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Abstract 

Radiomics is the high-throughput extraction and analysis of quantitative image 

features. For non-small cell lung cancer (NSCLC) patients, radiomics can be applied to 

standard of care computed tomography (CT) images to improve tumor diagnosis, 

staging, and response assessment.  

The first objective of this work was to show that CT image features extracted 

from pre-treatment NSCLC tumors could be used to predict tumor shrinkage in 

response to therapy. This is important since tumor shrinkage is an important cancer 

treatment endpoint that is correlated with probability of disease progression and overall 

survival. Accurate prediction of tumor shrinkage could also lead to individually 

customized treatment plans.  

To accomplish this objective, 64 stage NSCLC patients with similar treatments 

were all imaged using the same CT scanner and protocol. Quantitative image features 

were extracted and principal component regression with simulated annealing subset 

selection was used to predict shrinkage. Cross validation and permutation tests were 

used to validate the results. The optimal model gave a strong correlation between the 

observed and predicted shrinkages with  � � 0.81.  

The second objective of this work was to identify sets of NSCLC CT image 

features that are reproducible, non-redundant, and informative across multiple 



vi 
 

machines. Feature sets with these qualities are needed for NSCLC radiomics models to 

be robust to machine variation and spurious correlation. 

To accomplish this objective, test-retest CT image pairs were obtained from 56 

NSCLC patients imaged on three CT machines from two institutions. For each machine, 

quantitative image features with concordance correlation coefficient values greater than 

0.90 were considered reproducible. Multi-machine reproducible feature sets were 

created by taking the intersection of individual machine reproducible feature sets. 

Redundant features were removed through hierarchical clustering.  

The findings showed that image feature reproducibility and redundancy 

depended on both the CT machine and the CT image type (average cine 4D-CT 

imaging vs. end-exhale cine 4D-CT imaging vs. helical inspiratory breath-hold 3D CT). 

For each image type, a set of cross-machine reproducible, non-redundant, and 

informative image features was identified. Compared to end-exhale 4D-CT and breath-

hold 3D-CT, average 4D-CT derived image features showed superior multi-machine 

reproducibility and are the best candidates for clinical correlation.  

 

 

____________________ 
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Chapter 1: Introduction 

1.1 Background and Significance 

Lung cancer is the leading cause of cancer-related mortality both worldwide and in 

the United States (1). Over 200,000 new lung cancer cases are diagnosed and over 160,000 

people die due to the disease every year in the United States (2).   Non-small cell lung 

cancer (NSCLC) accounts for approximately 85% of these lung cancer cases, and overall 5-

year lung cancer survival is 15% (3). The variation of current incidence rates is primarily 

explained by variations in historical tobacco use (4). Therefore, as a result of decreased 

tobacco consumption, incidence rates in the United States are declining. However, 

worldwide incidence rates are rising rapidly due to increased tobacco use in China and other 

developing nations (5).  

The tumor node metastasis (TNM) staging system is a systematic way of 

representing the spread of lung cancer by assessing tumor size, nodal involvement, and 

metastatic extent (6). Staging information is obtained using thoracic computed tomography 

(CT) and is often augmented by positron emission tomography (PET) which can detect 

metabolically active microscopic disease (7). The three TNM categories can be combined 

(i.e. stage grouped) to give an overall tumor stage which has important implications for 

treatment and prognosis. Stage I lung cancer is present in the lungs only, stage II has 

nearby lymph node involvement, stage III (locally advanced disease) has more distant lymph 

node involvement, and stage IV (advanced disease) has additional organ-system 

involvement. Surgical resection is recommended for stages I and II, and has relatively good 

clinical outcomes.  However, approximately 70% of patients present with stage III or stage IV 

disease (2). Chemotherapy is generally recommended for stage IV patients, and radiation 

with concurrent chemotherapy is recommended for stage III treatment.   

At its core, the TNM staging system is an exclusively anatomically-oriented system 

that does not take advantage of additional data which may be relevant to prognosis and 

treatment, and patients that are assigned the same stage often have large variations in 
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clinical outcome. The addition of information from various non-anatomical sources could help 

reduce this problem. For example, the simple physiological features of patient age and body 

mass index have been shown to improve NSCLC staging (8). Integration of genetic 

information (e.g. single nucleotide polymorphism genotyping) improves the ability to predict 

patient survival (9-11), and serum biomarkers have also shown promise for NSCLC 

recurrence prediction (12). The literature shows that these and other molecular biomarkers 

can be used for indicating etiology, prognosis, and therapy response (13-15). However, 

external validation studies for molecular biomarker studies have largely been unsuccessful, 

and their clinical application seems stunted (16). This could be due to variations in institution 

demographics, sample collection, and/or analysis techniques. Additionally, many solid 

tumors are known to be temporally heterogeneous (i.e.  genotype changes through time) 

and/or spatially heterogeneous (i.e. genotype varies spatially within the tumor). Therefore, a 

biopsy sampling a random spatial sub-region of a tumor at a single time point may not be 

able to accurately reflect true complexity of the tumor (17).  

In light of these complications, CT imaging seems like a viable alternative for probing 

the information content of tumors. CT imaging is readily available, and any additional 

information gleaned from imaging is essentially “free” since it is performed as part of the 

standard of care for lung cancer. Additionally, because of its non-invasive nature, CT 

imaging can be used to achieve high temporal resolution via frequent imaging (17). CT 

imaging also has high spatial resolution which can allow for quantification and assessment of 

intra-tumor spatial heterogeneity (17). This is important since identification of an image 

heterogeneity – treatment response link could be used to further optimize the therapeutic 

ratio of radiation treatments (18).  

Various CT image features can be useful descriptors. In NSCLC, tumors are often 

qualitatively described as spiculated or cavitated, and several groups are working to develop 

a constrained vocabulary for lung tumor CT image annotation (19, 20). Tumors are also 

commonly described by quantitative one-dimensional (Response Evaluation Criteria in Solid 
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Tumors) or two-dimensional (World Health Organization) size measurements. However, the 

nuances of tumor morphology are not well-captured by these two measures, and in some 

cases their changes do no strongly correlate with therapeutic benefit (21, 22). Other 

commonly obtained quantitative image features such as the mean voxel intensity are 

typically simple calculations over the region of interest (ROI) (23). More advanced 

quantitative measures are usually statistical, model, or transform based and reflect variations 

in tumor morphology, heterogeneity, and/or texture (24). Statistics-based image features 

such as the run-length matrix (RLM) and co-occurrence matrix (COM) are based on 

probabilities of voxels occurring in certain combinations (25, 26). Model-based image 

features such as the fractal dimension quantify texture irregularity and roughness (24). 

Transform-based methods such as the wavelet transform are used to quantify textures in the 

frequency space (24). Compared to simple ROI-averaged image features, these more 

advanced features tend to have significantly improved prognostic power (27-30). 

  Inspired by the high-throughput success of the “omics” (genomics, proteomics, 

metabolomics, etc.), the newly created field of radiomics is centered around the high-

throughput extraction of advanced quantitative image features (17). The radiomics 

hypothesis is that these image features are related to a tumor’s underlying genotype and 

phenotype. This was first shown to be true in liver cancer where 28 image features were 

able to reconstruct 78% of the gene expression profile (31). Other studies have shown that 

genomic heterogeneity, treatment resistance, and metastatic probability are each associated 

with tumor image heterogeneity (27, 32). In addition, CT texture analysis can indicate tumor 

invasion and estrogen receptor status in patients with breast cancer, can partition high and 

low grade cerebral gliomas, and can indicate overall survival rates in colorectal cancer (33-

35). In lung cancer, image features have also been used to distinguish between the 

adenocarcinoma and squamous cell carcinoma subtypes of NSCLC (36). The fractal 

dimension of lung tumors has been used to classify pulmonary nodules and also correlates 

with tumor stage (37, 38). NSCLC CT texture analysis by Ganeshan et al. has also 
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discovered image feature associations for tumor stage, metabolism, hypoxia, and 

angiogenesis (39, 40). 

Particularly in NSCLC CT radiomics applications, authors often lament the lack of 

data standardization and uniformity (41). This is an important point to consider, because 

NSCLC radiomics models could be easily confounded by patient variability (different 

treatment types, different disease stages, different demographics, etc.), image variability 

(motion management, voxel size, contrast vs. no contrast, helical vs. axial, etc.), or by 

interpretation variability (inter-operator segmentation differences, subtle differences in image 

feature extraction algorithms, etc.). Each of these sources of variability needs to be carefully 

minimized. In theory, interpretation variability can be controlled for through automated 

segmentation and feature extraction standardization. Patient variability, on the other hand, 

cannot be controlled for on data sets studied retrospectively. This is a challenge because 

training a model requires as many patient-outcome pairs as possible and this is usually at 

odds with patient uniformity. Image variability also introduces the same problem: obtaining a 

larger sample to study introduces more variability.  

To address some of these concerns, the Quantitative Imaging Biomarkers Alliance, 

organized by the Radiological Society of North America in 2007, is working to harmonize 

imaging standards across institutions and CT machine venders (42). Additionally, in a simple 

water phantom study, several CT texture features have been shown to be relatively robust to 

kVp and mAs variation (43). For more complex human data, there is a publically available 

“test-retest” dataset of 32 NSCLC patients in which each patient was scanned twice on the 

same CT machine with a short break in between (44). This dataset was utilized by Kumar et 

al. (23) to identify 39 out of 327 image features that were reproducible, non-redundant, and 

informative. Reproducibility was quantified by the concordance correlation coefficient (45) 

and is desirable to ensure imaging biomarker model fidelity and generality. Informativeness 

was quantified using the dynamic range and is important for discerning patients. Non-
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redundance was quantified by feature correlation coefficients and is desirable to increase 

model interpretability and reduce overfitting. 

Basu et al. (2012) extracted these 39 features from a separate set of 95 NSCLC 

patients, binarized patient outcomes around 2 year survival, and tested various classifiers to 

obtain an area under the curve (AUC) of 0.68 (41). However, this study is limited by 

treatment variability and imaging variability within its patient dataset. Patients received 

different types of radiation treatments and chemotherapy, and imaging was done on several 

different machines with considerable parameter variation. For example, slice thickness was 

highly variable for the images and likely limited the usefulness of RLM and COM features 

since they assume a static voxel size. Aerts et al. (2012) performed a similar survival 

prediction study on a larger data set (412 patients) and obtained an AUC of 0.70 (46, 47). 

