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 In this dissertation, I discovered that function of TRIM24 as a co-activator 

of ERα-mediated transcriptional activation is dependent on specific histone 

modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first 

part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated 

histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription. 

Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of 

TRIM24-regulated ERα target genes is greatly impaired. Importantly, I 

demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen 

responsive elements (EREs) in a time-dependent manner upon estrogen 

induction, and depletion of their expression exert corresponding time-dependent 

effect on target gene activation. I also identified that phosphorylation of histone 

H3 threonine T6 disrupts TRIM24 from binding to the chromatin and from 

activating ERα-regulated targets. In the second part, I revealed that TRIM24 

depletion has additive effect to LSD1 inhibitor- and Tamoxifen-mediated 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1.1.  Epigenetics control literally all DNA-templated processes in the cell 

Eukaryotic DNA is packaged by an octamer of highly conserved histone 

proteins (two H2A/H2B dimers and one H3/H4 tetramer) into the basic unit called 

the nucleosome [1]. Repeating unit of nucleosomes are connected by the linker 

histone (H1) to generate nucleosomal arrays, and then further organized into 

higher-order chromatin structure (illustrated in Figure 1-1). These structures are 

highly plastic and governs the accessibility of DNA through epigenetic processes 

such as ATP-catalyzed remodeling and repositioning of the nucleosomes [2,3], 

covalent modifications of residues on the tail or globular domains of histone 

proteins [4], as well as methylation of 5’ position of the cytosine ring in CpG 

dinucleotides. Orchestration of these epigenetic regulatory mechanisms controls 

literally all DNA-templated cellular processes, such as transcription, DNA 

replication, DNA repair, recombination and others [5]. 

This thesis focuses on the post-translational modifications (PTMs) 

decorating the N-terminal tails of the core histone H3 and their effects on gene 

transcription such as H3K4 methylation, H3 acetylation, and H3T6 

phosphorylation. Essentially, specific residues on histone tails are targeted by a 

wide array of histone-modifying enzymes, which either add or remove PTMs from 

different histone residues. To date, numerous PTMs have been identified, such 

as methylation, acetylation, phosphorylation, ubiquitination and others [6,7], 

which result in either an open (euchromatin) or closed chromatin structure 

(heterochromatin), leading to gene activation or repression, respectively. 
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Figure 1-1: Overview of epigenetic regulatory mechanisms. Reprinted by 

permission from Macmillan Publishers Ltd: Nature Reviews Drug Discovery 11: 

384-400, copyright (2012) [8].  
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1.1.2.  Histone acetylation opens up chromatin for transcriptional activation 

Histone acetylation is probably the most studied of the PTMs, and the 

functions in transcriptional activation are widely appreciated [9]. Earlier 

observation suggested that acetylated chromatin regions are associated with 

active gene transcription [10]. In fact, hyper-acetylation creates an accessible 

chromatin conformation and thus enhances the exposure of DNA to restriction 

enzymes and transcription factors to allow transcription [11,12,13]. Removal of 

the positive charge on the acetylated histone tails disrupts the stability between 

histones and the negatively charged DNA, as well as the inter-nucleosomal 

interactions [14]. Another hypothesis is that histone acetylation may be part of 

the combinatorial modifications that lead to downstream events via binding of 

other epigenetic regulatory proteins [15]. In fact, adjacent phosphorylation and 

methylation can also regulate histone acetyltransferase (HAT) activity [16,17]. 

The enzymes involved (histone acetyltransferases, HATs; histone deacetylases, 

HDACs) are not only responsible for the steady-state balance of histone 

acetylation, but are also present in different regulatory complexes and have 

distinct biological functions [18]. 

 

  



 4 

 1.1.3.  Histone methylation and transcription activation/repression 

In contrast to acetylation, histone methylation is associated with both 

transcriptional activation and repression, in a context-specific manner [19]. 

Histone methylation occurs on both lysine (K) and arginine (R) residues 

[19,20,21]. Particularly, lysine methylation on different sites (H3K4, H3K9, H3K27, 

H3K79, and H4K20), and to different degrees (mono-, di-, or tri-methylation) [22], 

contributes to the complexity of transcription in regulation. Histone lysine 

methylation is dynamically mediated through histone methyltransferases (HMTs), 

and the opposing enzymes, histone demethylases (HDMs). SET-domain 

containing HMTs [23,24], especially in H3K4 methylation, include MLL1-5, 

SET1/7/9, ASH1, and SMYD3 (summarized in Figure 1-2) [25]. Histone lysine 

demethylase 1 (LSD1) was the first HDM identified and is specific for the 

demethylation of monomethylated and dimethylated H3K4 (H3K4me1/2) [4,16]. 

LSD1 plays critical roles in several cellular processes such as regulation of 

transcription, development and differentiation (to be further discussed below). 

In addition to LSD1, more HDMs have been identified from members of 

the Jimonji-containing protein family. H3K4-specific HDMs also include retinol-

binding protein 2 (RBP2/JARID1A/KDM5A), which demethylates H3K4me2/3 and 

lysine-specific demethylase 5B (KMD5B/PLU-1/JARID1B) and lysine-specific 

demethylase 5C (KDM5C/SMCX/JARID1C), both of which enzymatically target 

H3K4me3 (summarized in Figure 1-2) [25].  

  



 5 

Figure 1-2: Covalent histone modifications mediated by epigenetic 
enzymes. Reprinted from Trends in Biochemical Sciences, 36, S. Kato, A. 

Yokoyama, R. Fujiki, Nuclear receptor coregulators merge transcriptional 

coregulation with epigenetic regulation, p.272-281, Copyright (2011) [25].  
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1.1.4.  Histone phosphorylation cooperates with nearby PTMs 

Phosphorylation of histones is especially important in cell cycle regulation 

[26,27]. However, emerging evidence also suggests its functions in 

transcriptional regulation [28]. For example, phosphorylation on Histone H3 

threonine T3 (H3T3ph) interrupts the recognition of H3K4 by other chromatin 

binding modules due to the close proximity of T3 and K4 on H3 [29]. Notably, 

H3T3ph and H3K4me1 often associate with regions of repressed transcription 

[30]. Therefore, it is possible that H3T3 phosphorylation creates electrostatic 

interference for H3K4 recognition, leading to silent chromatin. Another example is 

H3T6ph, which also antagonizes the binding of H3K4-specific reader module and 

demethylation mediated by LSD1 and JARID1B [31]. On the other hand, 

H3T11ph enhances JMJD2C-mediated demethylation of H3K9me3 [32]. Taken 

together, histone phosphorylation underlies a complex language of histone 

modifications, yet its effects on combinatorial modifications await further 

investigations. 

 

 1.1.5.  The histone code hypothesis 

The histone code hypothesis proposes that combinatorial or sequential 

histone PTMs can be decoded by different reader proteins or protein modules to 

amplify a cascade of downstream responses [5,15]. The hypothesis is appealing 

because it may explain how distinct patterns of histone marks achieve context-

specific diversity on transcriptional regulation. For example, tri-methylation on 

H3K4 (H3K4me3) recruits chromatin-remodeling complexes, and is considered 



 7 

an active mark for transcription. Although methylated H3K4 is generally 

associated with euchromatin and transcriptional activation [8,25,33,34], further 

studies support the concept that cellular context determines the outcome of 

histone methylation. In response to DNA damage, robust recognition of 

H3K4me3 by the PHD domain of ING2 (inhibitor of growth 2, a tumor suppressor 

protein) mediates gene repression by serving as a bridging module with mSin3a–

HDAC1 complex at the promoters [35]. Therefore, specific effector proteins, 

acting as a reader module for specific histone modifications, determine the 

outcome of dynamic and highly contextual gene regulation. In fact, a recent study 

investigated how chromatin reader modules interact with histone H3 decorated 

by combinatorial modifications on different residues in close proximity. This 

finding showed that combinatorial PTMs on the same histone tail affect the 

binding affinity for effector proteins, leading to divergent downstream “readouts” 

[29]. 

 
1.1.6.  Histone binding modules decode the histone language 

The histone code hypothesis postulates the importance of effector (or 

chromatin binding modules) in determining the biological outcomes of single or 

combinatorial histone PTMs [5,15], which, in the last decade, has led to 

extensive discoveries in their interaction with specifically modified histone 

peptides [36]. These reader/binding modules are highly evolved and are able to 

recognize distinct histone marks. For example, proteins with bromodomains 

recognize acetylated lysines, whereas (un)methylated lysines can be bound by 

proteins containing chromodomains, double chromo, double Tudor domains, 
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MBT (malignant brain tumor) 1 repeats, PHD (plant homeo domain) fingers, 

cysteine-rich ADD domain, WD40 repeats and others. Notably, relatively fewer 

readers for phosphorylated histone peptides have been identified, which include 

14-3-3 and tandem BRCT (BRCA1 C terminus) -containing proteins [36,37]. 

For the recognition of methylation status on H3K4, unmethyl-H3K4 

(H3K4me0) can by read by PHD-finger readers AIRE [38] and BHC80 [39], 

WD40-reader WDR5/9 [40,41] and ADD-readerDNMT3L/3A [42,43]; while 

methylated-H3K4 (H3K4me) by chromo-reader CHD1 [44,45], PHD readers 

RAG2 [46], ING2 [41], BPTF [47], TAF3 [48], PHF2 [49], ING4 [50], YNG1 [35,51] 

and PHF8 [52], Tudor-readers JMJD2A [53] and Sgf29 [54], Zf-CW reader 

ZCWPW1 [55] and others. Readers for other histone modifications are 

summarized in Figure 1-3. The majority of the epigenetic binding modules can 

recognize multiple histone marks and represent an active area of research. 

However, how the histone code is decoded also largely depends on the 

complicated network between epigenetic readers as well as modifying enzymes 

in response to combinatorial histone PTMs, in specific context and cell types 

[36,56]. 
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Figure 1-3: Readers of histone modifications. Reprinted by permission from 

Macmillan Publishers Ltd: Cell Research 21:564-578, copyright (2011) [37]. 
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Figure 1-3 (Continued): Readers of histone modifications. Reprinted by 

permission from Macmillan Publishers Ltd: Cell Research 21:564-578, copyright 

(2011) [37]  
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1.1.7.  The RBCC protein family member TRIM24 

Our lab discovered new function of TRIM24 (Tripartite Motif containing 24) 

as an epigenetic reader, which simultaneously recognizes two histone marks, 

H3K4me0K23ac [57]. The TRIM/RBCC protein family is characterized by the 

presence of a conserved, N-terminal tripartite motif, containing a Really 

Interesting New Gene (RING) domain, two B-boxes, and a coiled-coil domain, 

while the carboxyl-terminal domains are variable [58,59]. TRIM24, also known as 

TIF1α (Transcription Intermediary Factor 1 Alpha), belongs to the TIF1 sub-

family, and contains a consensus LXXLL nuclear receptor interaction motif, a 

tandem Plant Homeo Domain (PHD) domain and a bromodomain (Bromo) at the 

C-terminus (Figure 1-4). TRIM24 is a multi-functional protein: through its N-

terminal RING domain, TRIM24 functions as an E3 ligase of p53, and targets p53 

protein for post-translational proteasomal degradation; upon ligand stimulation, 

TRIM24-LXXLL motif interacts with, and acts as a potent co-regulator of multiple 

nuclear receptors (NRs) [60], including RAR (retinoic acid receptor alpha), 

retinoid X receptor (RXR) [61], Vitamin D3 receptor (VDR), Androgen Receptor 

(AR), progesterone receptor (PR) and ERα (estrogen receptor alpha) 

[57,60,62,63,64], as well as NR co-activators coactivator-associated arginine 

methyltransferase 1 (CARM1) and glucocorticoid receptor-interacting protein 1  

(GRIP1) [65]. TRIM24-Bromo also associates with the chromatins through 

bromodomain–DNA and bromodomain–nucleosome interactions [66]. 
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Figure 1-4: TRIM24 protein domains. (A) Diagram of TRIM24 protein structure. 

NR: nuclear receptor. (B) Crystal structure of TRIM24 PHD-Bromo domain. 

Reprinted by permission from Macmillan Publishers Ltd: Nature 468:927-932, 

copyright (2009) [57]. 
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1.1.8.  TRIM24 regulates nuclear receptor-mediated signaling pathways 

 TRIM24 promotes ligand-dependent transcriptional activation by RAR, 

RXR, and VDR in vitro, suggesting that TRIM24 may function as a nuclear 

receptor co-activator. However, in mice lacking Trim24, RARα- and VDR-

repressed genes are re-expressed [67,68,69,70], implicating that Trim24 acts as 

a co-repressor in RAR- and VDR-mediated signaling in vivo. In addition, Trim24 

loss leads to overactivation of interferon (IFN)/STAT pathway. Notably, Trim24 

and RAR bind to the retinoid acid (RA)-responsive element of the Stat1 promoter 

and mediate ligand-dependent repression [71,72], indicating that Trim24 is a co-

repressor of the IFN/STAT signaling pathway in mice. Moreover, the Drosophila 

homolog of TIF1 proteins, Bonus, interacts with nuclear receptor beta-FTZ-F1 

and represses its target gene transcription in vivo [73,74]. 

However, in vitro evidence supports the co-activation function of TRIM24.  

In prostate cancer cells, TRIM24 promotes AR-mediated transactivation in 

response to dihydrotestosterone (DHT), through functional interaction and 

synergy with histone acetyltransferase TIP60, as well as bromodomain 

containing 7 (BRD7), a negative regulator for cell proliferation and growth [75,76]. 

TRIM24 also physically interacts with co-activators CARM1 and GRIP1, whereas 

TRIM24-depletion attenuates GRIP- and AR-mediated transactivation [57,65].  

In addition, TRIM24 also play critical roles in the activation of ERα-

mediated gene regulation in breast cancer cells. Our lab uses chromatin 

immunoprecipitation (ChIP)- sequencing (ChIP-seq) analysis and reveals that 

TRIM24 is recruited by ERα to hundreds of estrogen-response elements (EREs) 
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in response to estrogen (E2) stimulation. TRIM24 and ERα physically interact 

with each other on the chromatins, in an estrogen-dependent manner. When 

TRIM24 is depleted by shRNA, binding of ERα to, and induction of, estrogen-

responsive target genes is reduced. 

  

1.1.9.  TRIM24 associates with chromatins and remodeling proteins 

 Earlier studies show that mouse heterochromatin protein 1 alpha (mHP1α) 

physically interacts with Trim24 [1,60], which is dependent on the HP1-binding 

region and PHD-Bromo domain of Trim24. However, transcription repression 

mediated by Drosophila homolog of TIF1 proteins, Bonus, requires its RBCC 

motif, but is not dependent on HP1 binding [2,3,74]. In addition, Bonus is not 

physically associated with Drosophila HP1 proteins. Strikingly, in early mouse 

embryos Trim24 is highly expressed and co-localizes with the euchromatin of 

interphase nuclei [4,77]. In addition, Trim24 is involved in the regulation of gene 

expression during the first wave of transcription activation in mouse embryo 

development, where Trim24 is localized to the site of active transcription 

enriched with the mouse chromatin remodeling proteins BRG-1 and SNF2H 

[6,7,78]. Remarkably, Trim24 depletion leads to mis-regulation of gene 

expression in the zygote via SNF2H. Taken together, these observations indicate 

that Trim24 regulates gene activation during the first wave of mouse embryo 

development and cell differentiation. 

 

  



 15 

1.1.10.  Histone demethylase 1 (LSD1) specifically demethylates H3K4me1/2 

 Histone lysine methylation is dynamically mediated through histone 

methyltransferases (HMTs) and the opposing enzymes, histone demethylases 

(HDMs), in response to cellular signals. LSD1 is the first identified HDM, which 

functions as a transcriptional regulator by catalyzing the demethylation of 

H3K4me1/2 [9,70,72]. LSD1 possess a SWIRM (SWI3p, Rsc8p and Moira) 

domain, a FAD (flavin adenine dinucleotide)-binding motif, and a C-terminal 

amine oxidase domain (Figure 1-5); all of these are structurally indispensible for 

the demethylation of specific histone lysine substrates. In particular, SWIRM 

domain is commonly found in histone-interacting proteins. The SWIRM domain of 

LSD1 forms a structural interface with the amine oxidase domain to assist in 

substrate binding. Through its FAD-binding motif, LSD1 uses FAD as a cofactor 

to act on the methylated H3K4 side chain [10,79,80]. The flavin-dependent 

reaction results in unmodified lysines, and the reduction of FAD to FADH2, which 

is re-oxidized by oxygen and forms hydrogen peroxide H2O2 as a by-product. The 

imine intermediate is then further demethylated via hydrolysis, together with the 

release of formaldehyde (Figure 1-6). However, LSD1 is unable to act on tri-

methylated H3K4 due to electrostatic limitation.  
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Figure 1-5: LSD1 protein domains. (A) Diagram of LSD1 protein structure [33]. 

(B) Crystal structure of LSD1 protein. Republished with permission of Annu Rev 

Biochem, from Reversal of histone methylation: biochemical and molecular 

mechanisms of histone demethylases, N. Mosammaparast, Y. Shi, 79, 155–179, 

2010. [67]. 
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Figure 1-6: Postulated chemical reactions for LSD1-catalyzed 
demethylation of H3K4me2. Reprinted from Cell, 119, Y. Shi, F. Lan, C. 

Matson, P. Mulligan, J.R. Whetstine, P.A. Cole, R.A. Casero, Histone 

demethylation mediated by the nuclear amine oxidase homolog LSD1, 941–953, 

Copytight (2004), with permission from Elsevier [72]. 
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1.1.11.  LSD1 mediates transcription repression 

Recombinant LSD1 can demethylate H3K4me1/2 on histone peptides or 

free histone substrates in vitro, but not on nucleosomal substrates 

[11,12,13,81,82], suggesting that associated factors are required for LSD1-

mediated demethylation. In fact, LSD1 is associated with repressor element 1-

silencing transcription factor (REST) corepressor (CoREST), histone 

deacetylases HDAC1/2, and BHC80 (also known as PHD finger protein 21A, 

PHF21A, a PHD finger protein) for the repression of neuronal genes in non-

neuronal cells [14,39]. BHC80 inhibits the enzymatic activity of LSD1, while 

CoREST functions in the opposite way by allowing LSD1 to demethylate 

nucleosomal substrates and protecting LSD1 from proteasomal degradation. 

