ribbon release is significant, occurs at discrete locations and may contribute to the 

sustained component of release, Zenisek 2008 (83) shows the extra-ribbon release does not 

show clustering to discrete sites and seem to occur with only a slightly more frequency that 

that would be expected from a completely random distribution .Synaptic ribbons have been 

shown to detach from  active zones during night (124) suggesting that synaptic ribbons are 

not stationary organelles. It is possible that extra-ribbon sites may be sites where a ribbon 

was previously present.  

 

The reserve pool 

 At the EM level the synaptic terminal of the bipolar cell has thousands of vesicles 

scattered in the cytoplasm (75). The size of this pool is estimated to be between 480,000-

910,00.This reserve pool of vesicles are more mobile compared to cytoplasmic vesicles in 

conventional synapses (85–87), possibly due to the lack of synapsin at ribbon synapses (92). 

Experiments where styryl dyes were used to track vesicle movement in mice bipolar cells  

(87) have shown that vesicles attached to the ribbon are non-mobile and do not freely 

exchange with the reserve cytoplasmic vesicles. However following depolarization the 

vesicles on the ribbon undergo exocytosis and are replaced by vesicles from the cytoplasm. 

This suggests that the reserve pool plays a role in refilling the ribbon-tethered pool of 



 
 

34 
 

vesicles. The high mobility of the reserve vesicles may also aid in rapid refilling of the 

ribbon-tethered pool as may be required during sustained release. 

 Anatomically there is no difference between reserve pool vesicles. However, a 

cohort of the reserve pool vesicles may  function to reload the releasable pool, at least one 

time during high frequency trains of depolarizations (84) . This is based on the finding that 

when synaptic terminals were stimulated with a train of depolarizations each 250 ms in 

duration, a plateau was reached at ~ 300 fF. Since the size of the releasable pool is ~150 fF, 

it suggests that at least one round of refilling was possible before the synapse was depressed. 

However, it is possible that the plateau in release could be due to depletion of pool-refilling 

factors, inhibition by some factor or that the extra vesicles came from extra-ribbon sites 

(these vesicles may be mobilized or undergo fusion due to high intra-cellular calcium during 

pulse trains). 

 

Endocytosis in goldfish bipolar neuron 

 After exocytosis synaptic vesicles are retrieved by endocytosis. In the goldfish 

bipolar neuron vesicles two types of endocytosis after exocytosis have been described. A 

fast mode of endocytosis that has a time constant of 1-2 s is seen in response to brief 

depolarizations while a slower mode of endocytosis that has a time constant of 10-20 s is 

seen in response to larger depolarizations (73, 123, 161). The slow mode, but not the fast 

mode of endocytosis is affected by proteins regulating clathrin-dependent endocytosis such 

as AP2 adaptor protein, amphiphysin and clathrin (210). Elevated  hydrostatic pressure also 

selectively affects the slow phase of endocytosis (161). Elevated basal calcium, above 20 

µM (211) or spatially averaged calcium above 500nM (209) inhibits endocytosis. High basal 
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calcium, as would be seen after a strong depolarization also delays the onset of endocytosis 

(73, 209, 212). GTP hydrolysis is required for both modes of endocytosis (210),  suggesting 

a role for dynamin, a GTPase  known for its role in membrane scission  (213–216). 

However, retrieval after a releasable pool depleting stimulus has been shown to be 

unaffected in the presence of non-hydrolysable GTP analogs but not non-hydrolysable ATP 

analogs (212). The non-requirement of GTP and therefore possibly dynamin after a large 

(releasable pool depleting) stimulus may be similar to that seen in the calyx of Held where 

GTP-independent endocytosis is activated after intense stimulus after the saturation of GTP 

dependent mode of endocytosis (217). 

 

In this chapter I will use the Mb1 neuron to 1) design a paradigm in which all three 

components of the release can be captured 2) test the hypothesis that the rapid pool vesicles 

are a subset of the ribbon- tethered releasable pool of vesicles 
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RESULTS 

1. A stimulus train reveals exocytosis that draws from multiple vesicle pools  

EXPERIMENT 1:To determine whether fusion from multiple vesicle pools can be captured 

using a pulse train 

We designed a stimulation paradigm that allowed us to resolve multiple components 

of neurotransmitter release from an individual, isolated Mb1 bipolar cell synaptic terminal 

using membrane capacitance measurements. This paradigm consisted of a train of 136 

depolarizing voltage steps (-60 to 0 mV, 20 ms duration) separated by 50 ms, during which 

time membrane capacitance, Cm,
 was measured. Protocol is shown in Fig 3.2. 

 

Fig 3.2 Protocol used for the train stimulus 

Each depolarization pulse was 20 ms long. 136 such pulses were given with an inter-pulse 

interval of 50ms, during which membrane capacitance was measured. 
 

A representative Cm trace in response to the paradigm from a single terminal is 

shown in fig 3.2.  ΔCm,1 was defined as the magnitude of the capacitance change evoked by 

the first pulse in the train and ΔCm,total was defined as the total cumulative capacitance 

increase at the end of the pulse train (fig 3.2).  The inset shows a representative ΔCm 

response and the corresponding calcium current, ICa, evoked by a single pulse in the train at 

higher resolution. No correlated changes were noted in the conductance traces Gs and Gm 

(inset), although a brief spike (< 20 ms duration) was observed in Gm To avoid possible 

contribution of this transient to ΔCm, the first 20 ms of the capacitance record was excluded 

20ms 

pulse 1 pulse 2 pulse 136 

50ms  
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from analysis (218, 219).  The presented calcium currents (I ca ) amplitudes were calculated 

from the average amplitude over the last 5 ms of each 20ms pulse. To measure the calcium 

influx corresponding to ΔCm,1, we defined I ca 1 as the calcium current the first pulse.  To 

measure the calcium influx at the end of the pulse train we defined Ica total as the average 

current of the last five pulses in the train. 

 

 

 

Figure 3.3. Sample capacitance (Cm) trace from a terminal stimulated with a pulse 

train.  
A representative Cm trace in response to a pulse train is shown on the right. The inset 

marked by the grey dashed line shown on the left shows high-resolution measurements of 
the stimulus (topmost panel) , membrane capacitance Cm,, calcium current (ICa), series 
conductance (Gs) and  membrane conductance (Gm, bottom most panel) in response to the 

first pulse in the train.  
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Figure 3.4.  A pulse train stimuli reveals fusion of multiple vesicle pools .  In response to 
a pulse train given 1min after attaining whole-cell configuration terminals dialyzed with 

control internal solution (ATP, open circles , n= 6) showed a cumulative capacitance change 
that could be attributed to multiple components of release. 5mM EGTA blocked all but the 

first component of release, with some amount of recruitment from the second component 
seen after 4s. (rapid pool, block circles , n=4)  With ATPγS  the third component of release 
was blocked.(gray circles, n = 7)  

 

The rapid pool: A rapid component of release, attributable to the fusion of vesicles 

docked at plasma membrane active zones (131, 132), is evoked by a brief depolarization 

from -60 to 0 mV (72). The first 20 ms depolarization of our stimulation paradigm would be 

expected to tap this pool. Accordingly, in response to the first pulse, ΔCm,1, there was an 

average capacitance increase of 45 ± 13 fF (n = 6; Fig 3.4  open circles), which is in the 

reported range of the rapid pool (72). The average calcium current I ca1 = 171.6 ± 31.8 pA  (n 

= 6 ).  
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  The stimulus-evoked increase in membrane capacitance in response to the first 20 

ms depolarization was not significantly inhibited when the patch pipette contained 5 mM 

EGTA (ΔCm 1:EGTA = 22.3 ± 3.3. fF, n= 5,black circles, p value = 0.16 compared to ATP 

control), a perturbation commonly used to isolate the rapid pool (72, 208), and there was no 

effect on the calcium current, I ca1:EGTA = 167 ± 33.5 pA (n=5,  p value = 0.92, compared to 

ATP control ). These results are consistent with the interpretation the first pulse in the train 

triggers the fusion of the rapid pool of vesicles, and therefore we used ΔCm 1 as a proxy for 

the rapid pool. 

Reserve and Releasable pool: The average cumulative increase in membrane 

capacitance at the end of the pulse train, ΔCm,total, = 233 ± 48 fF (n = 6; fig 3.4 open circles). 

This value is larger than expected for the Mb1 bipolar cell releasable pool and most likely 

includes the fusion of additional vesicles that were recruited from the reserve pool during 

the pulse train  (58, 80, 84, 208).  In 3/6 cells , a secretory plateau was reached at the end of 

the pulse train – the magnitude of this plateau (ΔCm,total, = 197 ± 12 fF). To explore the 

possibility that our stimulation paradigm tapped reserve vesicles, we blocked the functional 

refilling of the releasable pool by replacing ATP in the internal recording solution with 

ATPγS. ATPγS has been shown to block functional refilling the releasable pool 

(presumably) from reserve pools vesicles (80, 96). There was no significant difference in the 

resting calcium between terminals dialyzed with ATP or ATPγS, (ATP: [Ca] i: = 174.3 ± 

48.6 nM, n = 6 ; ATPγS:  [Ca] i: = 186.2 ± 60.9 nM, n = 7, p value = 0.8). The average 

calcium current Ica total was also not significantly different between terminals dialyzed with 

ATP and ATPγS (ATP: Ica total = 107.8 ± 14.8 pA, n =6; ATPγS: Ica total = 83.2 ± 31.8 pA ,n = 

7, p value = 0.12) 
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  The total secretory response, in ΔCm,total evoked  by the pulse train was decreased by 

≈ 46.4% in terminals dialyzed with ATPγS when compared with controls (Figure 3.4). 

Moreover, the value of ΔCm,total in ATPγS terminals was 125 ± 16 fF, n=7 consistent with 

the magnitude of the releasable pool (75, 80). These data suggest that ≈ 108 fF’s of 

membrane capacitance (~ 4000 vesicles ) did not initially reside in the releasable pool and 

were recruited during the pulse train when ATP hydrolysis was not inhibited. ATPγS did not 

have an effect on the fusion of vesicles in the rapid pool. In terminals dialyzed with ATPγS, 

ΔCm1 = 35 ± 5.5 fF, I ca1 = 138.5 ± 16 pA,  n = 7, not significantly different from control 

terminals , p value = 0.5 and 0.l4 respectively.  

The releasable pool of vesicles hypothesized to be located at a distance from the 

calcium entry sites is expected to be affected by mM levels of EGTA. In terminals dialyzed 

with 5mM EGTA, the ΔCm total = 52.5 ±20 fF ,n= 4, significantly smaller than control 

terminals, p value =0.02. The Ica total was not significantly different between terminals 

dialyzed with 5mM EGTA compared to controls (ATP: Ica total = 107.8 ± 14.8 pA, n =6; 

EGTA: Ica total = 112.6 ± 17.7 pA ,n = 4, p value = 0.8) 

 Together, the data indicate that the pulse train is able to capture multiple 

components of release. Experiments with ATPγS and high EGTA provide an estimate for 

the expected magnitude of the rapid and releasable pools. 

To determine the rate of endocytosis after a train stimulation, we fitted the time 

course of endocytosis with a double exponential function which revealed the following 

averages (only the response after the first train was used and not all responses could be fit 

with a double exponential function):  ATP controls τ fast = 3.6s in 5/ 7 terminals, ATPγS 

terminals- τ fast = 3.8s in 2/5 (p value = 0.9). ATP controls τ slow= 42.6s in 5/7 terminals; 
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ATPγS terminals- τ slow = 55.3 in 5/5 terminals (p value = 0.5), 3/5 terminals showed only a 

single slow component. 

 

 

Fig 3.5 The ATP sensitive component. 

The component of release requiring ATP hydrolysis (ATP train - ATPγS train from fig 3.4) 
is plotted (open circles) along with the original ATP control from fig 3.4 (filled circles). 

After the first 1.49s the ATP sensitive component was fit with a line (slope = 1.07e-14, y 
intercept = 9.12e-15). 

  

 To get an estimate of the rate of recruitment and fusion of the component of release 

which requires ATP hydrolysis, we subtracted the mean cumulative Δ Cm (gray trace in fig 

3.4) from the mean cumulative Δ Cm ATP control (open circles trace in fig 3.4). The 

resultant is shown in fig 3.5 (open circles). The data from the first 1.49 s seconds was not a 

good fit suggesting a possible non-linear rate of recruitment. The ATP sensitive component  

after 1.49 s was fit with a line function. The slope of the line was 10.7 fF/s ( or ~366 vesicles 

/s), which gives us the rate of recruitment and fusion of the vesicles (possibly from the 

reserve pool) which require ATP hydrolysis, or in other words fusion of vesicles that are not 
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already in the releasable pool. The 1.49 s delay in start of the linear component may suggest 

that ATP priming is initiated only after a certain number of vesicles have already fused. 

2. The rapid pool is a subset of the releasable pool 

EXPERIMENT 2: To determine if depletion of the releasable pool also depletes the rapid 

pool, using a pulse train 

To test whether depletion of the releasable pool would also deplete the rapid pool we 

performed the following experiment. ATPγS was included in the interna l solution in place of 

ATP in order to block functional refilling of the releasable pool (control experiments). A 

pulse train was given every 60 s after attaining the whole cell configuration. To account for 

the variability in the size of the releasable pool we normalized the magnitudes of ΔCm1 and 

cumulative ΔCmtotal to their respective magnitudes obtained in the first pulse train (e.g. 

Normalized Δ Cm 1 of train 3 = Δ Cm 1 of train 3/ Δ Cm 1 of train 1). 

  In control terminals n=6, the cumulative Δ Cm total decreased by 42.5% (133.4 ± 

25fF), 58.9% (108 ± 31fF) and 67% (96.06 ± 43fF) in the second, third and fourth trains 

(numbers in parenthesis refer to the cumulative Δ Cm 136 for each train, fig 3.6). This 

rundown of release has been previously reported (123). By comparison, there was a dramatic 

decrease in the refilling of the releasable pool in the presence of ATPγS. The cumulative 

ΔCm total in ATPγS terminals, n=5, was decreased by 73.1% (26.7 ± 6.7fF) p < 0.0001, 

94.4% (6.08 ± 3.6fF), p <0.001 and 98.9% (1.04 ± 2.08fF), p<0.01, in the second, third and 

fourth pulse trains respectively (numbers in parenthesis refer to the cumulative Δ Cm total for 

each train, p value compared to controls, fig 3.6). This agrees with previously published 

findings that in the presence of ATPγS only one round of release from the releasable pool 

can be elicited (80, 81). 
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Fig 3.6 ATP is required for the refilling of the releasable and rapid pool. 

Left – The capacitance change in response to the first 20 ms pulse (ΔCm1) of train 1 and 2 

(top panel) in ATP and ATPγS terminal shows decreased refilling of ΔCm1or the rapid pool 
in train 2. This decrease is not due to significant decrease in calcium influx (bottom panel). 

Right – The cumulative capacitance change at the end of the pulse train (ΔCm total) of train 1 
and 2 (top panel) in ATP and ATPγS terminal shows decreased refilling of ΔCm total or the 
releasable pool in train 2. This decrease is not due to significant decrease in calcium influx 

(bottom panel) 
 

Next we examined the state of the rapid pool under conditions where the refilling of 

the releasable pool was blocked. We compared the Δ Cm 1 of the trains 1 to 4 between 

controls and ATPγS terminals. In control terminals n=6, ΔCm1 was only decreased by 22% 

(32.3 ± 8.3fF), 39% (24.2 ± 8.3fF) and 46% (20.4 ± 5fF) in response to the second, third and 

fourth trains respectively. In ATPγS terminals, n=5, by the second train the rapid pool, ΔCm1 
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was decreased by 61% (8.68 ± 2fF), p<0.05 (numbers in parenthesis refer to the Δ Cm 1 for 

each train, p value compared to controls, fig 3.6). The rapid pool could not be refilled in the 

third and fourth trains in ATPγS terminals (ΔCm1 values were not higher than 1 SD of the 

baseline).The effect of ATPγS was not due to a decreased calcium influx (as shown in fig 

3.6) or differences in basal calcium. The basal intra-cellular calcium in these experiments 

were buffered to ~150 nM calcium, the same as in experiment 1. (ATP: [Ca] i: = 174.3 ± 

48.6 nM, n = 6 ; ATPγS:  [Ca] i: = 186.2 ± 60.9 nM, n = 7, p value = 0.8) 

In ATPγS terminals, the second, third and fourth trains probe a state where the 

releasable pool has been depleted (in the first train) and its refilling has been blocked. These 

data suggest that 1) when the releasable pool is not functionally refilled, the rapid pool is 

also not functionally refilled or 2) the rapid pool is being refilled from the reserve pool by an 

ATP-sensitive step. However at ribbon synapses, vesicles once tethered to the ribbon show 

low exchange with vesicles from the cytoplasm (presumed to be the reserve pool) until the 

tethered pool is released (presumed to be the rapid and releasable pool)  (87). Therefore we 

support the first conclusion that the rapid pool refills vesicles from the releasable pool. 