Besides being limited by treatment variability and imaging variability, these two studies 

assumed that the reproducible feature set found by Kumar et al. (23) would also be 

reproducible on the machines used to collect their data, but the validity of this assumption is 

unclear. Therefore, to expand upon previous work in NSCLC CT radiomics, the significance 

of this project is to 1) predict NSCLC treatment outcome from patients with uniform treatment 

and imaging and 2) use public and internal NSCLC CT test-retest datasets to identify image 

features that are robust across multiple CT machines.  

1.2 Hypotheses 

1. CT image features extracted from pre-treatment NSCLC tumors can be used to 

predict tumor shrinkage in response to therapy.  

2. Using several selection metrics, a small subset of multi-machine reproducible, 

non-redundant, and informative image features can be identified for each of 

several different CT image types.  

1.3 Specific Aims 

The hypotheses will be tested through the following specific aims: 
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1. Develop MATLAB code which can access ROIs from the Pinnacle3 TPS and extract 

3D quantitative image features from an ROI’s geometry, intensity histogram, absolute 

gradient image, run-length matrices, and co-occurrence matrices.  

2. Predict NSCLC tumor shrinkage for patients treated with IMRT and PSPT using 

models based on pre-treatment CT image features.  

3. Develop a user-friendly graphical user interface program to leverage previously 

developed code by streamlining Pinnacle ROI location, verification, and image 

feature extraction. 

4. Characterize the reproducibility, non-redundance, and informativeness of CT image 

features and identify subsets of image features that are optimal under image 

acquisition protocols. 

1.4 Thesis Organization 

This thesis is intended to serve as a permanent record of the work that was 

completed to evaluate the hypotheses of the project. Chapters 2 and 3 are self-contained 

studies, each including an introduction, methods, results, discussion, and conclusions. 

These chapters each describe separate portions of the work completed for this project. 

Chapter 2 addresses specific aims 1 and 2, providing reasonably accurate 

predictions of NSCLC tumor shrinkage from pre-treatment CT images. Chapter 3 addresses 

specific aims 3 and 4, and lists relatively small image feature sets that are reproducible, non-

redundant, and informative for each of the following image types: cine 4D-CT average 

images, cine 4D-CT end-exhale images, and inspiratory breath-hold helical 3D-CT images. 

In closing, Chapter 4 is a summary of the overall research project. This section assesses the 

hypotheses, draws overall conclusions, and proposes future related research.  
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Chapter 2: NSCLC tumor shrinkage prediction using quantitative image features 

2.1 Introduction 

A goal of oncology therapies is to utilize information gained from treating previous 

patients to deliver treatment specific to the patient and disease. The current tumor node 

metastasis (TNM) staging system for non-small cell lung cancer (NSCLC) is used for this 

purpose and utilizes anatomical information such as the tumor size, location, spread, and 

lymph node involvement (6). Although this system is based on the study of over 67,000 

NSCLC cases, NSCLC patients with the same TNM staging often have very different clinical 

outcomes. To improve this, many models have been proposed which add additional non-

anatomical features to the TNM staging system. For example, the readily available features 

of age and body mass index have been shown to improve NSCLC staging (8). Others have 

used single nucleotide polymorphism genotyping to predict survival (9-11). NSCLC 

recurrence prediction from serum biomarkers has also been explored (12). However, these 

molecular assays are invasive, much less commonly obtained than age and body mass 

index, and could be sensitive to variations in institution demographics, sample collection, 

and/or analysis techniques. Moreover, molecular assays are also limited by the fact that 

many tumors are spatially and/or temporally heterogeneous (48, 49).  

CT images, on the other hand, are ubiquitous, non-invasive, and increasingly 

quantitative and standardized. They can also assess the tumor both spatially and through 

time (48). In basic quantitative CT imaging, such as the Response Evaluation Criteria in 

Solid Tumors (RECIST) guidelines, tumor response to therapy is gauged by one-

dimensional measurements of tumor size (50, 51). However, using more complex 

quantifiable image features such as the tumor heterogeneity and radiodensity can result in a 

significant prognostic improvement over RECIST (22). Other quantitative image features are 

usually statistical, model, or transform based and show similar prognostic promise (24, 27-

30). In light of these findings, the nascent field of radiomics aims to achieve automated high-

throughput extraction of various quantitative image features under the hypothesis that they 
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are related to gene expression and phenotype. Supporting this claim, Segal et al. (2007) 

showed that 28 image features could reconstruct 78% of a liver cancer gene expression 

profile (31). Additionally, it has been demonstrated that features such as the tumor image 

heterogeneity are associated with genomic heterogeneity and are correlated with increased 

treatment resistance and metastatic probability (27, 32). 

Recently, radiomics has been applied to NSCLC survival prediction. Kumar et al. 

(2012) extracted 327 3D features for 32 patients who underwent two CT imaging sessions 

spaced 15 minutes apart on the same machine (52). To assess intra-patient (test-retest) 

reproducibility, they calculated feature concordance correlation coefficients and dynamic 

ranges and determined that 39 of these 327 features were highly reproducible. Using this 

information, Basu et al. (2012) extracted these 39 features from a separate set of 95 NSCLC 

patients, binarized patient outcomes around 2 year survival, and tested various classifiers to 

obtain an area under the curve (AUC) of 0.68 (41). Aerts et al. (2012) used similar 

techniques on a larger data set (412 patients) to obtain an AUC of 0.70 (46, 47). 

There are several limitations to these studies, however. First, both used multiple CT 

machines to establish their CT data sets. At our institution we have found that quantitative 

image features vary significantly across different machines, even of the same model. Given 

the large size of the databases used in these two studies, it is likely that several machines 

were used and it is possible that their prognostic power was limited by inter-machine 

variability. Moreover, inter-machine variability could also affect the intra-patient variability. It 

is not clear that the same set of features identified by Kumar et al. (52) would be 

reproducible on other machines as was assumed by Basu et al. (41). Finally, both the work 

by Basu et al. (41) and Aerts et al. (46) have inter-patient treatment variability which could 

similarly limit the prognostic power of their models.  

In summary, although increasing patient database size is desirable to provide 

enough training inputs to create models with sufficient expressiveness, it may be 

counterproductive if it results in increased image and/or treatment heterogeneity that 
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confounds modelling. Therefore, the purpose of our study was to develop a quantitative 

image feature-derived prediction model for NSCLC volume shrinkage (a proxy for survival) 

on a set of patients with similar treatments all imaged with the same CT scanner and 

protocol.  

2.1 Materials and methods 

Data acquisition 

We obtained simulation and weekly free-breathing, non-contrast 4DCT images from 

66 patients with locally advanced, pathologically proven stage II-IIIB NSCLC. As part of a 

separate prospective trial comparing treatment modalities, these patients were randomly 

assigned treatment either by IMRT (36 patients) or protons (30 patients). The protons were 

delivered with passively scattered proton therapy with an assumed relative biological 

effectiveness (RBE) of 1.1. Both groups were treated to a 74 Gy (RBE) dose level and had 

concurrent chemotherapy. All simulation images were acquired with the same GE Medical 

Systems LightSpeed 16 machine (GE Healthcare, Milwaukee, WI) with helical scans using 

kVp = 120, mAs = 450, and a standard reconstruction convolution kernel. Axial images were 

512 x 512 pixels with voxel dimensions of 0.98 x 0.98 x 2.5 mm3.  

To minimize the effects of respiratory motion, physicians contoured the gross tumor 

volumes (GTVs) on the end-exhale (T50) phase of planning 4DCT images. These contours 

were propagated onto weekly images using an in-house demons-based deformation 

algorithm (53, 54). For each patient, the weekly GTV volume divided by the planning GTV 

volume was defined as the tumor response for a particular week.  

Although both treatment regimens lasted longer than six weeks, for logistical reasons 

some patients did not have 4DCT scans after week six. Therefore, week six was chosen as 

the “final” time point for prediction of the tumor response from the initial planning images. For 

modelling, both the IMRT and proton data sets were pooled in order to obtain a larger set of 

observations, and one patient from each group was thrown out for being a tumor response 

outlier (deviating by more than two standard deviations). Results from (55) support pooling 
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the two data sets by showing that each group had remarkably similar tumor responses (see 

Table 2.1). In fact, the p-value that the two groups’ tumor responses have equal means is 

0.733.  

Table 2.1: Week six tumor responses by treatment modality. The weekly tumor 
response is defined as the GTV volume for the week divided by the GTV volume on 
the planning image. Intensity modulated radiation therapy (IMRT) and passively 
scatted proton therapy (PSPT) patients showed remarkably similar tumor responses 
and were pooled for the purpose of modelling. 

Treatment 

Group 

 

N 

 

Mean 

 

Median 

 

Std. 

Dev. 

 

Max 

 

Min 

IMRT 36 0.83 0.85 0.19 1.39 0.47 

PSPT 30 0.81 0.81 0.19 1.45 0.46 

IMRT+PSPT 66 0.82 0.82 0.19 1.45 0.46 

 

Feature extraction 

We extracted quantitative image features from the pre-treatment planning GTVs 

using in-house software that used the following 3D feature sources: geometry, intensity 

histogram, absolute gradient image, co-occurrence matrix (COM), and run-length matrix 

(RLM).  See Table 2.2 for a complete listing of features extracted from each feature source. 

For the absolute gradient image, each voxel is defined as the difference between paired 

adjacent voxels in all three directions added in quadrature. For a given image and direction, 

the run-length matrix ��	, �� is defined as the number of voxel runs in the image with intensity 

	 and run length � (26). RLM features were extracted for 13 different 3D directions. For a 

given image and displacement vector ∆���, a co-occurrence matrix ��	, �� is defined as the 

probability that two voxels separated by ∆��� will have the intensity values of 	 and �, 

respectively (25). COM features were extracted for six different one-voxel displacements: 

left, right, superior, inferior, anterior, and posterior. 
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Table 2.2: List of quantitative image features extracted from each planning CT image 
GTV. The RLM features were generated for 13 different 3D directions, and the COM 
features were generated for 6 different 3D displacements. 
 