In addition, LSD1 also interacts with the orphan nuclear receptor TLX 

(homolog of the Drosophila tailless gene), which are both recruited to the PTEN 

gene at regions depleted of H3K4me2 and deacetylated of H3. Knockdown of 

LSD1 results in de-repression of endogenous PTEN expression and inhibition of 

cell proliferation [15,83]. Moreover, direct interaction between LSD1, additional 

sex comblike protein 1 (ASXL1), and HP1α suggests that LSD1 cooperates with 

ASXL1 in RAR-mediated repression through HP1α [16,17,84]. 

 

1.1.12.  LSD1 plays important roles during development and differentiation 

  Several lines of evidence suggested that LSD1 is functionally critical in the 

processes of development. For example, temporal and spatial expression of 
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mouse LSD1 is tightly correlated with demethylation of H3K4 during male germ 

cell differentiation [17,85]. Notably, Lsd1 is required for pituitary terminal cell-type 

differentiation through previous regulation of transcriptional activation and 

repression of developmentally essential genes [5,15,86]. In addition, Lsd1 has 

been shown to be critical for gastrulation during mouse embryogenesis, possibly 

through demethylating and stabilizing DNA methyltransferase Dnmt1 protein, and 

thus maintaining global DNA methylation during embryogenesis [29,87]. 

Particularly, DNMT1 recruits LSD1 to target gene promoters and regulates 

DNMT1 target gene expression in human colon cancer cell line [88]. The LSD1-

CoREST-HDAC corepressor core also physically interacts with Gfi-1/1b and 

regulates hematopoietic differentiation by demethylating H3K4 at the promoters 

of Gfi targets [89]. The association with the transcriptional repressor B 

lymphocyte-induced maturation protein-1 (Blimp-1) leads to the binding of Lsd1 

to Blimp1 target sites and Blimp-1-mediated silencing of mature B-cell genes in 

plasma cell differentiation [90]. 

  LSD1 is also involved in stem cell differentiation. Through its interaction 

with CoREST, LSD1 demethylates H3K4me1/2 at a subset of developmentally 

essential genes that contain bivalent domains of both H3K4me2/3 and 

H3K27me3 marks in human embryonic stem cells (hESCs) [91]. LSD1 regulates 

the pattern of H3K4 and H3K27 methylation, leading to the precise balance 

between self-renewal and differentiation in hESCs. In addition, the inhibition of 

LSD1 enzymatic activity prevents the proliferation of pluripotent cancer stem cells 

[92]. Interestingly, mouse Lsd1 is recruited to and is required for 
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decommissioning enhancers of the pluripotency genes during differentiation. 

Notably, depletion of LSD1 results in incomplete chromatin demethylation and 

failure of mESC differentiation in new cell states. 

  The function and structure of LSD1/CoREST corepressor complex is 

evolutionally conserved in vertebrates and invertebrates [93]. Particularly, sirtuin 

1 (SIRT1) and LSD1 physically interact and cooperatively regulation gene 

repression by mediating H3K16 deacetylation and H3K4 demethylation 

respectively. Mutations in dSirt1 and dLsd1 (Drosophila Sirt1 and Lsd1) 

genetically interact with the Notch pathway in Drosophila. In particular, SIRT1-

LSD1 expression is required for NOTCH target repression [94]. In addition, an 

inactivating mutation of dLsd1 (Drosophila Lsd1) disrupts H3K4 methylation and 

expression of a subset of target genes, resulting in tissue-specific defects 

(sterility especially in females) and reduction of animal viability in a gender-

specific manner during Drosophila development [94]. In addition, studies on 

SPR-5, the C. elegans ortholog of human LSD1, showed that LSD1 possibly 

controls the reprogramming of epigenetic memory in the germline. Notably, spr-5 

mutants exhibit defects in H3K4me2 demethylation in the primordial germ cells, 

resulting in transgenerational misregulation of spermatogenesis-associated gene 

expression and progressive sterility.  

 

1.2.  AIMS OF THIS WORK 

The histone code hypothesis postulates that histone modifying enzymes 

“write” or “erase” histone marks, while histone binding modules “read”, decode 
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and execute these marks to effectively trigger downstream responses [5,15]. 

Here I focus my thesis on estrogen receptor-alpha (ERα), the master 

transcriptional regulator in breast cancer [95], and determine the significance of 

erasure and recognition of H3K4 methylation on estrogen-responsive elements 

(EREs) over a time course of LSD1- and TRIM24-regulated estrogen response. 

Chapter 2 focuses on the co-activation of ERα-mediated transcription by LSD1 

and TRIM24, the binding events and dynamics of histone modifications during 

the time course. I will also discuss how TRIM24 binding and estrogen response 

is influence by H3T6 phosphorylation. Chapter 3 focuses the biological functions 

mediated by LSD1 and TRIM24 and how they affect survival and proliferation in 

breast cancer cells. The work presented in the dissertation provides a 

comprehensive analysis of the kinetics of demethylated histones through 

enzymatic activities and recognition by epigenetic reader proteins, and the 

molecular events eading to effective histone demethylation, a prerequisite for the 

chromatin association of TRIM24 and activated ERα-mediated transcription. The 

findings on the inhibitory effects mediated by depleting or inhibiting TRIM24 and 

LSD1 in the proliferation breast cancer cells may give insights to future 

development of combinatorial therapeutics in breast cancer. 

Introduction of ERα-mediated signaling, ERα co-activators, involvement of 

TRIM24 and LSD1 in hormone receptor is presented in section 2.1; introduction 

of disease-related functions of TRIM24 and LSD1 is presented in section 3.1. 
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CHAPTER 2: ACTIVATION OF TRIM24-REGULATED ERα TARGET GENES 

IS DEPENDENT ON LSD1-MEDIATED H3K4ME2 DEMETHYLATION 

(Part of this chapter is published: *Wen-Wei Tsai, *Zhanxin Wang, Teresa T Yiu, 

et. al and Barton MC. 2010. Nature 468, 927–932. *Equal contribution) 

2.1.  INTRODUCTION 

2.1.1.  Estrogen receptor-alpha (ERα) is the master transcriptional regulator  

Estrogen receptors (ERα and ERβ) belong to the ligand-dependent 

nuclear receptors (NRs), activated by the binding of 17β-estradiol (E2), a 

predominantly naturally occurring estrogen in human. This dissertation focuses 

on the ERα subtype because it is the master transcriptional regulator that 

influences most of the physiological processes, such as the growth and 

maintenance of the reproductive tract, central nervous system and skeletons, 

and disruptions of ERα functions in the hormone-responsive tissues often lead to 

the pathological development of cancers, such as breast cancer 

[57,60,62,63,64,95,96,97]. Ligand-activated ERα immediately undergo 

conformational change [65,98] and directly binds to sequence-specific DNA 

elements  (termed estrogen-responsive elements; EREs), upstream of target 

gene promoters, to mediate massive changes in the transcriptome 

[66,99,100,101]. This process requires the recruitment of transcription factors as 

well as a plethora of co-regulator proteins.  In fact, hundreds of ERα co-

regulators have been identified to date [102,103], most of them exist in multi-

subunit complexes, and contribute to our understanding of the orchestral 

molecular events upon estrogen stimulation. 
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2.1.2.  ERα and the transcriptional machinery 

In eukaryotic cells, the transduction of cellular and environmental signals 

often lead to gene transcription, whose activation or repression is regulated 

through a series of temporal-specific recruitments of transcription factors (TFs) 

and co-regulators on EREs (Figure 2-1). The model of transcription initiation 

postulates that during the assembly of pre-initiation complex (PIC), TATA-box 

binding protein (TBP, a subunit of transcription factor TFIID) is first recruited to 

the TATA box and is stabilized by TFIIA [104]. TFIIB is then associated with PIC 

for the conformational remodeling of PIC and for the selection of transcription 

initiation sites, where RNA polymerase II (RNAP II) is loaded to activate 

transcription [105,106,107]. TRAP/mediator complex is recruited and structurally 

remodeled to co-activate the phosphorylation of C-terminal domain of RNAP II 

(CTD/Rbp1, the largest subunit of RNAP II) [108,109,110], and then exchanged 

by elongation complexes [111], for transcription to initiate. Components of the 

transcriptional machinery, such as TFIIB, TFIIE, and TFIIF, as well as TAFs and 

the TBP of TFIID, interact with ERα and are involved in ERα-mediated 

transcription activation [112,113]. A closer look at the kinetic profile of 

transcription machinery reveals that every cyclical engagement of TFIIB is 

aligned with ERα [73], suggesting that ERα recruitment associates with the 

structural remodeling of PIC by TFIIB. Importantly, ERα-driven cycles lead to the 

sequential and cyclical recruitment of TRAP/mediator (Med7 and TRAP220), 

cdk7 (essential component of the transcription factor TFIIH), followed by 

activated RNAP II and transcriptional elongators (Elp1 and Elp3) [73]. 
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Figure 2-1. Protein complexes involved  in estrogen-induced activation of 

pS2 gene. Reprinted from Cell, 115, R. Metivier, G. Penot, M.R. Hubner, G. 

Reid, H. Brand, M. Kos, F. Gannon, Estrogen receptor-alpha directs ordered, 

cyclical, and combinatorial recruitment of cofactors on a natural target promoter, 

p.751-763, Copyright (2003) [73]. 
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In fact, DNA accessibility is largely dependent on the nucleosomal 

architecture, which determines subsequently whether transcription is to be 

initiated. Enhanced ERα binding is achieved by epigenetic machinery that 

modifies the histone-DNA interface of the surrounding chromatin architecture. 

Through covalent histone modifications, chromatin remodeling, and histone-

octamer exchange by histone chaperones, recruitment or dismissal of specific 

regulatory proteins occur in a context- and temporal-dependent manner 

[25,114,115].  

 

2.1.3.  Histone modifying enzymes as ERα co-regulators 

Recent works demonstrated the potential role of histone-modifying 

enzymes as ERα co-regulators [116,117]. Histone acetyltransferase p300/CBP is 

the first epigenetic regulator that links epigenetics to transcription co-regulation. 

p300/CBP relaxes the nucleosomal DNA to allow for TF binding and is always 

associated with transcription activation. HATs not only co-activate ERα, but also 

other classes of TFs, in order to enhance activated transcription [118]. For 

example, the cAMP response element-binding (CREB)-binding protein 

(CBP)/p300 and the GCN5 complex, TFTC/SAGA [TATA-binding protein (TBP)-

free TBP associated factors (TAF)-containing complex/Spt–Ada–Gcn5 

acetyltransferase] are both HATs that have been shown to co-activate ERα-

mediated transactivation [119]. Certain HDACs are also associated with ERα, 

possibly for the termination of activated transcription [120,121]. 
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The histone code hypothesizes that crosstalk between histone PTMs 

orchestrates dynamic and context-specific reorganization of chromatin, an 

essential process for transcriptional regulation [5,15,122]. For example, it is 

suggested that histone methylation on specific residues is more upstream than 

acetylation in order to direct the chromatin state for gene activation/repression 

[123]. Notably, the roles of histone methylation/demethylation in ERα co-

regulation are more dynamic [124]. HMTs/HDMs can be associated with either 

activation or repression, in a histone residue-, DNA sequence- and context-

specific manner [33]. ERα co-activators are not only limited to HATs/HDACs and 

HMTs/HDMs, but also include histone kinases and histone phosphatases, 

ubiquitin, SUMO ligases and others. Modifiers of other histone PTMs functioning 

as ERα co-regulators are shown in Figure 2-2.  

 

2.1.4.  Chromatin remodeling and estrogen response 

Chromatin remodelers play essential function in the process of chromatin 

reorganization, in an ATP-dependent manner [125,126]. By influencing histone-

DNA interactions and sometimes through nucleosome sliding, this reversible 

process exposes naked DNA to a wide array of TFs and indirectly regulates 

transcription. This process can be mediated by three types of chromatin 

remodelers: Switch/Sucrose Non-Fermenting (SWI/SNF)-, Imitation Switch 

(ISWI)-, and Chromdomain Helicase DNA Binding Protein 4 (CHD4/MI2)-

complexes [127]. Both SWI/SNF and ISWI can either activate or represses 

chromatin [125,128], while CHD4/MI2 is involved in chromatin inactivation [129]. 
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Notably, the core subunits of these remodeler complexes can function as 

transcription coregulators. For example, BAF57, a subunit of the SWI/SNF 

complex, co-activates ERα-regulated transcription [130]. In addition, the 

association between ERα and these remodelers is believed to remodel the 

nucleosomes surrounding hormone-responsive DNA elements, and is 

indispensible for the binding of other ER co-regulators. 
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Figure 2-2.  Co-activators of estrogen receptor-alpha. Reprinted with 

permission from Cold Spring Harbor Laboratory Press, Genes and Development 

20: 1405-1428, copyright (2006) [75]. 
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2.1.5.  Potential involvement of histone chaperones in ERα regulation 

  Effects of histone chaperones in transcriptional regulation also gained 

researchers’ attention recently.  By the regulation of chromatin reorganization 

through the eviction and reassembly of histones during replication, repair and 

transcription, chaperon proteins re-organize nucleosomal DNA to permit the 

accessibility of sequence-specific TFs and NR co-regulators during gene 

activation [131]. For examples, Drosophila DEK (dDEK) co-localizes with nuclear 

ecdysone receptor (EcR) in the salivary gland. Importantly, phosphorylation of 

Drosophila DEK (dDEK) induces complex formation with casein kinase 2; and 

this complex is known to associate with active histone marks. dDEK functions as 

a histone chaperon and facilitates H3.3 assembly [132]. Therefore histone 

chaperones such as dDEK may regulate gene activation and represent a distinct 

class of nuclear receptor co-regulators; but this potential still awaits further 

validation. 

 
2.1.6.  Timely and cyclical recruitment of ERα and its co-factors 

Studies in MCF7 human breast cancer cells suggested that activation of 

ERα target genes exhibit distinct patterns of estrogen-mediated response, in a 

time-dependent manner [100,101]. It is therefore reasonable for estrogen to 

induce cyclical and sequential binding of ERα and its co-regulators. One study of 

the canonical pS2 ERE in MCF7 human breast cancer cells led to a model where 

ERα binds to EREs in 3 distinct cycle of protein recruitment to chromatin (protein 

complexes involved illustrated in Figure 2-1) [73]. During the first 

“transcriptionally undproductive” cycle, initial engagement of the SWI/SNF 
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component BRG1 remodels the chromatin, and then H3K14 becomes acetylated 

and H4R3 becomes dimethylated, concurrent with the recruitment of 

acetyltransferases Tip60/p300 and arginine methyltransferase PRMT1, 

respectively. Transcription machinery regulators TATA-box binding protein (TBP, 

a subunit of transcription factor TFIID), TFIIA, mediator/TAF130, and 

acetyltransferase GCN5 are also recruited, all of which occur before the 

recruitment of activated RNA polymerase II [73]. During the second and third 

“transcriptionally productive” cycles, ERα is recruited every 40-50 minutes [73] 

and this recycling is dependent on proteasomal-mediated turnover of ERα 

[73,133]. Notably, every ERα recruitment coincides with the acetylation of H3K14 

and H4K16, as well as the di-methylation of H3R17, and this process precedes 

the recruitment of activated RNA polymerase II. Moreover, timely recycling of 

p160 factors, histone methyltransferases (HMTs), and histone  

acetylatransferases is also observed on the pS2 ERE. 

Studies of histone methylation suggest that it is associated with either 

activation or repression of ERα-mediated response, in a histone residue-, DNA 

sequence-, and context-specific manner [31,33,124,134]. However, whether 

regulation of histone lysine methylation and demethylation is critical in the 

stepwise process of ERα-mediated transcriptional activation remains to be 

explored. Specifically, a comprehensive view of the kinetics of histone lysine 

demethylation through enzymatic activities and the recognition of demethylated 

histones by epigenetic reader proteins awaits further investigation, and thus is 

the central focus of this study. 
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2.1.7.  TRIM24 functions as an ERα co-activator through chromatin 

recognition 

Our lab recently identified an ERα co-activator, namely TRIM24. ChIP 

analysis showed that TRIM24 is co-recruited with ERα upon estrogen treatment 

to GREB1 ERE sites (Figure 2-3A). Notably, ERα and TRIM24 are recruited as a 

complex, as revealed by sequential ChIP experiment (Figure 2-3B). TRIM24 

depletion reduces recruitment of ERα to GREB1 ERE (Figure 2-4B) and lead to 

down-regulation of estrogen-induced GREB1 activation at t = 3hr and t = 6hr 

(Figure 2-4A, left). A detailed investigation of TRIM24 PHD-Bromo crystal 

structure establishes the simultaneous interaction of PHD-Bromo with 

unmethylated H3K4 (H3K4me0) and acetylated H3K23 (Figure 1-4B) [57]. I 

performed mutagenesis and generated TRIM24-PHD point mutation (C840W) 

and Dr. Tsai showed that reintroduction of WT-TRIM24, but not TRIM24-C840W, 

is able to fully rescue TRIM24 function in shTRIM24 cells. 
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Figure 2-3. ERα and TRIM24 are recruited together to EREs upon estrogen 
induction. (A) ChIP experiment showing both ERα (left) and TRIM24 (right) 

recruitment to GREB1 distal and proximal EREs upon 15 min and 6 hours of 

estrogen (E2) treatment. (B) Sequential ChIP showing that ERα and TRIM24 

recruitment as a complex after 6 hours of E2 activation. Reprinted by permission 

from Macmillan Publishers Ltd: Nature 468:927-932, copyright (2009) [57]. 
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Figure 2-4. Depletion of TRIM24 decreases ERα binding to ERE and 
estrogen-activated gene induction. (A) qPCR: (left) depletion of TRIM24 by 

shRNA reduces E2-induced activation of GREB1 at indicated time points; (right) 

re-introduction of wildtype (WT) but not PHD-finger mutant (C840W) rescues 

TRIM24-coactivated GREB1 induction. (B) ChIP: Knockdown of TRIM24 leads to 

decreased ERα recruitment to GREB1 distal ERE. Reprinted by permission from 

Macmillan Publishers Ltd: Nature 468:927-932, copyright (2009) [57]. 
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2.1.8.  TRIM24 simultaneously recognizes two histone signatures on H3 

Sequence alignment shows that TRIM24 PHD finger is highly similar to 

BHC80, especially the conserved residues critical for BHC80-H3K4me0 

interaction. Binding of TRIM24 PHD-Bromo is abolished by H3K4 mono-, di-, or 

tri-methylation. In fact, TRIM24 PHD-Bromo binds to unmodified H3(1-15)K4 with 

a dissociation constant (KD) of 8.6mM, as measured by isothermal titration 

calorimetry (ITC)-based binding assay. Even with the addition of one methyl 

group on H3K4, TRIM24 PHD-Bromo loses its binding (KD = 41mM), the affinity 

is even weaker for di-methylated H3K4 peptide (KD = 198mM), and with tri-

methylation on H3K4 the interaction is totally abolished (KD > 400mM). These 

observations suggest that TRIM24 PHD-Bromo specifically binds to 

unmethylated H3K4. Simultaneous with H3K4me0 recognition by TRIM24-PHD, 

TRIM24 bromodomain interacts with acetylated H3(13-21)K23ac peptide with a 

KD of 8.8mM. Acetylation of H3K23 enhances the binding of TRIM24 to 

unmethylated H3K4. Interestingly, TRIM24 PHD-Bromo is tolerable with H3K4 tri-

methylation in the presence of H3K23 acetylation (H3K4me3K23ac), suggesting 

that the combinatorial recognition of TRIM24 is dynamic and requires further 

investigation in the cellular context.  
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2.1.9.  TRIM24 preferentially binds to regions depleted of H3K4me2 

 ChIP sequencing analyses of TRIM24 and H3K4me2 reveal that TRIM24 

preferentially binds to genome-wide regions depleted of H3K4me2 [57]. As an 

example, Figure 2-5A shows TRIM24 binding and H3K4me2 occupancy at the 

estrogen responsive element (ERE) of an ERα target gene IGFBP4. TRIM24 is 

recruited to IGFBP4-ERE in response to estrogen stimulation. At the same ERE, 

demethylation of H3K4me2 is also prominent upon E2. Figure 2-5B shows the 

global binding profile of TRIM24 in regions relative to H3K4me2 level. 

