
The Texas Medical Center Library The Texas Medical Center Library 

DigitalCommons@TMC DigitalCommons@TMC 

Dissertations and Theses (Open Access) MD Anderson UTHealth Houston Graduate 
School 

5-2013 

Characterization Of Tcl1-Tg:P53-/- Mice That Resemble Human Characterization Of Tcl1-Tg:P53-/- Mice That Resemble Human 

Chronic Lymphocytic Leukemia With 17P-Deletion Chronic Lymphocytic Leukemia With 17P-Deletion 

Jinyun Liu 

Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations 

 Part of the Laboratory and Basic Science Research Commons 

Recommended Citation Recommended Citation 
Liu, Jinyun, "Characterization Of Tcl1-Tg:P53-/- Mice That Resemble Human Chronic Lymphocytic 
Leukemia With 17P-Deletion" (2013). Dissertations and Theses (Open Access). 331. 
https://digitalcommons.library.tmc.edu/utgsbs_dissertations/331 

This Dissertation (PhD) is brought to you for free and 
open access by the MD Anderson UTHealth Houston 
Graduate School at DigitalCommons@TMC. It has been 
accepted for inclusion in Dissertations and Theses (Open 
Access) by an authorized administrator of 
DigitalCommons@TMC. For more information, please 
contact digcommons@library.tmc.edu. 

https://digitalcommons.library.tmc.edu/
https://digitalcommons.library.tmc.edu/utgsbs_dissertations
https://digitalcommons.library.tmc.edu/uthgsbs
https://digitalcommons.library.tmc.edu/uthgsbs
https://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/812?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.tmc.edu/utgsbs_dissertations/331?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digcommons@library.tmc.edu


CHARACTERIZATION OF TCL1-Tg:p53-/- MICE THAT RESEMBLE 

HUMAN CHRONIC LYMPHOCYTIC LEUKEMIA WITH 17P- 

DELETION    

 

                                                      By 

Jinyun Liu, M.S. 

 

APPROVED: 

 

Peng Huang, M.D., Ph.D. Supervisory Professor 

 

Paul J. Chiao, Ph.D. 

 

Michael J. Keating, M.D. 

 

Hesham M. Amin, M.D. 

 

Zeev Estrov, M.D. 

APPROVED: 

 

Dean, the University of Texas  

Graduate School of Biomedical Sciences 

at Houston 



CHARACTERIZATION OF TCL1-Tg:p53-/- MICE THAT RESEMBLE 

HUMAN CHRONIC LYMPHOCYTIC LEUKEMIA WITH 17P-

DELETION  

 

A 

DISSERTATION 

 

Presented to the Faculty of  

The University of Texas 

Health Science Center at Houston 

and 

The University of Texas 

MD Anderson Cancer Center 

Graduate School of Biomedical Sciences 

In Partial Fulfillment  

of the Requirements  

for the Degree of  

DOCTOR OF PHILOSOPHY 

By 

 

             Jinyun Liu, M.S. 

Houston, Texas 

May 2013 

 II



ACKNOWLEDGEMENTS 

        The present research was carried out in Department of Molecular 

Pathology, M. D. Anderson Cancer Center, Graduate School of Biomedical 

Science, University of Texas in Houston during the years from 2008 to 2013. 

        First, I want to thank my current mentor, Dr. Peng Huang. It has been an 

honor to be his Ph.D. student. I appreciate all his contributions of ideas, time 

and funding to make my Ph.D. experience productive and interesting.  

        The faculty members who served on my advisory, examination, and 

supervisory committees have contributed good advice, time and collaboration 

throughout my Ph.D. training. I wish to express my sincere gratitude to those 

faculty members: Dr. Paul J. Chiao, Dr. Michael J. Keating, Dr. Hesham M. 

Amin, Dr. Zeev Estrov, Dr. Varsha Gandhi, Dr. Jean-Pierre J. Issa and Dr. 

Jinsong Liu. I am especially grateful to my supervisory committee members Dr. 

Keating for providing patient samples and good suggestions on how to make 

good presentations, Dr. Chiao for being the chairman in my examining 

committee and his good advice on how to continue my research properly, Dr. 

Amin for his support and collaboration, and Dr. Estrov for his good advice on 

my research. All of their contributions definitely have improved the quality of 

my research. 

        I express my most sincere gratitude to Dr. Michael C. MacLeod who gave 

me the opportunity to work with him in the Department of Carcinogenesis, 

Science Park-Research Division, University of Texas MD Anderson Cancer 

 III



Center, Smithville, TX. I am also grateful to Dr. MacLeod for his help, support 

and encouragement during my Ph.D. training.  

         I would like to thank our group members: Li Feng, Gang Chen, Wan 

Zhang, Feng Wang, Shuqiang Yuan, Marcia A. Ogasawara, Kausar Begam Riaz 

Ahmed, Hui Zhang, Naima Hammoudi, and Celia Garcia-prieto. Our group 

members have provided me a source of friendships as well as good advice and 

collaboration. I especially thank our lab manager, Li Feng, for teaching me how 

to handle mouse work at the beginning and for taking care of those mice during 

my leave. I also want to thank Gang Chen for his help on mouse work and his 

good advice on my research. I appreciate Helene Pelicano and weiqin Lu for 

their technical support and good advice throughout my Ph.D. training.   

        I am especially grateful to my parents Dinglai Liu and Miaosheng Hua for 

their love and support throughout my life. I owe my thanks to my husband Dr. 

Xiaojun Xia for his love, support and good advice. My son, Alwyn L. Xia 

(TianTian), has brought me daily happiness and full of love in my life. Thanks 

to my little angel-TianTian. I dedicate this work to the memory of my 

grandparents Longxiu Ding and Changli Liu.  

 

 

 

 

 

 

 IV



CHARACTERIZATION OF TCL1-Tg:p53-/- MICE THAT RESEMBLE 

HUMAN CHRONIC LYMPHOCYTIC LEUKEMIA WITH 17P-

DELETION 

 

Jinyun Liu, Ph.D. 

 

Supervisory Professor: Peng Huang, M.D. Ph.D. 

 

        Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the 

United States and Europe. CLL patients with deletion of chromosome 17p, where the 

tumor suppressor p53 gene is located, often develop a more aggressive disease with 

poor clinical outcomes.  However, the underlying mechanism remains unclear. In order 

to understand the underneath mechanism in vivo, I have recently generated mice with 

Eu-TCL1-Tg:p53-/- genotype and showed that these mice develop aggressive leukemia 

that resembles human CLL with 17p deletion. The Eu-TCL1-Tg:p53-/- mice developed 

CLL disease at 3-4 months, significantly earlier than the parental Eu-TCL1-Tg mice 

that developed CLL disease at 8-12 months. Flow cytometry analysis showed that the 

CD5+/IgM+ cell population appeared in the peritoneal cavity, bone marrow, and the 

spleens of Eu-TCL1-Tg:p53-/- mice significantly earlier than that of the parental Eu-

TCL1-Tg mice. Massive infiltration and accumulation of leukemia cells were found in 

the spleen and peritoneal cavity of Eu-TCL1-Tg:p53-/- mice.  In vitro study showed that 

the leukemia cells isolated from the Eu-TCL1-Tg:p53-/- mice were more resistant to 

fludarabine treatment than the leukemia cells isolated from spleens of Eu-TCL1-Tg 

mice.  Interestingly, TUNEL assay revealed that there was higher apoptotic cell death 

found in the Eu-TCL1-Tg spleen tissue compared to the spleens of the Eu-TCL1-Tg:p53-
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/- mice, suggesting that the loss of p53 compromises the apoptotic process in vivo, and 

this might in part explain the drug resistant phenotype of CLL cells with 17p-deletion. 