 

Geometry  

 

 

Intensity 

Histogram 

 

 

Absolute  

Gradient 

 

 

Run-Length  

Matrix (RLM) 

 

 

Co-Occurrence  

Matrix (COM) 

Volume (V) 

Area (A) 

V/A Ratio 

Pruned Volume 

Pruned Area 

Pruned V/A Ratio 

Fx. Volume Pruned 

 

Mean 

Median 

Variance 

Skewness 

Kurtosis 

Minimum 

1th percentile 

10th percentile 

90th percentile 

99th percentile 

Maximum 

Entropy 

 

Mean 

Variance 

Skewness 

Kurtosis 

% Non-Zero 

 

Run Length Nonuniformity 

Grey Level Nonuniformity 

Long Run Emphasis 

Short Run Emphasis 

Fx. of Image in Runs 

 

Angular 2nd Moment 

Contrast 

Correlation 

Sum of Squares 

Inv. Diff. Moment 

Sum Average 

Sum Variance 

Sum Entropy 

Entropy 

Diff. Variance 

Diff. Entropy 

 

 

Prior to feature extraction, we pre-processed the GTV regions of interest (ROIs) by 

pruning (removing voxels below a certain Hounsfield unit [HU] cut-off). This was done to 

reduce contouring variability, remove air cavities, and better define the solid tumor. However, 

the optimal HU cut-off was not known a priori, so each unprocessed ROI gave rise to several 

variants, each of which had different HU cut-offs. Because the optimal voxel intensity bit 

depths were also unknown, each of these variants then gave rise to additional variants for 

which the gradient, RLM, and COM image bit depths were varied. Thus, for each patient’s 

ROI, many additional ROIs with different pruning and bit depths were created. Figure 2.1 

illustrates this process. For each unique HU cut-off and bit depth combination, the resulting 

ROIs were pooled from the 64 patients and features were extracted to create a feature 

matrix with each row corresponding to a patient and each column corresponding to a 

feature.  
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Figure 2.1: Region of interest (ROI) pre-processing. For each patient, the ROI was 
extracted according to physician-generated contours. Multiple pruned variants of 
these ROIs were created by removing voxels below various HU cut-offs. From each of 
these variants, additional variants were created and saved using several different bit 
depths (BD). 
 

We define a feature set as a collection of feature matrices where each feature matrix 

within the feature set was generated using a unique set of extraction parameters (e.g. HU 

cutoff and bit depths). To investigate the predictive power of various feature sources, we 

created four feature sets. Each of of the four feature sets used different feature sources and 

feature extraction parameters as indicated by Table 2.3. 
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Table 2.3: Feature set feature sources and extraction parameters. The feature set 
column denotes the name of a feature set as well as the source of features used to 
create the feature matrices that it contains (GEO = geometry, INT = intensity 
histogram, GRAD = absolute gradient image). The feature extraction parameter 
column shows the different feature extraction parameters that were used for each 
feature set (HU = Hounsfield unit, BD = bit depth). To populate the associated feature 
set, a feature matrix was generated for each unique combination. 

Feature Set Feature Extraction Parameters 

GEO + COM 
HUcutoff  = -250, -200, -150, -100, -50 

BDCOM  = 5, 6, 7, 8, 9 

GEO + RLM 
HUcutoff  = -250, -200, -150, -100, -50 

BDRLM = 5, 6, 7, 8, 9 

GEO + INT + GRAD 
HUcutoff  = -250, -225, -200,-175, -150, -125, -100, -75, -50 

BDGRAD = 4, 5, 6, 7, 8 

ALL 

HUcutoff  = -250, -200, -150, -100, -50 

BDCOM = 5, 6, 7 

BDRLM = 5, 6, 7 

BDGRAD = 5, 6, 7 

 

Modelling 

The fitness of prediction models was quantified using the mean squared error (MSE) 

between predictions and observations. The method for obtaining the MSE of a feature matrix 

� with column selection vector �� using leave-one-out cross-validation is described here and 

in Figure 2.2. First, a row is omitted from a feature matrix and the remaining training 

observations are projected into z-score space. These are then projected into principal 

component (PC) space. Dimensionality reduction is achieved by removing PC dimensions 

that have trivial components for all training observations. Next, multiple linear regression is 

performed using the PC space columns indicated by the Boolean vector ��. Tumor responses 

are used as the regression target. The resulting model is known as the principal component 

regression (PCR) model (56).  
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Finally, the omitted row is converted into the same z-score PC space as the training 

observations and fed into the PCR model in order to obtain a tumor response prediction for 

the hidden observation. The squared difference between the predicted and observed tumor 

response is recorded. This process is repeated for each row to obtain the leave-one-out 

cross-validation MSE.  
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Figure 2.2: Principal component regression with leave-one-out cross-validation; the 
method for obtaining the mean squared error (MSE) of a feature matrix � with column 
selection vector ��� using leave-one-out cross-validation.  
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Optimization 

The previous section described how to obtain MSE as a function of the feature matrix 

and the column selection vector (i.e. �����, ���). This section will describe how the simulated 

annealing principal component regression (SA-PCR) technique was used to find the � and �� 

which give the best �����, ���. First, a feature set from Table 2.3 was selected. For each 

feature matrix � in this feature set, a simulated annealing process (57) is performed using a 

geometric cooling function with �� � 1 � 10�� and �� � 1 � 10��. The Boolean vector �� is 

randomly initialized and then allowed to evolve according to the simulated annealing process 

through � = 1,000 steps using �����, ��� as the objective function.  

Out of all of the feature matrices in the feature set, the � and �� that give the lowest 

MSE are taken to be the best � and ��. Since each feature matrix is generated by a unique 

set of feature extraction parameters, the best � then implies the best feature extraction 

parameters (i.e. HU cut-off and bit depths). The best �� indicates which dimensions of the 

feature z-score PC space are best for multiple linear regression modeling. Together the best 

� and �� define the best model. 

Because simulated annealing is stochastic, for the same input feature set the SA-

PCR algorithm may return different best MSEs for each execution. Therefore, in order to test 

the stability of the results, we repeated the entire SA-PCR process 100 times for each 

feature set in Table 2.3. 

Validation 

Even though the SA-PCR process implements leave-one-out cross-validation, 

because it considers many feature matrices and many feature z-score PC space selection 

vectors, there is a possibility that the best MSE and associated � and �� that it finds are due 

to coincidence or spurious correlations.  To test for this possibility, we performed a negative 

control study. We again performed the entire SA-PCR process 100 times for each feature 
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set in Table 2.3 as was done to study the stability of the SA-PCR results. However, in this 

case, for each run the tumor response vector was randomly permuted with respect to the 

associated feature matrix (independently for each run). This obliterated any prognostic 

relationship between the feature matrix and the tumor response vector.  

2.3 Results 

Algorithm stability  

The histogram bins in Figure 2.3 indicate the number of times out of 100 runs that the 

best MSE returned by the SA-PCR algorithm fell into the indicated MSE range using the 

specified feature set.  The Experiment bars indicate the stability test results where the 

feature matrices are correctly paired with the tumor response vector. The dispersion of these 

distributions can be quantified using the coefficient of variation (CV). The GEO+COM feature 

set had  !"#$ � 3.77 � 10��, the GEO+RLM feature set had  !"#$ � 2.32 � 10��, the 

GEO+INT+GRAD feature set had  !"#$ � 4.98 � 10��, and the ALL feature set had 

 !"#$ � 6.01 � 10��. 

These small coefficients of variation indicate that the SA-PCR algorithm is stable and 

returns similar MSEs for the same input, despite being a stochastic algorithm. Thus, if the 

SA-PCR algorithm was deployed as a part of a clinical workflow, 100 repetitions would not 

be needed in order to generate a good prediction model. A single run would suffice and 

would take approximately 18 minutes on a single core machine but is easily parallelizable 

and runs in about 1.5 minutes on our 12 core machine. 
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Figure 2.3: SA-PCR algorithm stability and validation. Histogram bins indicate the 
number of times out of 100 runs that the best MSE returned by the SA-PCR algorithm 
fell into the indicated MSE range using either a) geometric and COM features, b) 
geometric and RLM features, c) geometric, intensity histogram, and gradient features, 
or d) using all features (geometric, intensity histogram, gradient, RLM, and COM). 
Experiment indicates that the tumor response vector was correctly ordered with 
respect to the feature matrix. Negative control indicates that the tumor response 
vector was randomly permuted with respect to the feature matrix (independently for 
each run). 
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Algorithm validation 

The Negative Control bars in Figure 2.3 indicate the negative control results when 

the feature matrices are paired with independently randomly permuted tumor response 

vectors. These negative control MSE distributions are well separated from the experiment 

distributions for the GEO+INT+GRAD and ALL feature sets. However, there is an overlap 

between the experiment and negative control distributions for the GEO+COM and 

GEO+RLM feature sets. The probability of an experiment MSE being due to spurious 

correlation can be approximated by calculating the one-sided p-value of the mean MSE 

returned by experiment runs given negative control distribution. Using a normal 

approximation for the negative control distributions gives � � 1.09 � 10�+  for the 

GEO+COM feature set, � � 4.87 � 10�+ for the GEO+RLM feature set, � � 4.36 � 10�, for 

the GEO+INT+GRAD feature set, and � � 5.02 � 10��  for the ALL feature set.  

If the “good” MSEs found by the SA-PCR stability tests were due to spurious 

correlations, then the negative control runs should generate similarly “good” MSEs or even 

better MSEs (some tumor response vector permutations may be more susceptible to 

spurious correlations). However, this is not what was observed.  Figure 2.3 shows that the 

SA-PCR stability test MSEs are significantly and systematically lower than the negative 

control MSEs (p-values estimated above). This indicates that there is a valid prognostic 

relationship between the feature matrix and the tumor response vector that is not due to 

spurious correlations within the data.  

