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in the yeast Saccharomyces cerevisiae 
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Supervisory Professor: Kevin A. Morano, Ph.D. 

 

Cells govern their activities and modulate their interactions with the environment 

to achieve homeostasis. The heat shock response (HSR) is one of the most well studied 

fundamental cellular responses to environmental and physiological challenges, resulting 

in rapid synthesis of heat shock proteins (HSPs), which serve to protect cellular 

constituents from the deleterious effects of stress. In addition to its role in cytoprotection, 

the HSR also influences lifespan and is associated with a variety of human diseases 

including cancer, aging and neurodegenerative disorders. In most eukaryotes, the HSR is 

primarily mediated by the highly conserved transcription factor HSF1, which recognizes 

target hsp genes by binding to heat shock elements (HSEs) in their promoters. In recent 

years, significant efforts have been made to identify small molecules as potential 

pharmacological activators of HSF1 that could be used for therapeutic benefit in the 

treatment of human diseases relevant to protein conformation. However, the detailed 

mechanisms through which these molecules drive HSR activation remain unclear. 

In this work, I utilized the baker's yeast Saccharomyces cerevisiae as a model 

system to identify a group of thiol-reactive molecules including oxidants, transition 

metals and metalloids, and electrophiles, as potent activators of yeast Hsf1. Using an 

artificial HSE-lacZ reporter and the glucocorticoid receptor system (GR), these diverse 
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thiol-reactive compounds are shown to activate Hsf1 and inhibit Hsp90 chaperone 

complex activity in a reciprocal, dose-dependent manner. To further understand whether 

cells sense these reactive compounds through accumulation of unfolded proteins, the 

proline analog azetidine-2-carboxylic acid (AZC) and protein cross-linker 

dithiobis(succinimidyl propionate) (DSP) were used to force misfolding of nascent 

polypeptides and existing cytosolic proteins, respectively. Both unfolding reagents 

display kinetic HSP induction profiles dissimilar to those generated by thiol-reactive 

compounds. Moreover, AZC treatment leads to significant cytotoxicity, which is not 

observed in the presence of the thiol-reactive compounds at the concentrations sufficient 

to induce Hsf1. Additionally, DSP treatment has little to no effect on Hsp90 functions. 

Together with the ultracentrifugation analysis of cell lysates that detected no insoluble 

protein aggregates, my data suggest that at concentrations sufficient to induce Hsf1, thiol-

reactive compounds do not induce the HSR via a mechanism based on accumulation of 

unfolded cytosolic proteins. Another possibility is that thiol-reactive compounds may 

influence aspects of the protein quality control system such as the ubiquitin-proteasome 

system (UPS). To address this hypothesis, β-galactosidase reporter fusions were used as 

model substrates to demonstrate that thiol-reactive compounds do not inhibit ubiquitin 

activating enzymes (E1) or proteasome activity. Therefore, thiol-reactive compounds do 

not activate the HSR by inhibiting UPS-dependent protein degradation. 

 I therefore hypothesized that these molecules may directly inactivate protein 

chaperones, known as repressors of Hsf1. To address this possibility, a thiol-reactive 

biotin probe was used to demonstrate in vitro that the yeast cytosolic Hsp70 Ssa1, which 

partners with Hsp90 to repress Hsf1, is specifically modified. Strikingly, mutation of 



 vi 

 

conserved cysteine residues in Ssa1 renders cells insensitive to Hsf1 activation by 

cadmium and celastrol but not by heat shock. Conversely, substitution with the sulfinic 

acid and steric bulk mimic aspartic acid led to constitutive activation of Hsf1. Cysteine 

303, located in the nucleotide-binding/ATPase domain of Ssa1, was shown to be 

modified in vivo by a model organic electrophile using Click chemistry technology, 

verifying that Ssa1 is a direct target for thiol-reactive compounds through adduct 

formation. Consistently, cadmium pretreatment promoted cells thermotolerance, which is 

abolished in cells carrying SSA1 cysteine mutant alleles. Taken together, these findings 

demonstrate that Hsp70 acts as a sensor to induce the cytoprotective heat shock response 

in response to environmental or endogenously produced thiol-reactive molecules and can 

discriminate between two distinct environmental stressors.  
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Chapter 1:  Introduction to cellular stress response and molecular chaperones in   

the yeast Saccharomyces cerevisiae 
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INTRODUCTION AND BACKGROUND 

Cellular stress response to unfavorable environmental conditions 

The natural environment is not static, and most biological processes strive to 

maintain “homeostasis”, an ideal steady state that is optimal for all organisms to survive. 

However, a wide range of physiological and environmental stimuli continuously disrupt 

equilibrium, making the present living condition in constant flux wavering about a 

homeostatic point. These unfavorable stimuli such as heat, oxidative and osmotic stress 

and starvation, change the intracellular environments, inhibit cell growth and 

development, and can eventually lead to cell death. To restore homeostasis under 

unfavorable conditions, organisms have developed various sophisticated stress response 

mechanisms at both cellular and tissue-specific levels. The stress responses elicited by 

cells dictate that the organism adapts, survives, or if beyond repair, undergoes cell death. 

Response to acute stress is generally transient, including regulations of selective gene 

expression at both transcriptional and translational levels. Well-studied examples of 

adaptive and cytoprotective molecules include the inducible heat shock proteins (HSPs) 

that confer thermal stress protection on cells, and glutathione (GSH) in oxidative 

stress/antioxidant response. 

 The fundamental cellular stress program activated in response to a significant 

increase of temperature is known as the heat shock response (HSR). The goal of the HSR 

is to rapidly synthesize heat shock proteins (HSPs) during stress conditions, thus 

preventing aggregation of damaged proteins. This heat shock gene expression pattern is 

highly consistent throughout evolution, and is primarily governed by the heat shock 

transcription factor (HSF) in all eukaryotes (1).  In the baker's yeast Saccharomyces 
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cerevisiae, a second pathway, modulated by two highly related and partially redundant 

zinc-finger transcription factors Msn2 and Msn4, also responds to the elevated 

temperature (2). Microarray analysis using conditional and knockout mutants of the 

HSF1, MSN2, and MSN4 genes suggest that the Msn2/4 regulon is broader than that of 

Hsf1 and includes genes involved in metabolism, oxidative stress, and growth control (3) .  

Therefore, the gene expression program regulated by Msn2/4 is called the "general stress 

response" or "environmental stress response" (ESR). 

 In addition to the ESR, recent studies suggest that the HSR is also tightly linked to 

oxidative stress. Mutants deficient in catalase, superoxidase dismutase (SOD), and 

cytochrome c peroxidase are hypersensitive to heat exposure (4).  In S. cerevisiae, 

increased levels of hydrogen peroxide were detected in cells treated at 43 ˚C for two 

hours (5). These results indicate that oxidative stress results subsequently from the 

primary heat stress. Furthermore, many noxious oxidative stressors have been shown to 

function as Hsf1 modulators. For example, superoxide anion selectively upregulates 

Hsf1-mediated transcription of the metallothionein gene (CUP1) by enhancing DNA-

binding activity of the transcription factor (6, 7). Our lab recently demonstrated that 

celastrol, an active component from Chinese medicine, acts as an activator of both Hsf1 

and Yap1 in yeast (8). However, the detailed mechanism behind the coordination of the 

heat shock and oxidative stress responses remains unclear. For this reason, I have used 

the model organism, S. cerevisiae to understand the cross-protection between the heat 

shock and oxidative stress responses. Further, I specifically investigated the precise 

mechanism through which diverse thiol-reactive compounds activate the heat shock 

transcription factor Hsf1. 
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The heat shock response in yeast 

The heat shock response (HSR) is the predominant response of almost all 

organisms to the ambient temperature (9, 10). It results in immediate changes in 

transcriptional activation of heat shock proteins (HSPs), proteases and other proteins 

essential for protection and recovery from cellular damage. In the yeast S. cerevisiae, the 

optimal growth temperature is between 25 ˚C and 30 ˚C. Although the upper temperature 

limit for most laboratory strains is about 41 °C, S. cerevisiae is unable to withstand 

chronic exposure to higher temperature (11). Therefore, shift from 30 ˚C to 37 ˚C is 

defined as “classic heat shock” in investigation of the HSR induction in yeast (3). In all 

eukaryotes, the heat shock transcription factor (HSF) family is the major regulator of the 

HSR. HSF activates transcription of hsp genes in response to heat shock by recognizing 

and binding to arrays of a five base pair heat shock element (HSE), nGAAn, in the 

promoters of target genes (12).  When the HSR is induced, mRNA levels of hsp genes 

increase dramatically within 2-5 min, resulting in a quick burst of synthesis of HSPs (13, 

14). Under stress conditions, HSPs such as HSP70 are able to hold and refold denatured 

proteins, preventing them from aggregation and degradation. In other cases, HSPs such as 

HSP90 are central to signal transduction, immunity and apoptosis (15-19). Modulation of 

the HSR, therefore, may be directly beneficial for treatment of a variety of human 

diseases including those associated with cell growth, such as cancer, and those coupled 

with damaged and misfolded proteins, such as the neurodegenerative diseases. The 

benefits of using chaperones and Hsf1 as potential therapeutic targets will be discussed in 

more detail in Chapter 3. 
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Importantly, in S. cerevisiae, a parallel pathway represented by the MSN2 and 

MSN4 (multicopy suppressor of snf1) genes also responds to heat shock, as well as 

diverse stress conditions (20). The regulatory element of this “general” stress pathway 

was originally indentified as an Hsf1-independent control element in the promoters of the 

DNA damage responsive gene DDR2 (21) and the nutrient stress responsive gene CTT1 

(22). This element, designated stress responsive element (STRE), contains a five base 

pair sequence functional in both orientations (CCCCT or AGGGG). Most hsp genes are 

regulated exclusively by HSF and contain one or more sets of HSE in their promoters. 

However, a variety of hsp genes such as Hsp26 and Hsp104 also include STRE repeats in 

their promoter regions, suggesting the potential overlapping between the heat shock and 

general stress responses (23, 24). 

 

The heat shock transcription factor Hsf1 

Vertebrates and plants have evolved four distinct HSF isoforms, i.e. HSF1-4. 

HSF1 is the primary mediator of the HSR upon stress stimulation (25, 26). HSF2 and 

HSF4 are mainly involved in development and differentiation-related gene expression 

(27-32). Interestingly, recent studies suggest that both HSF2 and HSF4 contribute to 

inducible expression of select hsp genes by functionally interacting with HSF1 (33, 34). 

HSF3 is specifically found in avian species. However, the roles of HSF3 remain unclear 

(35). Yeast, invertebrates, nematodes and fruit flies, only express a single, essential HSF 

equivalent to mammalian HSF1 (34). First reported in 1988, yeast HSF1 encodes an 833 

amino acid protein with a mass of 93,218 daltons (36, 37). Hsf1 is functionally divided 

into three domains: a DNA-binding domain at N-terminus (DBD), three leucine zipper 
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repeats (LZ) responsible for trimerization of the factor adjacent to the DNA-binding 

domain, and two regulatory domains at both N- and C-terminus (NTA and CTA, 

respectively) (Figure 1-1). 

 The DNA-binding domain (DBD) is the only functional domain of HSF1 for 

which detailed structural data are available, and is the most conserved region within the 

HSF family. The yeast DBD belongs to the 'winged' helix-turn-helix (wHTH) family of 

DNA-binding proteins. Like other members of the wHTH family, it recognizes target 

genes by the second helix of the helix-turn-helix motif, called helix α3 (38, 39).  

In addition to the DNA-binding domain, the oligomerization domain is another 

highly conserved region among all identified HSF genes (40, 41). The 91 amino acids 

located in the center of S. cerevisiae HSF1 form a homotrimer via a triple-stranded coiled 

coil (42). Circular dichroism (CD) spectroscopy studies demonstrated that this domain 

contains high α-helical content and  is divided into two subdomains, each containing an 

amphiphilic helix with the hydrophobic heptad repeats HR-A and HR-B (42, 43). In the 

trimeric HSF1 complex, the HR-A and HR-B possibly form an anti-parallel and highly 

elongated structure. Therefore, the oligomerization domain is also called the leucine 

zipper domain (LZ). Since cells require three HSE repeats for activity in vivo, 

trimerization of Hsf1 might increase the affinity of DNA binding and stabilize the 

protein-DNA interaction (44).  It is also possible that trimerization could be involved in 

regulation of HSF1 activity in higher eukaryotes. In Vertebrate and Drosophila cells, 

inactive Hsf1 is maintained in the cytoplasm as a monomer (45, 46). Elevated 

temperature and other Hsf1-activating stresses such as heavy metal and oxidant cause the  
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Figure 1-1. Schematic illustration of Hsf1 from Saccharomyces cerevisiae  

NTA, amino-terminal activation domain; DBD, DNA binding domain; LZ, leucine zipper 

trimerization domain; CE2, control element 2; CTA, carboxyl-terminal activation 

domain. The serine-rich region involved in transcriptional regulation is indicated by the 

sequence "SMSSSSS". 

 

 

 

  



 8 

 

Figure 1-1. Schematic illustration of Hsf1 from Saccharomyces cerevisiae 
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trimerization of HSF1 to facilitate DNA binding (47). However, this step of activation is 

not universal.  In yeasts such as S. cerevisiae and Kluyveromyces lactis, Hsf1 appears to 

constitutively bind DNA as a trimer (48-50).  

In most eukaryotes, HSF1 contains a single transactivation domain. However, in S. 

cerevisiae and its closely related yeast K.lactis, there are two distinct transcription activation 

domains at both N-terminus and C-terminus (51).  The N-terminal transactivation domain 

(NTA) is found within the first 170 amino acids (52, 53). The C-terminal transactivation 

domain (CTA) is located between residues 595 and 783 (51). Studies of a synthetic HSE-

lacZ reporter suggest that although both transactivation domains are strong activators, the 

two transactivation domains respond differently to the thermal stress. The NTA appears 

to mediate "transient" activation of Hsf1; while the CTA is required for "sustained" 

activity. Deletion of either N- or C-terminal transactivation domain does not affect cell 

growth under normal growth conditions (52, 53). However, elimination of the CTA, but 

not the NTA, leads to a temperature-sensitive phenotype and arrest of cell cycle in both 

G1/S and G2/M phases due to depletion of Hsp90 at 37 °C (53, 54).  Truncated NTA 

(residues 1-147 or 40-147) leads to constitutive activation of HSF1 in the absence of 

stress (53, 55). High resolution mapping of the CTA found that point mutations that 

abolish activation of the heat shock response result in temperature sensitive growth of 

cells at higher temperature (51). These observations suggest that the NTA functions as a 

negative regulator by masking the CTA, and that the CTA is not sufficient for Hsf1 

activation during stress. Furthermore, the CTA is required for heat- or glucose starvation 

induced activation of the yeast methallothionein gene, CUP1, but is dispensable for 

transient heat shock induction of Hsp104 and the yeast Hsp70 homologues SSA1 and 
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SSA3 (23, 56, 57). Therefore, the presence of two distinct transactivation domains in 

yeast may provide additional levels of regulation or selection in gene activations. 

Hsf1 recognizes target hsp genes by inverted repeats of the sequence nGAAn unit, 

called heat shock transcription elements (HSEs), in their promoters. The perfect-type 

HSE consists of three continuous inverted repeats of the unit (nTTCnnGAAnnTTCn). 

The discontinous gap-type [nTTCnnGAAn(5bp)nGAAn] or step-type 

[nTTCn(5bp)nTTCn(5bp)nTTCn] HSE contains one or two insertions between the 

consensus seuqence (58-60). Human HSF1 preferentially binds to continuous HSEs 

rather than discontinuous HSEs. Yeast Hsf1, by contrast, recognizes both continuous and 

discontinuous repeats of the nGAAn unit (59). This observation is consistent with the fact 

that vertebrates have four HSFs for diverse cellular processes; while yeast cells only 

carry one single Hsf1 for constitutive growth and survival in stresses.  The active binding 

form of yeast Hsf1 with hsp genes is a homotrimer (50). Although each nGAAn unit in 

an HSE is a recognition site for a single Hsf1 monomer, a minimum of three pentameric 

units is required for stable binding in vitro (61). Some hsp genes contain four to six 

contiguous units to contact with two Hsf1 trimers, and seven to eight units with three 

trimers. The cooperative binding between yeast Hsf1 trimers is not as significant as that 

of vertebrates HSF1. A single yeast Hsf1 trimer is sufficient to activate transcription, and 

thus, the additional nGAAn units in the natural HSEs possibly function to increase the 

stability of the Hsf1-DNA interaction (62). 

 

Activation of the heat shock transcription factor Hsf1 
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The stress-dependent conversion of HSF1 into its active form suggests that HSF1 is 

negatively regulated under normal conditions (63, 64). Upon activation, mammalian 

HSF1 undergoes a multi-step process including nuclear localization, trimerization, DNA-

binding activity, hyper-phosphorylation, and obtaining of transcriptional activity (Figure 

1-2A) (65). Monomeric HSF1 is thought to be stabilized by cytosolic HSPs, including 

HSP40, HSP70 and HSP90, under normal growth temperature. During heat shock, 

accumulated unfolded proteins may titrate HSPs away from HSF1 and lead to relief of 

HSF1 repression (1, 66-71). However, it is not clear whether it is the accumulation of 

existing proteins, newly synthesized proteins, or both that trigger HSF1 activation. Once 

dissociated from the inhibitory complex, HSF1 trimerizes and acquires DNA binding 

ability spontaneously, resulting in the increase amount of HSPs in the stressed cells (49, 

61, 72). After sufficient amount of HSPs are synthesized to bind all unfolded proteins, the 

negative regulatory chaperone proteins are theorized to bind to HSF1 trimers, causing 

them to dissociate and revert to the inactive, monomeric state (73, 74). The HSPs 

themselves, thus, are proposed to regulate the heat shock gene expression via an 

autoregulatory loop (45, 64, 66). Interestingly, the behavior of S. cerevisiae Hsf1 is very 

similar to its mammalian homologue, except yeast Hsf1 constitutively binds to DNA as a 

trimer. Substantial genetic data suggests that under basal conditions, trimerized yeast 

Hsf1 is likely to be repressed by HSPs including Hsp70, Hsp90 and their co-chaperones 

(Figure 1-2B) (49, 75-78). This characteristic makes S. cerevisiae a suitable simplified 

model to study chaperone regulation of Hsf1 activation.  
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Figure 1-2. Multistep models of Hsf1 activation in mammalian and yeast cells. 

A. In mammalian cells, HSF1 binds to chaperone proteins and exists primarily as an 

inactive monomer in the cytoplasm. Upon exposure to protein-damaging stresses 

(e.g., heat shock), HSF1 dissociates from various negative regulators (including 

Hsp70 and Hsp90), trimerizes and migrates into the nucleus. The trimeric HSF1 

undergoes post-translational modification (e.g., P, phosphorylation) and acquires 

DNA binding ability, resulting in upregulation of hsp gene expression. 

B. In yeast cells, Hsf1 constitutively binds to the HSE in the promoter of hsp genes as a 

trimer during both normal and stress conditions. Chaperone proteins including Hsp70 

and Hsp90 are thought to associate with Hsf1 in the absence of stress and repress 

Hsf1 transcription activation. During stress conditions, chaperones may be recruited 

away from Hsf1 by accumulated misfolded proteins, allowing activation of Hsf1. 
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Figure 1-2. Multistep models of Hsf1 activation in mammalian and yeast cells. 

 

A.   Mammal 

 
 

 

B.  Yeast 
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Molecular chaperones of the cytoplasm  

(i) HSP70 and co-chaperones - The HSP70s are a family of multifunctional stress 

proteins involved in protein translocation, folding, assembly and degradation (79). A 

variety of stressors such as heat and heavy metals induce the expression of HSP70s. The 

HSP70s have three major functional domains: a 44 kDa N-terminal nucleotide-binding 

domain (NBD), an 18 kDa C-terminal substrate-binding domain (SBD), and a 10 kDa C-

terminal domain (CTD) which forms a lid-like structure in the substrate-binding pocket to 

help trap substrates bound to the SBD (80-83).  Hsp70-dependent folding activity occurs 

by repeating cycles of binding and release of substrates at the expenditure of ATP. In the 

ATP-bound state, HSP70 has low substrate binding affinity and a fast exchange rate. 

ATP hydrolysis induces conformational changes in the NBD, leading to structural 

changes in the SBD and CTD that increase substrate-binding affinity. Subsequently, the 

release of ADP and rebinding of ATP restores HSP70 to the low affinity state allowing 

the folded or partially folded substrate to release and the cycle to repeat (Figure 1-3).  

In S. cerevisiae, the cytosolic HSP70, include the Ssa and Ssb families and the 

atypical Ssz1 (stress seventy A, B, Z) (84, 85). The essential Ssa subfamily contains four 

members. Ssa1 and Ssa2 are constitutively expressed; while Ssa3 and Ssa4 are heat-

induced (86). Ssa has been shown to be required for the folding and membrane 

translocation of nascent peptides, nuclear import, microtubule formation and the 

transcriptional response to heat shock (87-91). The Ssb1 and Ssb2 isoforms are 

associated with ribosomes and function in binding nascent peptides during translation  
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Figure 1-3. The yeast Hsp70 chaperone cycle 

Hsp70 in the ATP-bound form adopts an open conformation which has low affinity for 

substrates. Hsp40 promotes substrate binding by catalyzing Hsp70 ATP hydrolysis. The 

ADP-bound Hsp70 has high affinity for substrates. Bound substrate is subsequently 

released after a nucleotide exchange factor (NEF) replaces ADP with ATP. 
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Figure 1-3. The yeast Hsp70 chaperone cycle  
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elongation (75, 92). The Ssb subfamily is not essential, but deletion of both genes leads to 

a cold-sensitive phenotype (75).    

HSP70 itself is characterized as a weak ATPase. The slow rate of ATP hydrolysis 

and release of ADP limits the rate of HSP70 reaction cycle, but it also provides key 

regulatory points for fine tuning HSP70 activities by diverse co-chaperones. Two major 

classes of co-chaperones assist the HSP70 cycle by interacting with its NBD: the HSP40 

co-chaperones and the nucleotide exchange factors (NEFs). The Hsp40 co-chaperone 

family, or “J proteins”, are defined by a conserved four-helix bundle of about 70 amino 

acids (93-95). As a co-chaperone, HSP40 interacts with the NBD and CTD of HSP70, as 

well as the substrate proteins. The binding of HSP40 to HSP70 assists the transfer of 

substrate to the SBD of HSP70 and accelerates its ATP hydrolysis (96-98).  The NEFs, 

unlike J proteins, are a group of proteins with completely unrelated structures. The major 

functions of NEFs are to enhance the slow intrinsic release of ADP by HSP70, and 

subsequently reset the HSP70 reaction cycle (99, 100). S. cerevisiae has four major NEFs 

in cytoplasm, i.e. Sse1, Sse2, Fes1 and Snl1 (101-106). A detailed investigation of the 

shared and unique roles of these cytosolic NEFs is underway in our laboratory (J. Abrams, 

J. Verghese, unpublished data).  

 Although S. cerevisiae possesses at least 14 HSP70-like genes, only cytosolic Ssa 

subfamily members have been found to operate within the HSP90 complex (107-109). 