In the present study, we further demonstrated that the p53 deficiency in the TCL1 

transgenic mice resulted in significant down-regulation of microRNAs miR-15a and 

miR16-1, associated with a substantial up-regulation of Mcl-1, suggesting that the p53-

miR15a/16-Mcl-1 axis may play an important role in CLL pathogenesis.  Interestingly, 

we also found that loss of p53 resulted in a significant decrease in expression of the 

miR-30 family especially miR-30d in leukemia lymphocytes from the Eu-TCL1-

Tg:p53-/- mice.  Such down-regulation of those microRNAs and up-regulation of Mcl-1 

were also found in primary leukemia cells from CLL patients with 17p deletion. To 

further examine the biological significance of the decrease in the miR-30 family in 

CLL, we investigated the potential involvement of EZH2 (enhancer of zeste homolog 

2), a component of the Polycomb repressive complex known to be a downstream target 

of miR-30d and plays a role in disease progression in several solid cancers. RT-PCR 

and western blot analyses showed that both EZH2 mRNA transcript and protein levels 

were significantly increased in the lymphocytes of Eu-TCL1-Tg:p53-/- mice relative to 

Eu-TCL1-Tg mice.  Exposure of leukemia cells isolated from Eu-TCL1-Tg:p53-/- mice 

to the EZH2 inhibitor 3-deazaneplanocin (DZNep) led to induction of apoptosis, 

suggesting EZH2 may play a role in promoting CLL cell survival and this may 

contribute to the aggressive phenotype of CLL with loss of p53.  Our study reveals that 

p53-miR15a/16-Mcl-1 axis & p53-miR30-EZH2 axis may contribute to the CLL 

pathogenesis, and EZH2 may be a potential target for CLL treatment. 
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1. INTRODUCTION 

          1.1 Cellular origin(s) of chronic lymphocytic leukemia. Chronic 

lymphocytic leukemia (CLL) is the most common leukemia in the Western 

world and accounts for about 30% of all adult leukemia cases.  CLL is a disease 

of elderly people resulting from an accumulation of mature-looking neoplastic 

CD5+ B lymphocytes in primary & secondary lymphoid tissues, and CLL cells 

express CD19, CD23 and CD20 as well (1-3). Despite the fact that over past 

years several cell types have been suggested as giving rise to CLL, the cellular 

origin of CLL is still unclear (4).  The belief that the cellular origin of CLL is 

from follicular mantle B cells due to shared surface membrane expression of 

CD5 and CD23 was challenged by the DNA sequencing result showing that 

approximately 50% CLL cases have IGHV mutations, whereas follicular mantle 

B cells almost have unmutated  IGHVs (5, 6). Another belief that CLL clones 

with either mutated or unmutated IGHVs derived from marginal zone (MZ) B 

cells defined as IgMhighIgDlow cells as most CLL clones also faces difficulties 

because MZ B cells are CD5-CD23-CD22+ differing from CLL cells (7, 8). A 

single-cell origin of CLL was challenged by the evidence for remarkably similar 

B-cell receptor (BCR) amino acid sequence and striking differences in poly-

antigen and autoantigen-binding activity found in some CLL clones (9). The 

feature of CLL clones using either mutated or unmutated IGHV genes (M-CLL 

and U-CLL) gave rise to the hypothesis that 2 subgroups of CLL originated 

from distinct cell types considered as a 2-cell origin model (10, 11). However, 

the 2-cell origin model exhibited difficulties resulting from gene expression 
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profiling which revealed that only a relatively small number of genes have 

differences between U-CLL and M-CLL , whereas there are thousands of 

differences between normal B lymphocytes and either U-CLL or M-CLL (12). 

Therefore difference in cellular features between U-CLL and M-CLL could be 

explained by a sing-cell derivation with additional and nongenetic promoting 

factors. Regarding normal counterparts of CLL, leukemogenesis is at least a 

multistep process. In 2011, possibilities for single- and multiple-cell origin 

models offered by some researchers partially answered the question whether a 

single- or multiple normal counterparts of CLL were stimulated to evolve into 

CLL (9).  

         1.2 Genetic abnormalities in CLL. Fluorescence in situ hybridization 

(FISH) analysis has revealed that up to 80% of CLL cases exhibited 

chromosomal abnormalities such as deletions of 13q14 in 55% CLL cases, 11q 

deletion in 12%, 17p deletion in 8% and trisomy of chromosome 12 in 15% of 

CLL cases (13, 14). Among the chromosomal abnormalities, deletions at 13q14 

are the most frequent chromosomal abnormalities and present in more than half 

of CLL cases. Some of the cytogenetic changes are associated with poor 

prognosis and aggressive disease progression.  Chromosome 17p deletion (17p-) 

is the most recognized cytogenic alteration in CLL associated with aggressive 

disease progression, resistance to chemotherapy, and poor clinical outcome (15). 

Since the tumor suppressor p53 gene is located in human chromosome 17p (16), 

it is suspected that the loss of p53  function in CLL cells with 17p- may be 

responsible for the poor prognosis of this subgroup of CLL patients (17, 18). 
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Initially, TP53 was considered as an oncogene. However, since 1989 it has been 

found that p53 functions as a tumor suppressor and is frequently mutated in 

human cancers (19-21). More than half of human tumors have a p53 deletion or 

mutation (22). What is the p53 status in CLL? Mutations of TP53 are found in 

4% to 37% of patients with CLL (23). Patients with fludarabine-refractory CLL 

have the highest incidence of TP53 mutation (24). Interestingly, recent study 

suggested that a very high concordance (over 70%) in 17p-deletion and 

mutations in the remaining p53 allele (25).  Furthermore, p53 dysfunction may 

also arise via alternative mechanisms such as functional inactivation, which 

may explain certain CLL with poor prognosis but without apparent structural 

changes in p53 gene such as 17p-deletion or mutations (26).  Thus, it is clear 

that the loss of p53 function has profound effect on the CLL disease progress 

and treatment outcomes.  However, the underlying mechanisms remain to be 

elucidated.  

        1.3 CLL microenvironment. The microenvironment, a complication of 

accessory cells that within individual organs, provides  growth factors, nutrients 

and immune tolerance for the survival and propagation of malignant cells in 

solid tumors through cell-cell contact and active molecular crosstalk (27). In 

CLL, the interactions between the malignant cells and the microenvironment in 

vivo provide the proliferative drive for the malignant cells through the external 

signals from the microenvironment such as antigens, cytokines and cell-cell 

contact. In vitro, CLL cells undergo spontaneous apoptosis, suggesting that 

CLL cell survival depends on microenvironment signals (28, 29). There is 
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growing evidence suggesting that CLL cells are protected from spontaneous 

apoptosis and conventional drug in vitro by various stromal cells including 

mesenchymal marrow stromal cells (MSCs) (30, 31), monocyte-derived 

nurselike cells (NLCs) (30), and follicular dendritic cells (32) through co-

culture that partially mimics the CLL microenvironment.  Interactions between 

CLL cells and MSCs provide CLL survival and drug resistance by promoting 

CLL cell migration which depends on CXCR4 and VLA-4 expression by CLL 

cells (33). There are several common stromal cell lines used for protecting CLL 

cells through co-culture, including human stromal cell lines HS5 & NK Tert and 

mouse stromal cell line KUSA-H1. NLCs protect CLL cells from spontaneous 

apoptosis and conventional drugs through secreting CXCL12 (30), CXCL13 

(34), B cell-activating factor of the tumor necrosis factor (BAFF), CD31 and 

plexin-B (35). T cells play several roles in CLL. In one hand, some subsets of T 

cells may overcome the antitumor effect derived from other T-cell subsets and 

favor disease progression. In the other hand, the significant immune deficiency, 

which is typical in CLL, resulted from T-cell abnormalities (36, 37). The overall 

number of circulating T cells stimulate CLL cell growth and survival by 

secreting interleukin-4 (IL-4) and tumor necrosis factor- (TNF-) (27). 

         1.4 CLL treatment. CLL treatment includes chemotherapy with agents 

such as fludarabine, chlorambucil, and bendamustine (38). Fludarabine, a purine 

analog, generated a significant improvement in overall responses compared with 

chlorambucil, an alkylating agent, in the CLL treatment (39). Up to 37% of 

untreated patients with CLL do not respond to fludarabine treatment and up to 
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76% of patients with CLL become refractory to the fludarabine treatment (40). 

Fludarabine and chadribine in combination with cyclophosphamide are equally 

effective for progressive CLL. However, both combinations are not effective in 

patients with 17p13 deletion (41).  Bendamustine agent, a cytotoxic hybrid of an 

alkylating agent and a purine analog, has improved overall response rates (42). 