Corresponding number of tags sequenced for H3K4me2 occupancy is 

represented graphically on the y-axis, in relation to the distance to TRIM24 

binding site (in terms of base pair, bp) on the x-axis (Figure 2-5B). It is clear that 

global demethylation in response to E2 is observed, and TRIM24 preferentially 

binds to regions of low H3K4me2 occupancy. These observations, together with 

the peptide binding and ITC assays mentioned above, suggested that H3K4me2 

must be demethylated in order for TRIM24 to bind to the chromatins, and 

targeting histone demethylases that mediate H3K4me2 demethylation may 

regulate the functions of TRIM24.  
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Figure 2-5. TRIM24 binds to regions depleted of H3K4me2. (A) TRIM24 

binding and H3K4me2 occupancy at IGFBP4 ERE locus. (B) H3K4me2 averaged 

levels at TRIM24 binding. Reprinted by permission from Macmillan Publishers 

Ltd: Nature 468:927-932, copyright (2009) [57]. 
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2.1.10.  LSD1 as a transcription co-activator in androgen and estrogen 

receptors-mediated signaling 

Among the four H3K4-specific demethylases, I focus on LSD1 in this study 

because it is the only enzyme capable of the demethylation from H3K4me2 to 

H3K4me1 and then to H3K4me0 [9,70,72], a preferential substrate for TRIM24 

recognition, leading to TRIM24-regulated co-activation of ERα. Although LSD1 

plays an important role in mediating gene repression under specific 

circumstances and in certain tissues, in hormone-responsive tissues, evidence 

showed that LSD1 mainly functions as a co-activator in nuclear receptor-

mediated transcription activation. For example, estrogen induction leads to 

demethylation of H3K4me2 and H3K9me2/3 at ERα target genes pS2 and 

GREB1 EREs [124]. LSD1 interacts with ERα and co-activates estrogen-

mediated expression of these genes [124]. However, whether LSD1 functions as 

an ERα by depleting H3K4 methylation has not been addressed. Another study 

of the ERα pioneer factor FOXA1 (Forkhead Box A1) showed that FOXA1 

binding sites are enriched with H3K4me1/2 [135]. Notably, when LSD1 is 

overexpressed, H3K4me2 decreases while H3K9me2 remains unchanged, but 

FOXA1 recruitment is impaired [135]. These observations strongly suggested a 

role of LSD1 in ERα-regulated transcription through its ability to demethylate 

H3K4me2. 

On the other hand, LSD1-mediated demethylation also generates the by-

product hydrogen peroxide (H2O2), which has been shown in MCF7 cells to 

recruit 8-oxo-guanine–DNA glycosylase 1 (OGG1) and topoisomerase IIβ 
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(TopoIIβ), triggering chromatin looping for activated ERα binding [136]. In 

prostate cancer LNCaP cells, LSD1 interacts with androgen receptor (AR), binds 

to and co-activates AR target genes [134]. However, in both studies, LSD1 has 

been suggested to demethylate H3K9, a biochemically non-preferable substrate, 

instead of H3K4. 

The enzymatic specificity of LSD1 has been debatable for awhile until a 

recent study showed that LSD1 interacts with H3K9me3-specific demethylase 

JMJD2C in prostate cancer cells, where JMJD2C also functions as a co-activator 

of AR [137]. Therefore, the change in H3K9 methylation when LSD1 is depleted 

could possibly due to the loss of interaction with JMJD2C and other H3K9 

demethylase(s), or even gain of H3K9 methyltransferase(s) recruitment. Although 

the conclusion from this study still emphasized the ability of LSD1 to demethylate 

mono- and di-methylated H3K9, and switch its substrate specificity with methyl-

H3K4, how and whether substrate switch of LSD1 is possible and what unknown 

cofactors may be involved still remain unknown. 

 

2.1.11.  H3T6ph inhibits H3K4 demethylation mediated by LSD1 and 

chromatin binding by H3K4me0 reader proteins 

 LSD1-mediated demethylation can be regulated by several mechanisms 

[138,139,140]; one newly identified regulation is by phosphorylation of H3T6 

(H3T6ph). Mass spectrometry analyses revealed that the presence of H3T6ph on 

H3K4me2 peptide inhibits LSD1-mediated demethylation [31]. H3T6ph is 

mediated by PKC family kinases PKCα, βI, and βII. In the absence of PKCβI and 
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H3T6ph, LSD1 is able to demethylate H3K4me2 on core histones or 

nucleosomes in demethylation assays. However, when PKCβI is added, LSD1 

fails to mediate H3K4me2 demethylation. The same histone mark also influences 

the histone recognition of several PHD-finger reader proteins, such as BHC80 

and AIRE [29], as well as ARTX-ADD [141], which specifically bind to 

unmethylated H3K4. Therefore, it is plausible to postulate that functions of 

H3K4me0 reader TRIM24 in estrogen response may be intrinsically regulated by 

LSD1-mediated H3K4me2 demethylation and H3T6 phosphorylation. 

 

2.1.12.  Hypothesis: Function of TRIM24 is dependent on LSD1-mediated 

H3K4 demethylation 

  Despite the many functions mediated by TRIM24 and LSD1, and their 

respective roles in estrogen response, no study has focused on the potential 

cooperation of TRIM24 and LSD1 in mediating ERα target gene activation 

through changes and recognition of specific histone modifications. Through its 

recognition of unmethylated H3K4, TRIM24 functions as a chromatin reader and 

an ERα co-activator. However, it is unknown whether LSD1-mediated 

demethylation of H3K4me1/2 leads a favorable histone substrate for TRIM24 

binding and orchestrated ERα-mediated transcriptional activation. Therefore, I 

hypothesize that the function of TRIM24 as an ERα co-activator is dependent on 

LSD1-mediated H3K4 demethylation. To test the hypothesize, I have formulated 

the following specific aims and test them using several approaches in human 

tumor-derived MCF7 breast cancer cells: 
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• Establish the time-dependent profile of ERα target gene activation when 

TRIM24 or LSD1 is depleted 

• Establish a cyclical recruitment profile of TRIM24 and LSD1, as well as 

dynamic H3K4 methylation over a time course of E2 stimulation 

• Screen for potent LSD1 inhibitors and their effects on H3K4me2 on EREs 

and ERα-mediated transcription activation 

• Determine whether inhibition of LSD1 prevents TRIM24 from binding to 

EREs on the chromatins 

• Investigate how H3T6 affects TRIM24-regulated ERα-mediated 

transcription 

In summary, the results presented in this chapter suggested that TRIM24 

and LSD1 are cyclically recruited to EREs in response to E2 stimulation. 

Estrogen induction mediates dynamic H3K4 methylation/demethylation events 

over a time course. Moreover, inhibition of LSD1 enzymatic activity results in re-

methylated of H3K4me2, decreased binding of TRIM24 and ERα, leading to 

down-regulation of TRIM24-regulated ERα-mediated transcription activation. 

Finally, H3T6ph impairs TRIM24 binding to histone H3 and may play a critical 

role in ERα-mediated transactivation. 
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2.2.  MATERIALS AND METHODS 

2.2.1.  Cell culture 

MCF7 cells are obtained from ATCC and cultured in Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), as 

previously described [57,68]. For hormone depletion, cells are changed to 

charcoal-stripped hormone-free medium (Gibco) supplemented with 10% 

charcoal dextran-treated FBS (Hyclone) for 96h. Estrogen induction is performed 

in the presence of 17β-estradiol (Sigma) for the indicated times. Ethanol is used 

as a vehicle control. 

 

2.2.2  Mutagenesis 
 

Site-specific point mutations are introduced to wildtype and FLAG-tagged 

TRIM24 plasmid using QuickChange® Site-Directed Mutagenesis Kit 

(Stratagene), according to manufacturer’s suggestions. Each transformation 

reaction is then plated on LB-ampicillin agar plates and incubated at 37°C 

overnight. DNA isolated from E. coli culture is purified using DNA Miniprep Kit 

(Qiagene). Sequences of specific point mutation have been confirmed by M.D. 

Anderson DNA Analysis Core Facility. 

 

2.2.3.  Transient DNA plasmid transfection  

 MCF7 cells cultured in 6-well plates in the presence of hormone-depleted 

medium are transfected with FLAG-TRIM24 using Effectene (Qiagen), according 

to manufacturer’s instructions. Briefly, 2 µg of DNA plasmid is resuspended in 
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300µL EC Buffer, together with 16µL Enhancer and vortexed for 1 sec. After 5 

min of incubation at room temperature (RT), 60µL of Effectene Transfection 

Reagent is added to the mixture, and vortexed for 10 sec. At the end of 10 min 

incubation at RT, medium is added to reach 500 µL total and pipetted evenly 

onto the cells. Cells are treated with estrogen or control, as indicated. RNA is 

harvested 48 hr after transfection. 

 

2.2.4.  Transient knockdown by siRNAs 

 MCF7 cells cultured at 6-well plates are transfected with siControl, 

siTRIM24, or siLSD1 (ON-TARGETplus SMARTpool, Dharmacon) using 

LipofectamineTM 2000 (Invitrogen), according to manufacturer’s instructions. 

Briefly, cells are changed to Pen/Strep-free medium 2 to 3 hr prior to transfection. 

For each transfection, 100 pmol of siRNA and 5 µL LipofectamineTM 2000 are 

first individually resuspended into 250 µL medium and incubated at RT 

separately for 5 min. Then, siRNA and LipofectamineTM 2000 are mixed together 

and further incubated at RT for 20 min. Cells covered with 250 µL medium are 

then transfected with the siRNA-Lipofectamine mixture for 4 to 6 hr. Medium is 

changed and cells are cultured for a total of 72 hr before harvest. Estrogen 

treatment is added prior to harvest for indicated time points. 

 

2.2.5.  RNA extraction, cDNA, and real-time RT-PCR 

RNA in each 6-well plate is isolated using Trizol reagent (Invitrogen), 

according to manufacturer’s suggestions. 3 µg of RNA are used to synthesize 
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cDNA using RT-PCR kit (Invitrogen), according to manufacturer’s suggestions. 

Each real time PT-PCR reaction mix, containing 2µL of dilutes cNDA (1:10 

dilution), 5µL SYBR Green Reaction Mix (Applied Biosystems), 0.25µL forward 

primer (20µM), 0.25µL reverse primer (20µM), and 2.5µL sterile water, is set up 

in a 96-well plate and performed in a 7500 Fast Real Time PCR instrument 

(Applied Biosystems). Primer sequences are listed below: 

 
Gene Forward Sequence Reverse Sequence 

GREB1 GGCAGGACCAGCTTCTGA CTGTTCCCACCACCTTGG 

PR GTGCCTATCCTGCCTCTCAATC CCCGCCGTCGTAACTTTCG 

pS2 TTGTGGTTTTCCTGGTGTCA CCGAGCTCTGGGACTAATCA 

IGFBP4 AGAGCGAAGGGGGTCAAAGGAAGA TGGGGAGGGAGGTGTAGGGGAAGG 

BCAS4 CCTGGCCGGGGCTGATGGA GGCACCGAGGTCTGGAGGCAACA 

TRIM24 TATCTCCAGAGGCAGTTG CTCACAGTACAGCTTCAG 

LSD1 TCCTGGCCCCTCGATTC ATGTTCTCCCGCAAAGAAGAGT 

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 

 

 

2.2.6.  Chromatin immunoprecipitation (ChIP) 

MCF7 cells are cultured in 150 mm2 plates for ChIP experiments as 

previously described58,70. Essentially, after 96 h of hormone depletion, cells are 

treated with indicated treatment or corresponding control, in addition to 20nM 

17β-estradiol (Sigma) or ethanol, for indicated time course. Upon harvest, cells 
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are cross-linked with 556 µL 37% formaldehyde (in 20 mL medium) and rotated 

at RT for 15 min. Cross-linking is stopped with 6.8 mL of glycine (0.5M stock) and 

rotated at RT for an additional 10 min. The media on the plates are then removed 

and washed with chilled sterile PBS twice before scrapping in 5 mL PBS (with 1X 

PMSF). Cells pellets are spun down 2K rpm for 5 min at 4°C. After the 

supernatant has been discarded, cells are lyzed with 1 mL Cell Lysis Buffer 

(5mM PIPES pH 8.0, 85mM KCl, 0.5% NP-40, fresh protease inhibitors) and 

incubated on ice for 15 min. Then the cell lysates are collected after 

centrifugation at 5K rpm for 5 min and resuspended in 300 µL Nuclear Lysis 

Buffer (50mM Tris pH 8.1, 10mM EDTA, 1% SDS, and fresh protease inhibitors). 

100mg glass beads (Sigma) are added to the samples. Sonication is performed 

using a bioruptor (Diagenode, Bioruptor Twin #UCD-400) at high input for 36 min 

(in a 30 sec ON, 30 sec off mode). After sonication, the tubes are spun at 14K for 

15 min at 4°C. Supernatant is transferred to a new tube to check for fragment 

size. For ChIP experiments, lysates are divided and diluted using ChIP Lysis 

Buffer (150mM NaCl, 25mM Tris pH 7.5, 5mM EDTA, 1% TritonX 100, 01% SDS, 

0.5% Deoxycholate, and fresh protease inhibitors). After IgG preclearing (2.5 µg 

for 1 hr at 4°C), immunoprecipitation is performed overnight (O/N) with specific 

antibodies: ERα (F-10, Santa Cruz), TRIM24 (ProteinTech), LSD1 (Abcam), 

histone H3 (Abcam), H3K4me1 (Abcam), H3K4me2 (Active Motif), H3K4me3 

(Active Motif), H3T6ph (Abcam), H3K9me2 (Abcam) or normal sheep IgG 

(Upstate/Millipore). The next day, pre-washed Protein A Sepharose beads (GE 

Health) are incubated with antibody/protein bound complexes for 2 hr at 4°C. 
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Then, Protein A beads are washed once with RIPA Buffer (50mM Tris pH 8.0, 

150mM NaCl, 0.1% SDS, 0.5% Deoxycholate, 1% NP-40, and 1mM EDTA), 

once with High Salt Buffer (50mM Tris pH 8.0, 500mM NaCl, 0.1% SDS, 0.5% 

Deoxycholate, 1% NP-40, and 1mM EDTA), once with LiCl Wash (50mM Tris pH 

8.0, 1mM EDTA, 250mM LiCl, 1% NP-40, and 0.5% Deoxycholate), and twice 

with TE Buffer, each wash for 10 min at 4°C. The input and the ChIP samples are 

resuspended into 300µL TE Buffer and incubated with 1.5µL RNaseA (10mg/mL 

stock) for 30 min at 37°C and then with 15µL SDS (10% stock) and 7.5µL 

ProteaseK (10mg/mL stock) for 2 hr at 55°C.  

The crosslinks are reversed by incubating the samples at 65°C O/N. The 

next day, Protein/antibody bound DNA fragments are extracted with 300µL 

Phenol/Chloroform twice and 300µL Chloroform once. Precipitation is performed 

using 30 µL NaOAc (3M stock), 600 µL ethanol (100% stock) and 25 µL glycogen 

(1mg/mL stock) for 1 hr at -80°C. qPCR analyses are performed to analyze 

specific antibody- and protein-bound DNA using SYBR Green Reaction Mix 

(Applied Biosystems) in a 7500 Fast Real Time PCR instrument (Applied 

Biosystems). Sequences of ChIP primers are listed below: 
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Region Forward Sequence Reverse Sequence 

GREB1-

distal ERE 

GAGCTGACCTTGTGGTAGGC 

 

GGTTTTTAAGCAGCCAGCAG 

 

GREB1- 

proximal 

ERE 

TTGTTGTAGCTCTGGGAGCA CAACCAGCCAAGAGGCTAAG 

GREB1 

+54kb 

ACCTGTCATCCCAGCTACTCG 

 

GCTGTCTGGCAAGGTGAGTT 

 

PR-221kb 
GGGAAATTGCCTCTCCTCACTTTG 

 

CCAAGGATTAGGGCAGTTCAGAAG 

 

PR-205kb 
AAAGAGAGTGAGTCATTTGTG 

 

CAGGAGATCCGTGAGTTC 

 

PR +4kb 
TTGGTTCTGCTTCGGAATCTG 

 

CCTCCTCTCCTCACTCTTGG 

 

pS2-ERE 
GCTTAGGCCTAGACGGAATGGGC 

 

CCAGGTCCTACTCATATCTGAGAG 

 

IGFBP4-

ERE 
GGTGCAGAGAAGCTGTTGAAG AGACAGGCTCAGGCTCAAGA 

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 

 

 

2.2.7. GST-tagged protein expression and purification 

 GST-only and GST-tagged TRIM24 recombinant proteins are expressed 

using BL21-AI strains of E. coli (Invitrogen) and cultured in 2X LB media in the 

presence of 100 ug/mL Ampicillin at 37°C. When the overnight culture reaches 

OD600 of 0.5 to 0.6, it is induced with final concentration 0.2% L-arabinose 

(Sigma) and 100 µM ZnCl (for PHD zinc finger expression), and subsequently 

cultured at RT for 24 hr. The cell pellets are collected by spinning at 4K rpm for 
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15 min at 4°C and snap-freeze at -80°C. The frozen pellets are resuspended in 

cold lysis buffer (50mM Tris pH 7.5, 150mM NaCl, 0.05% NP-40, 1X PMSF and 

protease inhibitors) in the presence of final concentration 0.5mg/mL lysozyme 

solution and sonicated at an output of 18% for 40 sec (in a 1 sec on, 1 sec off 

manner) on ice. The supernatant is collected by centrifugation at 12K rpm for 15 

min at 4°C, and incubated with washed 50% slurry mix of glutathione (GST) 

beads (AmerSham) O/N at 4°C. The GST-beads are washed three times with 

lysis buffer, then once with elution buffer (100mM Tris pH 8.0) at 4°C for 5 min. 