Algorithm Findings 

For each of the four feature sets listed in Table 2.3, the best � and �� (i.e. the best 

model) was found using 100 repetitions of the SA-PCR method. Figure 2.4 shows these 

results graphically. The best model predictions from each feature set are displayed with the 

observed tumor response on the x-axis versus the leave-one-out predicted tumor response 

on the y-axis. Table 2.4 displays the optimal feature extraction parameters found for each 

feature set. The overall best model was found using the ALL feature set with a Hounsfield 
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unit cut-off of .250 and bit depths of 5 for the RLM, 7 for the COM, and 5 for the absolute 

gradient image.  

 

 

Figure 2.4: Model predictions. Each panel plots the observed tumor responses vs. the 
leave-one-out tumor response predictions from the best model found in 100 runs of 
the SA-PCR algorithm operating on one of the following feature sets: a) geometric and 
COM features, b) geometric and RLM features, c) geometric, intensity histogram, and 
gradient features, and d) all features. Note: tumor response = the final GTV volume 
(GTVf) divided by the initial GTV volume (GTVi); the MSE and Pearson’s r value are 
indicated for each panel; a line with slope = 1 (i.e. perfect prediction) is shown as a 
reference. 
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Table 2.4: Optimal feature extraction parameters. A bit depth of 12 was used for all 
intensity histogram derived features. 

Feature Set 
HUcutof

f  
BDRLM  BDCOM  BDGRAD  BDINT  

GEO + COM -250 - 7 - 12 

GEO + RLM -250 5 - - 12 

GEO + INT + GRAD -225 - - 5 12 

ALL -250 5 7 5 12 

 

To put the MSE values of Figure 2.4 in context, the best model found using the ALL 

feature set is shown in Figure 2.5 alongside two alternative prediction models. Figure 2.5b 

shows the predictions of the simplistic mean model where the “left out” patient is predicted to 

have a tumor response equal to the mean of all of the observed tumor responses. This gives 

an MSE of 2.51 � 10�� which is 2.92 times larger than the best MSE found by the SA-PCR 

algorithm on the ALL feature set (Figure 2.5a). The negative control model shown in Figure 

2.5c was generated from the ALL feature set using a random permutation of the tumor 

response vector. Without the true feature-response (input-output) pairings, this model is 

unable to produce a linear trend and instead clusters predictions around the mean tumor 

response value. 
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Figure 2.5: Comparison between tumor response models. Panels show the observed 
tumor response vs. leave-one-out tumor response predictions from a) the optimal SA-
PCR model using the ALL feature set, b) the mean model (i.e. predicted response = 
mean response), and c) an SA-PCR model using the ALL feature set with a random 
permutation of the tumor responses with respect to the feature matrix. 
 

For each leave-one-out cross-validation step illustrated in Figure 2.2, PCR generates 

regression coefficients for each of the principal components indicated by ��. By averaging 

these coefficients across all cross-validations, the coefficient with the largest average 

absolute value can be identified. The principal component associated with this coefficient is 

then the most dominant principal component for determining the prediction. Figure 2.6 

shows the projection of such a dominant principal component into the feature z-score space 

for the best model found using the ALL feature set. From this projection it is clear that no 

particular image feature dominates the dominant principal component. That is, no single 

image feature seems to be a strong tumor response predictor; rather, it appears that the 

interaction of multiple features gives rise to the best model. 
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Figure 2.6: Projection of the dominant principal component into the original image 
feature z-score space for the best model found using the ALL feature set. 
  

2.4 Discussion 

Tumor response as a prediction outcome 

When deciding treatment options, predicting patient outcome regarding survival and 

normal tissue toxicity is paramount. However, as our patients are currently part of an 

ongoing study these data are not yet available. Therefore, tumor response was used as a 

substitute. We believe that tumor response (i.e. tumor shrinkage) is an acceptable proxy for 

patient outcome due to the current RECIST guidelines which state: 

 

“The use of tumor regression as the endpoint for phase II trials… is supported by 

years of evidence suggesting that… tumor shrinkage… demonstrates an 

improvement in overall survival or other time to event measures in randomized phase 

III studies.” (58) 

 

When the data is available, we plan to determine the ability of quantitative image 

feature models to predict normal tissue complications and survival.  
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Pooling photon and proton patients 

Although the photon and proton patients technically received different treatments, we 

believe that for the outcome of tumor response they can be approximated as receiving the 

same treatment. This can be justified from a theoretical standpoint since the GTVs of each 

modality were planned to receive exactly the same RBE-adjusted dose, and this argument is 

supported by the empirical findings of (55) (see Table 2.1). 

  As per the study’s design, the only dosimetric difference between the two treatment 

groups is for normal tissue dose. Thus, in the future, for the outcome of patient survival, 

there may be differences between the two groups arising from differences in normal tissue 

dose between the two treatment modalities. In such a scenario, pooling the two patient 

groups would not be appropriate for prediction of the alternative outcome of survival. 

Principal component regression as a model choice 

Inspection of the image feature covariance matrices showed that many features were 

highly correlated. This can make standard multiple linear regression unreliable because 

small changes in the data can cause large, erratic changes in the estimated coefficients. 

This is known as the problem of multicolinearity (59). By creating a basis space of 

orthogonal principal component vectors, PCR is a way to address this problem and also 

provides dimensionality reduction. However, (60) has shown that the principal components 

with the most variation are not always optimal for modelling. Thus, we introduced the 

simulated annealing algorithm as a method to find which principal components should be 

included for modelling.  

Reproducibility and robustness against spurious correlation 

The low coefficients of variation for the experiment distributions of Figure 2.3 

demonstrate the reproducibility of the SA-PCR algorithm on our dataset. Absent or minimal 

overlap between the experiment and negative control distributions in Figure 2.3 also 

demonstrate robustness to spurious correlations. With a p-value of 4.36 � 10�, for the 

separation between its experiment and negative control distributions, the GEO+INT+GRAD 
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feature set results are the least likely to be due to spurious correlation. This implies that in 

cases where there are few patient observations, it may prudent to omit RLM and COM 

features for model construction and only use geometric, intensity histogram, and absolute 

image gradient features. Although this may slightly decrease the MSE compared to using all 

features, it will give a better guarantee that the model found truthfully identifies a relationship 

between the image features and the tumor shrinkage. Omitting the RLM and COM features 

would also make the parameter space easier to search since RLM and COM bit depths are 

no longer required. 

The optimal feature extraction parameters shown in Table 2.4 indicate that the 

optimal bit depth for each feature source (e.g. RLM, COM, etc.) appears to be independent 

of the other bit depths. That is, the optimal RLM bit depth found with the GEO+RLM feature 

set was the same as the optimal RLM bit depth found using the ALL feature set. This was 

also true for the COM and absolute gradient image bit depths. Thus, in the future it may be 

prudent to search for each optimal bit depth individually and then combine them when a 

model using all features is desired. As for the optimal HU cut-off, it appears to be 

approximately the same for each feature set and is always at or near the lowest HU cut-off 

that was explored. This indicates that future studies should consider lower HU cut-offs and 

also hints that the air-tissue boundary may contain important prognostic information 

(otherwise the optimal HU cut-offs would have been higher).  

Model success and applicability   

Our findings indicate that a quantitative image feature model can use existing CT 

images to successfully predict tumor shrinkage (see Figure 2.4). In fact, Figure 2.5 shows 

that, relative to the simplistic mean model, the tumor shrinkage uncertainty can be reduced 

by nearly a factor of three. This is very important because tumor shrinkage is prognostic, and 

thus our predictions are also prognostic. For example, a patient predicted to have a poor 

response to a particular treatment can be identified before the treatment begins. From here 
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he can either be labelled as high risk and watched closely or perhaps be transferred to a 

different treatment strategy.  

At the present, however, it is not known whether or not the models developed in this 

study can be applied to similar patients at other institutions. The model could be invalidated 

by different treatments, different imaging, and/or different patient demographics. We suggest 

a group of institutions work together to perform a study similar to (52) across multiple CT 

scanners to identify robust quantitative image features. Once these features are identified, 

standardized treatments and demographics could be agreed on, and robust predictive 

models for patient outcomes could be explored. 

2.5 Conclusion 

Quantitative image feature models derived from existing pre-treatment CT images 

were successfully able to predict NSCLC tumor shrinkage, an indicator of treatment efficacy 

and future survival. This supports the findings of (41) and (46) which showed that binary 

classifiers operating on quantitative image features could be used to predict survival 

outcomes for patients with NSCLC. When survival data is available for our patients we will 

develop similar classifiers and compare AUCs to their findings. Since our cohort’s imaging 

and treatment are both relatively homogenous compared to these studies, such future work 

could indicate how much imaging and treatment heterogeneity can affect the prognostic 

power of quantitative image feature models. 
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Chapter 3: Identification of multi-machine reproducible and non-redundant NSCLC CT 

image features 

3.1 Introduction 

In computed tomography (CT) imaging, non-small cell lung cancer (NSCLC) tumors 

are often described using qualitative descriptors (spiculated, cavitated, heterogeneous, 

etc.)(61, 62). However, recently there has been a move towards generating additional 

quantitative, objective features to describe these tumors (17). Traditional quantitative 

measures have included the one-dimensional tumor size, mean voxel intensity, intensity 

standard deviation, etc. (50, 58, 63). Newer quantitative measures are usually statistical, 

model, or transform based and reflect variations in tumor morphology, heterogeneity, and/or 

texture (24). Motivated by the hypothesis that these quantitative image features are related 

to gene expression and phenotype, the field of radiomics aims to achieve their automated, 

high-throughput extraction from standard of care images (23). Ganeshan et al. have shown 

that quantitative measures of NSCLC CT heterogeneity are associated with tumor stage, 

metabolism (39), hypoxia, and angiogenesis (40). Other quantitative image features have 

been applied to classify NSCLC as adenocarcinoma or squamous cell carcinoma (36), and 

lung tumor image fractal dimension has been shown to correlate with tumor stage (38) and 

can classify pulmonary nodules (37). Thus, several lines of evidence support the radiomics 

hypothesis for NSCLC.  