The understanding of HSP70 functions in HSP90 signal transduction has been limited 

due to the complexities of gene redundancy. Like HSP90, HSP70 has emerged as an 

attractive target for human diseases relevant to protein conformation. As a major foldase 

in the cell, HSP70 ensures rapid response of cells to acute stress. This ability of 
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cytoprotection extends to pathophysiology and severe trauma in heart and brain, 

suggesting the therapeutic benefits of HSR activation in the treatment of various tissue 

trauma and relevant diseases (110, 111).  Moreover, HSP70 has been implicated in many 

neurodegenerative diseases, including Huntington's and Alzheimer's diseases which are 

shown to associate with accumulation and aggregation of unfolded proteins (112). 

Overexpression of HSP70 in a mouse model of Huntington's disease  suppresses the 

formation and cellular toxicity of protein aggregates and affects disease progression, 

suggesting a preventive role of HSP70 in neurodegenerative diseases (113, 114). 

Additionally, HSP70 also participates in regulation of diverse transcription factors, 

signaling molecules and kinases such as NF-κB and v-Src (115). Thus, tumor cells are 

dependent on elevated levels of HSPs (116). Therefore, HSP70 is also relevant for cancer 

biology due to its important role in tumor cell survival by suppressing various anti-cancer 

mechanisms (19).  

 

(ii) HSP90 and co-chaperones –As one of the most conserved chaperones from 

bacteria to mammals, the HSP90 functions primarily to hold and fold select proteins 

involved in signal transduction, protein trafficking, receptor maturation and innate and 

adaptive immunity (117). These select groups of proteins, whose cellular functions are 

strictly dependent on HSP90, are also called HSP90 “client” proteins. In yeast, the 

HSP90 chaperones exist as two isoforms, encoded by HSC82 and HSP82. Hsc82 and 

Hsp82 share ~97% sequence identity. While Hsc82 is constitutively expressed at high 

levels (1-2% of the total cytosolic protein) and slightly induced by heat shock, Hsp82 is 

strongly induced under extreme conditions (118).  
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 HSP90 family proteins all functions as dimers. Each HSP90 monomer consists of 

a highly conserved N-terminal ATP-binding domain (NTD), a middle substrate-binding 

domain (M domain), and a C-terminal dimerization domain (CTD) (Figure 1-4). Like 

HSP70, HSP90 is also defined as a weak ATPase and binds ATP in the NTD (119). The 

NTD consists of two major functional subdomains: an ATP-binding pocket and a 

conserved molecular “lid”. The ATP-binding site has a α- and β-sandwich motif, which is 

reported as the binding site of a variety of structurally unrelated natural inhibitors such as 

geldenamycin and radicicol (120). The short “lid” comprised by several amino acids 

closes over the ATP-binding pocket in the ATP-bound state, but not in the ADP-bound 

state (121, 122). In the absence of nucleotide, the two NTD in a HSP90 dimer are highly 

flexible. Binding of one ATP on each NTD results in a pincer movement that dimerizes 

the ATP-binding site and holds client proteins for stablization (Figure 1-4A) (123). The 

NTD is attached to the M domain by a charged linker. Structural and functional analyses 

indicate that this region has an important role in client recognition and co-chaperone 

regulation (121, 124). The CTD is responsible for dimerization of HSP90 and binding of 

HSP90 co-chaperones (125, 126). Although the CTD is less conserved in sequence than 

the rest of the protein, it contains five highly conserved C-terminal residues (MEEVD 

motif), which bind tetratricopeptide (TPR) repeats in the co-chaperones (82, 127, 128). 

Like HSP70s, the chaperone activity of HSP90s is also driven by ATPase activity. Recent 

structural studies and mutagenesis suggested that both ATP binding and hydrolysis 

facilitates additional structural rearrangements, which are essential for substrate 

maturation.  In S. cerevisiae, both the open and closed conformations can be found in the 

absence of nucleotide binding (129). When HSP90 binds ATP, the molecular lid folds  
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Figure 1-4. The yeast Hsp90 chaperone cycle 

A. The conformational change of Hsp90 dimer coupled to ATPase cycle. A, ATP; CTD, 

C-terminal ATPase domain; MD, middle substrate binding domain; NTD, N-terminal 

dimerization domain.  

B. The Hsp90 chaperone cycle involved in glucocorticoid receptor (GR) activation. In 

the "early complex", GR is associated with Hsp70 and its-cochaperone Hsp40. The 

scaffold protein Sti1 brings the early complex to Hsp90 and forms the "intermediate 

complex". GR is transferred from Hsp70 to Hsp90 follwed by the release of 

intermediate co-chaperones and binding of late stage cochaperone to form the "late 

complex". Finally, in the presence of ligand, Hsp90 hydrolyzes ATP and releases the 

mature ligand-bound GR and co-chaperones. Alternatively, in the absence of ligand, 

GR will re-enter the cycle.  

Figure 1-4B is generated by Dr. Patrick A. Gibney. 
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Figure 1-4. The yeast Hsp90 chaperone cycle 

A. 

 
 

B. 
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over and locks the nucleotide in the binding pocket, leading to a slow transition to a 

closed state, in which the two monomeric NTDs interact. Dimerization of NTDs leads to 

twisting and compaction of the M domain, as well as activation of ATP hydrolysis. 

Recent studies suggested that hydrolysis of ATP may lead to a second closed state, but 

the detailed structure remains unclear. Finally, release of ADP restores HSP90 to its 

original open state. Importantly, the conformational rearrangements are the rate limiting 

steps of the HSP90 reaction cycle and happen much slower than ATP hydrolysis (130-

138). 

In addition to ATP binding and hydrolysis, HSP90 functions are regulated both 

positively and negatively by many co-chaperones. More than 20 HSP90 co-chaperones 

have been identified. In yeast, co-chaperones with known biological roles include Hsp70 

(in particular, members of Ssa and Ssb subfamilies), Ydj1 (HSP40), Sse1 (HSP110), Sti1 

(HOP), Cdc37 (p50), Sba1 (p23), Aha1, and at least two different cyclophilin 40 

isomerases, Cpr6 and Cpr7 (17, 76, 102, 107, 139-144).  Studies of HSP90 co-chaperones 

suggest that these proteins can modulate HSP90 functions in five distinct ways: 1) they 

coordinate the interaction between HSP90 and other chaperone systems, such as HSP70 

cycle; 2) they enhance the ATPase activity of HSP90, such as AHA1; 3) they inhibit the 

ATPase activity of HSP90, such as Cdc37 and p23; 4) they recruit client proteins to 

HSP90, like HSP40; and 5) they contribute to difference steps of HSP90 chaperone cycle 

as enzymes such as PP5 (117, 144-151).  

 HSP90 alone is not sufficient to refold denatured proteins. Rather, the whole 

Hsp90 complex appears to be adapted to regulatory purposes by displaying a high degree 

of specificity for particular target proteins. These HSP90 “client proteins” include some 
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members of the steroid receptor superfamily (e.g. glucocorticoid and progesterone 

receptors) and some kinases (e.g. p60
v-src

) (152, 153). Recently, many studies described 

the role of Hsp90 complex in the human diseases. For example, HSP90 is up-regulated in 

the choroid plexus (CP) of Alzheimer’s disease (AD) patients, resulting in abnormal 

hormone receptor expression in this secretory tissue (154, 155). In cancer cells, many 

HSP90 client proteins such as Akt and Her2 are required for tumor growth and/or 

survival. HSP90 inhibitors (e.g. geldenamycin and its derivatives) display dramatic anti-

tumor activity by triggering degradation of Hsp90 client proteins (155, 156). HSP90 is 

also required for maturation and processing of the capsid precursor of picornavirus, a 

large virus family including rhino-, polio- and coxackie virus (157, 158). Therefore, 

HSP90 inhibitors may also prove to be broad spectrum antiviral drugs, in addition to their 

promising anticancer activity.  

 

Small moleculars as Hsf1 modulators – Since the HSR plays a key regulatory role in 

cytoprotection and development, and is relevant to many human diseases including 

neurodegenerative diseases, cancer, and aging,  significant efforts have been made to 

discover and develop small molecules that acts as potent HSR modulators (56, 159). The 

early identified Hsf1 activators are mostly protein translation inhibitors such as 

puromycin and amino acid analogues such as azetidine-2-carboxylic acid (160-163). 

These compounds generally result in accumulation and aggregation of prematurely 

terminated or amino acid analog-incorporated nascent proteins, which consequently 

function as signals to activate Hsf1. This class of molecules also includes inhibitors of 

protein degradation such as proteasome inhibitors MG132 and lactacystin (164, 165). 
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Another class of HSR activators is chaperone inhibitors, such as the Hsp90 inhibitors 

geldanamycin and radicicol. Although structurally distinct, both geldanamycin and 

radicicol block the ATP binding site and inhibit Hsp90 ATPase activity (166, 167). This 

class of small molecules is likely to induce the HSR by inhibiting repression of Hsf1 by 

Hsp90. Some molecules activate the HSR indirectly by inducing a secondary stress signal 

for the full induction of stress response. A representative of this class is the non-steroidal 

anti-inflamamtory drug (NSAID) sodium salicylate, which facilitates HSF1 DNA binding 

by enhancing trimerization of HSF1 without triggering HSF1 hyper-phosphorylation (168, 

169). 

 Many thiol-reactive compounds including oxidants, transition metals/metalloids, 

and organic electrophiles are reported to activate the heat shock response. This class of 

Hsf1 activators usually react with the side chains on several amino acids including Cys, 

His, Met, Phe, Tyr, Asp, Glu and Lys. Of these reactive residues, Cys is often the most 

sensitive, suggesting a potential sensory function (170). Hydrogen peroxide is known to 

activate and stabilize purified Drosophila and human HSF1 by catalyzing the formation 

of a disulfide bond between the two cysteine residues (C35 and C105) in the DNA 

binding domain (171). High concentrations of hypochlorous acid (HOCl, ~2.8-3.5 mM), 

another important cellular oxidative stress, drastically induces chaperone expression, 

especially HSP70 in mammalian cells (172). Treatment with the sulfhydryl oxidant 

diamide induces thermotolerance in Chinese hamster ovary (CHO) cells (173). The 

cyclopentenone prostaglandin, 15-deoxy-Δ
12,14

-prostaglandin J2 (15d-PGJ2), is a natural 

ligand of peroxisome proliferator-activated receptor γ (PPAR γ) (174). High doses of 

15d-PGJ2 can induce a rapid generation of ROS in mitochondrial of endothelial cells 
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(175). In vitro studies in human endothelial cells and rat paw carrageenin edema show 

that 15d-PGJ2 can activate HSF1 and induce HSP70 (175-177). Despite these and other 

examples, the molecular relationship between ROS generation and HSR activation is 

unknown. In addition, recent pharmacological studies with celastrol, an active component 

from Chinese medicine, suggest celastrol acts as an HSF1 activator with kinetics similar 

to those of thermal stress, as determined by induction of HSF1-DNA binding, 

hyperphosphorylation of HSF1, and upregulation of chaperone expression (19, 178, 179). 

Studies in S. cerevisiae verify that these same compounds can activate yeast Hsf1. 

Superoxide anion is known to upregulate the Hsf1-mediated transcription of the yeast 

metallothionein gene (CUP1), which correlates with hyperphosphorylation on serine and 

threonine residues (6). Our laboratory demonstrated that celastrol treatment activates 

Hsf1 and confers tolerance to thermal stress in yeast. Unlike mammalian HSF1, yeast 

Hsf1 lacks cysteine residues, suggesting that Hsf1 is likely not the direct target of thiol-

reactive compounds.  Recent data from our laboratory show that activation of Hsf1 by 

celastrol may be based on inhibition of the Hsp90 complex, and inhibition can be 

reversed by the free thiol, dithiothreitol (DTT) (180). HSP90 was also co-purified with 

biotinylated-15d PGJ2 in cultured mesangial cells (181). These data indicate that thiol-

reactive compounds may activate HSF1 by modifying key thiols on chaperone complexes, 

especially HSP90 complex.  

 Although more and more small molecules have been reported as activators of 

HSF1, how an individual small molecule is sensed to drive the stress response, whether 

multiple molecules regulate Hsf1 on different steps, and how the signal is transmitted to 

the transcription factor Hsf1are still unsolved questions. Therefore, the work described in 
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this dissertation seeks to identify a common mechanism of a group of thiol-reactive 

compounds as potent Hsf1 activators.  
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SIGNIFICANCE OF THE STUDY 

 Cells possess dedicated response systems to combat constant challenges from 

environmental and physiological noxious stimuli. The heat shock response (HSR) is one 

of the most well studied stress response systems. It results in the immediate induction of 

genes encoding protein chaperones, also called heat shock proteins (HSPs), to protect 

against and repair protein damage to the cellular proteome (182). In addition to 

cytoprotection, proper functions of chaperones are relevant to many human diseases. The 

disruption of protein folding quality control leads to the accumulation of misfolding 

proteins that can form oligomers, aggregates, and inclusions. These toxic states of 

proteins contribute to a variety of neurodegenerative diseases including Alzheimer’s and 

Huntington’s diseases (159, 183-185). Furthermore, tumor cells are typically shown to 

express higher levels of chaperones, which play roles in regulation of many transcription 

factors, signaling molecules, kinase, and steroid hormone receptors (115, 116, 159). 

Therefore, understanding regulation of the HSR is an important precursor to the 

development of therapeutic approaches to these devastating diseases.  

In all eukaryotes, the HSR is primarily mediated by the heat shock transcription 

factor (Hsf1), which binds to a positive control element, the heat shock element (HSE), in 

the promoters of target gene (63). Recently, numerous efforts have been made to identify 

Hsf1 modulators. These small molecules include Hsp90 inhibitors such as geldenamycin 

and radicicol, the proteasome inhibitor MG132, and celastrol, a natural component of 

Chinese medicine (178, 186-190). Furthermore, a variety of oxidants and electrophiles 

including hydrogen peroxide, superoxide anion, diamide, cadmium, diethyl maleate 

(DEM), and 15-deoxy-Δ
12,14

-prostaglandin J2 (15d-PGJ2), have been shown to induce the 
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HSR (6, 171, 177, 191-196). However, the detailed mechanism through which these 

thiol-reactive compounds induce Hsf1 remains unclear.  

In Chapter 3, I report that diverse thiol-reactive compounds, including cadmium 

sulfate, hydrogen peroxide, diamide, diethylmaleate, and 15d-PGJ2 all activate Hsf1 and 

inhibit Hsp90 in vivo. Activation of Hsf1 and inhibition of Hsp90 occurs in a reciprocal 

dose-dependent manner and is prevented by excess free thiol, suggesting a thiol-

modification mechanism. Through a series of studies to test models for the observed 

biological effects, I showed that these compounds do not induce the heat shock response 

by misfolding cytosolic proteins, or by inhibiting proteasomal protein degradation 

pathway. Instead, in Chapter 4, I demonstrate that these thiol-reactive compounds 

specifically modify two cysteine residues, C264 and C303, on the cytosolic Hsp70 Ssa1, 

to induce the heat shock response. An Ssa1 mutant with both cysteine residues converted 

into serine was completely resistant to thiol-reactive compounds. Interestingly, these 

mutants were still heat inducible, suggesting that the cysteine residues of Ssa1 are only 

involved in sensing thiol-reactive stress, but not heat shock. Furthermore, substitution 

with aspartic acid to mimic both steric bulk and the oxidized sulfinic acid form of 

cysteine resulted in derepression of Hsf1 under normal growth conditions. Lastly, C303, 

located in the ATPase domain of Ssa1, was specifically modified in vivo by a model 

organic electrophile, suggesting that Ssa1 is directly modified by thiol-reactive 

compounds. Since Hsp70-Hsf1 complexes have not been observed and validated in yeast 

cells, in Chapter 5, I report on the generation of different fusions of FLAG-Hsf1 to detect 

Hsf1-Ssa1interaction to further investigate this regulatory step. Taken together, my 

results demonstrate that the cytosolic Hsp70 chaperone Ssa1 acts as a sensor for Hsf1 
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activation by thiol-reactive compounds and can distinguish between two distinct 

environmental stressors. These findings provide concrete evidence to support the 

derepression/activation model of Hsf1 regulation in yeast, which could be used to 

extrapolate a common mechanism for a wide range of biological, pharmacological and 

environmental Hsf1 activators. The yeast model may then be utilized as a tool to identify 

additional pharmacological modulators of HSF to combat human diseases which are 

connected to protein homeostasis and the heat shock response. 
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Chapter 2: Methods and Materials 
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METHODS AND MATERIALS 

Strains, plasmids and growth conditions - Yeast strains used in this study were of the 

BY4741 (MATa his3Δ leu2Δ met15Δ ura3Δ) or DS10 (MATa ura3-52 lys1 lys2 trp1-1 

his3-11,15 leu2-3,112) backgrounds. The ssa1Δssa2Δ strain (SL314, MATa ura3-52 lys1 

lys2 trp1-1 his3-11,15 leu2-3,112 ssa1::HIS3, ssa2::LEU2) was kindly provided by Dr. 

Elizabeth Craig (University of Wisconsin, Madison, WI) and is isogenic with DS10 (197). 

SSA1-TAP, SSE-TAP, FES1-TAP, CPR6-TAP  and CPR7-TAP (tandem affinity 

purification tag) strains were purchased from Open Biosystems/ThermoScientific 

(Huntsville, AL), and are isogenic with BY4741. The pdr5∆ and ubc7∆ strains are 

isogenic to BY4741 and were purchased from Open Biosystems/ThermoScientific. The 

DNY248 strain (MATα his3Δ leu2Δ lys2Δ ura3Δ, yhsf1::KanMX, pRS316-yHsf1) was 

kindly provided by Dr. Dennis Thiele (Duke University, Durham, NC) and is isogenic 

with BY4741. Yeast expression plasmids utilizing heterologous promoters and 

terminators were obtained from Dr. Martin Funk (198). Plasmid p414TEF-SSA1 was 

constructed by PCR amplification of the SSA1 ORF with primers incorporating 5’ SpeI 

and 3’ XhoI restriction sites. SSA1
C264S

, SSA1
C303S 

and SSA1
C264S,C303S

 point mutants were 

generated by the PCR overlap extension method using primers incorporating the 

appropriate mutations and p414TEF-SSA1 as the template. All mutants were confirmed 

by DNA sequencing. The HSE-lacZ reporter plasmid was described previously (54). The 

glucocorticoid receptor reporter system consists of plasmids expressing a rat 

glucocorticoid receptor (p413GPD-rGR) and a transcriptional reporter fusion 

(pYRPGRE-lacZ (URA3)) and were used as previously described (54). Plasmid 

p414TEF-FLAG-SSA1 was constructed by PCR amplification of the SSA1 ORF with 
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FLAG insertion and XbaI digestion site in the 5'-end primer  and XhoI restriction site in 

3'-end primer. 

Dithiothreitol (DTT) quenching assays were performed by mixing thiol-reactive 

compounds with the indicated concentrations of DTT at room temperature for 15 min in 

prior to addition to cells. BY4741, DS10 and strains containing a chromosomally 

integrated TAP-tag were grown in rich medium YPD (0.2% Bacto-peptone, 0.1% yeast 

extract, 2% glucose). Strains carrying plasmids were grown in synthetic complete (SC) 

media lacking the indicated nutrients. Experiments were performed with cells in 

logarithmic phase at 30°C, unless otherwise indicated. 

 

SDS-PAGE and immunoblotting - Proteins were separated by sodium dodecyl sulfate-

polysacrylamide gel electrophoresis and transferred to either nitrocellulose (Bio-Rad, 

Hercules, CA) or PVDF (Millipore, Billerica, MA) for Western blot analysis as described 

(Laemmli, 1970, Towbin 1979). M2 monoclonal antibody (Sigma Aldrich, St. Louis, 

MA), recognizing the FLAG epitope, was resuspended in a 5% solution of non-fat milk 

in TBS (0.1 M Tris base, 0.684 M NaCl , pH=7.6) and used at a dilution of 1:1000. Other 

antibodies were resuspended in a 5% solution of non-fat milk in TBST (0.1 M Tris base, 

0.684 M NaCl, 0.1% Tween-20, pH=7.6).  

 

Hsf1 and glucocorticoid receptor activity assay - Cells bearing the HSE-lacZ reporter 

were left untreated at 30 °C, heat shocked at 37 °C for 1 h, or treated with 2.5 mM 

diamide (1,1′-azobis[N,N-dimethylformamide]; Research Organics, Cleveland, OH), 100 

µM CdSO4 (Sigma, St. Louis, MO), 5.6 µM 15d-PGJ2 (15 deoxy-Δ
12,14

-prostaglandin J2, 
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Cayman Chemical, Ann Arbor, MI) or 30 µM celastrol (Cayman) for 2 h. In vivo protein 

unfolding was carried out using 10 mM AZC (azetidine 2-carboxylic acid; Sigma) 400 

µM  DSP (dithiobis[succinimidyl propionate] ThermoScientific, Rockford, IL) or 400 

µM DTSSP (3,3 -́dithiobis[sulfosuccinimidylpropionate], ThermoScientific). To 

maintain the solubility of celastrol, experiments were conducted in SC medium 

supplemented with 50 mM Tris-HCl, pH 7.5. β-galactosidase activity assays utilizing 

ortho-Nitrophenyl-β-galactoside (ONPG) were carried out exactly as described (54). 

Assays using Beta-Glo assay system (D-luciferin-o-β-galactopyranoside, Promega) 

coupled β-galactosidase activity to a luciferase reaction. The Beta-Glo
®

 assay substrate 

and buffer were mixed and stored at -20 ˚C as stock reagents. During the assay, the 

reagent was added into the culture medium as a 1:1 ratio (v/v) in a 96-well plate. Samples 

were incubated at 30 ˚C for 30 min and analyzed in a plate reader. 

For the GR activity assay, cells transformed with p413-GPDGR and pYRP-

GRElacZ were treated with 2.5 mM diamide, 100 µM CdSO4, 5.6 µM 15d-PGJ2 for 1 h 

or 400 µM DSP for 1, 2 or 3 h, followed by treatment for 1 h with 10 µM DOC 

(deoxycorticosterone; Sigma) or vehicle (ethanol). Cells were harvested by centrifugation 

and processed for β-galactosidase activity assay as described.  