EXPERIMENT 3: To determine if depletion of the releasable pool also depletes the rapid 

pool, using single depolarizations 

We sought to investigate whether depletion of the releasable pool depletes the rapid 

pool using a second paradigm. In this second paradigm we used traditional single pulses 

(rather than a train of pulses) known to deplete the specific pool of vesicles : a 1s 

depolarization to deplete the releasable pool of vesicles (123, 132, 151) and a 20ms 

depolarization to probe the rapid pool of vesicles (72, 208).  The paradigm was as follows - 

ATPγS was dialyzed into terminals and a 1s pulse (80, 81, 84) was given every 30 s till the 
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releasable pool was depleted. Then, a 20 ms pulse was given to probe the state of the rapid 

pool. The 30 s inter-pulse interval was chosen to allow for refilling of the releasable pool 

which takes about ~ 20 s under control conditions (τ = 8 s, (80, 84)). Once the releasable 

pool depleted by > 86%, a 20 ms pulse was given to probe the state of the rapid pool. A 

sample trace is shown in fig 3.7. 

 The amplitude of the exocytotic response evoked by the first 1s depolarization was 

not significantly different between the two groups (ATP:  ΔCm = 124.2 ± 48 fF, n=5; 

ATPγS:  ΔCm = 156.5 ± 25.5 fF, n = 5, p value = 0.57), consistent with the interpretation 

that the releasable pool is intact prior to stimulation in the presence of ATPγS (80, 96). In 

ATPγS terminals, depletion of the releasable pool was associated with a profound depletion 

of the rapidly-releasing pool (Fig. 3.8 ; n= 5). By contrast, the rapid pool remained relatively 

intact in ATP terminals following depletion of the releasable pool (ΔCm = 20.9 ± 5.7 fF, n= 

5;p value = 0.01  fig 3.8).  There was no significant difference between the calcium influx 

during the 20 ms depolarization as assayed by the peak  Ica between ATP and ATPγS 

terminals (fig 3.8, ATP: Ica = 139.2 ± 24.8 pA, n= 5; ATPγS: Ica = 127.4± 22.7 pA, n= 5). 

The spatially averaged resting calcium, before the first depolarization in both group of 

terminals were not significantly different (ATP: [Ca] i: = 133.9 ± 34 nM, n = 5 ; ATPγS:  

[Ca] i: = 135.5 ± 20.6 nM, n = 5). There was also no significant difference in the spatially 

averaged basal calcium, between the two groups before the 20ms pulse (ATP: [Ca] i: = 175 

± 47.2 nM, n = 5 ; ATPγS:  [Ca] i: = 157.6 ± 23.5 nM, n = 5).  
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Fig 3.7: Depletion of the releasable pool also depletes the rapid pool 

Top panel: Protocol. In terminals dialyzed  with ATPγS,  a1s depolarization was given 

every 30 s till the releasable pool was depleted >86%, then, a 20 ms depolarization (red 
arrow) was given to probe the state of the rapid pool. A representative trace is shown in the 
bottom panel  (ATPγS). A similar number and length of depolarizations were given to ATP 

control terminals, a representative trace is shown in the middle (ATP) panel. The 
capacitance change in response to the 20ms pulse was  decreased in ATPγS terminal 

compared to control terminal (red arrows).  In both capacitance traces (middle and bottom) 
the return of the membrane capacitance to baseline between the 1 s pulses is suggestive of 
endocytosis. 
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Fig 3.8 : Depletion of the releasable pool also depletes the rapid pool 
Terminal dialyzed with ATPγS were stimulated with 1s depolarizations every 30secs until 

the releasable pool could no longer be refilled (ΔCm < 86% of the ΔCm seen in response to 
the first pulse). We then probed the rapid pool with a 20ms pulse. Control (ATP) terminals 

were stimulated with similar number and length of depolarizations. The capacitance change 
in response to the 20ms pulse was significantly decreased in terminals dialyzed with ATPγS 
(black bar, n = 5) compared to those dialyzed with a control ATP solution  (white bar, n= 5). 

This effect was not due to a decreased calcium influx as evidenced by the I ca (bottom 
panel). 
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EXPERIMENT : To determine if depletion of the rapid pool also depletes the releasable 

pool, using single depolarizations 

We sought to investigate whether the rapid pool was a subset of the ribbon tethered 

releasable pool such that fusion of the rapid pool would also deplete vesicles from the 

releasable pool. Four to five 20 ms pulses were given with an inter pulse interval of 30 s. 

Each 20ms pulse is sufficient to deplete the rapid pool (72). The last pulse in the series was 

immediately followed by 1s pulse to probe the state of the releasable pool. Terminals were 

dialyzed with ATP (control) or with ATPγS in order to block any functional refilling of the 

releasable pool. The size of the initial rapid pool (first pulse) was not significantly different 

between ATPγS and control terminals (ATP:  ΔCm = 23.3 ± 4 fF, n = 6; ATPγS:  ΔCm = 33.2 

± 6.4fF, n = 8; p value = 0.25) 

In control terminals the rapid pool was refilled multiple times (sample trace fig 3.9).  

In ATPγS terminals, the rapid pool was refilled only 4 to 5 times and with decreasing 

amounts each time (fig 3.9 sample trace). In addition, the magnitude of the capacitance 

increase evoked by the 1 s depolarization was reduced by more than 80% in ATPγS 

terminals relative to controls (ATPγS:  14.1 ± 3.3 fF, n= 8; ATP:  76.8 ± 28.2fF, n= 6 ,p 

value =0.024). As an upper estimate of the size of the total releasable pool remaining after 

four 20 ms depolarizations, we combined the magnitudes of capacitance increases from the 

last 20 ms depolarization and the 1 s depolarization.  ATP: combined ΔCm = 90.6 ± 26.5fF, 

n = 6; ATPγS: combined ΔCm = 16.7 ± 3.8 fF, n = 8; p value = 0.007 (fig 3.10 bottom panel  

labeled releasable pool). The total amount of membrane added by the four or five 20 ms 

pulses was also similar between the two groups (Fig 3.10, ATP: total membrane added = 74 
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± 10.5 fF, n= 6; ATPγS: total amount of membrane added= 73.9± 13.2 fF, n = 8, p value = 

0.99) 

The difference in the exocytotic response to the 1 s depolarization between terminals 

dialyzed with ATP and ATPγS were not due to differences in calcium influx (ATP: Ica = 

141.3 ± 16.1 pA, n= 6; ATPγS: Ica = 125.4 ± 10 pA, n= 8, p value = 0.4, fig 3.10 middle 

panel). To control for changes in basal calcium in the presence of ATPγS, we used a Ca-

EGTA buffered internal solution (see methods). The spatially averaged resting calcium, 

before the first 20 ms depolarization in both group of terminals were not significantly 

different (ATP: [Ca] i = 93.9 ± 20.6 nM, n= 6; ATPγS: [Ca] i = 112.7± 19.5 nM, n= 8, p 

value = 0.53). There was also no significant difference in the spatially averaged basal 

calcium, between the two groups before the last 1s pulse (ATP :[Ca] i = 101.2 ± 16.3 nM, n= 

6; ATPγS : [Ca] i = 114.5 ± 18.3 nM, n = 8, p value = 0.61). The change in calcium, ∆Ca in 

response to the 1s depolarization was not significantly different between terminals dialyzed 

with ATP and ATPγS (ATP: ∆Ca =538.7 ± 117 nM ,n = 5; ATPγS: ∆ Ca = 465.6 ± 109 nM, 

n = 8, p value = 0.67).  

 The above findings suggest that under conditions where the functional refilling of 

the releasable pool is blocked the rapid pool can be refilled only 4-5 times. After 4-5 rounds 

of release the releasable pool is also depleted. Decreasing size of the rapid pool in terminals 

dialyzed with ATPγS may suggest incomplete functional refilling of the rapid pool from 

releasable pool vesicles in the absence of ATP hydrolysis.  
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Fig 3.9 The rapid pool is a subset of the releasable pool 

Top panel : protocol -The rapid pool was depleted with 4-5, 20ms pulses followed by a 1s 
pulse (arrow) to probe the state of the releasable pool. Representative traces with ATP 

(middle) and ATPγS (bottom) are shown. Dashed line shows expected size of the releasable 
pool in the terminal dialyzed with ATP control solution. 
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Fig 3.10 The rapid pool is a subset of and draws from the releasable pool 

Top panel: Mean capacitance change in response to five 20 ms depolarizations followed by 
the 1 sec depolarization shows that after 4-5 rounds of release of the rapid pool the 

releasable pool is also depleted in the presence of ATPγS. Middle panel: The depletion is 
not due to decreased calcium influx. Bottom panel: Mean estimate of the size of the total 

releasable pool remaining after four 20 ms depolarizations, ( combined magnitudes of 
capacitance increases from the last 20 ms depolarization and the 1 s depolarization) and total 
membrane added in ATP (n=6) and ATPγS terminals (n=8). 
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Intracellular calcium measurement 

 

 
In bipolar terminals, the plasma membrane Ca-ATPase are the main regulator of the 

intra terminal calcium (220). Therefore in terminals dialyzed with ATPγS (a non-

hydrolysable analogue of ATP) , the Ca-ATPases, may be inhibited allowing for a larger 

calcium micro domain width and increase in basal calcium during the recording time and 

also with multiple depolarizations. To control for increases in basal calcium, we used 

calcium-EGTA buffered internal solutions (buffered to a free calcium of 150nM, see also 

methods) in all our experiments. To further verify whether terminals dialyzed with ATPγS 

had higher basal calcium before or during the several depolarizations, we measured the basal 

[Ca] i  and the average [Ca] i during the 5 ms before each 20ms depolarization. The basal 

[Ca] i and the [Ca] i  before each pulse was not significantly different between terminals 

dialyzed with either ATP or ATP ( fig 3.11). The trend was for higher spatially averaged 

calcium with ATPγS (possibly due to inhibition of Ca-ATPase in the absence of ATP 

hydrolysis), indicative of a possibly larger microdomain, but fusion of a fewer vesicles with 

multiple depolarizations (fig 3.10). 

 We wanted to resolve whether the increase in [Ca]i  and its subsequent recovery to 

baseline was different in terminals dialyzed with ATPγS compared to control solution. I was 

not able to measure a detectable rise in the spatially average intra cellular calcium [Ca] i after 

each 20ms pulse. However I could measure the increase in calcium after a 1 s pulse and 

measure the time course of the decay of the calcium transient. The spatially averaged 

increase in [Ca] I  was 538 ±117nM in ATP (n= 5) and 465.6 ±102 nM in ATPS terminals 

(n= 8) (p value =0.7).  The time course of recovery after a 1 s depolarization was 5. 8 ± 1.54 

in ATP terminals (n=6) and 7.1 ± 0.7 in ATPS terminals (n=8) and was not statistically 
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different between the two groups (p value = 0.4). The time course of recovery of the calcium 

transient would be faster in response to a 20 ms pulse. Therefore it is reasonable to assume 

that in terminals dialyzed with ATPγS, 20 ms depolarizations cause similar intracellular 

calcium changes as controls. 

 

Fig 3.11 Changes in intracellular calcium during experiment 4:  Mean spatially averaged 

intra-cellular calcium ([Ca] i) before the terminal is depolarized (basal) and specifically 5 s 
before each 20 ms depolarization's (given four times, denoted on the x axis as  pulse 1- pulse 

4) in terminals dialyzed with internal solution containing either ATP or ATPS 
 

DISCUSSION 

 The main findings are: 1) A stimulus train reveals exocytosis that draws from 

multiple vesicle pools 2) Inhibition of functional refilling of the releasable pool also blocks 

fusion of the rapid pool. This suggests that the rapid pool is a subset and draws from the 

releasable pool.  

Using a pulse train we were able to study fusion from three distinct vesicle pools (fig 

3.4). Our findings correlate well with the known sizes, and ATP and EGTA sensitivities of 

the previously characterized vesicle pools in synaptic terminals of Mb1 bipolar cells  (72, 

80, 132, 208) . In our paradigm the capacitance change after the first pulse represents fusion 

of the rapid pool which is predicted to be ~ 20-40 fF or ~1000- 1500 vesicles. Using ATPγS 

Δ
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to block functional refilling we were able to capture the releasable pool which is predicted to 

be 100-150fF or ~3800- 5800 vesicles. Under control conditions the magnitude of the 

cumulative capacitance change at the end of the pulse train suggested recruitment of reserve 

pool vesicles. While the number of reserve pool vesicles, from EM studies show >400,00 

vesicles scattered throughout the cytoplasm (75), it has been suggested that a  small cohort 

of this population (~ 6000 vesicles) maybe available for immediate refilling of the releasable 

pool during repetitive stimulations (84). Our results suggest this pool to be ~108 fF or ~ 

4200 vesicles suggesting that our train may not have captured all the reserve vesicles 

available for immediate refilling. Also in our experiments under control conditions, by the 

end of the stimulus train (after 136 pulses) the rapid pool was refilled at least 5.29 times 

(cumulative ΔCm total /ΔCm 1), half of what would expected if the releasable pool was refilled 

completely (cumulative ΔCm total /ΔCm 1 would be closer to 10). The lack of a complete 

refilling/turnover of the releasable pool could be due to depletion of factors required for 

refilling (due to dialysis) or perhaps adaptation of  exocytosis machinery such as the calcium 

sensor. Recording using perforated patch clamp techniques may help to prevent wash-out. A 

longer pulse train might be required to turn over the entire pool of releasable vesicles. 

Therefore a train with a more pulses (e.g. 150 instead of 136) or longer pulses (50 ms-

250ms) could be used to test this hypothesis and address the second issue. 

 Under conditions where functional refilling was blocked with ATPγS, the rapid pool 

was refilled 3.57 times suggesting decreased pool refilling, as would be expected for 

ATPγS. We calculate the refilling and fusion rate of the ATP sensitive component (or 

reserve pool vesicles which refill the releasable pool) to ~10.9fF /s or 366vesicle/s (fig 3.5). 

Interestingly, we were able to fit the ATP sensitive component with a linear function. This 
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suggests that during the pulse train there appears to be a steady rate of recruitment of 

vesicles, even while the vesicles in the releasable pool are not completely depleted. Whether 

this continuous recruitment of vesicles require high levels of intracellular calcium, known to 

aid in pool refilling (208, 211), that is seen during the pulse train, would be an interesting 

hypothesis to test. 

 Capacitance measurements track changes in surface area. Therefore a flat 

capacitance trace, as seen in capacitance measurements in between the pulses of the train 

may represent a balance of exo- (addition of membrane) and endocytosis (removal of 

membrane). However two lines of evidence suggest that the Cm measurements during the 

train are most likely due to exocytosis. 1)  An increase in intracellular calcium has been 

suggested to block endocytosis in several  types of nerve terminals (216, 221, 222) including 

the retinal  bipolar cell terminal (73, 209, 211). Specifically, an increase in spatially 

averaged calcium above 500 nM has been shown to suppress endocytosis (209).  During a 

pulse train the basal calcium in the terminal reached values more than 500nM by the 20 th 

pulse (time = 1.43 s) and more than 1µM by the 30th pulse (time =2.14 s) [The [Ca] i by the 

20th pulse was 679 ± 272 nM (n=6) in ATP terminals and 872 ± 319 nM in ATPγS terminals 

(n= 7), p value =0.67. The [Ca] i the 30th pulse was 2.37 ± 1.6µM (n=6) in ATP terminals 

and 1.39 ± 0.5µM in ATPγS terminals (n= 7), p value = 0.57].  2) The 50 ms inter-pulse 

interval during the train is too short for even the fast mode of endocytosis, which has a τ of 

1-3 s (73, 123, 161) . Also long stimulus durations (as used in our pulse train) decreases the 

fraction of membrane recovered by the fast mode of endocytosis in bipolar cells 

(73).Therefore we suggest that the membrane capacitance changes during the train are most 

likely entirely due to exocytosis.  
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The magnitude of the rapid pool from capacitance measurements is ~1/5th the 

magnitude of the releasable pool. The rapid pool of vesicles can undergo immediate release 

while longer depolarizations are required for the fusion of the releasable pool.  Therefore 

based on the relative sizes and kinetics of the releasable and rapid pools, an obvious 

assumption is that the rapid pool is a subset of the releasable pool. Here we show that this 

correlation is not just coincidental. Depletion of the larger releasable pool depletes the rapid 

pool (fig3.6, 3.7) and vice versa (fig 3.8, 3.9), suggesting that not only is the rapid pool a 

subset of the larger releasable pool but the rapid pool is also refilled from the releasable pool 

vesicles. Based on correlation between the size of the vesicle pools from capacitance 

measurements and a matching number of vesicles tethered to the ribbon from EM analysis it 

has been assumed that the releasable pool of vesicles is composed of vesicles tethered to the 

ribbon, with the rapid pool forming the docked row of vesicles. In the next section we 

attempt to prove that this finding is also not merely co-incidental. 