For NSCLC radiomics to be applied clinically, the intra- and inter-machine 

reproducibility of image features must be addressed. Towards this goal, the Quantitative 

Imaging Biomarker Alliance has created a technical committee dedicated towards multi-

vender CT scan standardization for the measurement of lung nodules (42). In a CT phantom, 

Ganeshan et al. (43) showed that quantitative measures of entropy and uniformity have 

lower coefficient of variation values than the mean intensity. For human study, public data is 

available from 32 NSCLC patients each scanned twice (15 minutes apart) using the same 

CT machine and protocols (44) (Figure 3.1). Kumar et al. (23) recently used this so-called 
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“test-retest” dataset to identify 39 out of 327 image features that were reproducible, 

informative, and non-redundant.  

The purpose of our study is to expand upon the work of Kumar et al. (23) by adding 

test-retest datasets from additional machines and image types. By studying different image 

types (cine 4D-CT end-exhale phase vs. average cine 4D-CT vs. breath-hold helical 3D-CT) 

we can determine which image type will give the most reproducible image features. By 

studying different machines we can investigate how much machine variation affects 

reproducibility. We also propose a way to integrate reproducibility and redundancy findings 

across multiple machines to identify a cross-machine reproducible and non-redundant image 

feature set.  This robust set of NSCLC image features could be useful for the development 

and validation of multi-machine and multi-institutional NSCLC radiomics models. 

 

Figure 3.1: Publically available test-retest images taken 15 minutes apart. 

 

Materials and methods 

Test-retest datasets 

We obtained non-contrast-enhanced cine 4D-CT test-retest scans from 31 patients 

with NSCLC who were imaged at the University of Texas M.D. Anderson (MDA) Cancer 

Center in Houston, TX (64). 16 of these test-retest pairs were acquired on a GE (General 
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Electric Healthcare, Milwaukee, WI) Discovery ST model machine (“M1”) and 15 were 

acquired on a GE LightSpeed RT 16 model machine (“M2”). Imaging parameters are shown 

in Table 3.1.  We also obtained breath-hold, non-contrast-enhanced helical 3D-CT test-retest 

scans from 25 patients with NSCLC who were imaged at the Memorial Sloan-Kettering 

Cancer Center in New York, NY (65). This is the dataset used by Kumar et al.(23) and is 

publically available as part of the Reference Image Database to Evaluate Therapy Response 

(RIDER) (44) collection hosted by the Cancer Imaging Archive (TCIA) at Washington 

University in Saint Louis, MO.  

The complete RIDER dataset has 32 test-retest patients and was collected with two 

machines: a GE LightSpeed 16 and a GE LightSpeed VCT 64. However, to isolate machine 

variation we omitted test-retest pairs from the GE LightSpeed VCT 64 machine; we also 

removed scans with GTVs that had image artifacts or appeared too difficult to contour 

accurately. This resulted in 25 test-retest pairs all acquired on the same machine, a GE 

LightSpeed 16 (“M3”). These scans had variable axial pixel dimensions because the field of 

view was independently set for each scan based on its scout image. Therefore, a “virtual” 

fourth machine (“M4”) was created by taking each M3 scan and performing 3D cubic spline 

interpolation to generate a new scan with the same voxel size as the MDA images.  This was 

done to test if features could be extracted more reproducibly from scans with a uniform voxel 

size.   

  



30 
 

 

Table 3.1: CT machine parameters. MDACC indicates M.D. Anderson Cancer Center; 
MSKCC, Memorial Sloan-Kettering Cancer Center.  

 Machines 

Parameter M1 M2 M3 

Test-Retest Pairs 16 15 25 

Institution MDACC MDACC MSKCC 

GE Machine Model Discovery ST LightSpeed RT 16 LightSpeed 16 

Detector Rows 8 16 16 

Scan Mode Cine 4D Cine 4D Helical 3D 

Breathing Free Free Insp. hold 

kVp 120 120 120 

Exposure Time (ms) 500 500 493 ± 42 

Tube Current (mA) 100 200 339 ± 63 

Filter Type BODY BODY BODY 

Convolution Kernel STANDARD STANDARD LUNG 

Axial Pixel Size (mm) 0.98 0.98 0.68 ± 0.10 

Slice Thickness (mm) 2.5 2.5 1.25 

Focal Spot Size (cm) 0.7 0.7 1.2 

 

Feature Extraction 

To minimize inter-operator contour variation, a single operator (the primary author) 

was responsible for contouring the 174 GTVs used in our study. All contouring was 

performed with the  Pinnacle3 TPS (treatment planning system; Philips Medical Systems, 

Andover, MA) using its slice by slice auto-contour function with a lower bound of 0 and an 

upper bound of 500 (values selected to increase automation and reproducibility). For 4D-CT 

scans, GTVs were contoured on the T50 phase (end-exhale) images and the average (AVG) 
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images. Clinical treatment plans with physician-generated GTVs were used to identify lesion 

locations. For the 3D-CT scans, lesions were located and contoured using dataset 

annotations from the TCIA website. In the interpolated dataset, the binary mask from original 

voxel size scans underwent a 3D cubic spline interpolation and thresholding to determine the 

new GTV mask. 

For quantitative image feature extraction, we developed the in-house Imaging 

Biomarker Extractor (IBEX) software package.  IBEX was developed using MATLAB 

(Mathworks Inc., Natick, MA) and has a graphical user interface which can directly access 

images and regions of interest (ROIs) from the Pinnacle3 TPS file system. Using this 

information, it can extract image features from the following 3D feature sources: geometry, 

intensity histogram, absolute gradient image, co-occurrence matrix (COM) (25), and run-

length matrix (RLM) (26).  For a complete list of features extracted, refer to Table 3.2. 

Additionally, for NSCLC GTVs it is common to remove voxels from the GTV region of 

interest that are below a certain Hounsfield unit (HU) cutoff before performing feature 

extraction (39, 40). This is thought to refine the ROI, making it more reproducible and 

focusing feature extraction on tissues other than air. IBEX allows for the specification of an 

HU cutoff to support this capability.    
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Table 3.2: Image Features Extracted with the Imaging Biomarker Extractor (IBEX) 
Software.  
 

 

Geometry  

 

 

Intensity 

Histogram 

 

 

Absolute  

Gradient 

 

 

Run-Length  

Matrix (RLM) 

 

 

Co-Occurrence  

Matrix (COM) 

Volume (V) 

Area (A) 

V/A Ratio 

Pruned Volume 

Pruned Area 

Pruned V/A Ratio 

Fx. Volume Pruned 

 

Mean 

Median 

Variance 

Skewness 

Kurtosis 

Minimum 

1th percentile 

10th percentile 

90th percentile 

99th percentile 

Maximum 

Entropy 

 

Mean 

Variance 

Skewness 

Kurtosis 

% Non-Zero 

 

Run Length Nonuniformity 

Grey Level Nonuniformity 

Long Run Emphasis 

Short Run Emphasis 

Fx. of Image in Runs 

 

Angular 2nd Moment 

Contrast 

Correlation 

Sum of Squares 

Inv. Diff. Moment 

Sum Average 

Sum Variance 

Sum Entropy 

Entropy 

Diff. Variance 

Diff. Entropy 

 

 

 

In our analysis, we used IBEX to extract image features from each GTV using the 

four 3D sources described. RLM features were extracted for 13 different 3D directions, and 

COM features were extracted for 3 different 3D displacements. For many features, the 

resulting values can vary substantially depending on the bit depth used to represent the 

image. Therefore, in order to get a representative sampling of feature values, all absolute 

gradient image, RLM, and COM features were extracted with three different image bit 

depths: 2, 6, and 10. The intensity histogram features were extracted using a bit depth of 12, 

and the geometric features are unaffected by bit depth. In total, for 11 different, equally 

spaced HU cutoffs between -1000 and 0, 328 image features were extracted for every GTV.  
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Quantifying reproducibility 

For a particular feature, let x be a vector of that feature’s values across the patients’ 

first scan. Let y  be a vector of that feature’s values across the patients’ second scan. The 

concordance correlation coefficient (CCC) (45), a commonly used measure of reproducibility 

and inter-rater reliability, is then defined as: 

2

2 2 2

( )
1

( )x y x y

x y
CCC

σ σ µ µ

−
≡ −

+ + −
       (3.1)

 

As suggested by McBride (66), we defined reproducible features as those features 

with CCC ≥ 0.90. Like Kumar et al. (23), we also considered selecting features based on 

their dynamic ranges (DRs), but we noticed a strong overlap between the feature sets that 

passed a DR cutoff and the feature sets that passed a CCC.  Plots of CCC vs. 2DR−  were 

very linear (Figure 3.2), so we suspected an approximate relationship between the two 

metrics existed. Therefore, using reasonable assumptions (verified by our feature data 

values), we searched for an explanation. 



Figure 3.2: Feature CCC vs. 1/DR
scans. 
 

For a particular feature, starting with 

the second scans have the same means and variances (i.e. 

The CCC then simplifies: 

2 21 ( ) / 2 pCCC x y σ≈ − −  

 Define the range for the feature: 

Define the dynamic range of the feature:

Assume: ( )20,
i

N δδ σ�

 

and y x y x

2 / δδ πσ=   
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δδ σ=    
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Feature CCC vs. 1/DR2 for 328 features extracted from M2 T50 test

For a particular feature, starting with Equation 3.1, assume that the first scans and 

the second scans have the same means and variances (i.e. x y p
µ µ µ= ≡

      

Define the range for the feature: max(max( ), max( )) min(min( ), min( ))f x y x y∆ ≡ −

Define the dynamic range of the feature: /DR f x y≡ ∆ −    

y x y xδ δ≡ + ⇒ = − , then: 

      

      

 

for 328 features extracted from M2 T50 test-retest 

, assume that the first scans and 

x y p
µ µ µ and 2 2 2

x y pσ σ σ= ≡ ). 