 

Heat shock protein expression assay - To analyze the expression levels of heat shock 

proteins induced by CdSO4, diamide and AZC, protein extracts were prepared using a 

glass bead lysis procedure, fractionated by SDS-PAGE (10%), and transferred to 

nitrocellulose as described (77). Polyclonal antibodies recognizing phosphoglycerate 

kinase (PGK) and glyceraldehyde-3-phosphate dehydrogenase (GPD) were purchased 
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from Invitrogen (Carlsbad, CA) and Sigma, respectively. Rabbit polyclonal antibody 

recognizing Ssa3/Ssa4 was a kind gift from E. Craig. Band intensities were quantified 

using ImageJ (NIH) and normalized to the load control. 

 

Protein degradation assay - To assess the roles of thiol-reactive compounds in the 

ubiquitin-proteasome system, we measured the stabilities of three reporter proteins 

expressed from the plasmids YEp13-Deg-βGal, p415GPD-Ub-L-βGal and p415GPD-Ub-

P-βGal (kind gifts from Dr. J. Laney, Brown University, Providence, RI) (199, 200). 

Mid-log phase cells carrying one of the above reporter proteins were treated with DMSO, 

100 µM MG132 or 100 µM Cd
2+

 for 1 h, followed by treatment for another 1 h with 100 

µg/mL cycloheximide to halt new protein synthesis. β-galactosidase activity was 

measured to determine steady-state levels of the reporter proteins.  

 

Biotin-BMCC labeling assay - To investigate the potential targets of thiol modification, 

protein-TAP fusions were isolated from cells as follows. Protein extracts were prepared 

by glass bead lysis in TEGN buffer (20 mM Tris-HCl, pH 7.5, 0.5 mM EDTA, 10% 

glycerol, 50 mM NaCl) with a protease inhibitor cocktail (aprotinin, 2 g/mL; pepstatin 

A, 2 g/mL; leupeptin, 1 g/mL; phenylmethylsulfonyl fluoride, 1 mM; chymostatin, 2 

g/mL; Sigma), and protein concentration determined by Bradford assay. 0.5 -1.0 mg of 

cell extract in a volume less than 300 µL was incubated with 75 µL IgG-Sepharose (GE 

HealthCare Lifesciences, Piscataway, NJ) and 625 µL TEGN buffer at 4 °C on a rotating 

wheel for 2 hours. Beads were collected by brief centrifugation. The supernatant was 

removed, and the beads were washed six times with lysis buffer. The washed beads were 
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resuspended in 1 mL TEGN buffer and treated with 32 µM biotin-BMCC (1-

biotinamido-4-(4'-[maleimidoethyl-cyclohexane]-carboxamido)butane) at room 

temperature for 15 min. The beads then were washed twice with 1 mL TEGN buffer 

before proteins remaining on beads were eluted by 2X SDS sample buffer (200 mM Tris-

HCl, pH=6.8, 20% glycerol, 0.8% SDS, 6 mM β-mercaptoethanol, 0.4% Bromophenol 

Blue). Immunoblot was performed using streptavidin conjugated to horseradish 

peroxidase to detect thiol-modified proteins (Bio-Rad, Hercules, CA). Polyclonal 

antibody recognizing TAP-tag (anti-PtnA, Sigma) was used at 1:1000 dilution. Purified 

Ssa1 protein was described elsewhere (102) and detected using polyclonal anti-Ssa1 

antibody provided by Dr. Mark Ptashne (Memorial Sloan-Kettering Cancer Center, NY) 

(201). 300 nM Ssa1 was reacted with 32 µM biotin-BMCC for the indicated times and 

the reaction quenched with 2X SDS sample buffer.  DTT inactivation of biotin-BMCC 

was carried out by adding DTT in water to final concentrations sufficient to achieve the 

indicated molar ratios with biotin-BMCC 15 min prior to incubation with purified Ssa1. 

 

Heat shock sensitivity assay - To assay thermotolerance induced by CdSO4 treatment, 

ssa1Δ ssa2Δ cells bearing an empty vector, SSA1 wild-type or cysteine mutant alleles 

were treated with no reagent or 600 µM Cd
2+

 for 1 h at 30 °C. After treatment, cells were 

diluted to a density of approximately 100,000 cells/ml in sterile PCR tubes in a volume of 

100 µL. The diluted cells were heat shocked at 47 °C in a thermocycler for 0, 5, 10, and 

20 min before spotting onto solid SC medium, followed by incubation at 30 °C for 2 days. 
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Click-it chemistry analysis - The ssa1Δssa2Δ strain carrying empty vector, FLAG-tagged 

SSA1 wild-type or cysteine mutant alleles were treated for 1 h with ethanol, or 500 μM 4-

hydroxyl nonenal alkyne (Cayman Chemical, Ann Arbor, MI). The extract was prepared 

by glass bead lysis and protein concentration was determined by Bradford assay as 

described above. 0.5-1.0 mg of cell extract was compensated with TEGN buffer plus a 

protease inhibitor cocktail to reach a total volume of 700 μL and incubated with 20 μL 

FLAG resin (Sigma) at 4 °C on a rotating wheel for 2 h. The resin was collected by 

centrifugation at maximum speed for 30 s. The supernatant was discarded, and the resin 

was washed eight times with lysis buffer. Proteins tagged by 4-HNE alkyne were 

detected using the Click-iT® reaction buffer kit following the manufacturer’s instructions 

(Invitrogen, Carlsbad, CA). In detail, the washed resin was resuspended in 60 μL of 

50mM Tris-HCl buffer (pH 8.0), 100 µL of 40 µM Click-iT reaction buffer and 60 µL 18 

megaOhm water to reach a final volume of 160 µL. After vortexing the mixture at room 

temperature for 5 sec, 10 µL of 40 mM CuSO4 was added to catalyze the reaction. The 

reaction solution was then incubated with 10 µL of additive 1 stock solution on bench for 

2-3 min (not longer than 5 min), followed by vortexing with 20 µL of additive 2 stock 

solution for 5 sec. The solution turned bright orange at this step. The tube was then 

wrapped with foil to prevent from light and rotated for 20 min at room temperature. The 

resin in the reaction mixture was gently washed three times with 1 mL of 50mM Tris-

HCl buffer (pH 8.0). Click-tagged proteins were eluted by incubating with 30 μL of 1 x 

FLAG peptide (Sigma) for 30 min at room temperature, and labeling of Ssa1 was 

detected by immunoblot with streptavidin-HRP. 
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Cell fractionation analysis - To analyze levels of protein aggregation in the presence of 

thermal stress and thiolreactive compounds, wild-type (BY4741) cells were fractionated 

by high-speed centrifugation. Log phase cells in were treated with heat shock, 600 μM 

Cd2+ or 500 μM DEM for 1 h. Cell pellets were transferred into 1.5 mL centrifuge tubes 

containing 300 μL dry volume of acid washed glass beads and 600 μL ice-cold TEGN 

with a protease inhibitor cocktail as described above. The cells were lysed by six 45 s 

rounds of vigorous vortexing followed with 90 s rests of the tubes on ice. The resulting 

lysate was first subjected to a low-speed spin at 3,000 g for 30 s to remove unbroken cells. 

500 μL of the supernatant was transferred into new tubes, and incubated with 1% Triton-

X for 30 min at 4 °C with gentle rotation to dissolve membranes, followed by 

centrifugation at 100,000 g for 30 min, yielding supernatant (S) and pellet (P) fractions. 
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Chapter 3: Thiol-reactive compounds do not activate Hsf1 by causing the stress 

of misfolded proteins 

 

NOTE: this chapter is derived from work that has, for the most part, been published in 2012: 

"The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by thiol-reactive 

compounds." Molecular Biology of the Cell 2012 Sep; 23(17): 3290-8 

(http://www.molbiolcell.org/content/23/17/3290.abstract, copyright (2012) the American Society 

of Cell Biology. I am the primary author on this paper and was responsible for preparing the 

original manuscript. I performed all experiments described in this chapter. The publisher of 

MBoC, the American Society of Cell Biology, grant authors the right to revise, adapt, prepare 

derivative works, present, or distribute the manuscript provided that all such distribution is for 

noncommercial benefit and there appears always the ASCB copyright credit and link to the 

original publication of the manuscript in MBoC Online.  

(http:// creativecommons.org/licenses/by-nc-sa/3.0/) 
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INTRODUCTION 

All eukaryotes express so called heat shock transcription factors, mainly HSF1, to 

regulate transcription of HSP expression in response to stress (12, 202).  Upon activation, 

HSF1 undergoes trimerization, nuclear translocalization, DNA binding, and 

posttranslational modifications. The baker’s yeast Saccharomyces cerevisiae has a single, 

essential HSF equivalent to the mammalian HSF1 (3, 34).  Although the general structure 

and functions of HSF1 are conserved among eukaryotes, early structural studies found 

that yeast Hsf1 constitutively binds to the heat shock transcription element (HSE) in the 

promoters of hsp genes as a homotrimer in the absence of stress (36, 203, 204). This 

observation strongly suggests that without the two potential control steps – trimerization 

and nuclear translocalization, yeast Hsf1 activity is modulated via a 

derepression/activation mechanism. Genetic and biochemical investigation indicates that 

in non-stress conditions, a set of chaperones including Hsp70, Hsp90, and their co-

chaperones such as Cpr6/7 and Sse1 associate with Hsf1 and repress its activity (76, 77, 

205). During heat shock, the increased temperature leads to massive accumulation of 

damaged proteins. Since the main functions of chaperones are to hold and re-fold proteins 

and to prevent them from aggregation and degradation, these chaperones may bind to 

unfolded proteins and release Hsf1 to its active form. When sufficient chaperones are 

synthesized to handle protein damage in the cell, the excess chaperones transport back to 

the nucleus, and bind Hsf1 to terminate transcription. Although concrete evidence for 

physical association of HSPs and Hsf1 is still missing, this derepression/activation model 

suggests that Hsf1 is likely to be activated by sensing protein misfolding.  
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 Many neurodegenerative diseases such as Alzheimer’s and Huntington’s diseases 

are associated with protein misfolding, and chaperones are known to have an important 

role in maintaining protein homeostasis (206-209). Recently, many academic and 

industrial laboratories are actively testing small molecule libraries as HSF1 activators for 

therapeutic use (34).  However, the mechanism through which individual small molecules 

are initially sensed to activate HSF1, and whether the mechanisms are common for all 

molecules, remain unclear.  Most of the known HSF1 activators, to some extent, affect 

the protein homeostasis network by either causing proteotoxic stress or inhibiting the 

chaperone proteins that repress HSF1 activity. Known activators that promote protein 

misfolding or proteotoxic stress include: 1) protein translation inhibitors, e.g. puromycin; 

2) amino acid analogs that result in misfolding of nascent chains, e.g. azetidine 2-

carboxylate (AZC); and 3) proteasome inhibitors, e.g. MG132 (159, 170, 209) (Figure 3-

9). Some other activators function as pharmacological inhibitors of molecular chaperones. 

For example, most well-characterized HSP90 inhibitors, such as the benzoquinone 

ansamycin antibiotic geldenamycin and macrocyclic anti-fungal antibiotic radicicol, 

inhibit the ATPase activity of HSP90 by binding to its N-terminal ATP-binding pocket 

(130, 188, 210-212). Several additional compounds including the coumarin antibiotic 

novobiocin, ITZ-1, and AEG3482, on the contrary, block HSP90 activity by binding to 

its C-terminal domain (213, 214). The important feature of these HSF1 activators is that 

they directly target integral parts of the protein homeostasis network to dramatically alter 

the functions of protein synthesis, folding and degradation machineries. The imbalance of 

cellular homeostasis probably leads to accumulation of unfolded proteins that aggregate 

in the cytoplasm, which consequently triggers HSR activation (170, 215, 216).  
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For other HSF1 activators, the molecular targets that are linked with increased 

expression of chaperones are unknown. Reactive compounds that fall into this category 

include: 1) oxidants, such as hydrogen peroxide and diamide; 2) transition metals (e.g., 

Cd
2+

, Hg
2+

, Pb
2+

, Co
2+

) and metalloids (e.g., AsO2
-
); and 3) organic electrophiles, for 

examples, 15-deoxy-Δ
12,14

-PGJ2 (15d-PGJ2), 4-hydroxy-2-nonenal (4HNE), and celastrol 

(19, 171, 173, 180, 217-222). Each class of these compounds has the potential to damage 

proteins directly, often on the side chains of highly reactive cysteine residues (170). Here 

I discovered that all three classes of thiol-reactive compounds can activate HSR in the 

yeast S. cerevisiae. In addition, these compounds also inhibit Hsp90 signal transduction 

activity in a reciprocal manner. Hsf1 activation by thiol-reactive compounds is kinetically 

distinct from activation by protein misfolding induced by an amino acid analog or a 

membrane-permeable protein cross-linking agent and is also independent of three known 

pathways of proteasomal degradation. 
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RESULTS 

Thiol-reactive compounds can activate Hsf1and inhibit Hsp90 

 Our lab previously demonstrated that celastrol, a natural compound isolated from 

a Chinese medicinal herb thundergod vine (雷公藤, lei gong teng), is a potent activator of 

the heat shock transcription factor Hsf1 and inhibitor of Hsp90 in yeast Saccharomyces 

cerevisiae, as it is in human cell lines (178-180, 223-225).  Interestingly, we also found 

that celastrol is a cellular oxidative stressor. This observation is consistent with the 

putative identification of at least two electrophilic centers (C2 on A-ring and C6 on B-ring) 

in the molecule that are highly susceptible to nucleophilic attack (226). To test whether 

Hsf1 is sensitive to activation by thiol-reactive compounds in general, I evaluated a 

selection of molecules using an HSE-lacZ reporter system, which faithfully reports 

induction of Hsf1 in an easily assayable format (227) (Table 3-1). As shown in Figure 3-1,  

the thiol oxidants diamide (Figure 3-1A) and hydrogen peroxide (H2O2, Figure 3-1B), the 

metalloid thiol chelator cadmium (CdSO4, Figure 3-1C), and the organic electrophiles 

diethyl maleate (DEM, Figure 3-1D) and the cyclopentanone prostaglandin 15-deoxy-Δ
12, 

14 
- prostaglandin J2 (15d-PGJ2, Figure 3-1E) all activated Hsf1 in a dose-dependent 

manner. Intriguingly, the effective dose ranges suggested that Hsf1 is exquisitely 

sensitive to these reactive compounds at low concentrations. This observation is 

consistent with previous findings that mammalian Hsp90 and Hsp70 are both modified  

by low concentration (~10 µM) of the electrophilic byproduct of lipid peroxidation 4-

hydroxynonenal (4-HNE) (228, 229). Early studies demonstrated that Hsf1 is 

constitutively phosphorylated in the absence of stress, and becomes heterogeneously 

hyper-phosphorylated during heat shock (6, 36, 37). Therefore, I measured the SDS- 
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Table 3-1. Chemical mechanisms for thiol-reactive compounds reacting with 

cysteine sulfhydryl groups 

Metals/ 

Metalloids 

Cadmium   Cd 

 

Oxidants 

Hydrogen 

peroxide 

(H2O2) 

 

 

 

Diamide 

 
 

Organic 

electrophiles 

Diethyl maleate 

(DEM)  

 

15-deoxy-Δ
12,14 

– 

prostaglandin J2 

(15d-PGJ2) 
 

Celastrol 
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Figure 3-1. Thiol-reactive compounds activate Hsf1 and inhibit Hsp90 in a dose-

dependent manner.  

Wild-type (BY4741) cells carrying the HSE-lacZ reporter () or the glucocorticoid 

receptor system (p413GPD-rRG and pYRP-GRE-lacZ) () were treated with different 

concentrations of (A) diamide, (B) hydrogen peroxide (H2O2), (C) cadmium sulfate 

(CdSO4), (D) diethyl maleate (DEM), or (E) 15-deoxy-Δ
12,14

-prostaglandin J2 (15d-

PGJ2).For the Hsf1 activation experiments, cells were treated for 2 hr at the indicated 

concentrations and induction normalized to activity from untreated cells (30 °C). Hsp90 

inhibition is measured by GR activity after incubation with the compounds for 1 hr before 

treatment for another 1 hr with 10 µM deoxycorticosterone (DOC), and plotted as percent 

of activity in untreated control cells induced with DOC.  

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the American 

Society for Cell Biology (ASCB) 
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Figure 3-1. Thiol-reactive compounds activate Hsf1 and inhibit Hsp90 in a dose-

dependent manner. 

A. 

 

B. 

.  
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PAGE mobility shift produced by these compounds to verify HSR activation. Since an 

antibody specific for yeast Hsf1 or phosphor-serine in Hsf1 is not commercially available, 

I utilized a chromosomal integrated HSF1-TAP fusion instead. Due to phosphorylation in 

the resting state, yeast Hsf1, an 833 amino acid protein, exhibits substantially larger than 

predicted molecular mass substantially. In addition, the C-terminal TAP insertion, which 

consists of  a calmodulin binding peptide (CBP), a tobacco etch virus protease (TEV 

protease) cleavage site and two IgG binding domains of protein A increases another 23 

kDa  of molecular weight to the fusion construct.  The large size of HSF1-TAP fusion 

(~140 kDa) limits the mobility of the protein in the gel, making it difficult to detect the 

shift after treatments. Moreover, little is known about the kinases and phosphatases 

involved in the phosphorylation/de-phosphorylation of Hsf1 in yeast. Together, it is 

extremely difficult to demonstrate evidently the changes of phosphorylation states of 

yeast Hsf1 during stress. The best result I generated is shown in Figure 3-2. Although 

smeared, the mobility shift of Hsf1 produced by each compound was consistent with 

phosphorylated Hsf1 observed upon heat shock at 37 °C, confirming Hsf1 activation by 

these reactive compounds.  

In addition to HSR activation, I also found that these thiol-reactive compounds 

inhibited Hsp90 activity using a heterologous glucocorticoid receptor (GR) assay (Figure 

3-1). The GR is a member of the steroid hormone receptor subfamily of nuclear receptors, 

which regulates transcription of genes controlling development, metabolism, and immune 

response. It is normally expressed in all mammalian cell types. In the absence of ligand 

such as cortisol and other glucocorticoids, the unbound receptor selectively associates 

with Hsp90 chaperone complex to maintain itself in a stable conformation (230). In order  
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Figure 3-2. Thiol-reactive compounds induce hyper-phosphorylation of Hsf1.  

Wild-type cells carrying a chromosome integrated TAP-tagged HSF1 were grown to mid-

log phase and incubated with Cd, diamide, H2O2, DEM, or 15d-PGJ2. Protein extracts 

were analyzed by 6% SDS-PAGE and immunoblot using antibodies directed against the 

protein A epitope.  

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the American 

Society for Cell Biology (ASCB) 
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Figure 3-2. Thiol-reactive compounds induce hyper-phosphorylation of Hsf1 
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to apply the GR system in yeast, the rat GR was expressed under the glyceraldehyde-3-

phosphate dehydrogenase (GPD) promoter (p413-GPD-GR) and transformed with pYRP-

GRElacZ into wild-type yeast cells. The Hsp90-dependent GR activity was measured by 

β-galactosidase activity assay as an indicator of Hsp90 function. In Figure 3-1, I showed 

that the same doses of thiol-reactive compounds reciprocally activated Hsf1 and inhibited 

Hsp90 in parallel cell cultures. 

Because the GR is a zinc-finger transcription factor with two potentially reactive 

Cys2Cys2 modules, it is possible that the GR, but not Hsp90 chaperone complex, was 

impaired by thiol-reactive compounds. To test this possibility, we utilized an Hsp90-

independent truncated GR (N525) as a control to test the sensitivity of the GR system to 

thiol-reactive compounds (231). As shown in Figure 3-3, constitutive activation by GR-

N525 was not affected by treatment with Cd
2+

, H2O2, diamide and DEM, confirming that 

these reactive compounds inhibited Hsp90 activity rather than function of the GR.  

  To verify that the observed Hsf1 activation was due to thiol reactivity, we 

incubated the oxidant diamide or the electrophile 15d-PGJ2 with different concentrations 

of the reducing agent dithiothreitol (DTT) for 15 min in vitro prior to treating cells 

carrying the HSE-lacZ reporter (Figure 3-4). We observed that five-fold excess of DTT 

completely abolished activation of Hsf1 by both compounds. These results are consistent 

with our previous finding that HSR activation and Hsp90 inhibition by celastrol are 

inhibited by DTT, raising the possibility that different thiol-reactive compounds may 

activate the HSR via a common mechanism (180). 
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Figure 3-3. Thiol-reactive compounds do not inhibit function of the GR client 

BY4741 cells carrying a truncated Hsp90-independent glucocorticoid receptor (N525GR) 

and the GRE-lacZ reporter (p413GPD-rN525GR and pYRPGRElacZ). Cells were grown 

to mid-log phase and exposed to no reagent, 100 µM Cd
2+

, 800 µM H2O2, 2.5 mM 

diamide or 500 µM DEM for 1hr, followed by treatment with 10 µM deoxycorticosterone 

(DOC) for 1 hr. β-galactosidase activity was measured and presented relative to untreated 

cells as percentage of untreated GR activity (% untreated). 
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Figure 3-3. Thiol-reactive compounds do not inhibit function of the GR client.  
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Figure 3-4. Thiol reactivity is required for the HSR activation by diamide and 15d-

PGJ2.  

Diamide (2.5 mM, solid bar) or 15d-PGJ2 (5.6 µM, open bar) was treated with 5X, 10X 

excess dithiothreitol (DTT) or water alone for 15 min prior to cell treatment. Hsf1 

activation was measured as in Figure 3-1, but is plotted as absolute activity in Miller 

units. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the American 

Society for Cell Biology (ASCB) 
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Figure 3-4. Thiol reactivity is required for HSR activation by diamide and 15d-

PGJ2.  
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Thiol-reactive compounds do not activate Hsf1 by causing accumulation of unfolded 

proteins  

  Hsf1 is generally thought to be activated in response to heat shock through the 

accumulation of unfolded or damaged proteins. This model is further supported by the 

observation that treatment with the proline analog azetidine-2-carboxylic acid (AZC) 

causes misfolding of nascent proteins and induces a set of phenotypic responses that 

mimic heat shock response in yeast cells.  For example, AZC treatment reversibly arrests 

the cell cycle in G1 phase in a manner similar to heat shock (162, 232).  The treatment 

also leads to expression changes in Hsf1-dependent genes, but fails to induce the general 

stress response (Msn2/4) in the cytoplasm or the unfolded protein response in the ER 

(162). Similar gene expression changes have been observed in cells treated with sublethal 

concentrations of ethanol (4-8%) (233, 234). Furthermore, Hsp70 is shown to bind avidly 

to AZC-containing proteins in vivo (235).  Lastly, disruption of protein degradation by 

the proteasome inhibitor MG132 also results in activation of the HSR (236). Taken 

together, these studies suggest that the accumulation of misfolded proteins induces the 

HSR, but none of these data clearly demonstrate whether it is accumulation of nascent 

chains, existing proteins, or both forms acting as the the primary inducer. Therefore, we 

sought to understand whether the thiol-reactive compounds we identified trigger Hsf1 

activation by causing misfolding of cytosolic proteins. 