The rapid and releasable pool undergo fusion at ribbon style active zone  

In Mb1 bipolar cells, synaptic ribbons co-localize with calcium entry sites at ribbon-

style active zones (82, 85). The distance between a ribbon and the nearest calcium entry site 

is 122 ± 10nm (82). In TIRFM experiments an active zone is defined to be where two or 

more vesicles fuse within 300nm of each other (83, 85). Two definitions have been proposed 

for the area of the ribbon-associated active zones :1) within 700nm of the ribbon, (83) or 2) 

within 300 nm of the center of the ribbons (82).  However the length of the longest axis of 

the ribbon is  ~500 nm (75) and two vesicles fusing at the ends of a ribbon may not be 

considered to be a part of the same ribbon- associated zone according to the second 

definition. Also Zenisek 2008 (83) noted that fusion event that were within 300 nm of each 
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other were also with in 700 nm of the ribbon.  Therefore, we will be using the first definition 

of a ribbon associated active zone (within 700nm)  as our definition.   

Beumont et al., 2005 measured the width of calcium micro domains using TIRFM 

and calcium indicator dyes. In the presence of 10mM EGTA a 20-40 ms depolarization 

spreads the calcium micro domain over 580 ± 40nm while in the presence of 0.1mM EGTA 

the micro domain spread wider to 930 ± 110nm. Using perforated patch clamp conditions 

they measured the calcium micro domain in the presence of endogenous buffering in 

response to a 20-40ms depolarization to be 770 ±60nm. The endogenous buffering present 

in Mb1 terminals is equivalent to ~1.2mM BAPTA or 0.9mM EGTA (223).  In our 

experiments calcium handling in terminals dialyzed with ATP or ATPγS were not 

significantly different (fig 3.11).The internal solution contained 2.5mM free EGTA (as 

calculated by maxchelator, http://maxchelator.stanford.edu) . Therefore we can expect that 

in our experiments the calcium micro domain in response to a 20 ms depolarization is 

between 580 nm and 770 nm. The width of this calcium micro domain is similar to the size 

of the ribbon associated zone. Therefore under our experimental buffering conditions, a 

20ms depolarization can be expected to elicit fusion of ribbon associated vesicles, most 

likely the bottommost docked row of vesicles or the rapid pool.  

 In the ATPS terminals from experiment 4 we find that in the absence of the 

functional refilling, multiple 20ms pulses can deplete the releasable pool (evidenced by the 

decrease in response to a 1s depolarization after a series of 20 ms pulses). This suggests that 

the releasable pool is largely located at ribbon-style active zones. Four to five 20 ms pulses 

were needed to deplete the releasable pool (in the absence of functional refilling). This 

suggests that the releasable pool may be composed of 4-5 rows of vesicles which also fuse at 

http://maxchelator.stanford.edu/


 
 

58 
 

ribbon style active zones. This co-relates nicely with EM reconstruction of the ribbon 

associated active zone (75) 

 In experiment 4 , after 4-5 20 ms depolarizations the terminals were stimulated with 

a 1s depolarization. Compared to a 20 ms depolarization a 1 s depolarization should result in 

a larger spread of the calcium signal. This global elevation in [Ca] i may elicit fusion of 

vesicles both at ribbon and non-ribbon sites (more than 700 nm from the ribbon). In 

experiment 4, in terminals that were dialyzed with ATPγS there is a remaining 14 ± 3 fF of 

exocytotic response measured after the depletion of the releasable and rapid pools (fig 3.9). 

This may reflect either incomplete block of refilling by ATPγS (due to competing 

endogenous ATP) or fusion of vesicles docked at non ribbon sites. If this remainder were 

indicative of release from sites more than > 700 nm from the synaptic ribbons, we can 

estimate the number of this vesicles population to be ~ 542 ± 126 vesicles per terminal 

(assuming all vesicles to be of equal size , 29 nm (75)). 
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CHAPTER IV 

 

VESISCLE POOLS ASSOCIATED WITH SNARE COMPLEXES IN A RETINAL 

BIPOLAR NEURON 
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INTRODUCTION 

 The ability of a neuron to respond to repetitive stimulation depends on many factors 

including number of synaptic vesicles available for release, mobilization of vesicles into the 

fusion-competent  vesicle pool and recycling of the exocytosed vesicles. For a vesicle to be 

fusion -competent or available for release it must be docked, primed and associated with 

SNARE complexes.  These vesicles form the rapid pool of vesicles. The size of the rapid 

pool determines the release probability and synaptic strength of the neuron. 

At conventional synapses, an action potential drives a burst of neurotransmitter 

release. Ribbon style synapses can release neurotransmitters continuously  (tonically) where 

graded changes in the pre synaptic membrane potential modulate the release rate. The Mb1 

bipolar neuron can also releases neurotransmitter in response to calcium-dependent action 

potentials (200–202). How does the bipolar neuron sustain this high demand for exocytosis 

which can be mediated via both graded and calcium-dependent action potentials? One 

possibility might be via the availability of a large number of vesicles at active zones.  In 

support of this hypothesis, cerebellar mossy fiber terminals which are capable of sustained 

release at more than 200Hz have been shown to have 300 vesicles/active zones (224).  

Analysis of EM micrographs of goldfish bipolar neuron suggest  ~ 5500 vesicles at ribbon 

style active zones (75). For a terminal with 50 ribbon, this translates to ~ 110 per ribbon-

style active zone. However, the number of docked vesicles which are thought to be available 

for immediate release is not different between conventional synapses and the bipolar neuron: 

~10-40 docked vesicles from EM analysis of single boutons from  rodent  hippocampal 

neurons (76, 127) ,~ 5 vesicles within 20 nm of active zone for the calyx of Held (128, 225) 

and ~ 22 vesicles/ ribbon-style active zone for the bipolar neuron (75). In conventional 
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synapses such as CA3 hippocampal neurons of rodent, the size of the fusion-competent pool 

of vesicles is set by the number of vesicles associated with fully assembled SNARE core 

complexes (226).  The size of the vesicle pool associated with SNARE complexes in ribbon 

synapses is not known. 

The aim of this chapter is to determine the size of the vesicle pool associated with 

SNARE complexes and therefore the size of the vesicles available for immediate  fast 

release in retinal ribbon synapses . We hypothesize that similar to conventional synapses in 

ribbon synapses the  rapid pool of vesicles will be associated with SNARE complexes. 

 

In this section I will first discuss SNARE proteins in general and in ribbon synapses 

and docking and priming of synaptic vesicles  

SNARE proteins  

 SNARE proteins are ubiquitously found and orchestrate vesicle fusion in organisms 

from yeast to humans (25, 227).  The order of SNARE complex formation is thought to be 

as follows: an intermediate binary complex is formed at the plasma membrane between 

Syntaxin and SNAP 25 where the SNARE domains of these two proteins are oriented in 

parallel. The stable ternary SNARE complex is formed when Synaptobrevin, on the synaptic 

vesicle, interacts with the binary structure. Biochemically the ternary SNARE complex is 

very stable and resistant to high temperature (228) and denaturation by SDS. The SNARE 

complex is assembled via a “zippering” action starting at the N terminal towards the C 

terminal (229, 230).  As the zippering progresses towards the C terminal, the vesicle is 

pulled closer to the plasma membrane rendering the vesicle ready for calcium dependent 

fusion with the plasma membrane. After the fusion of the synaptic vesicle SNAPs and NSF 
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help in the regeneration of the SNARE proteins. NSF is a ATPase and it is thought that the 

energy requirement for the disruption of the SNARE complex is provided by the hydrolysis 

of ATP by NSF (231).  

 

SNARE proteins in Ribbon synapses 

  The three core proteins required for the formation of the neuronal SNARE complex 

are present in ribbon synapses. Syntaxin 1 is found in hair cell ribbon synapses and 

pinealocytes (94, 232, 233). Retinal ribbon synapses however express syntaxin 3B (149–

151). SNAP 25 and Synaptobrevin are also found in ribbon synapses (94, 149, 232–237). 

However a functional role for SNARE proteins at ribbon synapses is controversial. Only two 

studies have looked at the physiological role of SNARE proteins at ribbon synapses (151, 

158). In 2010 we published data showing that in the Mb1 bipolar neuron, a peptide derived 

from Syntaxin 3B, when introduced into the bipolar terminal, affects exocytosis (151). Data 

from  Curtis et al.,2010 will be presented in the results section.  Nouvian et al., 2011 provide 

physiological experiments where, in spite of the presence of SNARE mRNAs, 

neuroexocytosis in rodent inner hair cells seem to operate independently of neuronal 

SNAREs. In their study, Nouvian et al ., 2011 show that exocytosis in the inner hair cell of 

rodents are not affected by neurotoxins known to cleave neuronal SNARE proteins. They 

also show that in mice lacking certain SNARE proteins (SNAP 25 or Synaptobrevin 2/3-

double knock out) exocytosis is maintained.  Nouvian et al., 2011 suggest that it is possible 

that retinal ribbon synapses are different from hair cell ribbon synapses (probably due to 

different developmental origins- retinal cells being neuronal and hair cells being epithelial ). 
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Therefore the role of neuronal SNAREs in ribbon synapses is controversial and further 

studies are required. 

Docking and Priming of synaptic vesicles 

Before a vesicle fuses with the plasma membrane it undergoes several preparatory 

steps that include docking and priming. Docked vesicles have been defined as those which 

are apposed to the plasma membrane. Under an electron microscope, docked vesicles are 

those that are within 30 nm of the plasma membrane (238, 239) or a vesicle whose 

membrane directly touches the presynaptic membrane with no cytoplasmic space between 

the two membranes (76, 240). In the traditional view, docking precedes priming. While 

docking functions to physically bring a vesicle in proximity to the fusion site, priming 

consists of  maturation steps which render the vesicle “fusion competent” in response to 

calcium. In conventional synapses docked pool of vesicles contains both primed and non-

primed vesicles (239, 240).   

In hippocampal neurons the size of the docked pool is thought to be the anatomical 

correlate of the physiological rapid pool (76). Therefore, proteins that regulate the size of the 

docked pool may also effect the release properties of the neuron. Two presynaptic proteins, 

Munc18-1 (an SM protein) and Syntaxin (a SNARE protein,) have been established as 

docking factors (18, 19, 23, 241).  However in Drosophila, synaptic vesicles are able to 

dock even in the absence of syntaxin(238). The vesicles are also undergo fusion evoked via 

hyperosmotic saline,  suggesting a role downstream from docking for  syntaxin, at least in 

Drosophila. 

The definition of priming is less concrete compared to docking. It is dependent on 

the technique used to study this step, suggesting that there may be several forms of priming.  
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Traditionally, it was defined as the Mg-ATP and calcium dependent step that render a 

vesicle fusion-competent (80, 81, 242, 243) but other molecules such as  

Phosphatidylinositol-4,5-biphosphate (PIP2) (244, 245),  Munc 13-1 (an  SM protein) and 

RIM1 (a Rab effector protein) (22, 246) have been suggested to be involved in priming. A 

newer definition of priming includes the opening of syntaxin and the beginning of the 

formation of the SNARE core complex (27, 247, 248) . Syntaxin can exist in two 

conformations, open or closed. In the closed conformation the N-terminal folds back on the 

SNARE domain.  In its closed form syntaxin is unable to interact with the other SNARE 

binding partners. The open syntaxin however is able to bind to SNAP 25. Munc 18-1 is 

known to bind to syntaxin and stabilize the “closed” conformation of syntaxin and block its 

interaction with other SNARE partners (31) . In conventional synapses Munc 13-1 has been 

shown to prime vesicles for release via its interaction with Syntaxin.  Munc 13-1 hastens the 

opening of syntaxin and the binding of other SNARE proteins to the SNARE domain of 

syntaxin and thus the formation of the core complex (249). 

 The role of SNARE proteins other than syntaxin in docking and priming is an active 

field of research.  The absence of Synaptobrevin in Drosophila does not affect docking of s 

vesicles (238). A similar result has been shown in the squid, where disruption of 

Synaptobrevin function by neurotoxin or competing peptides also does not affect the 

docking step of vesicles.(250).    

 

Docking and Priming in Retinal Bipolar Ribbon synapses 

Unlike conventional synapses (76), in ribbon synapse the docked pool is not 

necessarily a correlate of the rapid pool. In ribbon synapses, EM micrographs of goldfish 
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bipolar neuron show docked vesicles at both the ribbon and at varying distances away from 

the ribbon style active zones (75, 82).  Docked vesicles away from the ribbon style active 

zone are not thought to be the anatomical correlate of the physiological rapid pool since they 

are at a large distance from the calcium channel clusters (72, 82). TIRFM (Total internal 

reflectance fluorescence microscopy), which allows for tracking of vesicle mobility and 

fusion events at the plasma membrane has also been used to study docked vesicles. Vesicles 

with restricted mobility and those that remain continually visible for more than 500ms are 

considered docked (83, 251). Results from TIRFM studies show that ribbons (specifically 

within 700 nm from the center of a ribbon) are the preferred site for docking and once 

docked the vesicles do not undock but undergo evoked release. Compared to ribbon-

associated sites, un-docking of a docked vesicles is more common at extra-ribbon sites 

which are defined to be > 700nm from a ribbon center (83). Calculations based on EM 

reconstructions for Mb1 terminals suggest that the number of docked vesicles at the ribbon 

is ~22 per ribbon, i.e. 1100 for a terminal with 50 ribbons (75). These vesicle are not only 

docked to the plasma membrane but are also tethered to the ribbon via filaments that are 25 

nm long.  

The primed pool of vesicles in the Mb1 terminals is also called the releasable pool of 

vesicles. These vesicles have undergone all ATP-dependent priming steps and are release 

ready (80, 81). From correlation between EM studies and capacitance measurements (132) 

and the results of chapter 3, we and others have suggested that the majority of the releasable 

pool is also ribbon associated. Two presynaptic proteins Munc 13-1 and RIM1,  known for 

their role in priming in conventional synapses, have been found to be a part of the ribbon  
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and active zone complex (135, 246).  A role of the ribbon as a site for priming of vesicles 

has been suggested (80, 156). 

   

 In this chapter we sought to determine which synaptic vesicle pool was associated 

with SNARE complexes in retinal ribbon synapses using the Mb1 goldfish bipolar neuron as 

a model neuron.  

  Three methods have been commonly used to study the function of SNAREs and 

identify which vesicle pool is associated with them. 1) Tetanus and Botulinum toxins: The 

tetanus toxin cleaves Synaptobrevin while Botulinum toxin A cleaves SNAP25 and 

Botulinum toxin C cleaves SNAP 25 and syntaxin (252). 2) Knock out animals lacking 

specific SNARE proteins and 3) SNARE inhibiting peptides. 

For our purpose we used peptides derived from SNARE proteins instead of toxins or 

knock-out animals for the following reasons: Neurotoxins typically require a long (10- 30 

minutes) incubation period at mammalian body temperature (239, 250) and are thus not a 

viable option for experiments on acutely dissociated neurons from a cold-blooded vertebrate 

such as goldfish. Zebra fish, where SNARE proteins have been genetica lly ablated may 

provide an exciting model for our study but magnitude and properties of specific vesicle 

pool have not yet been defined in the zebra fish.  
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RESULTS 

1. A peptide based on the SNARE domain of syntaxin 3B interferes with SNARE 

complex formation in-vitro  

EXPERIMENT 1: To determine the effect of a short SNARE domain peptide on SNARE 

complex formation in-vitro 

Note: Experiment 1 was performed by the Roger Janz laboratory and has been included in 

this thesis for completeness. 

