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DNA methylation at the C5 position of cytosine (5-methylcytosine, 5mC) is a crucial 

epigenetic modification of the genome and has been implicated in numerous cellular processes in 

mammals, including embryonic development, transcription, X chromosome inactivation, genomic 

imprinting and chromatin structure. Like histone modifications, DNA methylation is also dynamic 

and reversible. However, in contrast to well defined DNA methyltransferases, the enzymes 

responsible for erasing DNA methylation still remain to be studied. The ten-eleven translocation 

family proteins (TET1/2/3) were recently identified as Fe(II)/2-oxoglutarate (2OG)-dependent 

5mC dioxygenases, which consecutively convert 5mC into 5-hydroxymethylcytosine (5hmC), 

5-formylcytosine and 5-carboxylcytosine both in vitro and in mammalian cells. Based on their 

potent oxidative activities on 5mC, TET proteins have shown great potential as the long-sought 

DNA demethylases that induce DNA demethylation through multiple potential mechanisms. Here, 

we show that overexpression of TET1 catalytic domain alone (TET1-CD) but not full length 

TET1 (TET1-FL) induces global DNA demethylation in HEK293T cells. Genome-wide mapping 

of 5hmC further reveals a unique regulation pattern of 5mC by TET1-FL, where its 5hmC 

production is relatively inhibited as local basal DNA methylation level increases. By contrast, 

overexpression of TET1-CD exhibited a strong positive correlation between 5hmC production and 
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basal DNA methylation level. In support of it, we interestingly found that through CXXC domain 

TET1 specifically binds hypomethylated but not hypermethylated CpG-rich regions. Moreover, 

overexpression of TET1-FL specifically decreased DNA methylation levels to certain extent only 

in hypomethylated CpG sites (methylation level ≤ 10%). To further investigate the effect of TET1, 

we also developed a lentiviral shRNA mediated TET1 knockdown in HEK293T cells, which 

originally have a comparable TET1 expression level as human embryonic stem cells. Knockdown 

of TET1 significantly induced an increase of DNA methylation in the pre-methylated edges, but 

not unmethylated edges and center regions of CpG islands (CGIs), indicating that TET1 can 

efficiently maintain the DNA hypomethylated state of CGIs by inhibiting the spreading of de 

novo DNA methylation from the pre-methylated edges of CGIs. Finally, with the use of the 

inducible TET1-CD overexpression system in HEK293T cells, we found that knockdown or 

inhibition of APEX1, the key player of DNA base excision repair pathway (BER), did not impair 

DNA demethylation induced by TET1-CD overexpression, suggesting that TET-mediated DNA 

demethylation is independent on BER. Moreover, our results also suggest that the 

replication-dependent passive pathway is not the primary mechanism for TET-mediated DNA 

demethylation. In conclusion, our results demonstrated that TET1 is a unique DNA demethylase 

which cannot significantly change DNA methylation levels, but rather specifically maintains the 

DNA hypomethylation state in CpG-rich regions by removing aberrant de novo DNA methylation. 

Moreover, neither BER nor DNA replication is required for TET-mediated DNA demethylation. 

Future studies focusing on potential 5-carboxylcytosine decarboxylases are necessary to elucidate 

the underlying mechanism. 
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CHAPTER 1  INTRODUCTION 

1.1 DNA methylation in mammalian cells 

1.1.1 Distribution pattern of DNA methylation 

In mammalian genomic DNA, a methyl group from S-adenosyl methionine can be 

catalytically added to the C5 position of cytosine by DNA methyltransferases, forming the 

so-called fifth base 5-methylcysotsine (5mC). Such methylation of cytosine predominantly occurs 

at CpG dinucleotides with an exception in mouse and human embryonic stem cells (ESCs) where 

about 25% of 5mC locate in non-CpG dinucleotides (Lister et al., 2009; Ramsahoye et al., 2000). 

Interestingly, since 5mC can be spontaneously deaminated to thymine, CpG dinucleotides are 

increasingly mutated during the long course of evolution, demonstrated by the low percents of 

CpG dinucleotides in the human genome (only 21% of the expected frequency) (Lander et al., 

2001). 

DNA methylation is a pervasive modification of the genomic DNA in mammals. Analysis of 

the total base composition of DNA in human tissues and cell lines reveals that 5mC accounts for 

up to 1% of total bases and 60-90% of all CpG dinucleotides are methylated (Ehrlich et al., 1982; 

Tucker, 2001).The distribution pattern of DNA methylation in genomic DNA is initially 

established by the de novo DNA methyltransferases DNMT3A and DNMT3B during 

embryogenesis and gametogenesis (Kaneda et al., 2004; Okano et al., 1999), then maintained by 

maintenance DNA methyltransferases DNMT1 during cell division (Hermann et al., 2004). 

DNMT3L is enzymatically inactive but acts as a general stimulatory factor for de novo 

methylation by DNMT3A and DNMT3B (Hata et al., 2002; Suetake et al., 2004). 
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DNA methylation shows an uneven distribution pattern in mammalian genome. Methylated 

CpGs are predominately distributed within the repetitive sequences which mainly constitute 

transposone elements and heterochromatin, while unmethylated ones are often clustered in 

specific regions called CpG islands (CGIs), which accounts for only 1-2% of the total genome 

(Bird et al., 1985; Bird, 1986; Weber et al., 2005). CGIs are short interspersed DNA sequences 

that deviate significantly from the average genomic pattern by being GC-rich, CpG-rich, and 

predominantly unmethylated (Deaton and Bird, 2011). Additionally, compared with the flanking 

regions of genes, the gene body regions are often methylated at a relatively higher level (Weber et 

al., 2005). Thus, this DNA methylation pattern suggests that hypermethylation may be the default 

DNA methylation state in mammals. 

On the other hand, the mammalian DNA methylation pattern is also dynamic. The paternal 

genome of zygotes undergoes a global demethylation immediately after fertilization (Mayer et al., 

2000; Oswald et al., 2000), while the maternal genome is gradually demethylated during cleavage 

divisions in a replication-dependent manner (Howlett and Reik, 1991). After implantation, de 

novo methylation occurs in the diploid genome to establish DNA methylation pattern again 

(Okano et al., 1999). Moreover, primordial germ cells are subjected to another round of global 

DNA demethylation during late embryonic development, but differentiated somatic cells 

generally maintain their methylation patterns (Hajkova et al., 2002; Lee et al., 2002). Additionally, 

de novo methylation also occurs in somatic cells. For example, a fraction of CGIs become 

abnormally methylated in certain tissues during aging or in cancer cells (Baylin and Herman, 

2000; Issa, 2000). Collectively, the dynamic pattern of DNA methylation suggests an important 

role of DNA methylation for development and diseases in mammals.  
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Taken together, the DNA methylation pattern in mammalian genome varies over space and 

time. More importantly, that distribution pattern lays the foundation for its biological functions 

and also suggests a complex regulatory mechanism in controlling de novo methylation and 

demethylation processes in cells. 

 

1.1.2 Biological functions of DNA methylation 

Over the past decades, DNA methylation has been identified as a crucial epigenetic 

modification which plays an essential role in compacting chromatin structure and silencing gene 

expression (Bird, 2002). Different from histone modifications, DNA methylation is relatively 

stable and thus provides a more enduring epigenetic regulatory effect in mammalian cells. With 

its effects in regulation of chromatin structure and gene expression, DNA methylation so far has 

been reported to be involved in many important biological processes, including X chromosome 

inactivation, genomic imprinting and transposable element silencing. 

Both X chromosome inactivation and genomic imprinting are epigenetic processes by which 

one allele is inactivated to realize mono-allelic expression. X-inactivation causes XX female cells 

to have same X chromosome gene products as XY males and imprinting makes certain genes be 

expressed in a parent-of-origin-specific manner. The DNA methylation found in inactive X 

chromosome and imprinted alleles is clearly required for their stable inactivation, as these 

silenced genes could be effectively relieved after demethylating treatment (El Kharroubi et al., 

2001; Li et al., 1993; Mohandas et al., 1981; Venolia et al., 1982). Moreover, deficiency of DNA 

methylation machinery results in reduced methylation in inactive X chromosome and imprinted 

genes in cells and also leads to reactivation of those originally inactivated genes to varying extent 
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(Li et al., 1993; Miniou et al., 1994; Sado et al., 2000). 

Transposable elements are DNA sequences that can change their relative position 

(self-transpose) and make up much of intergenic regions of genomic DNA. Silencing of those 

transposable elements is critical for mammalian cells to maintain the integrity of genome and also 

normal gene transcription program (Bird, 1995; Hedges and Deininger, 2007). The evidences that 

transposable elements are generally heavily methylated and both demethylating treatment and 

deficiency of DNMT1 lead to derepression of transposable elements solidly support the 

requirement of DNA methylation for transposable element silencing (Liu et al., 1994; Walsh et al., 

1998; Woodcock et al., 1997). 

How does DNA methylation work to achieve its repressive regulation of gene transcription? 

To date four different mechanisms have been supposed: (1) DNA methylation directly inhibits the 

DNA binding of transcriptional factors which specifically target CG-containing sequences(Comb 

and Goodman, 1990; Prendergast et al., 1991); (2) DNA methylation directly blocks the binding 

of H3K4 (histone H3 lysine 4) methyltransferase to DNA and thus interfere with the formation of 

active chromatin structure (Birke et al., 2002; Lee and Skalnik, 2005; Okitsu and Hsieh, 2007); (3) 

DNA methylation increases nucleosome occupancy at gene promoters and then repress the 

binding of transcriptional factors and RNA polymerase II (Davey et al., 1997; Ozsolak et al., 2007; 

Patel et al., 1997); and (4) the recruited methyl-CpG-binding proteins (MBPs) attract 

transcriptional repressor and also histone deacetylases which further contribute to the formation of 

inactive chromatin structure (Harikrishnan et al., 2005; Jones et al., 1998). It is noteworthy that 

although DNA methylation appears to serve as a lock for permanent gene silencing, DNA 

demethylation alone is insufficient to reactivate methylation-silenced gene unless chromatin 
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remodeling occurs simultaneously, suggesting that DNA methylation cooperates with other 

factors to realize gene silencing (Si et al., 2010). 

 

1.1.3 Maintenance of DNA methylation during cell division 

As an epigenetic modification, DNA methylation pattern is faithfully maintained between cell 

generations through a DNMT1-mediated semiconservative mechanism. In this long-established 

model, DNMT1 is recruited to DNA replication foci by interacting with proliferating cell nuclear 

antigen (PCNA) and Np95/UHRF1, and then methylates newly synthesized CpGs opposite to 

methylated ones in the parent DNA strand (Bostick et al., 2007; Chuang et al., 1997). It is notable 

that the specific binding of Np95/UHRF1to methylated CpGs through its SET and RING 

finger-associated (SRA) domain ensures the precise loading of DNMT1 to replicating methylated 

DNA regions (Avvakumov et al., 2008; Bostick et al., 2007; Sharif et al., 2007). Consistently, 

Np95-deficient mouse embryonic stem cells (mESCs) and embryos show loss of global and local 

DNA methylation and reactivation of retrotransposons and imprinted genes (Sharif et al., 2007). 

On the other hand, however, accumulating evidences have also indicated that the classical 

DNMT1-dependentmechanismmay be not the only one for maintenance of DNA methylation in 

mammals. In human colorectal cancer cells where DNMT1 gene is disrupted through homologous 

recombination, CGI methylation can be stably maintained during cell division with only a 20% 

decrease in global DNA methylation level (Rhee et al., 2000). Moreover, mESCs lacking 

Dnmt3A and Dnmt3B also show a gradual loss of DNA methylation in various repetitive 

elements and single-copy genes during cell division (Chen et al., 2003; Liang et al., 2002). 

Furthermore, through the interaction with specific histone modification enzymes (e.g. G9A, 
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EZH2) which are associated with inactive chromatin structure, DNMT3 but not DNMT1can be 

efficiently recruited to heavily methylated CGIs and repetitive sequences (Jeong et al., 2009; 

Schlesinger et al., 2007). Therefore, those evidences strongly suggest that methylation activity by 

de novo enzymes DNMT3A and DNMT3B is also required for DNA methylation maintenance, 

particularly indensely methylated genomic regions. Actually, given the rapid generation of 

hemimethylated sites in methylated CGIs or repetitive elements during DNA replication, it is 

reasonable that a more efficient maintenance process by DNMT3 and/or DNMT1 but not DNMT1 

alone is necessary to fully methylate those densely hemimethylated CpGs (Jones and Liang, 

2009). 

   Taken together, the Np95/UHRF1-mediated localization of DNMT1 to DNA replication fork, 

the recruitment of DNMT3A and DNMT3B to densely methylated regions and the cooperation 

among those DNMTs are all required for the faithful maintenance of DNA methylation during 

cell division. 

 

1.1.4 Mechanisms controlling de novo DNA methylation 

As mentioned in previous part, the biological functions of DNA methylation are closely 

associated with its distribution patterns, which are initially set up by DNMT3A- and 

DNMT3B-catalyzed de novo DNA methylation. To clearly understand the complex pattern of 

DNA methylation in mammalian genome, some mechanisms of how de novo methylation is 

targeted and regulated have been revealed. 

A best studied mechanism controlling de novo DNA methylation is DNMT3 recognizing 

specific histone modifications and histone-modifying enzymes, most of which are interestingly 
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associated with inactive heterochromatic state. For example, histone H3 tail unmethylated at 

lysine 4 (H3K4me0) can be specifically recognized by the PHD-like domain of DNMT3L (Ooi et 

al., 2007), which further recruits DNMT3A to induce de novo DNA methylation in imprinted 

genes in germ cells (Chen et al., 2005; Hata et al., 2002; Suetake et al., 2004). Alternatively, 

DNMT3A may directly bind H3K4me0 through its ADD domain, followed by de novo 

methylation of associated DNA (Otani et al., 2009; Zhang et al., 2010b). In agreement with it, 

mouse oocytes deficient in KDM1B, a histone H3K4 demethylase, show not only a substantial 

increase in H3K4 methylation but alsoloss of DNA methylation marks at four out of seven 

imprinted genes examined (Ciccone et al., 2009). Moreover, two genome-wide studies have also 

reported that H3K4 methylation is strongly negatively correlated with DNA methylation, further 

confirming H3K4me0 as a trigger for de novo methylation (Meissner et al., 2008; Weber et al., 

2007).  

Histone methyltransferases have also been found to interact with DNMT3 and in turn lead to 

de novo DNA methylation in associated genomic regions. Suv39h, a histone methyltransferase for 

H3K9, can interact with DNMT3A as well as DNMT1both in vitro and in vivo (Fuks et al., 2003). 

Moreover, Suv39h-/- mESCs show a loss of Dnmt3b enrichment and DNA methylation at 

pericentric repeats, suggesting a critical role of Suv39h in Dnmt3b-dependent de novo 

methylation of those sequences (Lehnertz et al., 2003). Another H3K9 methyltransferase G9a has 

also been found to interact with both Dnmt3a and Dnmt3bindependently of its histone 

methyltransferase activity, which may further induce de novo methylation in some 

early-embryonic genes (e.g. Oct4) in mESCs (Epsztejn-Litman et al., 2008). Consistently, a 

significant reduction of DNA methylation at retrotransposons, major satellite repeats and densely 
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methylated CpG-rich promoters has also been observed in mESC lacking G9a (Dong et al., 2008). 

Surprisingly, heterochromain protein 1 which is not histone methyltransferase but specifically 

binds H3K9me3 can also directly recruit DNMT3 to induce de novo methylation of associated 

DNA (Smallwood et al., 2007). In addition to those H3K9 methyltransferases, Ezh2, another 

histone methyltransferase specific for H3K27, also shows a similar role in interacting with 

DNMTs and inducing de novo methylation at associated DNA (Vire et al., 2006). Polycomb 

group (PcG) proteins and DNA methylation system both are essential for the heritable repression 

of gene activity in mammals. Since Ezh2 is also an important component of Polycomb repressive 

complex 2, such function of Ezh2 forms a direct connection between these two key epigenetic 

repression systems (Vire et al., 2006). 

The histone modifications mentioned above are all associated with transcriptional repression. 

Interestingly, H3K36me3 which is mainly located in actively transcribed gene bodies also 

exhibits a distribution pattern positively correlated with DNA methylation, suggesting that 

H3K36me3 may also work as a recruitment platform for DNMTs (Ball et al., 2009; Hodges et al., 

2009; Mikkelsen et al., 2007). In support of it, a specific interaction between H3K36me3and the 

PWWP domain of DNMT3A was recently revealed, and more importantly this interaction can 

further increase the activity of DNMT3A for methylation of nucleosomal DNA in vitro (Dhayalan 

et al., 2010). 

In addition to histone modification and histone-modifying enzymes, chromatin remodeling 

proteins have also been reported to regulate de novo methylation. Lsh (lymphoid-specific helicase) 

is an important component of SNF/SWI chromatin remodeling complexes that induce sliding of 

the nucleosomes along the DNA by an ATP-dependent disruption of DNA-histone interaction 
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(Becker and Horz, 2002; Peterson, 2002). A genome-wide loss of DNA methylation has been 

reported in mice with depletion of Lsh (Dennis et al., 2001). Moreover, the deficiency of Lsh in 

mouse embryonic fibroblasts inhibits the acquisition of DNA methylation but does not affect the 

maintenance of previously methylated episomes, suggesting a specific role of Lsh in the 

establishment of novel methylation patterns (Zhu et al., 2006). Furthermore, an interaction of Lsh 

with Dnmt3aand Dnmt3b but not with Dnmt1 was also detected in mESCs, strongly supporting 

that Lsh can directly control de novo DNA methylation (Dennis et al., 2001; Myant and 

Stancheva, 2008). Additionally, SNF/SWI helicase ATRX (α-thalassemia/MR, X-linked)seems to 

also have a regulatory function in de novo methylation, as its mutations significantly change the 

DNA methylation pattern in various repetitive sequences including the rDNA arrays, a Y-specific 

satellite and subtelomeric repeats(Gibbons et al., 2000). 

Lastly, RNAis also supposed to be involved in targeted de novo DNA methylation in 

mammalian cells. It has been well reported that siRNAs (small interfering RNAs) in plants can 

guide de novo DNA methyltransferases to set up sequence-specific DNA methylation (Zhang and 

Zhu, 2011). Although fewer studies have been done in mammals, it is highly possible that 

RNA-directed de novo methylation and transcriptional silencing is conserved in mammals. By 

studying human tissue culture cells, Morris et al. (2004) reported that promoter-directed siRNA 

induces de novo DNA methylation in promoters of both exogenous and endogenous genes as well 

as transcriptional repression. Additionally, MILI and MIWI2 (two mouse homologs of Drosophila 

Piwi proteins)in mouse fetal germ cells were found to be required for the DNA methylation in the 

regulatory regions of the retrotransposons, suggesting an essential role of piRNA in establishing 

de novo DNA methylation of retrotransposons (Aravin et al., 2008; Kuramochi-Miyagawa et al., 
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2008). 

1.1.5 Immunity of CGIs to DNA methylation 

CGI is usually identified as a patch of DNA with at least 200 bp length, CG content ≥50% 

and the ratio of observed CpG to expected CpG ≥60% (Gardiner-Garden and Frommer, 1987). 

In contrast to the heavily methylated non-CGI regions, CGIs are generally unmethylated in 

genomic DNA, constituting the most striking feature of DNA methylation pattern in mammals 

(Bird, 2002). Given that about 70% of annotated gene promoters coincide with a CGI, 

maintenance of methylation-free state in most CGIs should be critical for normal transcription 

program in cells (Saxonov et al., 2006). Then how are CGIs protected from the de novo DNA 

methylation wave during embryogenesis and gametogenesis? 

The function of CGIs as transcription promoters is believed to mainly contribute to their 

methylation-free state. Although about half of CGIs are considered as orphan CGIs which locate 

either within or between characterized transcripts, accumulating evidences from gene-specific or 

genome-wide studies so far have indicated that most, perhaps all, of them are actually associated 

with transcription initiation (Illingworth et al., 2010; Maunakea et al., 2010). One pathway by 

which CGI promoters can resist de novo DNA methylation attack is the binding of transcription 

factors, which may markedly decrease the local accessibility of DNMT3. For example, the 

binding of Sp1 transcription factor plays a critical role in protecting mouse adenine 

phosphoribosyltransferase gene promoter from DNA methylation, as deletion or mutation of its 

binding sites results in a significant acquisition of de novo DNA methylation (Brandeis et al., 

1994; Macleod et al., 1994). The other pathway may be related with the activity of transcription 

itself, though the underlying mechanism is still unclear. A genome-wide study has shown that up 
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to 90% of genes containing a CGI promoter are actively transcribed during early embryogenesis 

and gametogenesis (Sequeira-Mendes et al., 2009). Moreover, like the binding of transcription 

factors, the recruitment of RNA polymerase II at CGI promoters has also been reported to be 

involved in the immunity of CGIs from DNA methylation (Takeshima et al., 2009).  

Interestingly, CGIs cover the initiation sites for not only transcription but also DNA 

replication (Delgado et al., 1998; Sequeira-Mendes et al., 2009). Such co-localization of CGIs 

with DNA replication origins may therefore provide another mechanism for the protection of 

CGIs from DNA methylation. It is highly possible that due to potential intermediates in DNA 

replication process, the de novo DNA methyltransferases may fail to be assembled into replication 

initiation complex or keep inactive at early replication stage, and as a consequence 

methylation-free state is established in CGIs (Antequera and Bird, 1999; Deaton and Bird, 2011). 

Another potential mechanism underlying the immunity of CGIs to DNA methylation is by 

CGIs-related histone modifications. As mentioned in previous part, histone H3 tails with 

unmethylated lysine 4 (H3K4me0) can recruit DNMT3A and DNMT3B either directly or via 

DNMT3L to induce de novo DNA methylation in associated DNA. However, the H3K4 in CGIs 

is typically methylated into H3K4me3, which therefore leads to a poor chromatin binding of 

DNMT3L, DNMT3A and DNMT3B (Ooi et al., 2007; Zhang et al., 2010b). Moreover, the in 

vitro catalytic activities of DNMT3A and DNMT3B on chromatin with this histone modification 

are also much lower compared with that on chromatin with H3K4me0 (Zhang et al., 2010b). 

Additionally, the rarity of other histone modifications which can interact with DNMTs (including 

H3K9me3 and H3K27me3) in CGIs also favors the maintenance of their methylation-free state.   