The major issue for the purine analog therapy is lack of response in patients 

with 17p- CLL. Histone deacetylase inhibitors (HDACIs) can induce acetylation 

of histone and nonhistone proteins (43). The HDACI, valproate (VPA), 

synergizes with purine analogues to induce apoptosis in CLL cells (44).  β-

Phenylethyl isothiocyanate (PEITC), which is a natural compound found in 

cruciferous vegetables, effectively eliminates fludarabine-resistant CLL cells 

through ROS accumulation and glutathione depletion (45). It could be possible 

that PEITC only or PEITC combined with other chemotherapy agents will take 

a big step in the CLL treatment. Recent studies have shown that the compound 

PEITC overcomes resistance to HDACI in human leukemia through redox 

modulation (46).  Despite the improvement of chemotherapy in CLL, relapse is 

frequent. Rituximab (anti-CD20), the first approved therapeutic antibody in 

cancer treatment, has been used in refractory CLL (47). Chemoimmunotherapy 

improves overall therapy in patients with CLL and alemtuzumab (anti-CD52) 

based chemoimmnotheray has improved responses in relapsed/refractory 

disease (38, 48). Recently protein kinases have been considered as therapeutic 

targets in CLL due to the fact that an imbalanced functional response of the B-

cell receptor (BCR) signaling axis results in the deregulation of gene expression 
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in CLL. Spleen tyrosine kinase (SYK) is critical for B-cell development and is 

essential for the survival and maintenance of malignant B cells (49, 50). SYK 

inhibition in human CLL cells led to the downregulation of Erk, Akt, and Mcl-1, 

demonstrating that SYK regulates CLL survival (51-53). Bruton tyrosine kinase 

(BTK) plays an essential role in B-cell signaling and development. BTK are 

overexpressed in CLL lymphocytes as compared with normal B lymphocytes at 

both protein and mRNA levels (54). Ibrutinib, a specific inhibitor of BTK, can 

disrupt tumor microenvironment interactions, inhibit cellular migration and 

adhesion and induce apoptosis in malignant B-cells (55). Despite those 

significant improvements and potential therapeutic strategies in clinic, CLL still 

remains an incurable disease. Novel therapeutic agents targeting different 

signaling pathways will bring a new way for the future treatment of CLL and   

fludarabine-resistant/refractory CLL.   

        1.5 Treatment resistance in CLL-the role of the p53 pathway. Despite 

the improvements of chemotherapy strategies by novel therapeutic agents or 

their combinations in the CLL treatment, relapse is frequent. The appearance of 

effective first-line chemoimmunotherapy such as retuximab in CLL improved 

the response rates for treatment-refractory patients. Genetic abnormalities such 

as 13q14 deletion, un-mutated IGHV gene status, 11q deletion, particularly 17p 

deletion seem to be more important in determining the treatment outcome than 

initial treatment choice (56-58). CLL patients with 17p deletion have been 

shown to poorly respond to conventional chemotherapies such as fludarabine 

(57), probably because that the remaining allele contains a TP53 mutation or 
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deletion in the most cases. Are CLL patients with TP53 mutation in the absence 

of 17p deletion resistant to chemotherapy? The answer is positive. TP53 

mutation without 17p deletion corresponds to the development of 

chemotherapy-resistant disease and is associated with poor survival (59). More 

than half of human tumors have a p53 deletion or mutation (22). Mutations of 

TP53 are found in 4% to 37% of patients with CLL (23). Patients with 

fludarabine-refractory CLL have the highest incidence of TP53 mutation (24). 

Taking together, p53 seems to play a central role in the drug resistance of CLL. 

         1.6 Animal models that resemble human CLL and underlying    

mechanisms. Animal model tools are important to investigate disease processes 

and associated pathological mechanisms in vivo.  Currently there are several 

CLL mouse models, which include the Eµ-TCL1 transgenic (TCL1-Tg) mice 

(60), the April transgenic mice (61), the TRAF2DN/bcl2 transgenic mice (62), 

the miR-155 mouse model (63), the NZB mouse model with miR-16 alteration 

(64), and the miR-29 transgenic mice (65), and so on. The TCL1-Tg mouse 

model, which was created by the insertion of the human TCL1 gene under the 

control of the immunoglobulin heavy chain variable region promoter and 

immunoglobulin heavy chain enhancer, represents a well characterized mouse 

model that develops leukemia resembling human CLL (60). Why TCL1 causes 

leukemia? TCL1 physically interacts with Akt through PH domain of Akt. This 

interaction enhances Akt kinase activity and promotes Akt nuclear translocation 

(66). It has been reported that transgenic mice expressing constitutively 

activated Akt in T cells develop T cell leukemia (67), whereas transgenic mice 
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expressed constitutively activated Akt in B cells do not develop B cell leukemia 

(68). Those reports suggest that Akt activation causes leukemia in T cells 

initiated by TCL1. However TCL1 deregulation in B cells causes CLL not 

through Akt activation. Overexpression of TCL1 in B cells causes CLL by 

enhancing NF-ĸB activity and inhibiting AP-1 (69). The TCL1-Tg mice develop 

human CLL-like disease at 8 to 12 months of age and exhibit features of human 

CLL with expanded IgM+CD5+ CLL population in peritoneal cavity (PC), 

spleen and bone marrow (60). The CLL cells isolated from TCL1-Tg mice 

undergo rapid cell turnover with high levels of proliferation and apoptosis (70). 

TCL1XBAFF-Tg mice generated by crossing TCL1-Tg with BAFF-Tg mice, 

which express high levels of CD257, develop CLL-like disease around 4.5 

months of age with more rapid disease progression and shorter survival that 

TCL1-Tg mice (70). BAFF and APRIL are recent members of TNF superfamily 

and show increased expression levels in various B cell malignancies. BAFF and 

APRIL bind to two receptors BCMA & TACI and stimulate NFĸB pathway 

through interactions with TRAFs, contributing to CLL pathogenesis in 

TCL1XBAFF-Tg mice and April transgenic mice (71). APRIL transgenic mice 

had increased white blood cell count and did not develop any hematopoietic 

malignancy probably due to lack of second hit such as TCL1 overexpression 

(61). It has been reported that miR-29 is upregulated in indolent human CLL 

with low ZAP-70 expression and mutated IGHV (72). MicroRNAs are 

regulatory non-coding RNAs with 20 to 25 nucleotides in length. The primary 

function of microRNAs is to target specific messenger RNA for degradation or 
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inhibition of translation, leading to downregulation of the target proteins (73, 

74). Recent studies have shown that the regulatory functions of microRNAs are 

involved in various cellular processes including development, differentiation, 

apoptosis, survival and metabolism (75, 76). It has been reported that 

microRNA signatures are associated with CLL progression and prognosis (77, 

78). Desregulation of some microRNAs have been viewed as a contributing 

factor for CLL apoptotic defect. For example, upregulated Bcl-2 resulted from 

downregulation of miR15a/16-1 (79). In 2006, Dr. Croce’s group reported that 

Eµ-miR155 transgenic mice develop a B cell malignancy with a preleukemic 

pre-B cell proliferation (63). In 2010, Dr. Croce’s group also reported that Eµ-

miR-29 transgenic mice develop a disease that resembles human indolent CLL 

phenotype probably through targeting TCL1 and Mcl-1 by miR-29 (80, 81). 

Previous studies have shown that over-expression of Bcl-2 family members 

occur in many cases of CLL and this is correlated with resistance to therapy and 

a poor prognosis (82). A constitutive increase of Bcl-2 through a deletion of 

miR-15a/16-1 cluster contributes to CLL pathogenesis (62). Bcl-2 transgenic 

mice showed polyclonal expansion of B cells and increased cell survival 

without developing any tumor (83). In contrast, most of TRAF2DN/Bcl2 double 

transgenic mice develop B cell leukemia resembling human CLL with severe 

splenomegaly and significant high number of white blood cells (62).  As 

mentioned before, TRAF2, a TNF receptor associated factor 2, interacts with 

TNF receptor family members such as BCMA and activates NF-ĸB and JNK 

signaling pathways (84). Although Bcl-2 or TRAF2 single transgenic mice 
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failed to develop any hematological malignancy, the TRAF2DN/Bcl2 double 