 

 

 

Fig4.1 Syntaxin 3 and scrambled peptides . Location and sequence of the SNARE 

competing peptide derived from syntaxin3B and the control scrambled peptide. Both 
peptides were tagged with fluorescein at the N terminal. 
 

We first wanted to confirm whether a short peptide based on a SNARE protein could 

disrupt SNARE complex formation in-vitro. Dr. Roger Janz designed a peptide (fig 4.1) 

based upon the SNARE binding domain of syntaxin 3B, the specific syntaxin isoform found 

in the retinal ribbon synapses (150, 151). Another peptide (fig 4.1) with the same amino acid 

residues but in a randomly ordered/scrambled order, served as the control.  
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Fig 4.2 Syntaxin 3 peptide prevents formation of the SNARE complex 

A. Under the experimental conditions (see methods) the majority of syntaxin 3B is found in 
a high molecular weight SDS-resistant SNARE complex (top arrow). The SNARE peptide 
(syntaxin 3B peptide) inhibits the formation of new SNARE complexes as apparent by the 

presence of the free syntaxin 3B (bottom arrow). The remaining SNARE complexes (top 
arrow) is likely already assembled in the tissue and is not affected by the SNARE peptide.  

B. Quantification of three different experiments. The amount of Syntaxin 3B present in the 
higher molecular weight SNARE complex relative to the total syntaxin 3B is given (mean 
+/- SEM).The SNARE peptide caused a significant reduction in the amount of syntaxin 3B 

that is in the high molecular SNARE complex (p=0.0331). 
  

 

 

 

A 
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 Retinal extracts were incubated with syntaxin or the scrambled-peptide for two hours 

at room temperature. Under these conditions, the majority of syntaxin 3 was found in a high 

molecular SDS resistant SNARE complex (Figure 4.2, top arrow).  However, only the 

SNARE peptide (syntaxin3B peptide) caused a significant reduction in the percent of total 

syntaxin 3B found in the high molecular SNARE complexes (Figure 4.2).  In addition, it 

was only in the presence of the SNARE peptide that free syntaxin 3B was seen (Figure 4.2, 

lower arrow). These results suggest that the SNARE peptide interfered with the formation of 

new SNARE complexes without greatly affecting already-formed SNARE complexes.  

These results suggest that the SNARE peptide interfered with the formation of new SNARE 

complexes without greatly affecting already-formed SNARE complexes. 

 

EXPERIMENT 2: To determine the effect of the Syntaxin peptide on fusion from multiple 

vesicle pools 

2. A Syntaxin 3B peptide does not initially affect the rapid and releasable pools 

 Our aim was to determine which of the many vesicles pools in the retinal bipolar cell 

exist in preformed SNARE complexes. Based on the results of experiment 1, we used the 

Syntaxin 3B peptide as a tool to block the formation of new SNARE complexes and 

therefore determine the size of the vesicle pool associated with formed SNARE complexes. 

The pulse train protocol described in chapter 3- experiment 1 provides a paradigm where all 

three vesicle pools can be visualized.  In response to the train stimulus, the change in 

capacitance after the first pulse or Δ Cm 1 gives us an estimate of the rapid pool where as the 

cumulative Δ Cm at the end of the train or ΔC m total gives us an estimate of the releasable 

pool and its refilling (chapter 3). Isolated bipolar terminals were dialyzed with the Syntaxin 
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3B peptide or the scrambled control. Bothe peptides were tagged with FITC and loading of 

the terminal with either peptide was verified by an increase in fluorescence in the terminal 

over time (fig 4.3)  

 

Fig 4.3 Dialysis of the FITC tagged peptides were verified by an increase in 

fluorescence : In order to visually confirm the diffusion of the specific peptides into bipolar 
cell terminals, the peptides were tagged with FITC (Fluorescein iso-thiocyanate) at the N-
terminus. After achieving whole-cell voltage clamp (marked by arrow), increase in the 

spatially averaged fluorescence was observed over time. A steady state is reached in 3-4 
minutes. (The gaps in the trace denote time points where fluorescent measurement was 

stopped for real-time adjustment of the visual scaling of the trace or when the terminal was 
stimulated with a pulse train.) 
 

Effect of syntaxin 3B on the fusion of the releasable pool vesicles: 

Terminals were stimulated after 1 minute of dialysis with either the syntaxin 3B 

peptide or the scrambled peptide. In response to the train stimulus, terminals dialyzed with 

the syntaxin peptide showed an overall smaller exocytotic response compared to terminals 

dialyzed with the scrambled peptide (fig 4.4). To study this finding in detail we first looked 

at ΔC m total as a measure of the releasable pool and recruitment from reserve vesicles. We  

compared the total cumulative capacitance response, ΔC m total, between terminals dialyzed 

with either peptide. In terminals dialyzed with scrambled peptide, ΔC m total was not 

time (s) 
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significantly different from that seen with standard recording solution from chapter 3 

experiment 1 (scrambled: ΔCm total =276 ± 53 fF, n=5; ATP control: ΔCm total = 233 ± 48 fF ,n 

= 6;, p value = 0.56). By contrast, ΔCm total was significantly reduced by nearly half in 

terminals dialyzed with the syntaxin 3B peptide (Syntaxin 3B: ΔCm total = 91 ± 16 fF; n= 6; p 

value = 0.006) relative to scrambled. The magnitude of ΔCm total in the presence of the 

syntaxin peptide was comparable to that seen when functional refilling was blocked with 

ATPγS (i.e., fig 3.4), suggesting that in the presence of the syntaxin peptide recruitment of 

reserve pool vesicles may be blocked. This finding also suggests that the syntaxin peptide 

does not appreciably block fusion of vesicles in the releasable pool. 

To determine whether the effect of the decreased ΔC m total was due to a decreased 

influx of calcium we looked at the average Ica of the last five pulses of the train, Ica total. The  

Ica total in terminals dialyzed with the syntaxin peptide compared to the scrambled peptide 

was smaller, and close to being significantly different (scrambled: Ica total = 124 ± 19 pA, n 

=5; Syntaxin: Ica total = 74 ± 12.5 pA ,n = 6, p value = 0.052).  The Ica total  in terminals 

dialyzed with syntaxin 3B and in terminals dialyzed with the scrambled peptide was 

decreased relative to the Ica 1. This could be due to i) a difference in calcium accumulation 

between terminals dialyzed with syntaxin 3B and the scrambled peptide during the train and 

calcium-dependent calcium channel inactivation (253) or a activity -dependent effect of 

Syntaxin 3B on the calcium channel (254). To bypass these two issues we used an alternate 

protocol which consisted of a single 1s depolarization to verify if the releasable pool was 

indeed spared in the presence of the syntaxin peptide. The effect of the syntaxin 3B peptide 

on the calcium channel is further addressed in the discussion section of this chapter.  
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Fig 4.4 . A SNARE complex inhibiting peptide blocks fusion of the reserve vesicles but 

not the releasable pool vesicles.   
In response to a pulse train given 1 min after achieving whole cell configuration, 

terminals dialyzed with a SNARE complex inhibiting peptide (syntaxin, black circles, n = 6) 
showed a decrease in the cumulative capacitance compared terminals dialyzed with a 
scrambled peptide (open circles,  n = 5). The dotted line marks the magnitude of the total 

cumulative capacitance seen in terminals dialyzed with ATPγS (from fig 3.4). The release 
component attributed to refilling from reserve pool vesicles is inhibited in the presence of 

the syntaxin peptide but not the scrambled peptide. 
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In Mb1 terminals, a 1s depolarization (-60 mV to 0mV) has been traditionally used 

to study the releasable pool (75, 80). Therefore we used a 1s depolarization to probe the 

releasable pool (fig 4.5). The magnitude of the capacitance change in response a 1 s pulse 

was not significantly different between terminals dialyzed with the syntaxin peptide; ΔC m  = 

138 ± 27.4, n= 5,  and the scrambled peptide, ΔC m = 162 ± 22.2, n=5; p value = 0.52. This 

magnitude of response is also consistent with previously reported values of the releasable 

pool (75, 80, 132). The calcium influx due to the 1 s pulse was not different between 

terminal dialyzed with either peptide (scrambled: Ica = 165.9 ± 17.6 pA, n =5; syntaxin: Ica  = 

172 ± 21 pA, n = 5, p value = 0.8).  

 

 

 

 

 Scrambled peptide (n=5) 

 Syntaxin peptide (n =5) 

 

Fig 4.5 : The syntaxin peptide does not affect the  

number of vesicles in the releasable pool Top panel: 

Average ΔCm in response to a 1 s depolarization is not  

different between terminals dialyzed with the syntaxin 
peptide compared to the scrambled peptide. Lower 

panel: The calcium influx as measures by peak Ica is not 

different between the two groups. 
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Effect of syntaxin 3B on the fusion of the rapid pool vesicles: 

Next we sought to examine whether the syntaxin 3B peptide inhibited fusion of the 

rapid pool vesicles. By definition the vesicles of the rapid pool are thought to be docked. 

The SNARE proteins on the vesicles in this pool are thought to form trans-SNARE 

complexes with the plasma membrane SNARE proteins. To test whether the rapid pool was 

associated with SNARE complexes we compared the capacitance change in response to the 

first 20 ms pulse (ΔCm1) in the train as a measure of the rapid pool. In terminals dialyzed 

with the scrambled-peptide (Fig 4.4 and 4.6), the mean ΔCm1 was similar to that obtained 

using standard internal solutions (scrambled: ΔCm1 = 36.4 ± 6.4 fF; n=5). In terminals 

dialyzed with the syntaxin peptide, the mean ΔCm1 was 22 ± 7 fF, n=6.  These values were 

not significantly different from each other (p value = 0.2). The magnitude of the ΔCm1  in the 

presence of syntaxin is similar to what is seen in the presence of 5 mM EGTA, known to 

block fusion of all vesicles pools except the rapid pool (72, 208), (fig 3.4, 5mM EGTA:ΔCm1 

= 22.3±3.3 fF). Analysis of Ica in response to the first pulse (Ica 1) revealed that neither 

peptide had a significant effect on stimulus-evoked calcium entry (scrambled: Ica 1 = 203.5 ± 

23 pA, n =5; syntaxin: Ica 1 = 127.5 ± 30 pA, n = 6, p value = 0.09). The Ica 1 in terminals 

dialyzed with either peptide was not significantly different from control experiments 

(terminals dialyzed with peptide-free solution, ANOVA-NS). From these data, we conclude 

that after one minute of dialysis, the rapid pool is largely intact in the presence of syntaxin 

peptide. 
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Figure 4.6 : The Syntaxin peptide does not affect fusion from the rapid pool : 

Left: In response to the first 20ms pulse of the train the ΔCm1 was not significantly different 
between terminals dialyzed with the syntaxin peptide (n= 6), scrambled peptide (n=5) 

Right: The calcium influx measured by the calcium current was also not different between 
terminals dialyzed with the syntaxin peptide (n= 6), scrambled peptide (n=5). Magnitude of 
ΔCm1 and calcium current in terminals dialyzed with peptide free control is shown in gray 

for visual comparison (from chapter 3-experiment 1). 
 

EXPERIMENT 3: To determine the effect of the syntaxin peptide on refilling of the vesicle 

pools 

3. The Syntaxin 3B peptide blocks refilling of the releasable and rapid pools 

 Given that the syntaxin 3B peptide inhibited SNARE complex formation in vitro 

(Fig 4.2), but the rapid and releasable pools were initially intact, we next asked whether 

SNARE complex formation was required for subsequent rounds of release. To test whether 

the formation of new SNARE complexes were required for fusion of the rapid and 

releasable pools that occur following pool refilling, synaptic terminals were stimulated with 

four pulse trains given one minute apart. Refilling of the releasable pool under standard 

conditions has been shown to have a time constant of  ~7- 8 seconds and therefore 
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completed within ~20 seconds (80, 84). The 60 s inter train interval should therefore be 

sufficient to refill the releasable pool under control conditions.  

Refilling of the Releasable pool: 

 Results above (fig 4.4) show that recruitment of reserve vesicles is blocked in the 

presence of syntaxin 3B suggesting that the syntaxin peptide compromises refilling of the 

releasable pool. As further proof we measured the ΔC m total of each train (train 1 to 4) in 

terminals dialyzed with either peptide. To quantify percentage refilling we normalized the  

ΔC m total of each train to that of the first train (fig 4.7 right panel). Terminals dialyzed with 

the scrambled peptide  showed some run down, as seen in standard control experiments 

(Gray bars shown for comparison, fig 4.7). By contrast, the releasable pool dramatically 

decreased with each pulse train in terminals dialyzed with syntaxin 3B (to right panel fig 

4.7). By the second train, ΔC m total was dramatically reduced in syntaxin terminals to 37 ± 

10.6 fF (n=5), reflecting a 64% decrease from the initial value (Fig 4.7).  By contrast, ΔC m 

total with scrambled peptide was 197 ± 47 fF (n=5), reflecting a decrease of 31% from the 

initial value (Fig 4.7). To determine whether the effect of the syntaxin could be attributed to 

a change in calcium entry, we examined the average peak I Ca for the last 5 pulses (Ica total) of 

each pulse train. The Ica total in terminals dialyzed with the syntaxin peptide was smaller than 

that measured in terminals dialyzed with the scrambled peptide and the difference was close 

to significance (scrambled: Ica total_3 = 130 ± 17.6 pA, n =5; syntaxin: Ica total_3 = 80.6 ± 16 

pA, n = 5, p value = 0.07 Fig. 4.7). As seen before this may suggest a decreased calcium 

influx over time, during the pulse train, and that the syntaxin peptide could affect refilling or 

refilling rates of the releasable pool via an effect on calcium channels. This is specifically 

important as calcium aids refilling of the releasable pool in bipolar cells (208) .   
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 We also employed an alternate protocol using a 1s depolarization, which would 

avoid any calcium-dependent or any syntaxin-dependent inhibition of calcium channels  to 

measure if refilling is blocked in the presence of the syntaxin peptide. Bipolar terminals 

were stimulated with four depolarizations  each of 1 s duration (from -60mV to 0mV) . The 

first pulse was given 1 min after attaining whole-cell configuration and the inter pulse 

stimulus was 60 s.  

 As shown in fig 4.8 and earlier in fig 4.5, after 1 min of dialysis with the syntaxin 

peptide , the initial size of the releasable pool is not affected. Upon subsequent stimulation 

synaptic terminals dialyzed with the syntaxin peptide showed pronounced, progressive 

decrease in the size of the releasable pool. To quantify percentage refilling we normalized 

the  ΔC m  in response to each 1 s pulse to that of the first pulse. By the fourth pulse, the 

response was reduced to 89% in syntaxin terminals compared to 45% in terminals dialyzed 

with the scrambled peptide (fig 4.8). These data suggest that  refilling of the releasable pool 

was greatly affected by the syntaxin peptide. 

 In this experiment the syntaxin peptide did not have an inhibitory effect on the 

calcium current. The amplitude of the peak I ca in response to each pulse was not 

significantly different between terminals dialyzed with the syntaxin peptide and those 

dialyzed with scrambled peptide. By the fourth pulse scrambled: Ica = 153 ± 18.3 pA, n =5; 

syntaxin: Ica = 135 ± 19.7 pA, n = 5, p value = 0.5.   Thus, we can rule out the possibility that 

changes in calcium entry and cytosolic calcium underlie the effect of the syntaxin 3B 

peptide on refilling. 
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Fig 4. 7 A SNARE complex inhibiting peptide blocks refilling the releasable pool of 

vesicles.  Left top. Mean cumulative capacitance (ΔC m total) in response to a pulse train 
given every min (train number is indicated on the x axis) in terminals dialyzed with syntaxin 
(black), scrambled peptide (white) is shown. ΔC m total  in terminals dialyzed with the 

syntaxin peptide is significantly smaller compared to terminals dialyzed with scrambled 
peptide. Right; Normalizing to the  ΔC m total of the first train shows a progressive block of 

refilling in syntaxin peptide terminals compared to scrambled peptide . Left bottom: The 
effect of the syntaxin peptide was not due to a decreased calcium influx. There was no 
significant difference between the I Ca in terminals dialyzed the syntaxin peptide versus the 

scrambled peptide. Magnitude of ΔCm total and calcium current in terminals dialyzed with 
peptide free control is shown in gray for visual comparison (from chapter 3). 
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Fig 4. 8 A SNARE complex inhibiting peptide blocks refilling the releasable pool of 

vesicles. Left top: The stimulation paradigm used: A 1 s depolarization was given every 
60s. Left middle: average ΔC m in response to each 1 s pulse shows that in terminals 
dialyzed with the syntaxin peptide showed a progressive decrease in the exocytotic response 

compared to scrambled peptide.  Left bottom: There was no significant difference in the 
mean peak amplitudes of the calcium current between the two groups. Right: The ΔC m was 

normalized to the magnitude of the response of the first pulse. Syntaxin terminals showed a 
successive decrease in the refilling of the releasable pool. The grey dotted line shows 
normalized data from ATP controls (n=3). 
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Refilling of the Rapid pool: 

 Next we sought to examine the effect of the syntaxin peptide on refilling of the rapid 

pool. Isolated terminals were stimulated with four pulse trains given one minute apart. As 

before ΔCm1  was used as a measure of the releasable pool. By the second train, the rapid 

pool in terminals dialyzed with the syntaxin peptide was significantly diminished relative to 

scrambled peptide (scrambled: ΔCm1_2= 31 ± 6fF, n = 5; syntaxin: ΔCm1_2 = 8.3 ± 3.5 fF, n 

= 5; p=0.012). This represents a 66% decrease in the rapid pool in terminals dialyzed with 

the syntaxin peptide compared with a 14% decrease in terminals dialyzed with the 

scrambled peptide (fig 4.9). This effect was not due to a decreased calcium influx as the  I Ca 

of the first pulse of each train was not significantly different between the two groups (e.g. 

scrambled: Ica 1_2 = 194.4 ± 21.5 pA, n =5; SCIP: Ica 1_2 = 127 ± 32.7 pA, n = 5, p value 

=0.123, fig 4.9). Our results suggest that the syntaxin 3B peptide affects refilling of the rapid 

pool.  