Taken together, several potential mechanisms have been proposed to protect CGIs from de 
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novo DNA methylation. Moreover, these mechanisms may simultaneously function to achieve an 

optimal effect. For example, both binding of transcription factors and active chromatin signature 

H3K4me3 are often associated with high transcription activity in a CGI promoter. In this case, 

each mechanism alone may be not sufficient to completely maintain a CGI at methylation-free 

state. 

 

1.1.6 Aberrant DNA methylation in cancer 

Consistent with its critical regulatory effects on many important cellular processes (e.g. 

chromatin stability, genomic imprinting), DNA methylation has been found to be widely involved 

in tumor initiation, promotion, aggressiveness, and metastasis (Robertson, 2005). Global DNA 

hypomethylation and gene-specific hypermethylation both feature the aberrant DNA methylation 

pattern in cancers. The loss of DNA methylation in repetitive sequences primarily explains global 

DNA hypomethylation (Riggs and Jones, 1983; Yoder et al., 1997). Importantly, it also results in 

abnormal reactivation of transposable elements, disruption of normal transcriptional program and 

genomic instability, which is a hallmark of tumor cells (Robertson and Wolffe, 2000; Shames et 

al., 2007).In contrast to the global DNA hypomethylation, gene-specific hypermethylation has 

been found to often occur in CGIs and leads to an effective silencing of related genes transcription. 

These affected genes are mainly involved in cell-cycle regulation, DNA repair, apoptosis, cell 

signaling and tumor invasion, such as P16, hMLH1 and RASSF1A (Robertson, 2005). Obviously, 

such gene-specific hypermethylation can provide tumor cells with an advantage in cell growth and 

invasion. Additionally, in almost all types of tumors the abnormally hypermethylated CGIs may 

form a CpG-island-methylator-phenotype (CIMP), which is defined as 3-5 fold increase in 
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methylation frequency (Issa, 2004). In addition to the reactivation of transposable elements and 

silencing of tumor suppressor genes, aberrant DNA methylation in cancer is also associated with 

loss of imprinting (Jelinic and Shaw, 2007). The resultant high expression of such gene product 

can also provide cells with a growth advantage. For example, loss of imprinting of IGF2/H19 

locus has been detected a wide range of tumor types, including lung, liver, colon and kidney 

cancer (Jelinic and Shaw, 2007; Robertson, 2005). 

Although the mechanism of its origin in cancer still remains poorly understood, aberrant DNA 

methylation has been considered as an important target for epigenetic diagnosis and therapy. The 

aberrant hypermethylation can be detected in the earliest precursor lesions of tumors, suggesting it 

may play a critical role in tumor transformation and be used as a biomarker for early cancer 

detection (Cravo et al., 1994). Moreover, in clinical, DNMTs inhibitors 5-azacytisine and 

5-aza-2’deoxycytidine have been approved for treatment of myelodys plastic syndromesand acute 

myeloid leukemia through inducing DNA demethylation, differentiation and reactivation of 

silenced tumor suppressor genes. And clinical trials about 5-aza-2’deoxycytidine for solid tumors 

therapy are also ongoing. 

 

1.2 Active DNA demethylation and potential mechanisms in mammals 

   Given its role in long-term and heritable silencing of gene transcription, DNA methylation in 

mammals have been thought to be a relative stable epigenetic modification compared with histone 

modifications. However, a number of studies so far have reported that during specific 

development stages or in certain cell contexts global or gene-specific DNA methylation will be 

removed through either passive or active mechanism. Passive DNA demethylation is a DNA 
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replication-dependent process where the newly synthesized DNA strand failed to be methylated 

due to loss of DNMTs activity, while active DNA demethylation removes the methyl group of 

5mC in a replication-independent and enzymatic manner. Based on a number of studies where 

DNMTs deficiency or DNMTs inhibitor treatment significantly disrupts DNA methylation 

maintenance, passive DNA demethylation has been widely accepted. By contrast, mainly because 

of the uncertainty of DNA demethylases the mechanism of active DNA demethylation in 

mammals still remains elusive, despite a clear mechanism revealed in plants (Ooi and Bestor, 

2008; Wu and Zhang, 2010). 

 

1.2.1 Evidences for active DNA demethylation 

Although the mechanisms remains elusive, the evidences for active DNA demethylation in 

mammals have been accumulated in the past decades. Based on the range of affected genomic 

regions, these reported DNA demethylation events can be generally divided into two groups: 

genome-wide and gene-specific DNA demethylation.  

In 2000, genome-wide active DNA demethylation was first demonstrated in the paternal 

pronuclei of mouse zygotes (Figure 1A) (Mayer et al., 2000; Oswald et al., 2000). With the use 

ofanti-5mC immunostaining assay, paternal pronuclei were found to be globally demethylated 

shortly (about 6-8 hours) after fertilization. Moreover, such DNA demethylation occurs before the 

first cell division of zygotes and cannot be blocked by treatment of aphidicolin (a DNA 

replication inhibitor), strongly indicating active DNA demethylation as the underlying mechanism. 

A more detailed change of DNA methylation pattern came from bisulfite-sequencing analysis, 

which confirmed the loss of DNA methylation but also showed some genomic regions (mainly 
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Figure 1. Dynamics of DNA methylation during embryogenesis in mouse 

During mouse development, the paternal genome (♂) of zygote is rapidly and globally 

demethylated immediately after fertilization, whereas the maternal genome (♀) undergoes a DNA 

replication-dependant demethylation during the first cleavage stages. After implantation, a new 

DNA methylation pattern is re-established by de novo DNA methylation in the diploid genome. 

Primordial germ cells (PGCs) were specified at E7.5 and begin to migrate toward genital ridge, 

during which another round of global DNA demethylation occurs. De novo DNA methylation also 

occurs in PGCs when they enter meiosis. By contrast, most somatic cells maintain their DNA 

methylation pattern. However, certain adult somatic cells may undergo further demethylation or 

de novo methylation in specific genomic loci. 
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including imprinting control regions, retrotransposons, centric and pericentric region) are resistant 

to those demethylation activities (Oswald et al., 2000; Santos et al., 2002). By contrast, maternal 

pronuclei resist DNA demethylation at the same time, but interestingly undergo a gradual and 

passive DNA demethylation in the inaccessibility of DNMT1 during subsequent cell division in 

cleavage-stage embryos (Carlson et al., 1992; Howlett and Reik, 1991). That genome-wide DNA 

demethylation in zygotic paternal pronuclei could lead to transcriptional reactivation of paternal 

genes, and thus may be essential for early embryonic development. 

Another well-reported genome-wide active DNA demethylation occurs in mouse primordial 

germ cells (PGCs) (Figure 1B). PGCs are germ cell precursors and derived from a few posterior 

epiblast cells which are induced by Bmp4 and Bmp8 signals from neighbor cells at embryonic 

day 7.5 (E7.5) (Ohinata et al., 2009). PGCs begin to migrate at E8.5 and reach the genital ridge at 

E11.5, followed by a rapid global DNA demethylation (Hajkova et al., 2002; Lee et al., 2002). 

The intact function of Dnmt1 and limited cell division taken during that period support a 

mechanism of active DNA demethylation. Most strikingly, different from that in the paternal 

pronuclei of zygotes, the DNA demethylation in PGCs also occurs in imprinted genes, which is 

necessary for establishing a new DNA methylation pattern in germ cells (Lee et al., 2002). 

Based on those above evidences, genome-wide active DNA demethylation in mammals 

appears to only take place at specific stages of early development. By contrast, considerable 

studies supported the occurrence of gene-specific active DNA demethylation in differentiated 

somatic cells in response to specific stimulus (Wu and Zhang, 2010). For example, in an in vivo 

model of hippocampal neurogenesis of adult mice, electro-convulsive treatment rapidly induces 

DNA demethylation at the regulatory region of brain-derived neurotrophic factor (Bdnf) and the 
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brain-specific promoter B of fibroblast growth factor–1 (Fgf-1) without a significant global DNA 

demethylation (Ma et al., 2009). Moreover, this activity-dependent active DNA demethylation 

contributes to the upregulation of those growth factor families and thus plays an essential role in 

neurogenesis (Ma et al., 2009). In addition, Bruniquel and Schwartz (2003) also reported that a 

significant DNA demethylation in the promoter-enhancer of the interleukin-2 (Il2) gene also 

occurs as early as 20 minutes after activation of T cells, and is necessary and sufficient for the 

enhancement of Il2 promoter-driven transcription. The absence of DNA replication further 

supports that active demethylation is the underlying mechanism (Bruniquel and Schwartz, 2003).   

 

1.2.2 Potential mechanisms of active DNA demethylation and DNA demethylases 

If there are DNMTs that methylate DNA, DNA demethylases must also exist to remove 

methylation mark and fully achieve the biological functions of DNA methylation. This belief 

leads to intense efforts to identify potential DNA demethylases in mammals. So far, several 

mechanisms for active DNA demethylation have been proposed, including 1) hydrolysis; 2) base 

excision repair (BER) with the use of 5mC DNA glycosylases; 3) deamination of 5mC coupled 

with BER; 4) nucleotide excision repair (NER); and 5) oxidative demethylation (Figure 2). These 

proposed mechanisms have also been well reviewed by Zhu (2009) and Wu and Zhang (2010). 

The mechanism of hydrolysis by which the methyl group of 5mC is directly released in a form 

of methanol represents the simplest way to actively remove DNA methylation modification. 

However, given the breakage of the strong carbon-carbon bond is thermodynamically unfavorable, 

it seems unlike to achieve active demethylation by hydrolysis. Actually, the first finding that via 

this mechanism methyl-CpG-binding domain protein 2 (MBD2) induces demethylation in vitro at  
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Figure 2. Potential mechanisms for active DNA demethylation in mammals 

Multiple possible mechanisms have been reported for active DNA demethylation: (1) the methyl 

group is directly hydrolyzed and released as methanol; (2) potential 5mC glycosylases remove 

5mC base, followed by base excision repair (BER); (3) 5mC is first deaminated into T, then G/T 

mismatch glycosylases remove T, followed by BER; (4) methylated CpG dinucleotides and/or 

flanking regions are removed by nucleotide excision repair pathway (NER); (5) methyl group is 

consecutively oxidized into hydroxymethyl, formyl and carboxyl group, followed by BER or 

other mechanisms to achieve DNA demethylation.  
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the absence of any co-factors, has never been successfully replicated by other laboratories 

(Bhattacharya et al., 1999; Bird, 2002). Moreover, both normal DNA methylation pattern and 

global DNA demethylation in the paternal pronuclei of zygotes have also been observed in 

MBM2-null mice (Hendrich et al., 2001; Santos et al., 2002). Thus, the mechanism of hydrolysis 

for active DNA demethylation is highly debatable. 

Another mechanism for active DNA demethylation is by BER with the use of 5mC DNA 

glycosylases. In this mechanism, the 5mC base is first recognized and cleaved by 5mC DNA 

glycosylases, followed by removal of deoxyribose at the apurinic/apyrimidinic (AP) sites by AP 

endonuclease. The resultant gap is finally filled with an unmethylated cytosine by DNA 

polymerase and DNA ligase. Although it has been solidly proved to underlie active DNA 

demethylation in plants(Zhu, 2009), this mechanism in animal still remains undetermined. Both 

thymine DNA glycosylase (TDG) and MBD4 show 5mC DNA glycosylase activity in vitro, but 

such activity against 5mC is 30-40-fold lower than their G/T mismatch repair activity (Zhu et al., 

2000a; Zhu et al., 2000b). Additionally, deficiency of TDG leads to embryonic lethality in mice, 

whereas MBD4-null mice are viable and also show normal DNA methylation pattern (Millar et al., 

2002). Thus, future studies are needed to further clarify this mechanism in mammals. 

Although TDG and MBD4 have very weak 5mC DNA glycosylase activity, their strong G/T 

mismatch repair activities are well utilized in another mechanism to achieve active demethylation. 

Here 5mC is first converted to T through activation induced deaminase (AID)/apolipoprotein B 

RNA-editing catalytic component-1 (APOBEC-1)-catalyted deamination. The resultant T is then 

cleaved by TDG/MBD4 and replaced with unmethylated cytosine via BER (Cortellino et al., 2011; 

Rai et al., 2008). In support of it, interactions between TDG/MBD4 and AID has been detected in 
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mouse (Cortellino et al., 2011) and zebra fish embyos (Rai et al., 2008), respectively. Interestingly, 

a recent study reported that DNMT3A and DNMT3B can also deaminate 5mC to T and thus 

participate in estradiol-induced active demethylation in estrogen receptor target gene TFF1 

(Metivier et al., 2008). This surprising function of DNMTs awaits further confirmation. In 

contrast to above supportive evidences, however, AID-null and Apobec1-null mice exhibit a 

normal development and reproductive ability, raising some doubts on the significance of AID and 

APOBEC1 in active DNA demethylation (Morrison et al., 1996; Revy et al., 2000). Compared 

that in the wild type counterparts, the DNA methylation levels in PGCs from AID-null embryos 

increase but are still much lower than that in mESCs and somatic cells, indicating that AID is not 

critical for the global demethylation in PGCs (Popp et al., 2010). 

Active DNA demethylation could also be induced through NER. Different from BER which 

fixes a single base of DNA damage caused by oxidation, alkylation or deamination, NER repairs 

chemical- or radiation-induced bulky, helix-distorting lesions such aspyrimidine dimers  and 6,4 

photoproducts. The primary evidences supporting NER as a mechanism of active demethylation 

came from a study on growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A), a 

protein with diverse biological functions including DNA damage response and NER (Barreto et 

al., 2007; Zhan, 2005). In that study, overexpression of GADD45A activated methylation-silenced 

reporter plasmids and also induced global DNA demethylation, while its knockdown regulated 

gene expression and resulted in DNA hypermethylation (Barreto et al., 2007). Moreover, XPG, 

another essential player of NER, interacts with GADD45A and is also required for the DNA 

demethylation induced by GADD45A overexpression (Barreto et al., 2007). However, another 

independent group repeated these same experiments but failed to observe a similar function for 
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GADD45A at all (Jin et al., 2008). Moreover, Gadd45a-null mice also show neither global nor 

loci-specific hypermethylation phenotype (Engel et al., 2009). Thus, that NER works as a 

mechanism for active demethylation has still not been conclusively proved. 

In addition to above possible mechanisms, oxidative reaction may also constitute another 

pathway for active DNA demethylation in mammals. AlkB, a 2-oxyoglutarate (2OG)-dependent 

dioxygenase in bacteria, is involved in DNA damage repair by removing the methyl groups of 

1-methyadenine and 3-methylcytosine in a form of formaldehyde (Falnes et al., 2002). 

Interestingly, in thymidine salvage pathway thymine 7-hydroxylase in fungi consecutively 

oxidizes thymidine into iso-orotate, which can be further converted to uridine by a decarboxylase 

(Smiley et al., 2005; Warn-Cramer et al., 1983). Thus, although the breakage of a carbon-carbon 

bond is thermodynamically unfavorable, these studies prove the existence of enzymes with such 

catalytic function. In 2009, under an effort to identify human homologous proteins for JBP1/2 

(trypanosome base J-binding proteins, with a similar catalytic function as thymine 7-hydroxylase), 

Rao group published a groundbreaking finding that human ten-eleven translocation (TET) family 

proteins are also 2-oxyoglutarate (2OG)-dependent dioxygenases and capable to catalyze the 

conversion of 5mC to 5-hydroxymethylcytosine (5hmC) in vitro and in vivo (Tahiliani et al., 

2009). Since then, much effort has been devoted to the study of the role of TET in active DNA 

demethylation in mammals, and lots of supportive evidences have so far been accumulated. Those 

studies will be detailedly reviewed in next section “TET1: a novel 5-methylcysotine 

dioxygenase”.  

Taken together, there are multiple potential mechanisms for active DNA demethylation in 

mammals. However, due to conflicting results, unsuccessful replication, or lack of decisive 
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biochemical and genetic evidences, none of them (including TET-mediated oxidative 

demethylation) has been conclusively proved. Possible biological redundancy may partially 

explain the lack of decisive genetic support from previous knockout experiments. Additionally, it 

is also proposed that these mechanisms exist to promote active demethylation but each one may 

only function in its specific cell context (Wu and Zhang, 2010). 

 

1.3 TET1: a novel 5-methylcytosine dioxygenase 

1.3.1 TET-mediated 5mC oxidation leads to DNA demethylation 

TET1, the founding member of TET protein family, was initially identified as a rare fusion 

partner of mix-lineage leukemia gene (MLL) in several acute myeloid leukemia cases containing 

the t(10;11)(q22;q23) (Lorsbach et al., 2003; Ono et al., 2002). Through BLAST analysis of the 

NCBI and Celera databases, Lorsbach et al. (2003) further identified two other human 

homologous proteins (TET2 and TET3), as well as three mouse homologous Tet proteins (Tet1, 

Tet2 and Tet3). All three TET proteins have conserved Cys-rich and DSBH domains in C-terminal, 

and TET1 and TET3 also have an N-terminal CXXC domain, which is a specific DNA binding 

domain for CpG motif (Figure 3). 

The biological functions of TET proteins remain unknown until 2009, when Rao group first 

identified human TET1 as a novel Fe(II)/ 2OG-dependent5mC hydroxylase which catalytically 

converts 5mC to 5hmC (Tahiliani et al., 2009). Then all three mouse Tet proteins were also 

successfully proved to converse 5mC into 5hmCthrough their conserved C-terminal catalytic 

domain which consists of Cys-rich and DSBH domains (Ito et al., 2010). Moreover, more recent 

studies further found that TET proteins can consecutively convert 5mC into 5hmC, 
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Figure 3. Domain structure of human TET family proteins 

All three TET proteins have C-terminal conserved Cys-rich and DSBH domains, which form the 

catalytic domain for 5-methylcytosine dioxygenase activity. TET1 and TET3 also have an 

N-terminal CXXC domain, which is a specific DNA binding domain for the CpG motif.  
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5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which is very similar to thymine 

7-hydroxylase-medicated oxidative reaction in thymidine salvage pathway (He et al., 2011; Ito et 

al., 2011) (Figure 4A). Meanwhile, a relative abundance of those 5mC derivates, especially 5hmC 

which has been long thought to be a rare DNA damage product in mammalian DNA, was also 

detected in mESCs, purkinje neurons and various mouse tissues (Ito et al., 2011; Kriaucionis and 

Heintz, 2009; Tahiliani et al., 2009). These breakthrough findings not only demonstrated a unique 

enzymatic activity of TET proteins to directly modify 5-methyl group of 5mC, but also raised an 

intriguing possibility that TET-mediated 5mC oxidation may constitute a novel DNA 

demethylation pathway in mammals. So far considerable evidences have been accumulated in 

support of this hypothesis. Overexpression of the catalytic domain of TET1 (TET1-CD) in 

HEK293T cells induces a significant DNA demethylation in exogenous nonreplicable 

5mC-containing DNA probes as well as many endogenous genomic loci, while 5hmC-containing 

DNA probes can also be demethylated even at the absence of TET1-CD overexpression, 

providing direct evidence that TET-mediated 5mC oxidation can promote active DNA 

demethylation (Guo et al., 2011). The frequent mutations of TET2 in various myeloid 

malignancies are predominantly associated with lower 5hmC level and hypermethylation 

phenotype in patient bone marrow genomic DNA, which also supports a potential demethylating 

effect for TET2 (Figueroa et al., 2010; Ko et al., 2010). Additionally, Tet3-mediated 5mC 

oxidation was demonstrated to produce asymmetric marking of 5hmC in the paternal pronuclei of 

mouse zygotes, which highly coincides with the loss of 5mC immunoreactivity in paternal 

pronuclei after fertilization and may further lead to DNA demethylation at specific genomic loci, 

including the regulatory regions of Oct4 and Nanog genes (Gu et al., 2011; Iqbal et al., 2011; 
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Wossidlo et al., 2011).  

Although these above evidences have shown that TET-mediated 5mC oxidation forms a novel 

pathway for DNA demethylation in mammalian cells, the detailed mechanism is still unclear 

(Figure 4B). 5hmC is poorly recognized by DNMT1 and genomic 5hmC, 5fC and 5caC undergo 

cell-division-dependent dilution in mouse embryo, suggesting a DNA replication-dependent 

passive demethylation by TET proteins (Inoue et al., 2011; Inoue and Zhang, 2011; Valinluck and 

Sowers, 2007). However, it has also been reported that overexpression of TET1-CD in HEK293T 

cells significantly induces DNA demethylation of exogenous nonreplicable 5mC-containing DNA 

probes as well as many endogenous genomic loci, strongly indicating that TET can promote 

active DNA demethylation (Guo et al., 2011; Zhang et al., 2010a). Moreover, inhibition of either 

Apurinic-apyrimidinic endonuclease-1 (APEX1) or Poly(ADP-ribose) -polymerase-1 (PARP1), 

two key components of BER, completely blocks the DNA demethylation in not only exogenous 

DNA probes but also endogenous genomic loci, indicating that TET-mediated DNA 

demethylation may be only through BER-involved active pathway. Consistently, recent studies 

also reported that 5fC and 5caC in CpG dinucleotides can be efficiently excised by TDG, 

supporting that TDG-initiating BER may underlie TET-mediated DNA demethylation (He et al., 

2011; Maiti and Drohat, 2011). On the contrary, however, both 5fC and 5caC in mouse zygotes 

were shown to be relatively stable and exhibited replication-dependent dilution instead of being 

quickly removed through such TDG-catalyzed process(Inoue et al., 2011). Moreover, given Tet3 

induces a rapid global DNA demethylation in the paternal pronuclei of zygotes (Gu et al., 2011; 

Wossidlo et al., 2011), BER is also unlikely to act in Tet3-mediated DNA demethylation as it 

would put tremendous pressure on the repair machinery of zygotes (Wu and Zhang, 2010). 
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interestingly 

 

Figure 4. TET-mediated 5-methylcytosine oxidation reactions and potential mechanisms for 

DNA demethylation 

(A) Top panel describes thymine hydroxylase (THase)-medicated oxidative reaction in thymidine 

salvage pathway. Thymine is converted to 5-hydroxymethyluracil, 5-formyluracil, and iso-orotate 

by THase in three consecutive oxidation reactions. Iso-orotate is then converted to uracil by 

iso-orotate decarboxylase. Lower panel describes 5-methylcytosine (5mC) oxidation reactions 

induced by TET family proteins. TET proteins consecutively convert 5-methylcytosine (5mC) to 

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which 

may be further converted into unmethylated cytosine (C) by a potential decarboxylase like 

iso-orotate decarboxylase. (B) Potential mechanisms for DNA demethylation induced by 

TET-mediated 5mC oxidation. AID: activation-induced (cytidine) deaminase; APOBEC: 

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like; TDG: thymine-DNA 

glycosylase; SMUG1: single-strand selective monofunctional uracil DNA glycosylase 1; BER: 

base excision repair.  
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Interestingly, it has been supposed that like that in thymidine salvage pathway, a potential 

decarboxylase may directly convert 5caC into unmethylated cytosine to realize active 

demethylation (Ito et al., 2011). Therefore, so far the mechanism for TET-mediated DNA 

demethylation has been still elusive.  