transgenic mice had rapid disease progression and developed human CLL-like 

disease over time and died at 6 to 14 months of age. NF-ĸB activation and 

overexpression of anti-apoptotic Bcl-2 could contribute to the disease 

progression in the TRAF2DN/Bcl2 double transgenic mice. Among the anti-

apoptotic members of Bcl-2 family, the myeloid cell leukemia-1 (Mcl-1) has 

been demonstrated as an important anti-apoptotic protein in CLL both in vitro 

and in vivo (85).  It has been shown that Mcl-1 promotes CLL cell survival by 

inhibiting the intrinsic Bak/Bax-mediated apoptotic pathway (86).  Loss of p53 

function in cancer cells has also been associated with decrease in apoptotic 

response and drug resistance (59), and mice with p53-/- genotype are highly 

susceptible to the development of a variety of tumors (87). However, currently 

it is unclear if there is a link between the loss of p53 and over-expression of 

Mcl-1 in CLL cells. As mentioned before, there is no doubt that the loss of p53 

function has profound effect on the CLL disease progress and treatment 

outcomes. However, there is no any animal model available for studying the 

effect of p53 deletion in CLL biology and pathogenesis. TCL1-Tg mouse model 

closely recapitulates human CLL disease. This mouse model can not be used to 

study CLL with p53 gene deletion. To generate an animal model that closely 

resembles human CLL patients with p53 deletion, we generated a mouse colony 

with TCL1 transgenic and p53-deletion (TCL1-Tg:p53-/-) genotype by crossing 

the TCL1-Tg mice with p53-/- mice. We hypothesized that loss of p53 causes 

rapid disease progression, treatment resistance and shorter survival time in 
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TCL1-Tg mice by modulating CLL cell proliferation and apoptosis. Our 

preliminary data showed that the TCL1-Tg:p53-/- mice develop leukemia that 

resembles human aggressive CLL disease around 3-4 months. The leukemia 

cells from TCL1-Tg:p53-/- mice exhibited higher proliferation, higher survival 

capacity, and more resistant to drug treatment with fludarabine than the 

leukemia cells from the TCL1 transgenic mice with wild-type p53.  We further 

demonstrated that the loss of p53 led to a significant increase of Mcl-1 

expression, likely through the expression of miR-15a and miR-16-1 expression.  

Our microRNA array data showed significant downregulation of miR15a/16-1, 

miR-30a, miR-30d and miR-30e, especially miR-30d, in both human and mouse 

CLL cells with p53 deficiency, and such downregulation of those microRNAs 

were confirmed by RT-PCR. As mentioned before, mir-15a and miR-16-1, 

located at 13q14, were deleted or downregulated in approximately 66% CLL 

cases (88). Recent studies have shown that the miR15a/16-1 cluster function as 

tumor suppressor by targeting Bcl-2, Mcl-1, CCND1 and WNT3A (89). The 

association between the loss of p53, the decrease in miR15a/16-1 and the 

increase in Mcl-1 was further confirmed in primary leukemia cells from CLL 

patients with chromosome 17p deletion. The role of miR30 family in CLL is 

still unknown. It has been reported that miR-30d targets the polycomb protein 

enhancer of zeste 2 (EZH2) which is involved in repressing gene expression 

through methylation of histone H3 on lysine 27 and upregulated in anaplastic 

thyroid carcinomas (90). Over years, many studies have established that EZH2 

is overexpressed in various cancers including some hematologic malignancies, 
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and such overexpression is associated with aggressiveness and progression (91, 

92). DZNep, an S-adenosylhomocysteine hydrolase inhibitor, induce apoptosis 

in cancer cells such as AML through inhibiting S-adenosyl-L-methionine-

dependent methyltransferases such as EZH2 (93). A recent report showed a 

therapeutic strategy for lymphoma with EZH2-activating mutations through 

EZH2 inhibition (94). The role of EZH2 in CLL has yet to be examined in vitro 

and in vivo. Another target of miR-30 is B-Myb, which expression can be 

regulated by miR-30 and miR-29 during cellular senescence (95). B-Myb, a 

transcription factor, is involved in cell proliferation and transcription and 

carcinogenesis. B-Myb overexpression presents in various cancers and is 

associated with aggressive tumor growth and poor outcomes (96-98). However, 

the role of B-Myb in CLL is still unknown. This study provides in vivo evidence 

to support that p53miR15a/16Mcl-1 & p53miR30d EZH2 & B-Myb 

axis may contribute to the pathogenesis of aggressive CLL.  

 

 

2. SPECIFIC AIMS 

        Chronic Lymphocytic Leukemia (CLL) is the most common leukemia in 

Western countries, and the disease is very heterogeneous in disease progression 

and response to drug treatment. Genetic aberrations such as chromosome 

deletion or gene mutation are frequently observed in CLL (99). A subtype of 

CLL with chromosome 17p deletion is associated with accelerated disease 

progression, drug resistance, and poor prognosis due to loss of p53 gene (100). 

 12



The subtype of CLL patients with 17p deletion or with TP53 mutations have 

much shorter survival time than other CLL patients without 17p deletion and 

TP53 mutations (101) . To develop efficient therapeutics for the CLL subtype 

with 17p deletion or TP53 mutations, it is critical to understand how exactly 

loss of p53 contributes to CLL disease progression and drug resistance.     

MicroRNAs (miRNAs), a group of short non-coding RNA molecules, regulate 

target gene expression via translational repression or transcriptional degradation 

(74). Several miRNAs such as miR-15a, miR-16 and miR-34a have been 

implicated in CLL pathogenesis and prognosis (102, 103). Interestingly, p53 

can upregulate miR-34 gene and miR-34 overexpression in turn induces 

senescence, apoptosis or cell cycle arrest by regulating proteins such as Bcl-2, 

Cyclin D1, CDK4 and c-MYC etc (104). Moreover, deregulated miRNA 

expression also mediates drug resistance in CLL patients with 17p deletion 

(105-109). Overall, p53 and miRNAs have been closely linked in CLL 

pathogenesis and prognosis. However, it remains unclear how loss of p53 

affects miRNAs and alters the regulatory function of miRNAs in CLL. As 

mentioned before, the TCL1-Tg mice develop human CLL-like disease at 8 to 

12 months of age with expansion of IgM+/CD5+ CLL population in PC, spleen 

and bone marrow (60). However, this TCL1-Tg mouse model can not be used to 

study the effect of p53 deficiency in CLL pathogenesis and microRNA 

deregulation. Therefore, we hypothesized that loss of p53 causes rapid disease 

progression and shorter survival time in TCL1-Tg mice by modulating CLL cell 

proliferation and apoptosis. To address this hypothesis, the TCL1-Tg:p53-/- 
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mouse model is generated by our group. This model is expected to be a good 

research model for providing potential therapeutic strategies and novel 

chemotherapies in the treatment of CLL subtype with 17p deletion, and for 

studying CLL biology and pathogenesis. It is also anticipated that the proposed 

studies will bring new insights into the relationship between loss of p53 and 

microRNA deregulation in CLL. In the proposed studies, 3 specific aims will be 

accomplished to address the hypothesis. 

        Specific Aim 1: Generation and characterization of TCL1-Tg:p53-/-  

mice.     

   General strategy. TCL1-Tg homozygous mice (B6C3 mice) were provided 

by Dr. Carlo M. Croce.  They are crossed with p53-/- mice (B6C3) which were 

from Jennifer Alana (a microinjection specialist in MDACC). Then the second 

generation of TCL1-Tg:p53+/- mice were intercrossed  to get  TCL1-Tg:p53-/-  

CLL mouse model. Afterwards, TCL1-Tg:p53-/- mice were intercrossed with 

each other to obtain pure TCL1-Tg:p53-/- mice for research studies (Figure 1). 

All mice were housed under conventional barrier protection in accordance with 

University of Texas MD Anderson Cancer Center guidelines, and mouse 

protocols were approved by University of Texas MD Anderson Cancer Center 

Institutional Animal Care and Use Committee.  

        Validation of p53 deletion and TCL1 overexpression in TCL1-Tg:p53-/-  

mice. Prior to any phenotypic analysis, the mice are genotyped for TCL1 

transgene and p53 mutant alleles. Furthermore, to confirm the inactivation of 

p53 protein expression, Western blot analysis of p53 will be performed using 
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splenocytes and peritoneal cavity cells from mice with respective genotypes. 

The TCL1-Tg mice don’t develop CLL disease until 13 months old, and p53-/- 

mice may develop tumors at 6 months old. Most of TCL1-Tg:p53-/- are fertile 

and we don’t expect any embryonic lethality or pup survival problem of these 

mice. Indeed, we have obtained the TCL1-Tg:p53-/- mice in the laboratory. 