  Since nascent proteins are highly susceptible to misfolding, I first tested whether 

treatment with thiol-reactive compounds damaged newly synthesized proteins by 

comparing HSE-lacZ expression profiles after these treatments with those induced by 

AZC. The incorporation of AZC was found to inhibit the β-galactosidase activity assay 
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presumably due to misfolding of the β-galactosidase enzyme. I therefore prepared protein 

extracts and quantified the expression levels of the inducible Hsp70 Ssa3/4 via 

immunoblot. Yeast cells were treated with Cd
2+

 (100 µM), diamide (2.5 mM), or AZC 

(10 mM) for 0.5, 2 and 5 hr. As shown in Figure 3-5A and 3-5B, the activation patterns 

were distinct. Cd
2+

 and diamide demonstrated a typical Hsf1 induction profile with rapid 

induction of HSP followed by attenuation to a level lower than the maximum but higher 

than the basal. In contrast, activation of Hsf1 by AZC treatment was slower but persistent, 

and continued to increase over the 5 hour time course. I noted that in cells treated with 

thiol-reactive compounds, both Ssa3 and Ssa4 were detected as two separate bands by 

immunoblot. However, only one band was observed from cells incubated with AZC 

(Figure 3-5A).  The Ssa3/4 antibody was a kind gift from Craig Lab, and was showed to 

specifically recognize both inducible Hsp70s in yeast (237). The reason why AZC 

treatment resulted in a different band pattern of Western blot analysis is not perfectly 

clear. Together, these data suggest that Hsf1 activation by the thiol-reactive compounds is 

transient and reversible; while activation by AZC is cumulative and irreversible, likely 

due to continuous production and accumulation of misfolded AZC-containing proteins. 

Consistent with the kinetic data, we observed that cells treated with Cd
2+

 or diamide for 2 

hr or heat shocked (37 ˚C) for 1 hr exhibited no loss in survival compared to untreated 

control cultures, whereas cells treated with AZC for 2 hr demonstrated significant loss in 

viability (Figure 3-5C). Together, these data suggest that the thiol-reactive compounds 

activate Hsf1 by different kinetic induction profiles compared with those of an unfolding 

reagent, such as AZC. Therefore, thiol-reactive compounds are not likely to induce the 

heat shock response by causing bulk misfolding of nascent proteins. 
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Figure 3-5.  Thiol-reactive compounds do not induce the heat shock response by 

causing accumulation of nascent proteins.  

A. Hsf1 activity profiles after treatment with thiol-reactive compounds or the proline 

analog azetidine 2-carboxylic acid (AZC) are distinct. Wild-type cells (BY4741) were 

treated with 100 µM CdSO4, 2.5 mM diamide, or 10 mM AZC for 0.5, 2, and 5 hr. 

Ssa3/4 levels were detected by anti-Ssa3/4 antibody. glucose 6-phosphate 

dehydrogenase (GPD) was blotted as the loading control. 

B. Quantification of Ssa3/4 protein levels by immunoblot analysis. Wild-type cells were 

treated with 100 µM CdSO4 (), 2.5 mM diamide (), or 10 mM AZC () as 

described above. Band intensities were normalized to the loading control GPD, and 

are plotted relative to cells treated for 5 hr as percentage of maximum HSR induction. 

C. AZC, but not thiol-reactive compounds, are toxic at Hsf1-activating doses. Mid-log 

phase cells (BY4741) were treated with no reagent (30 °C), heat shock for 1 hr 

(37 °C), or 100 µM CdSO4 , 2.5 mM diamide, or 10 mM AZC for 2 hr. Cells were 

then plated on YPD media and grown at 30 °C for 2 days.  

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the 

American Society for Cell Biology (ASCB) 
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Figure 3-5. Thiol-reactive compounds do not induce the heat shock response by 

causing accumulation of nascent proteins.  
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Figure 3-5. Thiol-reactive compounds do not induce the heat shock response by 

causing accumulation of nascent proteins.  
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Another possible explanation for Hsf1 activation by thiol-reactive compounds could be 

misfolding of existing proteins caused by non-specific modification of cysteine residues 

throughout the proteome. To address this, we treated cells with the membrane permeable 

protein cross-linker dithiobis[succinimidyl propionate] (DSP). DSP, which has amine-

reactive N-hydroxysuccinimide (NHS) esters at both ends of a cleavable spacer arm, can 

be used to non-specifically crosslink intracellular proteins and cause misfolding of 

existing cytosolic proteins. After a 4 hr treatment at normal growth temperature, we 

observed that DSP, but not the membrane impermeable analog 3,3 -́

dithiobis(sulfosuccinimidylpropionate) (DTSSP), activate Hsf1 in a dose-dependent 

manner, suggesting that DSP was capable of causing protein misfolding in living cells 

with maximum efficacy at approximately 400 µM (Figure 3-6A). I therefore treated cells 

bearing the HSE-lacZ or GR reporter system with 400 µM DSP to study the kinetic 

profiles of this protein misfolding reagent over time. Figure 3-6B shows that DSP 

activated Hsf1 in a time-dependent manner, with a continuous induction profile very 

similar to that observed with AZC treatment. Furthermore, DSP treatment caused minor 

to no effect on Hsp90 activity over for 4 hours; while thiol-reactive compounds almost 

completely inhibited Hsp90 in two hours at their maximum effective concentrations 

(Figure 3-6B and 3-1). These results demonstrated that thiol-reactive compounds and 

DSP induce Hsf1 by distinct mechanisms, suggesting that bulk protein aggregation or 

misfolding activates Hsf1 differently from thiol-reactive compounds. 

To directly examine whether treatment with thiol-reactive compounds leads to 

protein aggregation, I fractionated cell lysates after treatment using ultracentrifugation.  

Protein aggregates segregate into the pellet faction at 100,000 x g. Whereas heat shock  
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Figure 3-6. Thiol-reactive compounds do not induce the heat shock response by 

misfolding existing proteins. 

A. BY4741 cells carrying the HSE-lacZ reporter were treated with the indicated 

concentrations of DSP () or DTSSP () for 4 hr and Hsf1 activity measured as 

described in Figure 3-1. 

B. BY4741 cells carrying the HSE-lacZ reporter () were treated with 400 µM DSP for 

the indicated times, as were cells bearing the GR reporter system () (followed by 1 

hr treatment with 10 µM DOC). Activities are plotted as described in Figure 3-1. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the 

American Society for Cell Biology (ASCB) 
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Figure 3-6. Thiol-reactive compounds do not induce the heat shock response by 

misfolding existing proteins. 

A. 

 
B. 
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led to a significant conversion of proteins from the soluble fraction to the pellet fraction, 

control cells and those treated with thiol-reactive compounds (Cd
2+

 or DEM) maintained 

solubility of the majority of proteins (Figure 3-7), suggesting that treatment with these 

compounds does not lead to significant protein aggregation. Taken together, these data 

indicate that the features of Hsf1 activation by thiol-reactive compounds are not 

consistent with a model relying on the accumulation of misfolded cytosolic proteins. 

 

Thiol-reactive compounds do not induce the HSR by inhibiting the ubiquitin-proteasome 

system (UPS) 

I next asked whether these compounds affect other aspects of the protein quality control 

system, such as the ubiquitin-proteasome system (UPS). The UPS is responsible for 

degradation of short-lived and abnormal proteins, and normal protein turnover to provide 

a pool of free amino acid (238). The yeast S. cerevisiae  has a single ubiquitin activating 

enzyme (E1) encoded by the gene UBA1, a limited set of ubiquitin conjugating enzymes 

(E2) and multiple ubiquitin ligases (E3) (239). In the process of ubiquitination, ubiquitin 

(Ub) is transferred from E1 to the active cysteine of E2 via a thioester linkage (240) 

(Figure 3-8).  I therefore sought to investigate whether thiol-reactive compounds induce 

Hsf1 by modification and inactivation of E1 or E2 enzymes, which might inhibit UPS-

mediated protein degradation, resulting in accumulation of non-ubiquitinated, misfolded 

proteins. Furthermore, celastrol, first indentified as an Hsf1 activator in yeast and 

mammalian cells, also inhibits proteasome activity, albeit after extended treatment 

periods (19, 226). Other proteasome inhibitors including the peptide aldehydes (MG132, 

MG115, and N-acetyl-leucyl-leucyl-norleucinal), and lactacystin are known inducers 
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Figure 3-7. Thiol-reactive compounds do not cause protein aggregation at Hsf1-

activating dose. 

Cells treated with 100 µM Cd
2+

, 500 µM DEM, or heat shock for 1 hr were lysed, and 

proteins were fractionated by ultracentrifigation. A coomassie-stained SDS-PAGE gel is 

shown. S, supernatant; P, pellet. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the American 

Society for Cell Biology (ASCB) 
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Figure 3-7. Thiol-reactive compounds do not cause protein aggregation at Hsf1-

activating dose. 
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Figure 3-8. The ubiquitination pathway  

In the first step, a ubiquitin activating enzyme (E1) hydrolyzes ATP to activate free ubiquitin 

(Ub). A thioester linkage is formed between E1 and the carboxyl terminus of ubiquitin. This 

adenylylated Ub is then transferred to a cysteine residue of a ubiquitin-conjuagting enzyme (E2). 

Finally, a ubiquitin ligase (E3) recognizes the substrate protein and associates with E2 to transfer 

Ub from E2 to the substrate. The Ub-labeled substrate protein then is recognized by the 

proteasome for degradation. The sulfhydryl group of E1 and E2 is highlighted in red. 
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Figure 3-8. The ubiquitination pathway 
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of the heat shock response as well (190, 236). Recent studies suggest that the E3 ligases 

are likely to interact with a limited number of E2 proteins, defining distinct pathways for 

protein ubiquitination and degradation (241). I utilized three β-galactosidase reporter 

fusions as model substrates to probe pathway specificity: Ub-L-βGal, Ub-P-βGal and 

Deg1-βGal. The linear ubiquitin fusion Ub-L-βGal fusion is recognized by RAD6/UBC2, 

and Ub-P-βGal requires UBC4 and UBC5 for degradation. The Deg1-βGal fusion 

requires UBC6 or UBC7 for processing (199, 242, 243). Taking advantage of the pdr5Δ 

strain (BY4741) with the multidrug resistance (MDR) transporter deleted, I tested 

stabilization of each substrate after treatment with MG132 or CdSO4 by β-galactosidase 

activity assay. PDR5 encodes a MDR efflux pump that belongs to the family of ATP-

binding cassette (ABC) transporters. Deletion of PDR5 is not lethal, but confers a 

pleiotropic drug-sensitive phenotype. The pdr5Δ strain is significantly more sensitive to 

MG132, and is commonly used to assess protein degradation in combination with 

proteasome and protease inhibitors (244, 245). The β-galactosidase activity assay 

revealed that the proteasome inhibitor MG132 significantly stabilized all three substrates, 

whereas cells treated with Cd
2+

 exhibited normal degradation of Ub-L-βGal and Ub-P-

βGal, but accumulated Deg1-βGal (Figure 3-9A). These results demonstrated that Cd
2+

 

did not grossly inhibit proteasome or Uba1 (E1) activity as this would have resulted in 

stabilization of all three reporters. However, stabilization of Deg1-βGal suggested that 

the Ubc6 or Ubc7 E2 enzymes may be compromised by Cd
2+

 treatment, which could 

have led to accumulation of non-ubiquitinated proteins, and consequently activated Hsf1. 

Alternatively, these events may be correlated, but not causal, in nature. To distinguish 

between these two possibilities, we measured Hsf1 activity in ubc7Δ cells, which were 
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shown to stabilize Deg1-βGal (246, 247). As shown in Figure 3-9B, Hsf1 behaved 

similarly in stressed or non-stressed ubc7Δ and wild-type cells, suggesting that inhibition 

of Ubc6/Ubc7 function is not sufficient to activate Hsf1. Cd
2+

 treatment may inhibit a 

specific ubiquitination pathway in the UPS, however, the inhibition appears to be parallel 

to Hsf1 activation. Moreover, proteasome inhibition caused by MG132 treatment has no 

effect on Hsp90 activity (Figure 3-10B), suggesting that MG132 and thiol-reactive 

compounds induce the HSR by different mechanisms. Taken together, these data 

suggested that thiol-reactive compounds do not induce the HSR by inhibiting the 

ubiquitin-proteasome system. 
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Figure 3-9. Thiol-reactive compounds do not induce the heat shock response by 

inhibiting protein degradation.  

A. pdr5Δ cells carrying Ub-L-βGal, Ub-P-βGal, or Deg1-βGal reporter genes were 

grown to mid-log phase at 30 °C and incubated for 1 hr with 100 µM MG132 (solid 

bar), 100 µM Cd2+ (open bar), or vehicle followed by treatment for 1 hr with 100 

µg/mL cycloheximide (CHX). β-galactosidase activity was determined and plotted as 

fold increase relative to cells treated with cycloheximide only. 

B. Wild type (BY4741) and ubc7Δ cells carrying the HSE-lacZ reporter were grown at 

control temperature (30 °C, solid bar), or heat shocked at 37 °C (open bar) for 1 hr. β-

galactosidase activity was determined and plotted as absolute Miller units. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the 

American Society for Cell Biology (ASCB) 
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Figure 3-9. Thiol-reactive compounds do not induce the heat shock response by 

inhibiting protein degradation.  

A. 

 

 

B. 
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Figure 3-10. MG132 activates Hsf1, but does not inhibit Hsp90. 

A. pdr5Δ cells were transformed with the lacZ reporter constructs containing either wild-

type () or the mutated HSE (), and exposed to 100 µM MG132 for 0.5, 1, 1.5 or 2 

hr. The β-galactosidase activity was measured to determined Hsf1 activation. 

B. pdr5Δ cells bearing the GR reporter system were left untreated, exposed to 100 µM 

MG132 or 100 µM Cd
2+

 for 1 hr, followed by treatment with 10 µM DOC (empty 

bar) or ethanol (solid bar) for 1 hr. The β-galactosidase activity was measured to 

determined Hsp90 activity and is plotted as absolute activity in Miller units. 
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Figure 3-10. MG132 activates Hsf1, but does not inhibit Hsp90. 

A. 

 

 

B. 
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DISCUSSION 

 The heat shock response (HSR) is a conserved transcriptional program that results 

in immediate induction of cytoprotective genes including molecular chaperones to fold, 

process, and degrade proteins during stress conditions, thereby playing an important role 

in maintaining cellular protein homeostasis.  In almost all eukaryotes, the HSR is 

regulated by activity of the heat shock transcription factor Hsf1.  Deregulation of HSPs 

can cause many human disorders including cancer and neurodegenerative diseases, 

offering the HSPs and Hsf1 as potential therapeutic targets (185). Accordingly, numerous 

efforts have been made to identify small molecules that regulate Hsf1 or modulate 

chaperone activities. However, the precise mechanisms whereby individual small 

molecules are sensed to drive the activation of Hsf1 are unclear. In this chapter, I 

identified a group of small molecules that activated Hsf1 and inhibited Hsp90 complex 

activity in a reciprocal manner in yeast Saccharomyces cerevisiae. Both biological effects 

were quenched by treatment with excess free thiol. These observations are consistent 

with previous findings from our laboratory that celastrol, a newly identified Hsf1 

activator, also induces the oxidative stress response in both yeast and human cells, 

confirming a common thiol-modification mechanism (180).  

 In the absence of stress, Hsf1 binds to Hsp70, Hsp90, and their co-chaperones in a 

repressive complex (218, 248). It is generally thought that the stress conditions are likely 

to place increased demands on the molecular chaperones, leading to titration of 

chaperones away from Hsf1 and activation of the HSR. Consistent with this model, 

protein misfolding has been observed in mammalian cells after heat shock (235). In 

addition, the HSR has been shown to be activated by accumulation of nascent proteins, 
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by inhibition of protein degradation, or by reduced chaperone functions (237, 249, 250). 

Therefore, the thiol-reactive compounds may activate the HSR by perturbing protein 

structure and folding. To test this possibility, I used two unfolding reagents, the proline 

analog azetidine 2-carboxylic acid (AZC) to mimic misfolding of nascent polypeptides 

and a protein-protein cross-linker DSP to force protein misfolding in cytoplasm. 

Interestingly, the features of HSR activation by the thiol-reactive compounds were 

largely distinct from those of unfolding reagents. First of all, the thiol-reactive 

compounds displayed a typical Hsf1 induction profile of rapid increase of HSP synthesis 

followed by attenuation and recovery; while Hsf1 induction by both AZC and DSP were 

slow and persistent. The different time frames suggest that cytosolic protein misfolding 

caused by AZC incorporation and DSP cross-linking requires time to reach a threshold 

where chaperones can be recruited from Hsf1. However, I cannot exclude the possibility 

that the thiol-reactive compounds may cause proteotoxicity more efficiently than the two 

unfolding reagents. Moreover, I demonstrated that thiol-activation of Hsf1 was transient 

in nature, whereas the AZC treatment led to persistent induction. I also observed 

significant loss in viability of cells treated with AZC, but not with thiol-reactive 

compounds or heat, suggesting that cytotoxicity due to AZC incorporation is irreversible. 

Together, these results indicate that cells display distinct responses to treatment with 

AZC, which results in continued production and accumulation of high levels of misfolded 

nascent chains, and thiol-reactive compounds. Furthermore, only thiol-reactive 

compounds reciprocally impaired chaperone functions. Using a heterologous 

glucocorticoid receptor (GR) assay system, I observed that thiol-reactive compounds, but 

not heat shock or DSP inhibited Hsp90 activity in the same timeframe of Hsf1 activation. 
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Hsp90 inhibition by these compounds was also abolished in the presence of excess 

reducing agent DTT, indicating that thiol reactivity was required for the observed 

biological effects. These observations suggest that Hsf1 activation and Hsp90 inhibition 

by thiol-reactive compounds are caused by a shared and reciprocally acting biochemical 

mechanism. Taken together, my results indicate that thiol-reactive compounds do not 

activate Hsf1 by generating protein misfolding as a primary stress signal.  

 Cellular protein quality control includes refolding, sequestering or degrading 

potentially harmful misfolded proteins (251). Inhibition of protein degradation can also 

generate unfolded proteins, which may accumulate over time. Indeed, numerous studies 

have shown that proteasome inhibitors, such as MG132 and lactacystin, and protease 

inhibitors, such as the serine protease inhibitors 3,4-dichloroisocoumarin (DCIC), N-

tosyl-L-phenylalaninechloromethyl ketone (TPCK) and Nα-p-tosyl-L-ysinechloromethyl 

ketone (TLCK), all promote hsp gene expression by inducing Hsf1 DNA binding activity 

and hyperphosphorylation (159, 164, 165, 209, 252). In addition, celastrol itself is 

reported to be a proteasome inhibitor in mammalian cells upon extended treatment (226). 

Therefore, I asked whether thiol-reactive compounds activate Hsf1 by inhibiting protein 

degradation. Since thiol-reactivity is a major feature shared among these compounds, the 

ubiquitin-proteasome system (UPS), which tags substrate proteins with ubiquitin (Ub) via 

a thioester linkage, becomes a possible target. Thiol-reactive compounds are likely to 

compromise the UPS by interfering with Ub transfer, leading to the accumulation of non-

ubiquitinated, misfolded proteins. Utilizing three β-galactosidase reporter fusions to 

interrogate the functional status of the major ubiquitin conjugating enzymes (E2), I 

demonstrated that thiol-reactive compounds did not grossly inhibit the proteasome or the 
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ubiquitin activating enzyme Uba1 (E1) in yeast. However, cadmium specifically 

compromised Ubc6/7-mediated ubiquitination. Interestingly, further investigation of Hsf1 

activity in ubc7Δ, which stabilizes most Ubc6/7-dependent substrate proteins, showed 

normal Hsf1 repression in non-stressed conditions, indicating that disruption of Ubc6/7 

function is not sufficient to activate Hsf1. These results suggest that inhibition of the UPS 

and activation of Hsf1 by thiol-reactive compounds are parallel, but not causally related 

events.  

Although most proteasomal substrates must be ubiquitinated before being 

degraded, some proteins are degraded in Ub-independent manner such as ornithine 

decarboxylase (ODC) in yeast(253). Moreover, Ub conjugation is not required for 

degradation of oxidized proteins by the proteasome in mammalian cells (254). Therefore, 

I cannot completely exclude the possibility that thiol-reactive compounds disrupt protein 

turnover/degradation and consequently accumulate damaged proteins, even though my 

data suggested that these compounds do not activate Hsf1 through inhibiting the UPS. 

Instead of testing these distinct degradation pathways individually, I used 

ultracentrifugation to directly measure the levels of aggregated proteins in the presence of 

thiol-reactive compounds. Strikingly, cells treated with thiol-reactive compounds 

maintained solubility of the majority of proteins, while heat shock at proteotoxic levels 

resulted in accumulation of significant amount of insoluble proteins. Taken together, 

these results indicate that the features of Hsf1 activation by thiol-reactive compounds, 

including a rapid but transient induction profile, reciprocal Hsp90 inhibition,  and 

independence from protein degradation, are not consistent with a model relying on the 

generation and accumulation of misfolded cytosolic proteins. Instead, the inhibition of 
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Hsp90 activity suggests a potential chaperone-sensing mechanism. This hypothesis is 

tested in the next chapter. 
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Chapter 4: Hsp70 functions as a sensor of thiol-reactive compounds for Hsf1 

activation 

NOTE: this chapter is derived from work that has, for the most part, been published in 

2012: "The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by 

thiol-reactive compounds." Molecular Biology of the Cell 2012 Sep; 23(17): 3290-8 

(http://www.molbiolcell.org/content/23/17/3290.abstract). I am the primary author on 

this paper and was responsible for preparing the original manuscript. I performed all 

experiments described in this chapter. The publisher of MBoC, the American Society of 

Cell Biology, grant authors the right to revise, adapt, prepare derivative works, present, 

or distribute the manuscript provided that all such distribution is for noncommercial 

benefit and there appears always the ASCB copyright credit and link to the original 

publication of the manuscript in MBoC Online.  