Data from the above experiments have been compiled in table 4.1-4.4. 
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Fig 4. 9 A SNARE complex inhibiting peptide blocks refilling the rapid pool of vesicles. 
Left top: Mean cumulative capacitance (ΔC m1) in response to a pulse train given every min 

(train number is indicated on the y axis) in terminals dialyzed with syntaxin (black), 
scrambled peptide (white) solutions is shown. After the first train ΔC m1  in terminals 

dialyzed with the syntaxin peptide is significantly smaller compared to terminals dialyzed 
with scrambled peptide. Right: Normalizing to the  ΔC m1 of the first train shows a 
progressive block of refilling in terminals dialyzed with the syntaxin peptide compared to 

the scrambled peptide . Left bottom: The effect of the syntaxin peptide was not due to a 
decreased calcium influx. There was no significant difference between the I Ca 1 in terminals 

dialyzed with the syntaxin peptide versus scrambled peptide. Magnitude of ΔCm1 and 
calcium current in terminals dialyzed with peptide free control is shown in gray for visual 
comparison (from chapter 3). 
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Table 4.1:  The size of the rapid pool and its refilling in response to multiple trains 

Internal Solution Train 1 Train 2 Train 3 Train 4 

Scrambled peptide 36.4 ± 6.3 31.2 ± 6 (85.7%) 25.4 ± 6.6 (66.5%) 19.3 ± 7.6 (45.1%) 

Syntaxin 3B 21.5 ± 7 8.3 ± 3.3 (33.8%) 6.9 ± 4 (22%) 0 (0) 

p-value  
(Scrambled vs. Syntaxin) 

0.148 0.01 (0.012) 0.09 (0.03) 0.1 (0.06) 

Peptide free solution 44.6 ± 13 32.33 ± 9 (78.1%) 24.2 ± 7.6 (61.3%) 20.4 ± 5 (54.4%) 

 

The capacitance response to the first pulse in the train,  ΔC m1 (an estimate for the rapid 
pool) in response to train1 -4 for the different internal solutions is tabulated. All values are 

in fF and expressed as mean ± s.e.m. Values in bracket for trains 2-4 show the percentage 
refilling calculated by (ΔC m1 for train x/ ΔC m1for train 1)* 100. P value in brackets are for 

percentage refilling in the terminals dialyzed with syntaxin peptide versus scrambled 
peptide. Values from experiments where no peptides were added are shown in grey below 
the table. 

 

Table 4.2 Calcium currents in response to the first 20ms depolarization (Ica1) in 

multiple trains 

Internal Solution Train 1 Train 2 Train 3 Train 4 

Scrambled peptide 203 ± 22.9 194 ± 21.5 189 ± 22.6 178 ± 22 

Syntaxin 3B 127 ± 30.4 127 ± 32.7 151 ± 24.7 138 ± 19.6 

p-value  
(Scrambled vs. Syntaxin) 

0.09 0.12 0.31 0.27 

Peptide free solution 172 ± 31.8 163 ± 29.6 155 ± 32.4 147 ± 30.3 

 

The calcium current in response to the first pulse in the train or Ica1 in response to train1- 4 
for the different internal solutions is tabulated. All values are in pA and expressed as mean ± 

s.e.m. Values from experiments where no peptides were added are shown in grey below the 
table. 
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Table 4.3:  The size of the releasable pool and its refilling in response to multiple trains 

Internal Solution Train 1 Train 2 Train 3 Train 4 

Scrambled peptide 276 ± 53.7 197 ± 47.2 (69.1%) 125 ± 35 (44.2%) 92.2 ± 30 (32.1%) 

Syntaxin 3B 91.2 ± 17 36.9 ± 11 (36.2%) 24.9 ± 7 (22.9%) 4.8 ± 4.8 (5.2%) 

p-value  
(Scrambled vs. Syntaxin) 

0.006 0.01 (0.02) 0.07 (0.01) 0.07 (0.04) 

Peptide free solution 233 ± 48.4 133 ± 27 (57.5%) 108 ± 31 (41.7%) 96.1 ± 43 (32.2%) 

 

The  total amount of exocytosis evoked by the train - cumulative capacitance ΔC m total (an 
estimate for the releasable pool and recruitment of reserve vesicles) in response to train1 -4 
for the different internal solutions is tabulated. All values are in fF and expressed as mean ± 

s.e.m. Values in bracket for trains 2-4 show the percentage refilling calculated by (ΔC m total 

for train x/ ΔC m total for train 1)* 100. P value in brackets are for percentage refilling in the 

terminals dialyzed with syntaxin peptide versus scrambled peptide. Values from experiments 
where no peptides were added are shown in grey below the table. 
 

Table 4.4 Calcium currents ( I ca total) in response to multiple trains 

Internal Solution Train 1 Train 2 Train 3 Train 4 

Scrambled peptide 124 ± 19.4 130 ± 17.6 129 ± 14.9 129 ± 12.9 

Syntaxin 3B 74.2 ± 12.5 80.6 ± 16 102.3 ± 15 96.5 ± 19 

p-value  
(Scrambled vs. Syntaxin) 

0.05 0.07 0.27 0.24 

Peptide free solution 108 ± 14.8 111 ± 14.5 110 ± 15.4 106 ± 15.4 

 

The average  calcium current of the last five pulses of the  train or Ica total in response to 

train1- 4 for the different internal solutions is tabulated. All values are in pA and expressed 
as mean ± s.e.m. Values from experiments where no peptides were added are shown in grey 
below the table. 
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EXPERIMENT 4: To determine whether the effect of the syntaxin peptide was time 

dependent or activity dependent 

 In the above experiments the inhibitory effect of the peptide on the reserve pool  

vesicles was seen after dialysis with the Syntaxin 3B peptide for 1minute and the inhibitory 

effect on the releasable and rapid pool vesicles was seen  after dialysis  for 2minutes and 1 

round of stimulation with the pulse train. We wanted to know whether the effect of the 

syntaxin peptide on exocytosis was dependent on dialysis time or whether it required vesicle 

turnover  (activity dependent) . To answer this question, we  stimulated terminals with the 

pulse train similar as described above except that we gave the first pulse train three minutes 

after achieving the whole-terminal configuration, a time point at which there was a 

significant inhibition of the fusion of all three vesicle pools. In terminals dialyzed with the 

syntaxin 3B peptide, the cumulative ΔC m total  in response to the first train given at 3 min 

showed an amplitude indicating the loss of the component attributed to recruitment of 

reserve pool vesicles. The secretory component attributed to the releasable pool was intact. 

This was similar to ΔC m total  in response to the first train given at 1 min Fig 4.10 (3min: ΔC 

m total  = 105 ±43 fF ,n=2, 1 min: ΔC m total  = ΔCm total = 91 ± 16 fF; n= 6). The calcium 

current at the end of the first train given at 3 min was Ica total = 95.2 ± 20 pA, n = 2. For 

comparison the  Ica total at the end of the first train given at 1 min,  Ica total = 74 ± 12.5 pA ,n = 

6, fig 4.10. 

 In terminals stimulated with the train pulse at 3 min , the rapid pool was also intact, 

similar to that see with terminals stimulated after 1 min of peptide dialysis (3min:ΔCm1: 

Syntaxin = 29.1 ± 9 fF, n= 2; 1 min: ΔCm1 =22 ± 7 fF , n=6). The calcium influx measured 

by Ica 1 was similar between terminals probed at 1 min and 3 minutes ( 3min: Ica 1 = 139 ± 2 
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pA, n = 2; 1min:Ica 1 = 127.5 ± 30 pA, n = 6). This suggests that vesicle turnover is required 

for the inhibitory effect of the syntaxin 3B peptide on the vesicles of the rapid and releasable 

pools.  

Fig 4.10 shows a comparison of the responses seen after 1min to that seen after 3 min of 

peptide dialysis. 

 

 

Fig 4.10 Increase in dialysis time does not change the effect of the syntaxin 3B peptide 

on the rapid and releasable pool 

Left Top: Average cumulative ΔC m total  in response to the first train pulse given after 3min 

of dialysis (grey bar, n=2) was not different from that seen after 1 min of dialysis (black bar 
, n= 6). Right top: Average cumulative ΔC m 1 in response to a train pulse given after 3min 
of dialysis (grey bar, n=2) was not different from that seen after 1 min of dialysis (black bar 

, n= 6). Left and right bottom: The calcium influx at the end of the train (Ica total ,left 
bottom) and the calcium influx in response to the first pulse in the train (Ica 1 ,right bottom) 

was also not different between terminals dialyzed with the syntaxin peptide for 1 min (black 
bars, n= 6) versus 3 min (grey bars, n= 2). 
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5. A SNAP 25 peptide blocked recruitment of reserve pool vesicles while a 

Synaptobrevin competing peptide did not have an inhibiting effect on exocytosis  

EXPERIMENT 5: To determine which vesicle pools were associated with SNARE complexes 

using short peptides based on other SNARE proteins 

 We used two other short SNARE competing peptides: one based on the other  t-

SNARE, SNAP25, and another based on the v-SNARE Synaptobrevin to study which 

vesicle pool/s is associated with SNARE complexes. The SNAP 25 peptide was 26 amino 

acids long and was based on the C- terminal of the SNARE domain. A matching scrambled 

SNAP 25 served as control. In a first set of experiments, we dialyzed  terminals with the 

SNAP 25 peptide or the SNAP 25-scrambled peptide and stimulated with the pulse train. We 

waited 3 minutes before stimulating the terminals with the pulse train. In the experiments 

with the syntaxin 3B peptide, the inhibitory effect of the peptide did not seem to depend on 

the duration of dialysis (similar results were seen in response to a first pulse train given 1 

min or 3 minutes after break-in, fig 4.10) . 

 In response to the first train, terminals dialyzed with SNAP 25 showed ΔCm1 = 29.6 

± 5.3fF and the ΔC m total  = 153 ± 30 fF (n = 4). This suggests that the effect of the SNAP 25 

peptide was similar to that seen with the syntaxin peptide. Recruitment and fusion of the 

reserve pool vesicles was blocked but the fusion of rapid and releasable pool vesicles 

remained intact (fig 4.11). The effect of the SNAP peptide on exocytosis of reserve vesicles 

was not due to a difference in calcium influx as measured by calcium current (SNAP: Ica total 

= 99.8 ± 10 pA, n =4; scrambled SNAP: Ica total = 91.9 ± 4 pA, n = 2). 

  In terminals dialyzed with the SNAP scrambled peptide, the size of the rapid pool 

was unusually large. (ΔCm1 = 60 ± 0.5 fF, p value 0.02 compared to SNAP). This could be 
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due to a larger calcium influx in the terminals dialyzed with the scrambled SNAP peptide 

compared to the SNAP peptide (SNAP: Ica1 = 115 ± 14 pA, n =4 ; scrambled SNAP: Ica1 = 

146 ± 4 pA, n = 2). However more experiments and a larger n would be needed to prove this 

possibility. In terminals dialyzed with the SNAP scrambled peptide the exocytotic 

component attributed to the releasable pool and recruitment of reserve vesicles was 

comparable to ATP controls (SNAP-scrambled: ΔC m total  = 255 ± 23 fF , n = 2, compared 

with fig 3.4).  

 Refilling of the rapid and releasable pool as measured by ΔCm1 and ΔC m total  was 

decreased in response to subsequent trains  (fig 4.12). The calcium influx did not decrease 

with subsequent pulses (fig 4.12).  The basal calcium was not different between the 

terminals dialyzed with SNAP 25 and the scrambled SNAP peptide (SNAP:[Ca]i = 150 ± 

11.8nM, n = 5; scrambled SNAP: :[Ca]i = 190 ± 5.3nM, n = 2, p value = 0.1 

  In a second set of experiments we tested a19 amino acid peptide based on the 

N-terminal of the SNARE domain of Synaptobrevin. The Synaptobrevin peptide did not 

have any inhibitory effect on fusion of any vesicle pool. After the first train the ΔCm1 = 38.2 

± 6 fF and the ΔC m total  = 278 ± 53 fF (n=3). The calcium current in terminals dialyzed with 

Synaptobrevin were: Ica1 = 174 ± 15 pA, n =3, Ica total = 113 ± 29 pA, n =3. 
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        A  SNAP 25 

 

        B Synaptobrevin/VAMP2 

 

 

Fig 4.11 :  Location and sequence of SNAP 25 and Synaptobrevin peptides  
A The SNAP 25 peptide was based on the C terminal of the SNARE binding domain. A 

scrambled SNAP 25 peptide served as control. B. The Synaptobrevin peptide was based on 
the N -terminal domain of the SNARE binding domain. These peptides were not tagged with 

fluorescent proteins. 
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Figure 4.12 : The SNAP 25 peptide blocked recruitment of reserve pool vesicles while 

the Synaptobrevin peptide did not inhibit exocytosis of any pool.      

In response to a pulse train given 3 min after achieving whole cell configuration, terminals 
dialyzed with a SNARE complex inhibiting peptide (SNAP25, black circles, n = 4) showed 
a decrease in the cumulative Δ Cm  compared terminals dialyzed with a scrambled SNAP 

peptide (open circles,  n = 2). The dotted line marks the magnitude of the total cumulative 
capacitance seen in terminals dialyzed with ATPγS (from fig 3.4).  Terminals dialyzed with 

SNAP 25 showed a loss of  fusion from the reserve pool. Terminals dialyzed with 
Synaptobrevin (grey circles , n=3) did not block exocytosis of any vesicle pool. 
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Fig 4.13 A SNAP 25 peptide blocks refilling of the releasable and rapid pool 

Left top Mean cumulative capacitance (ΔC m total ) in response to a pulse train given every 
min (train number is indicated on the y axis) in terminals dialyzed with SNAP 25 (black), 
scrambled SNAP peptide (white) solutions is shown. The ΔC m total is smaller in terminals 
dialyzed with the SNAP 25 peptide (n= 4) in every train compared to the scrambled SNAP 

peptide  (n =2). Right top: The mean capacitance in response to the first pulse in the train 
(ΔC m 1) in terminals dialyzed with the scrambled peptide (white bars, n= 2) was abnormally 

large and significantly different  from  ΔC m 1 seen in terminals dialyzed with the SNAP 25 
peptide (black bars , n= 4). An activity-dependent inhibition in the magnitude of  ΔC m 1 is 
also seen with multiple trains (decreased ΔC m 1  in train 2,3)  in terminals dialyzed with 

SNAP 25 compared to the scrambled peptide.  Bottom left and right: Mean calcium influx 
in response to the first pulse (Ica1) and the average of the last 5  pulses (Ica total) suggest that 

the difference in the capacitance response between the SNAP peptide and the scrambled 
peptide was not due to a decreased calcium influx.  
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Effect of SNARE peptides on calcium currents: 

We noted that the mean calcium currents in terminals dialyzed with the syntaxin 

peptide was smaller and close to being significantly different from those dialyzed with the 

scrambled peptide in our pulse train experiments. This suggests that the syntaxin 3B peptide 

may have a mild inhibitory effect on the calcium channel. To study the effect of the 

magnitude of capacitance change on the calcium influx we plotted the capacitance response, 

Δ Cm1 versus the calcium current I ca1 in response to the first 20 ms depolarization the train 

pulse. Fig  4.14 shows that irrespective of which internal solution was dialyzed , terminals 

which had a larger Ica also had a larger ΔCm.. This is consistent with the idea that a larger 

calcium current would allow influx of more calcium and therefore result in fusion of more 

vesicles. However it is possible that increasing the number of experiments (n) may reveal a 

more specific effect of syntaxin 3B on the calcium current.  

