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Objective: Human defensins and cathelicidins are a family of cationic antimicrobial
peptides (AMPs), which play multiple roles in both innate and adaptive immune sys-
tems. They have direct antimicrobial activity against several microorganisms including
burn pathogens. The majority of components of innate and adaptive immunity either
express naturally occurring defensins or are otherwise chemoattracted or functionally
affected by them. They also enhance adaptive immunity and wound healing and alter
antibody production. All mechanisms to explain multiple functions of AMPs are not
clearly understood. Prior studies to localize defensins in normal and burned skin using
deconvolution fluorescence scanning microscopy indicate localization of defensins in
the nucleus, perinuclear regions, and cytoplasm. The objective of this study is to fur-
ther confirm the identification of HBD-1 in the nucleus by deconvolution microscopic
studies involving image reconstruction and wire frame modeling. Results: Our study
demonstrated the presence of intranuclear HBD-1 in keratinocytes throughout the stra-
tum spinosum by costaining with the nuclear probe DAPI. In addition, HBD-1 sequence
does show some homology with known cationic nuclear localization signal sequences.
Conclusion: To our knowledge, this is the first report to localize HBD-1 in the nuclear
region, suggesting a role for this peptide in gene expression and providing new data that
may help determine mechanisms of defensin functions.

Antimicrobial peptides (AMPs), including both defensins and cathelicidins, are part of
the innate immune system, which provides the first line of defense against a wide spectrum
of common burn and wound pathogens.1−5 In the past few years, multiple functions of
AMPs have been identified.6−9 They are chemotactic for neutrophils, monocytes, immature
dendritic cells, memory T cells, and mast cells, and play a role in recruiting them. They
also alter transcriptional responses in macrophages, induce degranulation of mast cells,
and stimulate wound vascularization and re-epithelialization in wound healing, as well
as altering antibody production, thus linking innate and adaptive immunity. In addition,
LL-37, a human cathelicidin, possesses the ability to bind and neutralize gram-negative
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lipopolysaccharide (LPS), decrease nitric oxide/inducible nitric oxide synthase (NO/iNOS)
production, and reduce septic shock.10 The mechanisms by which AMPs are able to exhibit
such multiple functions are not fully understood.

Human defensins are cationic antimicrobial peptides with molecular weights of 4 to
5 kDa, containing a conserved motif of 6 cysteines linked by 3 disulfide bonds. On the
basis of their size and pattern of disulfide bonding, human defensins are classified into
α and β categories, and are expressed in various cell types.11−20 Out of 6 α-defensins,
human neutrophils express 4 of them, viz, human neutrophil peptides (HNP1-4), whereas
the other 2 α-defensins (HD-5 and HD-6) are abundantly expressed in Paneth cells of the
small intestine and epithelial cells of the female urogenital tract. The human β-defensins
(HBDs; HBD-1-4) are widely expressed in epithelial cells of multiple organs including
skin. The β-defensins are less abundant, and their production by epithelial cells is subject
to regulation by a variety of inflammatory and microbial stimuli.11−20

In our previous work, we have localized AMPs in burned and normal skin to spe-
cific cell types and areas of the epidermis and dermis, using deconvolution fluorescence
microscopy.21,22 During these current studies, we observed evidence of an intranuclear lo-
calization of HBD-1. A recent study conducted by Bandholtz et al23 demonstrated uptake
of LL-37 by monocyte-derived dendritic cells and subsequent localization to both cytoplas-
mic and nuclear elements. Also, LL-37 was shown to mediate uptake of DNA plasmids
into cytoplasmic and nuclear location of mammalian cells.24 Since LL-37 and HBD-1 share
some similar properties, we have extended our work in the current study to focus on nuclear
localizations of HBD-1 in normal skin. This new finding may have implications in gene
expression and shed light on the multiple roles of defensins.

MATERIALS AND METHODS

Patients admitted to the Regional Burn Center at Memorial Medical Center, Springfield,
IL, or the Johns Hopkins Burn Center with 10% to 40% total body surface area burns
were included in the study. Normal skin samples were obtained from remnants of split
thickness skin autografts harvested during skin grafting procedures and were frozen in
sucrose-based embedding media (O.C.T. Compound Tissue-Tek, Torrance, Calif). Ten-
micrometer sections were cut in a microtome, floated onto 18-mm glass cover slips that had
been coated with poly-L-lysine, and fixed with 3.7% paraformaldehyde. This was followed
by 60-min incubation in goat serum and staining with appropriate probes and antibodies as
previously described.22