Collectively, based on their potent oxidative activities on 5mC, TET proteins have shown 

great potential as the long-sought DNA demethylases that induce DNA demethylation through an 

undetermined mechanism, and future studies comparing the effects of different TET proteins on 

DNA demethylation and elucidating the underlying mechanisms are necessary to significantly 

improve our understanding of this novel DNA demethylation pathway.  

 

1.3.2 Studies on the biological functions of TET1 

Tet1 is highly expressed in mESCs and rapidly down-regulated once differentiation is induced, 

suggesting a potential role of Tet1 in the pluripotency and self-renewal of mESCs (Tahiliani et al., 

2009). In order to well define its function, the genome-wide distribution of Tet1chromatin binding 

sites in mESCs has been investigated by several independent groups using chromatin 

immunoprecipitation coupled with high throughput DNA sequencing (ChIP-seq). Wu et al. (2011) 

reported that Tet1 preferentially binds CpG-rich sequences at promoters of both transcriptionally 

active (including some pluripotency-related genes) and Polycomb-repressed genes. Interestingly, 

Tet1 shows dual functions of transcriptional regulation by promoting transcription of pluripotency 

factors as well as participating in the repression of Polycomb-targeted developmental regulators, 

suggesting a critical role of Tet1 in reaching balance between pluripotency maintenance and 

lineage commitment (Wu et al., 2011). Consistent with it, another study from the same group 

showed that knockdown of Tet1 could impair the self-renewal of mESCs through 
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down-regulation of Nanog and also results in a bias towards trophectoderm differentiation in 

pre-implantation embryos (Ito et al., 2010). On the other hand, other two laboratories also 

confirmed the chromatin binding profile of Tet1 and its dual functions in transcriptional 

regulation in mESCs (Williams et al., 2011; Xu et al., 2011). Interestingly, the regulation of Tet1 

on gene transcription has also been found to be possibly independent on its catalytic activity 

(Williams et al., 2011). Additionally, these studies further revealed that 5hmC mainly locates in 

transcription start sites (TSS) and gene body and such distribution can be regulated by Tet1 in 

mESCs (Williams et al., 2011; Xu et al., 2011). However, in these studies knockdown of Tet1 did 

not induce any change in cell morphology and proliferation, which contradicts the previously 

reported result that knockdown of Tet1 impairs the self-renewal of mESCs (Ito et al., 2010). To 

precisely identify the role of Tet1 in pluripotency of mESCs and in vivo development, Tet1-null 

mice and mESCs were also developed (Dawlaty et al., 2011). Despite significant decrease of 

5hmC content in gnomic DNA and skewed differentiation toward trophectoderm in vitro, 

deficiency of Tet1 does not induce significant change of key pluripotency genes expression and 

cell morphology in mESCs (Dawlaty et al., 2011). More importantly, although some pups have a 

relatively smaller body size at birth, the Tet1-null mice are viable, fertile and grossly normal, 

indicating that Tet1 may be not essential for embryonic and postnatal development (Dawlaty et al., 

2011). However, the result that intercross of Tet1-null males and females produces less progenies, 

suggesting that Tet1 deficiency may impair gametogenesis (Dawlaty et al., 2011; Wu and Zhang, 

2011). Therefore, based on an overall consideration of those available studies, Tet1 seems to be 

not essential for the pluripotency and self-renewal of mESCs. 

Interestingly, it was also reported that in the dentate gyrus of adult mice, shRNA-mediated 
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knockdown of Tet1 leads to inhibition of neuronal activity-induced active DNA demethylation in 

promoters of some genes including Bdnf and Fgf1, indicating Tet1 may be involved in 

hippocampal neurogenesis (Guo et al., 2011). Future studies with Tet1-null mice focusing on the 

neural development and functions will provide more confirmative evidences. In addition, TET1 

was initially identified as a fusion gene in AML (Lorsbach et al., 2003; Ono et al., 2002), raising a 

question that if TET1 is a tumor suppressor gene. However, by contrast to TET2 which is one of 

the most frequently mutated genes in hematological malignancies, TET1 mutation so far has been 

rarely detected in cancers, and thus few knowledge now has been obtained for the role of TET1 in 

cancer.  

Taken together, TET1 preferentially binds CpG-rich gene promoters and regulates gene 

transcription through or not its catalytic function in mESCs. Tet1 may be not required for the 

pluripotency and self-renewal of mESCs, and moreover the study on Tet1-null mice also basically 

excludes a critical role of TET1 for embryonic and postnatal development. Additionally, TET1 

may be involved in neurogenesis and human cancers, but more supportive evidences are still 

required. Further studies, particular those with the use of Tet1-null mice, are necessary to improve 

our understanding of the biological functions of TET1. 

 

1.4 Hypothesis, specific aims and rationales 

Hypothesis: TET1 is an important epigenetic regulator of DNA methylation with a potent 

demethylating function. 

To test this hypothesis, three specific aims were carried out: 

1. To globally study whether full length TET1 overexpression induces DNA demethylation by its 
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5mC dioxygenase enzymatic activity. 

2. To investigate the changes of DNA methylation after TET1 knockdown in human cell lines. 

3. To study the mechanism of TET-mediated DNA demethylation. 

 

Rationale: TET1 has been proven as a 5mC dioxygenase, but its function in DNA demethylation 

is still unknown. Previous studies revealed that overexpression of TET1-CD is capable to induce 

DNA demethylation in exogenous methylated DNA probes or endogenous genomic loci in 

HEK293T cells or adult mouse neurons, but no similar study has been done with full-length TET1 

(TET1-FL) overexpression (Guo et al., 2011; Zhang et al., 2010a). We hypothesized that other 

domains in TET1, especially the CXXC domain possibly responsible for its binding to CpG-rich 

genomic regions, may play an important role in regulation of its catalytic activity on 5mC, and 

thus make TET1-FL quite different from TET1-CD in regard of DNA demethylating activity. In 

addition, the previous results that DNA methylation levels increase in Tet1-bound CpG-rich 

regions after knockdown of Tet1 in mESCs only suggest a possible role of Tet1 in maintaining 

DNA hypomethylation state but do not directly support a demethylating activity for TET1 (Wu et 

al., 2011). Moreover, the impairment of mESCs maintenance and differentiation induction by Tet1 

knockdown add many other complexities to explain that increase of DNA methylation in mESCs 

(Ito et al., 2010). Thus, ESCs seems to be not suitable for studying the effect of TET1 knockdown 

on DNA methylation. Lastly, as for the mechanism of TET-mediated DNA demethylation, 

TDG-initiating BER seems to actively replace 5hmU (product from deamination of 5hmC), 5fC 

and 5caC with unmethylated cytosine (He et al., 2011; Maiti and Drohat, 2011), while the 

replication-dependent dilution of 5hmC, 5fC and 5caC in mouse zygotes suggests a passive 
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demethylation mechanism (Inoue et al., 2011; Inoue and Zhang, 2011). Thus, both passive and 

active demethylation pathways have not been conclusively proven. 
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CHAPTER 2  MATERIAL AND METHODS 

2.1 Cell culture 

Human embryonic kidney cell lines HEK293T and HEK293FT were obtained from the 

American Type Tissue Culture Collection and Invitrogen, respectively, and maintained in 

Dulbecco's Modified Eagle Medium (DMEM) modified with 10% fetal bovine serum and 100 

g/ml streptomycin-penicillin. The selected HEK293T single clone cells with TET1 knockdown 

or inducible TET1-CD overexpression were maintained in Dulbecco's Modified Eagle Medium 

modified with 10% fetal bovine serum and1~1.5 g/mL puromycin.  

 

2.2 Gene cloning and plasmid construction for TET1 overexpression 

To clone human full length TET1 open-reading frame (TET1-FL ORF), total RNA was 

extracted from SY5Y cells (gift from Dr. Howard B. Gutstein, M.D. Anderson Cancer Center) 

using TRIzol® Reagent (Invitrogen). Given the big size of TET1-FL ORF, reverse transcript was 

performed with TET1-specific primer and AccuScript PfuUltra II RT-PCR Kit (Stratagene) 

according to manufacturer's instructions. The completeness of the resultant cDNA, was firstly 

tested by PCR with primers targeting various TET1 exons. Subsequently, PCR amplification of 

TET1-FL ORF was done with AccuPrime™ Taq DNA Polymerase High Fidelity (Invitrogen). 

The PCR product was then purified from gel electrophoresis and cloned into pCR®-XL-TOPO® 

vector (Invitrogen). Subsequently, to construct TET1-FL overexpression plasmid, TET1-FLORF 

was transferred into pIRES-hrGFP II vector (Stratagene) which has a C-termial3×Flag tag and 

GFP reporter. TET1-CD ORF amplified from the above TET1-FL ORF clone was also cloned into 
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the same expression vector. The sequences of all clones were validated by Sanger DNA 

sequencing. All primers used above are listed on Table 1. 

 

2.3 Site-directed mutagenesis 

The catalytically mutant TET1-FL and TET1-CD (H1671D, Y1673A) (mTET1-FL and 

mTET1-CD) and CXXC domain-mutated TET1-FL (C594A) were generated by site-directed 

mutagenesis with a homemade kit. In brief, the wild type plasmids were amplified for 20-25 

cycles with primers containing the desired mutation and PfuUltra HF DNA polymerase 

(Stratagene). The resultant PCR products were digested with FastDigest® DpnI (Fermentas) to 

remove the original plasmids, and then transformed TOP10 chemical competent cells (Invitrogen). 

The sequences of those mutant plasmids were confirmed by DNA sequencing. The primers were 

designed with online QuikChange Primer Design soft (Stratagene) and listed on Table 1. 

 

2.4 Plasmid transfection 

For (m)TET1-FL and (m)TET1-CD overexpression, pIRES-(m)TET1-FL-Flag-GFP and 

pIRES-(m)TET1-CD-Flag-GFP were transfected into HEK293T cells using FuGene® HD 

Transfection Reagent (Roche). The transfection complex was prepared by mixing transfection 

reagent with plasmids at a ratio of 4:1(l:g) in OPTI-MEM® Reduced Serum Medium 

(Invitrogen). 18-24 hour after transfection, the transfection complex was removed and cells were 

culture in regular medium.
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Table 1. PCR primers and sequencing primers for TET1 plasmid construction 

 

Cloning 

primers 

Primer name Forward (5’-3’) Reverse (5’-3’) 
Tm 

(oC) 

Amplicon 

size (bp) 

TET1-GSP TATATACTGCAAGTTGCTAATACTTGAATG NA NA NA 

TET1-EX12-F/R GCGCGAGTTGGAAAGTTTG GCGCAGGAAACAGAGTCATT 56 181 

TET1-EX34-F/R GAGGGAAAAGAAGCCCAAAG TTTTGTTCTTCCCCATGACC 56 111 

TET1-EX1112-F/R CCGAATCAAGCGGAAGAATA ACCAGGAGAAGCCTGGAGAT 56 215 

ACTB-EX12-F/R ACAGAGCCTCGCCTTTGC CACGATGGAGGGGAAGAC 56 160 

TET1-FL ORF –F/R ATTATGGACTCTGTAGCTATGTCTCGA ATCCTACAGACCCAATGGTTATAGG 56 6,434 

TET1-CD ORF –F/R ACCATGGCTAAAGATTCTGAACTGC TAAAACGACGGCCAGTGAAT 56 2,294 

Sequencing 

primers 

Primer name Sequence (5’-3’)    

XLTET1-S-F2 ATGATACCAGTGGTTCCCCA    

XLTET1-S-F3 CATTAGCCCCTGAGAGAGGA    

XLTET1-S-F4 AGAATTCGGCAAGACATTGG    

XLTET1-S-F5 GCAACCCATACCCAAATTGA    

XLTET1-S-F6 AAACACCCTTACCGGAGTCA    

XLTET1-S-F7 TGGCTACACGATTAGCTCCA    

XLTET1-S-F8 TTCAGAAAGAAGCAGCACTCC    

XLTET1-S-R2 TGGGGAACCACTGGTATCAT    

XLTET1-S-R3 TCCTCTCTCAGGGGCTAATG    

XLTET1-S-R4 CCAATGTCTTGCCGAATTCT    

XLTET1-S-R5 TCAATTTGGGTATGGGTTGC    

XLTET1-S-R6 TGACTCCGGTAAGGGTGTTT    
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Table 1. PCR primers and sequencing primers for TET1 cloning, plasmid sequencing and site-directed mutagenesis (continued) 

 

 

 

 

 

 

 

 

 

Sequencing 

primers 

Primer name Sequence (5’-3’)    

XLTET1-S-R7 TGGAGCTAATCGTGTAGCCA    

XLTET1-S-R8 GGAGTGCTGCTTCTTTCTGAA    

Site-directed 

mutagenesis 

primers 

Primer name Forward (5’-3’) Reverse (5’-3’) 
Tm 

(oC) 

Amplicon 

size (bp) 

TET1-CD-Mutant-F/R
GACTTCTGTGCTCATCCCTACAGGGCCA

TTCACAACATGAATAA 

TTATTCATGTTGTGAATGGCCCTGTA

GGGATGAGCACAGAAGTC 

56 9,953 

TET1-CXXC-Mutant-

F/R 

AGCGATGTGGGGTCGCTGAACCCTGCC

AGC 

GCTGGCAGGGTTCAGCGACCCCAC

ATCGCT 

55 11,983 
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2.5 Fluorescence-activated cell sorting (FACS) 

To collect GFP positive cells, the HEK293T cells transfected with pIRES-(m)TET1-FL- 

Flag-GFP or pIRES-(m)TET1-CD-Flag-GFP were collected with GIBCO® 0.25% trypsin 

(Invitrogen), spun and resuspended in DMEM only supplemented with 100 g/ml 

streptomycin-penicillin at a density of 5×106 cells/ml. These cells were then filtered through 

Falcon® Cell Strainers (40 m, BD Biosciences), and sorted with Becton Dickinson FACS 

Calibur Flow Cytometer at the Flow Cytometry Core Facility at the University of Texas M.D. 

Anderson Cancer Center.  

 

2.6 DNA extraction and bisulfite-pyrosequencing/sequencing 

Genomic DNA was extracted from cell lines according to the following protocol. 106-107cell 

pellet was lysed by 450 μl cell lysis solution (25mM Tris-Cl pH 8.0, 10mM EDTA pH 8.0, 1% 

SDS) with 2 μl RNase A solution (20 mg/l), mixed well and incubated at 37 ºC for 1 hour. Then 

150 μl of 10M ammonium acetate was added and vigorously mixed, followed by incubation in ice 

for 5 minutes and centrifugation for 15 min (3,000 rpm, 4oC).The supernatant was then transferred 

to a new tube, and mixed with 600 l isopropanol. After centrifugation for 20 min (14,000 rpm, 

4oC), the resultant pellet was washed with 70% ethanol and then resuspended in 50-200 l TE 

buffer (10 mM Tris pH 8.0, 1 mM EDTA). DNA concentration was measured by NanoDrop™ 

1000 spectrophotometer (Thermo Scientific).  

Bisulfite conversion of genomic DNA was done with EpiTect bisulfite kits (Qiagen) according 

to manufacturer's instructions. Briefly, 2 g genomic DNA was used for each conversion reaction, 

and the converted DNA was finally eluted from the column with 40 l of EB buffer (10 mM Tris 
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pH 8.5) 

For bisulfite-pyrosequencing, we generally used two-step PCR for amplification. In the first 

step, 1 μl of each bisulfite-converted DNA sample was used in each reaction (25 l total volume). 

In the second step, 0.1-0.3 l of the 1st step PCR product was used as template, and biotinylated 

forward or reverse primers was used for generation of biotin-labeled PCR product. Instead of the 

biotinylated forward or reverse primers, the 5’ tailed forward or reverse primers and a biotinylated 

universal primer (5’-GGGACACCGCTGATCGTTTA-3’) can also be used to label PCR product 

(Colella et al., 2003). With the Pyrosequencing Vaccum Prep Tool (Biotage) the biotin-labeled 

DNA strands were captured by streptavidin sepharose beads (GE Healthcarecare). Then they are 

annealed to sequencing primers and sequenced by the PSQ HS 96 Pyrosequencing system 

(Biotage). Lastly, the results were analyzed with Pyro Q-CpG Software (Qiagen) software.  

For bisulfite-sequencing, a similar two-step PCR as that in bisulfite-pyrosequencing was used 

but no biotinylated primers were used in the 2nd step PCR. The final PCR product was then cloned 

into pCR4-TOPO vector (Invitrogen) and transformed TOP10 chemical competent cells 

(Invitrogen). After ~14 hours of incubation at 37 °C, individual clones were pick up and amplified 

with PCR using pCR4 forward primers (5’-TCTGGAATTGTGAGCGGATA-3’) and reverse 

primer (5’-GTTTTCCCAGTCACGACGTT-3’). Those PCR products were then sequenced with 

M13-RV primer at the DNA sequencing core facility at the University of Texas M.D. Anderson 

Cancer Center or Beckman Coulter Genomic Service. The bisulfite-pyrosequencing/sequencing 

primers used above were designed with PSQ Assay Design soft (Biotage) or MethPrimer soft ((Li 

and Dahiya, 2002), and listed on Table 2 and 3, respectively. 
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Table 2. PCR and sequencing primers used in bisulfite-pyrosequencing assay 

Gene name Step Forward (5’-3’) Reverse (5’-3’) Sequencing (5’-3’) Target (5’-3’) 
Tm 

(oC) 

Amplicon 

size (bp) 

LINE1 1 TTTTGAGTTAGGTGTG

GGATATA 

Biotin-AAAATCAAAAAATTC

CCTTTC 

AGTTAGGTGTGG

GATATAGT 

TTT/CGTGGTGT/CGT

T/CGTTTTTTAAGTT/

CGGTTTGAAAAG 

56  

PGRB 1 TGTGGGTGGTATTTTT

AATGAGA 

CCCCCTCACTAAAACCCTA

AA 

GGGATTTGAGATT

TT 

YGGAGATGATTGTY

GTTYGTAGTAYGGA

GTTAG 

60  

 2 GAGAATTAGTTTTATT

TGTTATTTGAGTGA 

Biotin- 

CAACCCATTCCCAAAAAAA

ATC 

    

RASSF1A 1 GGGGGAGTTTGAGTT

TATTGA 

Biotin- 

CTACCCCTTAACTACCCCTT

CC 

GGGTYGTATTYG

GTTGGAG 

YGTGTTAAYGYGTT

GYGTATYGYGYGGG

GTAT 

56  

OCT4 1 GGGTTAGAGGTTAAG

GTTAGTG 

AAATCCCAAACCAAATATC GTAAGTTTTTATT

TTATTAGG 

TTTTYGGTTTGGGG

YGTTTTTTTTTTTTAT

GGYGGGAT 

52  

 2 GGGTTAGAGGTTAAG

GTTAGTG 

GGGACACCGCTGATCGTTT

AAATCCCAAACCAAATATC*

    

BCL2L11 1 GATTGGGAGAGGAAG

AAAAGTTG 

CAAACCCCAAAACTAAATT

AATCC 

GGGAGGAGAGTT

TAAAGA 

TTTYGTTTYGYGTTT

TYGYG 

56 199 

 2 GTAGGAGGAGGGTGT

TTGAGTTT 

GGGACACCGCTGATCGTTT

ACAAACCCCAAAACTAAAT

TAATCC* 
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Gene name Step Forward (5’-3’) Reverse (5’-3’) Sequencing (5’-3’) Target (5’-3’) 
Tm 

(oC) 

Amplicon 

size (bp) 

PACS1 1 AGATGGGTTTAGGGG

TAGTTTGA 

CCCCCCAACCATAAAAATC

TA 

GGGTAGTAGGGT

AGGGTTA 

GGTYGGTAGGYGGA

GAGTYGGTTTTTTY

G 

56 230 

 2 TGTAGGGGTAGTAGG

GTAGGGTTA 

GGGACACCGCTGATCGTTT

ACCCCCCAACCATAAAAAT

CTA* 

    

PSEN2 1 TTTTAGGTGGGGTTTT

AGTGGA 

CCCTACCCAACACTCTCCT

CTCT 

AGGTGGGGTTTT

AGTG 

GAYGAGGGAAYGYG

GYGTYG 

56 367 

 2 TTTTAGGTGGGGTTTT

AGTGGA 

GGGACACCGCTGATCGTTT

AACCCCCCCCTCACCTACT

CT* 

    

TTC9 1 AGGTTGAGGAGGGAG

GAGG 

ACCCCCCAACCCTTTCTCT TGGAGTAGTTTTT

GGTAGTA 

GYGGGGAGAATGGG

AGTGYGGGGYG 

56 301 

 2 AGGAGGTTGGAGTAG

TTTTTGGTA 

GGGACACCGCTGATCGTTT

AACCCCCCAACCCTTTCTC

T* 

    

BHLHA9 1 TGGGAGGTAAGAGGT

TTTTTAAGA 

CCCCAAACTAAACCCTACA

AA 

TTGAGGATATTTG

GAGTG 

TTAYGGTTYGGTYG

YGYGYGGG 

56 197 

 2 TGGGAGGTAAGAGGT

TTTTTAAGA 

GGGACACCGCTGATCGTTT

ACCCCAAACTAAACCCTAC

AAA* 

    

LRRC56 1 GGGGAGATTTTTTTAT

TTGGGAAA 

CAAACCCCTCAAATACCAA

CTTC 

TTTTTATTTGGGA

AAGGT 

GGGYGYGAGTTTTT

AGTAGAGATYG 

 

56 159 
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Gene name Step Forward (5’-3’) Reverse (5’-3’) Sequencing (5’-3’) Target (5’-3’) 
Tm 

(oC) 

Amplicon 

size (bp) 

 2 GGGGAGATTTTTTTAT

TTGGGAAA 

GGGACACCGCTGATCGTTT

AACCCCTCAAATACCAACT

TCCT* 

    

OPLAH 1 GGGGTTTTTGAGGGA

GAGATTT 

CCCCAAAACTCCAAAATCC TGATGTTTTTATG

TTTAGTA 

TYGYGTTTTTTYGG

GTTTTGGATTGGGTY

G 

60 258 

 2 GGGGTTTTTGAGGGA

GAGATTT 

GGGACACCGCTGATCGTTT

ACCCCCCCAAAACTCCAAA

AT* 

    

SFMBT1 1 GTGATTGGTTAGGATA

AGATGGTA 

CTCCCAATTCCCAACTATCC

TATA 

GTTAGGATAAGAT

GGTATGA 

GYGGAGAAGYGGT

YGGATTTTAGAT 

54 274 

 2 TTGGTTAGGATAAGAT

GGTATGAG 

GGGACACCGCTGATCGTTT

ACTCCCAATTCCCAACTATC

CTATA* 

    

NFATC1 1 GGTTTATTATTGGAGA

AAATTAGT 

TAACAACCCCAAAACTCCT AGAAAATTAGTTA

GTGAAAG 

GGTYGYGGGAGAA

GTTYGGGGAYG 

60 148 

 2 TTGGAGAAAATTAGT

TAGTGAA 

GGGACACCGCTGATCGTTT

ATAACAACCCCAAAACTCC

T* 

    

IVNS1ABP 1 AATTTATTGGGGTTTT

TTATAT 

AATTACTACCAAATCCCAA

CTT 

TTTCACAAATCTC

CCTC 

CCA/GAACAAAATAA

TA 

54 116 

 2 GGGACACCGCTGATC

GTTTATATTGGGGTTT

TTTATATTAGGT* 

AATTACTACCAAATCCCAA

CTT 
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*To label single DNA strand with biotin, the reverse or forward primerin the second step PCRcontains a universal5’ tail (GGGACACCGCTGATCGTTTA), and a 

biotinylated universal primer (biotin- GGGACACCGCTGATCGTTTA) was also mixed with the tailed primer at a ratio of 4:1.  