      (3.2) 

max(max( ), max( )) min(min( ), min( ))f x y x y    (3.3) 

      (3.4) 

      (3.5) 

      (3.6) 
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If p δσ σ� , then for uniform, Gaussian, Poisson, exponential, and other distributions: 

pf σ∆ ∝
          

(3.7) 

Substituting Equation 3.6 into Equation 3.2 gives: 2 21 / pCCC δσ σ− ∝   (3.8) 

Substituting Equations 3.5 and 3.7 into Equation 3.4 gives: /pDR δσ σ∝   (3.9) 

Therefore: 21 CCC DR
−− ∝         (3.10) 

 

This explains the observations of Figure 3.2. It also implies that a cutoff on CCC 

implicitly implies a corresponding cutoff on DR. Therefore, to avoid redundant cutoffs, we 

chose to only use a CCC constraint since f∆ is sensitive to outliers.  

Thus, for each of the six machine / image type combinations (M1 T50, M2 T50, M1 

AVG, M2 AVG, M3, and M4), we used the CCC constraint to identify which of the 328 

features extracted were reproducible. This was done for each of the 11 HU cutoffs between -

1000 and 0. In order to find features that were reproducible across multiple machines, the 

intersection of individual machine reproducible feature sets was taken.  

To quantify how machine-sensitive feature reproducibility is, for two machines with 

identical image types, let A  be the set of reproducible features on one machine and B  be 

the set of reproducible features on the other. In terms of these variables, the Dice similarity 

coefficient (DSC) (67) and the Jaccard index (JI) (68) are defined as follows: 

 

2
( , )

A B
DSC A B

A B

∩
≡

+
                (3.11) 

( , )
A B

JI A B
A B

∩
≡

∪
                 (3.12) 

To quantify inter-machine feature selection agreement, each of these values was 

calculated using machine M1 and machine M2 for both T50 images and AVG images. 
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Finding reproducible, non-redundant features 

Applying the CCC reproducibility constraint and taking the feature set intersection 

across multiple machines substantially reduced the total number of candidate features. 

However, many of the remaining features were strongly correlated with one another, and it 

would be useful to find a non-redundant subset of these features. Therefore, for a set of 

features F  that is reproducible across N machines, let ( )
k

iρ = concordance correlation 

coefficient for feature i  on machine k , and let ( , )
k

r i j be the sample Spearman’s rank 

correlation coefficient between feature i  and feature j on machine k . Next, define: 

1

1
( ) ( )

N

k

k

i i
N

ρ ρ
=

= ∑
                 (3.13)

 

( , ) 1 ( , )k kd i j r i j= −
                 (3.14)

 

1

1
( , ) ( , )

N

k

k

d i j d i j
N =

= ∑
                (3.15)

 

Where ( )iρ is the mean CCC for feature i  across all N machines, ( , )
k

d i j is the 

similarity distance between features i  and j  on machine k , and ( , )d i j is the mean 

similarity distance between features i  and j  across all N  machines. 

Using these definitions, the similarity distance between all of the feature pairs of F  

can be calculated for each machine, and the mean similarity distances between the feature 

pairs of F can be established. The features present in F  can then be hierarchically clustered 

based on the ( , )d i j distance function. By clustering until a threshold value is reached, 

several non-redundant, reproducible clusters can be identified. By picking the feature from 

each cluster with the highest average reproducibility across machines (Equation 3.13), a set 

of features that are non-redundant and reproducible across multiple machines can be 

identified. This process was performed for several different HU cutoffs and machine / image 

type combinations. In each case, the clustering algorithm used an average linkage function 

and an average mean similarity distance clustering threshold of 0.1.  



37 
 

3.3 Results 

Single Machine Reproducibility 

Figure 3.3 shows the percent of the 328 image features that had a certain CCC value 

or higher when no voxels are removed from the GTV prior to feature extraction. Intersections 

with CCC = 0.90 indicate the number of features that were considered reproducible. In the 

figure, the three image types track each other initially, but then diverge to have considerably 

different levels of reproducibility. The cine 4D-CT average images were the most 

reproducible and had curves that bent down the least; 90.5% of the features were 

reproducible for M1 AVG and 94.5% of the features were reproducible for M2 AVG. The cine 

4D-CT T50 scans were the next most reproducible (M1 T50 = 75.0% pass; M2 T50 = 71.0% 

pass), and the helical 3D-CT breath-hold scans had the fewest number of reproducible 

features (M3 = 61.0% pass). Images interpolated with uniform voxel sizes did not improve 

the number of reproducible features (M4 = 57.3% pass).  Figure 3.3 was generated multiple 

times using various HU cutoffs to generate Figure 3.4. In Figure 3.4, it is apparent that for all 

machines and image types, as the HU cutoff goes down the number of reproducible features 

tends to goes up. This trend implies that for maximum feature reproducibility, no HU cutoff 

should be used.  

 



Figure 3.3: Percent of GTV image features with a CCC greater than or equal to the 
indicated value. 
 

Multi-machine reproducibility 

For each of the data points in 

features. By taking the intersection of these sets we found features that were reproducible 

across multiple machines. Figure 

different multi-machine combinations. The same trend is noted: the number of multi

reproducible features increases as the HU cutoff is decreased. At an HU cutoff of 

no cutoff), for average scans, 86.3% of features were reproducible across both machines 

(M1 and M2), for T50 scans, 52.1% of features were reproducible across both machines, 

and for “single phase” scans (M1 T50, M2 T50, and M3), 42.1% of features were 

reproducible across all three machines. Exchanging M3 with M4 did not appreciably affect 

the number of multi-machine reproducible features (41.5%).
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Percent of GTV image features with a CCC greater than or equal to the 

 

For each of the data points in Figure 3.4, each machine has a set of reproducible 

features. By taking the intersection of these sets we found features that were reproducible 

across multiple machines. Figure 3.5 shows the reproducible feature percentage for several 

machine combinations. The same trend is noted: the number of multi

reproducible features increases as the HU cutoff is decreased. At an HU cutoff of 

r average scans, 86.3% of features were reproducible across both machines 

(M1 and M2), for T50 scans, 52.1% of features were reproducible across both machines, 

and for “single phase” scans (M1 T50, M2 T50, and M3), 42.1% of features were 

s all three machines. Exchanging M3 with M4 did not appreciably affect 

machine reproducible features (41.5%). 

 

Percent of GTV image features with a CCC greater than or equal to the 

4, each machine has a set of reproducible 

features. By taking the intersection of these sets we found features that were reproducible 

5 shows the reproducible feature percentage for several 

machine combinations. The same trend is noted: the number of multi-machine 

reproducible features increases as the HU cutoff is decreased. At an HU cutoff of -1000 (i.e. 

r average scans, 86.3% of features were reproducible across both machines 

(M1 and M2), for T50 scans, 52.1% of features were reproducible across both machines, 

and for “single phase” scans (M1 T50, M2 T50, and M3), 42.1% of features were 

s all three machines. Exchanging M3 with M4 did not appreciably affect 



Figure 3.4: Percent of features that are reproducible (CCC 
numbers less than the specified HU cutoff are removed from the GTV before feature 
extraction.  
 

To investigate if feature reproducibility is machine

CCC vs. M2 CCC for both T50 and AVG scans (no HU cutoff). Poi

the vertical lines correspond to reproducible features on M1, and points falling above the 

horizontal lines correspond to reproducible features on M2. Venn diagram areas indicate the 

relative number of reproducible features that

The Dice similarity coefficients and Jaccard indices and indicate that T50 feature 

reproducibility is relatively machine

reproducibility is relatively machine

cutoffs are applied, both image types begin to show machine

cutoff of 0 gives DSC = 0.61 and JI = 0.44 for T50 images and DSC = 0.54 and 0.37 for AVG 

images. 
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Percent of features that are reproducible (CCC ≥ 0.90) when vox
numbers less than the specified HU cutoff are removed from the GTV before feature 

To investigate if feature reproducibility is machine-sensitive, Figure 3.

CCC vs. M2 CCC for both T50 and AVG scans (no HU cutoff). Points falling to the right of 

the vertical lines correspond to reproducible features on M1, and points falling above the 

horizontal lines correspond to reproducible features on M2. Venn diagram areas indicate the 

relative number of reproducible features that were common or unique for the two machines. 

The Dice similarity coefficients and Jaccard indices and indicate that T50 feature 

reproducibility is relatively machine-sensitive (DSC = 0.71, JI = 0.55) while AVG feature 

reproducibility is relatively machine-insensitive (DSC = 0.93, JI = 0.87). However, if HU 

cutoffs are applied, both image types begin to show machine-sensitivity. For example, an HU 

cutoff of 0 gives DSC = 0.61 and JI = 0.44 for T50 images and DSC = 0.54 and 0.37 for AVG 

 

 0.90) when voxels with CT 
numbers less than the specified HU cutoff are removed from the GTV before feature 

Figure 3.6 displays M1 

nts falling to the right of 

the vertical lines correspond to reproducible features on M1, and points falling above the 

horizontal lines correspond to reproducible features on M2. Venn diagram areas indicate the 

were common or unique for the two machines. 

The Dice similarity coefficients and Jaccard indices and indicate that T50 feature 

sensitive (DSC = 0.71, JI = 0.55) while AVG feature 

insensitive (DSC = 0.93, JI = 0.87). However, if HU 

sensitivity. For example, an HU 

cutoff of 0 gives DSC = 0.61 and JI = 0.44 for T50 images and DSC = 0.54 and 0.37 for AVG 



Figure 3.5: Percent of features that are reproducible across all of the machines 
specified given a particular HU cutoff
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Percent of features that are reproducible across all of the machines 
specified given a particular HU cutoff.  

 

Percent of features that are reproducible across all of the machines 
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Figure 3.6: M1 CCC vs. M2 CCC. Panel a) depicts the relationship for T50 scans and 
panel b) depicts the relationship for AVG scans. Venn diagrams, Dice similarity 
coefficients (DSC), and the Jaccard indices (JI) are displayed. The CCC ≥ 0.90 cutoff is 
shown for both axes. No HU cutoff was used.  