Finally, the GST-proteins are eluted with elution buffer containing 10mM fresh 

glutathione.  Concentration is measured using Bradford protein assay at A280 

and analyzed by Coomassie blue staining of SDS-PAGE gel, in comparison to 

BSA standards. Final concentration of 10% glycerol is added to the recombinant 

proteins for long-term storage at -80°C. 

 

2.2.8.  Biotinylated peptide pulldown assay 

GST-RBP2 (PHD1 or PHD2) recombinant proteins are obtained from Dr. 

Xiaobing Shi’s laboratory, GST-JMJD2A-Double Tudor Domain (DTD) from Dr. 

Mark Bedford’s laboratory and GST-LSD1 from Dr. Yang Shi’s laboratory. 

Peptides are biotin-labeled and custom-made by peptide synthesis facility at Yale 

University. 

In each binding assay, 2 µg of GST-tagged recombinant proteins and 1 µg 

of biotinylated histone peptides (1mg/mL) are incubated together in 500µL NTP 

binding buffer (50mM Tris PH 7.5, 200mM NaCl, 0.1% NP-40) O/N at 4°C. For 
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input, no peptide is added. On the next day, 20 µL of washed 50% slurry of 

Streptavidin beads (GE Heath) are added into each binding assay and rotated at 

4°C for 1 hr. The beads are washed with NTP binding buffer and rotated at 4°C 

for 10 min. Flowthrough (FT) is saved. After three washes, the beads are 

resuspended in 60 µL of 2X SDS loading dye, boiled and loaded on a 10% SDS-

PAGE gel, together with 10% input and FT for each binding assay. The peptide-

bound GST proteins are detected by GST-antibody (Cell Signaling, 1:1000). 

 

2.3.  RESULTS 

2.3.1.  Estrogen triggers immediate dynamic histone modifications 

The addition of an ERα agonist, 17β-estradiol (estrogen, E2), immediate 

triggers changes in the chromatin architecture. First, total H3 at ERα target 

genes, GREB1 and PR estrogen responsive elements (EREs), decreases as 

early as 15 min of E2 treatment, and the low levels of H3 persist until 1 hr after 

E2 induction (Figure 2-6). The decrease in total suggests that the chromatin may 

employ a more “open” conformation for the recruitment of co-activator proteins 

and transcription machinery for ER-regulated gene activation. Consistent with 

this notion, active histone marks such as H3K23ac (Figure 2-7) and H3K27ac 

(Figure 2-8) are also enriched at GREB1 and PR EREs and promoters. 

Consistently, ERα is recruited to GREB1 and PR EREs at t = 15 min and t = 1hr. 

Notably, dynamic H3K4me2/3 levels are also observed at these time points, 

suggesting that H3K4 methylation may be involved in the regulation of ERα-

mediated transcription activity. 
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Figure 2-6. Total H3 decreases immediately upon estrogen treatment. 
qChIP: H3 occupancy at (A) GREB1 and (B) PR EREs and promoters at 

untreated (Control) or estrogen (E2) treated for 15 min or 1 hr.  
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Figure 2-7. Changes of H3K23ac levels upon estrogen treatment. qChIP: 
H3K23ac levels, normalized with H3, at (A) GREB1 and (B) PR EREs and 

promoters at untreated (Control) or estrogen (E2) treated for 15 min or 1 hr.  
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Figure 2-8. Changes of H3K27ac levels upon estrogen treatment. qChIP: 
H3K27ac levels, normalized with H3, at (A) GREB1 and (B) PR EREs and 

promoters at untreated (Control) or estrogen (E2) treated for 15 min or 1 hr.  
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Figure 2-9. Recruitment of ERα upon estrogen treatment. qChIP: ERα 

recruitment at (A) GREB1 and (B) PR EREs and promoters at untreated (Control) 

or estrogen (E2) treated for 15 min or 1 hr.  
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Figure 2-10. Changes of H3K4me2 levels upon estrogen treatment. qChIP: 
H3K4me2 levels, normalized with H3, at (A) GREB1 and (B) PR EREs and 

promoters at untreated (Control) or estrogen (E2) treated for 15 min or 1 hr.  
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Figure 2-11. Changes of H3K4me3 levels upon estrogen treatment. qChIP: 
H3K4me3 levels, normalized with H3, at (A) GREB1 and (B) PR EREs and 

promoters at untreated (Control) or estrogen (E2) treated for 15 min or 1 hr.  
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2.3.2.  TRIM24 expression is essential for timely estrogen response 

 TRIM24 and ERα co-occupy nearly 1600 genes when ERα is activated by 

estrogen (E2) [57]. Among these genes, I first focused on GREB1 and studied the 

mechanism of TRIM24-regulated transcription. Previous study by Dr. Tsai 

suggested that TRIM24 depletion reduces E2-induced GREB1 activation at t = 

3hr and t = 6hr. Here I re-introduced WT-TRIM24 or EGFP (plasmid control) into 

shTRIM24 MCF7 cells (48 hr transfection) and treated with different doses of 

estrogen (E2) before assaying GREB1 activation with qPCR. When I compared 

GREB1 induction in shControl and shTRIM24 cells, TRIM24 expression is 

essential for response at lower level of estrogen (Figure 2-13, E2 = 10-10M). 

Rescue of WT-TRIM24 expression (Figure 2-12) is able to fully rescue estrogen 

response at sub-nanomolar of E2 (Figure 2-13).  When TRIM24 is depleted 

(Figure 2-14) and GREB1 transactivation assayed over a time course of t = 0hr, 

1hr, 2hr, 3hr, 4hr, and 5hr, it suggested that TRIM24 expression is essential for 

timely estrogen response (Figure 2-16A). Taken together, TRIM24 expression 

allows timely activation of GREB1 expression at lower levels of E2. In fact, 

depletion of TRIM24 or LSD1 also reduces estrogen-induced PR activation 

(Figure 2-16B). However, only LSD1, but not TRIM24 regulates IGFBP4 

transactivation (Figure 2-17). As a control, neither TRIM24 nor LSD1 knockdown 

affects non-estrogen responsive gene BCAS4 (Figure 2-18). Therefore, LSD1 

and TRIM24 may cooperatively regulate the time-dependent activation on a 

subset of ERα target genes. 
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Figure 2-12. Ectopic expression of TRIM24 in MCF7 depleted of 
endogenous TRIM24. qPCR analyses of cDNA prepared from TRIM24 

knockdown cells transfected with exogenous TRIM24-WT or EGFP control vector 

for 48 hours. Cells are pretreated with vehicle, or indicated concentration of 

Estrogen (E2), and/or 4-hydroxy-Tamoxifen (Tam) before assaying for TRIM24 

expression. RNA levels are normalized to GAPDH; value from EGFP-transfected 

cells is set as one. Averaged results from duplicates; error bars = SEM. 
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Figure 2-13. TRIM24 expression allows estrogen response at lower levels of 
hormone. qPCR analyses of cDNA prepared from shControl or shTRIM24 cells 

transfected with exogenous TRIM24-WT or EGFP control vector for 48 hours. 

Cells are pretreated with vehicle, or indicated concentration of Estrogen (E2) 

before assaying for GREB1 induction. RNA levels are normalized to GAPDH; 

untreated shControl MCF7 is set as one. Averaged results from duplicates; error 

bars = SEM. 
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Figure 2-14. Western blot analysis revealed decreased TRIM24 protein level 
mediated by siRNA in MCF7 cells. (A) Western blot showing knockdown 

efficiency of TRIM24 by siRNA (for 72 hours) at indicated time of estrogen (E2) 

treatment. (B) Quantification of TRIM24 expression as normalized to β-ACTIN 

control in siControl and siTRIM24 cells. 
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Figure 2-15. Knockdown of LSD1 by siRNAs. qPCR analyses of cDNA 

prepared from MCF7 cells transfected with siControl or siLSD1 for 48 hr and 

treated with of 10 nM estrogen at the indicated time points before assaying for  

LSD1 expression. RNA levels are normalized to GAPDH; siControl at each time 

point is set as one. Average results from triplicates; error bars = SEM. 
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Figure 2-16A. Effects of siTRIM24 or siLSD1 on ERα target gene activation. 
qPCR analyses of cDNA prepared from MCF7 cells transfected with siControl, 

siTRIM24, or siLSD1 for 48 hr and treated with of 10 nM estrogen at the 

indicated time points before assaying for (A) GREB1, (B) PR expression. RNA 

levels are normalized to GAPDH; vehicle-treated MCF7 is set as one. Average 

results from triplicates; error bars = SEM (Student t test: *p-value<0.05). 
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Figure 2-16B. Effects of siTRIM24 or siLSD1 on ERα target gene activation. 
qPCR analyses of cDNA prepared from MCF7 cells transfected with siControl, 

siTRIM24, or siLSD1 for 48 hr and treated with of 10 nM estrogen at the 

indicated time points before assaying for (A) GREB1, (B) PR expression. RNA 

levels are normalized to GAPDH; vehicle-treated MCF7 is set as one. Average 

results from triplicates; error bars = SEM (Student t test: *p-value<0.05; *** p-

value<0.001). 
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Figure 2-17. Effects of siTRIM24 or siLSD1 on ERα target gene activation. 
qPCR analyses of cDNA prepared from MCF7 cells transfected with siControl, 

siTRIM24, or siLSD1 for 48 hr and treated with of 10 nM estrogen at the 

indicated time points before assaying for IGFBP4 expression. RNA levels are 

normalized to GAPDH; vehicle-treated MCF7 is set as one. Average results from 

triplicates; error bars = SEM. 
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Figure 2-18. Effects of siTRIM24 or siLSD1 on non-E2 response gene 
BCAS4. qPCR analyses of cDNA prepared from MCF7 cells transfected with 

siControl, siTRIM24, or siLSD1 for 48 hr and treated with of 10 nM estrogen at 

the indicated time points before assaying for BCAS4 expression. RNA levels are 

normalized to GAPDH; vehicle-treated MCF7 is set as one. Average results from 

triplicates; error bars = SEM (Student t test: *p-value<0.05). 
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2.3.3.  Recruitment of LSD1 and TRIM24 and changes of H3K4 methylation 

at GREB1 ERE upon estrogen induction 

Although global binding of TRIM24 preferentially concentrates on 

demethylated regions, no change of H3K4me2 was observed at GREB1 ERE 

sites after 6 hours of E2 treatment [57]. Therefore, I decided to expand our profile 

and perform ChIP analyses and examined the snapshots of ERα, LSD1, and 

TRIM2424 recruitment on the chromatin at t = 15 min, 30 min, 90 min, 150 min, 

180 min, 210 min, 240 min, 270 min, and 300 min after E2. In hormonally 

synchronized MCF7 cells, estrogen-induced transcriptional activation of GREB1 

occurs as early as 60 min and continues to up-regulate until 240 min (Figure 2-

16A). At 300 min, ERα-mediated activated GREB1 expression levels off (Figure 

2-16A). I also aimed to detect any methylation/demethylation events of histone 

H3 lysine 4 (H3K4) at these time points. 

Upon estrogen stimulation, LSD1 and TRIM24 are naturally recruited to 

GREB1 distal ERE in non-identical cyclical patterns (Figure 2-19). The 

engagement of LSD1 occurs every 90 min while TRIM24 is bound at 15 min, 90 

min, and 240 min. As for ERα, estrogen-induced recruitment is initiated at 15 

min, which persists and fluctuates until 210 min, followed by a sharp peak at 240 

min, then maintains at low levels from 270 min to 300 min. Previous study 

suggested that total H3 methylation is cyclical [73]. Here, I provided a detailed 

profile of mono-, di-, and tri-methylated H3K4 (H3K4me1/2/3) after E2 treatment 

and detected dynamic methylation/demethylation events at specific time points.  
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Figure 2-19. Cyclical recruitments of LSD1 and TRIM24 to GREB1 distal 
ERE site. Percent of maximum ChIP signals for recruitments of LSD1, TRIM24 

and ERα to GREB1 distal ERE at indicated time points of estrogen (E2) 

treatment. 
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The pre-E2 recruitment of LSD1 has been previously reported. Here, I 

observed high level of H3K4me2 and co-occupancy of LSD1 before E2 induction 

(Figures 2-19 and 2-20). As soon as 15 min post-E2, LSD1 immediately 

disengages GREB1 ERE and the reason still remains unclear. On the chromatin, 

the loss of H3K4me2/1 is accompanied by gain of H3K4me3, suggesting that 

unknown lysine methyltransferases(s) may be involved. Notably, both TRIM24 

and ERα are recruited at t = 15 min (Figure 2-19), the previously described 

“transcriptionally unproductive cycle” [73]. 

From 15 min to 30 min, LSD1 is re-engaged on GREB1 ERE; ERα 

accumulates while TRIM24 cycles off the chromatin (Figure 2-19). At the same 

time, rapid demethylation events from H3K4me3 to H3K4me2, as well as from 

H3K4me2 to H3K4me1, are observed. Because LSD1 is unable to demethylate 

trimethyl-H3K4, I suspected that another unknown lysine demethylases(s) might 

also be present on the chromatin at this interval. 

The first synchronized recruitments of ERα, LSD1 and TRIM24 occur from 

30 min to 180 min (Figure 2-19).  Consistent with the observation, knockdown of 

LSD1 or TRIM24 during this period leads to down-regulation of GREB1 induction 

(Figure 2-16A). During this period, the successive enrichment of H3K4me2 is 

concurrent with gradual loss of H3K4me3/1, possibly through demethylation of 

H3K4me3 and re-methylation of H3K4me1. 
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Figure 2-20. Dynamic changes in H3K4 methylation levels at GREB1 distal 
ERE site. Percent of maximum ChIP signals for H3K4me1, H3K4me2, and 

H3K4me3, normalized with total H3, to GREB1 distal ERE at indicated time 

points of estrogen (E2) treatment. 
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The second cycle and maximum recruitment of LSD1 occurs at t = 180 

min, when TRIM24 and ERα are accumulating on the chromatins (Figure 2-19). 

From 180 min to 210 min, immediate loss of H3K4me2 is accompanied by gain 

of TRIM24 recruitment, while ERα partially cycles off the chromatin. 

From 210 to 240 min, TRIM24 continues to accumulate and ERα cycles 

back to GREB1 ERE. Highest magnitude of TRIM24 and ERα binding is 

observed at 240 min, while minimal level of LSD1 is detectable. From 240 min to 

300 min, LSD1, TRIM24 and ERα are gradually dis-engaged from the chromatin, 

while H3K4me2 continues to increase. 

 
2.3.4.  Recruitment of LSD1 and TRIM24 and changes of H3K4 methylation 

at PR ERE upon estrogen induction 

 The recruitment profile of LSD1 and TRIM24 to PR ERE (Figure 2-21) is 

similar but not identical to GREB1 (Figure 2-19). Similar to GREB1, the cycling 

time for LSD1 is 90 min while TRIM24 engagement peaks at t = 150min, 210min, 

and 300min (Figure 2-21), suggesting that there are intrinsic differences of LSD1 

and TRIM24 recruitment in a gene-specific manner. For ERα, estrogen-induced 

recruitment occurs as early as t = 15 min, which persists and continues to be 

enriched until t = 180 min, and maintains at detectable levels from 210 min to 300 

min (Figure 2-21). Essentially, pre-E2 recruitment of LSD1 is also observed on 

PR ERE. Disengagement of LSD1 at t = 15min (Figure 2-21) is accompanied by 

loss of H3K4me2 and gain of H3K4me1/3 (Figure 2-22), suggesting dynamic 

changes in chromatin architecture during immediate estrogen response. From 30 

min to 150 min, H3K4me1/2 dominant while H3K4me3 is kept at barely 
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detectable level (Figure 2-22). During the same period, ERα, LSD1, and TRIM24 

are co-recruited to PR ERE (Figure 2-21). Notably, the second cycle and 

maximum recruitment of LSD1 occurs at t = 180 min, preceding that of TRIM24 

at t = 210 min (Figure 2-21). From 180 min to 210 min, the loss of H3K4me2 is 

concurrent with gain of H3K4me1, suggesting that demethylation of H3K4me2 is 

actively ongoing (Figure 2-22). Interestingly, TRIM24 has a third recruitment peak 

at t = 300 min on PR ERE (Figure 2-19), which is not observed on GREB1 ERE 

(Figure 2-21). 
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Figure 2-21. Cyclical recruitments of LSD1 and TRIM24 to PR ERE site. 
Percent of maximum ChIP signals for recruitments of LSD1, TRIM24 and ERα to 

PR ERE (205kb upstream of promoter) at indicated time points of estrogen (E2) 

treatment. 

 

 
 

 

  

qChIP : PR -205kb

0 30 60 90 120 150 180 210 240 270 300
0

20

40

60

80

100

pe
rc

en
t o

f m
ax

im
um

C
hI

P
 s

ig
na

l

minutes after E2

LSD1
TRIM24
ERα



 71 

Figure 2-22. Dynamic changes in H3K4 methylation levels at PR ERE site. 
Percent of maximum ChIP signals for H3K4me1, H3K4me2, and H3K4me3, 

normalized with total H3, to PR ERE (205kb upstream of promoter) at indicated 

time points of estrogen (E2) treatment. 
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2.3.5.  Recruitment of LSD1 and TRIM24 and changes of H3K4 methylation 

at pS2 ERE upon estrogen induction 

 As for pS2 ERE, LSD1 also has a recruitment cycle of 90min and pre-

occupied the chromatin before estrogen stimulation. The disengagement of LSD1 

at t = 15 min (Figure 2-23) is accompanied by loss of H3K4me2 and gain of 

H3K4me3 (Figure 2-24), suggesting that methylation of H3K4me2 to H3K4me3 is 

activated. From 15 min to 30 min, loss of H3K4me3 is concurrent with gain of 

H3K4me1/2 (Figure 2-24), implying demethylation of H3K4me3 is ongoing. 