        Characterization of CLL phenotype of TCL1-Tg:p53-/- mice. The TCL1-

Tg mice develop CLL disease featured by CD5+ B cell accumulation in bone 

marrow, spleen, and PC. To determine the percentage of CD5+ B cells at 

different ages, I will isolate cells from bone marrow, spleen, and peritoneal 

cavity of mice with difference genotypes at 2 month, 4months, 5 months, 7 

months of age, and perform FACS analysis using anti-CD5 and anti-IgM 

antibodies.  Meanwhile, blood smear will be performed to monitor white blood 

cell expansion in these mice at different ages. To further characterize the 

phenotype of the TCL1-Tg:p53-/- mice, Hematoxylin and eosin (H&E) staining 

of mouse tissues such as spleen and liver will be performed. Mouse survival 

will be monitored for three groups of mice for up to 2 years and each group 

contains more than 20 mice.  

        Specific Aim 2: Determine the effect of p53 deficiency on proliferation 

and apoptosis of splenocytes and investigate underlying mechanisms.  

        Determine p53 deficiency on proliferation and apoptosis of splenocytes. 

For years, CLL has been viewed as a tumor with low level of cell turn over. 

Consistently anti-apoptotic Bcl-2 family members are overexpressed in most 

CLL cases (82). Recently it was found that CLL cells from TCL1-Tg mice 
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undergo rapid cell turnover that can be offset by extrinsic CD257 to favor 

disease progression (70). We expect that p53 deficiency will accelerate CLL 

disease progression in TCL1-Tg mice by modulating cell proliferation and 

apoptosis. One of the complications of CLL is an enlarged spleen called 

splenomegaly. To determine the effect of p53 deficiency on cell proliferation, 

Bromodeoxyuridine (BrdU), a synthetic thymidine analog, incorporation assay 

will be performed for splenocytes isolated from p53-/- mice, TCL1-Tg mice, 

TCL1-Tg:p53+/- and TCL1-Tg:p53-/- mice. To further confirm the proliferation 

result, Ki67 (a proliferation marker) staining of spleen isolated from different 

types of mice will be performed. To determine the effect of p53 deficiency on 

apoptosis of splenocytes, Annexin V/Propidium Iodide (PI) staining will be 

performed for splenocytes isolated from p53-/- mice, TCL1-Tg mice, TCL1-

Tg:p53+/- and TCL1-Tg:p53-/- mice at 0, 24h and 72h after isolation. Terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay will be 

performed on spleen tissues isolated from different types of mice to confirm the 

apoptosis results obtained from the Annexin-V/PI analysis.  

        Investigate the mechanistic link between p53 deficiency and altered 

proliferation & apoptosis rates of splenocytes. P53 functions as a 

transcription factor and regulates the expression of a number of genes involved 

in cell-cycle arrest, apoptosis and senescence (21, 110).  P53 is either mutated 

or deleted in more than 50% of human cancers and plays an tumor suppressor 

role in cancer (22). However, it is unknown how loss of p53 affects altered 

proliferation & apoptosis and pathogenesis in CLL. It has been reported that 
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anti-apoptotic Bcl-2 family members are overexpressed in most CLL cases, 

which is associated with chemotherapy resistance and poor prognosis (82). 

Particularly Mcl-1 plays an important role for CLL survival in both in vitro and 

in vivo (85). We first determine the expression of anti-apoptotic Bcl-2 family 

members in mouse splenocytes and PC cells by Western blot analysis at protein 

levels. PCR experiments will be also performed to determine the mRNA levels 

of anti-apoptotic Bcl-2 family members. Both protein and mRNA levels of anti-

apoptotic Bcl-2 family members will also be determined in human CLL patient 

samples with 17p deletion or without 17p deletion. We expect elevated 

expression levels of anti-apoptotic Bcl-2 family members in CLL cells with p53 

deficiency compared to CLL cells with p53 wt. How does p53 deficiency cause 

alteration of anti-apoptotic Bcl-2 family members? It could be through 

microRNA regulation. Several miRNAs such as miR-15a, miR-16 and miR-34a 

have been implicated in CLL pathogenesis and prognosis (102, 103). However, 

it remains unclear how loss of p53 affects miRNAs and alters the regulatory 

function of miRNAs in CLL. To address that question, miRNA array will be 

performed for both mouse and human RNA samples with p53wt or p53 

deficiency. Regard the array data, RT-PCR experiments need to be performed to 

confirm those miRNA alterations. Those miRNA targets observed may explain 

the alteration of anti-apoptotic Bcl-2 family members in mouse and human CLL 

cells with p53 deficiency. The mRNA and protein levels of other downstream 

molecules of those miRNAs will be determined by Western blot analysis 

respectively. To further confirm that p53 regulates those miRNAs, p53 will be 
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knocked down in some B cell lines such as EBVB. Then the expression of those 

miRNAs, Bcl-2 family and the downstream molecules of miRNAs will be 

determined in the B cell lines with p53 knock-down. In summary, we expect 

that p53 deficiency regulates some specific miRNAs which resulted in 

upregulation of anti-apoptotic Bcl-2 family members, leading to 

hyperperliferation, reduced apoptosis and rapid disease progression in TCL1-Tg 

mice.  

        Specific Aim 3: Determine the effect of p53 deficiency on CLL 

treatment response on cellular level and animal level. As mentioned in the 

introduction part, CLL patients with 17 deletion or TP53 mutation are resistant 

to conventional chemotherapies in the CLL treatment. To confirm that, CLL 

patient samples with or without 17p deletion will be appropriately treated with 

conventional chemotherapies such as fludarabine, chlorambucil and so on. 48h 

later, Annexin-V/PI analysis will be performed for those treated cells to detect 

apoptosis. Annexin-V/PI analysis will be also performed for similarly treated 

mouse splenocytes isolated from p53-/- mice, TCL1-Tg mice, TCL1-Tg:p53+/- 

and TCL1-Tg:p53-/- mice. We expect that both human CLL cells with 17p 

deletion and mouse CLL cells with p53 deficiency are resistant to those 

conventional chemotherapies. To overcome the treatment resistance of CLL 

cells with p53 deficiency, a novel chemotherapy agent-NL-101 is studied in the 

CLL treatment. NL-101 contains suberoylanilide hydroxamic acid (SAHA) and 

Bendamustine moieties in 1:1 ration. We hypothesized that HDACI such as 

SAHA can overcome the resistance of alkylating agents such as bendamustine 
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by reducing CLL migration to the microenvironment and induce more DNA 

damage than alkylating agents on CLL cells. Recent studies have shown that 

SAHA induces apoptosis in CLL by downregulating the CXCR4 chemokine 

receptor, leading to impaired migration of CLL cells (111).  Human CLL cells 

with 17p deletion or without 17p deletion will be treated with single agents such 

as NL-101, bendamustine, chlorambucil, SAHA or their combinations for 48h, 

and followed by Annexin-V/PI analysis. To investigate underlying mechanisms 

of the novel agent NL-101 on CLL treatment, the expression levels of cytokines 

in stromal cell lines treated with HDACI such as SAHA will be determined by 

RT-PCR, and followed by Enzyme-linked immunosorbent assay (ELISA) assay. 

Comet assay will be performed to determine DNA damage rate in CLL cells 

treated with SAHA, bendamustine, SAHA+Bendamustine and NL-101. We 

expect that HDACIs will reduce some cytokine levels such as CXCL12 secreted 

in stromal cell lines. We also expect more DNA damage caused by NL-101 or 

SAHA+bendamustine than single bendamustine treatment on CLL cells. PEITC 

can effectively eliminate fludarabine-resistant CLL cells through ROS 

accumulation and glutathione depletion (45). Therefore, we will try PEITC 

treatment or combination with other chemotherapies in both human and mouse 

CLL cells with or without p53 deficiency. To determine the effect of p53 

deficiency on CLL treatment response on animal level, 20 TCL1-Tg:p53-/- mice 

will be treated with nano-PEITC weekly through iv injection. Another 20 TCL1-

Tg:p53-/- mice will be treated with NL-101 2 times/month through iv injection. 

 19



We expect that both PEITC and NL101 will prolong the survival time of TCL1-

Tg:p53-/- mice.  