Deconvolution Microscopy

The stained sections were placed under Elvanol (an antifade, DuPont), and covered with a
cover slip. The samples were scanned with an Applied Precision Delta Vision Scanning Mi-
croscope (Issaquah, Wash), fitted with an Olympus 1×70 microscope (Olympus America,
Melville, NY). Image scans were acquired in a series at a step-size thickness of 0.2 µm by a
Photometries (Tucson, Ariz) PXL CCD camera. Image analysis was performed by transfer-
ring each data set to a Silicon Graphics workstation using SoftWoRxTM software (Applied
Precision, Issaquah, Wash). All data sets were subjected to 5 deconvolution iterations and
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Figure 1. Localization of HBD-1 in normal skin by deconvolu-
tion fluorescence microscopy. HBD-1 was found homogeneous
throughout the epidermis, in the nuclei of keratinocytes. (magni-
fication bar = 50 µm; blue = DAPI (nuclei), green = actin, and
red = texas red tagged peptide antibody.)

subsequently used for image reconstructions and modeling. Stacking each of the individual
sections produces a 3-dimensional (3D) image on a 2-dimensional background, resulting
in an image projection.22 Wire framing of the images is carried out as described previously
to identify distinct colors of defined wavelength patterns for HBD-1 and DAPI.25

RESULTS

The Figure 1 illustrates localization of HBD-1 in normal skin in which its presence was
found homogeneously throughout the epidermis, contained in keratinocytes. By using the
fluorescent nuclear probe DAPI, we noticed that HBD-1 appeared to be colocalized with the
nuclei so; to further characterize this apparent nuclear, we stacked multiple deconvoluted
(5 iterations) to generate an image representing some thickness of skin, and then modeled
these stacked renditions to produce a 3D model that permitted rotation (Fig 2).

The extraction of a number of cells and nuclei from these 3D models and the application
of fish-net mapping permitted us to visualize specific probes as distinct areas with no color-
mixing (colocalization) and single color/channel imaging. It is apparent (Fig 2) that the red
HBD-1 is within the nucleus, being encompassed by the blue of the DAPI. This finding is
further confirmed in Figure 3, using a wire frame procedure, splitting the images into the
2-component probe channels, and applying color assignments.

We attempted to detect nuclear targeting sequences in HBD-1. This was achieved
using a database search engine (http://walnut.bioc.columbia.edu/srs71bin/cgi-bin/wgetz).
HBD-1 show some homology with the nuclear targeting sequences (KRX(10-12)KRRK)
of the known nuclear translocation proteins, monopartite and bipartite (Figure 4). This may
indicate that defensins may be transported into the nucleus, possibly through the nuclear
pore.

DISCUSSION

This study demonstrates nuclear localization of HBD-1. Considering that both defensins
and cathelicidins display multiple functions, we hope that current findings may help explain
mechanisms for some of these functions. AMPs are able to differentially recognize and dis-
rupt negatively charged bacterial cell membranes,1−4 while also being able to recruit many
components of the innate and adaptive immune systems such as macrophages, neutrophils,
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Figure 2. Deconvoluted, 3-dimensional rendition of multiple-stacked acquisitions of HBD-1 in the
epidermis. A nucleus from the volume rendered image is then extracted and wire framed, allowing
visualization of the HBD-1 within the nucleus, shown at a high magnification in the final panel
(magnification × 4000).

antigen presenting dendritic cells, NK-cells, and T- and B-cells, by chemo attraction.6−8 It
has been shown that the mechanisms of chemo-attraction and direct killing are independent
of each other,9 the upregulation or release of AMPs by other cells at the site of injury
helping recruit other innate immune components, while some components of both innate
and adaptive immunity also produce defensins and cathelicidins. AMPs are implicated in
wound healing, angiogenesis, gene expression, cell differentiation and migration, antigen
presentation, and antibody production. AMPs affect intracellular signaling by diverse kinase
pathways, alter chemokine and chemokine receptor gene expression, and also mediate and
modulate cytokine release.26−33 Even though some of the mechanisms for these multiple
functions have already been defined, we still need to know the other pathways involved
in the actions of AMPs, and future studies may reveal these mechanisms, particularly as
defensins have been shown to alter the expression of cytokines through an, as yet, undefined
pathway.

Currently, there are 2 AMPs which have been localized to the nucleus, this study
localizing HBD-1 in the nucleus of keratinocytes in skin, and the recent study by Bandholtz
et al,23 localizing the LL-37 to the nuclei of monocyte-derived dendritic cells (MDDC). LL-
37 also promotes nuclear transport of plasmid DNA in mammalian cells,24 and so taking
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Figure 3. Three-dimensional volume rendition to demonstrate
the 2-color channels (DAPI and Texas Red), and show intranuclear
localization of HBD-1. The blue of the nucleus overlying the
red of the antimicrobial peptide further confirms the intranuclear
localization of HBD-1.

these findings together, it is reasonable to hypothesize that AMPs enter the nucleus, possibly
playing a role in the modulation of gene expression and/or protein synthesis.