(http:// creativecommons.org/licenses/by-nc-sa/3.0/) 
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INTRODUCTION 

 The stress-dependent conversion of HSF1 into its active form implies that HSF1 

is negatively regulated (63). Furthermore, early studies of cultured Drosophila cells 

demonstrated that the synthesis of the heat shock proteins (HSPs) is rapidly induced after 

a temperature shift from 25 ˚C to 37 ˚C, followed by gradual repression on return to 

normal growth conditions, suggesting that the heat shock response (HSR) is self-

regulated by HSPs (255, 256). This hypothesis is further supported by extensive genetic 

and biochemical evidence that at least two classes of HSPs, HSP70 and HSP90, serve as 

trans-acting HSF1 repressors. In the budding yeast Saccharomyces cerevisiae, deletion of 

the two constitutively expressed cytosolic Hsp70 genes, SSA1 and SSA2, leads to 

constitutive transcriptional competence of Hsf1 (257-259). The ATPase activity of Hsp70 

seems to serve an important role in Hsf1 regulation. Mutants lacking SSE1 and FES1,  

two genes that encode Hsp70 nucleotide exchange factors in cytoplasm, result in de-

repression of Hsf1 at normal growth conditions (77, 100, 260). Moreover, human Hsp70 

also stably associates with the HSF1 activation domain in vivo and in vitro through its C-

terminal substrate binding domain (45, 66, 248).  

Although Hsp70 has been suggested to be the basis of the feed-back regulatory 

mechanism of Hsf1 regulation, Hsp70 alone is insufficient to suppress Hsf1 in 

mammalian cells (261). Instead, Hsp70 may participate as a component of the Hsp90 

chaperone complex, which is responsible for maturation and regulation of various client 

proteins. Hsp90 requires associations with a number of co-chaperones, for example, 

Hsp70, Sti1, Cpr6/7 and Sba1, to achieve its cellular functions. Some of these functions 

attributed to Hsp70 and its nucleotide exchange factors in regulation of Hsf1 activity may 
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reflect a joint effect with Hsp90. In human cells, Hsp90 associates with HSF1 in vivo and 

in vitro (71). Direct injection of anti-Hsp90 in Xenopus oocyte system activates the heat 

shock response (70). Deletion of both the constitutively expressed Hsp90 HSC82 and its 

co-chaperone, the cyclophilin 40 homolog CPR7, resultes in derepression of Hsf1 at 

normal growing temperature and constitutive thermotolerance (76, 78). Therefore, the 

Hsp70/Hsp90 chaperone complex is likely to repress transcriptional activation of Hsf1 

under non-stress conditions. During heat shock, the accumulation of unfolded or 

damaged proteins may recruit the Hsp90 chaperone machinery from Hsf1, allowing 

derepression of the transcription factor.  

Proper function of the HSR is relevant to various human diseases including cancer 

and neurodegenerative disease. Over the past two decades, numerous efforts have been 

made to identify and characterize Hsf1 modulators. However, the detailed mechanisms 

through which individual modulators trigger activation remain largely unresolved. Since 

substantial evidence supports the model that the chaperone machinery represses Hsf1 

activity in the absence of stress, chaperones are generally considered as stress sensors. 

Indeed, several studies show that some Hsp90-specific inhibitors also function as Hsf1 

activators such as geldenamycin and radicicol (186-188). Recently, celastrol, an active 

component of Chinese medicine, was found to promote hsp gene expression and block 

maturation of an Hsp90-dependent androgen receptor in yeast and human cells, 

respectively (19, 180, 223). There are at least two potential ways that Hsf1 may be 

released from chaperone repression. One model posits that chaperones function as 

sensors of cytosolic protein misfolding and are titrated away from Hsf1 by damaged 

proteins. This model is supported by the findings that many pharmacological Hsf1 
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activators have been implicated in disrupting protein translation, folding and degradation 

(159). A second model is based on direct modification on chaperones by reaction of thiol-

reactive compounds with key residues including Cys, His, Lys, Met, Phe, Tyr, Asp, and 

Glu within these proteins. Of these residues, Cys is reported to be particularly susceptible 

to thiol modification, likely due to the readily accessible lone pair of electrons in its 

sulfhydryl group (170). The overall reactivity, or nucleophilicity, of a Cys residue is 

shown to increase upon thiol deprotonation to the thiolate anion, and therefore a Cys 

residue with low pKa value is considered highly reactive to thiol-reactive compounds 

(262-264). In mammalian cells, both Hsp70 and Hsp90 have been identified as potential 

targets of electrophiles and oxidants (228, 265-267). Moreover, in vitro activity analysis 

revealed that Hsp70, Hsp90, and several of their co-chaperones such as Cdc37 and p23 

(Sba1 in yeast) are inactivated by electrophiles including celastrol, ethylmaleimide, and 

4-hydroxynonenal (133, 228, 267, 268). Taken together, these results suggest that 

chaperones can function as direct sensors of thiol-reactive molecules. 

In Chapter 3, I demonstrated that a group of small molecules including oxidants, 

transition metals and metalloids, and organic electrophiles activate Hsf1 and inhibit 

Hsp90 in a reciprocal manner. I reported that these thiol-reactive compounds do not 

activate Hsf1 by promoting protein misfolding or inhibiting protein degradation. In this 

chapter, I utilize a thiol-reactive biotin-labeled probe to show in vitro that Ssa1, the 

cytosolic Hsp70 in yeast, possesses highly reactive cysteine residues. Moreover, 

substitution of C264 or C303 with serine renders cells unresponsive to Hsf1 activation 

and unable to acquire thermotolerance after treatment with thiol-reactive compounds. 

Strikingly, substitution with aspartic acid, which increases bulk of the amino acid side 
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chain as well as mimicking the oxidized sulfinic acid form of the cysteine thiol, leads to 

constitutively active Hsf1 in non-stress conditions. These same cysteines are shown to be 

directly modified in vivo by the organic electrophile 4-HNE using a Click chemistry 

approach (269). Together, these data suggest a model wherein the Hsp70 chaperone Ssa1 

functions as a direct sensor for activation of Hsf1 and acquisition of cytoprotection by 

diverse thiol-reactive compounds through reactive cysteine residues.   
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RESULTS 

The yeast Hsp70, Ssa1 is hypersensitive to thiol-modification 

 In the previous chapter, I reported that diverse thiol-reactive compounds function 

as potent Hsf1 activators. Additionally, I demonstrated that these molecules do not induce 

the HSR by disrupting protein homeostasis. Because incubation of these compounds with 

excess thiols (e.g., DTT) completely abolished their biological effects on Hsf1 activation 

(Figure 3-4), I reasoned that the mechanism by which thiol-reactive compounds activate 

the HSR may involve inactivation of specific regulatory protein(s) through targeting of 

cysteine residues. In yeast and mammals, HSPs and select co-chaperones are assembled 

into multi-chaperone complexes that regulate HSF1 activity at different steps (182, 270). 

Moreover, our lab and others have shown that the Hsf1 activator celastrol functionally 

inhibits Hsp90, and I observed that the thiol-reactive compounds I identified have the 

same biological effects (180, 223) (Figure 3-1). These findings are consistent with a 

model wherein one or more Hsf1-repressing, Hsp90-promoting chaperones are directly 

modified and perhaps inactivated by thiol-reactive compounds.  

 Analysis of amino acid sequences from the Saccharomyces Genome Database 

(SGD) revealed that both yeast cytosolic Hsp90s (Hsc82 and Hsp82) and Hsf1 lack 

cysteine residues; however, several co-chaperones of Hsp90 contain one or more 

cysteines. Among the four Ssa family members of yeast cytosolic Hsp70, the 

constitutively expressed Ssa1 and Ssa2 contain three cysteines, while the inducible Ssa3 

and Ssa4 contain two (271, 272). Sse1 and Fes1 are Hsp70 nucleotide exchange factors, 

and contain five and two cysteine residues, respectively (99, 100, 102). The Hsp90-

associated peptidyl-prolyl cis-trans isomerases (PPIases) Cpr6 and Cpr7 each have seven 
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cysteines (273). Importantly, previous genetic studies demonstrated that deletion of 

Ssa1/2, Sse1 or Cpr7 leads to activation of Hsf1 under normal growth conditions, making 

them prime candidates for targets of thiol-reactive compounds (76, 100, 237, 258). To 

address whether one or more of these proteins are sensitive to thiol-modification in vitro, 

I used a cysteine biotinylation approach. Tandem affinity tagged (TAP chaperone 

proteins were isolated from cell extracts and reacted with the reagent biotin-BMCC (see 

Methods and Materials). Although five fusions were expressed and detectable using anti-

protein A antiserum, only Ssa1 was modified by biotin-BMCC as detected by a 

streptavidin-horseradish peroxidase conjugate (Figure 4-1A). This result was confirmed 

by treating purified Ssa1, which was previously generated in the lab, with the same 

concentration of biotin-BMCC for 0, 1, 2 and 4 h, demonstrating reaction with Ssa1, but 

not the TAP tag (Figure 4-1B upper). To verify that Ssa1 was labeled due to thiol 

modification, biotin-BMCC was mixed with the indicated ratios of DTT prior to 

treatment. Labeling of purified Ssa1 by BMCC was completely abolished by equimolar 

or greater amounts of free thiol (Figure 4-1B bottom). Since Ssa1 is indentified as a 

potential target with three cysteines in the ATPase domain and the Ssa1 nucleotide 

exchange factor Sse1 is required for Hsf1 repression, I also tested whether another 

cytosolic exchange factor, Fes1, also functions as an Hsf1 repressor in vivo. Utilizing the 

HSE-lacZ reporter, I found that deletion of Fes1 indeed substantially de-repressed Hsf1 

(Figure 4-1C). Together, all these results suggest that of the Hsf1-repressing chaperones 

and co-chaperones tested, Ssa1 is hypersensitive to thiol-modification and may be a 

relevant target of Hsf1-activating thiol-reactive compounds. 
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Figure 4-1. Ssa1 is a relevant target of Hsf1-activating thiol-reactive compounds. 

A. An Ssa1-TAP fusion is hypersensitive to modification  in vitro by a thiol-reactive 

biotin probe. The indicated chaperone-TAP fusion proteins were enriched by IgG 

affinity-purification and were treated with biotin-BMCC. 

B. Ssa1 is rapidly alkylated by biotin-BMCC in a thiol-dependent manner. Purified Ssa1 

was incubated with biotin-BMCC for the indicated times, followed by 

immunoblotting with streptavidin-HRP or anti-Ssa1 (top). Biotin-BMCC was 

premixed with the indicated concentration ratios of DTT for 15min prior to reaction 

with purified Ssa1 for 30 min and detected as above (bottom). 

C. The Ssa1 nucleotide exchange factor Fes1 is required for hsf1 repression. Wild-type 

and fes1Δ (BY4741) cells were transformed with the HSE-lacZ reporter were grown 

at 30 ˚C to midlog phase, and β-galactosidase activity was determined and plotted as 

absolute Miller units. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the 

American Society for Cell Biology (ASCB) 

Figure 4-1C was first generated by Dr. Patrick A. Gibney and was repeated by the 

author. 
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Figure 4-1. Ssa1 is a relevant target of Hsf1-activating thiol-reactive compounds. 
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Figure 4-1. Ssa1 is a relevant target of Hsf1-activating thiol-reactive compounds. 
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Ssa1 is a sensor for Hsf1 activation by thiol-reactive compounds 

 The in vitro labeling assay suggests that of the chaperone proteins comprising the 

Hsp70/Hsp90 multi-chaperone machinery I tested, Ssa1 is specifically modified by a thiol 

probe. Next I ask whether the modification of Ssa1 on one or more cysteine residues is 

directly responsible for Hsf1 activation by these thiol-reactive compounds. To address 

this question, I constructed an experimental system by placing the SSA1 open reading 

frame (ORF) under control of the heterologous translation elongation factor 1 alpha (TEF) 

promoter, and expressed this system in an ssa1Δssa2Δ deletion background. SSA1 and 

SSA2 are the constitutively expressed cytosolic Hsp70 isoforms with redundant functions 

for Hsf1 repression (Figure 4-2). Deletion of both genes leads to reduced growth rates 

and Hsf1 repression defects at normal temperatures (237). The TEF expression system 

that produced approximately wild-type levels of Ssa1was able to complement both 

defects (Figure 4-3B and C). Interestingly, I noticed that high expression levels of SSA1 

under control of the glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter blunted 

Hsf1 activation by heat shock or thiol-reactive compounds (Figure 4-3A and C). This 

observation is consistent with previous findings that Hsp70 is an Hsf1 repressor under 

normal growth conditions and overexpression of Hsp70 inhibits phosphorylation of Hsf1 

in human cells (274). I first attempted to replace all three cysteines, i.e. C15, C264, and 

C303, with serine. The side chain of serine is the most similar to cysteine, except that 

serine contains a hydroxyl group instead of a sulfyhydryl group. However, substitution of 

C15 was found to cause instability of Ssa1 and loss of function (Figure 4-4C). I therefore 

constructed mutant SSA1 alleles with C264S, C303S, or both mutations. All three 
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Figure 4-2. Ssa1 and Ssa2 are functionally redundant for Hsf1 repression. 

Deletion mutants ssa1Δ::KanMX and ssa2Δ::KanMX (isogenic to BY4741) were 

transformed with the HSE-lacZ reporter, and grown at 30 ˚C (solic bar) or 37 ˚C (empty 

bar) for 1 hr. The β-galactosidase activity was measure to detect Hsf1 induction and is 

reported as abosulte activity in Miller units. 
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Figure 4-2. Ssa1 and Ssa2 are functionally redundant for Hsf1 repression. 
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Figure 4-3. Complementation of ssa1Δssa2Δ phenotypes by SSA1 expressed using 

heterologous promoters. 

A. The ssa1Δssa2Δ (ssa1Δ::HIS3, ssa2Δ::LEU2) or the isogenic parent strain DS10 

carrying the empty vector or indicated complementation constructs were grown to 

mid-log phase. Protein-extracts were prepared by glass-bead lysis and analyzed by 

SDS-PAGE and Western blot analysis. Ssa1 level was detected using anti-Ssa1 

antibody. PGK level was used as a loading control 

B. Indicated strains were grown to log phase and spotted on SC media in a 10-fold 

dilution series and incubated at 30 ˚C for 3 d. 

C. DS10 cells carrying the empty vector and ssa1Δssa2Δ carrying the empty vector or 

indicated complementation constructs were transformed with the HSE-lacZ reporter. 

Cells were left untreated (solid bar), heat shocked at 37 ˚C (empty bar), or exposed to 

100 µM Cd
2+

 (grey bar). The β-galactosidase activity was measured to detect Hsf1 

induction and is reported as absolute activity in Miller units. 
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Figure 4-3. Complementation of ssa1Δssa2Δ phenotypes by SSA1 expressed using 

heterologous promoters. 
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Figure 4-3. Complementation of ssa1Δssa2Δ phenotypes by SSA1 expressed using 

heterologous promoters. 
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Figure 4-4. Functional analysis of SSA1 cysteine mutants. 

A. Diagram depicting the domain architecture of Ssa1 and positions of the three cysteine 

residues. 

B. The relevant cysteines are mapped in the human Hsc72 nucleotide binding domain 

(NBD) generated from crystal structure (3D2F) using a protein structure manipulating 

software PyMOL. 

C. DS10 cells carrying the empty vector and ssa1Δssa2Δ carrying the empty vector or 

indicated complementation constructs were grown to mid-log phase. Protein extracts 

were prepared by glass-bead lysis and analyzed by SDS-PAGE and immunoblot. Ssa1 

level was detected using anti-Ssa1 antibody. GPD levels were determined as a 

loading control. 

D. Strain ssa1Δssa2Δ carrying the empty vector or indicated SSA1 mutant constructs 

were plated on selective SC plates in a dilution series and grown at 30 ˚C for 2 d. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the 

American Society for Cell Biology (ASCB) 
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Figure 4-4. Substitution of cysteine residues in Ssa1 with serine. 
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Figure 4-4. Substitution of cysteine residues in Ssa1 with serine. 
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 permutations were stable and complemented the slow growth defect of ssa1Δssa2Δ 

(Figure 4-4D).  

 With the functional SSA1 mutant alleles, I next asked whether the cysteine 

residues in Ssa1 are required for sensing thiol-reactive compounds. If this is the case, 

cells carrying the SSA1 mutants should not respond to thiol-reactive compounds due to 

the replacement of reactive cysteines with non-reactive serines. To test this hypothesis, I 

utilized the HSE-lacZ reporter to measure Hsf1 activity in mutant cells in response to 

heat shock, CdSO4, diamide, and the organic electrophile 4-hydroxynonenal (4-HNE) 

(Figure 4-5). The ssa1Δssa2Δ cells carrying an empty vector exhibited Hsf1 derepression, 

while reintroduction of wild-type SSA1 under control of the TEF promoter restored Hsf1 

repression in non-stress condition (30 ˚C) and inducibility in response to heat and thiol-

reactive compounds. Strikingly, cells complemented with SSA1-C264S, C303S also 

retained heat inducibility, but were completely resistant to all three thiol-reactive 

compounds. To distinguish which of the two cysteine residues is responsible for the thiol-

sensing, I generated single-residue mutants of C264 and C303 and assessed HSE-lacZ 

activity as described above. Interestingly, both SSA1-C264S and SSA1-C303S 

recapitulated the responses of the double mutant. According to the crystal structure of 

Hsp70, the distance between C264 and C303 suggests that a disulfide bond is unlikely to 

form between these two cysteine residues. Alternatively, it is possible that thiol-

modification on both cysteines is required for a conformational change of the ATPase 

domain, which either blocks ATP binding or disrupts ATPase activity of Ssa1, leading to 

inactivation of Ssa1. Taken together, these results provide genetic evidence that both 

C264 and C303 of Ssa1 are required to sense thiol-reactive compounds. 
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Figure 4-5. Ssa1 cysteines are required for Hsf1 activation by thiol-reactive 

compounds but not heat shock. 

Strains carrying wild-type and mutated SSA1 alleles were grown at the control 

temperature (30 ˚C); heat-shocked (37 ˚C) for 1 hr; or exposed to 600 µM CdSO4,30 µM 

celastrol, or 400 µM 4-HNE for 2 hr; this was followed by determination of β-

galactosidase activity plotted in absolute Miller units. (-), empty vector control. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the American 

Society for Cell Biology (ASCB) 
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Figure 4-5. Ssa1 cysteines are required for Hsf1 activation by thiol-reactive compounds 

but not heat shock. 
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The next question is how Ssa1 transmits the thiol-reactive signal to Hsf1. I 

envisioned two models to explain my observation. In the first model, various thiol- 

reactive compounds could overwhelm cellular redox buffers such as the thioredoxin and 

glutathione pathways, which might then fail to maintain Ssa1 in a reduced state. 

Alternatively, the cysteine residues on Ssa1 could be directly modified, either by 

oxidation or by formation of transient or stable adducts with thiol-reactive compounds. 

To distinguish these two possibilities, I utilized Click chemistry to examine thiol-

modification of Ssa1 in vivo. Click chemistry is a class of copper catalyzed chemical 

reactions that use the azide and alkyne moieties, which generate a stable triazole 

derivative, to label and detect a molecule of interest (Figure 4-6A) (269). I used a 

membrane-permeable alkyne derivative of the 4-HNE that was a potent Hsf1 activator (4-

HNE alkyne, Figure 4-5), and FLAG-tagged SSA1 alleles that could be used for 

immunopurification. The ssa1Δssa2Δ cells bearing the empty vector, wild-type, or 

mutant SSA1 alleles were treated with 4-HNE alkyne for 1 hr. After quenching and lysis, 

purified samples were reacted with biotin-azide in the Click reaction buffer, followed by 

SDS-PAGE and immunoblot using streptavidin-HRP. As shown in Figure 4-6B, wild-

type Ssa1 was modified by 4-HNE alkyne as demonstrated using the Click reaction; 

whereas labeling was absent in cells lacking FLAG-Ssa1 or missing reaction reagents. 

The labeling signal was significantly decreased in  the SSA1-C264S, C303S mutant, 

suggesting that one or more cysteine residues is a direct target of thiol-modification in 

vivo. I speculate that the minor amount of labeling of SSA1-C264S, C303S may be on 

C15. Interestingly, SSA1 single mutants demonstrated different outcomes: the labeling 

signal was robust in SSA1-C264S, but was decreased in SSA1-C303S. This observation  
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Figure 4-6. Ssa1 cysteines are directly modified by a thiol-reactive compound. 

A. Click azide/alkyne reaction.  

B. Strains containing wild-type and mutated SSA1 alleles were treated with 4-HNE 

alkyne. The extract was prepared by glass bead lysis and protein concentration was 

determined by Bradford assay as described above. 0.5-1.0 mg of cell extract was 

compensated with TEGN buffer and incubated with FLAG resin at 4 °C on a rotating 

wheel for 2 h. Proteins tagged by 4-HNE alkyne were detected using the Click-iT® 

reaction buffer kit following the manufacturer’s instructions. Click-tagged proteins 

were eluted and labeling of Ssa1 was detected by immunoblot with streptavidin-HRP 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the 

American Society for Cell Biology (ASCB) 
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Figure 4-6. Ssa1 cysteines are directly modified by a thiol-reactive compound. 
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suggests that C303 may be more reactive compared with C264, and exposure of C264 to 

thiol-reactive compounds may require prior modification of C303. Although not mutually 

exclusive, these results support the second model that Ssa1 is directly modified by thiol-

reactive compounds in vivo in the same time frame (1 - 2 hr) in which I observe induction 

of Hsf1. 

The thiol group (-SH) of cysteine residues can be oxidized to the sulfinic acid 

form (-SOOH) by oxidants such as hydrogen peroxide (H2O2). Additionally, adduction of 

a cysteine thiol by small electrophiles such as DEM would add steric bulk which could 

potentially cause structural or functional perturbations.  In order to understand how thiol 

modifications affect the biological functions of Ssa1, I substituted C264 and C303 with 

the pseudo-oxidation mimic aspartic acid. As shown in Figure 4-7A, SSA1-C264D, 

C303D produced a stable protein. However, it failed to complement the Hsf1 

derepression and slow growth phenotypes of ssa1Δssa2Δ (Figure 4-7B and C), consistent 

with the substitution inactivating Ssa1, while serine was tolerated (Figure 4-6). Together, 

these data support the interpretation that thiol-modification of C264 and C303 result in 

functional inactivation of Ssa1 in the context of its role as an Hsf1 repressor. 

 

Hsf1 activation by thiol-reactive compounds is distinct from sensing of thermal stress 

 Previous work from our lab reported that Hsf1 activation by celastrol leads to 

acquisition of thermotolerance at sub-lethal temperatures (180). To confirm that sensing 

of thiol-reactive compounds by Ssa1 is physiologically relevant to cell survival, I tested 

the SSA1 mutants for gain of thermotolerance in the presence of cadmium. The 

ssa1Δssa2Δ cells carrying the empty vector, wild-type or mutant SSA1 alleles were  



 106 

 

Figure 4-7. The cysteine oxidation mimic aspartic acid results in Ssa1 inactivation 

and hsf1 derepression. 