 

 

Figure 4.14 Larger Calcium currents were associated with a larger initial capacitance 

change (ΔC m 1): Irrespective of the internal solution dialyzed into the terminal, those which 
had larger calcium current (Ica 1) also had a larger initial exocytosis response (ΔCm1 ). 
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DISCUSSION 

 The results show  1) a syntaxin3B peptide is able to perturb SNARE complex 

formation in dissociated neurons. 2)The syntaxin peptide initially blocks the fusion of the 

exocytotic component attributed to the recruitment of reserve pool vesicles while leaving 

vesicles in the rapid and releasable pools intact. 3) With multiple stimulations, the syntaxin 

3B peptide blocks refilling of both the rapid and releasable pool. 4) A SNAP 25 peptide 

blocks recruitment of the reserve pool vesicles leaving the rapid and releasable pools intact. 

5)A Synaptobrevin peptide does not block fusion from any vesicle pool.      

1. A  syntaxin3B peptide is able to perturb SNARE complex formation in-vivo 

Results from fig 4.2 show that the syntaxin 3B decreases the amount of SNARE 

complex in a retinal extract, as detectable by a syntaxin 3 antibody. Since the peptide is 

based on the N-terminal part of the SNARE domain it is likely that it competes with the 

endogenous syntaxin in the formation of SNARE complexes. The decreased amount 

(compared to controls) of SNARE complex detectable is possibly the complexes that were 

already formed. Therefore, a reasonable interpretation is that the syntaxin peptide inhibits 

formations of new SNARE complexes but does not disrupt already formed complexes. 

Previous in-vivo studies have shown that SNARE complexes formation in the presence of a 

competing SNARE domain peptide are decreased or more unstable (255, 256).  

 2. Syntaxin 3 B blocks the component of release attributed to the reserve pool 

 Fig 4.4 shows that in response to the train pulse, syntaxin 3B inhibits the recruitment 

of the reserve pool vesicles as measured by loss of the release component attributed to 

fusion of reserve vesicles. The syntaxin 3B peptide might block recruitment either via 1) 

blocking formation of new SNARE complexes, thus blocking fusion ability of the reserve 
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vesicles, 2) via decreased calcium influx, thus blocking exocytosis drive,  or 3) inhibition of 

translocation of vesicles to ribbon style active zones. We can rule out any differences in 

calcium buffering as we used the same base solution to make up the  syntaxin 3B and the 

scrambled peptide containing internal solution and have monitored for possible changes in 

pH upon peptide addition that might additionally affect calcium buffering.  The possible role 

of syntaxin on the calcium current is discussed in detail, later in this section.   

 Our results show that in the presence of the syntaxin peptide these reserve vesicles 

are unable to refill the releasable pool as detected by capacitance measurements. EM 

micrographs of Mb1 terminals show more than  400,000 vesicles in the cytoplasm  

considered to be the reserve pool which can refill the releasable pool. Recruitment of these 

reserve vesicles may be blocked either by blocking the actual translocation of the vesicle to 

the ribbon style active zone or block of actual fusion of vesicles.   The molecular 

mechanisms underlying the translocation of the reserve vesicles to ribbon sites is not known. 

In experiments where ATPγS was dialyzed into the terminal, EM studies show that even 

after a confirmation of block of refilling of the releasable pool from capacitance 

measurements, synaptic ribbons were populated with tethered vesicles no different from 

control experiments (80). Based on the known function of the syntaxin protein in fusion, it is 

more likely that the syntaxin peptide affects the fusion of the reserve vesicles which may be 

recruited to the ribbon style active zones rather than  translocation of vesicles. However 

experiments where terminals are dialyzed with the syntaxin peptide and then stimulated 

followed by a quick fixation technique and EM analysis would be required to answer this 

question. 
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 Taking into consideration results from fig 4.2 it is likely that the syntaxin peptide 

effects exocytosis  by competing with the endogenous syntaxin protein in the formation of 

SNARE complexes. Based on this, our results suggests that vesicles that are in the reserve 

pool must form new SNARE complexes before they can be functionally recruited into the 

releasable pool and fuse.  To estimate the rate of recruitment which is dependent on SNARE 

complex formation we subtracted the mean cumulative Δ Cm  over time  as seen in the 

presence of the syntaxin 3B peptide from the mean cumulative Δ Cm  over time as seen in 

response to the scrambled peptide. The result is shown in fig 4.15 below.  The syntaxin 

sensitive component was fit with a straight line. For the syntaxin sensitive component, data 

for the first 2 s was not a good fit suggesting a non linear rate of recruitment in the first 2 

seconds. The slope of the linear component was 18.7 fF/s (or ~628 vesicles /s).  This rate is 

almost twice the rate of recruitment that is mediated by the ATP dependent priming step 

(~366 vesicles/s from fig 3.5) . Considering results from this section,  results from fig 3.5 

and previous published work (80, 81), we suggest that along with other possible steps, 

reserve vesicles must undergo ATP-priming and  from new SNARE complexes to attain 

fusion-competence/ be recruited to the releasable pool of vesicles. However based on the  

slower rate (slope)  of the ATP sensitive component compared to the syntaxin3B sensitive 

component,  I suggest that for reserve vesicles,  the recruitment step dependent on  ATP- 

priming  is  slower than the recruitment step dependent on Syntaxin 3B dependent SNARE 

complex formation. This implies that the ATP priming step may be a series of molecular 

steps while the SNARE complex formation may be a quicker single biochemical step.  

Inability to fit the syntaxin sensitive component with a single line at time < 2s also suggests 
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that formation of new SNARE complexes may be a delayed  till a certain number of SNARE 

complexed-vesicles have already fused. 

 

 

fig 4.15 The syntaxin 3B sensitive component 

The component of release requiring SNARE complex formations and thus sensitive to the 

syntaxin 3B peptide  (Scrambled peptide train- Syntaxin peptide train from fig 4.4) is plotted 
(open circles) along with the original response to the train pulse seen in terminals dialyzed 
with scrambled peptide. The syntaxin sensitive component was fit with a line function after 

the first 2 s (blue dashed line, slope = 2.04e-14, y-intercept =-1.0e-15). 
 

3. The fusion of vesicles of the rapid and releasable pool are resistant to the syntaxin 

3B peptide 

 Results from fig 4.4-4.6 show that the dialysis of the syntaxin 3B peptide does not 

initially block the component of release attributed to the rapid and releasable pool.  The 

rapid and releasable pools are preserved whether the terminal is probed after 1 min of 
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dialysis of the peptide or after 3 minutes of dialysis (fig 4.10). This suggests that irrespective 

of dialysis time fusion of  reserve pool vesicles are blocked in the presence of the syntaxin 

3B peptide. A longer dialysis time does not change the effect of the syntaxin peptide on the 

rapid and releasable pools, but rather activity dependent turnover is required to inhibit fusion 

of vesicles from the releasable and rapid pools. 

  The in-vivo experiment suggests that only those vesicles that are in SNARE 

complex are resistant to the syntaxin peptide. Our finding suggests that not only the rapid 

pool but also the releasable pool is associated with SNARE complexes. Results from chapter 

3 suggest that the rapid pool is a subset and draws its vesicles from the releasable pool. Thus 

one interpretation is the following: The releasable pool of vesicles is associated with 

SNARE complexes. The traditional SNARE complex is formed between  Synaptobrevin on 

the vesicles and SNAP25 and syntaxin on the plasma membrane. The releasable pool of 

vesicles contains vesicles that are both docked and tethered to the ribbon and also tethered at 

higher rows on the ribbon and therefore not docked at the plasma membrane. This raises two 

questions. 1)How might the releasable pool vesicles form SNARE complexes and 2) how 

might the releasable pool vesicles fuse with the plasma membrane?  

 In response to the first question of how might the releasable pool vesicles form 

SNARE complexes, one possibility may be a limited number of vesicle-occupied docking 

and fusion sites. The ribbon style active zones may consist of a number of docking sites 

which are already occupied by vesicles. The syntaxin peptide may form non-functional 

SNARE complexes at all fusion sites except for those already occupied by a vesicle 

associated with a functional SNARE complex. In support of this hypothesis most of the 

syntaxin 3 B seems to be at the plasma membrane from analysis of images of 
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immunostaining of a single Mb1 cell (151). The number of fusion sites must at least be  

~1100; the number of the rapid pool vesicles; since these vesicles can fuse with kinetics that 

are limited by the opening of the calcium channels (72). However,  for the releasable pool of 

vesicles to be associated with SNARE complexes ,  the entire pool of releasable vesicles 

must occupy fusion sites. This would suggest that the number of occupied fusion sites is ~ 

5500, to match the number of the releasable pool vesicles. A possible location for these sites 

may be along the flank/ side of the ribbon (an area of~150 * 350 µm 2, on each side of the 

ribbon (75)). In support of this idea in rod spherules EM micrographs showed that after a 

couple of minutes of exposure to darkness there was an increase in fused synaptic vesicles 

not only at the base of the ribbon but all along the sides of the ribbon (257). However in 

another study,  EM micrographs of lizard cones showed a 3.7 fold decrease in vesicles at the 

base of the ribbon between dark adapted and light adapted cones. This suggests that vesicles 

fuse at the base of the ribbon (258). EM micrographs of bipolar cells suggest that the flank 

of the ribbon is not near the plasma membrane (96, 124, 145) and dynamic changes in the 

structure of the ribbon-style active zone of the bipolar cells, where the plasma membrane 

invaginates at the ribbon during prolong stimulations have yet to be shown. Therefore a 

large number of fusion sites supporting the fusion of the releasable pool seems an unlikely 

possibility. 

 A second possible explanation is that these vesicles may have both v and t SNAREs 

on them.  In support of this idea previous studies from conventional synapses have reported 

the presence of t-SNAREs on vesicles, a possible result of improper sorting (259, 260). 

Protein stoichiometry of synaptic vesicles show that there are 69.8 copies of Synaptobrevin, 

6.2 copies of syntaxin and 1.8 copies of SNAP 25 on each vesicle (261).  A recent study has 
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suggested that only two SNARE complexes maybe sufficient for vesicle fusion (262). 

Therefore if the protein stoichiometry of vesicles in the bipolar terminal is similar to that of 

conventional neurons SNARE proteins of two adjacent vesicles may be complexed.. It may 

also be possible that the SNARE proteins on the vesicles may also participate in the 

formation of homotypic SNARE complexes. If the releasable pool vesicles do indeed form 

SNARE complexes, the ribbon may help by tethering vesicles and bringing the vesicles 

membrane attached proteins in close to each other. The proteins forming the ribbon 

organelle do not seem to participate in SNARE complex formation as SNARE proteins seem 

to be entirely absent from the structure of the synaptic ribbon (263). The close proximity of 

the vesicles on the ribbon may also aid in providing steric hindrance to the syntaxin peptide 

in competing with the endogenous SNARE protein on the vesicle membrane. 

 In response to the second question of how the releasable pool vesicles, which 

 are tethered up the ribbon, fuse one possible explanation 

may be via compound exocytosis. In compound exocytosis vesicles fuse with each other 

piggy backing onto a docked vesicle which fuses with the plasma-membrane, thus sharing a 

fusion site.  Membrane capacitance measurements cannot differentiate between compound 

exocytosis and the separate sequential fusion of the same number of vesicles at different 

fusion sites in neurons. Single synaptic vesicle (30nm diameter size) fusion events cannot be 

resolved, using whole cell recording in neurons as is possible in mast cells where the size of 

granules are larger. Compound exocytosis has been suggested to occur  in Mb1neurons (54, 

96) and at other ribbon synapses (131). Also compound exocytosis is more likely to be seen 

in response to strong depolarizations (96)  as given by our pulse trains. Compound 

exocytosis would require vesicles to fuse to each other via SNARE complexes.  
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 Another possibility is that the releasable pool of vesicles are all docked at the plasma 

membrane and therefore can fuse in spite of the syntaxin peptide. This would be possible if 

the releasable pool was formed of vesicles at the base of the ribbon and at sites away from 

the ribbon.  Co-relation between EM reconstructions and physiology data and recent 

experiments where disruption of the ribbon leads to loss of the fast and sustained 

components  (87, 131, 132, 156) and our results from chapter 3 disagree with this 

hypothesis.  

  In summary, an attractive model which may accounts for our data is that the 

releasable pool is resistant to the syntaxin peptide because the releasable pool vesicles are 

able to form SNARE complexes with each other and fuse via compound exocytosis. Limited 

fusion sites for ~1100 vesicles (~ 22 at the base of each ribbon ) may also force the 

releasable pool to fuse via compound exocytosis. 

4. Refilling of the rapid and releasable pool is inhibited by the Syntaxin3B peptide 

 Results from fig 4.7- 4.9 show that refilling of both the rapid and releasable are 

inhibited in the presence of the synatxin3B peptide. The syntaxin peptide could affect 

refilling of the pools either via a block of endocytosis or by blocking SNARE complex 

formation required to refill the vesicle pool.  

During the pulse train the spatially averaged intra-terminal calcium exceeded 1µM 

(based on ratiometric calcium measurements using 0.1mM bis-fura , chapter 3). In several 

nerve terminals including the goldfish bipolar cell terminals, endocytosis is inhibited by the 

high intra cellular calcium levels such as those that are achieved during pulse trains (73, 209, 

216, 221, 222). Therefore the net changes in capacitance during the pulse trains are most 

likely due to exocytosis alone.  After the cessation of the pulse train, endocytosis was seen. 
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We fitted the time course of this endocytosis with a double exponential function which 

revealed the following averages (only the response after the first train was used, not all 

responses could be fit with a double exponential function):  Scrambled peptide - τ fast = 3.33s 

in 5/5terminals, τ slow= 54.4s in 5/5 terminals, Syntaxin peptide - τ fast = 2.6s in 5/5 terminals, 

τ slow= 47.4s in 4/5 terminals. The time courses of endocytosis were not significantly 

different between the two groups. These findings suggest that the effect of the peptides on 

exocytosis and refilling were not likely due to an effect on the endocytosis that is seen after 

the cessation of the pulse train.  

5. A SNAP 25 peptide block recruitment of the reserve pool vesicles while leaving the 

rapid and releasable pools intact 

  Results from fig 4.12 and 4.13suggest that the SNAP 25 peptide has a similar effect 

to that seen with the syntaxin peptide. The recruitment of the reserve pool is blocked but the 

rapid pool and releasable pool are left intact. We used a peptide based on the C-terminal of 

the SNARE domain. Previous studies have showed that peptides which mimic the C-

terminal of SNAP 25 and span the cleavage site or are released by cleavage by  Botulinum A 

/E,  block neurotransmission in chromaffin cells and Aplysia (264, 265). The scrambled 

SNAP 25 peptide had an anomalous effect where the magnitude of exocytotic seen in 

response to the first pulse of the train was larger compared to that seen with the SNAP 

peptide and also compared to ATP controls .  This could be due to the small number (n= 2) 

in this experiment set.  

6. A Synaptobrevin peptide does not block exocytosis in retinal ribbon synapse  

 In our experiment an peptide based on the N-terminal of Synaptobrevin did not have 

any inhibitory effect. This could be due to 1) A large number of vesicles are present in the 
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Mb1 cytoplasm (~600,000). and protein stoichiometry show that there are 69.8 copies of 

Synaptobrevin on each vesicle (261). It is possible that a higher concentration of the 

Synaptobrevin peptide is required to out compete the high concentration of endogenous 

Synaptobrevin. 2) It is possible that the Synaptobrevin peptide did not load into the terminal. 

The Synaptobrevin peptide was not fluorescently tagged, therefore we could not monitor its 

loading in real time. 3) Previous studies have shown that Synaptobrevin homologue 

cellubrevin/VAMP3 or endobrevin/ VAMP 8  can form functional SNARE complexes and 

drive exocytosis (266–269). Whether these proteins can form functional SNARE complexes 

in the Mb 1 neuron is not known. If these proteins are able to substitute the role of 

Synaptobrevin in exocytosis from Mb1 neurons, a higher concentration  of a peptide based 

on a conserved sequence between the Synaptobrevin homologues may be required to block 

exocytosis.  