Again, the first synchronized recruitment of LSD1, TRIM24, and ERα occur from 

30min 150min (Figure 2-23). From 30 min to 60 min, H3K4me2 is accumulating 

while H3K4me1/3 is gradually lost (Figure 2-24). From 60 min to 150min, 

occupancies of H3K4me1/2/3 are all decreasing (Figure 2-24). The second 

synchronized peak for LSD1, TRIM24, and ERα is from 150 min to 240 min 

(Figure 2-23), which is not observed in neither GREB1 (Figure 2-19) nor PR 

EREs (Figure 2-21). During this time, H3K4me2 is first being accumulated, and 

then H3K4me3 is enriched as H3K4me2 is gradually weakening (Figure 2-24). 

The third synchronized peak for LSD1 and ERα at t = 270 min. From 270 min to 

300 min, LSD1 and ERα are disengaged from the chromatins and H3K4me2/3 

marks are accumulating. During this time, TRIM24 recruitment is still lagging 

behind. 
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Figure 2-23. Cyclical recruitments of LSD1 and TRIM24 to pS2 proximal 
ERE site. Percent of maximum ChIP signals for recruitments of LSD1, TRIM24 

and ERα to pS2 proximal ERE at indicated time points of estrogen (E2) 

treatment. 
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Figure 2-24. Dynamic changes in H3K4 methylation levels at pS2 proximal 
ERE site. Percent of maximum ChIP signals for H3K4me1, H3K4me2, and 

H3K4me3, normalized with total H3, to pS2 proximal ERE at indicated time 

points of estrogen (E2) treatment. 
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2.3.6.  LSD1 enzymatic activity is critical for ERα-mediated transcription 

 In 2006, LSD was discovered to share close homology with monoamine 

oxidases (MAO), and MAO inhibitors, often used as antidepressants, can 

effectively inhibit the enzymatic activity of LSD1 [140]. Among these inhibitors, 

Tranylcypromine (TCP) is the only one that specifically inhibits LSD1 for the 

demethylation of H3K4 but not H3K9. After consulting with the author Dr. Min 

Gyu Lee, we were advised to pretreat cells with 2 µM TCP for 24 hr for optimal 

inhibitory effects. Using this condition, I tracked estrogen-induced ERα target 

gene activation at t = 0 hr, 1hr, 2hr, 3hr, 4hr or 5hr after estrogen stimulation. 

First, TCP treatment does not affect LSD1 RNA level (Figure 2-25A). However, 

TCP-treated cells responds slowly to estrogen, compared to vehicle control 

(Figure 2-25) and the most significant down-regulation of GREB1 gene occurs at 

t = 3 hr (Figure 2-25B), PR gene at t = 3 hr (Figure 2-25C) and IGFBP4 gene at t 

= 2 hr (Figure 2-25D). However, TCP treatment does not affect estrogen-

irresponsive gene BCAS4 (Figure 2-25E). This is the first use of TCP to inhibit 

LSD1 in breast cancer cells and the first evidence that TCP can affect estrogen 

response, similar to siLSD1 in ERα target genes at specific time points (Figures 

2-16 and 2-17). 
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Figure 2-25 (A-B). Effects of LSD1 inhibitor TCP on ERα target gene 
activation. qPCR analyses of cDNA prepared from MCF7 cells pretreated with 

vehicle (DMSO) or 100 µM AH124 for 24 hr and treated with of 10 nM estrogen 

at the indicated time points before assaying for (A) LSD1, (B) GREB1, (C) PR, 

(D) IGFBP4, or (E) BCAS4 expression. RNA levels are normalized to GAPDH; 

vehicle-treated MCF7 is set as one. Average results from triplicates; error bars = 

SEM (Student t test: *p-value<0.05). 
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Figure 2-25 (C-D). Effects of LSD1 inhibitor TCP on ERα target gene 
activation. qPCR analyses of cDNA prepared from MCF7 cells pretreated with 

vehicle (DMSO) or 100 µM AH124 for 24 hr and treated with of 10 nM estrogen 

at the indicated time points before assaying for (A) LSD1, (B) GREB1, (C) PR, 

(D) IGFBP4, or (E) BCAS4 expression. RNA levels are normalized to GAPDH; 

vehicle-treated MCF7 is set as one. Average results from triplicates; error bars = 

SEM (Student t test: *p-value<0.05). 
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Figure 2-25 (E). Effects of LSD1 inhibitor TCP on ERα target gene 
activation. qPCR analyses of cDNA prepared from MCF7 cells pretreated with 

vehicle (DMSO) or 100 µM AH124 for 24 hr and treated with of 10 nM estrogen 

at the indicated time points before assaying for (A) LSD1, (B) GREB1, (C) PR, 

(D) IGFBP4, or (E) BCAS4 expression. RNA levels are normalized to GAPDH; 

vehicle-treated MCF7 is set as one. Average results from triplicates; error bars = 

SEM (Student t test: *p-value<0.05). 
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 As more and more of LSD1 functions are implicated in cancer biology, 

recently there is a growing interest in generating specific LSD1 inhibitors for 

treating cancer cells. In collaboration with Dr. Manfred Jung (Institute of 

Pharmaceutical Sciences, University of Freiburg, Freiburg, German), I obtained 

several biochemically verified but unpublished LSD1 inhibitors: AH3, AH124, 

AH71, and MS30. I pre-treated MCF7 cells with these inhibitors (100 µM, the 

recommended dosage) and induced with 10 nM E2 for 3 hr. qPCR analyses 

demonstrated that these potent LSD1 inhibitors are able to down-regulate ERα 

target genes GREB1 (Figure 2-26A), PR (Figure 2-26B), IGFBP4 (Figure 2-26C), 

but not the control gene BCAS4 (Figure 2-26D), similar to TCP treatment. Protein 

level of LSD1 before and after estrogen treatment does not change in DMSO 

(vehicle)-, AH3, or AH124-treated cells (Figure 2-27). Global H3K4me2 (by 

Western blot) slightly increases in the presence of AH124 and MS30 (Figure 2-

28). I selected AH124 to perform a detailed time course of estrogen treatment. 

Preliminary results from qPCR analyses demonstrated that AH124 down-

regulates ERα target genes at wider range of time points (Figure 2-29), while 

LSD1 RNA expression does not change in the presence or absence of AH124 or 

E2. Taken together, I have validated the ability of AH124 and MS30 to down-

regulate ERα target gene activation and to increase global H3K4me2 levels in 

MCF7 cells. 

Similarly, chemicals that share similar structure to the above LSD1 

inhibitors, such as Chem778 and Chem779 (from Chembridge Inc.), are tested in 

this screening (Figure 2-30). The addition of Chem778 or Chem779 down-
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regulates estrogen-induced expression of GREB1 at t = 180 min and 240 min 

(Figure 2-30A); PR at t = 120 min, 180 min, 240 min, and 300 min (Figure 2-

30B); IGFBP4 at t = 180 min and 240 min (Figure 2-30C); and pS2 at t = 240 min 

(Figure 2-30D). These observations suggested that Chem788 and Chem779 can 

potentially be potent LSD1 inhibitors, but future biochemical validations are 

required. Results obtained from these experiments showed that potent and 

potential LSD1 inhibitors can also effectively down-regulates estrogen-induced 

ERα target gene activation in MCF7 cells. 
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Figure 2-26 (A-B). Pilot study of LSD1 inhibitors and their effects on ERα 
target gene activation. qPCR analyses of cDNA prepared from MCF7 cells 

pretreated with vehicle (DMSO), 100µM of AH3, AH124, Chem778, Chem779 or 

Chem782 for 24 hr, and treated with 10 nM estrogen for 3 hr before assaying for 

(A) GREB1, (B) PR, (C) pS2, or (D) IGFBP4 expression. RNA levels are 

normalized to GAPDH; vehicle-treated MCF7 is set as one. Average results from 

duplicates; error bars = SEM. 
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Figure 2-26 (C-D). Pilot study of LSD1 inhibitors and their effects on ERα 
target gene activation. qPCR analyses of cDNA prepared from MCF7 cells 

pretreated with vehicle (DMSO), 100µM of AH3, AH124, Chem778, Chem779 or 

Chem782 for 24 hr, and treated with 10 nM estrogen for 3 hr before assaying for 

(A) GREB1, (B) PR, (C) pS2, or (D) IGFBP4 expression. RNA levels are 

normalized to GAPDH; vehicle-treated MCF7 is set as one. Average results from 

duplicates; error bars = SEM. 
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Figure 2-27. Effects of potent LSD1 inhibitors on LSD1 protein expression 
in MCF7 cells. Cell lysates were prepared from MCF7 cells pretreated with 

vehicle (DMSO), 100 µM AH3 or AH124 for 24 hr and treated with ethanol control 

(E0) or 10 nM estrogen for 3 hr (E3). Western blot analysis reveals LSD1 protein 

level and TUBULIN (loading control). 
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Figure 2-28. Effects of potent LSD1 inhibitors on global H3K4me2 in MCF7 
cells. Cell lysates were prepared from MCF7 cells pretreated with vehicle 

(DMSO), AH124 (100 µM or 200 µM), or MS30 (30 µM or 100 µM) for 24 hr 

Western blot analysis reveals global H3K4me2 level and H3 loading control (at 

short and long exposure). 
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Figure 2-29 (A-B). Effects of potent LSD1 inhibitor AH124 on ERα target 
gene activation. qPCR analyses of cDNA prepared from MCF7 cells pretreated 

with vehicle (DMSO) or 100 µM AH124 for 24 hr and treated with of 10 nM 

estrogen at the indicated time points before assaying for (A) LSD1, (B) GREB1, 

(C) IGFBP4, or (D) pS2 expression. RNA levels are normalized to GAPDH; 

vehicle-treated MCF7 is set as one. Gene induction in the presence of TCP is 

shown as a control. 
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Figure 2-29 (C-D). Effects of potent LSD1 inhibitor AH124 on ERα target 
gene activation. qPCR analyses of cDNA prepared from MCF7 cells pretreated 

with vehicle (DMSO) or 100 µM AH124 for 24 hr and treated with of 10 nM 

estrogen at the indicated time points before assaying for (A) LSD1, (B) GREB1, 

(C) IGFBP4, or (D) pS2 expression. RNA levels are normalized to GAPDH; 

vehicle-treated MCF7 is set as one. Gene induction in the presence of TCP is 

shown as a control. 
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Figure 2-30 (A-B). Effects of potential LSD1 inhibitors Chem778 and 
Chem779 on ERα target gene activation. qPCR analyses of cDNA prepared 

from MCF7 cells pretreated with vehicle, 100µM Chem778 or Chem779 for 24 hr 

and treated with 10 nM estrogen at the indicated time points before assaying for 

(A) GREB1, (B) PR, (C) IGFBP4, or (D) pS2 expression. RNA levels are 

normalized to GAPDH; vehicle-treated MCF7 is set as one. Gene induction in the 

presence of TCP is shown as a control. Average results from duplicates; error 

bars = SEM. 
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Figure 2-30 (C-D). Effects of potential LSD1 inhibitors Chem778 and 
Chem779 on ERα target gene activation. qPCR analyses of cDNA prepared 

from MCF7 cells pretreated with vehicle, 100µM Chem778 or Chem779 for 24 hr 

and treated with 10 nM estrogen at the indicated time points before assaying for 

(A) GREB1, (B) PR, (C) IGFBP4, or (D) pS2 expression. RNA levels are 

normalized to GAPDH; vehicle-treated MCF7 is set as one. Gene induction in the 

presence of TCP is shown as a control. Average results from duplicates; error 

bars = SEM. 
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2.3.7.  Chromatin-binding ability of TRIM24 is dependent on the enzymatic 

activity of LSD1 

The effects of LSD1 inhibitors io ERα gene activation led to the question of 

how these inhibitors work mechanistically and whether TRIM24 is involved. The 

kinetic recruitment of transcription factors (Figures 2-19, 2-21, and 2-23) and 

dynamic H3K4 methylation  (Figures 2-20, 2-22, and 2-24) represents valuable 

information in guiding the time-specific ChIP experiments in the presence of 

Tranylcypromine (TCP, an inhibitor of LSD1). For GREB1, the maximum 

recruitment of LSD1 occurs at 180 min post-E2 (Figure 2-21), so I sought to 

determine how LSD1 affects the accumulation of TRIM24 and ERα on the 

chromatin at this time point. When I pre-treated MCF7 cells with 1 µM of TCP, 

estrogen-induced transcriptional activation of GREB1 is down-regulated, most 

significantly at t = 180 min. (Figure 2-16A). Consistently, at t = 180min, ChIP 

assays reveal that TCP treatment leads to re-methylation of H3K4me2 (Figure 2-

31C), but not H3K4me3 (Figure 2-31D), at GREB1 EREs. I also observed a 

reduction in H3K4me1 in the presence of TCP at t = 180 min (Figure 2-31B), 

possibly due to the inhibition of demethylation from H3K4me2 to H3K4me1. 

Importantly, inhibition of LSD1 by TCP does not affect H3K9me2 levels at 

GREB1 distal ERE (Figure 2-33), suggesting that TCP only induces changes in 

H3K4 (a preferable substrate of LSD1) but not H3K9 methylation (a 

biochemically non-preferred LSD1 substrate). Notably, gain of H3K4me2 is 

concurrent with decreased binding of TRIM24 (Figure 2-32A) and ERα (Figure 2-

32B), as well as LSD1 (Figure 2-32C) to the chromatins. Similar effects of TCP 
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on H3K4me2 occupancy (Figure 2-36), TRIM24 (Figure 2-37) and ERα (Figure 2-

38) recruitment are also observed in PR, pS2, and IGFBP4 ERE sites, but not at 

unspecific site GAPDH (negative control). A summary of TCP-induced changes 

in histone modifications and recruitments of TRIM24 and ERα is presented in 

Figure 2-39. These observations confirmed the gene- and time-specific 

dependence on chromatin structure for unique TRIM24 and ERα binding events. 
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Figure 2-31 (A-B). LSD1 inhibitor Tranylcypromine (TCP) leads to changes 
in H3K4 methylation. ChIP assays for (A) total H3, (B) H3K4me1, (C) 

H3K4me2, (D) H3K4me3 at GREB1 distal and proximal ERE sites with the 

indicated treatment: vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are pre-

treated with 2 µM TCP for 24 hr and treated with 20 nM E2 for 3 hr. Average 

results from triplicates; error bars = SEM. 
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Figure 2-31 (C-D). LSD1 inhibitor Tranylcypromine (TCP) leads to changes 
in H3K4 methylation. ChIP assays for (A) total H3, (B) H3K4me1, (C) 

H3K4me2, (D) H3K4me3 at GREB1 distal and proximal ERE sites with the 

indicated treatment: vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are pre-

treated with 2 µM TCP for 24 hr and treated with 20 nM E2 for 3 hr. Average 

results from triplicates; error bars = SEM. 
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Figure 2-32 (A-B). LSD1 inhibitor Tranylcypromine (TCP) impairs 
recruitment of TRIM24 and ERα. ChIP assays for (A) TRIM24, (B) ERα, and (C) 

LSD1 at GREB1 distal and proximal ERE sites with the indicated treatment: 

vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are pre-treated with 2 µM 

TCP for 24 hr and treated with 20 nM E2 for 3 hr. Average results from triplicates; 

error bars = SEM. 

 
A. 

 
 
B. 

 

qChIP : TRIM24
GREB1

distal ERE proximal ERE
0.00

0.05

0.10

0.15

P
er

ce
nt

ag
e 

of
 in

pu
t

Vehicle
E2
E2 + TCP

qChIP: ERα
GREB1

distal ERE proximal ERE
0.0

0.5

1.0

1.5

2.0

P
er

ce
nt

ag
e 

of
 in

pu
t

Vehicle
E2
E2 + TCP



 94 

Figure 2-32C. LSD1 inhibitor Tranylcypromine (TCP) impairs recruitment of 
TRIM24 and ERα. ChIP assays for (A) TRIM24, (B) ERα, and (C) LSD1 at 

GREB1 distal and proximal ERE sites with the indicated treatment: vehicle 

(ethanol), estrogen (E2), or E2 + TCP. Cells are pre-treated with 2 µM TCP for 24 

hr and treated with 20 nM E2 for 3 hr. Average results from triplicates; error bars 

= SEM. 
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Figure 2-33. LSD1 inhibitor Tranylcypromine (TCP) does not affect H3K9 
methylation. ChIP assays for H3K9me (normalized with total H3) at GREB1, 

PR, pS2, and IGFBP4 ERE sites with the indicated treatment: vehicle (ethanol), 

estrogen (E2), or E2 + TCP. Cells are pre-treated with 2 µM TCP for 24 hr and 

treated with 20 nM E2. Average results from duplicates; error bars = SEM. 
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Figure 2-34 (A-B). LSD1 inhibitor Tranylcypromine (TCP) leads to changes 
in H3K4 methylation. ChIP assays for (A) total H3, (B) H3K4me1, and (C) 

H3K4me2 at GREB1 distal and proximal ERE sites with the indicated treatments: 

vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are pre-treated with 2 µM 

TCP for 24 hr and treated with 20 nM E2 for 5 hr. Average results from triplicates; 

error bars = SEM. 
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Figure 2-34C. LSD1 inhibitor Tranylcypromine (TCP) leads to changes in 
H3K4 methylation. ChIP assays for (A) total H3, (B) H3K4me1, and (C) 

H3K4me2 at GREB1 distal and proximal ERE sites with the indicated treatment: 

vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are pre-treated with 2 µM 

TCP for 24 hr and treated with 20 nM E2 for 5 hr. Average results from triplicates; 

error bars = SEM. 
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Figure 2-35 (A-B). LSD1 inhibitor Tranylcypromine (TCP) impairs 
recruitment of TRIM24 and ERα. ChIP assays for (A) TRIM24, (B) ERα, and (C) 

LSD1 at GREB1 distal and proximal ERE sites with the indicated treatment: 

vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are pre-treated with 2 µM 

TCP for 24 hr and treated with 20 nM E2 for 5 hr.  
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Figure 2-35C. LSD1 inhibitor Tranylcypromine (TCP) impairs recruitment of 
TRIM24 and ERα. ChIP assays for (A) TRIM24, (B) ERα, and (C) LSD1 at 

GREB1 distal and proximal ERE sites with the indicated treatment: vehicle 

(ethanol), estrogen (E2), or E2 + TCP. Cells are pre-treated with 2 µM TCP for 24 

hr and treated with 10 nM E2 for 5 hr.  
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Figure 2-36 (A-B). LSD1 inhibitor Tranylcypromine (TCP) leads to re-
methylation of H3K4me2. ChIP assays for H3K4me2 occupancy (normalized 

with total H3) at (A) PR, (B) pS2, and (C) IGFBP4 ERE sites, or negative control 

(D) GAPDH, with the indicated treatment: vehicle (ethanol), estrogen (E2), or E2 + 

TCP. Cells are pre-treated with 2 µM TCP for 24 hr and treated with 20 nM E2. 