  

Gene name Step Forward (5’-3’) Reverse (5’-3’) Sequencing (5’-3’) Target (5’-3’) 
Tm 

(oC) 

Amplicon 

size (bp) 

SHC2 1 GTGTTTATTTAATGGG

TAAAG 

TCCAAAAAAACCCTAATC GTTGTATTTTTTA

GGGAGG 

TTTYGGGGTAGTGT

YG 

60 185 

 2 TGAGGAGAGAGTAGT

TTTATTAT 

GGGACACCGCTGATCGTTT

ATCCAAAAAAACCCTAATC

* 

    

DPYSL5 1 GAAATGTATTTTTTAA

AGGTTAGT 

AAACCTCCAAACTACAACT ATCTCAACAAAAT

CTACCC 

RAACRCAAAACCCR

CA 

54 296 

 2 GGGACACCGCTGATC

GTTTAGAAATGTATTT

TTTAAAGGTTAGT* 

CCCATCTCAACAAAATCT     

NANOG 1 GGTTTTTTAATTTATT

GGGATTATAGG 

CCCAACAACAAATACTTCT

AAATTCA 

GGATTATAGGGGT

GGGT 

TATYGYGTTYGGTT 56 155 

 2 GGTTTTTTAATTTATT

GGGATTATAGG 

GGGACACCGCTGATCGTTT

ACCCAACAACAAATACTTC

TAAATTCA* 
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Table 3. PCR primers used in bisulfite-sequencing assay. 

Primer name Step Forward (5’-3’) Reverse (5’-3’) Tm (oC) Amplicon size (bp) 

BCL2L11-edge 1 GGGTTGAAAGTTGTTGTTATTAGATG TTAAAACTTAACTCCCAACTTAAACC 56 277 

 2 TTTGATTTGTTTTATTGTGTTGTGTT TTAAAACTTAACTCCCAACTTAAACC   

BCL2L11-center 1 GATTGGGAGAGGAAGAAAAGTTG CAAACCCCAAAACTAAATTAATCC 56 199 

 2 GTAGGAGGAGGGTGTTTGAGTTT CAAACCCCAAAACTAAATTAATCC   

PACS1-edge 1 AGATGGGTTTAGGGGTAGTTTGA CCCCCCAACCATAAAAATCTA 56 230 

 2 TGTAGGGGTAGTAGGGTAGGGTTA CCCCCCAACCATAAAAATCTA   

PACS1-center 1 GGGGGAAGTTTGGGAGTTAG AATAACCTAAACCAACTTAAAAAAC 56 225 

 2 GGGAAGTTTGGGAGTTAGAT AATAACCTAAACCAACTTAAAAAAC   

PSEN2-edge 1 AGTGTTTTTTTAATGTGAGAATAAT CCACTAAAACCCCACCTAAAATC 56 249 

 2 GAGGGGATGTGGATTTAAAATTATAA CCACTAAAACCCCACCTAAAATC   

PSEN2-center 1 TTTTAGGTGGGGTTTTAGTGGA CCCTACCCAACACTCTCCTCTCT 56 367 

 2 TTTTAGGTGGGGTTTTAGTGGA ACCCCCCCCTCACCTACTCT   

TTC9-edge 1 GGATTTTTTGAGGAAGGGTATAGA CTCCTTTTTATAAATCCAAATTATC 56 265 

 2 TTGAGGAAGGGTATAGAATTGTTTT CTCCTTTTTATAAATCCAAATTATC   

TTC9-center 1 AGGTTGAGGAGGGAGGAGG ACCCCCCAACCCTTTCTCT 56 301 

 2 AGGAGGTTGGAGTAGTTTTTGGTA ACCCCCCAACCCTTTCTCT   

KAZN-edge 1 GGTGGGTGTATTTAGTATTTTTTTTATTTA CCCAAACTAACCCCAATACC 60 385 

 2 GTATTTTTTTTATTTAGAGGATGGT CCCAAACTAACCCCAATACC   

MUM1-edge 1 TTAGTAGGAGGAGGTTGTAGTGAGTT ACCCTTTATCCTACAATCAAACC 60 438 

 2 GAGGAGGTTGTAGTGAGTTGAGTT ACCCTTTATCCTACAATCAAACC   

RFX6-edge 1 TTAATAGTGTATTTGAAAGTAGGGATGG TTACCCAAAAACTACACACAACAAT 56 559 

 2 GAAAGTAGGGATGGGGTTAGTTATAGT TTACCCAAAAACTACACACAACAAT   

VAX2-edge 1 GTTGGTTTTTTTAGTAAATGGTGG TCAACAAAATCAATAACCAAAATAC 60 655 

 2 TTTTTTTAGTAAATGGTGGGGATT TCAACAAAATCAATAACCAAAATAC   
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2.7 Protein extraction and western blot assay 

Protein extraction was performed using RIPA buffer (25mM Tris pH 7.6, 150mM NaCl, 1% 

NP-40, 1% sodium deoxycholate, 0.1% SDS)supplemented with 1×protease inhibitor cocktail 

solution (Roche). The concentrations of proteins were tested with BCA Protein Assay Reagent 

(Thermal Scientific). In western blot assay, 25-50 g aliquot of each protein sample was boiled 

for 5 min in Laemmli sample buffer (Biorad) supplemented with 5%-mercaptoethanol and then 

separated through SDS-PAGE gels (Biorad) with different concentrations depending on the sizes 

of target proteins. The primary antibodies used included anti-Flag (Stratagene), anti-TET1 

(GeneTex), anti-APEX1 (Abcam), anti-Lamin B (Abcam) and anti-ACTB (GeneTex), while 

secondary antibodies included dperoxidase labelled anti-rabbit and anti-mouse antibodies  (GE 

Healthcare). The bands development was done with Amersham® ECL Plus Western Blotting 

Detection Reagents (GE Healthcare) and exposed to X-Ray imaging film (Fisher). 

 

2.8 DNA dot blot against 5hmC 

1 M NaOH and 200 mM EDTA pH8.2 were added to each sample of genomic DNA to a final 

concentration of 0.4 mM NaOH/10 mM EDTA. Then DNA was denatured at 100oC for 10 min, 

followed by rapid chilling on ice. 2 l denatured DNA was then spotted onto the positively charged 

nylon membrane (Roche) with regular 20 l pipet, keeping the diameter of each dot to <4 mm. After 

the membrane became dry, rinsed it in 2×SSC buffer (0.3 M NaCl, 30 mMNa3C6H5O7) followed by 

complete air dry. Wrap the dry membrane in UV-transprent plastic wrap, and place DNA-side-down 

on a UV transilluminator for 3 min to immobilize the DNA. Subsequently, the membrane was 

probed with anti-5hmC antibody (Active Motif) in a same way as that in western blot assay.  
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2.9 RNA extraction, cDNA synthesis, and quantitative PCR 

Total RNA from cell lines was isolated with TRIzol® Reagent (Invitrogen) and treated with 

Turbo DNA-free™ kit (Ambion) according to manufacturer's instructions. First-strand cDNA was 

synthesized from 2 μg total RNA using the High Capacity cDNA Archive Kit (Applied 

Biosystems). Power SYBR® Green PCR Master Mix (Applied Biosystems) was used for 

real-time PCR to quantify gene expression. The primers were designed to span an intron or cross 

and intron/exon boundary. All reactions were run in triplicate. PCR reaction comprised a 10 min 

activation step at 95°C, followed by 40 cycles of 95°C for 15 s, and 60°C for 1 min. The results 

were analyzed by PRISM® 7500 Sequence Detection System (Applied Biosystems) to get 

threshold cycle (Ct) value for each reaction. The average Ct value of target genes for each sample 

was subtracted from the average Ct value of endogenous control (GAPDH) to obtain a normalized 

Ct value (ΔCt). Finally, the mRNA expression of objective gene was shown by 2ΔCtvalue. The 

primers used are listed in Table 4. 

 

2.10 HpaII-digestion DNA methylation assay 

500 ng genomic DNA was incubated with 10 units HpaII (NEB) or in a mock reaction without 

HpaII at 37°C for 8 hr or overnight, followed by 80°C inactivation for 20 min. The DNA from 

HpaII digestion or mock treatment was tested by real-time PCR with Power SYBR® Green PCR 

Master Mix(Applied Biosystems) and primers flanking specific HpaII digestion sites. The 

real-time PCR reaction was same to that in “2.9 RNA extraction, cDNA synthesis and quantitative 

PCR”. Each reaction was performed in triplicate. DNA methylation of a CCGG site was 

calculated by 2Ct(mock)-Ct(HpaII) ×100%. The primers used are listed in Table 5.
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Table 4. PCR primers for RT-qPCR of gene expression analysis 

 

 

 

 

 

 

 

 

   

Primer name Forward (5’-3’) Reverse (5’-3’) Tm (oC) Amplicon size (bp) 

TET1-CD-RT-F/R GATTCTGAACTGCCCACCTG TCCATGATTTCCCTGACAGC 60 116 

NANOG-RT-F/R CAAAGGCAAACAACCCACTT TCTGCTGGAGGCTGAGGTAT 60 158 

OCT4-RT-F/R AAGCGATCAAGCAGCGACTAT GGAAAGGGACCGAGGAGTACA 60 127 

SOX2-RT-F/R GCGCCCTGCAGTACAACTC GCTGGCCTCGGACTTGAC 60 140 

KLF4-RT-F/R CCCAATTACCCATCCTTCCT ACGATCGTCTTCCCCTCTTT 60 127 

hTERT-RT-F/R GCCGATTGTGAACATGGACTAC GTAGTTGAGCACGCTGAACAGT 60 109 

CD44-RT-F/R ACACATATTGCTTCAATGCTTCAG CAGGATTCGTTCTGTATTCTCCTT 60 153 

APEX1-RT-F/R GCTGCCTGGACTCTCTCATC GCTGTTACCAGCACAAACGA 60 180 

GADPH-RT-F/R TTGTCAAGCTCATTTCCTGGT CTTACTCCTTGGAGGCCATGT 60 90 
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Table 5. PCR primers for HpaII-digestion methylation assay and ChIP-qPCR 

 

 

  

Primer name Forward (5’-3’) Reverse (5’-3’) Tm (oC) Amplicon size (bp) 

UBE2B-HpaII-F/R CTCAGGGGTGGATTGTTGAC TGTGGATTCAAAGACCACGA 60 177 

IVNS1ABP-HpaII-F/R CTACTGGGGCCCTTTATA CTAAATCCCTCACCTTCAAT 60 170 

NPAS1-HpaII-F/R ATGACTGACCCAAGTCTCT AGTTCAGCAAGGCCTAGAG 60 152 

PARRES1-HpaII-F/R GGAAATAAGGCCGTGGTG GAAACGTGGAAAAGGAGTGG 60 96 

BCL2L11-CP-F/R GCGCAACGTTCTCTCTCACT GCATGTGCAAAGCAGGTAAA 60 116 

PACS1-CP-F/R GACCGAATCCCGGAAAAG GGGTCCTGCCCTCAAATC 60 107 

PSEN2-CP-F/R CCCAGTGGACGAGGGAAC GCTCCAGCGGAGTTTACG 60 122 

TTC9-CP-F/R GAGCGCACGAGTTCAAAAG CCCGGTGGTATTTGCCTAT 60 81 

BHLHA9-CP-F/R GCGCATCCTAGACTACAACG CGATCTTGGAGAGCCTCTTG 60 86 

LRRC56-CP-F/R GGTGTGTGTTTCCTGGTCCT CTGACCTTCGGTTGGAAGTG 60 80 

OPLAH-CP-F/R GGTCCCTCAGCACGAAAGAG GGTCGAAGGTCGAGCAAAG 60 96 

SFMBT1-CP-F/R GCTCCCTCTGAGACCTGAAA CTGCGGAAGCCTAGAGACAT 60 96 

KAZN-CP-F/R CGCTGGTGGCAAAGTTCT ACGCCGAGGAACTCACTCT 60 93 

MUM1-CP-F/R GTCTGACTGCAGGACAAAGG AGTGCTGCCTGAGGAGACC 60 93 

RFX6-CP-F/R CGGAGCTGGAAGACACCTT GGAGCTGCACACAGCAGTC 60 84 

VAX2-CP-F/R AGGCTCCAGGGAGAGTGG CCCTTACCTCGCACCAGTAT 60 90 
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2.11 Digital restriction enzyme analysis of methylation (DREAM) 

5 μg genomic DNA from (m)TET1-FL or (m)TET1-CD overexpressed HEK293T cells was 

first spiked with 0.5 ng of a set of specific calibrators made of PCR-amplified fragments from 

non-human DNA and in vitro methylated at CpG sites by the M.SssI methylase to 0, 25, 50, 75 

and 100% methylation levels. The DNA mixture was then sequentially digested by 5 l SmaI (3 

hours at 37oC, Fermentas) and 50 U XmaI (~16 hours at 37oC, NEB). After purified with 

QIAquick PCR purification kit (Qiagen), the digested DNA was heated at 65 oC for 3min 

followed by snap cooling to create free concatenated CCGG overhangs. Klenow fragment 

(3’→5’minus) (NEB) and CGA mix (dCTP, dGFP, dATP, 10 Mm each) were then added to the 

DNA in order to fill the overhangs and add “A” tail to 3’ end. The resultant DNA was purified 

again and then ligated withSolexa Paired Ends Adapters (PEA1: 5’phosphate-GATCGGAAG 

AGCGGTTCAGCAGGAATGCCGFG-3’, PEA2: 5’-ACACTCTTTCCCTACACGACGCTCTT- 

CCGATOT-3’) using Quick T4 DNA ligase (Enaymatics). Subsequently, the DNA ligated with 

adapters was separated through 2% agarose gel. Two gel slices with the size of 250~375bp and 

375~500 bp, respectively, were cut off and purified separately with QIAquick Gel Extraction Kit 

(Qiagen). PCR amplification (18 cycles) of the gel-extracted DNA was performed using Solexa 

paired-end PCR primers and iProof HF master mix (BioRad). PCR products were further purified 

with Agencourt AMPure PCR Purification Kit (Beckman Coulter) and tested for concentration 

with NanoDrop™ 1000 spectrophotometer (Thermo Scientific). Finally, the PCR production from 

gel slice of 250~375 bp was sent for next generation sequencing at the DNA sequencing core 

facility at the University of Texas M.D. Anderson Cancer Center. The principle of DREAM is 

depicted in Figure 5. 
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Figure 5. The principle of digital restriction enzyme analysis of methylation (DREAM) 

The genomic DNA is sequentially digested with a pair of enzymes recognizing the same 

restriction site (CCCGGG) containing a CpG dinucleotides. The first enzyme, Smal, cuts only at 

unmethylated CpG and leaves blunt ends. The second enzyme, XmaI is not blocked by 

methylation and leaves a short 5' overhang. The enzymes thus create methylation specific 

signatures at ends of digested DNA fragments. These are then deciphered by next generation DNA 

sequencing. The methylation level for each sequenced restriction site is calculated based on the 

numbers of DNA molecules with the methylated or unmethylated signatures: methylation % = 

(number of methylated signatures)/ (number of methylated signatures + number of unmethylated 

signatures) × 100.  
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2.12 Hydroxymethylated DNA immunoprecipitation-sequencing 

(hMeDIP-Seq) 

3 g Genomic DNA from (m)TET1-FL or (m)TET1-CD overexpressed HEK293T cells was 

diluted TE buffer and sonicated with Bioruptor (Diagenode). The desirable fragment size is 

100~500 bp. The resultant DNA was purified with QIAquick PCR purification kit (Qiagen) and 

tested for concentration with NanoDrop™ 1000 spectrophotometer (Thermo Scientific). 500 ng 

purified sonicated DNA was first spiked with20 pg of a set of specific calibraters made of 

PCR-amplified fragments from non-human DNA with different dCTP components, then 

performed end repair with T4 DNA polymerase, Klenow DNA polymerase and T4 PNK (NEB), 

added with “A” bases to the 3’ end of the DNA fragments with Kenowexo (3’ to 5’ minus, NEB), 

and ligated with Solexa Paired ends Adapters to DNA fragments with Quick T4 DNA ligase 

(Enaymatics). Subsequently, the prepared DNA was purified again, diluted in TE buffer and 

denatured at 95 oC for 10 min, followed by snap chilling in ice. For immunoprecipitation, the 

denatured DNA was incubatedwith1 l anti-5hmC antibody (Active Motif) or control rabbit 

IgG(Millipore) at 4 oC with rotation overnight. These DNA-antibody complexes were then 

precipitated by Dynal®Protein G magnetic beads (Invitrogen) at 4oC with rotation for 2 hours. 

After extensive washing and elution at 65 oC for 15 min, DNA was separated from beads. For 

library size selection, the resultant DNA was separated on 2% agarose gel and gel slice of 275-325 

bp was cut off followed by gel extraction with QIAquick Gel Purification Kit (Qiagen). To 

amplify the gel-extracted DNA, PCR was performed for 10-15cycles with Solexa paired-end PCR 

primers and Phusion™ High-Fidelity DNA Polymerase (NEB). The PCR product was purified 

with Agencourt AMPure PCR Purification Kit (Beckman Coulter), and sent for next generation 
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DNA sequencing at the DNA sequencing core facility at the University of Texas M.D. Anderson 

Cancer Center. A flowchart for hMeDIP-Seqis is depicted in Figure 6. 

 

2.13 ChIP-quantitative PCR (ChIP-qPCR) 

Cells were firstly fixed with fresh 1% formaldehyde at room temperature for 10 min and 

quenched with 125 mM glycine. The cells then were washed with cold PBS and resuspended in 

SDS lysis buffer (50 mMTris pH 8.1, 10mM EDTA, 1% SDS), followed by sonication to get an 

average fragment size of 200-500 bp. The resultant chromatin samples were diluted by 10 folds in 

ChIP dilution buffer (16.7 mM Tris pH 8.1, 1.2 mM EDTA, 167 mM NaCl, 1.1% Triton X-100, 

0.01% SDS) and incubated with Dynal®Protein G magnetic beads (Invitrogen) overnight at 4oC 

with rotation for pre-clearing. At the same time, antibodies against proteins of interest or control 

IgG were pre-crosslinked with Dynal® Protein G magnetic beads at 4oC overnight. After that the 

cleared chromatin samples were incubated with the antibody-bead complex at 4oC with rotation 

overnight. The immunoprecipated chromatin-antibody-bead complexes were then extensively 

washed with RIPA washing buffer (0.5 M EDTA, 5M LiCl, 1M Hepes-KOH pH 7.6, 10% NP-40, 

10% Na-Deoxycholate) and TE buffer containing 50 nM NaCl, resuspended in Elution buffer (50 

mMTris pH 8.1, 10mM EDTA, 1% SDS), and heated at 65 oC for 15 min to separate chromatin 

from beads. To reverse crosslink, the isolated chromatin was incubated at 65 oC overnight, 

followed by digestion with RNase A and Proteinase K. Finally, the resultant DNA was purified 

with Qiaquick PCR Purification Kit (Qiagen). 

To test the occupancy of proteins of interest in certain genomic regions, the purified 

immunoprecipitated DNA and 10% input control DNA were tested by real-time PCR with Power 



51 
 

SYBR® Green PCR Master Mix(Applied Biosystems) and primers targeting those specific 

regions. PCR reaction program was similar to that in “2.9 RNA extraction, cDNA synthesis and 

quantitative PCR”. The primers used are listed in Table 5. 

 

2.14 Lentiviral shRNA-mediated TET1 knockdown 

Four different TET1 shRNA in pTRIPZ vectors (OpenBiosystems) were transferred into MulI 

and XhoI sites of the pGIPZ vectors (OpenBiosystems). To produce lentiviral particles, 

pGIPZ-shTET1 and package plasmids psPAX2 and pMD2.G (Addgene) were transfected into 

HEK293FT cells using Lipofectamine® 2000Transfection Reagents (Invitrogen). Two days after 

transfection, the viral medium was collected and filtered with 0.45 m PVDF filters (Millipore). 

The filtered viral medium was added with polybrene (Sigma) at a final concentration of 8 g/ml, 

and then transducted target cells-HEK293T cells. Cultured HEK293T cells for two days after 

transduction, then splitted them into new dishes at an appropriate density (~30% confluence) and 

began puromycin selection (1.5 g/ml, Sigma). To get optimal knockdown efficiency, single cell 

cloning was done by serial dilution. All sequences of shRNA used see Table 6. 