      In summary, the major objective of the proposed researches is to establish a 

CLL mouse model with p53 deficiency. This TCL1-Tg:p53-/-  mouse model will 

be utilized for testing novel therapeutic strategies and studying the effect of p53 

deficiency on CLL biology and pathogenesis. These proposed studies will 

provide new insights into how p53 deficiency affects expression of some 

specific miRNAs and their regulatory functions.  
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Figure 1. Generation of TCL1-Tg:p53-/- mice.    TCL1-Tg homozygous mice are 

crossed with p53-/- mice. Then the second generation of TCL1-Tg:p53+/- mice 

are intercrossed  to get  TCL1-Tg:p53-/- mice,  TCL1-Tg:p53+/- mice, TCL1-

Tg:p53wt mice and non-TCL1-Tg mice. 
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 3. MATERIAL AND METHODS    

                           3.1 Generation of TCL1-Tg:p53-/- mice.    TCL1-Tg mice (B6C3) were 

kindly provided by Dr. Carlo M. Croce.  They were crossed with p53-/- mice 

(B6C3) which were from Jennifer Alana (a microinjection specialist in MD 

Anderson Cancer Center). Then the second generation of TCL1-Tg:p53+/- mice 

were intercrossed  to get  TCL1-Tg:p53-/- CLL mouse model. For research 

studies, pure TCL1-Tg:p53-/- mice were obtained by intercrossing TCL1-Tg:p53-

/- mice (Figure 1). All mice were housed under conventional barrier protection 

in accordance with University of Texas MD Anderson Cancer Center guidelines, 

and mouse protocols were approved by the University of Texas MD Anderson 

Cancer Center Institutional Animal Care Committee. Survival data were 

obtained by observing mice up to 2 years (n=33 for TCL1-Tg:p53-/- mice and 

n=20 for TCL1-Tg mice). For mouse genotyping, small segments of mouse tail 

tips were collected from littermates at the age of 3-4 weeks, and were digested 

in 200 µL direct PCR lysis reagent with 5 µL proteinase K at 56ºC in a water 

bath for overnight, followed by a 5-minute incubation at 95ºC and then cooled 

on ice. After removal of tissue debris by centrifugation, 2 µL supernatant was 

used in a PCR reaction for genotyping. All primers were purchased from Sigma.        

        3.2 Blood smear. Around 250 µL    blood/mouse was collected from mouse 

tail of 5 mice for each genotype and put in an EDTA-coated tube. All blood 

samples were mixed well upon collection. Complete Blood Count (CBC) 

service and WBC differential count service were provided by Department of 
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Veterinary Medicine & Surgery Section of Veterinary Laboratory Medicine in 

MD Anderson Cancer Center.  

          3.3 Histopathology. Mouse spleen, liver and lymph node tissues from 6 

mice of each type were fixed in neutral buffered 10% formalin solution. After 

24h, the tissues were transferred to 70% alcohol. Within 3 months after fixation 

in 70% alcohol, the fixed tissues were sent to the histology core laboratory in 

MD Anderson Cancer Center for preparing histology slides.  Extra sections of 

the tissues were embedded in paraffin.  Sections were stained with hematoxylin 

and eosin (H&E) or Ki67 by the histology core laboratory in MD Anderson 

Cancer Center. H&E stained tissue slides were analyzed by Dr. Hesham M. 

Amin from the department of hematopathology in MD Anderson Cancer Center. 

        3.4 Polymerase Chain Reaction (PCR). For mouse genotyping, TCL1 

and p53 DNA contents were amplified using their specific primers. The TCL1 

DNA amplifying protocol was provided by Dr. Croce’s group. Primers for 

TCL1 are: sense, 5’GCCGAGTGCCCGACACTC3’ and antisense, 

5’CATCTGGCAGCAGCTCGA3’ The PCR using TCL1 primers was 

conducted at 94°C for 5 min for an initial denaturation step followed by 30 

cycles for 30 sec of denaturation at 94°C, 30 sec of annealing at 65°C, and 30 

sec of extension at 72°C, and a final extension step of 7 min at 72°C. The p53 

DNA amplifying protocol was provided by Chad Smith (Transgenic Core 

Facility of MD Anderson Cancer Center).  Primers for p53 are: p53-X7, 

5’GGATGGTGGTATACTCAGAGCC3’, p53-X6, 

5’AGCGTGGTGGTACCTTATGAGC3’ and neo19, 
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5’GCTATCAGGACATAGCGTTGGC3’. The PCR for amplifying p53 was 

performed at 95°C for 5 min for an initial denaturation process followed by 35 

cycles for 1 min of denaturation at 95°C, 1min of annealing at 60-62°C, and 3 

min of extension at 72°C, and a final extension step of 7 min at 72°C. The PCR 

results are ready for DNA gel electrophoresis or saved at -20°C. 1.8% agarose 

gel was prepared for electrophoresis. After DNA gel electrophoresis, the PCR 

results were separated on agarose gel and visualized on alpha-imager. 

        3.5 Isolation of CLL cells and cytotoxicity assays. Primary leukemia 

cells were isolated from the peripheral blood samples of CLL patients 

diagnosed according to the NCI criteria (112).  Proper informed consents under 

a research protocol approved by the Institutional Review Board (IRB) of MD 

Anderson Cancer Center were obtained from all patients before the collection of 

blood samples.  Specimens from CLL patients with or without 17p deletion 

were all used for comparison.  CLL cells were isolated from blood samples by 

density gradient centrifugation as described previously (45), and incubated in 

RPMI 1640 medium supplemented with 10% FBS and Penicillin (100 U/ml) + 

Streptomycin (100 ug/ml) overnight before testing drug sensitivity by 

incubation with CLL chemotherapies such as fludarabine. PC cells and 

splenocytes were isolated and treated with ACK cell lysis buffer for 2 minutes 

on ice to remove red blood cells. After lysis, RPMI medium with 10% FBS was 

added to the cells to stop the lysis. Afterwards, the cells were washed once by 

PBS and filtered through cell strainer with 40 µM nylon mesh (Fisher Scientific, 

Pittsburgh, PA) for single cell preparation and cultured in the same medium as 
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human CLL cells. B cells were purified from CLL cells by using CD19 

microbeads, and incubated in RPMI 1640 medium supplemented with 10% FBS 

and Penicillin (100 U/ml) + Streptomycin (100 ug/ml). At the same day, those B 

cells were treated with fludarabine or oxaliplatin for 48h.   Cell viability and 

cellular sensitivity to drug treatment in vitro were determined by flow 

cytometry after double staining of 1x106 cells with annexinV-fluorescein 

isothiocyanate (FITC) and PI analysis. 

          3.6 Reagents. 9--D-arabinofuranosyl-2-fluoro-adenine (F-ara-A, the 

nucleoside form of fludarabine), oxaliplatin, SAHA, PEITC, chlorambucil, 3-

DZNep, PI and PCR primers were purchased from Sigma-Aldrich (St. Louis, 

MO). Direct PCR lysis reagent was purchased from Viagen Biotech Inc. (Los 

Angeles, CA). ACK lysis buffer was from Lonza Houston, Inc. (Houston, TX). 

Ficoll-lite Lympho H (Fico) was from Atlanta Biological (Lawrenceville, GA). 

CD19 microbeads were purchased from MACS Miltenyi Biotech Inc. (Auburn, 

CA).  Annexin V-FITC was from BD Biosciences (San Jose, CA). NL-101 

compound was from Northlake Biosciences LLC (Lexington, MA). TUNEL 

staining kit was obtained from Roche Applied Science (Indianapolis, IN). 

Antibodies against Bcl-XL, Bcl-2, EZH2 and-actin were purchased from Cell 

Signaling Technology Inc. (Danvers, MA). Anti-b-Myb antibody was from 

EMD Millipore (Billerica, MA). Anti-Mcl1 antibody was from Santa Cruz 

Biotechnology (Santa Cruz, CA). 