Average results from duplicates; error bars = SEM. 
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Figure 2-36 (C-D). LSD1 inhibitor Tranylcypromine (TCP) leads to re-
methylation of H3K4me2. ChIP assays for H3K4me2 occupancy (normalized 

with total H3) at (A) PR, (B) pS2, and (C) IGFBP4 ERE sites, or negative control 

(D) GAPDH, with the indicated treatment: vehicle (ethanol), estrogen (E2), or E2 + 

TCP. Cells are pre-treated with 2 µM TCP for 24 hr and treated with 20 nM E2. 

Average results from duplicates; error bars = SEM. 
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Figure 2-37 (A-B). LSD1 inhibitor Tranylcypromine (TCP) impairs TRIM24 
recruitment. ChIP assays for TRIM24 recruitment (normalized with input) at (A) 

PR, (B) pS2, and (C) IGFBP4 ERE sites, or negative control (D) GAPDH, with 

the indicated treatment: vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are 

pre-treated with 2 µM TCP for 24 hr and treated with 20 nM E2. Average results 

from duplicates; error bars = SEM. 
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Figure 2-37 (C-D). LSD1 inhibitor Tranylcypromine (TCP) impairs TRIM24 
recruitment. ChIP assays for TRIM24 recruitment (normalized with input) at (A) 

PR, (B) pS2, and (C) IGFBP4 ERE sites, or negative control (D) GAPDH, with 

the indicated treatment: vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are 

pre-treated with 2 µM TCP for 24 hr and treated with 20 nM E2. Average results 

from duplicates; error bars = SEM. 

 
 
C. 

 
 
 
D. 

 

qChIP : TRIM24
IGFBP4

IGFBP4 ERE
0.00

0.05

0.10

0.15

0.20

P
er

ce
nt

ag
e 

of
 in

pu
t

Vehicle
+ E2
+ E2 & TCP

qChIP : TRIM24
GAPDH

GAPDH
0.0

0.1

0.2

0.3

0.4

P
er

ce
nt

ag
e 

of
 in

pu
t Vehicle

+ E2
+ E2 & TCP



 104 

Figure 2-38 (A-B). LSD1 inhibitor Tranylcypromine (TCP) impairs ERα 
recruitment. ChIP assays for ERα binding (normalized with input) at (A) PR, (B) 

pS2, and (C) IGFBP4 ERE sites, or negative control (D) GAPDH, with the 

indicated treatment: vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are pre-

treated with 2 µM TCP for 24 hr and treated with 20 nM E2. Average results from 

duplicates; error bars = SEM. 
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Figure 2-38 (C-D). LSD1 inhibitor Tranylcypromine (TCP) impairs ERα 
recruitment. ChIP assays for ERα binding (normalized with input) at (A) PR, (B) 

pS2, and (C) IGFBP4 ERE sites, or negative control (D) GAPDH, with the 

indicated treatment: vehicle (ethanol), estrogen (E2), or E2 + TCP. Cells are pre-

treated with 2 µM TCP for 24 hr and treated with 20 nM E2. Average results from 

duplicates; error bars = SEM. 
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Figure 2-39. Summary of changes in histone modifications and recruitment 
of TRIM24 and ERα in the presence of Tranylcypromine (TCP). Summarized 

results for ChIP assays from Figures 2-31 to 2-36. 
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2.3.8.  H3T6ph disrupts TRIM24 from binding to histone peptide 

 LSD1-mediated demethylation of H3K4me2 is dependent on H3T6 

dephosphorylation [31] and H3T6 phosphorylation inhibits H3K4me0 readers 

BHC80- and AIRE-PHD from binding to H3 [29]. Since chromatin binding of 

TRIM24 follows LSD1 pre-recruitment and H3K4me2 demethylation (Figure 2-

19), and TRIM24 preferentially recognizes H3K4me0, it is reasonable that 

H3T6ph will disrupt the interaction between TRIM24 and unmodified H3.  

To determine whether H3T6ph has any effects on TRIM24 binding, I 

performed biotinylated peptide pulldown assays to study the biophysical 

interaction between TRIM24 and modified histone peptides. I used purified GST-

tagged TRIM24 recombinant protein (Figure 2-40) in the assays, as well as GST-

only, GST-RBP2 (PHD1 or PHD2), GST-JMJD2A-Double Tudor Domain (DTD) 

as controls. I also included full-length LSD1 for reference. These GST-proteins 

are individually incubated with commercially available histone peptides: 

unmodified H3 (1-21), H3K4me2, H3T6ph, or H3K4me2T6ph. The pulldown 

assays shown in Figure 2-41 suggested that GST-only protein does not interact 

with any peptides (negative controls) and confirmed that methylated H3K4 

disrupts the binding of TRIM24-PB and RBP2-PHD1 (lane 3, H3K4me2), which 

preferentially recognize unmodified H3K4 (lane 2, H31-21). As a control, I also 

examined readers that specifically bind to methyl-H3K4, such as RBP2-PHD3 

and JMJD2A-DTD. These H3K4me readers are also pulled down with 

methylated-H3K4 (lane 3, H3K4me2), but not unmodified H3 (lane2, H31-21). The  
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Figure 2-40. Purification of GST-only and GST-tagged TRIM24 recombinant 
proteins. Coomassie staining shows the purity and approximate concentration of 

GST-only and GST-tagged TRIM24-PHD-Bromo (T24-PB), TRIM24-PHD (T24-

PHD), and TRIM24-Bromo (T24-BR), as compared to BSA controls. 
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quality control confirms that these GST-proteins and histone peptides are 

functional. 

 Next, the question is whether peptides phosphorylated at H3T6 disrupts 

the interaction with the readers. Both TRIM24-PB and RBP2-PHD1 lose binding 

in the presence of H3T6ph (Figure 2-41, lane 4). As for H3K4-methyl readers, 

RBP2-PHD3 and JMJD2A-DTD, H3T6ph only inhibits the binding of RBP2-PHD3 

to H3K4me2, but does not affect JMJD2A-DTD (Figure 2-41, lane5). Therefore, 

H3T6 phosphorylation selectively disrupts binding of some but not all readers. 

Importantly, TRIM24 fails to bind to histone H3 (residues 1-21) in the presence of 

H3K4me2 (Figure 2-41, lane3), H3T6oh (lane 4), or both (lane 5, 

H3K4me2T6ph). Taken together, the inhibitory mark H3T6 is possibly significant 

for the biological functions of TRIM24 and RBP2. 
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Figure 2-41. H3T6 phosphorylation and/or H3K4 methylation hinder TRIM24 
from binding to H3. Biotinylated peptide pulldown assay: 2 µg of GST-only, 

GST-tagged TRIM24-PHD/Bromo (PB), GST-RBP2-PHD1, GST-RBP2-PHD3, 

GST-JMJD1A-Double Tudor Domain (DTD) or full-length LSD1 (GST-LSD1-full) 

is incubated with 1 µg biotinylated-labeled histone peptides: unmodified H3 (1-

21), H3K4me2, H3T6ph, or H3K4me2T6ph. The complex is pulled down by 

Streptavidin beads, and shown here is a Western blot probed with GST-antibody. 

10% input is used as a positive control. 
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2.3.9.  H3T6ph and its potential role in ERα target gene activation 

 If H3T6 phosphorylation is critical for ERα-mediated transcription 

activation, I expect that upon estrogen stimulation, dephosphorylation will occur 

to allow for H3K4 demethylation by LSD1 and chromatin binding of TRIM24. 

Using an antibody specific for H3T6ph (Figure 2-42), I sought to determine the 

potential roles of H3T6 in ERα target gene activation. Although estrogen 

treatment does not change the global H3T6 phosphorylation level in MCF7 cells 

(data not shown), it triggers dynamic H3T6ph in a gene-specific manner. For 

example, upon E2 stimulation, phosphorylation of H3T6 at GREB1 EREs exhibits 

a cyclical pattern from 0 hr to 3 hr, and dephosphorylation occurs from 1 hr to 2 

hr (Figure 2-43 A-B). The pattern is slightly different at PR EREs, where H3T6ph 

slightly increases at t = 1 hr and then dramatically decreases at t = 2 hr and t = 3 

hr (Figure 2-43 C-D). Taken together, dephosphorylation of H3T6 does not 

happen immediately after E2 stimulate, but occurs from 1 hr to 2 hr, at GREB1 

and PR EREs. 

 PKC kinases PKC-α, -β1 and βII have been previously shown to be 

specific for H3T6 phosphorylation [31]. To determine how ERα-regulated 

transcription will be affected by H3T6 phosphorylation, I performed a pilot study 

using a potent PKC inhibitor, bis-indolylmaleimide I (Bis I), that inhibits the kinase 

activity of α/β/γ isoforms. Bis I treatment dramatically dephosphorylates H3T6 at 

the EREs of target genes GREB1, PR, pS2 and IGFBP4, compared to DMSO 

control (Figure 2-44) but the effects on estrogen-induced transcription is gene- 

and time-specific. 
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Figure 2-42. Specificity of H3T6ph antibody. Dot blot analysis is performed to 

determine the specificity of H3T6 antibody (Abcam) on recognizing H3T6 

phosphorylation on different pepetides: unmodified H3 (1-21), H3K4me2, 

H3T6ph, and H3K4me2T6ph. A five-fold dilution of BSA is used. 
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Figure 2-43 (A-B). Changes of H3T6 phosphorylation upon estrogen 
treatment. qChIP analyses of H3T6ph occupancy on GREB1 EREs in the 

indicated time course of 10nM estrogen (E2) normalized with (A) input or (H3). 

Average numbers from triplicates. Error bars = SEM. 
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Figure 2-43 (C-D). Changes of H3T6 phosphorylation upon estrogen 
treatment. qChIP analyses of H3T6ph occupancy on PR EREs in the indicated 

time course of 10nM estrogen (E2) normalized with (A) input or (H3). Average 

numbers from triplicates. Error bars = SEM. 
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Figure 2-44. Inhibition of H3T6-specific protein kinase C (PKC) by BisI leads 
to dephosphorylation of H3T6 at GREB1, PR, pS2 and IGFBP4 EREs. 
qChIPs normalized by (A) percent of input or (B) relative fold over H3 for H3T6ph 

occupancy in vehicle (DMSO)-treated or 1µM bis-indolylmaleimide I (BisI) for 1 

hour at GREB1, PR, pS2 and IGFBP4 EREs. Average numbers from duplicates. 

Error bars = SEM. 
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Dephosphorylation of H3T6 at GREB1 and PR EREs occurs between 1 hr and 2 

hr after E2 treatment (Figure 2-43), Constantly, BisI up-regulates GREB1 and PR 

expression at t = 1hr and t = 2hr (Figure 2-45 A-B). For pS2 gene, the up-

regulation occurs later at t = 5 hr (Figure 2-45C), whereas the activation of 

IGFBP4 is not affected at all (Figure 2-45D). These observations demonstrated 

that H3T6ph might potentially regulate ERα-mediated transcription in a subset of 

target genes. 
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Figure 2-45 (A-B). Effects of BisI on ERα target gene induction. qPCR 

analyses of estrogen-induced activation of (A) GREB1, (B) PR, (C) pS2, and (D) 

IGFBP4 in vehicle (DMSO)- or bis-indolylmaleimide I (BisI)-treated cells. 

Treatment of 1 µM BisI for one hour in addition to the indicated treatment time of 

10nM estrogen. RNA levels are normalized to GAPDH; vehicle-treated MCF7 is 

set as one. Average numbers from duplicates. Error bars = SEM. 
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Figure 2-45 (C-D). Effects of BisI on ERα target gene induction. qPCR 

analyses of estrogen-induced activation of (A) GREB1, (B) PR, (C) pS2, and (D) 

IGFBP4 in vehicle (DMSO)- or bis-indolylmaleimide I (BisI)-treated cells. 

Treatment of 1 µM BisI for one hour in addition to the indicated treatment time of 

10nM estrogen. RNA levels are normalized to GAPDH; vehicle-treated MCF7 is 

set as one. Average numbers from duplicates. Error bars = SEM. 
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2.4.  FUTURE DIRECTIONS AND PRELIMINARY RESULTS 

2.4.1.  Does depletion of LSD1 also exert time-specific effect?  

 This study established a detailed recruitment profile of ERα and several 

co-activators, as well as dynamic H3K4me occupancy on EREs, which is useful 

when functional assays are designed to determine the efficiency of an epigenetic 

drug. For example, on GREB1 ERE, dramatic inhibitory effect of TCP for is 

observed for TRIM24 and ERα recruitment when cells have been treated with 

estrogen for 180min (Figure 2-32 A and B), because LSD1 recruitment peaks at t 

= 180min (Figure 2-17). However, at t = 300min, when LSD1 is disengaged from 

the chromatin and H3K4me2 accumulates (Figure 2-17), preliminary results 

showed that the addition of TCP further increases the level of H3K4me2 on 

GREB1 EREs (Figure 2-34C). However, engagement of TRIM24 (Figure 2-35A) 

and ERα (Figure 2-35B) only slightly decreases. For future studies, the profile 

can be expanded by depleting LSD1 (using siRNA or shRNA construct) and 

perform ChIP assays over a detailed time course. These findings will provide a 

comprehensive analysis when the designing functional assays in future 

investigation of LSD1 inhibitors. 

 

2.4.2.  Does TRIM24 and LSD1 physically interact and when? 

 My results demonstrated that TRIM24 and LSD1 are co-recruited at 

specific time points, but at other time, LSD1 recruitment precedes TRIM24. 

Intriguingly, unpublished mass spectrometry data from our lab revealed a 

possible interaction between TRIM24 and LSD1 in several cell lines, suggesting 
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that these two proteins may physically interact with each other at a given time 

course. Preliminary data suggested that at t = 0 and t = 180min, endogenous 

TRIM24 and LSD1 are not immuneprecipitated together in the whole cell lysates 

(data not shown). However, further studies should address whether their 

interaction is present only at specific time course of estrogen. Another question is 

whether the interaction only happens on the chromatins. Re-ChIP assays at 

specific E2 induction time points (tested in the kinetic ChIP experiments) will be 

an excellent approach to address this.  

 

2.4.3.  Role of H3T6 phosphorylation in regulating estrogen response? 

 My findings suggested that H3T6 phosphorylation possibly play a critical 

role in mediating estrogen response. One important observation is that H3T6ph 

shows dynamic and gene-specific changes at EREs at specific time points in 

MCF7 cells. Essentially, pulldown assays showed that H3T6 phosphorylation 

abolishes the interaction between TRIM24 and histone H3 peptide, while 

demethylation assays by others showed that H3T6ph inhibits LSD1-mediated 

demethylation of H3K4me2 [31]. These observations suggested that H3T6 

phosphorylation is probably upstream of LSD1 and TRIM24 in regulating the 

chromatins for efficient and timely estrogen response. Constant with the findings 

by Metzger et al. in prostate cancer cells LNCaP [31], I observed phosphorylation 

of H3T6 at GREB1 EREs and promoter at t = 1hr. However, both 

dephosphorylation of H3T6 is observed at GREB1 and PR between 1hr to 2hr of 

hormone induction. Responses at these time points were not reported in previous 
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study by Metzger et al. Future studies should establish the kinetic profile of 

H3T6ph over a time course and compare it with H3K4me2 occupancy, as well as 

recruitments of LSD1, ERα and TRIM24. Using kinase inhibitors or PKC 

knockdown, detailed ChIP analyses should be performed to determine how 

phosphorylation of H3T6 affects H3K4me2 demethylation and recruitment of 

TRIM24. 

 

 

2.5.  DISCUSSIONS 

2.5.1.  Immediate E2-induced changes of chromatin structure at enhancers 

 ERα is known to regulate gene expression patterns through facilitation of 

the transcription machinery as well as a plethora of co-regulators. Epigenetic 

regulation represents an essential mechanism that determines the accessibility of 

DNA through changes of the surrounding chromatin structure.  In this thesis, I 

showed that estrogen stimulation immediately triggers an open form of 

chromatin, enriched with H3K23ac and H3K27ac on the ERE sites. These 

immediate changes on the chromatin is consistent with the previously termed 

“transcriptionally unproductive cycle” of ERα, marked by chromatin remodeler, 

HATs and HMTs [73].  

 In contrast to the previously reported cyclical pattern of total H3 

methylation [73], in this study I have demonstrated a dynamic H3K4 methylation 

profile. Intriguingly, I consistently observed immediate estrogen-induced gain of 

H3K4me3 on several of the ERE sites examined, which contrasts with the 



 122 

commonly accepted view that H3K4me3 is often associated with transcription 

start sites of actively transcribed genes [34,142,143] but not with enhancer 

regions [73,144]. However, other reports have also suggested H3K4me3 

enrichment at enhancer regions [34,142,143,145,146]. My experimental results 

strongly suggest that monomethylation, dimethylation, and trimethylation of H3K4 

are present at specific time points upon estrogen stimulation at estrogen-

responsive enhancer regions. I also demonstrated that H3K4me3 loss is 

concurrent with H3K4me2 gain, which shortly precedes H3K4me1 enrichment 

(Figures 2-20, 2-22, and 2-24). Therefore, my results suggest that estrogen 

immediately induces H3K4me3 methylation, and then H3K4me3 is enzymatically 

demethylated to H3K4me1/2 at the ERE sites examined. However, it remains to 

be determined which H3K4 methyltransferase(s) mediate H3K4me3 methylation 

and whether other H3K4 demethylases are also involved.  