 

2.15 siRNA knockdown 

Two different siRNA for human APEX1 and one non-silencing control siRNA were bought 

from Sigma (Table 6). For transfection, 75 pmol siRNA was diluted in 250l of OPTI-MEM® 

Reduced Serum Medium (Invitrogen), and then mixed with 4 l Lipofectamine™ RNAiMAX 

Transfection Reagent (Invitrogen). To improve knockdown efficiency, a second transfection was 

performed 3 days after the first transfection. 
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Figure 6. The flow chart for hydroxymethylated DNA immunoprecipiation-sequencing 

(hMeDIP-Seq) 

The genomic DNA is fragmented by sonication, and then adapters are ligated to the ends of the 

resultant DNA fragments. Through an immunoprecipitation process with the use of anti-hmC 

antibody, hmC-containing DNA is specifically isolated and in turn amplified by adaptor-mediated 

PCR. Those PCR products are then tested by next generation DNA sequencing on the Illumina 

platform, and finally aligned to genomic DNA.  
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Table 6. ShRNA and siRNA used for knockdown experiment 

 

 

 

 

 

 

 

 

 

 

 

Name Sequence (5’-3’) Oligo/siRNA ID Company 

shControl CTCGCTTGGGCGAGAGTAAG RHS4743 OpenBiosystems 

shTET1#1 CGAATCAAGCGGAAGAATA V2THS_141063 OpenBiosystems 

shTET1#2 CTGAGAATATACCAAGTAA V2THS_201600 OpenBiosystems 

shTET1#3 CTTCGATAATTAAGATCAA V2THS_202091 OpenBiosystems 

shTET1#4 CTTTGCTAGTGCAGTGTAT V2THS_203196 OpenBiosystems 

siControl / SIC001 Sigma 

siAPEX1#1 / SASI_Hs01_00122789 Sigma 

siAPEX1#2 / SASI_Hs01_00122792 Sigma 
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2.16 Cell growth curve 

3×104 HEK293T cells were seeded in 6-well culture plate in DMEM containing 10% FBS and 

100 g/ml streptomycin-penicillin. Culture medium was replaced every two days. The cell numbers 

were counted daily for total four days with the use of Z2 Cell and Particle Counter (Beckman 

Coulter). 

 

2.17 Tetracycline-induced TET1-CD overexpression 

pTRIPZ is specifically designed for inducible lentiviral shRNA-mediated knockdown 

(OpenBiosystems). Tetracycline-induced TET1-CD overexpression plasmid was conveniently 

constructed based on non-silencing pTRIPZ-shRNA plasmid by replacing its GFP cDNA fragment 

with (m)TET1-CD-Flag ORF. The procedures for viral particle production, transduction of HEK293T 

cells were similar to shRNA-mediated TET1 knockdown protocol mentioned previously. 

HEK293T cells transducted were then selected with puromycin (1.5 g/ml, Sigma). Finally, single 

cell cloning was done by serial dilution.  

 

2.18 BrdU-containing DNA immunoprecipitation 

To distinguish nascent DNA from parent DNA, 50M BrdU (BD Pharmingen) was added into 

HEK293T cell culture for 24 hour. To isolate BrdU-containing nascent DNA, a BrdU-containing 

DNA-IP was done with a similar manner to that in hMeDIP mentioned above. In brief, sonicated 

genomic DNA was first spiked with two specific calibraters made of PCR-amplified fragments 

from non-human DNA with or without BrdUTP (eEnzyme). BrdU-containing DNA fragments 

were then immunoprecipitated by anti-BrdU antibody (Sigma) and Dynabeads® M-280 sheep 

anti-mouse IgG (Invitrogen). The isolated DNA was finally analyzed with bisulfite- 
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pyrosequencing assay as in “2.6 DNA extraction and bisulfite-pyrosequencing/sequencing”. 

 

2.19 Data processing and statistics 

All next generation DNA sequencing datasets were received after pre-analysis by Drs. 

Shoudan Liang and Yue Lu in the Center for Cancer Epigenetics and DNA sequencing core 

facility in M.D. Anderson Cancer Center. Statistical analyses were performed by student’s t-test 

and Wilcoxon paired signed-rank test. Excel and Graphpad Prism were major softwares used in 

data processing and statistical analysis. 
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CHAPTER 3  RESULTS 

3.1 Different regulation of DNA methylation by TET1-FL and TET1-CD 

overexpression 

3.1.1 TET1 ORF Cloning and overexpression plasmids construction 

Human TET1 gene locates in chromosome 10q21 (Chr10:70,320,413-70,454,239) and has 

only one annotated transcript (ENST00000373644), which compromises 12 exons and encodes 

2136 amino acids (Figure 7A). We clonedTET1-FL ORF from human neuroblastoma cell line 

SY5Y, as this cell line has been reported to express normal TET1 protein (Tahiliani et al., 2009). 

Considering the long length of TET1-FL ORF, cDNA synthesis was performed using AccuScript 

PfuUltra II RT-PCR Kit with either oligo-dT or gene-specific primer, which targets the 

3’untranslated-region (UTR) of TET1 mRNA. Once the reverse transcription reactions were 

finished, we first checked the completeness of TET1 cDNA by PCRs with three primer pairs 

targeting 1st and 2nd, 3rd and 4th, and 11th and 12th exons of TET1, respectively (Figure 7B). As 

Figure 7C shows, the PCR products with all three primer pairs showed bands of right size in DNA 

electrophoresis, proving the success of our TET1 cDNA synthesis. Moreover, both oligo-dT and 

gene-specific primer worked well in the reverse transcription reactions. 

Next we amplified TET1-FL ORF with above TET1 cDNA (synthesized with gene-specific 

primer) using AccuPrime™ Taq High Fidelity DNA Polymerase. After optimization of thermal 

cycling conditions, we successfully got a PRC product with the right size of 6.4 kb (Figure 7D). 

To accommodate such big insert, pCR®-XL-TOPO® vector instead of regular cloning vector (e.g. 

pCR®4-TOPO®) was used and generated considerable single clones. By using restriction 

digestion assay (KpnI and AvrII enzyme), four right clones was selected and sent to 
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Figure 7. Construction of expression plasmids encoding TET1-FL or TET1-CD 

(A) Location of TET1 gene in genomic DNA and exons of TET1. (B-C) PCR analysis of the 

completeness of TET1 cDNA synthesized by reverse transcription with oligo-dT primer (C, lane 2) 

or TET1-GSP (gene specific primer) (C, lane 3). To easily test the completeness of synthesized 

TET1 cDNA, different intron-spanning PCR primers were designed (B). Primers TET1-EX34-F/R 

and ACTB EX12-F/R (not shown here) were used by PCR on lane 2, while TET1-EX12-F/R and 

TET1-EX1112-F/R were used on lane 3. (D) Amplification PCR of TET1-FL ORF from the 

confirmed full length TET1-cDNA. (E) DNA sequencing confirms two point mutations (C5014T, 

A5012C) in catalytically mutant TET1-FL (H1672Y, D1674A). (F) Amplification PCR of 

TET1-CD ORF from the confirmed TET1-FL ORF plasmids. (G) Plasmid map for 

pIRES-TET1-FL-Flag-GFP and pIRES-TET1-CD-Flag-GFP. 
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bi-directional DNA sequencing. As expected, the sequencing results showed each clones have 9 ~ 

16 errors, which most possibly came from the reverse transcription reaction. Except 1/3 of total 

errors occurring at wobble position of genetic codes, the other errors were repaired by 

re-combination among those four clones and re-cloning of error-containing short regions from 

original TET1 cDNA. Finally, we successfully got a clone containing completely right sequence 

of TET1-FL ORF. 

To construct catalytically mutant TET1-FL (mTET1-FL) ORF, we next introduced two point 

mutations (H1672Y, D1674A) (Tahiliani et al., 2009) into the available wild type TET1-FL ORF 

using our homemade site-directed mutagenesis kit (Figure 7E). With both clones of TET1-FLORF 

and mTET1-FL ORF, we then conveniently constructed two clones containingTET1-CD ORF and 

mTET1-CD ORF (Figure 7F), respectively. To construct expression plasmids, we transferred 

those four different ORFs from pCR®-XL-TOPO® vector to the EcoRI and NotI sites of 

pIRES-hrGFP vector which contains a 3×Flag tag and GFP reporter (Figure 7G). Thus, we 

finally got four different expression plasmids which were labeled as pIRES-TET1-FL-Flag-GFP, 

pIRES-mTET1-FL-Flag-GFP, pIRES-TET1-CD-Flag-GFP and pIRES-mTET1-CD-Flag-GFP, 

respectively. 

 

3.1.2 Overexpression of TET1-FL and TET1-CD in HEK293T cells 

To overexpress (m)TET1-FL and (m)TET1-CD in HEK293T cells, we next transiently 

transfected the cells with those above four expression plasmids, followed by FACS to collect GFP 

positive cells 3 days after transfection (Figure 8A). Western blot assay with anti-Flag antibody 

confirmed the overexpression of all four transgenes (Figure 8B). Compared with (m)TET1-CD, 
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(m)TET1-FL showed a much lower overexpression level, which may be caused by the low 

transgene copy number and low transcriptional activity due to their much bigger size. Given 

(m)TET1-CD has two less nuclear localization signals (NLS)than (m)TET1-FL, we also tested 

whether the ectopically expressed (m)TET1-CD proteins could be efficiently transferred to nuclei. 

By separately isolating nuclear and cytoplasmic proteins, we found that (m)TET1-CD proteins 

were enriched in both fractions, indicating that the only NLS in DSBH domain is enough for the 

nuclear localization of (m)TET1-CD (Figure 8C). 

We next studied the catalytic functions of these overexpressed TET1 proteins. By using DNA 

dot-blot assay with specific anti-5hmC antibody, a dramatic production of 5hmC was expectedly 

detected in the genomic DNA from GFP positive cells transfected TET1-FL or TET1-CD, but not 

those transfected with mTET1-FL or mTET1-CD (Figure 8D).Compared with TET1-CD, 

TET1-FL overexpression resulted in a much lower 5hmC production. Considering TET1-FL 

transfection yielded a lower level of transgene expression than TET1-CD (Figure8B), we then 

asked whether prolonging the culture time of TET1-FL-overexpressed cells can achieve a 

comparable5hmC level as that by TET1-CD overexpression. The 5hmC level by TET1-FL 

overexpression significantly increased when cells were cultured for up to 7 days after transfection, 

but it was still much lower than that by TET1-CD, suggesting that other reasons than the lower 

level of TET1-FL expression may mainly explain this (Figure 8E). Actually, because of its smaller 

size and lack of potential DNA binding domain (i.e. CXXC domain) TET1-CD may be able to 

access more extensive genomic regions (e.g. tightly packed heterochromatic regions), which 

essentially leads to its high production of 5hmC. Taken together, the marked production of 5hmC 

by TET1-FL and TET1-CD but not their catalytically mutant controls functionally validates the  
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Figure 8. Both overexpression of TET1-CD and TET1-FL produce 5hmC in genomic DNA 

(A) Fluorescent images of HEK293T cells 2 days after wild-type and catalytically mutant 

TET1-CD (TET1-CD, mTET1-CD) or TET1-FL (TET1-FL, mTET1-FL) transfection. (B) 

Western blot analysis of overexpression of Flag-tagged (m)TET1-FL and (m)TET1-CD 3 days 

after transfection. (C) Presence of (m)TET1-CD overexpression in both nuclear and cytoplasmic 

fractions. (D-E) DNA dot-blot analysis of genomic 5hmC levels in HEK293T cells 

overexpressing wild-type and catalytically mutant TET1-CD or TET1-FL 3, 5, or 7 days after 

transfection.  
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model of (m)TET1-FL and (m)TET1-CD overexpression we constructed and thus allows our 

subsequent studies on the potential demethylating effects of TET1-FL and TET1-CD. 

 

3.1.3 Overexpression of TET1-CD but not TET1-FL induces DNA demethylation in some 

genomic loci 

We next examined whether TET1-FL-mediated 5mC oxidation further leads to DNA 

demethylation in genomic DNA. Bisulfite-sequencing has been extensively used for quantitative 

analysis of DNA methylation in specific CpG sites. In this assay5mC is distinguished from 

unmethylated cytosine relies on the fact that reaction with sodium bisulfite promotes deamination 

of unmethylated cytosine but not 5mC to yield U. 5hmC, the primary product of TET-mediated 

5mC oxidation, has been reported to react with bisulfite to yield cytosine 5-methylenesulfonate 

which is also resistant to deamination (Hayatsu et al., 1970), suggesting that 5hmC may be not 

distinguished from 5mC by bisulfite-sequencing. To confirm it, we synthesized two different 

oligonucleotides using PCR with either dCTP or 5hm-dCTP and then tested them with 

bisulfite-pyrosequencing. As shown in Figure 9, 5hmC was indistinguishable from 5mC in 

bisulfite-pyrosequencing. Actually, a similar result has also been acquired by a recent study from 

Rao group (Huang et al., 2010). Thus, the DNA methylation levels for 5hmC-modified CpGs can 

still be accurately analyzed by bisulfite-sequencing. Actually, a more recent study further reported 

that 5fC also behaviors as 5mC in bisulfate conversion reaction, but 5caC acts as unmodified 

cytosine (He et al., 2011). Therefore, considering that 5mC oxidation reactions by TET proteins 

also produce some 5caC, TET-mediated DNA demethylation extent may be overvalued to certain 

extent in bisulfite-based DNA methylation analysis. But even so, we found only overexpression of  
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Figure 9. 5hmC behaviors in a same pattern as 5mC in bisulfite-pyrosequencing 

(A) Generation of different oligonucleotides containing different modified cytosine by PCR with 

different dCTP component. As shown in the table, only dCTP was used in #1 PCR; only 

5hm-dCTP was used in #2 PCR; and both dCTP and 5hm-dCTP (1:1) were used in #3 PCR. The 

PCR template is from human p16 gene promoter. The PCR primer targeted sequences are 

underlined. And the four CpG dinucleotides in red were finally tested for DNA methylation levels 

by bisulfite-pyroseqeuencing. (B) Example graphic result of bisulfite-pyrosequencing for 

oligonucleotides from #1, #2 and #3 PCR, respectively. 

dATP, dGTP, dTTP dCTP 5hm-dCTP

#1 10 mM each 10 mM 0 mM

#2 10 mM each 0 mM 10 mM

#3 10 mM each 5 mM 5 mM
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TET1-CD but not TET1-FL was observed to induce significant DNA demethylation at some 

randomly selected genomic loci, including long interspersed non-repetitive element-1 (LINE1) 

and promoters of RASSF1A, OCT4 and PGRB genes (Figure 10A, 10B). We also used HpaII 

enzyme-based DNA methylation assay. Since HpaII digestion is blocked by 5mC and its all 

oxidative derivatives (He et al., 2011), this method offers a relatively accurate way to detect DNA 

demethylation induced by TET. Consistent with the bisulfite-pyrosequencing results, only 

overexpression of TET1-CD showed a significant decreased of DNA methylation in the promoters 

of IVNS1ABP, NPAS3 and PARRES1 (Figure 10C). Taken together, TET1-FL exhibited a different 

functional pattern from TET1-CD in regard of DNA demethylation, which suggests that 

previously reported demethylating effect of TET1-CD cannot be simply explained as that of 

TET1.  

 

3.1.4 TET1-CD overexpression induces global DNA demethylation without distribution bias 

The results from other laboratories and ours have showed that overexpression of TET1-CD 

can induce DNA demethylation in some endogenous genomic loci (Guo et al., 2011; Zhang et al., 

2010a). To further characterize the effect of TET1-CD on DNA methylation, we next globally 

examined DNA methylation changes in HEK293T cells overexpressing (m)TET1-CD. With the 

use of DREAM, the DNA methylation levels of 34,322 and 33,395 CpG sites were quantified in 

cells transfected with TET1-CD and mTET1-CD, respectively (Table 7). Pair-wise comparison of 

32,803 common CpGs between TET1-CD and mTET1-CD transfection revealed that 

overexpression of TET1-CD is capable to induce a pronounced global DNA demethylation 

(Figure 11A). It is notable that 2957 CpGs (~9.0% of total common CpGs) were demethylated by  
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Figure 10. DNA demethylation of some genomic loci induced by TET1-CD but not TET1-FL 

overexpression  

(A-B) Bisulfite-pyrosequencing analysis of DNA methylation levels of LINE1, RASSFIA, OCT4 

and PGRB genes 3 or 7 days after (m)TET1-CD or (m)TET1-FL transfection, respectively. (C) 

HpaII sensitivity assay of UBE2B, IVNS1ABP, NPAS1 and PARRES1 genes 3 or 7 days after 

(m)TET1-CD or (m)TET1-FL transfection, respectively. The hypomethylated UBE2B gene was 

used as mark for complete digestion of HpaII. Error bars represent SD of 2-3 independent 

experiments. * p<0.05, ** p<0.01 by student’s t-test compared to corresponding mutant control.

A

B

C
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Table 7. Summary of tags and CpG sites detected in DREAM 

Cutoff: ≥20 tags. * Common covered CpG sites between TET1-CD and mTET1-CD transfection. & Common covered CpG sites between TET1-FL and 

mTET1-FL transfection. 

 

 

 

 

 

 

 

 

 

Transfection 
Total number of 

mapped tags 

Number of  

methylated tags 

Number of  

unmethylated tags 

Total number of 

CpG sites covered 

Number of common 

CpG sites 

TET1-CD 16,020,800 3,746,398 

(23.4%) 

12,274,402 

(76.6%) 

34,322 32,802* 

mTET1-CD 12,088,163 3,619,375 

(30.0%) 

8,468,788 

(70.0%) 

33,395  
TET1-FL 32,634,341 13,244,935 

(40.6%) 

19,389,406 

(59.4%) 

42,988 40,937& 

mTET1-FL 35,025,843 13,433,683 

(38.4%) 

21,592,160 

(61.6%) 

43,936  
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Figure 11. Global DNA demethylation induced by TET1-CD overexpression in HEK293T 

cells 

(A) Pair-wise comparison of DNA methylation levels at 32,803 common CpGs between 

TET1-CD and mTET1-CD transfections. Blue dots and number represent the CpG sites with 

demethylation extent of >=20%. (B) Boxplot shows demethylation efficiency indicated by 

demethylation extent in HEK293T cells overexpressing TET1-CD as a function of basal 

methylation level. The methylation levels are grouped in 10% intervals from 0-100% methylation. 

Boxes mark the interquartile range, and whiskers the 2.5th and 97.5th percentiles.  

A

B
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more than 20% (Figure 11A). We next examined the demethylation efficiency of TET1-CD by 

calculating demethylation extent for each CpG and grouping CpGs by their basal methylation 

levels (i.e. methylation level in mTET1-CD-overexpressed cells) in 10 intervals from 10% to 100% 

methylation. Interestingly, TET1-CD-induced demethylation occurred at CpGs of all methylation 

levels, and the demethylation efficiency was generally positively correlated with the basal 

methylation level (Figure 11B). Moreover, to determine whether TET1-CD-induced DNA 

demethylation has distributional bias, we also compared its demethylation efficiency between 

CpG islands (CGIs) and non-CGIs, as well as among promoters, transcription start sites (TSSs), 

exons, introns, transcription end sites (TESs) and intergenic regions. Interestingly, we clearly 

found that TET1-CD-induced DNA demethylation was not biased toward any certain regions 

(Figure 12). Therefore, TET1-CD overexpression really induced a genome-wide DNA 

demethylation in HEK293T cells, suggesting that TET proteins-mediated 5mC oxidation could 

serve as an efficient pathway for global DNA demethylation in mammalian cells.  

 

3.1.5 TET1-FL overexpression fails to induce significant DNA demethylation in all 

categorized genomic regions 

Despite a significant 5hmC production, TET1-FL overexpression still failed to induce DNA 

demethylation in randomly selected genomic loci where TET1-CD induced. Moreover, 

considering the presence of CXXC domain, we proposed that TET1-FL may specifically function 

in certain genomic regions in contrast to the extensive accessibility of TET1-CD. Thus, we next 

also performed DREAM to analyze the genome-wide effect of TET1-FL overexpression on DNA 

methylation. The DNA methylation levels of 43,936 and 42,988 CpG were quantified in cells 

transfected with TET1-FL and mTET1-FL, respectively (Table 7). Different from that between 
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Figure 12. TET1-CD overexpression induces DNA demethylation evenly in all categorized 

genomic regions 

(A and B, D-I) DNA methylation change in CGI (A), non-CGI (B), promoter (D), TSS (E), exon 

(F), intron (G), TES (H) and intergenic region (I) after overexpression of TET1-CD. The CGI 

annotation is obtained from the UCSC website. Promoter: -5kb to -1kb relative to TSS; TSS: -1kb 

to 0.5kb relative to TSS; TES: -0.5kb to 1kb relative to TES; intergenic: 1kb from TES to -5kb of 

downstream gene. (C, J) Boxplots show demethylation efficiency of TET1-CD in CGIs and 

non-CGIs (C), and promoter, TSS, exon, intron, TES and intergenic region (J). The efficiency is 

indicated by demethylation extent as a function of basal methylation level, which is grouped in 33% 

intervals from 0-100% methylation. Boxes mark the interquartile range, and whiskers the 2.5th 

and 97.5th percentiles.  
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TET1-CD and mTET1-CD, pair-wise comparison of all 40,937 common CpGs between TET1-FL 

and mTET1-FL transfection did not show a significant DNA demethylating effect for TET1-FL 

(Figure 13A). Consistently, the analysis of DNA demethylation extent as a function of basal 

methylation level also failed to detect a significant demethylation efficiency of TET1-FL at all 

methylation levels (Figure 13B). Given Tet1 specifically binds CpG-rich regions in mESC (Wu et 

al., 2011; Xu et al., 2011), we then examined whether TET1-FL overexpression selectively 

induces DNA demethylation in CGI. However, by separately analyzing DNA methylation changes 

in CGIs and non-CGIs, we still failed to find significant DNA demethylation induced by TET1-FL 

overexpression in either region (Figure 14A-C). Moreover, the deep analysis of DNA methylation 

changes in promoters, TSSs, exons, introns, TESs and intergenic regions further excluded the 

possibility that TET1-FL may specifically induce significant DNA demethylation in certain 

regions (Figure 14C-J). Therefore, we concluded that unlike that of TET1-CD, overexpression of 

TET1-FL cannot induce significant DNA demethylation in any categorized genomic regions, 

suggesting that TET1 may be at least not an efficient DNA demethylase as previously predicted. 