The mechanism by which AMPs enter the nucleus has not been studied and is subject
to speculation, although several possibilities exist. In eukaryotic cells, signal-mediated
macromolecular transport between the nucleus and the cytoplasm is an integral part of
many processes, such as gene expression, signal transduction, and cell-cycle progression.
Even though molecules can enter the nucleus of actively dividing cells through nuclear
membrane breaks during mitosis, the only portal of entry into the nucleus of nondividing
cells is the nuclear pore complex (NPC). NPCs allow passive exchange of ions, small
molecules, and small proteins (<20 kDa), but restrict the passage of macromolecules to
only those bearing appropriate nuclear localizing signal (NLS). Considering the small size
of AMPs (4–5 kDa for defensins), the question arises as to whether NPCs do allow the
passive transport of AMPs into the nucleus.

Figure 4. The sequences of HBD-1 is compared with nuclear targeting sequences of monopartite and
bipartite proteins which is known to contain reported nuclear targeting sequence (KRx(10-12)KRRK).
Yellow color indicates homology.
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Another mechanism by which AMPs could enter the nucleus is based on AMP cationic
sequence, a sequence that could constitute a nuclear localization and recognition signal and
promote nuclear transportation. The directional transport of thousands of proteins and RNAs
through the NPC in the course of normal cellular metabolism is mediated by a family of more
than 20 proteins, the karyopherins.34−37 The import of proteins carrying a cationic NLS
involves an adaptor protein karyopherin-α (Kapα), which in turn binds to karyopherin-β and
interacts with the NPC for translocation into the nucleus. Karyopherin-β can also directly
bind proteins for nuclear import. The sequence motifs for direct karyopherin-β translocation
are not well defined, and are not necessarily cationic. HBD-1 shares some homology with
known nuclear translocation signals of cationic monopartite and bipartite molecules. Kapα

recognizes a variety of classical NLSs, such as the basic monopartite SV40 T antigen
NLS (PKKKRKV), the more hydrophobic monopartite c-Myc NLS (PAAKRVKLD) and
the bipartite nucleoplasmin NLS (VKRPAATKKAGQAKKKKLD).38 Although lacking a
specific consensus sequence, the classical NLSs contain either 1 or 2 clusters of basic
residues.

Polymers of basic amino acids [i.e poly (Lys)16 and poly (Arg)16] promote translocation
of plasmid DNA into the nucleus. Many cationic peptides, other than those known to func-
tion as nuclear localizing motifs, appear to have a nuclear translocation ability regarding
DNA plasmids. The ability of LL-37 to deliver plasmid DNA into mammalian cells has been
demonstared.24 The physiologically relevant concentrations of LL-37, widely expressed in
bone marrow and epithelial cells, protects plasmid DNA against serum nuclease degradation
and efficiently targets DNA to the nuclear compartment of mammalian cells. Furthermore,
mechanistic data indicate that LL-37-DNA complexes enter mammalian cells via endocy-
tosis that involves noncaveolar lipid raft domains, as well as cell surface peptidoglycon.24

Currently, however, there have been no data demonstrating the ability of HBD-1 and other
defensins to deliver plasmid DNAs.

One possible functional importance of nuclear localization of AMPs may be coupled
to affecting gene expression.26 Even though there is no direct link that HBD-1 participates
in gene expression, sufficient evidence exists to demonstrate that other AMPs, for example,
HBD 2-4 and LL-37, alter gene expression. It has now been clearly demonstrated that AMPs
alter antibody production in response to exposure to antigen.6−8 LL-37 triggers a transfor-
mation from monocytes to MDDC, which involves alteration in gene expression. It has also
been reported that immature MDDCs (iMDDC) take up LL-37, which is predominantly
localized not only to cytoplasmic locales but also to some extent to the nucleus. LL-37
also alters MDDC phenotype with increased expression of the antigen-presenting molecule
HLA-DR and the costimulatory molecule CD86.34 MDDCs is known to express HBD-1. As
it is known that AMPs acts as an adjuvant, it is quite reasonable to hypothesize that AMPs
could influence gene expression responsible for overall alteration of antibody patterns. It is
also interesting to note that B-cells are a site of defensin production and are chemo attracted
by AMPs.35 Previous suggestions have been made that the action of AMP may be similar
to that of lactoferrin, that has been shown to undergo translocation into lymphocyte nuclei,
in order to bind DNA and activate transcription.37,41 In addition, these AMPs could alter
gene expression indirectly, without getting translocated to nucleus by other mechanisms
involving cell surface receptor binding.

In summary, our observation, when taken together with other previously reported
findings of the actions and mechanisms of AMPs, suggest possibilities for new roles for
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AMPs in the modulation of gene expression and/or protein synthesis. Further studies are
required to elucidate these possibilities.
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