A. Stability of SSA1 cys to asp mutants. Strain ssa1Δssa2Δ carrying the empty vector or 

indicated SSA1 mutant constructs were grown to log-phase. Protein extracts were 

prepared by glass-bead lysis and analyzed by SDS-PAGE and immunoblot. Ssa1 

levels were detected using anti-Ssa1 anybody. PGK levels were used as a loading 

control.  

B. C264D/C303D combination mutant is non-functional as compared to wild type SSA1. 

Strain ssa1Δssa2Δ carrying the empty vector or indicated SSA1 mutant constructs 

were plated on selective SC plates in a dilution series and grown at 30 ˚C for 2 d.  

C. C264D/C303D combination mutant results in Hsf1 derepression. Strains containing 

wild-type and mutated SSA1 alleles and the HSE-lacZ reporter were grown at 30 ˚C, 

and constitutive Hsf1 activity was measured by determination of β-galactosidase 

activity. (-), empty vector control. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the 

American Society for Cell Biology (ASCB) 
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Figure 4-7. The cysteine oxidation mimic aspartic acid results in Ssa1 inactivation 

and Hsf1 derepression. 
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Figure 4-7. The cysteine oxidation mimic aspartic acid results in Ssa1 inactivation 

and hsf1 derepression. 
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pretreated or not with CdSO4 and subsequently exposed to a 52 ˚C heat shock for varying 

lengths of time. Cells carrying the empty vector demonstrated the characteristic slow-

growing phenotype and did not recover within the time course of the experiment (Figure 

4-8). However, extended incubation suggests that ssa1Δssa2Δ cells are constitutively 

thermotolerant, consistent with its phenotype of chronic Hsf1 derepression (data not 

shown). On the other hand, cells complemented with wild-type SSA1 showed sustained 

viability only with Cd
2+

 treatment and were tolerant up to 10 min severe heat shock. Cells 

bearing the SSA1-C264S, C303S mutant allele exhibited equivalent low viability 

irrelevant of Cd
2+

 pretreatment, suggesting that the mutant failed to induce the 

cytoprotective HSR upon thiol-reactive stress. The previous reporter assay suggested that 

cells expressing SSA1-C264S, C303S responded normally to heat shock, even though 

these cells were resistant to thiol-reactive compounds (Figure 4-5). To confirm that SSA1-

C264S, C303S retained heat-inducibility, I subjected the same strains to mild heat shock 

(37 ˚C) before the lethal heat shock (52 ˚C). Consistent with the reporter assay, SSA1-

C264S, C303S cells displayed the same level of thermotolerance as wild-type cells. 

Together, these results suggest that thiol-reactive compounds target C264 and C303 of 

Ssa1 to activate Hsf1, and this process is distinct from how cells sense thermal stress. 
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Figure 4-8. Ssa1 cysteines are required for activation of the cytoprotective HSR by 

thiol-reactive compounds but not by heat shock. 

The ssa1Δssa2Δcells containing wild-type and SSA1-C264S, C303S mutant allele were 

treated with either no reagent (-) or 600 µM Cd
2+ 

(+) (left) or were grown at 30 ˚C (-) or 

37 ˚C (+) for 1 hr (right) before heat shock at 52 ˚C for the indicated times. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the American 

Society for Cell Biology (ASCB) 
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Figure 4-8. Ssa1 cysteines are required for activation of the cytoprotective HSR by 

thiol-reactive compounds but not by heat shock. 
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DISCUSSION 

 In the previous chapter, I have shown that diverse compounds that share the 

biochemical property of thiol-reactivity function as potent activators of the heat shock 

response in yeast cells, consistent with findings in human cell lines. My data suggest that 

these thiol-reactive compounds do not cause significant aggregation of unfolded proteins 

in the time frame of HSR activation. Instead, I demonstrate in this chapter that cysteine 

residues of the cytosolic Hsp70 Ssa1, are specifically modified, which leads to 

inactivation of Hsp70 and derepression of Hsf1. 

 Genetic and biochemical evidence suggest that in both yeast and mammals, the 

Hsp70/Hsp90 multichaperone complex serves an auto-regulatory role in Hsf1 regulation 

(258). Hsp70 and Hsp90 likely repress Hsf1 by binding to it in an inactive form under 

non-stress conditions, and release from Hsf1 during stresses (66, 71, 205, 248, 275, 276). 

Inhibition of the Hsp70/Hsp90 chaperone complex using either pharmacological or 

genetic means leads to a significant increase of Hsf1 activity, suggesting that chaperones 

may function as direct stress sensors (19, 91, 159, 277-279). Our lab determined 

previously that celastrol, an active component of the "thunder god" vine, can activate the 

heat shock response, as well as the oxidative stress response in both yeast and human 

cells (180). Additionally, early studies using a powerful sulfhydryl-modifying reagent, N-

ethyl maleimide (NEM), show that a pair of vicinal cysteines in rat Hsp90 (C589/C590) 

and all three cysteines in yeast Hsp70 Ssa1 are hypersensitive to thiol modification, 

leading to inactivation of chaperone functions in vitro (6, 280). Similar modification of 

Hsp70 and Hsp90 are also observed in a rat model using low concentrations of 4-

hydroxylnonenal (~10 µM), a byproduct of lipid peroxidation (228, 267). Moreover, 
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mammalian cells treated with the A- and J-type cyclopentanone prostaglandins (PGA, 

PGJ) are shown increase expression levels of Hsp70, and I observed the same induction 

of Hsp70 production in yeast cells using 15d-PGJ2. All these compounds contain an 

electrophilic α,β-unsaturated carbonyl moiety that can form a transient or permanent 

adduct with the nucleophilic thiol group of a cysteine residue, suggesting a common 

chemical mechanism. In addition to organic electrophiles, transition metals and 

metalloids such as cadmium and arsenic are also reported to induce Hsf1 phosphorylation, 

trimerization and DNA binding in yeast and mammalian cells (281, 282). Since yeast 

Hsf1 and Hsp90 lack cysteine residues, the simplest model consistent with the observed 

Hsf1 activation and Hsp90 inhibition is thiol-modification of Hsp70. Indeed, I observed 

that among all chaperones comprising the Hsp70/Hsp90 complex, the yeast cytosolic 

Hsp70 Ssa1 was specifically modified by a thiol-reactive probe, biotin-BMCC at the 

concentrations used.  It is interesting that all five chaperones I tested contain at least two 

cysteine residues. However, Ssa1 was the only chaperone modified by biotin-BMCC in 

my experiment. The nucleophilic character of protein cysteines is strongly affected by 

both surface exposure and the pKa of the thiol functional group. The surface exposure 

determines the accessibility of a cysteine residue to exogenous compounds; while the 

pKa is mainly controlled by neighboring side chains in the local microenvironment (283, 

284). It is possible that cysteine residues on other chaperones including Sse1, Fes1, Cpr6 

and Cpr7 are inaccessible in the Hsp70/Hsp90 complex, making the constitutive 

expressed Ssa family of Hsp70, Ssa1 and Ssa2, the sole relevant candidate sensor of 

thiol-reactive compounds for Hsf1. It is worth mentioning that I did not investigate Ssa2 

separately, because Ssa1 and Ssa2 are 90% identical with each other and the plasmid 
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carrying only wild-type SSA1 has the capacity to complement the Hsf1derepression and 

the slow growth defect of the ssa1Δssa2Δ mutant, suggesting that Ssa1 and Ssa2 share 

similar functions (Figure 4-3B and 4-3C) (285). 

 Hsp70s are known to facilitate protein folding, prevent protein aggregation and 

assist in the assembly of multi-protein complexes. In this way, Hsp70s can monitor and 

counteract the accumulation of misfolded proteins to maintain protein homeostasis in the 

cell (286). The folding function of Hsp70 is highly ATP-dependent: substrate binding 

activity is regulated by ATP turnover (287). Interestingly, analysis of amino acid 

sequences from the Saccharomyces Genome Database and the crystal structure of human 

Hsc72 revealed that all three cysteines of Hsp70 are in the N-terminal ATP binding 

domain. Furthermore, in vitro functional assay shows that NEM modification of Ssa1 is 

inversely related to nucleotide status in the ATPase domain. NEM-modified Ssa1 fails to 

bind ATP, while nucleotide binding protects Ssa1 from modification and inactivation by 

NEM (6). These observations are consistent with our finding that substitution of C264 

and C303 with aspartic acid completely inactivated Ssa1 as judged by complementation, 

leading to constitutive activation of Hsf1. Although Ssa1 contains three cysteine residues, 

our genetic results suggest that only C264 and C303 are primarily responsible to thiol-

reactive compounds, suggesting that C15 has little to no effect on sensing of these 

compounds.  Of the three cysteines, C15 is the most conserved among Hsp70s, and may 

be involved in the direct interaction with ATP. This prediction may explain our finding 

that substitution of C15 with serine results in instability of Ssa1. C264 is absent from heat 

inducible Ssa3/4, as well as ribosome-associated Ssab1/2, mitochondrial Ssc1 and ER-

localized Kar 2. Therefore, Ssa1/2 chaperones, as the constitutive expressed cytosolic 
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Hsp70 in yeast, are likely to be unique hyper-reactive targets of thiol-reactive compounds 

with respect to Hsf1 activation. Our genetic assays suggested that both C264 and C303 

are required for activation of cytoprotective HSR by thiol-reactive compounds. However, 

we observed labeling of C303 in the absence of C264 in vivo. Since thiol modification of 

a cysteine residue requires both surface exposure and the pKa of the thiol group, it is 

possible that modification of C303 potentiates modification of C264 by subtle changes in 

the microenvironment of the thiol side chain. Strikingly, a recent study of human cell 

lines reported similar findings that two cysteine residues, C267 and C306, are hyper-

sensitive to a redox-active compound, methylene blue (MB). Consistent with my 

observation in the yeast system, C306 of human Hsp70 is more reactive compared with 

C267. Moreover, predictive dynamic modeling of the Hsp70 NBD  further revealed that 

oxidation of C306 may contribute to conformation rearrangements of the ATP-binding 

domain, and is likely to expose C267, making it more accessible to thiol-modification 

(288) (and unpublished data from Gestwicki lab). Together, these results provide a 

crucial functional basis for a mechanism through which Ssa1 modified by thiol-reactive 

compounds loses its activity, leading to derepression of Hsf1 (Figure 4-9). The 

correspondence between my finding and the human study suggests that this thiol-sensing 

system could be conserved in almost all eukaryotes.   
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Figure 4-9.  Model demonstrating independent activation of hsf1 by misfolded 

proteins or thiol-reactive compounds in an Ssa1-dependent manner. 

Wang et al. Mol Biol Cell. 2012, Sep: 23(17):3290-8.Copyright owned by the American 

Society for Cell Biology (ASCB) 
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Figure 4-9.  Model demonstrating independent activation of hsf1 by misfolded 

proteins or thiol-reactive compounds in an Ssa1-dependent manner. 
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Chapter 5: Characterization of a partially functional FLAG-Hsf1 constructs to 

detect interaction between Hsf1 and Ssa1 



 119 

 

INTRODUCTION 

 In an eukaryotic cell exposed to stress, HSF1, the primary regulator of the heat 

shock response, is rapidly induced to rescue cellular damage and maintain protein 

homeostasis. Soon after the discovery of this transcription factor, several lines of 

evidence suggested that HSF1 is under tight negative regulation. For example, 

overexpression of HSF1in human cell lines results in accumulation of DNA-binding 

trimeric HSF1 under normal growth conditions (17, 289). Constitutive activation of HSR 

is also observed in human cells with heterologous expression of Drosophila HSF1 (290). 

Early studies in cultured Drosophila and human cells showed that HSF1 activity is not 

modulated at the level of synthesis/degradation of the transcription factor, but mainly 

posttranslationally (270, 289-294).  

Under thermal stress, the expression levels of heat shock proteins (HSPs), or 

protein chaperones, increase drastically after initiation of heat shock, persist transiently, 

and attenuate upon recovery. However, exposure to amino acid analogs such as AZC, 

results in irreversible misfolding of nascent proteins and constitutive activation of the 

HSR (Figure 3-5) (249, 256, 281). These observations lead to a model that HSF1 is 

regulated by protein chaperones under a negative feedback mechanism. As discussed in 

the introduction of Chapter 4, at least two classes of protein chaperones, Hsp70 and 

Hsp90, are involved in autoregulation of HSF1 activity. In mammalian cells, this model 

is additionally supported by biochemical identification of Hsp70/Hsp90-Hsf1 interactions. 

Human Hsp70 associates with both DNA-binding and free monomeric HSF1 (45, 66, 261, 

281). More detailed investigation demonstrated that Hsp70 and its co-chaperone Hsp40 

interact directly with the C-terminal transactivation domain of HSF1 in vivo and in vitro 
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(248). Furthermore, Hsp90 is shown to restrain HSF1 in an inactive monomeric form in a 

HeLa cell lysate system. This is further supported by in situ crosslinking of Hsp90 with 

Hsf1 in unstressed HeLa cells (71). Heat shock treatment or depletion of Hsp90 by 

antibody or pharmacological inhibitors releases HSF1 from the Hsp70/Hsp90 complex 

and promotes the transcription factor trimerization and DNA-binding activity (70, 275). 

Consistent with the previous finding that acquisition of HSF1 DNA-binding activity is 

inseparable from its trimerization, these studies suggest that the Hsp70/Hsp90 complex 

regulates HSF1 transcription activity by physically interacting with monomeric HSF1 and 

repressing its trimerization/DNA-binding activity in metazoan cells.  

In the yeast Saccharomyces cerevisiae, on the other hand, Hsf1 binds 

constitutively to DNA in the nucleus (203). Additionally, a stable Hsp70/Hsp90-Hsf1 

complex has not been observed in the yeast system (295). However, genetic analysis of 

yeast strains carrying mutations in cytosolic Hsp70, Hsp90, and their co-chaperones Cpr7, 

Sse1 and Fes1 revealed that same as in higher eukaryotes, the yeast chaperone system 

also negatively regulates Hsf1 (Figure 4-1) (76, 77, 237, 258). In Chapter 4, I reported 

that the yeast cytosolic Hsp70 Ssa1 functions as a sensor for Hsf1 activation by thiol-

reactive compounds. Although I demonstrated direct thiol-modification of Ssa1 in vivo 

and in vitro, I cannot exclude the possibility that Hsp70 inactivation leads to Hsf1 

activation through increase of misfolded Hsp70 substrates due to lack of biochemical 

identification of yeast Hsp70/Hsp90-Hsf1 interactions. Utilizing a chromosomal 

integrated HSF1-TAP construct, I showed hyper-phosphorylation of Hsf1 in cells treated 

with heat shock and thiol-reactive compounds. However, detection of Hsp70/Hsp90 

interactions with Hsf1 was not successful using this protein fusion. In addition, antibodies 
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that specifically recognize yeast Hsf1 are not commercially available. Therefore, in this 

chapter, I reported generation of a partially functional FLAG-Hsf1 fusion for future 

detection of Ssa1-Hsf1 interactions. Compared with the 21 kDa TAP-tag, the FLAG 

peptide sequence of DYKDDDK is much smaller (1012 Da). In addition, the tag is more 

hydrophilic than other common epitope tags such as myc and human influenza 

hemagglutinin (HA) tag. Therefore, the FLAG-tag is optimized for compatibility with the 

proteins to which it is appended. Finally, our laboratory has developed reliable protocols 

to use FLAG immunoprecipitation for biochemical identification of dynamic protein-

protein interactions in yeast. In the future, this functional FLAG-Hsf1 construct can be 

used to answer the question of whether chaperone repression is the primary control 

mechanism whereby cells sense thiol-stress via unique reactive cysteine residues, and 

investigate the role of the chaperone-Hsf1 network during diverse stress conditions in 

yeast system.  
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RESULTS 

The N-terminal tagged FLAG-Hsf1expressed on a centromeric plasmid responds to heat 

shock in wild-type cells 

 One of the advantages working with yeast S. cerevisiae is the wide selection of 

expression plasmids that can be used for different purposes. These plasmid vectors offer 

diverse choices of vector copy number, promoters of varying strength, and nutrition 

selection markers. Yeast vectors can be divided into two groups: the low copy 

centromeric (CEN) plasmid and the high copy 2µ plasmid. CEN plasmids carrying a 

yeast centromere sequence and a normal yeast origin of replication provide 1-3 copy 

number per cell, and are stably replicated during mitosis (296). 2µ plasmids contain an 

origin of replication from the endogenous 2µ plasmid with a copy number of 20-50 per 

cell (297). In addition to vector copy number, expression levels of heterologous proteins 

can also be manipulated by changing the strength of promoters. The constitutive 

promoters include the weak CYC1 (derived from gene encoding cytochrome-c oxidase), 

the moderate TEF (derived from TEF2 gene encoding translation elongation factor 1α), 

and the strong GPD (derived from gene encoding glyceraldehydes-3-phsphate 

dehydrogenase) (298-300). The expression system can also be regulated using inducible 

promoters such as galactokinase promoter GAL1 (198).  

To build a functional FLAG-Hsf1 for biochemical identification of Ssa1-Hsf1 

interaction, I first fused the FLAG tag on the N-terminus of Hsf1 by PCR amplification 

of the HSF1 open reading frame (ORF). The construct was cloned into the p414TEF 

plasmid, which is a centromeric vector with a moderate strength promoter. Since S. 

cerevisiae contains a single HSF1 gene, deletion of HSF1 is lethal and hypomorphic 
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mutants are defective in multiple processes such as cell wall integrity and cell cycle 

progression at high temperatures (36, 301-303). I transformed the plasmid p413TEF-

FLAG(N)-Hsf1 in the wild-type (BY4741) background to test detectability of Hsf1. As 

shown in Figure 5-1 (upper panel), the FLAG-Hsf1 fusion was expressed at 30 °C and 

hyperphosphorylated, as detected as the mobility shift, after heat shock, suggesting that 

the fusion construct can sense and respond to thermal stress. Ssa1 was shown to bind with 

Hsf1 in non-stressed cells after FLAG co-immunoprecipitation. However, the interaction 

was mildly diminished by heat shock. The same results were observed after increasing 

heat shock temperature up to 42 ˚C and the time of treatment up to 45 min (data not 

shown). Two possibilities can explain this observation. First, Ssa1 may not dissociate 

from Hsf1 after heat shock. Instead, a conformation change could occur to release the 

transcriptional activity of Hsf1. The second possibility is that the FLAG-Hsf1 construct 

might not be functional, even though hyperphosphorylation of Hsf1 was observed at 37 

˚C. In human cell lines, overexpression of HSF1 resulted in constitutive 

trimerization/DNA-binding activities of the transcription factor (289). To test whether 

Ssa1 constitutively bound to FLAG-Hsf1 as a result of loss of Hsf1 functions, I utilized 

the HSE-lacZ reporter to measure Hsf1 activity in wild-type cells carrying the N-terminal 

FLAG-Hsf1 fusion at 30 ˚C and 37 ˚C. Indeed, Hsf1 was derepressed in these cells, 

suggesting that the fusion construct did not function properly in the wild-type background, 

maintaining activity in the absence of stress (Figure 5-2). 
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Figure 5-1. The N-terminal FLAG-Hsf1 fusion hyperphosphorylated after heat 

shock. 

Wild-type (BY4741) cells bearing a empty vector (-) or p413TEF-FLAG(N)-Hsf1 were 

grown at normal temperature (30 ˚C), or heat shocked at 37 ˚C for 20 min (HS). Hsf1 was 

immunoprecipitated (IP) with anti-FLAG affinity M2 resin. Hsf1  was probed with M2 

antibody. 
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Figure 5-1. The N-terminal FLAG-Hsf1 fusion hyperphosphorylated after heat 

shock. 
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Figure 5-2. The N-terminal FLAG-Hsf1 fusion causes derepression of Hsf1 in wild-

type cells. 

Wild-type (BY4741) cells carrying the empty vector (-) or p413TEF-FLAG(N)-Hsf1 

were transformed with the HSE-lacZ reporter, and were grown at the control temperature 

(30 ˚C, empty bar) or heat-shocked (37 ˚C, black bar) for 1 h. β-galactosidase activity 

was measured by a luminescent β-Glo assay. 
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Figure 5-2. The N-terminal FLAG-Hsf1 fusion causes derepression of Hsf1 in wild-

type cells. 
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Overexpression of Hsf1results in constitutive activation of HSR in yeast system 

 Two possibilities exist to explain observed derepression of Hsf1 in cells carrying 

the p413TEF-FLAG(N)-Hsf1 fusion: either the N-terminal FLAG tag interferes with 

negative regulation of Hsf1 or overexpression of  the fusion construct bypasses chaperone 

repression of Hsf1. Although not mutually exclusive, I sought to distinguish between 

these two possibilities by expressing Hsf1 under the endogenous promoter on a plasmid 

in wild-type cells (p314-HSF1), which resulted in ~ 2 folds overexpression of Hsf1. The 

HSE-lacZ reporter then was introduced and β-galactosidase activity assay was applied to 

determine the Hsf1 activity. As shown in Figure 5-3A, wild-type cells carrying p314-

HSF1, without any protein tag, partially restored the chaperone repression upon the HSR 

with moderately higher basal activity at normal temperature, suggesting that deregulation 

of Hsf1 may be caused by overexpression. 

  Next I sought to understand whether the N-terminal FLAG tag also contributes to 

the Hsf1 deregulation. Ideally, this possibility should be tested using FLAG-Hsf1 fusion 

under control of the endogenous promoter on a plasmid in wild-type cells. However, the 

insertion of FLAG sequence in the p314-HSF1 plasmid by PCR amplification was not 

successful. Alternatively, I utilized a yeast strain, DNY248, lacking the endogenous 

HSF1 and supported by wild-type HSF1 on a URA3 plasmid to eliminate the endogenous 

expression of Hsf1. The strain was then transformed with the FLAG-Hsf1 construct 

expressed under a moderate strength promoter TEF (p413TEF-FLAG(N)-HSF1), 

followed by a plasmid shuffle technique to counterselect the URA3 plasmid carrying the 

wild-type HSF1 on 5-FOA medium. As shown in Figure 5-3B, Hsf1 activity in hsf1Δ 

cells bearing p413TEF-FLAG(N)-HSF1 was partially repressed in the absence of stress,  
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Figure 5-3. Decrease of Hsf1 expression level partially restores 

chaperone repression on Hsf1 

A. Wild-type (BY4741) cells carrying a empty vector, or p314-HSF1 were 

transformed with the HSE-lacZ reporter, and grown at 30 °C (empty bar) or heat 

shocked at 37 °C (black bar) for 1 h. β-galactosidase activity was determined 

using luminescent β-Glo analysis kit. 