 

3.1.6 Differential regulation of 5hmC distribution pattern by TET1-FL and TET1-CD 

overexpression 

As the primary product of TET-catalyzed 5mC oxidation reaction, 5hmC also serves as a 

critical intermediate for TET-induced DNA demethylation (Guo et al., 2011; He et al., 2011; Ito et 

al., 2011; Valinluck and Sowers, 2007). To more specifically determine the different effects of 

TET1-FL and TET1-CD on DNA demethylation, we next performed genome-wide mapping of 

5hmC in HEK293T cells with hMeDIP-seq. The specificity of 5hmC antibody under our DIP 

conditions was demonstrated by its specific immunoprecipitation of 5hmC-containing, but no 
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5mC or C-containing DNA probe (Figure 15). 

 

 
Figure 13. TET1-FL overexpression fails to induce global DNA demethylation in HEK293T 

cells 

(A) Pair-wise comparison of DNA methylation levels at 40,937 common CpGs between TET1-FL 

and mTET1-FL transfections. (B) Boxplot shows demethylation efficiency indicated by 

demethylation extent in HEK293T cells overexpressing TET1-FL as a function of basal 

methylation level. The methylation levels are grouped in 10% intervals from 0-100% methylation. 

Boxes mark the interquartile range, and whiskers the 2.5th and 97.5th percentiles.  

 

A

B



71 
 

 

Figure 14. No significant DNA demethylation induced by TET1-FL overexpression in all 

categorized genomic regions 

(A and B, D-I) DNA methylation change in CGIs (A), non-CGIs (B), promoter (D), TSS (E), exon 

(F), intron (G), TES (H) and intergenic region (I) after overexpression of TET1-FL. The 

identification of each genomic region see Figure 12. (C, J) Boxplots show demethylation 

efficiency of TET1-FL in CGIs and non-CGIs (C), and promoter, TSS, exon, intron, TES and 

intergenic region (J). The efficiency is indicated by demethylation extent as a function of basal 

methylation level, which is grouped in 33% intervals from 0-100% methylation. Boxes mark the 

interquartile range, and whiskers the 2.5th and 97.5th percentiles.  
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Figure 15. Validation of the specificity of 5hmC antibody in hMeDIP experiment 

Four different DNA probes were prepared by PCR with different dCTP composition (C, only 

dCTP; 5mC, dCTP:5me-dCTP=1:1; 5hmC(low), dCTP:5hme-dCTP=9:1; 5hmC(high), dCTP: 

5hme-dCTP=1:1). All four probes were simultaneously spiked into HEK293T genomic DNA and 

subjected to hMeDIP procedure. The immunoprecipitated DNA probles were then anlayzed by 

qPCR. Error bars represent SD from 3 independent experiments. 
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We first analyzed the genome-wide 5hmC distribution in control HEK293T cells which 

overexpressed mTET1-CD or mTET1-FL. Since neither mTET1-CD nor mTET1-FL is capable to 

catalyze 5mC oxidation, these two kinds of control HEK293T cells may exhibit a similar 5hmC 

distribution pattern, which should also be shared by non-transfected HEK293T cells. A total of 

61,096 and 75,482 5hmC peaks were respectively identified in mTET1-CD- and 

mTET1-FL-overexpressed cells (Table 8). As expected, these 5hmC peaks in corresponding 

control cells showed an almost same genomic distribution, where 7-8% of peaks are located at 

promoters and TSSs, 5-6% at exons and 40-41% at introns (Figure 16B). Moreover, the 5hmC 

distribution patterns across gene body, exon and exon-intron boundary were also almost same 

between those two kinds of control cells, where 5hmC is significantly enriched around TSSs but 

evenly distributed at exons and introns at a relatively low level (Figure 16C-E). The highly similar 

5hmC distributions in mTET1-CD- and mTET1-FL-overexpressed cells indirectly confirmed the 

reproducibility of our hMeDIP-seq assay. 

We next examined the genome-wide 5hmC distribution in TET1-CD- and 

TET1-FL-overexpressed HEK293T cells. Consistent with the high 5hmC production detected in 

DNA dot-blot assay, a total of 314,577 5hmC peaks, which is almost 5 times more than that in 

mTET1-CD-overexpressed control HEK293T cells, were identified in TET1-CD-overexpressed 

cells (Table 8). By contrast, TET1-FL-overexpressed HEK293T cells showed only 111,627 5hmC 

peaks, just ~1.5 times more than that in mTET1-FL-overexpressed control cells (Table 8). Besides 

the difference in 5hmC peak number, we also interestingly found that the overall peak 

distributions in TET1-FL- and TET1-CD-overexpressed cells became different, in contrast to the 

high similarity between their control cells. Compared with TET1-CD-overexpressed cells, 
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Table 8. Summary of tags and peaks detected in hMeDIP-seq 

Tags 
TET1-CD mTET1-CD TET1-FL mTET1-FL 

IP Input IP Input IP Input IP Input 

Total number of tags 34,478,733 37,480,391 37,935,813 43,966,561 38,582,533 49,624,627 32,173,502 42,399,817

Tags that don't pass filter 8,440,889 9,043,239 8,788,483 11,704,316 7,553,867 14,509,619 5,552,724 8,975,966

Tags that do not match 583,448 689,111 963,407 749,250 753,689 819,551 831,814 743,068 

Tags that multiply match 5,954,995 5,047,547 5,491,576 5,768,488 5,897,866 5,997,573 4,899,714 5,895,509

Usable tags 19,381,405 22,552,692 22,364,300 25,596,637 24,110,566 28,129,510 20,517,097 26,591,968

Unique usable tags 18,434,399 18,561,419 19,270,918 20,706,856 21,036,618 26,298,816 18,366,199 24,381,049

Peaks identified 314,577 / 61,096 / 111,627 / 75,482 / 

The number of background tags in each ChIP sample is estimated by the noise rate from CCAT (background# = total# × noise rate). The noise rates are 

0.516287, 0.811387, 0.702136 and 0.77295 for TET1-CD, mTET1-CD, TET1-FL and mTET1-FL, respectively. 
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TET1-FL-overexpressed cells showed relatively higher percents of 5hmC peaks in promoters and 

TSSs, and introns (11% vs. 8% and 43% vs. 39%, respectively), but lower percents in exons and 

intergenic regions (11% vs. 13% and 32% vs. 37%, respectively) (Figure 16B). Considering 

TET1-FL but not TET1-CD contains a CXXC DNA binding domain, these differences in 5hmC 

peak number and distribution may be closely associated with their different DNA binding feature. 

In support of it, a specific enrichment of Tet1 at promoters and TSSs has been observed in mESCs 

(Williams et al., 2011; Xu et al., 2011), and it may reasonably explain the higher percents of 

5hmC peak in promoters and TSSs in TET1-FL-overexpressed cells. To further demonstrate the 

different functional pattern of TET1-CD and TET1-FL in 5hmC production, we further compared 

their 5hmC distribution across gene bodies, exons and exon-intron boundaries. Strikingly, 

contrary to their control cells where 5hmC is significantly enriched around TSSs, both TET1-CD- 

and TET1-FL-overexpresssed cells showed the lowest 5hmC tag density at the same region 

(Figure 16C). More surprisingly, in TET1-CD-overexpressed cells 5hmC tag density gradually 

and sharply increased from TSSs toward TESs followed by a sudden decline around TESs, while 

TET1-FL-overexpressed cells exhibited a peak of 5hmC tag density at promoters but low level 

through gene bodies as control cells (Figure 16C). Consistent with it, we further found that the 

5hmC tag density more dramatically increased at exons in TET1-CD-overexpressed cells than 

TET1-FL-overexpressed cells (Figure 16D and 16E). Thus, these findings further confirm the 

different pattern of TET1-FL and TET1-CD in 5hmC production.  

Taken together, these results reveal that TET1-FL and TET1-CD differentially regulated 

global 5hmC distribution in HEK293T cells. In contrast to TET1-CD overexpression which 

dramatically increased 5mC peak number and changed 5hmC distribution pattern, overexpression  
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Figure 16. Overexpression of TET1-FL and TET1-CD generate different 5hmC distribution 

pattern 

(A) Examples of hMeDIP-Seq profiles at a genomic region in HEK293T cells overexpressing 

(m)TET1-CD or (m)TET1-FL. (B) Genomic distribution of 5hmC peaks detected in HEK293T 

cells overexpressing (m)TET1-CD or (m)TET1-FL. (C-E) Normalized 5hmC tag density 

distribution across gene body (C), exon (D) and exon-intron boundary (E). Each gene body and 

exon is normalized to 0%-100% in (C and D). In (E), normalized tag density is plotted from -100 

bp to 100 bp relative to exon-intron boundaries.  
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of TET1-FL regulated 5hmC distribution in a much more moderate manner so that the original 

5hmC distribution pattern mostly remained in TET1-FL-overexpressed cells. Moreover, those 

data also complement our global DNA methylation analysis results and strongly support that 

TET1 is at least not an efficient DNA demethylase as previously predicted.  

 

3.1.7 TET1-FL shows a unique regulation pattern of 5mC 

The requirement of pre-existing 5mC for TET-catalyzed 5hmC production implies a positive 

correlation between 5hmC and 5mC distribution in genomic DNA. However, multiple studies 

have reported that 5hmC and 5mC actually have distinct genomic distributions in mESC (Ficz et 

al., 2011; Williams et al., 2011; Wu et al., 2011). For example, contrary to 5mC, 5hmC is 

significantly enriched at TSSs but generally not detectable at repetitive elements and minor 

satellite repeats in mESC (Williams et al., 2011). Although its underlying mechanism remains 

unclear, this discrepant distribution of 5hmC and 5mC suggests that TET1-catalyzed 5hmC 

production may not always positively correlate with local 5mC level. More importantly, this 

potential functional pattern of TET1 may inevitably impair its capability to induce DNA 

demethylation. Therefore, we next combined our genome-wide DNA methylation and 5hmC 

distribution analysis results and analyzed the correlation between 5mC and 5hmC level in both 

TET1-CD- and TET1-FL-overexpressed cells. In the analysis of 5hmC tag density relative to 

basal DNA methylation level, the 5hmC tag density in TET1-CD-overexpressed cells significantly 

and progressively increased along with the increase of basal methylation level, demonstrating a 

strong positive correlation between 5hmC and 5mC level (Figure 17A). By contrast, the 5hmC tag 

density in TET1-FL-overexpressed cells remained at a constant and low level regardless of the 

increase of basal methylation level, as that in control cells overexpressing mTET1-CD and 
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mTET1-FL (Figure 16A). Similarly, the analysis of the frequency of 5hmC peak relative to basal 

DNA methylation level also revealed a strong positive correlation in TET1-CD- but not 

TET1-FL-overexpressed cells (Figure 17B). Thus, different from TET1-CD, TET1-FL displays a 

unique regulation pattern of 5mC where its catalytic activity appears to be gradually inhibited as 

the basal DNA methylation level increases.  

To further determine whether the unique regulation pattern of 5mC by TET1-FL contributes to 

its failure to induce DNA demethylation, we next profiled 5hmC tag density together with DNA 

methylation level across gene body. The basal DNA methylation levels in both kinds of control 

cells expectedly reached bottom at TSSs and then gradually increased towards TESs, followed by 

a dramatic drop around TESs (Figure 17C and 17D). Strikingly, the 5hmC distribution profile in 

TET1-CD-overexpressed cells highly resembles the basal DNA methylation pattern, further 

confirming the positive correlation between 5mC and 5hmC level in the setting of TET1-CD 

overexpression (Figure 17C). More importantly, as the 5hmC density significantly increased 

towards TESs, TET1-CD-induced demethylation extent (i.e. the gap between methylation levels 

of mTET1-CD-overexpressed cells and TET1-CD-overexpressed cells) also accordingly increased, 

demonstrating the requirement of high 5hmC production for significant DNA demethylation. On 

the contrary, however, due to its unique regulation pattern of 5mC, TET1-FL overexpression 

failed to produce more 5hmC as basal DNA methylation level increased along gene bodies, which 

ultimately led to its failure to induce DNA demethylation (Figure 17D).  

Taken together, by analyzing the correlation between 5hmC distribution and basal DNA 

methylation level, we found a unique regulation pattern of 5mC by TET1-FL, where TET1 fails to 
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Figure 17. Compromised 5hmC production by TET1-FL as basal DNA methylation level 

increases 

(A) Normalized 5hmC tag density as a function of basal DNA methylation level. The methylation 

levels are grouped in 10% intervals from 0-100% methylation. (B) Frequency distribution of 

5hmC peaks-covering SmaI sites to differentially methylated sites. The methylation levels are 

grouped in 10% intervals from 0-100% methylation. (C and D) Correlation of normalized 5hmC 

tag density with basal DNA methylation level across gene body in HEK293T cells overexpressing 

TET1-CD (C) or TET1-FL (D). Solid line represents normalized 5hmC tag density, and dotted 

line basal DNA methylation level.  
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catalyze more 5hmC production as basal methylation level increases. This regulation pattern 

therefore well explains the failure of TET1-FL to induce significant DNA demethylation.  

 

3.1.8 TET1-FL specifically binds hypomethylated CGIs through its CXXC domain 

Having demonstrated that the unique regulation pattern of 5mC by TET1-FL contributes to its 

failure to induce DNA demethylation, we next investigated the mechanism underlying that unique 

functional pattern of TET1-FL. Given a high 5hmC yield required for significant DNA 

demethylation depends on not only high level of substrate 5mC but also rich amount of TET1 

bound, we hypothesized that TET1 may gradually lose its binding to genomic regions as their 

methylation levels increase, which makes it always fail to produce enough 5hmC to achieve 

significant DNA demethylation. To address it, we first tested TET1-FL occupancy at eight 

hypomethylated (BCL2L11, PACS1, PSEN2 and TTC9) or hypermethylated (BHLHA9, LRRC56, 

OPALH and SFMBT1) CGI promoters with ChIP-qPCR. The different DNA methylation states of 

these promoters were initially identified based on our genome-wide DNA methylation analysis 

results and also validated by bisulfite-pyrosequencing assay (Figure 18A). In support of our 

hypothesis, TET1-FL is highly enriched at the hypomethylated CGI promoters but dramatically 

excluded from hypermethylated CGI promoters (Figure 18B), consistent with a recently published 

result that in mESC Tet1-bound CGIs are associated with lower 5mC levels than CGIs not bound 

by Tet1 (Wu et al., 2011). To well understand the effect of TET1-CD on DNA demethylation, we 

also examined the occupancy of TET1-CD in those hypomethylated and hypermethylated CGI 

promoters. Surprisingly, TET1-CD which lacks CXXC domain extensively bound both kinds of 

CGI promoters with a preference for the hypermethylated CGIs (Figure 18B). Although the  
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Figure 18. The CXXC domain specifically targets TET1-FL towards hypomethylated CGIs  

(A) Bisulfite-pyrosequencing analysis of eight CGI promoters in untreated HEK293T cells. (B) 

Flag ChIP-qPCR analysis of TET1-CD and TET1-FL occupancy at differentially methylated CGI 

promoters in (A). (C) Flag ChIP-qPCR analysis of TET1-FL and TET1-FL (C594) occupancy at 

differentially methylated CGI promoters in (A). (D) DNA dot-blot analysis of genomic 

5-hydroxymethylcytosine (5hmC) level in HEK293T cells overexpressing TET1-FL or TET1-FL 

(C594). Error bars represent SD from 2-3 independent experiments. 
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underlying mechanism is unknown, this distinct binding feature of TET1-CD strongly supports its 

potent function for genome-wide DNA demethylation.  

To further determine whether the binding of TET1-FL to hypomethylated CGI promoters is 

dependent on its CXXC domain, we next constructed a mutant TET1-FL that contains a single 

substitution mutation in CXXC domain (C594A) (Xu et al., 2011)and then overexpressed it in 

HEK293T cells. As Figure 17C shows, TET1-FL(C594A) completely lost the enrichment at 

hypomethylated CGI promoters, confirming the CXXC-dependent TET1 binding. As a result of 

the loss of DNA binding, TET1-FL(C594A) overexpression also produced much lower 5hmC 

yield compared with that of normal TET1-FL (Figure 18D). Therefore, these results reveal that 

TET1-FL specifically binds hypomethylated but not hypermethylated CGI promoters via its 

CXXC domain. More importantly, it is highly possible that the binding feature of TET1-FL 

contributes to its unique regulation pattern of 5mC and then causes its failure to induce significant 

DNA demethylation.  

 

3.1.9 Proposed model 

Based on our available results, we now conclude that the CXXC and 5mC dioxygenase 

catalytic domains in TET1 form an interesting but conflicting domain combination: CXXC 

domain specific targets TET1-FL towards hypomethylated but not hypermethylated CGI regions, 

whereas its catalytic domain requires 5mC as substrate for 5hmC production as well as DNA 

demethylation. Here we further propose a model to well describe the regulatory effect of 

TET1-FL on DNA methylation (Figure 19). In hypermethylated CpG-rich regions the substrate 

5mC is enriched, but just due to their high methylation levels few TET1-FL binds them, which 

thus leads to a low production of 5hmC and then poor DNA demethylation; on the contrary 
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Figure 19. Model for the self-inhibited catalytic function of TET1-FL for DNA 

demethylation 

Through its CXXC domain, TET1-FL preferentially binds to hypomethylated CpG-rich regions, 

but is under represented in hypermethylated regions. Due to the poor 5mC substrates, TET1-FL 

produces few 5hmC in hypomethylated regions. In hypermethylated regions, TET1-FL still 

produce few 5hmC because of the poor binding of TET1-FL. Thus in both cases, no significant 

DNA demethylation can be induced by TET1-FL. On the contrary, through an unknown 

mechanism, TET1-CD which lacks the CXXC domain preferentially binds hypermethylated 

region, which thus enables TET1-CD to induce high production of 5hmC as well as significant 

DNA demethylation.  
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through CXXC domain TET1-FL preferentially binds hypomethylated CpG-rich regions, but its 

5hmC production and DNA demethylation activity are still very poor because of the low level of 

5mC in those regions (Figure 19). Strikingly, by contrast with TET1-FL, through unknown 

mechanism TET1-CD is more enriched at hypermethylated CpG-rich regions than those 

hypomethylated, which well fits its catalytic function on 5mC to efficiently induce DNA 

demethylation in those methylated regions (Figure 19).In short, the CXXC domain specifically 

targets TET1 to hypomethylated regions and consequently prevents the catalytic domain from 

inducing DNA demethylation in moderately or highly methylated regions. Therefore, this model 

reveals a self-inhibited catalytic function of TET1 in regulating DNA methylation, and reasonably 

explains the observed failure of TET1-FL overexpression to induce significant DNA 

demethylation. 

 

3.2 TET1 maintains the DNA hypomethylated state of CGIs in 

HEK293T cells 

Overexpression of TET1-CD induces a significant global DNA demethylation, supporting that 

TET-mediated 5mC oxidation can serve as an efficient pathway for DNA demethylation. By 

contrast, TET1-FL overexpression fails to induce significant DNA demethylation and CXXC 

domain specifically targets TET1 to hypomethylated CGIs. Thus, these available evidences raise 

an intriguing hypothesis that TET1 plays as a unique DNA demethylase not intended to change 

DNA methylation levels, but rather specifically functioning in hypomethylated CGIs to maintain 

their DNA hypomethylation state by removing stochastic de novo DNA methylation. To address 

this hypothesis, we next mainly studied two questions: whether TET1-FL overexpression 

specifically decreases DNA methylation in hypomethylated CGI regions and how DNA 
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methylation changes in hypomethylated CGIs after TET1 knockdown.  

 

3.2.1 TET1-FL overexpression specifically decreases DNA methylation in hypomethylated 

CGIs 

Given the preferential binding of TET1-FL to hypomethylated CGIs, TET1-FL overexpression 

may specifically decrease DNA methylation level to some extent in hypomethylated CGI regions, 

though previous analysis has shown that TET1-FL overexpression failed to induce significant 

DNA demethylation. To confirm it, we deeply analyzed the DREAM data for (m)TET1-FL 

transfections with a focus on hypomethylated CGI sites. Considering the basal methylation level 

is very low and the potential DNA methylation change should be also relatively weak, we further 

narrowed the hypomethylated CGI sites by elevating the cutoff for tag number from 20 to 100. As 

Figure 20A shows, those high-tag-number CGI sites were divided into six groups based on their 

basal methylation levels, among which we focused on the groups with lower methylation level of 

1-5%, 5-10%, 10-15% and 15-20%. Interestingly, we found much more sites showing decreased 

methylation level after TET1-FL overexpression in groups of 1-5% and 5-10% but not 10-15%and 

15-20% (Figure 20B). With Wilcoxon paired signed-rank test, statistic significance was also 

obtained in groups of 1-5% and 5-10%, indicating TET1-FL overexpression specifically decrease 

DNA methylation in hypomethylated CGI sites. Therefore, in contrast to its failure to induce 

significant DNA demethylation in moderately or highly methylated regions, 

TET1-FLoverexpression really decreased DNA methylation to certain extent in hypomethylated 

CGI sites, which strongly supports the potential role of TET1 in maintaining the DNA 

hypomethylated state in CGIs. 
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Figure 20. Decreased DNA methylation in high-tag-number CGI sites by TET1-FL 

overexpression in HEK293T cells 

(A) Percentage of SmaI sites classified by CGI, tag number and basal methylation level. 

High-tag-number, >=100 tags; low-tag-number, <100 tags. (B-E) DNA methylation change in 

high-tag-number CGI sites with basal methylation level of 1-5% (B), 5-10% (C), 10-15% (D) and 

15-20% (E). p values obtained from Wilcoxon paired signed-rank test. 
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3.2.2 TET1 knockdown leads to an increase of DNA methylation in hypomethylated CGIs 

To further demonstrate that TET1 specifically maintains the DNA hypomethylation state in 

hypomethylated CGIs, we next studied whether DNA methylation increases in hypomethylated 

CGIs after TET1 knockdown. Although previous studies have reported that depletion of Tet1 

induces increased DNA methylation levels in Tet1-boundregions in mESC, the underlying 

mechanism remains unknown (Wu et al., 2011; Xu et al., 2011). Moreover, the impairment of 

mESCs maintenance and differentiation induction by Tet1 knockdown add many other 

complexities to explain that increase of DNA methylation in mESCs (Ito et al., 2010). Thus, ESCs 

seems to be not suitable for studying the effect of TET1 knockdown on DNA methylation. 