 

Reproducible, non-redundant feature sets 

Across single phase scans (M1 T50, M2 T50, and M3), 42.1% or 138 out of 328 

image features were reproducible on all machines (no HU cutoff). The cluster heat map (69) 

in Figure 3.7 shows the values of these 138 reproducible features for the 25 M3 test-retest 

pairs (50 scans). Repeated horizontal patterns present in the cluster heat map indicate that 

that there is considerable feature redundancy, especially for the RLM grey level 

nonuniformity (GLNU) features and RLM run length nonuniformity (RLNU) features.  
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Figure 3.7: Cluster heat map representation of the M3 scans using the 138 features 
that passed the reproducibility cutoff on single phase scans. No HU cutoff was used. 
Green cells correspond to a feature value above the mean, red cells correspond to 
feature values below the mean, and the color intensity indicates the deviation 
magnitude. Image features (rows) were clustered using the Pearson’s distance metric, 
and patient scans (columns) were clustered using a Euclidean distance metric. Both 
used an average linkage function. Scans are labeled such that the number indicates 
the test-retest pair; ‘A’ and ‘B’ represent scan #1 and scan #2, respectively. 
Dendrograms indicate the hierarchical relationships both between the features and 
between the scans 
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To address this, Equation 3.14 was used to quantify how redundant two features are 

on a particular machine. The distribution of feature similarity distances ( ( , )
k

d i j ) for different 

machines is shown in Figure 3.8 (no HU cutoff). Feature pairs with distances near zero are 

very redundant; feature pairs with distances near one are non-redundant. The different 

shape and increased number of non-redundant feature pairs for Figure 3.8b (M2 T50) 

compared to Figure 3.8a (M1 T50) indicate that feature redundancy is moderately machine-

sensitive. Similar histograms (data not shown) show different feature similarity distance 

distributions both for M1 T50 vs. M1 AVG and M2 T50 vs. M2 AVG, indicating that feature 

redundancy is also image type sensitive. In Figure 3.8c (M3 data) both the machine and 

image type are changed compared to Figure 3.8a and Figure 3.8b. Thus, its feature pair 

distance distribution appears quite different; relatively more feature pairs are either very 

redundant or very non-redundant, with fewer feature pairs in between. Figure 3.8d uses 

Equation 3.15 and shows the distribution of the mean similarity distances ( ( , )d i j ) across 

the three machines. Its final (0.9 to 1.0) distance bin is relatively empty, implying that it is 

rare for a feature to be strongly non-redundant across all three machines.  
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Figure 3.8: Panels a), b), and c) show histograms of the feature pair similarity 
distances for the 9453 feature pairs possible from the 138 features that passed the 
reproducibility cutoff for all single phase scans with no HU cutoff. Panel d) shows the 
distribution of mean feature similarity distances.  

 

Figure 3.9 shows a dendrogram generated from the hierarchical clustering of the 138 

features that were reproducible across all single phase scans (no HU cutoff).  It used the 

mean similarity distance of a feature pair as a distance function (distribution shown in Figure 

3.8d). It also used an average linkage function, so the distance between two feature clusters 

is the average mean similarity distance, and a cutoff value of 0.1 was selected to find a finite 

number of relatively non-redundant feature clusters (in this case 23).   
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Figure 3.9: Dendrogram illustrating hierarchical feature clustering using the average 
mean similarity distance between feature clusters as a distance metric. The average 
mean similarity distance between two clusters is the average of the mean similarity 
distances between the elements of each cluster (see inset). Two clusters merge 
(horizontal bar) when the average mean similarity distance between their constituent 
features becomes greater than the y-value indicated in the diagram. There are 23 
clusters at the average mean similarity distance cutoff of 0.1 (red line). Feature values 
came from the 138 features that passed the reproducibility cutoff on all single phase 
scans (no HU cutoff).  
 

This whole process (identifying multi-machine reproducible features and clustering to 

a threshold) was done for 4 different multi-machine combinations and 11 different HU 

cutoffs. All used the same 0.1 clustering threshold. The results are displayed in Figure 3.10, 

and show a similar trend to those in Figure 3.5: as the HU cutoff goes down, the number of 

non-redundant feature clusters goes up. Therefore, we used HU cutoff � .1000 and 

generated a list of reproducible, non-redundant features for each of the 4 multi-machine 

combinations in Figure 3.10. See Table 3.3. Each entry in the table is a representative 

feature from one of the reproducible, non-redundant clusters of the multi-machine 

combination indicated. For cine 4D-CT average images and for cine 4D-CT T50 images, we 



recommend columns 1 and 2, respectively.  For “single phase” mixed cine 4D

images and helical 3D-CT breath

breath-hold images we recommend column 4. 

 

Figure 3.10: Number of non
distance > 0.1) generated by hierarchically clustering features that are reproducible 
across all of the machines specified
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recommend columns 1 and 2, respectively.  For “single phase” mixed cine 4D

CT breath-hold images, we recommend column 3. For helical 3D

hold images we recommend column 4.  

Number of non-redundant feature clusters (average mean similarity 
distance > 0.1) generated by hierarchically clustering features that are reproducible 
across all of the machines specified.  

 

recommend columns 1 and 2, respectively.  For “single phase” mixed cine 4D-CT T50 

hold images, we recommend column 3. For helical 3D-CT 

 

redundant feature clusters (average mean similarity 
distance > 0.1) generated by hierarchically clustering features that are reproducible 
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Table 3.3: Multi-machine reproducible and non-redundant feature lists. Coordinates 
indicate either a direction (RLM) or a displacement (COM); BD indicates bit depth; VA 
ratio, volume to area ratio; GEO, geometric; IHIST, intensity histogram; IGR, absolute 
gradient image; RLM, run length matrix; COM, co-occurrence matrix; p10tile, 10th 
percentile; FxR, fraction in runs; SRE, short run emphasis; LRE, long run emphasis; 
RLNU, run length nonuniformity; GLNU, grey level nonuniformity; PNonZero, 
probability non-zero. 
M1 AVG & M2 AVG 
(38 features) 

M1 T50 & M2 T50 
(28 features) 

M1 T50 & M2 T50 & M3 
(23 features) 

M3 
(33 features) 

IHIST entropy GEO VA ratio GEO VA ratio GEO volume 

IHIST kurtosis IHIST entropy GEO volume IHIST kurtosis 

IHIST max IHIST kurtosis IHIST kurtosis IHIST p10tile 

IHIST mean IHIST p10tile IHIST p10tile IHIST skewness 

IHIST min IHIST p1tile IHIST skewness IGR BD10 PNonZero 

IHIST p10tile IHIST skewness IGR BD10 Skewness IGR BD6 Mean 

IHIST p1tile IGR BD2 Variance IGR BD6 Mean RLM BD10 FxR (1,0,1) 

IHIST p99tile IGR BD6 Mean RLM BD10 LRE (1,0,0) RLM BD10 FxR (1,0,-1) 

IHIST variance RLM BD10 RLNU (0,1,0) COM BD10 AngScMom (-1,0,0) RLM BD10 FxR (-1,1,1) 

IGR BD10 Variance RLM BD10 SRE (1,0,0) COM BD10 Correlation (0,-1,0) RLM BD10 FxR (1,1,-1) 

IGR BD2 Kurtosis COM BD10 AngScMom (-1,0,0) COM BD10 Correlation (-1,0,0) RLM BD10 LRE (0,1,0) 

IGR BD2 Variance COM BD10 Correlation (-1,0,0) COM BD10 DifEntrp (-1,0,0) RLM BD10 LRE (1,0,0) 

IGR BD6 Skewness COM BD10 DifEntrp (0,-1,0) COM BD10 Entropy (-1,0,0) RLM BD10 LRE (1,1,0) 

RLM BD10 LRE (0,1,-1) COM BD10 DifEntrp (-1,0,0) COM BD10 InvDfMom (0,-1,0) RLM BD10 LRE (-1,1,0) 

RLM BD10 RLNU (0,0,1) COM BD10 Entropy (-1,0,0) COM BD10 InvDfMom (-1,0,0) RLM BD6 SRE (0,1,0) 

RLM BD2 FxR (1,1,0) COM BD10 InvDfMom (0,-1,0) COM BD10 SumEntrp (-1,0,0) RLM BD6 SRE (1,1,0) 

RLM BD2 FxR (-1,1,-1) COM BD10 InvDfMom (-1,0,0) COM BD10 SumOfSqs (0,-1,0) RLM BD6 SRE (1,1,-1) 

RLM BD2 RLNU (1,0,-1) COM BD10 SumEntrp (-1,0,0) COM BD2 SumVarnc (0,0,-1) COM BD10 AngScMom (-1,0,0) 

RLM BD2 SRE (1,1,0) COM BD10 SumOfSqs (0,-1,0) COM BD6 DifEntrp (-1,0,0) COM BD10 Correlation (0,-1,0) 

RLM BD2 SRE (-1,1,0) COM BD2 SumOfSqs (0,0,-1) COM BD6 DifVarnc (-1,0,0) COM BD10 DifEntrp (0,0,-1) 

RLM BD6 GLNU (0,0,1) COM BD2 SumVarnc (0,0,-1) COM BD6 Entropy (0,-1,0) COM BD10 DifEntrp (-1,0,0) 

COM BD10 AngScMom (0,0,-1) COM BD6 Contrast (0,0,-1) COM BD6 InvDfMom (0,0,-1) COM BD10 Entropy (0,-1,0) 

COM BD10 Correlation (0,-1,0) COM BD6 Correlation (0,0,-1) COM BD6 InvDfMom (0,-1,0) COM BD10 InvDfMom (0,0,-1) 

COM BD10 DifVarnc (-1,0,0) COM BD6 DifEntrp (0,-1,0) COM BD10 InvDfMom (0,-1,0) 

COM BD10 Entropy (0,-1,0) COM BD6 DifEntrp (-1,0,0) COM BD10 InvDfMom (-1,0,0) 

COM BD10 InvDfMom (0,-1,0) COM BD6 DifVarnc (0,-1,0) COM BD10 SumEntrp (0,0,-1) 

COM BD10 SumEntrp (0,0,-1) COM BD6 DifVarnc (-1,0,0) COM BD10 SumEntrp (-1,0,0) 

COM BD2 Contrast (0,0,-1) COM BD6 InvDfMom (0,0,-1) COM BD2 SumVarnc (0,0,-1) 