7. Effect of syntaxin on Calcium current 

 In our experiments we noticed a trend where the calcium currents were smaller in 

terminals dialyzed with the syntaxin peptide compared to the scrambled peptide in 

experiments in which the terminals were stimulated with the pulse train.  However, we did 

not observe this effect with a single 1s depolarization. In conventional synapses syntaxin 1A 

has been shown to interact with the calcium channels. An  inhibitory effect of syntaxin1 via 

the stabilization of calcium channel inactivation has been shown  in experiments using rat 

cortical synaptosomes. Syntaxin was cleaved using botulinum toxin and synaptosomes were 

depolarized with high K+ solutions. The cleavage of syntaxin did not affect the initial 

calcium influx but decreased the late calcium influx. Cleavage of Synaptobrevin or SNAP 

25 by botulinum toxin did not have an effect on calcium influx (270).  In Xenopus oocyte 
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co-expression of syntaxin 1A and the N type calcium channel decreased the calcium influx 

by stabilizing  calcium channel inactivation. A similar result was seen with syntaxin 1A and 

the Q type calcium channel but not with the presumably neuronal L type calcium channel 

(271).  However, in another study using the Xenopus oocyte Syntaxin1A was shown to 

inhibit calcium influx via the Ca v 1.2 L type channel  and this inhibitory effect was 

regulated via two cysteine residues in the transmembrane domain of syntaxin (272–274).  In 

pancreatic beta cell syntaxin 1 has been shown to regulate calcium influx via the α 1D 

subunit L type calcium channel  (275).  The inhibitory effect of syntaxin on the N type 

calcium channels was greater when trains of action potential like stimuli were used 

compared to steady depolarizations  (276). This might explain the decreased I ca in response 

to train pulses but not to single 1s pulses in our experiments. 

  Retinal ribbon synapses express syntaxin 3 and L-type calcium channels, Cav 1.3 

and Cav 1.4 (132, 277). In retinal ribbon synapses it is not known if syntaxin 3B  modulates 

calcium entry via Cav 1.3or Cav 1.4  L type calcium channels. In support of the idea that 

syntaxin 3 may regulate calcium influx via L type calcium channels,  in pancreatic islet bet 

cell lines over expression of syntaxin 3 inhibited the L-type calcium channels current (254).  

Based on these finding it would be interesting to determine if in retinal ribbon synapses 

syntaxin 3 B  interacts with the Cav 1.3 and Cav 1.4  L type calcium channels . 

 In conventional synapse the carboxy transmembrane domain of Syntaxin1A  is 

thought to be the "calcium effector domain" (274, 278). The deletion of the carboxy terminal 

transmembrane domain of syntaxin 1A abolished its effect of the calcium channels (271).   

In our experiments we used a syntaxin 3B peptide based on the N -terminal SNARE domain. 

If, similar to conventional synapses, syntaxin 3B does interact with the calcium channel, it 
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may be via the transmembrane domain and not the SNARE domain. This could explain why 

we do not see a stronger inhibition of the calcium current. It is possible that a short peptide 

is able to disrupt the formation of the SNARE complex but not the interaction of the native 

syntaxin 3B with the calcium channel.  

 It has been suggested that the SNARE complex proteins, synaptotagmin and the 

calcium channels form an "excitosome" that is required for evoked neurotransmitter release 

(279, 280). Therefore another possibility is that the syntaxin peptide's effect on disrupting 

the SNARE complex could have an effect on the calcium current. In pancreatic beta cells it 

has been shown that introduction of a peptide based on the cytosolic portion of the L type 

channel competes with the endogenous channel for binding with SNARE complexes and 

decreases depolarization evoked exocytosis (279). More experiments would be required to 

ascertain if in retinal ribbon synapses the Cav 1.3 and Cav 1.4 L type calcium channels are 

regulated via an interaction with the SNARE complex.  
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 Mechanisms underlying how ribbon synapses sustain neurotransmission is an active 

field of study.  Two recent questions which have been debated in the field are whether  the 

ribbon style active zones are the major site of active transmission and the role of  neuronal 

SNARE proteins in exocytosis at ribbon synapses (82, 83, 131, 158).  In the goldfish Mb1 

bipolar neuron, which has served as a model for a ribbon synapse forming neuron in the 

retina, three components of exocytosis have been reported. The three components of release 

have been to attributed to three vesicle pools- a docked and ribbon tethered rapid pool , a 

fusion-competent, ATP primed, releasable pool and a cytoplasmic reserve pool answer. 

Taking advantage of the large size of the Mb1 bipolar neuron I was able to patch clamp 

single bipolar cell terminals and study fusion of population of vesicles as measured by 

changes in membrane capacitance. We sought to answer key questions underlying  

neurotransmission in ribbon synapses - specifically 1) whether the synaptic vesicles pools 

operated in a serial manner as opposed to a parallel manner  and 2) which vesicle pool was 

associated with SNARE complexes and therefore available for immediate fast release.  

 

1. The vesicles pools fuse in a serial manner at the ribbon style active zones  

 In chapter 3 we tested the hypothesis of whether the rapid pool was a subset of the 

releasable pool. Using ATPγS to block functional pool refilling of the releasable pool we 

found that depletion of rapid pool cross depletes the releasable pool and vice versa. This 

suggests that the rapid pool draws its vesicles from the releasable pool. In other words, a 

cohort of ATP primed vesicles can refill the rapid pool vesicles (docked and primed vesicles 

at the plasma membrane). In conventional neurons priming is thought to occur after docking 
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(18). In hippocampal boutons (108) and in cerebellar climbing fibers (240) not all docked 

vesicles can be rapidly released, suggesting that all docked vesicles may not be primed. Our 

results suggest that in contrast to active zones of conventional synapses, at ribbon-style 

active zones priming steps that require ATP hydrolysis occur before a vesicle docks to the 

plasma membrane (at the base of the ribbon). 

 In the bipolar neuron, the rapid and releasable pools are the correlates of two release 

components which differ in their kinetics and sensitivity to calcium buffers (72, 123, 208). 

This seems to be a common feature to ribbon synapses. In the cone photoreceptors, a fast 

component of release which is resistant to 10mM EGTA  has been identified in retinal slice 

preparations (181).  A larger, EGTA-sensitive releasable pool in cones has been identified 

using capacitance measurements (281). Analysis of release kinetics in hair cells in the 

auditory pathway have suggested at least two population of vesicles which are differentially 

sensitive to calcium buffers (282, 283).  In the bipolar neuron it has been proposed that the 

two populations of vesicles are located at varying distances from the calcium channel. The 

base of the ribbon has been suggested to be the site of calcium entry, and the ribbons co-

localize with calcium channels (85, 284). However, whether the releasable pool vesicles are 

located at a distance from the calcium channel by being tethered at higher rows on the 

ribbon or by being close to the plasma membrane but at sites away from the ribbon is not 

known. Midorikawa et al., 2007 have suggested that in bipolar neurons, a large portion of 

synaptic release may in fact occur at sites away from the ribbon. However Zenisek 2008 

suggests that while vesicle fusion does occur at non-ribbon associated sites, it is rare. 

Therefore whether the releasable pool is ribbon tethered is an unresolved question. Calcium 

entry sites have been shown to be at the base of the ribbon (85, 284).  We used multiple 
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short depolarizations which would cause fusion of only those vesicles that are near the 

calcium channels, and therefore ribbons, to seek the location of fusion of the vesicle pools..  

In our results we find that when the refilling of the releasable pool has been blocked,  

several, short depolarizations deplete both the rapid and the releasable pools (fig 5.1). 

Therefore we suggest that both the rapid and releasable pool undergo fusion at the ribbon 

style active zone with the bottommost row forming the rapid pool and the ribbon tethered 

pool forming the releasable pool. We cannot exclude the possibility of some exocytosis at 

sites away from the ribbon. An upper estimate of this cohort of vesicles, as suggested by 

experiments, may be 14.1 ± 3.3 fF or 542 ± 126 vesicles.  

 

 

Fig 5.1 The rapid and releasable pool are ribbon tethered: In experiment 4 from chapter 
3 functional refilling of the releasable pool was blocked by ATPγS. Multiple 20 ms pulses, 

each sufficient to deplete the rapid pool also depleted the releasable pool. This suggests an 
scenario where each 20 ms pulse results in fusion of the bottom most row of vesicles. After 
each 20 ms depolarization the ribbon may be refilled physically with vesicles (80), but these 

vesicles are not ATP-primed (in the absence of ATP-hydrolysis) and therefore are not 
fusion-competent. 
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 An alternate possibility to the vesicles pools being located at different distances from 

calcium channels is two populations associated with two calcium sensors (51, 285, 286). For 

example the rapid pool vesicles could be associated with a high-affinity calcium sensor and 

therefore undergo release in response to short depolarizations, whereas the releasable pool 

vesicles could be associated with a low-affinity calcium sensor which requires higher levels 

of calcium, as would be seen with longer depolarizations. However, when exocytosis is 

evoked by instantaneously elevating global calcium with flash photolysis of caged calcium, 

the rise in capacitance can be fit with a single exponential functions suggesting a 

homogenous class of vesicles (54). Such a homogenous class of vesicles argues against the 

two-sensor hypothesis. Studies to identify the calcium sensor suggest synaptotagmin 3 as a 

potential candidate. Synaptotagmin 3 is expressed in the PKC labeled goldfish bipolar 

neurons (287). Experiments where exocytosis was monitored using FM 1-43 dyes suggest 

that fusion in bipolar neurons can be induced by 1-2 µM calcium (288) and synaptotagmin 3 

has a higher calcium affinity and can bind to syntaxin at these concentration (289). 

Immunolabelling with synaptotagmin1/2 antibodies show a lack of staining in goldfish 

bipolar neurons (290) 

 In summary results from chapter 3 show that in the bipolar neuron, the correlation 

between estimates of pool sizes of the rapid and releasable pool from the capacitance 

measurements and ultra structural analysis of ribbon -tethered vesicles is not just co-

incidental.  Similar to the bipolar cells, studies in photoreceptors have also shown discrete 

vesicle pools where a good correlation exists between the capacitance measurements or 

post-synaptic currents and EM level estimates of ribbon-tethered vesicles (74, 142). In hair 

cells of several species ( frog saccular hair cell, chick cochlear hair cell, turtle hair cell and 
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mouse inner hair cell) there seems to be a good correlation between the docked and  ribbon- 

tethered vesicles and the first component of exocytosis or the physiological rapid pool (130, 

173). However the correlate for the releasable pool is not so clear. For example in the chick 

cochlear hair cell ribbon synapse the releasable pool  composed of ~ 8000 vesicles which is 

10 times the number of vesicles tethered to the ribbon (291). This suggests that in the 

cochlear hair cells the releasable pool may include vesicles on the ribbon, several rounds of 

rapid refilling from reserve vesicles or additional release at extra-ribbon sites  (282, 291). 

Therefore retinal ribbon synapses may differ from some hair cell synapses in their functional 

organization of vesicle pools. 

 

2. Vesicles at retinal ribbon synapses undergo SNARE-mediated exocytosis 

 Our findings suggest that a short peptide based on the SNARE binding domain of 

either syntaxin 3B or SNAP 25 are able to inhibit fusion of reserve pool vesicles and block 

fusion of the releasable and rapid pool of vesicles in an activity-dependent manner, at retinal 

ribbon synapses. Our finding are in contrast to a report that suggests that in hair cells 

exocytosis does not require neuronal SNAREs (158). As suggested by the authors of the hair 

cell study, it is possible that the ribbon synapses of the auditory system differ from those in 

the retina as indicated by their different germ line origin (retinal ribbon synapses being 

neuronal in origin versus hair cells being epithelial). Retinal ribbon synapses seem more like 

conventional synapses in their requirement of neuronal SNAREs for exocytosis. However 

other possibilities also exist. In their experiments Nouvian et al., 2011,  treated  hair cells 

with Botulinum toxins for 10 minutes.  Exocytosis was then elicited using repetitive 

depolarizations  within a time scale of 10 to 30 minutes. They did not find any significant 
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difference between cells treated with the toxin versus controls after the first pulse. 

Exocytosis in response to subsequent pulses decreased in both control and toxin treated cells 

(possibly due to rundown).  It is possible that a longer incubation time of more that 

30minutes may be required for the action of the toxin.  In their supplementary data they 

show loading of the cells with the toxins. However it appears that after 30 minutes (the last 

time point tested), the concentration of the toxins tested  do not reach steady state levels 

inside the cell. After 30 minutes, loading of none of the toxins tested were near completion 

or even tending to plateau. The absence of an effect on exocytosis could be due to the lack 

of required amounts of toxin inside the cell. The authors suggest that similar time points and 

concentrations of toxins were sufficient to block exocytosis in chromaffin cells. However 

ribbon synapses have greater number of vesicles and thus would require a larger 

concentrations of toxin to block exocytosis. For definitive proof that exocytosis in hair cells 

are not affected by Botulinum toxins, the authors should either for wait until loading of the 

toxin is complete (1st pulse given at time after  30minutes) and/or dialyze with a larger 

concentration of toxin. In fact the electrophysiological results shown in Nouvian et al., 2011 

can be interpreted in another way. The total amount of exocytosis  (i.e.  the total membrane 

added in all the pulses)  in cells treated with the Botulinum toxin is ~ 240 fF.  If one assumes 

that the rapid/releasable pool of vesicles and other non ribbon associated but docked (extra-

ribbon component) are associated with complexed SNAREs and therefore resistant to the 

Botulinum toxin,  240 fF might be the size of the vesicle pool associated with SNARE 

complexes. This interpretation would agree with results presented in this thesis. However 

significant rundown of exocytosis in both controls and cells treated with Botulinum toxin 

also make their data somewhat difficult to interpret. Beutner et al., 2001 has shown that 
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rapid elevations in [Ca2+] i  above 8 µM (using  flash photolysis) results in a biphasic 

capacitance increase corresponding to the fusion of approximately 40,000 vesicles. It would 

be interesting to know the number of vesicles capable of fusion in the presence of Botulinum 

toxin using similar calcium uncaging techniques. An ideal experiment would be to allow for 

more than 30 minutes of incubation with the Botulinum toxin followed by elicitation of 

exocytosis via uncaging of calcium by flash photolysis. If synaptic vesicles of hair cells truly 

undergo SNARE-independent exocytosis, calcium uncaging would result in fusion of 

vesicles similar to controls. However, if comparable to our data a population of vesicles are 

associated with complexed SNAREs (thus protected from cleavage by the toxin), the 

exocytotic response post-flash may be decreased compared to controls. It would be 

interesting if the size of the vesicle pool protected from the toxin in flash experiments were 

~ 240fF. 

3.Vesicles in the reserve pool must form new SNARE complexes before they join the 

releasable pool 

 In response to the train stimulus, the total magnitude of exocytosis at the end of the 

train suggests recruitment of reserve vesicles in addition to fusion of the releasable pool of 

vesicles. It is unlikely that during the train newly endocytosed vesicles refill the releasable 

pool as 1) the 50ms IPI between each depolarization in the train is too short for endocytosis . 

The time constant for even the fast mode of endocytosis is 1-2 s (161, 223, 292). 2) Strong 

stimuli which cause increase in intracellular calcium  delay the onset of endocytosis (73, 

209, 212). Specifically, the intra-terminal spatially averaged calcium was elevated to more 

than 500 nM by the 20th pulse (1.43s ) during the train pulse , a value above which 

endocytosis has been shown to be inhibited (209). This suggests that after the first 1.4 s of 
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the pulse train the change in membrane capacitance is most likely due to exocytosis alone. 

  In the presence of a SNARE protein competing peptide (syntaxin or SNAP 25), the 

total magnitude of exocytosis at the end of the train suggests that the recruitment of reserve 

vesicles and their subsequent fusion is blocked. This suggests that the reserve vesicles are 

not associated with SNARE complexes and must form new SNARE complexes to fuse (fig 

5.2). Whether the SNARE peptides also blocks the actual physical translocation of reserve 

vesicles onto the ribbon cannot be said with certainty. However the role of SNAREs in 

fusion (6, 25) rather than translocation of vesicles suggests that the SNARE peptides block 

fusion of the reserve vesicles. SNARE proteins help to prime vesicles and Syntaxin is 

important for docking of vesicles (18, 19). This raises the question as to whether the ribbon 

functions as a site of SNARE complex formation. However  SNARE proteins have been not 

isolated to be a associated with the synaptic ribbon (263). 