 

3.2.2.1 Screening of TET1 expression in various human cell lines 

To construct stable TET1 knockdown, an optimal target cell line with high TET1 expression 

level is required. Tet1 has been only reported to be highly expressed in mESCs but significantly 

down-regulated in response to withdrawal of leukemia inhibitory factor, suggesting low 

expression of Tet1 in differentiated somatic cells (Tahiliani et al., 2009). Moreover, little is known 

about the TET1 expression level in human cell lines. With western blot assay we next screened 

TET1 expression level in various human cell lines, including ESCs, non-tumor and tumor cell 

lines. The specificity of anti-human TET1 antibody was validated with our TET1-FL 

overexpressed cell samples (Figure 21A). Compared with other cell lines, both human ES cell line 

H1 and H9 showed a much higher TET1 expression level (Figure 21B), consistent with the 

reported high expression of Tet1 in mESCs. NCCIT is a teratocarcinoma cell line and can 

differentiate into derivatives of all three embryonic germ layers, but surprisingly no detectable 
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Figure 21. TET1 expression level varies among different human cell lines 

(A) The specificity of anti-human TET1 antibody was validated with our TET1-FL overexpressed 

cell samples; * unspecific band. (B) TET1 expression level is variable among different human cell 

lines. Both human ES cell line H1 and H9 showed a much higher TET1 expression level. 

Moreover, HEK293T cells also show a comparable TET1 expression level as H1 and H9 cell 

lines. 
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TET1 protein level was observed, suggesting TET1 is at least dispensable for the pluripotency of 

NCCIT cells (Figure 21B). Strikingly, HEK293T cells exhibited a comparable TET1 protein level 

as human ESCs, suggesting TET1may play an important role in this cell line (Figure 21B). 

Additionally, there was no detectable TET1 protein level in HeLa, HMEC (pre-stasis), HMEC 

(p53-), PC3, IMR90, RKO and HCT116 (Figure 21B).Interestingly, compared with breast 

non-tumor cell line HME, MCF7 has considerable TET1 expression. On the contrary, prostate 

non-tumor cell line RWPE-1 has considerable TET1 expression but cancer cell line PC3 does not 

have (Figure 21B).Taken together, although here no conclusion can be made regardingthe 

expression level of TET1 in cancers, HEK293T is obviously a good target cell line for our 

subsequentTET1 knockdown experiments. 

 

3.2.2.2 Lentiviral shRNA-mediated TET1 knockdown in HEK293T cells 

To construct stable TET1 knockdown in HEK293T cells, we screened four different shRNAs 

which were based on lentiviral pGIPZ vectors. These TET1 shRNAs were initially inserted in 

tetracycline-inducible shRNA pTRIPZ vector, but transferred to pGIPZ by us for a continuous 

knockdown effect (Figure 22A). According to standard lentiviral transduction protocol, we first 

got five stable cell pool populations, one with control shRNA, the other four with differentTET1 

shRNAs. However, compared with control shRNA cell pool, none of those four TET1 shRNA cell 

pools showed significant TET1 knockdown effect (Figure 22B).  

Given the GFP reporter is driven by the same promoter as shRNA in pGIPZ vector, we 

proposed that cells with high GFP intensity may also highly express TET1 shRNA which in turn 

leads to marked knockdown effect. To confirm this strategy for improving knockdown effect, we  
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Figure 22. Construction of lentiviral shRNA-mediated TET1 knockdown in HEK293T cells 

(A) Vector maps for pTRIPZ and pGIPZ. The TET1 shRNAs were transferred from pTRIPZ to 

pGIPZ vector for continuous expression. (B) Compared with control shRNA cell pool, none of 

those four TET1 shRNA cell pools showed significant TET1 knockdown effect in western blot 

assay. (C) The shControl or shTET1 transfected cell pools were sorted to collect a smaller cell 

population showing the highest 5% GFP intensity. (D) No significant different of TET1 protein 

level between parent cell pools and the sorted 5% cell populations was observed in western blot 

assay. 
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Figure 22. Construction of lentiviral shRNA-mediated TET1 knockdown in HEK293T cells 

(E) Screen TET1 expression level in single cell clones transfected with shControl or  shTET1 by 

Western blot assay. (F) Western blot assay confirmed TET1 knockdown effect in some single cell 

clones compared with shControl transfected cells. 
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next sorted the available five cell pools to collect a smaller cell population showing the highest 5% 

GFP intensity (Figure 22C). However, with western blot assay no significant different of TET1 

protein level between parent cell pools and sorted 5% cell populations was observed, indicating 

no positive correlation between GFP intensity and shRNA knockdown effect in our cells (Figure 

22D). It could be explained by that, GFP intensity may be not only determined by its promoter 

transcription activity and copy number, but may also significantly fluctuate in different phases of 

cell cycle.  

The above failure then prompted us to develop single cell clones. By serial dilution 10-12 

single cell clones were established for each shRNA group. As expected, the TET1 protein levels 

in control shRNA single cell clones were comparable to that in normal HEK293T cell (Figure 

22E). Fortunately, several TET1 shRNA clones from shTET1#1, 3 and 4groups showed a 

significant knockdown effect when compared with normal cells (Figure 22E).We next further 

confirmed the TET1 knockdown effect by directly comparing those TET1 shRNA clones with 

control shRNA clones (Figure 22F). Based on this result, we finally chose shTET1#1-4 and 

shTET1#4-1, and shControl-10 clones for our subsequent experiments. 

 

3.2.2.3 TET1 knockdown inhibits cell growth in HEK293T cells 

Tet1 knockdown has been reported to impair the maintenance of mESCs and lead to skewed 

differentiation of pre-implantation embryos (Ito et al., 2010). HEK293T has a comparable TET1 

expression level as human ES cell lines, suggesting that TET1 may play an important role there. 

Thus, before investigating the possible change of DNA methylation in hypomethylated CGI, we 

first investigated whether TET1 knockdown significantly affects cell morphology and 
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proliferation. With the use of our HEK293T single cell clones with stable TET1 or control 

knockdown, we interestingly found that TET1 knockdown did not induce any change in cell 

morphology, but significantly inhibited cell growth in both shTET1#1-4 and shTET1#4-1 clones 

(Figure 23). These findings suggest that TET may be involved in the regulation of cell cycle 

progression, and further studies on the detailed change of cell cycle and related cell cycle 

regulators (e.g. p21) will provide more insight into that. 

 

Figure 23. Inhibited cell proliferation by TET1 knockdown in HEK293T cells 

Growth curves of mock, control and TET1 knockdown HEK293T cells were determined by 

counting the cell numbers every day. Error bars represent SD from 4 independent experiments. 

*** p<0.001 by two-way ANOVA/Bonferroni post-test compared to shCTL-10 clone cells. 
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3.2.2.4 Increase of DNA methylation in the pre-methylated edges of hypomethylated CGIs 

after TET1 knockdown 

We next asked how DNA methylation changes in hypomethylated CGIs after TET1 

knockdown. To this end, we first went to identify some target regions for endogenous TET1 in 

HEK293T cells. In our TET1 overexpression experiment, we have proved that ectopically 

expressed TET1-FL binds to the hypomethylated CGI promoters of BCL2L11, PACS1, PSEN2 

and TTC9 but not the hypermethylated CGI promoters ofBHLHA9, LRRC56, OPALH and 

SFMBT1 (Figure 18). Consistently, endogenous TET1 in normal HEK293T cells is also 

preferentially enriched at those hypomethylated CGI promoters but not hypermethylated CGI 

promoters (Figure 24A). Moreover, the TET1 enrichment signals at those hypomethylated CGIs 

specifically decreased in shTET1#1-4 and shTET1#4-1 clone cells, further confirming the binding 

of TET1 to these hypomethylated CGI regions (Figure 24B).  

Subsequently, we studied the possible DNA methylation changes in those hypomethylated 

CGIs after TET1 knockdown. With the established control and TET1 knockdown clones cells, 

both edge and central regions of each CGI were tested by bisulfite-sequencing. Among these eight 

tested regions in control knockdown clone cells, most regions are expectedly hypomethylated, 

while the edge region of BCL2L11 were completely methylated and that of PACS1 CGI showed 

considerable pre-existing DNA methylation at5’upstream (Figure 25). More interestingly, both 

TET1 knockdown clones cells exhibited a significant increase of DNA methylation in the edge 

region of PACS1 CGI but not in other tested regions, indicating that TET1 knockdown may 

selectively induce DNA methylation gain in the edges of certain CGIs (Figure 25). Given the 

pre-existing DNA methylation plays a critical role as a seed for de novo DNA methylation to 
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Figure 24. ChIP-qPCR analysis of endogenous TET1 target genes in HEK293T cells 

(A)Endogenous TET1 preferentially binds hypomethylated but not hypermethylated CGI 

promoters in normal untransfected HEK293T cells. (B) TET1 knockdown specifically decreases 

the enrichment of TET1 in hypomethylated CGI promoters. Error bars represent SD from 2-3 

independent experiments. * p<0.05, ** p<0.01 by Student’s t-test compared to shCTL-10 clone 

cells. 
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Figure 25. Bisulfite-sequencing analysis of CGI promoters of BCL2L11, PASC1, PSEN2 and 

TTC9 

(A-B) Both the edge (A) and center regions (B) of CGI in BCL2L11, PACS1, PSEN2 and TTC9 

promoter were tested for DNA methylation changes after TET1 knockdown in HEK293T cells. 

Mean ± SD from 2 independent experiments. 
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spread into nearby unmethylated regions, and among all tested regions only the edge of PACS1 

CGI contains pre-existing DNA methylation, it may be further proposed that through its 5mC 

oxidation-mediated DNA demethylating abilityTET1 rapidly removes the stochastic de novo 

methylation near the pre-methylated edges of CGIs and thus efficiently block the spreading of 

DNA methylation into the unmethylated central regions of CGIs. 

To accumulate more supportive evidences, we next looked for more hypomethylated CGI 

promoters with pre-methylated edges. Based on our DREAM results we initially chose six such 

CGIs promoters (C6ORF186, KAZN, MUM1, NUP210, RFX6 and VAX2) (Figure 26A).The DNA 

methylation states of these CGI edges were then successfully validated by bisulfite-sequencing 

except those of C6ORF186 and NUP210, due to the high recombination rate of their sequences in 

bacterial transformation (Figure 26B).More importantly, compared with control knockdown cells, 

both TET1 knockdown clones cells show significant increase of DNA methylation in all CGI 

promoter edges of KAZN, MUM1, RFX6 and VAX2, strongly supporting the inhibitory effect of 

TET1 on the spreading of aberrant de novo methylation into hypomethylated CGIs which contain 

pre-methylated edges (Figure 26B). Finally, the binding of TET1 at those four CGI promoters was 

also confirmed by ChIP-qPCR (Figure 26C). 

Taken together, these above results show that in hypomethylated CGIs TET1 can efficiently 

block the spreading of DNA methylation from pre-methylated edges into the unmethylated center 

regions, which should be through its rapidly removing the aberrant de novo methylation at 

pre-methylated edges with its 5mC oxidation activity. Thus, combined with the results that TET1 

overexpression specifically decreased DNA methylation in hypomethylated CGI regions, those 

findings strongly support that TET1 specifically functions as a unique DNA demethylase to  
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Figure 26. TET1 knockdown leads to spreading of de novo methylation at the 

pre-methylated edges of CGIs 

A) Six CGIs with pre-methylated edge were chosen based on global DNA methylation analysis 

results. Green bar represents each CGI. (B) Bisulfite-sequencing analysis of the pre-methylated 

edges of those CGI after TET1 knockdown. Mean ± SD from 2 independent experiments. (C) 

TET1 knockdown decreases TET1 enrichment at those CGIs by ChIP-qPCR. Error bars represent 

SD from 2 independent experiments. * p<0.05 by Student’s t-test compared to shCTL-10 clone 

cells.  
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maintain the DNA hypomethylation state of CGIs by removing aberrant de novo DNA 

methylation. 

 

3.3 Mechanistic study of TET-mediated oxidative DNA demethylation 

3.3.1 Tetracycline-induced TET1-CD overexpression system in HEK293T cells 

Despite the accumulating evidences that TET-mediated 5mC oxidation leads to DNA 

demethylation, the underlying mechanism is still unclear. To study it, we developed a 

tetracycline-induced TET1-CD overexpression system in HEK293T cells. Compared with 

transient transfection of TET1-CD (or TET2-CD) which were used in previous studies (Guo et al., 

2011; He et al., 2011), our inducible overexpression system undoubtedly provides a more 

convenient, precise and versatile model for our mechanistic study. 

The tetracycline-induced (m)TET1-CD overexpression plasmids were constructed by cloning 

(m)TET1-CD-Flag ORF into lentiviral pTRIPZ vector, which is initially designed for 

tetracycline-induced shRNA expression. To make two unique restriction sites flanking red 

fluorescent protein (RFP) coding region, one AgeI restriction sites in RFP coding region was 

mutated by site-directed mutagenesis. Subsequently, (m)TET1-CD-Flag ORF was easily 

transferred into the AgeI and MluI sites of non-silencing pTRIPZ control vector (Figure 27A). 

We next transfected the above pTRIPZ-(m)TET1-CD-Flag plasmids into HEK293T according 

to standard lentiviral transduction protocol. Stable cell pool populations were obtained after one 

week of puromycin selection. The integration of TET1-CD ORF into genomic DNA was 

confirmed by PCR genotyping in both pTRIPZ-TET1-CD-Flag and pTRIPZ-mTET1-CD-Flag 

transducted HEK293T (Figure 27B), and the inducible TET1-CD overexpression was also 



100 
 

validated in those two stable cell pool populations by doxycycline treatment, which significantly 

increased mRNA and protein level of TET1-CD (Figure 27C-D). To further confirm the function 

of those overexpressed TET1-CD, we next tested the 5hmC production and also DNA 

methylation change in IVNS1ABP and SHC2 genes at the presence of doxycycline treatment. As 

Figure 27E-F show, doxycycline treatment induced marked production of 5hmC and also 

significant DNA demethylation in TET1-CD but not mTET1-CD transducted HEK293T cells. 

Moreover, given the heterogeneity of (m)TET1-CD overexpression level in stable cell pool 

population, subcloning for optimal single cell clones was further performed. As expected, the 

increase fold of TET1-CD mRNA induced by doxycycline treatment was markedly variable 

among different clones (Figure 28A), confirming the necessity of single cell subcloning. With this 

screening of mRNA increase folds, two TET1-CD-overexpressed clones (B4 and D1 clones) and 

one mTET1-CD-overexpressed clone (MuC3 clone) with the highest increase foldsof 

(m)TET1-CD mRNA were successfully identified and would be used in subsequent experiments. 

Moreover, in D1 clone cells the doxycycline-dose-dependent TET1-CD inducible overexpression 

was also validated (Figure 28B). Consistent with it, doxycycline-dose-dependent DNA 

demethylation was also observed in both B4 and D1 clones but not MuC3 clone (Figure 

28C).Taken together, these above results solidly confirmed the eligibility of our inducible 

TET1-CD overexpression system for the mechanistic study of TET-mediated DNA 

demethylation. 
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Figure 27. Construction of tetracycline-induced TET1-CD overexpression system in 

HEK293T cells. 

(A) (m)TET1-CD-Flag ORF was inserted into the AgeI and MluI sites of non-silencing pTRIPZ 

control vector to realize inducible overexpression of (m)TET1-CD. (B) PCR genotyping 

confirmed the stable intergration of (m)TET1-CD ORF in genomic DNA in HEK293T cells. (C-D) 

Inducible TET1-CD overexpression at both mRNA (C) and protein levels (D) with or without 

3-day doxycycline treatment (Dox, 1g/ml, dissolved in sterile water). Error bars represent SD 

from 2 independent experiments. (E) DNA dot blot shows marked production of 5hmC only in 

TET1-CD transfected cell pool 3 days after Dox treatment (1g/ml). Positive control DNA 

sample comes from TET1-CD transiently transfected and GFP(+) cells (see Figure 8). (F) 

Bisuflite-pyrosequencing assay for DNA methylation changes of IVNS1ABP and SHC2 before 

and after Dox treatment (1g/ml).                                                                 
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Figure 28. Characterization of single cell clones with inducible overexpression of TET1-CD 

and DNA demethylation in specific genomic loci 

(A) Screening of inducible TET1-CD overexpression level among various HEK293T single cell 

clones transfected with (m)TET1-CD. Cells were treated with doxycycline 1 g/ml for 3 days. (B) 

Doxycycline-dose-dependent TET1-CD inducible overexpression in D1 single cell clone. Cells 

were treated with various dosages of doxycycline for 1 day. (C) Doxycycline-dose-dependent 

DNA demethylation in both B4 and D1 single cell clones but not MuC3 clone. Error bars 

represent SD from 2 independent experiments. 
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3.3.2 Long term TET1-CD overexpression and possible dedifferentiation in HEK293T cells 

By overexpression of certain key transcription factors(e.g. OCT4, SOX2, C-MYC and 

KLF4), differentiated somatic cells can be dedifferentiated into induced pluripotent stem cells 

(iPSCs) (Takahashi and Yamanaka, 2006).Before investigating the mechanism of TET-mediated 

DNA demethylation, we tried to examine whether TET1-CD overexpression can also 

dedifferentiate somatic cells, given that DNA demethylation may reactivate some stemness genes 

which are silenced by DNA methylation in somatic cells and inefficient DNA demethylation is 

one of the causes of the low efficiency in iPSCs generation (Huangfu et al., 2008). Interestingly, a 

significant morphological change occurred in B4 and D1 but not MuC3 clone cells 7 days after 

doxycycline treatment (Figure 29A). Lots of cell clusters from doxycycline-treated D1 and B4 

cells became more tightly packaged and have a round shape (Figure 29B). Thus, we next tested 

the expression of some important stemness genes, including OCT4, NANOG, SOX2, KLF4, 

hTERT and CD44. As Figure 29C shows, except SOX2 all genes tested showed increased mRNA 

level to variable extent. Strikingly, CD44 mRNA level was markedly increased by up to 150 and 

380 folds in B4 and D1 clone cells, respectively. Since CD44 is a membrane protein, we next 

performed flow cytometric analysis and found that ~40% of treated D1 cells became CD44(+) 

(Figure 29D). To determine if those increased gene expression is related with TET1-CD-mediated 

DNA demethylation, we further tested the DNA methylation change in OCT4 and NANOG gene 

promoters. Consistent with their increased gene expressions, doxycycline treatment also induced 

significant DNA demethylation in those gene promoters (Figure 29E). Thus, these above 

evidences suggest that TET1-CD may serve as a useful factor for the generation of iPSCs. 
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Figure 29. Long-term overexpression of TET1-CD and potential dedifferentiation in 

HEK293T cells 

(A) Significant morphological change resulted from overexpression of TET1-CD but not 

mTET1-CD. MuC3, B4 and D1 single cell clones were cultured in DMEM medium with 10% 

FBS, 1% P/S, and 2 g/ml doxycycline. (B) Example of cell clusters observed in B4 and D1 cell 

clones treated with 2 g/ml doxycycline for 7 days.  
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Figure 29. Long-term overexpression of TET1-CD and potential dedifferentiation in 

HEK293T cells 

(C) Real-time qPCR analysis of gene expressions of stem-related genes after doxycycline 

treatment (2 g/ml). Data are expressed as the mean ± SEM from triplicate tests. (D) Flow 

cytometric analysis of CD44 (+) MuC3 and D1 clone cells 3 weeks after doxycycline treatment (2 

g/ml). (E) Bisuflite-pyrosequencing analysis of DNA methylation change at gene promoters of 

OCT4 and NANOG after (m)TET1-CD overexpression induced by doxycycline treatment (2 

g/ml).  
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To investigate whether overexpression of TET1-CD alone is efficient to generates iPSCs, we 

next cultured doxycycline-treated D1 and B4 cells in iPSC medium (KnockOut™ ESC/iPSC 

Media Kit, Invitrogen) with mouse embryonic fibroblast cell as feeder cells. However, those cells 

grew very slowly and most died in two weeks. A possible reason is that long term TET1-CD 

overexpression not only reactivated some stemness genes, but also significantly impaired the 

genomic stability by demethylating hypermethylated repetitive sequences. Additionally, 

HEK293T may be not a good cell line for iPSCs generation. Thus, the use of TET1-CD for 

generation of iPSCs from HEK293T cells is questionable and future study with TET1-FL and 

other somatic cells (e.g. human dermal fibroblasts) may be more promising. 

 

3.3.3 TET-mediated DNA demethylation is independent of BER 

In mammals BER is responsible for repairing damaged bases and DNA single-strand breaks 

induced by reactive oxygen species and alkylating agents(Fortini and Dogliotti, 2007). Moreover, 

BER has also been often reported to be involved in the mechanisms of active DNA 

demethylation(Wu and Zhang, 2010). To determine the potential mechanism for TET-mediated 

oxidative DNA demethylation, we thus first investigated whether BER is also required for 

TET-mediated demethylation with the use of our tetracycline-induced TET1-CD overexpression 

system.  

APEX1 is a major AP endonuclease in mammalian cells, plays a central role in BER 

pathway (Doetsch and Cunningham, 1990). Two different siRNAs for APEX1 were transfected 

into D1 clone cells and both showed a significant knockdown effect on APEX1 in both mRNA 

and protein level (Figure 30A-B). Importantly, siRNA treatment also did not affect cell 
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proliferation 

 

Figure 30. DNA demethylation induced by TET1-CD overexpression is independent of 

APEX1 

(A) Real-time qPCR analysis of siRNA-mediated APEX1 knockdown in HEK293T D1 clone 

cells. (B) Western blot assay of APEX1 and inducible TET1-CD overexpression in the absence of 

siAPEX1 and doxycycline (2mg/ml) treatment. (C) DNA dot blot assay of 5hmC production by 

doxycycline (2mg/ml)-induced TET1-CD overexpression at the presence of siControl or siAPEX1 

treatment. (D) Bisulfite-pyrosequencing assay of effect of siAPEX1 on DNA demethylation by 

doxycycline (2mg/ml)-induced TET1-CD overexpression. Error bars represent SD from 3 

independent experiments. 
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Figure 30. DNA demethylation induced by TET1-CD overexpression is independent on 

APEX1 

(E) Bisulfite-pyrosequencing assay of effect of APEX1 inhibitor-CRT (CRT0044876, dissolved in 

DMSO) on DNA demethylation by doxycycline-induced TET1-CD overexpression.  
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proliferation and inducible TET1-CD expression (Figure 30B). Moreover, no significant change 

in 5hmC production was observed in doxycycline-treated D1 clone cells afterAPEX1 knockdown 

(Figure 30C). However, we surprisingly found that APEX1 knockdown also did not antagonize 

the DNA demethylation induced by TET1-CD overexpression in DPYSL5, IVNS1ABP, NFATC1 

and SHC2 genes, but even showed some potentiating effect (Figure 30D), suggesting that APEX1 

and BER are not involved in TET-mediated DNA demethylation. To further confirm it, we next 

treated D1 clone cells with APEX1inhibitor-CRT0044876. Consistently, CRT0044876 treatment 

also did not inhibit the DNA demethylation induced by TET1-CD overexpression (Figure 30E). 