        3.7 Reverse Transcription Polymerase Chain Reaction (RT-PCR). 

Total RNA from 1X107 splenocytes isolated from TCL1-Tg, TCL1-Tg:p53+/- 
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and TCL1-Tg:p53-/- mice (4 for each genotype), were extracted, purified 

( RNeasy Mini kit, Qiagen) and quatified by Ultrospec 3300 pro UV/visible 

spectrophotometer. First-strand cDNA was synthesized from 0.5 µg total RNA 

by using a commercial kit (RevertAid First Strand cDNA Synthesis Kit-

Fermentas) according to the manufacturer’ instructions. Real-time PCR was 

performed with 7900 GT Sequence Detection System (ABI PRISM). All human 

and mouse primers for Bcl-XL, Mcl-1, Bcl-2, EZH2, b-Myb and CXCL12 were 

purchased from Sigma. Each PCR was performed in a 25-µL volume on a 96-

well optical plate for 2 minutes at 50ºC, followed by 10 minutes at 95ºC, then 

followed by 40 cycles of 95ºC for 30 seconds, 60ºC for 30 seconds and 72ºC for 

1minute and followed by 10 minutes at 72ºC. To independently validate the 

individual miRNA expression pattern from the miRNA array result, total RNA 

was isolated from patient white blood cells, and spleen cells from TCL1-Tg, 

TCL1-Tg:p53+/-  and TCL1-Tg:p53-/- mice by using miRNA isolation kit 

(Ambion). Then cDNA synthesis was carried out using Taqman MiRNA 

Reverse Transcription kit and specific Taqman RT primers (Applied 

Biosystems). MiRNA-specific real-time PCRs were performed using Taqman 

Universal PCR Master Mix and Taqman small assays according to the 

manufacturer’s protocol. The relative expression of specific miRNAs was 

calculated by the delta (deltaCt) method. 

         3.8 Immunoblotting. Primary CLL cells were isolated from patient blood 

using Fico as described above. Mouse splenocytes and PC cells were purified 

by ACK lysis buffer. B cells were purified by CD19 microbeads. Cell number 
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was determined by a Coulter Z2 particle count and size analyzer (Beckman 

Coulter, Inc., Fullerton, CA). The mouse splenocytes/PC cells or human CLL 

cells /B cells with same amount were then lysed in protein lysis buffer 

containing a cocktail of protease inhibitors. The nuclei and cell debris were 

removed by centrifugation at 4°C (13,000 rpm for 5 min), and the supernatants 

were collected as protein lysates. The protein lysates were then heated at 95°C 

for 5-15 min and separated by SDS-PAGE followed by Western blot analyses 

with antibodies specific for Bcl-XL, Mcl-1, Bcl-2, EZH2 and B-Myb. 

        3.9 Flow cytometry. Single-cell suspensions were made from mouse 

spleen, bone marrow and PC as described above, and stained for surface 

expression with FITC-labeled anti-IgM, allophycocyanin (APC)-labeled anti-

CD5 antibodies (Ebioscience, San Diego, CA). Annexin V and propidium 

iodide (PI) were used to monitor cell death. 

          3.10 Cell lines and cell culture. Stromal cell lines including human 

stromal cell lines NKTert & HS5 and mouse stromal cell line Kusa.H1, EBVB 

and Raji were cultured in RPMI 1640 medium supplemented with 10% FBS. 

Human white blood cells were isolated from CLL patients’ blood using Fico 

and cultured in RPMI 1640 medium supplemented with 10% FBS and Penicillin 

(100 U/ml) + Streptomycin (100 ug/ml) (PS). Mouse splenocytes were cultured 

in the same medium as used for human CLL cells. If co-culture applied, human 

CLL cells and mouse splenocytes were co-cultured with appropriate amount of 

stromal cells in 24-well plates one day before treatment with chemotherapies. 
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        3.11 Analysis of cell proliferation and apoptosis. Mouse spleen sections 

were fixed in neutral buffered 10% formalin solution for 24h and then incubated 

in 70% alcohol. The fixed tissues were sent to the histology core laboratory in 

MD Anderson Cancer Center for preparing histology slides. Cell proliferation 

was estimated by Ki67 immunostaining using Ki67 specific antibody and a 

horseradish peroxidast (HRP)-conjugated secondary antibody to reveal the 

diaminobenzidine (DAB) staining (Ki67 staining service ordered from the 

histology lab in MD Anderson Cancer Center). Terminal deoxynucleotidyl 

transferase deoxyuridine-triphosphatase nick-end labeling (TUNEL) assays 

were performed with an In Situ Cell Death Detection kit (Roche Applied 

Science, Indianapolis, IN) according to manufacturer’s instruction and 

visualized under fluorescent microscopy. Annexin-V/PI double-staining and 

flow cytometry analysis were used to monitor cell death.  

        3.12 Enzyme-linked immunosorbent assay (ELISA). SDF-1α (CXCL12) 

ELISA kit was purchased from Fisher Scientific (Pittsburgh, PA). CXCL12 

levels in drug treated NKTert, Kusa.H1 and HS5 stromal cells were determined 

by ELISA assay according to manufacturer’s instruction.  

        3.13 Comet assay. 5X106 human CLL cells were treated with 3µM SAHA, 

3µM NL-101, 10µM bendamustine and 3µM SAHA+10µM bendamustine for 

24h. The cells were collected and mixed with 37°C Low Melting Poit (LMP) 

agarose in dark. Then the cells were placed onto slides with coverslip for 5 min. 

The slides were put into cold, freshly made lysing solution at 4°C for at least 1h. 

The slides were gently removed from the lysing solution and briefly rinsed with 
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neutralization buffer, and put in alkaline butter for 15 min in dark to allow for 

unwinding of the DNA and expression of alkali-labile damage. Electrophoresis 

was performed for the slides at 25v/300mA for 20 min. After electrophoresis, 

the slides were dropwisely added neutralization buffer for 5 min and drained, 

and coated with cold 100% ethanol and allowed drying. The dry slides were 

stained with SYBR green and visualized under the fluorescent microscope. 

Those slides were rinsed in 100% ethanol and stored after drying. 

        3.14 Statistical analysis. Student t tests were used for testing the statistical 

difference between two groups of samples.  Mouse survival curves by Kaplan-

Meier plots were generated by Graphpad Prism software (GraphPad, San Diego, 

CA), and the statistical significance was analyzed by the log-rank (Mantel-Cox) 

test.  A p value of less than 0.05 was considered statistically significant. 

 

4. RESULTS 

          4.1 TCL1-Tg:p53-/- mice develop aggressive CLL with early disease 

onset and short lifespan. P53 is one of the most frequently mutated genes in 

cancers (22).  In human B-CLL, loss of p53 function has been associated with 

accelerated disease progression, poor prognosis, and resistance to antitumor 

agents (17, 113). Currently there is no CLL mouse model with loss of p53 for 

investigating the pathological process of this aggressive CLL.  To create such a 

animal model, we used the well-characterized TCL1 Transgenic CLL mice with 

p53wt to cross breed with p53-/- mice to generate progenies harboring TCL1-

Tg:p53-/- genotype.  Figure 2A shows the weights of spleens from 5 TCL1-

 30



Tg:p53wt (TCL1-Tg) and 5 TCL1-Tg:p53-/- mice. 17 mice in total 20 TCL1-

Tg:p53-/-  mice developed CLL with early disease onset at the age of 

approximately 3 month, with severe splenomegaly by 4-5 month (Fig 4B).  In 

contrast, the spleens of TCL1-Tg mice with wt p53 or p53+/- mice appeared 

relatively normal in size (Fig 2B).  Histological examination of the spleen 

sections of 4-month old TCL1-Tg mice showed normal tissue architecture, 

whereas the histological sections of the spleen from 4-month TCL1-Tg:p53-/- 

mice showed that the lymphoid follicles were ill-defined (Fig 2C).  The 

germinal centers of the TCL1-Tg:p53-/- spleen exhibited histological features 

reminiscent of the proliferation centers characteristic of CLL/small lymphocytic 

lymphoma because of the presence of large lymphocytes with abundant 

eosinophilic cytoplasm. The red pulps in between the lymphoid follicles 

contained lymphoid cells with more abundant cytoplasm, granulocytes, and 

megakaryocytes compared with red pulps seen in TCL1-Tg mouse spleen 

(Figure 2C). Furthermore, blood smears revealed significant expansion of the 

white blood cells (WBC) in TCL1-Tg:p53-/- mice compared to TCL1-Tg mice 

(Figure 2D). Most of TCL1-Tg:p53-/- mice died at the age of 3-5 months, while 

the most of the TCL1-Tg mice survive more than 12 months (Fig 2E).  This was 

consistent with the clinical observations that CLL patients with 17p deletion 

have significantly shorter overall survival compared to the CLL patients without 

17p deletion (56). 
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Figure 2A-2B    
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Figure 2. Characterization of CLL phenotype of TCL1-Tg:p53-/- mice. (A) 

Spleen weights shown for age- and sex-matched TCL1-Tg and TCL1-Tg:p53-/- 

mice at 4 months (n=5 per indicated genotype). **, p<0.01 between group. (B) 

Spleen size shown for age- and sex-matched WT, TCL1-Tg, TCL1-Tg:p53+/- 

and TCL1-Tg:p53-/- mice at 4 months and 5 months old of age (1. WT; 2. TCL1-

Tg; 3. TCL1-Tg:p53+/-; 4. TCL1-Tg:p53-/-). Almost 100% TCL1-Tg:p53-/- mice 

older than 4 months had larger spleen compared to that of TCL1-Tg mice. (n=20 

per indicated strain). 
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Figure 2C    
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Figure 2C. Hematoxylin-eosin (H&E) staining. H&E staining of the spleen 

from TCL1-Tg and TCL1-Tg:p53-/- mice at 4-month of age. Mouse spleen 

tissues were fixed in 10% formalin buffered solution and embedded in paraffin.  