B. DNY248 carrying  p413TEF-FLAG(N)-Hsf1 was counter selected against the 

URA plasmid expressing wild-type HSF1 on 5-FOA, followed by transformation 

with the HSE-lacZ reporter. Cells were grown at normal temperature (30 °C, 

empty bar), or heat shocked at 37 °C (black bar) for 1 hr. The isogenic wild-type 

BY4741 carrying a empty HIS vector and the reporter was used as a control. β-

galactosidase activity was determined using luminescent β-Glo analysis kit. 
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Figure 5-3. Decrease of Hsf1 expression level partially restores chaperone repression 

on Hsf1 
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and induced normally during heat shock. I noted that the basal Hsf1 activity in DNY248 

was also moderately higher compared with wild-type BY4741 cells. It is consistent with 

the promoter strength of TEF, which probably resulted in higher than endogenous 

expression level of Hsf1 in DNY248, but lower than that in wild-type cells carrying the 

fusion construct. However, I cannot completely exclude the possibility that localization 

and existence of the FLAG tag leads to misfolding of Hsf1, and consequently contributes 

to Hsf1 derepression. These data suggest that the constitutive activation of Hsf1 in cells 

carrying the FLAG-Hsf1 fusion is predominantly caused by overexpression of the 

transcription factor. The total amounts of FLAG-Hsf1 fusion in the cytoplasm possibly 

overwhelmed chaperone repression. Taken together, I have taken the first step toward 

generating a functional expression system of FLAG-tagged Hsf1 using a strain lacking 

the endogenous Hsf1. This expression system then can be used to biochemically identify 

the dynamic Hsp70/Hsp90-Hsf1 interactions in the presence of thiol-reactive compounds 

to refine the model I proposed in Chapter 4. It can also be utilized for structural studies of 

chaperone regulation, screening of Hsf1 targeted genes in various stress conditions, and 

search of unknown Hsf1 activators and inhibitors such as kinases and phosphatases in the 

yeast system. 
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DISCUSSION 

 In this chapter, I reported generation of a FLAG-Hsf1 fusion to detect, isolate, and 

validate Hsp70/Hsp90-Hsf1 complexes in yeast S. cerevisiae. Utilizing a heterologous 

TEF promoter, the FLAG-tagged Hsf1 was successfully expressed and detected. The 

fusion construct responded to thermal stress and developed hyper-phosphorylation as 

shown by the SDS-PAGE mobility shift. Genetic studies suggest that the constitutively 

expressed cytosolic Hsp70, Ssa1 and Ssa2, are Hsf1 repressors in yeast (237, 258). 

Therefore, I hypothesize that Ssa1 may restrain Hsf1 in inactive form through physical 

interactions. During stress, Ssa1 may be titrated by accumulation of misfolded proteins, 

or directly modified to undergo conformation changes, leading to release of Hsf1 into its 

active form. However, immunoprecipitation assay revealed that heat shock treatment 

failed to disassociate Ssa1 from Hsf1 using the FLAG-Hsf1 construct. To elucidate this 

observation, I measured the Hsf1 activity using the HSE-lacZ reporter system and 

demonstrated that Hsf1 was derepressed in the wild-type cells carrying the N-terminal 

FLAG-tagged Hsf1, suggesting that the fusion construct is not functional. Overexpression 

of human HSF1 is reported to constitutively activate the HSR (289). Additionally, 

truncation of the N-terminus of Hsf1 also causes HSR activation in the absence of stress 

(53, 55). To address whether the expression level or the insertion of N-terminal FLAG 

tag results in loss of functions of FLAG-Hsf1, I decreased overall expression levels of 

Hsf1 by transforming it into DNY248, a strain lacking the endogenous HSF1 gene. 

Indeed, Hsf1 activity was partially restored in this expression system, suggesting that 

derepression of Hsf1 in cells carrying FLAG-Hsf1 construct is mainly due to 

overexpression of Hsf1. However, the possibility that the localization and/or insertion of 
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the FLAG tag also contribute to the non-functional Hsf1 phenotype is not completely 

excluded. 

 HSF1 is a serine-rich, constitutively phosphorylated mediator of the stress 

response. Phosphorylation events have been observed on 15 serine residues (S121, S216, 

S230, S292, S303, S307, S314, S319, S320, S326, S344, S363, S368, S419 and S444) 

and four threonine residues (T142, T323, T367m T369) and show both positive and 

negative regulation of HSF1 (304-312). On the other hand, HSF1 is negatively regulated 

by protein chaperones such as Hsp70 and Hsp90. However, little is known about how 

phosphorylation and chaperone repression collaborate to regulate Hsf1 activity. By 

overexpressing Hsf1, I observed derepressed, but hyper-phosphorylated Hsf1 during heat 

shock, suggesting that chaperone regulation may be occurring prior to other post-

translational modifications. Interestingly, both phosphorylation events and complex 

formation of human Hsp70-Hsf1 occur in the transactivation domain of Hsf1 (289, 313). 

It is unclear how Hsf1 coordinates the multi-layer regulation on the same sites. However, 

I cannot exclude the possibility that the Hsf1 was not normally phosphorylated due to 

lack of commercial available antibodies of yeast Hsf1 and knowledge of involved kinases 

and phosphatases in the yeast system.  

 Taken together, in this chapter, I report generation of a functional FLAG-Hsf1 

fusion construct in the yeast system. In the future, this system can be used to identify 

biochemical interactions between Hsf1 and chaperone in various stress conditions. 

According to the genetic and biochemical results I showed in Chapter 4, I predict this 

construct can be used to observe interaction of Ssa1 and Hsf1 under normal growth 

conditions. In the presence of thiol-reactive compounds, direct modification may cause 
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conformation rearrangements of Ssa1, leading to dissociation of Ssa1-Hsf1 complexes. 

Alternatively, human Hsp70 is observed to associate with either inactive monomeric or 

active DNA-binding Hsf1, making it is possible that Ssa1 maintains the interaction with 

Hsf1, but relies on conformation rearrangements to regulate transactivation activity of 

Hsf1 (45, 66, 261, 281). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 135 

 

Chapter 6: Discussion and conclusions 
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SUMMARY AND FUTURE DIRECTIONS 

Thiol-reactive compounds function as potent Hsf1 activators in yeast 

 The heat shock response (HSR) is an ordered genetic response to diverse 

environmental and physiological stimuli that causes robust induction of genes encoding 

molecular chaperones, proteases, and other proteins that essential for protection and 

recovery from cellular damage associated with the accumulation of misfolded proteins 

(159). Under stress conditions, molecular chaperones, also called heat shock proteins 

(HSPs) function to hold and refold denatured proteins, prevent them from aggregation, 

and/or regulate their degradation. In non-stressed cells, HSPs are also central components 

in signal transduction, immunity and apoptosis (16-19, 215, 314).  Proper function of 

HSPs is relevant to many human diseases, including cancer and neurodegenerative 

diseases, making it important to understand regulation of the pathway (184, 185).  

In all eukaryotes, the HSR is modulated at the transcriptional level by the heat 

shock transcription factor Hsf1. Interest in the HSR and chaperones as potential targets 

for therapeutics has spurred investigations on small molecule regulators of Hsf1. These 

regulators have diverse chemical features: some are non-specifically reactive with a 

variety of cellular proteins, whereas others have specific targets that disrupt protein 

homeostasis (or proteostasis) (216). Many known Hsf1 activators influence the 

proteostasis network by affecting protein translation, such as translation inhibitors (e.g. 

puromycin) and amino acid analogues (e.g. azetidine 2-carboxylic acid), or by targeting 

the protein quality control system, such as chaperone (e.g. geldenamycin) and proteasome 

inhibitors (e.g. MG132) (159, 170, 209). For other Hsf1 activators, the detailed 

mechanisms and the molecular targets that are linked with Hsf1 activity remain largely 
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unclear. Interestingly, many Hsf1 activators that fall into this category are capable of 

reacting with the thiol group of cysteine residues. For example, hydrogen peroxide (H2O2) 

activates mammalian Hsf1 in vitro by initiating disulfide bond formation in the DNA 

binding domain of Hsf1 (171). Transition metals and metalloids such as cadmium and 

arsenic have been shown to upregulate Hsp70 gene transcription in yeast and mammalian 

cells (281, 282). Many organic electrophiles including celastrol, the cyclopentenone 

prostaglandin, 15-deoxy-Δ
12,14

-prostaglandin J2 (15d-PGJ2), and 4-hydroxynonenal (4-

HNE) are also reported as HSR activators (220-222, 315-317). All of these electrophiles 

contain an α,β-unsaturated carbonyl group capable of forming a Michael adduct with the 

thiolate anion. Moreover, previous data from our lab reports that celastrol not only 

activates the heat shock response, but also induces the oxidative stress response in yeast. 

These results suggest a common chemical mechanism whereby diverse reactive 

compounds can activate the HSR by thiol modification of cysteine residues (180).  To 

test this hypothesis, I tested three distinct groups of thiol-reactive compounds, i.e. 

transition metals and metalloids (e.g., cadmium), oxidants (e.g., diamide and H2O2), and 

organic electrophiles (e.g., diethylmaleate and 15d-PGJ2). Strikingly, all of these 

compounds significantly induced Hsf1 activity. The same molecules produced an SDS-

PAGE mobility shift consistent with heterogeneously phosphorylated Hsf1 observed 

during heat shock, providing independent verification of Hsf1 activation. In addition, 

pretreatment with a reducing agent dithiothreitol (DTT) completely inhibited Hsf1 

activation, confirming that these reactive compounds activated Hsf1 due to their thiol-

reactivity. Together, my work showed that diverse thiol-reactive compounds can function 

as potent activators of the HSR in a model eukaryote. 
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Thiol-reactive compounds do not activate Hsf1 by accumulation of misfolded cytosolic 

proteins 

 The baker’s yeast S. cerevisiae contains a single HSF1 which is essential for cell 

viability at all temperatures and constitutively binds to the conserved heat shock element 

(HSE) motif in the promoter of hsp genes as a homotrimer (36, 318). Generally, Hsf1 is 

thought to be stabilized by cytosolic HSPs under normal growth conditions. During heat 

shock, accumulated misfolded proteins may recruit HSPs away from Hsf1 and relief Hsf1 

repression. Therefore, the accumulation of misfolded proteins can trigger Hsf1 activation.  

In this work, I determined that different thiol-reactive compounds activated Hsf1 

and inhibited Hsp90 in a reciprocal manner. To understand the mechanism through which 

cells sense thiol reactive compounds and activate the appropriate transcriptional response, 

I first asked whether these compounds cause cytosolic protein misfolding, leading to 

titration of chaperones from the Hsf1. Because it is difficult to label the thiol-reactive 

compounds I identified, I compared their kinetic induction profiles with those of 

unfolding reagents and demonstrated that the features of Hsf1 activation by thiol-reactive 

compounds are not consistent with a model relying on the accumulation of misfolded 

cytosolic proteins. Two unfolding reagents were used in this work. Azetidine-2-

carboxylic acid (AZC) is a toxic analog of proline and is reported to misfold newly 

synthesized proteins by incorporating into polypeptides competitively with proline, 

whereas DSP, an amine-reactive protein crosslinker, was used to cross-link existing 

proteins, predicted to lead to aggregate formation of cytosolic proteins (249). Both AZC 

and DSP were shown to activate Hsf1 by detecting the expression levels of inducible 

Hsp70 and using the HSE-lacZ reporter assay, respectively. However, these two 
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unfolding reagents displayed completely different induction profiles when compared with 

those of thiol-reactive compounds. First of all, the thiol-reactive compounds rapidly 

induced the HSR. However, Hsf1 activation by AZC and DSP occurred much slower, 

suggesting that high levels of misfolded proteins are required to activate Hsf1. Second, 

thiol-reactive compounds induced the HSR transiently, whereas activation due to AZC 

and DSP treatment is cumulative, likely from continued production and accumulation of 

high levels of unfolded proteins. Consistent with the cumulative induction of Hsf1, 

treatment with AZC, but not thiol-reactive compounds, resulted in significant decrease of 

cell viability. Lastly, thiol-reactive compounds reciprocally inhibited Hsp90 functions 

using the glucocorticoid receptor analysis system. The inhibition of chaperone functions 

was not observed in cells treated with DSP. Taken together, I reported that both thiol-

reactive compounds and the unfolded reagents were capable of inducing the HSR. 

However, the thiol-reactive compounds showed distinct kinetic induction profiles from 

those of AZC and DSP, indicating that these reactive compounds are likely not activating 

Hsf1 by directly misfolding cytosolic proteins.  

Another possible explanation of Hsf1 activation by thiol-reactive compounds 

could be that these compounds affect other aspects of cellular protein quality control 

systems. The ubiquitin-proteasome system (UPS) is responsible for degradation of short-

lived and abnormal proteins. In the process of ubiquitination, ubiquitin (Ub) is transferred 

from E1 to the active cysteine residues of E2 via a transthioesterification reaction. It was 

therefore conceivable that the thiol-reactive compounds induced Hsf1 by modification of 

the thioester linkage between E1 and E2, leading to the accumulation of non-

ubiquitinated, misfolded proteins. Indeed, I used β-galactosidase reporter fusions to probe 
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distinct pathways for protein ubiquitination and degradation, and demonstrated that 

cadmium specifically stabilized substrates recognized by UBC6 and UBC7. This 

observation suggests that cadmium did not inhibit proteasome or Uba1 (E1) activity as 

this would have led to stabilization of all reporter substrates. Since Ubc6/7-dependent 

protein degradation was inhibited by cadmium treatment, I asked whether inhibition of 

this specific degradation pathway leads to activation of Hsf1. Interestingly, inhibition of 

Ubc6/7 function by deleting the major gene UBC7 failed to derepress Hsf1 in non-

stressed cells, suggesting that the inhibition of a specific ubiquitination pathway and 

activation of Hsf1 by cadmium are correlated, but not causal, events. Moreover, I 

demonstrated that the proteasome inhibitor MG132 induced the HSR, but had no effect 

on Hsp90 activity, suggesting different mechanisms through which MG132 and thiol-

reactive compounds activate the HSR. Taken together, my results suggest that thiol-

reactive compounds do not induce the HSR by inhibiting the ubiquitin-proteasome 

system.  

 Although I successfully demonstrated that thiol-reactive compounds did not non-

specifically damage cytosolic proteins or affect the ubiquitin-dependent protein 

degradation, my results cannot exclude other possibilities relevant to protein homeostasis 

such as ER-associated degradation and ubiquitin-independent protein degradation. 

Instead of test these possibilities individually, I utilized high-speed centrifugation to 

demonstrate that thiol-reactive compounds maintained solubility of the majority of 

proteins, suggesting that these compounds caused minor to no effect on protein stability. 

Taken together, I showed in this work that Hsf1 activation by thiol-reactive compounds is 

not due to generation and accumulation of misfolded cytosolic proteins. Instead, the 
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reciprocal Hsp90 inhibition by these chemicals suggests an alternative sensing 

mechanism. 

 

The yeast Hsp70 Ssa1 is hypersensitive to thiol-reactive compounds 

 Genetic and biochemical evidence support a model that at least two classes of 

chaperones, Hsp70 and Hsp90, play a major role in regulating Hsf1 activity, repressing 

activation through binding/sequestration under normal growth conditions and promoting 

transcriptional competence through complex dissociation during stress (45, 66, 71, 76-78, 

117, 237, 258). Previous study from our lab reported that celastrol not only activates Hsf1, 

but also inhibits Hsp90-dependent signal transduction in yeast and mammalian cells (180, 

223). Consistently, the thiol-reactive compounds I determined also functionally inactivate 

Hsp90. Since pretreatment of thiol-reactive compounds with excess free thiol (e.g., DTT) 

completely abolished their biological effects on Hsf1 activation, I reasoned that Hsf1 

induction by thiol-reactive compounds may involve inactivation of specific regulatory 

proteins through targeting of reactive cysteine residues. Although yeast Hsf1 and Hsp90 

proteins (e.g., Hsc82 and Hsp82) lack cysteine residues, several Hsp90 co-chaperones 

contain one or more cysteines, i.e. all four Ssa family of Hsp70, the Hsp70 nucleotide 

exchange factors Sse1 and Fes1, and Hsp90-associated peptidyl-prolyl isomerases Cpr6 

and Cpr7. Furthermore, mutations of Ssa1/2, Sse1, Fes1 and Cpr7 all lead to significant 

derepression of Hsf1, suggesting that one or more of these proteins might be sensitive to 

thiol-modification (76, 77, 237). Indeed, I demonstrated that Ssa1 was hypersensitive to a 

cysteine biotinylation reagent biotin-BMCC in vitro. The labeling of Ssa1 by the thiol-

reactive probe was completely abolished after treated with DTT, verifying that Ssa1 was 
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labeled via thiol modification. It is interesting that other chaperones I tested were 

completely resistant to the thiol labeling, even though some of them such as Sse1 contain 

more cysteine residues than Ssa1. This might be because I enriched these chaperones 

from cell extracts using tandem affinity purification. As important components of the 

Hsp90 multichaperone machinery, these chaperones probably reacted with the biotin-

BMCC as a complex which prevented the exposure of some cysteine residues, suggesting 

that not every cysteine is equally reactive in vivo. These results, together with the genetic 

evidence from deletion of Ssa1 and the two nucleotide exchange factors, strongly 

implicate that Ssa1 is a relevant target of Hsf1-activating thiol-reactive compounds in 

yeast.  

 

Ssa1is a sensor of Hsf1 activation by thiol-reactive compounds 

 The in vitro labeling assay suggested that of the proteins comprising the 

Hsp70/Hsp90 complex we tested, Ssa1 is specifically modified by a thiol-reactive probe. 

The Ssa family of cytosolic Hsp70, represented by Ssa1, contain three cysteine residues 

located in the nucleotide-binding/ATPase domain (271). To test whether modification of 

Ssa1 on one or more cysteine residues by the thiol-reactive compounds I determined is 

directly responsible for Hsf1 activation, I substituted the cysteines in Ssa1 with non-

reactive serine. Although the C15S substitution leads to instability and loss of functions 

of Ssa1, cells bearing SSA1-C264S, C303S complemented the slow growth phenotype of 

ssa1Δssa2Δ, but were unresponsive to thiol-reactive compounds. Interestingly, both 

single mutants SSA1-C264S and SSA1-C303S recapitulated the responses of the double 
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mutant, suggesting that cells required both C264 and C303 of Ssa1 to sense thiol-reactive 

stress.  

 Two models can explain the role of Ssa1 in transducing the thiol-reactive signal to 

Hsf1. First, the thiol-reactive compounds may directly modify the Ssa1 cysteines by 

either oxidation or by the formation of stable or transient adduct. In the second model, 

these compounds could deplete cellular redox buffer, i.e. the thioredoxin and glutathione 

systems, which might fail to maintain Ssa1 in a reduced state. To distinguish between 

these two possibilities, I used Click chemistry to exam thiol-modification of Ssa1 in vivo. 

Taking advantage of azide-alkyne cycloaddition, I demonstrated that wild type Ssa1 was 

modified by the alkyne derivative of 4HNE molecule that was a potent Hsf1 activator, 

whereas the labeling signal was drastically decreased in cells carrying the SSA1-C264S, 

C303S mutant allele, suggesting that one or both of these cysteines is a direct target of 

electrophiles in vivo. Interestingly, SSA1 single mutants responded differently to the in 

vivo labeling.  In SSA1-C264S with intact C303, the labeling signal was as strong as wild-

type, but was significantly decreased in SSA1-C303S. This observation is not consistent 

with our genetic analysis that both cysteine residues are required to sense thiol-reactive 

compounds. The nucleophilicity of cysteine residues requires both thiol de-protonation to 

the thiolate anion and surface exposure. Moreover, C306 in human Hsp70 also 

demonstrates higher reactivity than C267 when treated with an oxidant, methylene blue 

(MB). Structure analysis further demonstrated that oxidation of C306 results in 

conformation changes of Hsp70 ATP-binding site, which consequently increases 

exposure and sensitivity of C267 to thiol-modification. Therefore, C303 may be highly 

reactive relative to C264 and C303 may need to be modified prior to C264 is exposed. To 
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verify that thiol modification leads to functional inactivation of Ssa1, I replaced the two 

cysteines with aspartic acid to add steric bulk and mimic oxidation. Strikingly, SSA1-

C264D, C303D produced a stable, but not functional, Ssa1 protein failed to complement 

slow-growth and Hsf1 derepression of ssa1Δssa2Δ mutant. Taken together, I 

demonstrated that C264 and C303 of Ssa1 are directly modified by thiol-reactive 

compounds in living cells in the same time frame in which I observed Hsf1 activation. 

The thiol-modification leads to inactivation of Ssa1, and consequently derepresses Hsf1 

activity. 

 

Sensing of thiol-reactive compounds by Ssa1 is physiologically relevant for cell survival   

 The ability of cells to survive exposure to a sudden lethal temperature is defined 

as thermotolerance. Wild-type cells shifted from its normal growing temperature at 30 ˚C 

to 37 ˚C, a sub-lethal temperature, before exposure to the lethal condition at 50 ˚C 

showed significantly increase of viability compared with cells directly exposed to 50 ˚C 

(319). This phenomenon is called acquired thermotolerance. It is generally assumed that 

the gain of thermotolerance is due to rapid increases of HSP synthesis (320). Deletion of 

the constitutive cytosolic Hsp70, Ssa1 and Ssa2, leads to derepression of Hsf1 and 

growth defects at low temperatures. However, this strain is also shown to be more 

tolerant of extreme temperatures than wild type, probably due to the constitutively active 

Hsf1 (237).  

 Yeast cells exposed to sub-lethal stress gain tolerance not only to the higher dose 

of the same stress, but also to other disparate environmental stimuli. A general 

microarray dataset indicates that 21 out 37 predicted stress responsive regulators, for 



 145 

 

example, Hsf1, Msn2/4 and Yap1, have overlapping functions under at least half of the 

eight environmental stresses including oxidative stress, heat/cold shock, and osmotic 

stress (Chen 2009). Mutants deficient in the key antioxidant enzyme catalase, superoxide 

dismutase (SOD) and cytochrome c perosidase demonstrate thermal-sensitivity at 50 °C; 

while overexpression of these enzymes lead to acquisition of thermotolerance (4). 