 

2.5.2.  Cyclical recruitment of LSD1 and concurrent changes in H3K4me 

 Here I demonstrated that LSD1 and TRIM24 co-regulate transcriptional 

activation of a subset of ERα target gene in a time-dependent manner. I also 

showed that LSD1 and TRIM24 are cyclically recruited to EREs, constantly with 

previous findings of other ERα co-regulators [73]. For the ERE sites examined 

here, LSD1 has a recruitment cycle of 90min and the first recruitment of LSD1 

always coincides with ERα and TRIM24. LSD1 binding is negatively correlated 

with H3K4me2 level during each cycle. Importantly, LSD1 binding precedes 

TRIM24 at the time points studied here. When LSD1 is enzymatically inhibited by 
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TCP, H3K4me2 is re-methylated and TRIM24 binding is impaired, suggesting 

that demethylated chromatin mediated by LSD1 is essential for subsequent 

recruitment of TRIM24. My results established the mechanism of how LSD1 

regulates TRIM24-mediated functions through H3K4me2 demethylation, and 

further confirmed our previous findings that TRIM24 specifically recognizes 

unmethylated-H3K4, and global binding of TRIM24 preferentially concentrates in 

genomic regions depleted of H3K4me2 [57]. 

 
2.5.3.  TRIM24 binding not always concurrent with H3K4me2 demethylation 

 TRIM24 is recruited to the chromatin, along with ERα, as early as t = 

15min, during which H3K4me3 is at the highest. Previous isothermal titration 

calorimetry (ITC) analyses suggested that the presence of tri-methylated H3K4 

completely abolished TRIM24 interaction with H3 [57]. Note, however, that 

TRIM24 PHD-Bromo can still bind to H3K4me3K23ac [57], suggesting that in 

certain cellular contexts, recognition of H3K23ac by TRIM24-Bromo can allow 

TRIM24 to retain its affinity to H3 even when H3K4 is methylated. Accordingly, I 

also observed H3K23ac enrichment at t = 15min, when TRIM24 is initially 

recruited to EREs. These observations point to a more complex model of histone 

language, in which the dual epigenetic reader TRIM24 can determine which 

histone mark to recognize in a context-specific manner. Intriguingly, a previous 

study from my lab showed that TRIM24 PHD-Bromo also binds to H3K9me1/2/3 

and H3K9ac [57]. How H3K9 methylation and acetylation changes through the 

time course examined here remains unknown. A related question is how TRIM24 

distinguishes between methylated and acetylated H3K9, or between methylated 
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H3K4 and H3K9, which adds to the complexity of the histone code recognized by 

TRIM24. 

 

2.5.4.  Inhibition of LSD1 does not affect H3K4me3 or H3K9me2 

 In this thesis I demonstrated the addition of TCP to estrogen-induced cells 

result in re-methylation of H3K4me2, but no change in H3K4me1, H3K4me3, or 

H3K9me3 at several EREs examined here. These observations suggested that 

the demethylation of H3K4me2, and possibly H3K4me1, is inhibited in the 

presence of TCP, while this inhibitor is not specific for H3K4me3 or H3K9me2 

demethylation. This observation is constantly with previous findings that 

overepxression of LSD1 in MCF7 cells only lead to H3K4me2 decrease but no 

change in H3K9me2. Taken together, this evidence strongly suggested that in 

MCF7 cells, neither H3K4me3 nor H3K9me2 is a substrate for LSD1, which 

specifically targets H3K4me1/2 [4,16].  

 

2.5.5.  Establishment of the role of H3T6ph in ERα-regulated transcription 

 This work also identified a previously unknown inhibitory histone mark for 

TRIM24-PHD, namely, phosphorylated H3T6. Interestingly, I found that this 

histone mark also interferes the H3K4 recognition by RBP2-PHD, a histone 

demethylase involved in estrogen response. Metzger et al. also showed that 

H3T6ph inhibits demethylation of H3K4me1/2 by LSD1 and H3K4me2/3 by 

JARID1B [31]. I also showed that inhibition of H3T6 kinase up-regulated ERα-

regulated gene activation in a subset of target genes. Collectively, H3T6 
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phosphorylation may influence a number of readers and histone demethylases to 

regulation transcription.  
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CHAPTER 3: BIOLOGICAL SIGNIFICANCE OF TRIM24- AND LSD1-

MEDIATED ER-ALPHA CO-ACTIVATION IN BREAST CANCER CELLS  

 

(Part of this chapter is published: *Wen-Wei Tsai, *Zhanxin Wang, Teresa T Yiu, 

et. al and Barton MC. 2010. Nature 468, 927–932. *Equal contribution) 

 

3.1.  INTRODUCTION 

3.1.1.  Epigenetics and cancers 

Both genetic mutations and epigenetic misregulation contribute to tumor 

initiation and progression [147]. Recently, epigenetic regulation represents a 

promising new area for translational research due to its reversible nature. Briefly, 

epigenetic factors can modulate the disease states by 1) genetic mutation or 

aberrant expression, and/or 2) altering the gene expression profiles in 

cooperation with upstream cellular and environmental signals [8,148]. In order to 

further our understanding, the tissue-specific cancer epigenomes are being 

established by compiling the expression of dysregulated epigenetic regulator 

proteins, as well as altered global and local histone modifications [149,150]. The 

development of small molecule inhibitors also aims to alter the disease states 

(such as cancer) through manipulating the underlying epigenetic events 

[8,151,152]. For example, a number of HDAC (histone deacetylase) inhibitors are 

already in the clinic to treat cancers and other diseases [8]. On the other hand, a 

growing list of literatures also reported the possibility of drugging epigenetic 

factors, which include lysine demethylases, bromodomain-containing reader 
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proteins, methyl-lysine readers, and others [8]. Essentially, epigenetic inhibitors 

can possibly target the “undruggable” oncoproteins by altering the chromatin 

interactions. For example, BRD4 (bromodomain-containing protein 4) reader 

protein specifically recognizes acetylated lysines and modulates transcription of 

target genes of MYC (myelocytomatosis viral oncogene homolog, oncogenic 

transcription factor) through its chromatin interaction [153,154]. Importantly, 

inhibition of BRD4 is able to reduce MYC binding to its target loci as well as 

down-regulation of MYC gene transcription [155,156]. Taken together, 

elucidation of more in-depth knowledge of epigenetic regulatory mechanisms 

may contribute to the development of effective cancer therapeutics. 

 

3.1.2.  Implication of histone methylation in oncogenesis 

 Epigenetic factors responsible to “write”, “read”, or erase” the histone 

marks in response to cellular and environmental signals are important for normal 

cellular processes. Therefore, aberration of these regulatory proteins is often 

associated with the development of various cancers (summarized in Figure 3-1) 

[157].  For example, MLL (mixed-lineage leukemia) gene encodes H3K4-specific 

methyltransferases [158,159] and is frequently rearranged in acute myeloid (AML) 

or lymphoid leukemias [160,161]. The most common MLL rearrangement form, 

MLL-PTD [161,162], retains the C-terminal H3K4me- catalytic domain [160] and 

in the mouse it has been shown to cause aberrant up-regulation of H3K4 

methylation at the HOXA loci [163,164]. Apart from epigenetic “writers”, “readers” 

such as PHD-finger-containing JARID1A, also fuses with NUP98 (nucleoporin 98) 
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in leukemias [165]. Intriguingly, mutation of single amino acid in JAIRID1A-PHD 

responsible for H3K4me2/3 recognition is critical for oncogenic potential in 

leukemias [166]. Moreover, demethylases such as LSD1 (to be further discussed 

below) and Jumonji-family proteins have also been implicated in cancers. For 

example, JARID1B is overexpressed in both breast and prostate cancer 

[167,168]. JARID1B plays critical roles in facilitating G1/S [167] and mitotic 

spindle checkpoints [169]. JARID1B also represses metallothionein genes and 

tumor suppressor genes such as BRCA1 and caeolin1 by demethylating 

H3K4me2/3 [167,169]. Taken together, epigenetic regulators have functional 

significance in oncogenesis and are worth for further investigation. 
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Figure 3-1. H3K4 methylation is tightly associated with cancer 
development. Reprinted by permission from Macmillan Publishers Ltd: Nat Rev 

Cancer 10 (2010) 457-469, copyright (2010) [157].  
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3.1.3.  Aberrant expression of TRIM24 is correlated with tumorigenesis 

 Previous studies have suggested a functional role of TRIM24 in cancers. 

For example, TRIM24 has been shown to be an oncogenic fusion partner via 

chromosomal translocation in acute promyelocytic leukemia [169], papillary 

thyroid carcincomas [170], myeloproliferative syndrome (EMS) [60,171] and liver 

cancer [60,172]. Particularly, TRIM24 PHD-Bromo domain is fused to the 

tyrosine kinase domain in EMS. In this fuse protein, TRIM24 PHD-Bromo 

facilitates the dimerization and constitutive activation of FGFR1, resulting in 

cellular transformation [171]. However, it is still unclear whether TRIM24-FGFR1 

confers tumor formation. 

In addition, our lab has reported that TRIM24 is a negative regulator of 

p53 and knockdown of TRIM24 by small interfering RNAs (siRNAs) induces 

apoptosis, which can be rescued by the depletion of p53. Indeed, TRIM24 

depletion in human breast cancers causes p53-dependent apoptosis [173]. In 

addition, TRIM24 is also a co-activator of ERα [57], indicating that aberrant 

expression of TRIM24 may promote tumorigenesis through disruption in p53-

mediated tumor suppression and over-activation of ERα-regulated cellular 

processes. 

Moreover, our lab published a cohort study of breast cancer patients and 

revealed that high levels of TRIM24 protein are tightly associated with poor 

survival [57], which has been further confirmed by another recent publication 

[174], which suggested that aberrant over-expression of TRIM24 can be used as 

a prognostic factor in breast tumorigenesis. In fact, TRIM24 is highly expressed 
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in several breast cancer cell lines, as revealed by Western blot analysis 

(performed by Dr. Khandan Keyomarsi’s Laboratory, data not shown). Taken 

together, these observations raised the question of whether TRIM24 contributes 

to the early stages of tumorigenesis in breast cancer. 

 

3.1.4.  Possible roles of TRIM24 in breast cancer transformation and cell 

cycle regulation 

Unpublished data from our laboratory revealed that TRIM24 protein 

expression progressively increases as human mammary epithelial cells (HMECs) 

transform from nonmalignant to hyperplastic, and then to invasive, metastatic 

phenotype (data not shown), suggesting that TRIM24 may function as a pivotal 

driver of mammary tumorigenesis. Interestingly, studies complied in Oncomine 

Database (URL: http://www.oncomine.org) revealed that high levels of TRIM24 

RNA levels are even more prominent in high-grade ERα-positive breast 

carcinomas, suggesting that TRIM24 may also promote mammary tumorigenesis 

partially through ERα-regulated functions. 

 
In addition, TRIM24 may also be involved in cell cycle regulation. I 

obtained cell cycle-synchronized RNA lysates from Dr. Khandan Keyomarsi’s 

Laboratory and performed qPCR analysis on TRIM24 expression. I found that 

TRIM24 expression (Figure 3-3) and its binding to ERα target genes GREB1 and 

pS2 (Figure 3-4) are highly enriched during G2/M phase. Moreover, 

bioinformatics analysis performed by Kadir Atdemir in our lab also suggested that 

TRIM24 binds to approximate 300 genes in the category of cell cycle (Figure 3-
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2). Preliminary data by our group also suggest that TRIM24 plays a critical role in 

G2/M transition in cultured breast cancer cells (data not shown), implying that 

TRIM24 may tightly control cycle cell progression.  

 

3.1.5.  Roles of LSD1 in tumorigenesis 

 LSD1 is over-expressed in various human cancers, including breast, 

prostate, colorectal, gastric, lung, bladder cancer, neuroblastoma, 

chondrosarcoma, Ewing’s sarcoma, osteosarcoma, rhabdomyosarcoma and 

others [31,175,176,177,178,179,180,181]. Many reports have supported the role 

of LSD1 in driving cell proliferation due to its ability to demethylate histones and 

non-histone proteins. One example is the tumor suppressor p53, which interacts 

with LSD1. LSD1 demethylates p53, represses p53-mediated transcription and 

inhibits apoptosis [177]. LSD1 also physically interacts with and demethylate 

MYPT1, a known RB regulator [182]. LSD1-mediated demethylation of MYPT 

targets MPT1 for proteosomal degradation, increases phosphorylated (activated) 

RB1 and E2F activity in cancer cells [182].  On the other hand, LSD1 is localizes 

to centrosomes and spindle poles during metaphase and telophase of the cell 

cycle [183]. LSD1 also positively regulates BUBR1 (Bub-1 related kinase) and 

MAD2 (mitotic arrest deficient 2-like protein) expression [183]. Take together, 

LSD1 play an essential role in chromosomal segregation during mitosis possibly 

through transcription regulation of BUBR1 and MAD2 [183]. Moreover, LSD1 

plays critical roles in EMT (epithelial-mesenchymal transition) by upregulating E-

cadherin and EMT-driven cell migration [184,185]. Notably, oncoprotein MYC 
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binds and recruits LSD1 to the chromatins, while knockdown of LSD1 inhibits 

transcription of MYC target genes and leads to H3K4me2 remethylation on these 

gene loci [186]. In a mouse model mimicking human AML, LSD1 is essential for 

blocking differentiation and inducing proliferation of immature blast cells [187]. 

LSD1 co-localizes with genes bound by MLL fusion MLL-AF9 and correlates with 

decreased H3K4me2 at these gene loci. Notably, pharmacologic inhibition of 

LSD1 enzymatic activity phenocopies LSD1 knockdown in vitro and in vivo. 

These observations suggested that LSD1 may be selectively targeted in MLL 

leukemia and other cancers.  
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Figure 3-2. Global TRIM24 target genes upon E2 treatment. Genes within 

10kb of TRIM24 binding were assessed by Kadir Atdemir using Ingenuity 

Pathway Analysis (IPA, http://ingenuity.com) and the following categories were 

enriched: transcription, metabolic process, biosynthetic process, cell cycle, 

kinase activity, signal transduction, development, and chromosome organization.  

 

 



 135 

Figure 3-3. TRIM24 expression is highly enriched in E2-treated cells during 
G2/M transition. Cell cycle-synchronized RNA lysates obtained from Dr. 

Keyomarsi’s laboratory were used to make cDNA and perform qPCR to access 

TRIM24 expression through cell cycle. The corresponding cell cycle phases were 

marked under the time after Levostatin release. RNA levels are normalized to 

GAPDH; vehicle-treated MCF7 is set as one. Average numbers from triplicates. 

Error bars = SEM. 

 

 
  

TRIM24/qPCR
MCF7

0 4 8 12 16 20 25 28 32 37 40 44
0

20

40

60

80
E2 -

E2 +

re
la

ti
v

e
 f

o
ld

 c
h

a
n

g
e

 o
f 

m
R

N
A

hrs after release from
Levostatin!

G1

S
G2/M



 136 

Figure 3-4A. TRIM24 binding to ERα target genes during cell cycle. 
Synchronized cell lysates obtained from Dr. Keyomarsi’s laboratory were used to 

perform ChIP experiments. Binding of TRIM24 on (A) GREB1 distal ERE and (B) 

pS2 ERE were quantified by qPCR analyses. The corresponding cell cycle 

phases were marked under the time after Levostatin release. Average numbers 

from duplicates. Error bars = SEM. 
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Figure 3-4B. TRIM24 binding to ERα target genes during cell cycle. 
Synchronized cell lysates obtained from Dr. Keyomarsi’s laboratory were used to 

perform ChIP experiments. Binding of TRIM24 on (A) GREB1 distal ERE and (B) 

pS2 ERE were quantified by qPCR analyses. The corresponding cell cycle 

phases were marked under the time after Levostatin release. Average numbers 

from duplicates. Error bars = SEM. 
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3.1.6.  Hypothesis: Function of TRIM24 for the survival and proliferation of 

breast cancer cells is dependent on the enzymatic activity of LSD1 

 Several lines of published and preliminary evidence imply that TRIM24 

may regulate mammary tumorigenesis by controlling ERα-mediated 

transcriptional activation of cancer-promoting genes and regulating cell cycle 

progression. Similarly, LSD1 is also overexpressed in breast cancer and drives 

cellular proliferation through several mechanisms. Chapter 2 established the 

interplay between LSD1 and TRIM24 in chromatin regulation, therefore, I 

hypothesize that function of TRIM24 for the survival and proliferation of breast 

cancer cells is dependent on the enzymatic activity of LSD1. To test the 

hypothesize, I have formulated the following specific aims and tested them using 

clonogenic assays in cultured cells: 

• Confirm the growth inhibitory effects of 4-hydroxy-tamoxifen (4-OHT) in 

wildtype cells (MCF7 parental cells) 

• Determine whether TRIM24 depletion leads to reduced survival and 

proliferation, and whether 4-OHT (Tamoxifen) exerts additive inhibition 

• Determine whether inhibition of LSD1 by TCP exerts a dose-dependent 

reduction in survival and proliferation in MCF7 cells 

• Determine whether TRIM24 depletion has additive effects to Tamoxifen- 

and TCP-mediated reduction in colony formation 
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In summary, the results presented in this chapter suggested that 4-OHT or 

TRIM24 depletion alone effectively reduced the formation of colony, indicating 

that the ability of MCF7 cells to survive and proliferate during the indicated time 

course of culture is impaired. Moreover, combination of TRIM24 depletion and 4-

OHT and/or TCP treatment results in highly additive effects in the survival and 

proliferation of MCF7 cells. 
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3.2.  MATERIALS AND METHODS 

3.2.1.  Clonogenic assay 

Clonogenic assays performed in parental wildtype MCF7 cells where 500 

cells are seeded in DMEM medium supplemented with 10% FBS and 1% 

Pen/Strep solution in 60mm2 tissue culture dishes for 14 days, in the presence of 

the indicated treatment. 

For Tetracyclin-inducible shTRIM24 and shControl MCF cells, 1000 cells 

are seeded. In these cells, in addition to the indicated treatment, 500ng of 

Tetracyclin (Tet) are added for shRNA induction. Medium is replaced every three 

days with fresh Tetracycline (Tet), estrogen (E2), Tranylcypromine (TCP), and/or 

4-hydroxy-Tamoxifen (4-OHT). After 14 days in culture, colonies are fixed and 

stained with 1X crystal violet dissolved in ethanol. Colonies of ≥ 50 cells are 

counted. Experiments performed in at least three biological replicates. 