Thus, our findings strongly suggest that BER is not required for TET-mediated DNA 

demethylation.  

 

3.3.4 TET-mediated DNA demethylation appears to be independent on DNA replication 

Considering that 5hmC is poorly recognized by DNMT1 (Valinluck and Sowers, 2007), we 

next asked whether TET-mediated oxidative DNA demethylation is through a 

replication-dependent passive pathway. HEK293T D1 clone cells were treated with mimosine 

which can block mammalian cells in late G1 phase and is relatively non-toxic compared with 

other chemical inhibitors (Jackman and O'Connor, 2001). Mimosine treatment (400 M) resulted 

in a significant cell prolifereation inhibition and also completely abolished DNA demethylation of 

NFATC1 and INVS1ABP gene promoters by doxycycline-induced TET1-CD overexpression 

(Figure 31A, 31B). Unfortunately, however, we also found that mimosine treatment also 

markedly inhibited doxycycline-induced TET1-CD expression (Figure 31C). These results 

indicated that the strategies of cell cycle arrest may inevitably repress the inducible TET1-CD 
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overexpression in our model, thus basically impair the use of this model for subsequent 

mechanistic study. Actually, enforcedly blocking DNA replication and cell division could result 

in an extensive change of cellular environment and transcriptome, which would in turn inhibit not 

only the possible passive demethylation but also the potential active demethylation mechanism. 

Therefore, use of non-dividing cells instead of enforced inhibition of DNA replication in dividing 

cells appears to be more reasonable to study the passive mechanisms of DNA demethylation. 

We next tried another strategy to investigate the possibility that replication-dependent passive 

pathway underlies TET-mediated oxidative DNA demethylation. In this strategy, BrdU was used 

to mark nascent DNA, which was subsequently isolated by DIP with anti-BrdU antibody, 

followed by bisulfite-pyrosequencing assay (Figure 32A). The high specificity of BrdU-DIP was 

validated with the use of DNA probes containing BrdU or not (Figure 32B). Surprisingly, our 

results showed that BrdU-IP (nascent) DNA was less demethylated than input control DNA at 

both IVNS1ABP and NFATC1 genes, suggesting that passive DNA demethylation is at least not 

the primary mechanism for TET-mediated oxidative DNA demethylation (Figure 32C). 

In addition, dynamic study of DNA demethylation and 5hmC contents in HEK293T D1 

clone cells seemed to also exclude the involvement of passive pathway in TET-mediated DNA 

demethylation. The cells were treated with doxycycline just in the first three days and then 

cultured in regular medium (Figure 33A). The inducible TET1-CD expression completely 

disappeared at day 6, while 5hmC content reached peak at day 3, decreased by ~8 folds at day 6 

and then become almost undetected at day 9 (Figure 33B, C). However, we interestingly found 

that DNA methylation levels in IVNS1ABP and NFATC1 genes bottomed at day 6 and then 

slightly increased at day 9 and later (Figure 33 D). Given 5hmC content was continuously diluted 
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during that period, these evidences also suggest that TET-mediated DNA demethylation may not 

occur through passive pathway. Taken together, those above evidences all suggest that 

replication-dependent passive pathway is at least not the primary mechanism for TET-mediated 

oxidative DNA demethylation.  

 

 

 

 

 

 

Figure 31. Mimosine treatment inhibits doxycycline-induced TET1-CD overexpression 

(A) Mimosine (400 M) and doxycycline treatment (2 g/ml) schedule in HEK293T D1 clone 

cells. (B) Bisulfite-pyrosequencing analysis of DNA methylation levels after mimosine and/or 

doxycycline treatment. Error bars represent SD from 2 independent experiments. (C) Inhibition of 

doxycyline-induced TET1-CD overexpression by mimosine treatment.  
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Figure 32. TET1-CD overexpression-induced DNA demethylation may be only through 

active pathway 

(A) Schematic of the strategy of BrdU-DIP for mechanistic study. HEK293T D1 clone cells were 

cultured with BudU (50 M) at the presence or absence of doxycycline (2 g/ml). (B) Validation 

of BrdU-DIP efficiency with the use of DNA probe containing BrdU. Error bar represent SD from 

3 independent experiments. (C) Bisulfite-pyrosequencing analysis of DNA methylation with the 

input and immunoprecipitated DNA. Error bars represent SD from 2 independent experiments.  
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Figure 33. Dynamics of inducible TET1-CD expression, genomic 5hmC and DNA 

methylation levels in doxycycline-treated HEK293T D1 clone cells 

(A) Doxycycline treatment (2 g/ml) schedule in HEK293T D1 clone cells. (B) Western blot 

assay of the dynamics of TET1-CD protein level. (C) DNA dot blot assay of the dynamics of 

genomic 5hmC levels. (D) Bisulfite-pyrosequencing analysis of the dynamics of DNA 

methylation levels after doxycycline treatment. Error bars represent SD from 2 independent 

experiments.  
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CHAPTER 4  DISCUSSION, SUMMARY, AND FUTURE 

DIRECTIONS 

4.1 Discussion 

TET1 is a unique DNA demethylase to maintain the DNA hypomethylated state in CGIs 

Although the evidences for TET family proteins as DNA demethylases have been accumulated, 

the specific role of TET1 in DNA methylation pattern still remains unclear (Figueroa et al., 2010; 

Guo et al., 2011; He et al., 2011; Ito et al., 2011; Tahiliani et al., 2009; Zhang et al., 2010a). Here 

we surprisingly found that TET1-FL overexpression in HEK293T cells failed to induce significant 

DNA demethylation in any categorized genomic regions, in spite of a global DNA demethylation 

observed in TET1-CD-overexpressed cells. Genome-wide mapping of 5hmC further revealed a 

unique regulation pattern of 5mC by TET1, where its 5hmC production is relatively inhibited as 

local basal DNA methylation levels increases. By contrast, TET1-CD overexpression showed a 

strong positive correlation between 5hmC yield and local basal DNA methylation levels. 

Importantly, such different regulation patterns of 5mC by TET1-FL and TET1-CD well explains 

their different capability to induce DNA demethylation. Thus, based on these genome-wide 

analyses results, we not only confirm that 5mC oxidation mediated by TET proteins (or other 

potential 5mC dioxygenases) can serve as an efficient mechanism for global DNA demethylation, 

but also demonstrate that TET1 is at least not a potent DNA demethylase which can actively 

induce global DNA demethylation when overexpressed. For example, both overexpressions of the 

deaminase/ glycosylase pair AID/MBD4 and Gadd45a, two previously reported DNA demethylse 

candidates, have been found to elicit a significant global DNA demethylation (Barreto et al., 2007; 

Rai et al., 2008). 
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As a CpG DNA binding domain, the CXXC domain in TET1 is believed to play an important 

role in its demethylating function. In addition to a strong binding to unmethylated CpG 

dinucleotides as other CXXC domains (e.g. MLL-CXXC and DNMT1-CXXC domains), the 

CXXC domain of TET1 has also been reported to have considerable binding for methylated CpG 

dinucleotides in in vitro GST pull-down assay (Xu et al., 2011; Zhang et al., 2010a). Thus, this 

distinct binding feature of the CXXC domain appears to well fit with the catalytic activity of 

TET1 to induce DNA demethylation. However, a variety of evidences from other and our studies 

suggest that it may be not the case. On one hand, through CXXC domain TET1 is specifically 

enriched at CpG-rich regions in genomic DNA, like CGIs (Williams et al., 2011; Wu et al., 2011; 

Xu et al., 2011). Given the hypomethylated state in most CGIs, such location feature markedly 

restricts the catalytic function of TET1 to induce DNA demethylation. On the other hand, we also 

found that compared with that by TET1-CD, local 5hmC production by TET1-FL was 

significantly inhibited as basal DNA methylation levels increases, suggesting a poor binding of 

TET1 to sporadically distributed and methylated CpG dinucleotides in cells. Moreover, our 

ChIP-qPCR results also reveal that TET1 specifically binds hypomethylated but not 

hypermethylated CGI promoters through its CXXC domain. This discrepancy of methyl-CpG 

binding of the CXXC domain between in vitro GST-pull down assay and ChIP assay may be due 

to the potential interference from other domains in TET1 and also the complex chromatin 

environment in cells. Particularly, both recruitment of endogenous methyl-CpG binding proteins 

(e.g. MeCP2) and densely packed heterochromatin state in hypermethylated genomic regions may 

dramatically inhibit the binding of TET1 to methylated DNA. Therefore, the CXXC domain and 

5mC dioxygenase catalytic domain in TET1 appears to form an interesting but conflicting domain 
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combination, where CXXC domain specifically targets TET1 to hypomethylated regions and 

consequently prevents its catalytic domain from inducing DNA demethylation in moderately or 

highly methylated regions.  

The immunity of CGIs to DNA methylation is an important characteristic of mammalian DNA 

methylation pattern, and aberrant methylation in CGIs has been associated with various human 

diseases, such as cancer (Bird, 2002; Herman and Baylin, 2003). By excluding DNMTs from 

CGIs several factors have been reported to protect CGIs from de novo methylation, including 

binding of transcription factors, high transcription activity, and active chromatin mark H3K4me3 

(Deaton and Bird, 2011). TET1 preferentially binds hypomethylated but not hypermethylated 

CGIs through its CXXC domain, strongly suggesting a potential role of TET1 in hypomethylated 

CGIs. In support of it, we found that overexpression of TET1-FL specifically decreased the DNA 

methylation level in hypomethylated CGIs, despite no significant DNA demethylation in 

moderate or highly methylated regions. More importantly, knockdown of TET1 in HEK293T cells 

induce a significant increase of DNA methylation only in the pre-methylated edges of 

hypomethylated CGIs, indicating that TET1 maintains the DNA hypomethylation state of CGIs by 

inhibiting the aberrant spreading of de novo DNA methylation from pre-methylated CGI edges. 

Thus, TET1 presents a novel DNA demethylase-based mechanism for the maintenance of 

hypomethylated state in CGIs. Different form previously reported mechanisms by which DNMTs 

are always excluded from CGIs, this new mechanism utilizes a special DNA demethylase to 

remove aberrant and stochastic de novo DNA methylation at the methylated CGI edges and 

consequently maintain the DNA hypomethylated states in CGIs. Undoubtedly, the cooperation of 

these two mechanisms can provide a more “solid” protection for hypomethylated CGIs against 
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DNA methylation attack. We note that two recent studies reported increased DNA methylation 

levels in Tet1-bound regions after depletion of Tet1 in mESCs (Wu et al., 2011; Xu et al., 2011). 

However, they only suggest a possible role of Tet1 in maintaining the DNA hypomethylation state 

but do not directly prove a demethylating activity for TET1 (Wu et al., 2011). Moreover, the 

concomitant impairment of mESCs self-renewal and maintenance also makes it more complex to 

explain the underlying mechanism for those increase of DNA methylation (Ito et al., 2010). 

The unique function of TET1 to maintain the DNA hypomethylation state of CGIs further 

suggests a potential involvement of TET1 in the pathogenesis of human cancer. It has been well 

known that aberrant hypermethylation of CGIs constitutes an important epigenetic feature in 

human cancer and it provides cancer cells with an advantage in cell growth and invasion by 

silencing various tumor suppressor genes (Robertson, 2005). However, how such DNA 

hypermethylation occurs in cancer is still unclear. Our findings that TET1 protects 

hypomethylated CGIs against DNA methylation attack raise a possibility that the aberrant 

hypermethylation of CGIs in cancer may be closely associated with the mutation or dyregulation 

of TET1. In support of it, TET1 has been found to be a fusion partner of MLL in acute myeloid 

leukemia (Lorsbach et al., 2003; Ono et al., 2002). Moreover, a recent study which generated 

exome sequences for a set of 72 human colon tumor-normal pairs further revealed that TET1 was 

frequently mutated in colon cancer (6/72) (Seshagiri et al., 2012). Additionally, a common and 

significant decrease of TET1 expression was also reported in human colorectal cancers (Kudo et 

al., 2012). Therefore, by disrupting the normal DNA hypomethylation state of CGIs, the mutation 

or down-regulation of TET1 gene may serve as an essential step in tumorigenesis and tumor 

progression. 
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Lastly, our study on TET1 also provides some new insights into our understanding of the 

functions of TET2 and TET3. Due to the lack of CXXC domain, TET2 may regulate DNA 

methylation more extensively than TET1. As a result, loss or mutation of TET2 could lead to a 

more extensive change in DNA methylation pattern. Consistently, the mutation of TET2 has been 

reported to be associated with a DNA hypermethylation phenotype in acute myeloid leukemia 

(Figueroa et al., 2010). Further studies on the mechanism and distribution of genomic DNA 

binding of TET2 are necessary to comprehensive elucidate its role in normal and cancer cells. As 

for TET3, a number of evidences have shown that it induces the global DNA demethylation in 

paternal pronuclei of mouse zygotes (Gu et al., 2011; Wossidlo et al., 2011). As the DNA binding 

domain, the CXXC domain in TET3 must play an essential role in the determination of genomic 

loci for DNA demethylation. More importantly, in contrast to the function of TET1 to maintain 

DNA hypomethylated state of CGIs, TET3 actively induces DNA demethylation, strongly 

suggesting a difference between the CXXC domains of TET1 and TET3.  

 

Mechanism for TET-mediated 5mC oxidative DNA demethylation 

   With their 5mC dioxygenases catalytic function, TET proteins consecutively oxidize 5mC to 

5hmC, 5fC and 5caC. Subsequently, these 5mC derivatives are replaced with unmethylated 

cytosine to finally complete the process of active DNA demethylation. In contrast to the 

demonstrated 5mC oxidation reactions by TET, how those 5mC derivatives become unmethylated 

cytosine has been still unclear. Here we successfully established a tetracycline-induced TET1-CD 

overexpression system in HEK293T cells, which provided great convenience for our mechanistic 

study. Like transient TET1-CD transfection, this induced TET1-CD overexpression resulted in 
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significant DNA demethylation in several genomic loci. BER is the most often reported 

mechanism for active DNA demethylation in mammal (Wu and Zhang, 2010). However, we 

found that neither knockdown of APEX1 with siRNA or inhibition of APEX1 with CRT0044876 

affected the DNA demethylation induced by TET1-CD overexpression, providing strong 

evidences that TET-mediated active DNA demethylation is independent on BER. Indeed, one 

previous study reported that CRT0044876 treatment completely antagonized DNA demethylation 

in HEK293T cells transiently transfected with TET1-CD (Guo et al., 2011; Zhang et al., 2010a). 

Compared with that study, our experiment used a more consistent TET1-CD overexpression 

system, and bisulfite-pyrosequencing rather than HpaII sensitivity assay to more accurately test 

DNA methylation change. Additionally, another previous study reported that 5fC and 5caC in 

CpG dinucleotides can be recognized and excised by TDG, suggesting that TDG-initiating BER 

may underlie TET-mediated DNA demethylation (He et al., 2011; Maiti and Drohat, 2011). But 

actually, no experiments on the role of BER in TET-mediated DNA demethylation were further 

done in those studies. Therefore, although BER has been reported or proposed to be involved in 

TET-mediated active DNA demethylation, our study strongly suggests that such TET-mediated 

DNA demethylation is independent on BER. Moreover, given Tet3 induces global DNA 

demethylation in the paternal pronuclei of mouse zygotes within several hours after fertilization 

(Gu et al., 2011; Wossidlo et al., 2011), BER is also unlikely to contribute to Tet3-mediated DNA 

demethylation as it would put tremendous pressure on the repair machinery of zygotes (Wu and 

Zhang, 2010). 

    BER is not required for TET-mediated DNA, but by which mechanism do TET proteins 

induce active DNA demethylation? By removing carboxyl group from 5caC, a potential 
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decarboxylase could directly convert 5caC into unmethylated cytosine and thus realize 

TET-mediated active DNA demethylation. This possibility is supported by thymidine salvage 

pathway where thymine 7-hydroxylase in fungi oxidizes thymidine into iso-orotate, and then a 

decarboxylase directly converts iso-orotate into uridine by removing the carboxyl group (Smiley 

et al., 2005; Warn-Cramer et al., 1983). A genome-wide siRNA screens to identify that potential 

decarboxylase may be necessary for future mechanistic study of TET-mediated DNA 

demethylation.  

On the other hand, in addition to active demethylation pathway, TET-mediated 5mC 

oxidation may also lead to DNA demethylation through a replication-dependent passive way, as 

the derivatives of 5mC (5hmC, 5fC and 5caC) may be poorly recognized by DNMT1 (Inoue et al., 

2011; Inoue and Zhang, 2011; Valinluck and Sowers, 2007). However, although a cell 

division-dependent dilution of genomic 5hmC, 5fC, and 5caC has been observed during early 

development of mouse embryo (Inoue et al., 2011; Inoue and Zhang, 2011), whether the passive 

pathway underlies TET-mediated DNA demethylation has not been directly demonstrated. To 

confirm the possible role of passive pathway in the mechanism of TET-mediated DNA 

demethylation, we tried various strategies, including cell cycle arrest with mimosine, isolating 

nascent DNA with BrdU-DIP, and dynamic study of genomic 5hmC as well as DNA methylation. 

Mimosine treatment successfully blocked cell cycle but also unexpectedly inhibited the inducible 

overexpression of TET1-CD, thus no DNA demethylation was induced by doxycycline treatment 

at all. The other two strategies overcame such disadvantage, but surprisingly showed that passive 

pathway may be at least not the predominant mechanism for TET-mediated DNA demethylation. 

These unexpected results directly reach to a possibility that 5hmC (and 5fC and 5caC) may be 
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recognized by DNMT1 as well as 5mC during DNA replication. Actually, among these three 

derivatives, only 5hmC has been previously observed to be poor recognized by DNMT1 (Inoue et 

al., 2011; Inoue and Zhang, 2011; Valinluck and Sowers, 2007). But even in that previous study, 

the reduced selectivity of DNMT1 to 5hmC was only detected in an in vitro DNMT1 methylation 

protection assay, which used a significantly different reaction situation from that of DNA 

replication process in cells. Therefore, to further confirm our conclusions, future studies to 

directly test the selectivity of DNMT1 to 5hmC, 5fC and 5caC during DNA replication in cells are 

necessary. 

 

4.2 Summary 

In conclusion, our study showed that the CXXC and 5mC dioxygenase catalytic domains in 

TET1 form an interesting domain combination: the CXXC domain specifically targets TET1 

towards hypomethylated but not hypermethylated CGI regions, whereas the catalytic domain 

requires 5mC as substrate for 5hmC production as well as DNA demethylation. As a result, 

overexpression of TET1-CD but not TET1-FL induced significant global DNA demethylation. On 

the other hand, TET1 specifically maintains the DNA hypomethylation state in CpG-rich regions 

by its 5mC dioxygenase enzymatic activity, which unveils a novel DNA demethylase-based 

mechanism for the maintenance of DNA hypomethylated state in CGIs. Cooperated with other 

mechanisms through which DNMTs are excluded from CGIs to in order to maintain their DNA 

hypomethylation state, this novel mechanism provides a more “solid” protection for 

hypomethylated CGIs against DNA methylation attack. Therefore, our study for the first time 

revealed that TET1 works as a unique DNA demethylase which does not actively induce DNA 
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demethylation, but rather specifically maintains the DNA hypomethylation state in CpG-rich 

regions by its 5mC dioxygenase enzymatic activity. 

As for the mechanism of TET-mediated DNA demethylation, we found that knockdown or 

inhibition of APEX1 did not impair the DNA demethylation induced by TET1-CD overexpression, 

providing strong evidences that TET-mediated active DNA demethylation is independent of BER. 

Moreover, through two different strategies, we also found that passive pathway may be at least not 

the primary mechanism for TET-induced DNA demethylation. Thus, although BER-involved 

active pathway and replication-dependent passive pathway have been highly proposed, our 

available results suggest that other possible mechanisms (e.g. 5caC decarboxylases) may underlie 

the DNA demethylation induced by TET proteins. 

 

4.3 Future directions 

As discussed above, we identified TET1 works as a unique DNA demethylase which 

specifically maintains the DNA hypomethylation state of CGIs by its 5mC dioxygenase enzymatic 

activity. However, we still do not know how TET1 globally maintains the DNA methylation 

pattern. Additionally, combined with the accumulating evidences about TET1 mutations in cancer, 

our finding that TET1 specifically maintains the DNA hypomethylation state of CGIs also 

suggests a potential involvement of TET1 in the pathogenesis of human cancer. Future studies on 

the role of TET1 in tumorigenesis and tumor progression may provide a new therapeutic target for 

cancer. Moreover, in contrast to the function of TET1 to maintain the DNA hypomethylation state 

of CGIs, TET3 actively induces DNA demethylation. To know whether and how the CXXC 

domain of TET3 regulates its special function is both interesting and important. On the other hand, 
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our available results significantly contradict two main hypothesized mechanisms for 

TET-mediated DNA demethylation: BER-dependent active pathway and DNA 

replication-dependent passive pathway. Which mechanism really underlies TET-mediated DNA 

demethylation is still unclear. Therefore, to answer those questions, the following future studies 

could be necessary: 

1. To globally study the effect of TET1 knockdown on DNA methylation pattern by 

genome-wide bisulfite-sequencing;  

2. To investigate the role of TET1 in tumorigenesis and tumor progression: e.g., study whether 

depletion of TET1 induces malignant transformation in vitro or tumorigenesis in knockout 

mice, and also determine whether concomitant TET1 knockout promotes tumorigenesis in 

available mouse tumorigenesis model, like the colon tumorigenesis in APC knockout mice. 

3. To investigate the role of the CXXC domain in the function of TET3: e.g., solve the crystal 

structure of CXXC domain by computer modeling, determine its binding performance on 

(un)methylated CpG motif both in vitro and in vivo, and compare them with those of TET1 

CXXC domain. 

4. To further study the mechanism of TET-mediated DNA demethylation: test the selectivity of 

DNMT1 to 5hmC, 5fC and 5caC during DNA replication in cells and identify potential 5caC 

decarboxylases with genome-wide siRNA screens. 
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