 

4. The releasable pool of vesicles is associated with pre formed SNARE complexes  

 Using a SNARE-competing peptide  as a tool we asked which vesicle pool was 

associated with SNARE complexes? Considering the classical view that a SNARE complex 

is formed between the v-SNARE on the vesicle and t-SNAREs on the plasma membrane, we 

had hypothesized that only the rapid/docked pool, which is closest to the membrane, would 

be resistant to the syntaxin 3B peptide. However, contrary to our hypothesis we find that the 

releasable and rapid pools are both initially resistant to the inhibitory peptide (fig 4.4). This 

suggests that the releasable and rapid pools are associated with SNARE complexes (fig 5.2), 

or are otherwise resistant to the effects of the peptide. Our results also showed that while 

initial fusion of the rapid and releasable pool was intact, subsequent fusion, which would 
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require refilling of the pools, was blocked.  By the second pulse train the depression of the 

exocytotic response attributed to the rapid and releasable pools was significantly depressed 

(fig 4.7, 4.9). This suggests that refilling of vesicle pools required formation of new SNARE 

complexes  

 By 2 minutes the inhibitory effect of the Syntaxin 3B peptide on the rapid and 

releasable pool was measurable. To ascertain that the effect of the Syntaxin3B peptide on 

the rapid and releasable pool vesicles required activity-dependent vesicle turnover  rather 

than a longer  dialysis time,  we repeated the experiments such that the first pulse train was 

given after 3 minutes of peptide dialysis. The results showed that in terminals dialyzed  with 

the Syntaxin 3B peptide, when the first train was given after 3 minutes  of dialysis the rapid 

and releasable pools were intact.  The magnitude and shape of the exocytotic components 

seen in response to the pulse train was similar irrespective of whether the terminals were 

stimulated at 1 min or 3 minutes after initiation of dialysis. This further confirmed that the 

releasable and rapid pool vesicles  but not the vesicle of the reserve pool are initially 

resistant to the SNARE peptide.  
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Fig 5.2 Vesicle pools associated with SNARE complexes at the bipolar neuron  

 

5. Different fusion scenarios at the retinal ribbon synapse  

 Multiple models of vesicle fusion have been proposed in the retinal bipolar cells 

(131, 132) These include 1) progressive fusion where vesicles along the ribbon fuse one 

after the other These vesicles do not share the same fusion site at the same time. Higher 

rows of vesicles refill the lower rows.  2) Multivesicular fusion which may be synchronized 

- where there is synchronous fusion of multiple docked vesicles or compound fusion- where 

vesicles piggy-back onto  each other with only the docked vesicle fusing with the plasma 

membrane. In compound fusion multiple vesicles share a single fusion site at the plasma 

membrane. In chapter 3 we show an experiment  where multiple short depolarizations leads 

to depletion of a larger pool. In this case it is likely that the vesicles undergo the progressive 

mode of fusion (as seen in fig 5.1). However we also show evidence where vesicles located 

distally from the plasma membrane are able to undergo exocytosis that I interpret as not 
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needing to form new SNARE complexes. This is a possible example of the compound  mode 

of fusion. Therefore retinal ribbon synapses might be able to undergo various modes of 

exocytosis. 

 While our study suggests a possible mechanism underlying compound fusion, the 

identity of specific proteins regulating this process remains unknown. Interestingly, syntaxin 

3, the SNARE isoform found in retinal ribbon synapses is also found in mast cells and 

pancreatic acinar cells, both of which are known to undergo compound fusion  (293–296). 

Future Directions  

 Several studies have suggested the presence of t-SNAREs on vesicles (96, 259). 

However this has not been shown in ribbon synapses at the EM level. While compound 

exocytosis has been  suggested to be present in the bipolar cell from EM micrographs (96),  

and from experiments where the fusion  of a large population of vesicles in response to 

global elevation of calcium could be fit with a  single exponential function  (54). It would be 

interesting to see if SNARE complexes formed between vesicles could be localized by using 

techniques such as immunogold labeling.  The synaptic ribbon is easily recognizable in EM 

sections as it is electron dense. The size of a vesicle is ~ 30nm and they are held at 25nm 

from the ribbon by tethers. Clustering of  nano gold particles (10-5nm size) tagged with 

SNARE complex antibodies around  the ribbon may suggest presence of SNARE complexes 

between vesicles at the ribbon. The ribbon itself may not take part in SNARE complex 

formation as SNARE proteins have been found absent from the ribbon complex (263).  

 Calcium is known to aid in pool refilling in bipolar cells (84, 208). In this thesis, 

terminals stimulated with the train pulse, under control conditions, show recruitment of 

vesicles from the reserve pool. Similar recruitment of reserve pool vesicles was not seen 
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with a 1 s pulse. Major differences between the train paradigm and a single 1 s 

depolarization include duration of depolarization and also the amount of calcium influx.  

The calcium influx in response to the train pulse is higher than with a 1 s depolarization 

(Spatially averaged  [Ca] i > 1µM during  the train pulse compared to 538 ±117 nM in 

response to a1 s depolarization ). The molecular mechanism underlying calcium mediated 

pool refilling is not known. In conventional neurons such as the calyx of Held, Calmodulin 

and Cam  kinases may be involved in the calcium mediated pool refilling (112, 116). 

Calmodulin has been shown to be present in bipolar neurons (297). It would interesting to 

see whether Calmodulin and/or Cam kinase had an effect on the fusion and/or refilling of the 

vesicle pools in ribbon synapses. Calmodulin competing peptides and specific blockers of 

Cam  kinases are commercially available. These compound could be dialyzed into terminals 

and their effect on fusion and recruitment of vesicle pools studied by using the pulse train 

paradigm.  

 Based on their role in inhibiting SNARE complex formation and thus exocytosis, 

small SNARE peptides may be used as an alternate to Botulinum toxins. One of the side 

effects of long term use of the Botulinum toxin is the development of neutralizing antibodies 

(298). Other that its well known cosmetic use, Botulinum toxin is FDA approved for the 

treatment of  chronic migraine and has also been used to manage focal dystonias. In support 

of the idea that short SNARE peptides may provide a safer alternative to botulinum toxin, 

'Argireline' a hexapeptide based on the N terminal of SNAP 25 (aa 12-17) has been found to 

be reduce wrinkles in healthy female volunteers (299).  

 Lastly, a rather ambitious project would be to use the SNARE peptides as a 

pharmacological tool in disorders resulting from excess exocytosis such as spasmodic 
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disorders and cell death due to excessive glutamate release.  Glutamate-induced 

excitotoxicity has been implicated in the pathophysiology of several neurological and retinal 

disease including ischemia, glaucoma and diabetic retinopathies (300). Short SNARE-

competing peptides that decrease exocytosis and therefore glutamate release may be an 

interesting approach in the management of these diseases. In hippocampal cultures, a SNAP 

25 peptide has been found to be neuroprotective against glutamate mediated excitotoxicity 

(256).  
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APPENDIX A 

In- vitro Calcium calibration constants used: 
 

from 10/22/08 to 7/3/09  
calcium= 4.53936e-6*((ratio-0.811414)/(9.17995-ratio)) 
 

 
from 7/3/09 to 9/15/10 use : 

calcium= 8.08972e-6*((ratio-0.80031)/(14.4585-ratio)) 
 
from  9/15/10 to 9/8/11 

 calcium= 4.19894e-6*((ratio-0.794362)/(11.7369-ratio)) 
 

after 1/1/2012 
calcium= 1.21742e-05*((ratio-0.772027)/(9.963436-ratio)) 
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APPENDIX B 

Protocols used in Igor for analysis of train pulses  
 

vg/#pragma rtGlobals=1  // Use modern global access method. 
// FINDING V_AVG OF SETS IN WAVE FUNCTION: findVAvgs(w) 
// ---------------------------------------------- 

// Function findVAvg(w) takes a given wave, w, and finds  
// the average capacitances of each pulse step in the train. 

// The user is given options as to what information is desired. 
// 
// Copyright © 2008, Ian Gemp, Proleta Datta. All Rights Reserved. 

// Heidelberger Labs Inc. 
// RRF Rm 407 Research Lab 

// ---------------------------------------------- 
 
Function findVAvg(w) 

Wave w // wave provided by user 
Variable acc = 1e-6  // approximate error in range/gap values 

Variable pulse = 0.048672  //.051072 // length of the sine wave  segment . The 2nd value 
is from the stim traces 
Variable trash = .02  //pulse/2  // this the 20msec after channel closing when Gm is still too 

high to get  accurate Cm  recordings 
Variable range = pulse - trash// interval where average is measured i.e. the last 30msec of 

each Cm trace 
Variable gap = 0.022464 //.019968 //  this is the 20msec depolarizing pulse or gap between 
sets - 2nd value is from the stim traces 

Variable skip = range + gap + trash // distance between end of one range to start of next 
Variable s,e // starting and ending points for the entire train 

s=  0.14102   //0.121056+trash (this is the first point after pulse not 20msec after end of 
pulse + trash) // start point where Cm measurement  starts , i.e. 20msec after end of depol 
pulse. 

e= 9.7731 // end point for the entire wave 
  

// Option Prompt 
Variable whichvalues=1 

Prompt whichvalues, "Do you want only stepsizes, only averages, or  everything? 

1=Steps, 2=Avgs, 3=All" 

  

DoPrompt "Options", whichvalues 

 
// Baseline Wave Stats (last .03 seconds) 

Variable base = 0.098592 // where Cm baseline ends 
WaveStats/Q/R = (base-.03,base) w // calculates the wavestats for the  last 30msec of 

each pulse. In this line it calculating VAvgs for last 30msec  of Cm baseline, before 
ist pulse is given. 
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Variable baseave = V_avg // we decided to rename the waves  to avoid  confusion with 
the generic V_avg, this doesn't affect the calculations 

print "Baseline Average = ",baseave 

// Information Headings 

print "" 

if (whichvalues==1) 

print "Calculating Stepsizes Only..." 

elseif (whichvalues==2) 

print "Calculating Averages Only..."  

else 

print "Calculating All Information..." 

endif 

print "--------------------------" 

  

// Counting/Holding Variables 
Variable step=0 

Variable pause // what is this???not used anywhere  

Variable i=1 

  

// Gathering Set Information 
do 

WaveStats/Q/R = (s,s+range) w // finds WaveStats of the pulse from point s to 30 msec 

after           
step = V_avg-baseave// calculates difference between averages of two consecutive pulses  

   
// Presenting Information 
if (whichvalues==1) 

print step 

elseif (whichvalues==2) 

print V_avg 

else 

print "Set #",i 

print "  V_avg = ",V_avg 

print "  Step size = ",step 

print "  xRange = (",s,"-",s+range,")" 

print "--------------------------" 

endif 

// Step up variables and reset values 
s+=skip 

i+=1 

while (s<=(e-range+acc)) // this loops till the  s is <= the 136th pulse -30  msec , a error 
margin of 1msec is added  

print "" 

print "...Done" 

  

End 
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#pragma rtGlobals=1  // Use modern global access method. 
// FINDING AVERAGE CURRENT PEAKS FROM from single train pulse 

// FUNCTION: findI(w) 
// ---------------------------------------------- 

// Function findI(w) takes a given wave, w, which 
// should represent the calcium current measured during depolarizing pulses applied to a cell 
during experiment, and finds the average current peak at each pulse during a 

// specified time interval. 
// Ian Gemp/Proleta Datta © 2008 

// Heidelberger Labs Inc. 
// RRF Rm 407 Research Lab 
// ---------------------------------------------- 

Function findI(w) 

Wave w // wave provided by user 

Variable gap = 0.051648 //0.0511368//0.048672 // time duration of each  sine wave 
Variable pulse =0.019488//0.020256//0.0192//0.022464 // time duration  between each 
sine wave or the depolarizing pulse 

Variable skip = gap + pulse // time between each peak measured  
Variable premeas1 = 0.006  // When you want to start measuring with respect to channel 

closing 
Variable premeas2 = 0.001  // When you want to finish measuring with respect to channel 
closing 

Variable acc = 1e-5 // just in case the computer needs a little leeway - some variables aren't 
accurate enough 

Variable s = 0.12 //0.120192 // where the program starts, the closing of the channel of the 
first pulse 
Variable e = 9.7236 //9.7233//2.1119// where the program ends, the  closing of the channel 

of the 136th pulse  
print "Calculating Averages Only..."  

print "--------------------------" 

Variable i=1 

do 

WaveStats/Q/R = (s-premeas1,s-premeas2) w // finds WaveStats of set - current peak 
average      

//print i 
print V_avg 

// Step up variables and reset values 

s+=skip // s+=skip is same as s=s+skip 

i+=1 

while (s<=(e+acc)) // this will loop as long as value of s is<= the closing of the channel of 
the 30th pulse 
//print s-skip // this was a used to test if the last V-avg was taking the correct time points 

//print s 
End 
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#pragma rtGlobals=1  // Use modern global access method. 
// FINDING V_AVG OF SETS IN  Ca WAVE 

// FUNCTION: findCa(w) 
// ---------------------------------------------- 

// Function findCa(w) takes a given wave, w, and finds  
// the peak Calcium concentrations after each pulse 
// 

// Ian Gemp/Proleta Datta © 2008 
// Heidelberger Labs Inc. 

// UTMC MB Rm 407 Research Lab 
// ---------------------------------------------- 
 

Function findCa(w,trial,trialnum) 

Wave w // wave provided by user 

String trial // holds experiment trial number// actually there is no need to put string 
variables if you use the 'O' after wavestats as that erases any previous wave with same name 
Variable trialnum  // hold experiment trial number as text 

// Prompt asking for the F1&F2 baseline values 
Variable f1base 

Variable f2base 

Prompt f1base, "F1 Baseline" 

Prompt f2base, "F2 Baseline" 

DoPrompt "Baseline Values", f1base, f2base  // these are input by user .  User has to 
calculate this from f1 and f2 waves from Xchart 

  
// Sets up time ranges for both F1 sets 
Variable tstart1 = 0.0072 // start point for f1 measurement of the train 

Variable tend1 = 0.05568 // end point of f1 measurement of the train  (remember that the 
2nd trace (from high res) is constructed such that the first 50msec are f1 (360) and the rest is 

f2 (388)) 
//Variable tstart2 =  2.16557 // this is from previous procedures where we  were taking f1 
avg before and after the pulse , averaging them to get the f1avg 

//Variable tend2 = 2.21923 
   

// Calculates F1 avg 
WaveStats/Q/R = (tstart1,tend1) w 

Variable f1befavg = V_avg // we renamed the wave to avoid confusion between this and 

the generic V_avg 
Variable f1avg = f1befavg - f1base  // Subtracts baseline from F1 avg 

// Creates F2 wave with trial as suffix 
String f2wave = "f2avg"+trial 

Duplicate/O w,$f2wave 

Wave f2temp = $f2wave  

f2temp = w-f2base 

   
// Creates ratio wave with trial as suffix 
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String ratiowave = "ratio"+trial 

Duplicate/O w,$ratiowave // overwirtes wave 

Wave rtemp = $ratiowave 

rtemp = f1avg/f2temp // calculates ratio for the trace. f2 temp is from entire trace  while f1 

avg is from the first 100 ms 
  
// Coefficients for Ca(ratio) 

Variable Keff = 8.08972e-6 //5.30336e-6 
Variable Rmin = 0.80031 //0.8897435 

Variable Rmax = 14.4585 //9.17995 
  
// Creates Ca wave with trial as suffix 

String Cawave = "Ca"+trial 

Duplicate/O w,$Cawave  // overwrites previous wave 

Wave Catemp = $Cawave 

Catemp = Keff*((rtemp-Rmin)/(Rmax-rtemp)) 

  

// Defines variables for specifying measurement ranges 
Variable skip = 0.071136 // distance between each Ca measurement 

Variable acc = 1e-6 // gives program leeway (in case skip isn't perfect)  
Variable s = 0.1199 //0.121056 // where program starts 
Variable e = 9.7549 // where program ends 

// how far left and right of the channel closing the Ca should be measured 
Variable premeas = .020 

Variable postmeas = .045 

   
print "Calculating Averages Only..."  

print "--------------------------" 

  

// Counting/Holding Variables 
Variable i=1 

  

do 

WaveStats/Q/R = (s+premeas,s+postmeas) Catemp     

// finds WaveStats of train //print i 
print V_avg 

  

// Step up variables and reset values 
s+=skip 

i+=1 

while (s<=(e+acc)) 

print "" 

print "...Done 

End 
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