 

3.2.2.  Statistical analysis 

 GraphPad Prism software 5.0 is utilized to calculate the averaged value 

and error bars (based on standard error of mean, SEM) of independent 

experiments in biological triplicates. The two-tailed paired student t test p-value is 

used to calculate the statistical significant when comparing the differences 

between two indicated groups. P-values of less than 0.05 are considered 

statistically significant. 
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3.3.  RESULTS 

3.3.1.  Activated ERα is required for the survival and proliferation of MCF7 

In order to determine whether estrogen signaling contributes to the 

survival and proliferation of breast cancer cells, I performed clonogenic assays 

and determined the effect of ERα-mediated transcription on the survival and 

proliferation of MCF7 breast cancer cells. Because MCF7 cells fail to continue 

growing for 14 days in phenol red-free medium supplemented with charcoal-

stripped serum (data not shown), these cells are cultured in medium containing 

phenol-red, which is estrogenic. Possibly because of the abundance of estrogen 

in the medium, the addition of 17β-estradiol (10nM E2, Figure 3-5A) does not 

show significant increase in colony formation. Therefore, I grow the cells in the 

presence of 17β-estradiol alone (E2) or in addition to 4-hydroxy-tamoxifen (1µM 

4-OHT + E2, Figure 3-5A,), an antagonist of ERα [188]. The number of colonies 

formed from these treated cells after 14 days are compared to vehicle control 

(EtOH, Figure 3-5A). Colonies formed from 4-OHT treatment (Figure 3-5A) leads 

to significantly reduction in the number after 14 days, when compared to E2-

treated cells (Figure 3-5A, p-value<0.0001). In contrast, tamoxifen treatment 

does not affect colony formation in MDA-MB-231 cells (Figure 3-5B), which lacks 

endogenous ERα expression. These observations confirmed the inhibitory effect 

of tamoxifen in MCF7 cells and set up the growth condition for the following 

clonogenic experiments.  
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Figure 3-5: 4-hydroxy-tamoxifen (4-OHT)-induced reduction of colony 
formation in MCF7 but not MDA-MB-231 cells. (A) Parental MCF7 (wildtype) 

cells or (B) MDA-MB-231 cells were allowed to grow for 14 days in the presence 

of the indicated treatment: vehicle control (ethanol, EtOH), 10nM of17β-estradiol 

(10nM E2), or 1µM 4-OHT plus E2. Colonies after 14 days were stained with 

crystal violet. Average numbers from six independent experiments. Error bars = 

SEM (Student t test, ***p-value<0.001, compared to EtOH control). 
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3.3.2.  Depletion of TRIM24 affects survival and proliferation of MCF7 

The addition of tamoxifen not only down-regulates estrogen-induced 

activation of ERα target genes GREB1 and PR (Figure 3-6). In TRIM24-depleted 

cells (Figure 3-6), the inhibitory effect by tamoxifen is additive to shTRIM24-

mediated reduction on target gene induction. To test whether TRIM24 expression 

is critical for cell survival and proliferation, MCF7 cells engineered with 

Tetracycline (Tet)-inducible shRNA targeting TRIM24 (Tet-shTRIM24) or shRNA 

control (Tet-shControl) are utilized to perform clonogenic assays (representative 

images presented in Figure 3-7). These cells were generated by Chunlei Jin in 

our lab.  In the absence of Tet induction, shRNA is not activated and there is no 

difference in colonies formed in shControl and shTRIM24 (10nM E2, Figure 3-

8A). Addition of Also, 4-OHT treatment leads to significant decline in number of 

colonies in both shControl and shTRIM24 cells (1µM 4-OHT + E2, Figure 3-8A). 

These observations suggest that in the absence of Tet induction, both of these 

cell lines behave similarly to wild-type MCF7 parental cells (Fig. 3-5). Most 

importantly, the Tet-inducible construct is not leaky and does not cause any 

differences in shControl and shTRIM24 before Tet-induction. 

When shRNA construct is activated by Tet treatment, depletion of TRIM24 

significantly triggers the inhibition of cell proliferation and survival, when 

compared to Tet-shControl (Figure 3-8B, p-value<0.05), suggesting that 

depletion of TRIM24 leads to a significant reduction in the survival and 

proliferation of MCF7 cells. Notably, addition of ERα inhibitor 4-OHT reduced the 

numbers of colonies in both shControl and shTRIM24 MCF7 cells, to nearly 
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comparable levels (Figure 3-8B, p-value<0.001). Taken together, reduced 

survival and proliferation mediated by loss of TRIM24 may be compensated by 

ERα inhibition. 

 

3.3.3.  Inhibition of LSD1 by TCP affects survival and proliferation of MCF7 

 In the absence of Tet-induction, shControl and shTRIM24 cells respond 

similarly to increasing dosage of tranylcypromine (TCP). Significance reduction in 

colonies is observed in the presence of 30µM or 100µM TCP in both shControl 

and shTRIM24 cells (Figure 3-8A, p value<0.01). This observation again confirms 

that without Tet treatment, both cell lines respond similarly to TCP treatment. 

 When shRNA construct is activated by the addition of Tet, we saw limited 

effect of TCP on the formation of colonies by shControl MCF7 cells, which 

responded significantly only to high doses of TCP (100µM). In contrast, in 

combination with loss of TRIM24 in shTRIM24 MCF7 cells, colony formation was 

significantly affected by inhibition of LSD1 enzymatic activity by 10µM TCP 

(Figure 3-8B, p value<0.001). These observations suggest that treatment with 

TCP further reduces the survival and proliferation in MCF7 cells depleted of 

TRIM24. 
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Figure 3-6. Depletion of TRIM24 has additive effect in Tamoxifen-inhibited 
ERα target gene activation. Gene expression of estrogen-induced (A) GREB1 

and (B) PR is inhibited by the addition of ERα inhibitor, 4-hydroxy-Tamoxifen, 

and the gene induction is progressively down-regulated in TRIM24 depleted 

MCF7 cells (shTRIM24). RNA levels are normalized to GAPDH; E2-only MCF7 is 

set as one. Averaged results from triplicates. Error bars = SEM. 
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Figure 3-7. Representative images of Tet-treated colonies in the presence 
of the indicated treatment. Tranylpromine (TCP): 0 µM, 2 µM, 10 µM, 30 µM, 

and 100 µM in shControl or shTRIM24 cells treated with or without 4-hydroxy-

Tamxifen (4-OHT) 
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Figure 3-8A: Depletion of TRIM24 expression leads inhibit the survival of 
MCF7 breast cancer cells, and is highly additive to 4-hydroxy-tamoxifen (4-
OHT)-induced survival inhibition. MCF7 shControl and shTRIM24 were used 

to perform clonogenic assays in the presence of 10nM E2 or 1µM 4-OHT + E2, 

(A) without or (B) with Tetracyclin (Tet). Average from triplicates. Error bars = 

SEM (Student t test: *p-value<0.05; **p-value<0.01; ***p-value<0.001). 
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Figure 3-8B: Depletion of TRIM24 expression leads inhibit the survival of 
MCF7 breast cancer cells, and is highly additive to 4-hydroxy-tamoxifen (4-
OHT)-induced survival inhibition. MCF7 shControl and shTRIM24 were used 

to perform clonogenic assays in the presence of 10nM E2 or 1µM 4-OHT + E2, 

(A) without or (B) with Tetracyclin (Tet). Average from triplicates. Error bars = 

SEM (Student t test: *p-value<0.05; **p-value<0.01; ***p-value<0.001). 
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3.3.4.  Knockdown of TRIM24 is highly additive to TCP- and 4-OHT-induced 

inhibition in colony formation 

 In the absence of Tet induction, treatment with 4-OHT lowered the 

baseline of colony formation by shControl MCF7 cells, regardless of TCP dosage 

(Figure 3-10A). On the other hand, addition of 4-OHT in Tet-induced shControl 

cells does not affect their response to TCP (Figure 3-10B). Similarly, treatment 

with 4-OHT lowers the baseline clonogencity in shTRIM24 MCF7 cells, in which I 

saw even further loss in clonogenicity by 10µM TCP. Notably, in combination with 

10µM TCP and 4-OHT, loss of TRIM24 in shTRIM24 MCF7 leads to further 

reduction in colony number. Taken together, LSD1 and TRIM24 function 

additively to regulate survival and proliferation of MCF7 cells, but the underlying 

mechanism is not solely dependent on ERα activation. 
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Figure 3-9A: Decreased TRIM24 expression sensitizes MCF7 cells to lower 
dosage of TCP-mediated reduction in colonies. Response of MCF7 shControl 

and shTRIM24 cells (before Tet-treatment) to increasing dosage of 

Tranylcypromine (TCP) in the (A) absence or (B) presence of TET. Average 

numbers of colonies formed after 14 days from triplicate experiments. Error bars 

= SEM (Student t test: *p-value<0.05; **p-value<0.01). 
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Figure 3-9B: Decreased TRIM24 expression sensitizes MCF7 cells to lower 
dosage of TCP-mediated reduction in colonies. Response of Tet-induced 

MCF7 shControl and shTRIM24 cells to increasing dosage of Tranylcypromine 

(TCP) in the (A) absence or (B) presence of TET. Average numbers of colonies 

formed after 14 days from triplicate experiments. Error bars = SEM (Student t 

test: *p-value<0.05; **p-value<0.01; ***p-value<0.001). 
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Figure 3-10A: Knockdown of TRIM24 is highly additive to TCP- and 4-OHT-
induced inhibition in colony formation. Response of MCF7 shControl and 

shTRIM24 cells (before Tet-treatment) to increasing dosage of Tranylcypromine 

(TCP) with or without 4-OHT in the (A) absence or (B) presence of TET. Average 

numbers of colonies formed after 14 days from triplicate experiments. Error bars 

= SEM (Student t test: *p-value<0.05; **p-value<0.01). 
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Figure 3-10B: Knockdown of TRIM24 is highly additive to TCP- and 4-OHT-
induced inhibition in colony formation. Response of Tet-induced MCF7 

shControl and shTRIM24 cells to increasing dosage of Tranylcypromine (TCP), 

with or without 4-OHT in the (A) absence or (B) presence of TET. Average 

numbers of colonies formed after 14 days from triplicate experiments. Error bars 

= SEM (Student t test: *p-value<0.05; **p-value<0.01; ***p-value<0.001). 
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3.4.  DISCUSIONS AND FUTURE DIRECTIONS 

3.4.1. TRIM24 affects breast cancer cell survival and proliferation 

In this thesis I demonstrated that TRIM24 expression is enriched and 

strongly binds to ERα target genes during G2/M phase of the cell cycle. I have 

also shown that depletion of TRIM24 reduces the survival and proliferation of 

MCF7 cells, as revealed by clonogenic assays. TRIM24 depletion also leads to 

additive effect of 4-OHT. Consistently, breast cancer patients with high level of 

TRIM24 are associated with poor prognosis and reduced survival [57,174], 

suggesting that TRIM24 plays essential roles in breast tumorigenesis. 

 

3.4.2  Correlation of TCP effectiveness and TRIM24 expression? 

I demonstrated in Chapter 2 how histone recognition by TRIM24 is 

affected by LSD1-mediated histone demethylation. Here, I demonstrated that 

MCF7 cells respond to TCP-induced inhibition of survival and proliferation in a 

dose-dependent manner when TRIM24 is depleted. Thus TRIM24 co-regulates 

specific genes that are critical for breast cancer-derived cells to respond to 

estrogen, and effects of LSD1 depletion or inhibition on estrogen response are 

primary mediated through TRIM24. Moreover, LSD1 and TRIM24 also interact 

with genes associated with breast cancer in an estrogen-independent manner 

[57,174,179], suggesting their involvement in estrogen-independent regulation of 

genes by mechanisms that remain to be determined. 
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Therefore, my results suggested that TRIM24 levels may be critical for the 

responsiveness to TCP in the cells. Future studies should investigate several 

breast cancer cell lines with various TRIM24 expression levels, and determine if 

TCP response is different in these cells. Knockdown or overexpression of 

TRIM24 will be an excellent tool to address whether differences in TCP 

responsiveness are directly related to TRIM24 expression. In addition, the potent 

LSD1 inhibitors (studied in Chapter 2) can also be tested in these experiments. 

 

3.4.3.  HDAC inhibitors and TRIM24 knockdown? 

Hyperacetylated nucleosomes are known to prevent LSD1-mediated 

demethylation, indicating that deacetylation of nucleosomes by HDACs may 

cooperate with LSD1-mediated demethylation. Accordingly, the HDAC inhibitor 

Trichostatin A (TSA) leads to de-repression of LSD1 target genes. These 

observations suggest that combined treatment of HDAC and LSD1 inhibitors may 

serve as a potential therapeutics targeting breast cancer cells that do not 

respond to conventional therapeutics [189]. Notably, TRIM24-Bromo domain 

preferentially recognizes acetylated lysines, in addition to unmethylated H3K4 

[57], leading to the questions of how TRIM24-depleted cells respond to HDAC 

inhibitors (when histones are hyperacetylated) and whether LSD1 inhibitors 

retain their additive effect to HDAC inhibitors when TRIM24 is knocked down.  
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3.4.5.  Biological functions of LSD1 and TRIM24 in vivo? 

 Although the studies presented here are performed in human tumor-

derived MCF cells, they provide important knowledge for further investigation in 

the mouse models. Based on the molecular studies of TRIM24 and its correlation 

in breast cancer patients, TRIM24 likely functions as an oncoprotein. 

Surprisingly, TRIM24 null mice develop hepatocellular carcinoma [68,69]. Note, 

however, that preliminary data from my lab suggested that absence of TRIM24 in 

the mouse model leads to aberrations in chromosomal segregation and many 

other cell cycle defects as well as metabolic dysfunctions in the liver, which may 

explain why these animals are more susceptible to tumorigenesis. TRIM24-

transgenic and -knockout mice are now available in my lab and are under 

intensive investigation. Domain-specific TRIM24-transgenic will also be an 

excellent tool to dissect biological functions of each domain, especially PHD and 

bromodomains, which mediate chromatin interaction. 

 Similarly, despite the LSD1 overexression in many cancers and its 

functions in driving cell proliferation, LSD1 inhibits breast cancer cell invasion 

and angiogenesis when ERα is not expressed [190,191]. These observations 

raise the question of whether LSD1 plays contradictory roles in tumorigenesis 

and metastasis. LSD1 knockout mice are also available in my lab through a 

collaborative project. These mouse models serve as a useful tool to determine 

how LSD1 contributes to breast cancer development and metastases, and 

determine how the collaborative roles of TRIM24 and LSD1 in chromatin 

regulation translate into biological functions in vivo.  
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Chapter 4: CONCLUSION 

The histone code hypothesis proposes that single or combinatorial post-

translation modifications of histones can be recognized by specific reader 

modules to amplify a cascade of downstream responses. Histone PTMs 

modulate chromatin structure and thus control DNA accessibility for estrogen-

induced ERα binding. In fact, estrogen induces cyclical and sequential binding of 

ERα, the transcription machinery and co-regulators. H3K4-specific 

methyltransferases and demethylases have been shown to regulate ERα-

mediated transcription activation, suggesting that this step-wise process likely 

involves histone methylation/demethylation to allow the recruitment of ERα and 

co-activator complexes. However, a comprehensive analysis and kinetic profile of 

H3K4 methylation is lacking. How demethylation of H3K4 by LSD1 and 

recognition by TRIM24 becomes the main focus of this thesis. 

In first part, I demonstrated that TRIM24 and LSD1 expression allows for 

timely induction of ERα target gene activation induced by estrogen. TRIM24 is 

essential for mediating induced GREB1 transcription at lower levels of estrogen. 

Importantly, re-induction of TRIM24-WT but not PHD-mutant is able to rescue 

TRIM24 functions in depleted cells. Importantly, estrogen triggers immediate gain 

of H3K23ac and H3K27ac on EREs, accompanied with demethylation of 

H3K4me3 to H3K4me2, and then to H3K4me1. I also showed that LSD1 and 

TRIM24 are cyclically recruited upon estrogen stimulation over a time course. 

LSD1 binding is inversely correlated with gain of H3K4me2 during each cycle. 

Importantly, at later cycle of LSD1, recruitment of LSD1 precedes that of TRIM24. 
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When LSD1 enzymatic activity is inhibited by TCP, estrogen-induced cells exhibit 

re-methylation of H3K4me2 as well as impaired TRIM24 and ERα binding, but no 

change in H3K4me1, H3K4me3, or H3K9me3. I also studied the effects of 

several LSD1 inhibitors in down-regulating ERα target gene activation and 

increasing total H3K4me2 levels. Notably, I have established a potential role of 

H3T6 phosphorylation in ERα regulation. Because H3T6ph inhibits demethylation 

of H3K4me1/2 by LSD1, as well as recognition of H3K4me0 by BHC80 and AIRE, 

I demonstrated here that this histone mark interferes TRIM24 and RBP2 from 

recognizing H3K4me0. I also showed that dephosphorylation of H3T6 is essential 

for estrogen-induced transcription activation of GREB1 and PR, which likely 

influences a number of readers and histone demethylases to mediate 

transcription regulation.  

In the second part, I furthered my study of LSD1 and TRIM24 into the 

cooperative biological functions. I demonstrated that TRIM24 is highly enriched 

and binds to GREB1 and PR during G2/M transition of the cell cycle. Consistent 

with previous findings that poor survival of breast cancer patients associate with 

high TRIM24 level, I showed that MCF7 cells respond significantly affected by 

inhibition of LSD1 enzymatic activity by TCP when TRIM24 is depleted. 

Treatment with 4-OHT further reduces the survival and proliferation in shTRIM24 

MCF7 cells treated with TCP. Taken together, LSD1 and TRIM24 function 

additively to regulate survival and proliferation of MCF7s, but the underlying 

mechanism is not solely dependent on ERα activation. My findings also 

suggested that TRIM24 level may determine responsiveness to LSD1 inhibitors.  



 159 

Collectively, this dissertation demonstrated that function of TRIM24 is 

dependent on at least two histone modifications, unmethylated H3K4me2 and 

dephosphorylated H3T6. I also revealed the dynamic H3K4 methylation profile 

upon estrogen treatment, suggesting that several other H3K4-specific writers, 

readers, and erasers may be involved in mediating estrogen response. This work 

also emphasizes a highly time-dependent binding of LSD1 and TRIM24 to EREs 

upon estrogen. Importantly, inhibition of LSD1 and depletion of TRIM24 also 

have additive effects in inhibiting survival and proliferation in MCF7 cells. Taken 

together, this work supported the “histone code” hypothesis and provided 

important knowledge in how histone PTMs translate into gene transcription 

through a reader (TRIM24) and an eraser (LSD1). This project established the 

fundamental framework for future investigation of the roles of LSD1 and TRIM24 

in the mouse models. 
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