COM BD2 Contrast (-1,0,0) COM BD6 Correlation (-1,0,0) 

COM BD6 AngScMom (0,-1,0) COM BD6 Entropy (-1,0,0) 

COM BD6 DifEntrp (0,0,-1) COM BD6 InvDfMom (0,-1,0) 

COM BD6 DifEntrp (0,-1,0) COM BD6 InvDfMom (-1,0,0) 

COM BD6 DifEntrp (-1,0,0) COM BD6 SumVarnc (0,0,-1) 

COM BD6 DifVarnc (0,0,-1) 

COM BD6 DifVarnc (0,-1,0) 

COM BD6 Entropy (0,0,-1) 

COM BD6 InvDfMom (0,-1,0) 

COM BD6 InvDfMom (-1,0,0) 
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To confirm that the recommended feature sets are non-redundant, we generated a 

cluster heat map (Figure 3.11) for all single phase scans (32 M1 T50 scans, 30 M1 T50 

scans, and 50 M3 scans) using the 23 features from Table 3.3, column 3. The absence of 

repeated vertical patterns in the heat map indicates that the selected features are non-

redundant. Furthermore, blinded to the fact that test-retest pairs were present, 55 out of 56 

test-retest pairs were correctly placed adjacent to one another in the figure. This indicates 

that the selected features were sufficiently informative to accurately match and distinguish 

patients. 
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Figure 3.11: Cluster heat map representation of all scans from M1 T50, M2 T50, and 
M3 (no HU cutoff). Green cells correspond to a feature value above the mean, red cells 
correspond to feature values below the mean, and the color intensity indicates the 
deviation magnitude. For readability, orientations are reversed from Figure 3.6. Each 
of the 23 features shown had the highest average CCC from one of the 23 
independent clusters shown in Figure 3.9. Features (columns) were clustered using 
the Pearson’s distance metric, and patient scans (rows) were clustered using a 
Euclidean distance metric. Both used an average linkage function. Scans are labeled 
such that the number indicates the test-retest pair; ‘A’ and ‘B’ represent scan #1 and 
scan #2, respectively. Dendrograms indicate the hierarchical relationships between 
the features and between the scans.  
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3.4 Discussion 

Our study was strongly inspired by Kumar et al. (23), however, there are several key 

differences. We applied their techniques to several different machines and image types and 

studied how different machines and image types affected feature reproducibility and 

redundancy. We also studied feature reproducibility as a function of HU cutoff (i.e. GTV 

pruning) and omitted the feature dynamic range requirement. Additionally, we developed a 

strategy to integrate the findings to produce a multi-machine reproducible and non-

redundant feature set. We also omitted some of the patients used by Kumar et al. (23), used 

a different set of image features, and had a different semi-automated contouring process. 

These methodological differences could explain why our CCC values were relatively higher, 

leading us to chose to use a reproducibility cutoff of 0.90 instead of 0.85 (23).  

CT image type was found to strongly affect feature reproducibility (Figure 3.3, Figure 

3.4, and Figure 3.5). Features from cine 4D-CT average images were substantially more 

reproducible than those associated with T50 images, and T50 associated features were 

somewhat more reproducible than breath-hold helical 3D-CT features. This may seem 

counter-intuitive since T50 images are intended to “freeze” motion. However, because 

average images are an average of 10 image phase reconstructions, they are less 

susceptible to photon noise and various 4D-CT artifacts (70-72). As for the breath-hold CTs, 

it is difficult to draw conclusions since the machine, image type, and convolution kernel 

varied simultaneously compared to the other datasets. However, M4 did not appear to have 

better reproducibility than M3. That is, no significant reproducibility improvements were 

observed when scans were interpolated to have a uniform voxel size. If raw CT data were 

available it may have been possible to reconstruct images with a standard voxel size and 

achieve better results. 

As the HU cutoff goes down (i.e. as fewer low-intensity GTV voxels are pruned), we 

found 1) reproducibility becomes less machine-sensitive (Figure 3.6), 2) individual machine 



51 
 

reproducibility goes up (Figure 3.4), 3) multi-machine reproducibility goes up (Figure 3.5), 

and 4) the number of multi-machine, non-redundant clusters goes up (Figure 3.10). This last 

finding is particularly interesting since it implies that the low intensity voxels contain non-

redundant information. Since the vast majority of the low intensity voxels appear at the tumor 

periphery, these findings indicate that the periphery contains valuable non-redundant 

information which can be used to discriminate tumors. This is understandable, since non-

contrast-enhanced CT has limited soft tissue contrast; if the periphery is removed, there are 

fewer intensity variations to extract independent features from. Thus, we recommend against 

removing voxels based on their intensity values as a pre-processing step to feature 

extraction. This is in opposition to the NSCLC CT protocol of Ganeshan et al. (39, 40), but 

we believe that it is likely due to methodological differences. In their studies, directionally 

independent first-order statistics (e.g. entropy and uniformity) were extracted from the filtered 

2D image slice that had the largest transverse tumor length. In our work, features are 

extracted from the intensity histogram, absolute gradient image, RLM, and COM values 

evaluated over the entire unfiltered GTV. Therefore, as a caveat, we should emphasize that 

our tumor pre-processing (i.e. pruning) protocols and feature set recommendations are only 

applicable to similar datasets (non-contrast-enhanced NSCLC CT images) using similar 

image features (Table 3.2). 

One limitation of our study is that all semi-automated contouring was done by a 

single individual (the primary author). Ideally, multiple individuals could contour each GTV 

and operator sensitivity could be studied. Alternatively, one of several automated 

segmentation techniques could be used to possibly increase reproducibility (73). In the 

future it would also be useful to study the reproducibility of additional image features and the 

effect of convolution kernels. Another limitation is that all of the machines used in our study 

are GE machines. Ideally, multiple machines from various manufacturers should be tested to 

see if there are any systematic or random feature value variations between them. Finally, a 

key point to note is that our study only assessed intra-machine reproducibility. Multi-machine 
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reproducible features were defined as features that have good intra-machine reproducibility 

on multiple machines. Because patients were not test-retest imaged on multiple scanners, 

we cannot directly assess inter-machine reproducibility (i.e. agreement of feature values 

between machines). For ethical reasons, this necessitates a phantom, and there are several 

good candidates for future work. Court et al. (74) created a model of a real lung tumor using 

rapid prototyping, placed it into an anthropomorphic phantom, and moved it to match 

recorded tumor motion trajectories. This phantom would be very useful to study how motion 

affects feature reproducibility across multiple machines. In a separate application of rapid 

prototyping, another group has developed a way to independently control the CT number of 

every voxel of a phantom (75). Unlike a solid phantom, this model could be used to study 

image feature fidelity in the presence of subtle changes in voxel intensity and indistinct 

tissue boundaries.  

3.5 Conclusion 

This study integrated multiple NSCLC test-retest CT datasets to identify informative, 

non-redundant image features with high intra-machine reproducibility on multiple machines. 

Image feature quality was best for average 4D-CT images, and the tumor periphery was 

found to play an important role in tumor discrimination. Further advanced phantom studies 

are needed to investigate inter-machine image feature reproducibility. 
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Chapter 4: Discussion 

4.1 Summary and Conclusions 

Chapter 2 showed that quantitative image feature models derived from existing pre-

treatment CT images could successfully predict NSCLC tumor shrinkage, an indicator of 

treatment efficacy and future survival.  

Chapter 3 showed that image feature reproducibility and redundancy depended on 

both the CT machine and the CT image type. For each of the image types (end-exhale 4D-

CT, average 4D-CT, and helical breath-hold 3D-CT) multiple NSCLC test-retest CT datasets 

were integrated to identify informative, non-redundant image features with high intra-

machine reproducibility on multiple machines. Pruning of low intensity voxels showed that 

the tumor periphery plays an important role in tumor discrimination. Compared to end-exhale 

4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior 

multi-machine reproducibility and are the best candidates for clinical correlation.  

4.2 Evaluation of Hypotheses and Specific Aims 

Specific aims 1 and 2 were successfully completed by the work presented in Chapter 

2 and resulted in the confirmation of the first hypothesis: CT image features extracted from 

pre-treatment NSCLC tumors can be used to predict tumor shrinkage in response to therapy. 

 Specific aims 3 and 4 were successfully completed by the work presented in Chapter 

3 and resulted in the confirmation of the second hypothesis: various selection metrics can 

identify a small subset of “ideal” image features for each of several different CT image types.  

4.3 Future Research and Applications 

Chapter 2 supports the findings of (41) and (46) which showed that quantitative 

image features could be used to make clinically relevant predictions for NSCLC patients. As 

our survival outcome data is currently unavailable, we are unable to develop a binary 

classifier to predict survival at present. However, in the future when this data is available, we 

could develop such a model. Since our dataset had more uniform treatment and imaging, 
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comparing its AUC to their findings could indicate how important treatment uniformity and 

imaging uniformity are for accurate radiomics survival prediction. This could have important 

applications when planning future prospective radiomics studies.  

A limitation of our study in Chapter 3 is that a test-retest patient is only scanned on 

one machine. Therefore, we only have information to assess intra-machine reproducibility. 

To simultaneously assess both intra- and inter-machine reproducibility, a patient needs to be 

imaged at least twice on two machines (i.e. four total scans). This is not ethically justifiable, 

so a phantom is required. To examine how tumor motion affects inter-machine 

reproducibility, a 3D printed moveable phantom could be used (74). To how much fine tumor 

detail affects inter-machine reproducibility, another 3D printed phantom with finely controlled 

voxel CT numbers could be used (75). This later approach is a better simulation of tumor 

visual complexity, but it does not include tumor motion. One possible solution to this is to 

print test-retest image pairs directly into a CT number accurate phantom. By scanning this 

phantom on multiple machines, human test-retest scans on multiple machines could be 

simulated. Additionally, since the printed images already have motion-induced changes, this 

static phantom would allow for the simultaneous investigation of fine tumor detail and 

motion. This could be applied in future radiomics studies to find image feature sets that 

simultaneously optimize intra- and inter-machine reproducibility.  
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