Superoxide anion (O2
-
) not only activates the yeast Yap1 oxidant defense transcription 

factor, but also selectively induces the Hsf1-dependent expression of the copper 

metallothionein CUP1 (6, 7, 171). Mutated yeast Hsf1 exhibiting high basal transcription 

activity also gains cells cadmium-resistance (321). Our lab showed previously that 

treatment of celastrol activates both Hsf1 and Yap1, leading to gain of both 

thermotolerance and oxidant resistance (180). To confirm that sensing of thiol-reactive 

compounds by Ssa1 is physiologically relevant to cell survival, I tested the SSA1 mutants 

for acquired thermotolerance in the presence of thiol-reactive compounds. Indeed, wild-

type cells showed increased viability with cadmium treatment, whereas cells expression 

SSA1-C264S, C303S mutant allele failed to gain the thermotolerance. All these findings 

suggest that yeast Hsf1 can sense thiol-reactive stress through the two cysteine residues 

of Ssa1 and assist in mountinga defensive transcription response. 

 

Ssa1 cysteines are required for activation of the cytoprotective HSR by thiol-reactive 

compounds but not by heat 

 The heat shock transcription factor Hsf1 plays a central role in cellular protein 

homeostasis in response to various stress conditions, including heat shock, oxidative 

stress, heavy metals, infection and inflammation, and pharmacological reagents (182, 
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322). Previous studies of yeast Hsf1-mediated metallothionein (CUP1) gene expression 

suggest that Hsf1 may regulate transcription of the same gene via genetically separable 

signaling pathways in response to different stresses (57, 322). Interestingly, my results 

suggest that cysteine residues of Ssa1 participate in activation of Hsf1 by thiol-reactive 

compounds, but not by heat. Utilizing a HSE-lacZ reporter system, I assessed Hsf1 

activity in cells carrying SSA1-C264S, C303S in response to heat shock and thiol-reactive 

compounds. Strikingly, the mutant cells, which rendered immunity to the chemicals, 

retained normal heat inducibility. To confirm this observation, I subjected the mutant 

cells to mild heat shock prior to the lethal thermal stress. Consistent with the reporter 

assay, cells bearing SSA1-C264S, C303S gained thermotolerance in the same manner as 

wild-type. These results suggest that thiol-reactive compounds target C264 and C303 of 

yeast Hsp70 Ssa1 to induce the HSR, and that the HSR activation by these compounds is 

distinct from sensing of acute temperature increase. 

 Higher eukaryotes such as mice and humans harbor multiple genes encoding HSF 

isoforms. Among these HSFs, HSF1 is the principal activator of heat shock gene 

transcription in response to heat shock and other environmental stresses, while HSF2 

plays a role in developmental gene expression (323). It is interesting that yeast S. 

cerevisiae and other “lower” eukaryotes express a single essential HSF equivalent to 

mammalian HSF1, which is capable to activate transcription in response to multiple 

distinct stresses (34, 36, 37). Furthermore, yeast Hsf1 is unusual that in addition to the C-

terminal transactivation domain, it includes an N-terminal extension as a second potent 

transcriptional activation domain (53). These observations suggest that the higher 

eukaryotes may have evolved functional specialized HSF isoforms to respond to distinct 
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stresses, whereas lower eukaryotes like yeast utilize different signal transduction 

pathways to sense diverse stress by using a single HSF.  

 

Physical association between Ssa1 and Hsf1 under stress or non-stress conditions 

 The heat shock response is self-regulated via repression under normal growth 

conditions (255, 270). In yeast, numerous genetic evidence suggest that mutations of 

cytosolic Hsp70, Hsp90 and their co-chaperones including Cpr6/7, Sse1 and Fes1 lead to 

activation of Hsf1 (76, 77, 237, 260). The role of Hsp90 in Hsf1 repression is also 

supported by the finding that pharmacological inhibitors of Hsp90, including 

geldenamycin, radicicol and celastrol, induce the HSR (19, 71, 180, 186-188, 223). These 

results suggest that Hsp70 and Hsp90 are the major repressors of Hsf1 in non-stressed 

cells. In this work, I reported that yeast cytosolic Hsp70 is a relevant candidate to 

regulate Hsf1 activation by thiol-reactive compounds. By using both genetic and 

biochemical tools, I demonstrated that Ssa1 was directly modified and consequently 

inactivated by thiol-reactive compounds. However, I cannot yet conclude that 

inactivation of Ssa1 directly induces Hsf1. It is also possible that inactivation of Ssa1 

leads to increase of misfolded Ssa1 substrates, which activates Hsf1. Testing effects of 

thiol-reactive compounds on the physical interaction of Ssa1 and Hsf1 is necessary to 

address this possibility. In mammalian cells, Hsp70 associates with the HSF1 

transactivation domain in vivo and in vitro (45, 248, 261, 324). However, the 

Hsp70/Hsp90-Hsf1 complexes have not been conclusively observed and validated in the 

yeast system (295). In Chapter 5, I generated a functional FLAG-Hsf1 expression system 

in a hsf1Δ strain DNY248 for detection, isolation, and validation of Hsp70/Hsp90-Hsf1 
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interactions in yeast system. By utilizing the FLAG-Hsf1 expression system, I expected 

to observe association of Ssa1 with Hsf1 in non-stressed cells and dissociation of Ssa1 in 

the presence of thiol-reactive compounds. If this is the case, it would provide direct 

evidence that Ssa1 retains Hsf1 in an inactive form through physical interactions, and 

inactivation of Ssa1 derepresses Hsf1. Alternatively, Ssa1 may not dissociate from Hsf1 

during stress. Human Hsp70 binds with either free Hsf1 monomers, or active Hsf1 

trimers (45, 66, 261, 325). The recent study of human Hsp70 suggested that oxidation of 

C306 by methylene blue may result in exposure of the nearby C267. These results 

suggest that conformational rearrangements of Hsp70 also possibly to occur during 

regulation of Hsf1 activity. Furthermore, the FLAG-Hsf1 fusion can also be used to 

detect dynamic interactions between Hsf1 and chaperones in various stresses. In chapter 

4, I reported that Ssa1 can discriminate between heat shock and thiol-reactive compounds. 

Therefore, it would be interesting to observe different interactions of Ssa1 and Hsf1. 

Finally, the FLAG-Hsf1 fusion can be applied to screen downstream target genes in the 

presence of diverse environmental stressors, and search kinases and phosphatases of yeast 

Hsf1 which remain unsolved for decades. 

 

The roles of cellular redox buffering in regulating the Hsp70-Hsf1 circuit 

The Click chemistry analysis provided clear evidence that in the presence of thiol-

reactive compounds, Ssa1 probably forms a stable adduct with 4-HNE alkyne. However, 

I cannot completely exclude another possible explanation for our observations that thiol 

treatment altered the redox balance in cytoplasm, leading to inability to maintain Ssa1 in 

a reduced and functional state.   In response to oxidative stress, the transcription factor 
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Yap1 in yeast is activated by forming an intramolecular disulfide bond with Gpx3 

(glutathione peroxidase-like protein 3) (326). Thioredoxin is required to turn off the 

pathway by reducing both the sensor Gpx3 and the regulator Yap1 (327).  Therefore, it is 

also possible that Ssa1 requires glutathione and thioredoxin system to maintain C264 and 

C303 in reduced state. While organic electrophiles can form permanent adducts with 

reactive cysteine residues, thiol modification by other reactive compounds such as 

reactive oxygen species (ROS) can be transient and reversible. The redox buffering 

system thus is likely to affect both repression and attenuation of Hsf1. To address this, 

the simplest way is to assess Hsf1 activity in mutants lacking redox buffering. The 

cytoplasm is usually maintained as a reducing environment as a result of high 

concentrations of glutathione (GSH), a conserved tripeptide with a highly reactive thiol 

and a very low redox potential (328-330). Levels of reduced glutathione are regulated by 

a series of enzymes that balance synthesis, γ-glutamycysteine synthetase (Gsh1) and 

glutathione synthetase (Gsh2), and reduction, glutathione reductase (Glr1) (331). The 

cellular factors that regulate redox homeostasis are two small heat-stable oxidoreductases 

glutaredoxin (Grx1 and Grx2) and thioredoxin (Trx1 and Trx2) (332). Disruption of the 

redox buffering result in accumulation of oxidized glutathione, lack of reductive 

glutathione and thioredoxin, hyper-sensitivity to oxidative stressors, and even loss of 

viability (333). For example, high concentrations of oxidized glutathione are detected in 

glr1Δtrx1Δ and glr1Δtrx2Δ mutants (334). Deletion of GRX1 and GRX2 fails to maintain 

oxidreductase activity during heat shock (335). The glr1Δ mutant is hyper-sensitive to the 

oxidant diamide, while trx1Δtrx2Δ demonstrates increase sensitivity to free thiol 

dithiothreitol (DTT) (334, 336). Although TRX1 and TRX2  are dispensable during 
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normal growth conditions, glr1Δtrx1Δtrx2Δ and grx1Δgrx2Δtrx1Δtrx2Δ mutants are not 

viable, suggesting that functional redox buffering system is essential for cell viability 

(334, 337).  

Taking advantage of abundant genetic tools in the yeast system, the roles of 

specific redox buffering pathways in Hsf1 regulation then can be probed using the HSE-

lacZ reporter system. Alternatively, GSH content can be used as an indicator of redox 

balance in cytoplasm. Hsf1 activity can be measured along with GSH contents in heat-

shocked cells, cells lacking the redox buffering system, or cells bearing SSA1 cysteine 

mutant allels to study cellular redox buffering in regulating the Hsp70-Hsf1 circuit. 

 

Species diversity of cysteine residues in Hsf1 and chaperones 

 A database search of HSF1 homologues from a range of experimental organisms 

revealed the absence of cysteine residues in Aspergillus, Neurospora, Kluyveromyces, 

and Candida genera, whereas Schizosaccharomyces, Caenorhabditis, Danio, and 

mammalian HSF1 genes all contain at least one reactive cysteine. These findings support 

a model wherein Ssa1 homologs confer thiol responsiveness in “lower” eukaryotes, while 

fission yeast and animals express HSF1 that directly senses redox changes. Indeed, early 

study demonstrated that hydrogen peroxide activates and stabilize purified Drosophila 

and human HSF1 by catalyzing the formation of disulfide bond between the two cysteine 

residues (C35 and C105) in the DNA binding domain (171). In addition to DNA binding 

activity, oxidation of cysteines on mammalian HSF1 also affects the trimerization of the 

protein. More detailed investigation of human HSF1 reveals that thiol-disulfide exchange 

promotes conformation changes of the protein, leading to both positive and negative 
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regulation of HSF1 activity (338-341). These observations are consistent with the fact 

that several steps in the activation process of HSF1 in metazoan cells, including nuclear 

accumulation, trimerization and acquisition of DNA binding, are missing in S. cerevisiae. 

Moreover, yeast Hsp90s, both Hsc82 and Hsp82, lack cysteine residues, making yeast 

Hsp70 Ssa1 a potential sole sensor of thiol-reactive compounds. In contrast, human 

Hsp90 has more than one cysteine residue. My results and earlier studies both showed 

that the J-type cyclopentanone prostaglandin (15d-PGJ2) can activate Hsf1 in yeast and 

mammalian cells. Interestingly, biotinylated-15dPGJ2 was shown to modify human 

Hsp90 in vitro, suggesting additional thiol-reactive sensors in higher eukaryotes (181). It 

remains unclear whether more complex eukaryotes utilize additional cysteine residues for 

more complicated regulation of HSF1, or primitive eukaryotes "lost" these cysteine 

residues to simply the process. Although HSF1 is highly conserved in all eukaryotes, 

regulation of mammalian HSF1 is more complicated than that of yeast S. cerevisiae. 

Mammalian HSF1 undergoes trimerization, nuclear translocalization, DNA-binding, and 

post-translational modification, while yeast Hsf1 binds constitutively with DNA as a 

homotrimer in the nucleus. Therefore, it is possible that during evolution, mammals, for 

example, refined the regulatory process of the heat shock response and developed more 

cysteine residues to meet the requirements of extra regulatory steps.  Alternatively, 

"lower" eukaryotes such as yeast might have same numbers of reactive cysteines as 

animals in chaperones and Hsf1. However, these cysteine residues might be seldom used 

to sense stress due to the relatively simple regulatory process of yeast Hsf1. Moreover, a 

cellular proteome abundant in reactive cysteines  is susceptible to environmental stimuli 
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including xenobiotics, reaction byproducts, and oxidative stress. Therefore, in the course 

of time, yeast may lose these reactive residues for adaptation.  

 

Regulation of signal transduction through cysteine oxidation/modification 

In this work, I have demonstrated that diverse compounds that share the 

biochemical property of thiol-reactivity can potently activate Hsf1. My work suggests 

that in the time frame of Hsf1 activation, thiol-reactive compounds specifically modify 

cysteine residues of the general cytosolic Hsp70 family, represented by Ssa1, leading to 

transient inactivation of chaperones and derepression of Hsf1. Consistent with my finding 

of Hsf1 activation in yeast, regulation of signal transduction through direct and reversible 

oxidation of cysteine residues has also been observed in several other pathways. The 

stress activated protein kinase (SAPK), also known as jun N-terminal kinase (JNK), 

pathway is induced by various stressors including UV light, osmotic stress and 

inflammatory cytokines (342). In non-stressed cells, the SAPK/JNK kinase is inhibited 

by binding with a glutathione-S-transferase, GSTpi. Stimulation with UV light or 

hydrogen peroxide results in oxidation and oligomerization of GSTpi, releasing the active 

kinase (343). In contrast, the upstream activator of the SAPK/JNK pathway, MEKK1 

protein kinase, is negatively regulated by thiol modification. MEKK1 contains a reactive 

cysteine residue within the ATP binding domain. Oxidation of the cysteine by menadione 

or hydrogen peroxide interferes with kinase activity, suggesting that thiol modification 

may serve a role of feedback inhibition in the SAPK/JNK cascade (344). The cyclic 

AMP-dependent protein kinase, also known as protein kinase A (PKA), is regulated by 

fluctuating levels of cAMP within cells and has multiple functions, including regulation 
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of glycogen, sugar and lipid metabolism. PKA contains a cysteine residue, Cys-199, near 

its critical phosphorylation site, Thr-197. Oxidation of Cys-199 using the thiol-oxidizing 

reagent diamide is shown to enhance dephosphorylation and inactivation of PKA (345, 

346).  

Cysteine oxidation also impacts activities of transcription factors, primarily by 

affecting DNA binding. In Drosophila, activation of HSF1 by hydrogen peroxide 

requires two cysteines, Cys-35 and Cys-105, in the HSF1 DNA binding domain (171). 

The c-jun transcription factor, however, loses DNA binding activity in vitro in response 

to altered GSH/GSSG ratios (347). These observations suggest that cysteine oxidation 

can both positively and negatively regulate activities of transcription factors through 

either redox-dependent disulfide bond formation or sulfenic acid oxidation of  critical 

cysteine(s) in the DNA-binding domain. Although numerous studies have clearly 

detected that oxidation of cysteine results in structural and catalytic consequences to the 

targeted proteins in experimental systems, it is still difficult to use current available 

technology to demonstrate thiol modifications in response to physiologically relevant 

signaling stimuli and conclusively link these modifications with  control of cell signaling.  

Theoretically, all protein cysteine residues could be modified with oxidative 

reagents such as reactive oxygen species (ROS). However, for cysteine oxidation to be 

important in cell signaling, there must be specificity determinants that allow only a small 

subset of cysteines to be modified. Two factors appear to contribute to determination of 

specificity: the accessibility of a cysteine and its inherent reactivity (348). Studies using 

strong oxidizing reagents such as N-ethyl maleimide (NEM) and iodoacetamide (IAA) 

demonstrate that cysteine residues located at the surface are preferentially modified in a 
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non-denatured protein (349-351).  The inherent reactivity of a cysteine may also be 

influenced by neighboring amino acids. The thiol ionization state governs cysteine 

nucleophilicity and redox susceptibility. In the case of hydrogen peroxide, only thiolate 

anion (R-S
-
), but not the sulfhydryl group (R-SH) of a cysteine is capable of reacting 

directly.  Mutagenesis analyses suggest that charged amino acids, such as aspartic acid 

carboxylate anion and protonated lysine epsilon-amino groups, significantly affect the 

pKa of a functional cysteine, thereby enhancing the rates of thiol-disulfide reactions at 

physiological pH (352-354). Alternatively, the local microenvironment of a cysteine, 

especially the tertiary structure within a properly folded protein, may also contribute to 

maintain the active site thiol in the reactive thiolate form (355, 356). Taken together, the 

accessibility and chemical reactivity of a cysteine determine that cysteine oxidation can 

be a specific, targeted event that affects certain cysteine residues in preference to others. 

Therefore, cysteine oxidation/modification states are capable of playing physiologically  

relevant roles in cell signaling. 

Several questions remain regarding the role of cysteine oxidation in the control of 

signal transduction. A current challenge is to define specific events. For example, how 

general events such as ROS generation are translated into specific events such as cysteine 

oxidation on a given protein and secondary consequences such as gene expression remain 

largely unsolved. Another problem is the ability to detect cysteine oxidation in response 

to physiologically relevant stimuli. The transient and reversible modification of cysteines, 

as well as the limitation of current available technology, makes the mechanistic 

dissection of thiol-dependent signal transduction tremendously difficult. Similar to 

protein phosphorylation, cysteine oxidation can alter protein secondary or tertiary 



 155 

 

structure by covalent changes, as well as affect protein charges. Therefore, elucidating 

the targets of thiol oxidation and the enzymes responsible for these modifications will 

facilitate understanding of this important regulatory mechanism. 

 

HSF1 as a therapeutic target of small molecules in human diseases 

 Protein misfolding is associated with many neurodegenerative diseases, including 

Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, amyotrophic lateral 

sclerosis (ALS), prion diseases and other devastating diseases (183, 357). Recently, many 

studies have shown that increasing the expression levels of chaperone proteins can 

suppress the neurotoxicity of misfolded proteins. For example, expression of 

constitutively active HSF1 in a tissue model and a mouse model of Huntington’s disease 

resulted in reduced polyglutamine protein aggregation (358). Moreover, hsf1-/- mice with 

Rocky Mountain Laboratory (RML) prions displayed a shorter lifespan compared with 

wild-type mice (359). Therefore, small molecules that are capable of modulating HSF1 

transcription in human cells would provide a promising avenue for therapeutic 

intervention in human diseases relevant to protein misfolding. Previous screens in 

mammalian cells have identified several HSF1 activators (19). However, these screens 

often result in identification of compounds that induce the HSR through accumulation of 

unfolded proteins or through the inhibition of Hsp90 functions via competition with ATP 

(223, 360). In this work, I described that diverse thiol-reactive compounds can modulate 

Hsf1 activity by thiol-modification on Hsp70, a central chaperone involved in protein 

folding. My results are consistent with the recent demonstration that compounds with 

thiol-reactive moieties are highly represented in high-throughput screens of Hsf1 
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regulators, suggesting that such small molecules may serve as attractive leads for 

derivatization and clinical evaluation (361).  

 An obvious challenge of using thiol-reactive compounds as Hsf1 modulators will 

be to minimize the cross-reactivity of these compounds with other cellular proteins. This 

task may be aided by rational drug design approaches that can further refine their 

specificity. In addition, recent studies revealed that the hormetic dose-response model in 

toxicology and pharmacology has the potential to significantly change importance aspects 

of drug development (362). Hormesis is a term used by toxicologists to refer to a biphasic 

dose response to an environmental agent characterized by low dose stimulation or 

beneficial effect and a high dose inhibitory or toxic effect (363). My results suggest that 

although high doses of thiol-reactive compounds to some extent result in proteotoxicity, 

low doses of these compounds selectively modify HSF1-repressing chaperones, such as 

Hsp70 and Hsp90, to stimulate the cytoprotection of cells by activating HSF1.   
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CONCLUDING REMARKS 

 The heat shock response (HSR) is an ancient and conserved transcriptional 

program that leads to the immediate induction of a battery of cytoprotective genes, 

including heat shock proteins (HSPs), also called chaperone proteins, to against acute and 

chronic stress conditions. In addition to its role in cytoprotection, the HSR also regulates 

lifespan and protects against misfolding of proteins into toxic states that contributes to a 

variety of neurodegenerative diseases. Therefore, over the past two decades, interest in 

the HSR and chaperones as potential targets for therapeutics has stimulated investigations 

on small molecule regulators of the heat shock transcription factor Hsf1. However, the 

detailed mechanisms whereby individual small molecules are initially sensed to drive the 

induction of HSR and whether multiple molecules disrupt on different regulatory steps in 

Hsf1 activation still remain unclear.  

 In my dissertation work, I reported that consistent with previous findings, various 

thiol-reactive compounds activated Hsf1 and inhibited Hsp90 in a reciprocal manner. In 

Chapter 3, I demonstrated that the biological effects of these compounds required thiol-

reactivity, suggesting a common chemical mechanism. Previous screen utilizing Hsf1-

dependent reporters to determine Hsf1 activators often result in the identification of 

compounds that induce the HSR through alteration of protein homeostasis, leading to 

accumulation of misfolded proteins (170, 209). However, I showed in this work that 

thiol-reactive compounds I determined did not result in misfolding of cytosolic proteins. 

Nor did they disrupt the clearance machinery, the ubiquitin-proteasome system, 

suggesting that these thiol-reactive compounds may activate Hsf1 under a novel 

mechanism. Indeed, in Chapter 4, I demonstrated that these compounds specifically 



 158 

 

modified the yeast cytosolic Hsp70 Ssa1. I provided both genetic and biochemical 

evidence to show that thiol-modifications of C264 and C303 of Ssa1 resulted in 

inactivation of Ssa1 and subsequently derepressed Hsf1. Additionally, I specifically 

demonstrated that between C264 and C303, C303 was more reactive and probably 

required to facilitate further modification on C264. Moreover, I showed that Ssa1 was 

only required to sense thiol-reactive compounds. Cells with mutated Ssa1 rendered 

immunity to thiol-reactive compounds, but responded normally to heat shock, suggesting 

that Ssa1 can discriminate two different environmental stresses. In Chapter 5, I generated 

a FLAG-Hsf1 fusion to detect interactions between Hsf1 and chaperones. Since 

Hsp70/Hsp90-Hsf1 complexes have never been observed in yeast and are very difficult to 

isolate in mammalian cells, my fusion proteins may help elucidate the detailed 

mechanisms through which chaperones regulate Hsf1 activities under distinct stress 

conditions. Taken together, my work demonstrates that disparate compounds that share 

the biochemical property of thiol-reactivity can potently activate Hsf1 by targeting 

specific cysteine residues within the general cytosolic Hsp70 family. This novel 

mechanism of Hsf1 activation by small molecules provides further evidence to support 

the derepression/activation model of Hsf1 regulation, and new insights of how Hsf1 

responds differently to distinct environmental stressors. Finally, my work can provide a 

template for drug design of human diseases relevant to protein misfolding.   
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