Tissue section from a representative 4-month TCL1-Tg mouse showed normal 

architecture (top panels), while the spleen from a representative TCL1-Tg:p53-/- 

mouse showed ill-defined lymphoid follicles (bottom panels) (n=6 per indicated 

strain). 
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Figure 2D    
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Figure 2D. White blood cells (WBC) count. Around 250 µL    blood/mouse was 

collected from mouse tail of 5 mice for each genotype and put in an EDTA-

coated tube. All blood samples were mixed well upon collection. Complete 

Blood Count (CBC) service and WBC differential count service were provided 

by Department of Veterinary Medicine & Surgery Section of Veterinary 

Laboratory Medicine in MD Anderson Cancer Center. WBC count in the 

indicated mouse strains at different ages (n=5 per indicated age). *, p<0.05 

between groups.  
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Figure 2E    
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Figure 2E. Survival curve (Kaplan-Meier) of TCL1-Tg (n=20) and TCL1-

Tg:p53-/- mice (n=33).  Median survival time for the TCL1-Tg:p53-/- mice was 

3.8 months compared to 19 months for TCL1-Tg mice (p<0.01). 
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        Since TCL1-Tg mice show features of human CLL with an increase in 

CD5+/IgM+ B cells in PC, spleen and bone marrow (60), we compared 

CD5+/IgM+ cells in the PC, spleen, and bone marrow of the wild-type mice, 

TCL1-Tg mice, TCL1-Tg:p53+/- mice, and TCL1-Tg:p53-/- mice.  Flow 

cytometry analysis showed that at the age of 4 months, the wild-type mice 

showed 8% CD5+/IgM+ cells in the PC, the TCL1-Tg mice had 21% CD5+/IgM+ 

cells, and the TCL1-Tg:p53+/- and TCL1-Tg:p53-/- mice had 35% and 41% 

CD5+/IgM+ cells in the PC, respectively (Figure 3A).  By 5 months, the 

CD5+/IgM+ cells in the PC of TCL1-Tg:p53+/- and TCL1-Tg:p53-/- mice 

increased to 58% and 79%, respectively (Figure 3B). In the spleens of a 5-

month old mice, the CD5+/IgM+ cells were undetectable in the wild-type mice, 

7% in TCL1-Tg mice, 15% in TCL1-Tg:p53+/- mice, and 20% in TCL1-Tg:p53-/- 

mice (Figure 3C).  These data seemed consistent with the early onset of CLL in 

TCL1-Tg:p53-/- mice (Figure 2). At 3-5 months, no CD5+/IgM+ cells were 

detected in bone marrow of those mice. No such CD5+/IgM+ CLL population 

was observed in bone marrow of 7-month old TCL1-Tg:p53+/- mice (Figure 3D). 

In the spleens of 4-month old p53-/- mice, the CD5+/IgM+ cells were 

undetectable, and only about 10% CD5+/IgM+ cells were observed in the PC of 

those mice (Figure 3E). 
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Figure 3A-3C 
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Figure 3. TCL1-Tg:p53-/- mice had early onset of leukemia and increased 

CD5+/IgM+ B cells compared to TCL1-Tg mice. PC cells and splenocytes were 

isolated and treated with ACK cell lysis buffer for 2 minutes on ice to remove red 

blood cells. After lysis, RPMI medium with 10% FBS was added to the cells to 

stop the lysis. Afterwards, the cells were washed once by PBS and filtered 

through cell strainer with 40 µM nylon mesh for single cell preparation. (A) 

Flow cytometry analysis (FITC-IgM/APC-CD5 staining) of PC cells from sex-

matched different mouse strains collected at 4-month old of age (n=4 per 

indicated genotype), and quantitative bar graph shown on the right panel. (B) 

Flow cytometry analysis (FITC-IgM/APC-CD5 staining) of PC cells from sex-

matched different mouse strains collected at 5-month old of age (n=4 per 

indicated genotype), and quantitative bar graph shown on the right panel. (C) 

Flow cytometry analysis (FITC-IgM/APC-CD5 staining) of splenocytes from 

sex-matched different mouse strains collected at 5-month old of age (n=4 per 

indicated genotype), and quantitative bar graph shown on the right panel. 
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Figure 3D 
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Figure 3D. Flow cytometry analysis (FITC-IgM/APC-CD5 staining) of 

bone marrow cells from sex-matched different mouse strains collected at 7-

month old of age (n=4 per indicated genotype), and quantitative bar graph 

shown on the right panel. **, p<0.01 between groups.  Bone marrow cells 

were isolated from mouse legs and washed once by PBS and filtered through 

cell strainer with 40 µM nylon mesh for single cell preparation. 
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Figure 3E 
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Figure 3E. Flow cytometry analysis (FITC-IgM/APC-CD5 staining) of 

splenocytes and PC cells from 3 p53-/- mice at 4-month old of age. PC cells 

and splenocytes were isolated and treated with ACK cell lysis buffer for 2 minutes on 

ice to remove red blood cells. After lysis, RPMI medium with 10% FBS was 

added to the cells to stop the lysis. Afterwards, the cells were washed once by 

PBS and filtered through cell strainer with 40 µM nylon mesh for single cell 

preparation. 
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         4.2 Loss of p53 in CLL cells promotes proliferation and cell survival. 

Recent study suggested that CLL cells in TCL1-Tg mice may undergo 

accelerated cell proliferation accompanied by elevated cell apoptosis, thereby 

displayed a low accumulation of CLL cells and slow disease progression (70).  

Since p53 plays a pivotal role in regulation of cell proliferation and apoptosis in 

response to various stimuli, we examined if a loss of p53 might affect CLL cells 

proliferation in TCL1-Tg mice.  Immunostaining of spleen tissue slides with the 

proliferation marker Ki-67 revealed that Ki67-positive cells were significantly 

higher in the spleens of TCL1-Tg:p53-/- mice compared to that of TCL1-Tg mice 

(Figure 4A, 4C), suggesting an increase in proliferation of the splenocytes in 

TCL1-Tg:p53-/- mice.  We then used TUNEL assay to compare in vivo apoptosis 

of splenocytes in TCL1-Tg and TCL1-Tg:p53-/- mice.  TUNEL staining of the 

spleen tissue sections showed that TCL1-Tg:p53-/- mice had significantly less 

apoptotic cells in the spleen compared to that in the spleen of TCL1-Tg mice 

(Figure 4B, 4D). Consistently, annexin-V/PI double-staining of the splenocytes 

revealed that the isolated splenocytes from TCL1-Tg:p53-/- mice were less 

apoptotic when cultured in vitro for 24-72 h compared to the splenocytes 

isolated from TCL1-Tg mice culture under identical conditions (data not shown). 

Taken together, these data suggest that the loss of p53 in TCL1-Tg mice seems 

to promote cell proliferation and decrease apoptosis.  This might account for the 

much higher accumulation of CLL cells and rapid disease progression in TCL1-

Tg:p53-/- mice.  
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Figure 4A-4D 
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Figure 4. P53 deficiency increased cell proliferation and elevated cell 

survival of leukemia cells from TCL1-Tg:p53-/- mice. (A) Mouse splenic 

sections were stained with the proliferation marker Ki-67 for age and sex-

matched TCL1-Tg and TCL1-Tg:p53-/- mice. (B) Left panel, apoptosis in splenic 

sections shown by staining with TUNEL-TMR-Red. Right panel, DAPI staining 

indicates nuclear staining of total cells. (C) Statistic analysis of the results for A 

showed average of Ki67-positive cells/field from splenic sections, respectively 

(n=3 per group). *, p<0.05, **, p<0.01 between groups. (D) Statistic analysis of 

the results for B showed average of TUENL-positive cells/field from splenic 

sections, respectively (n=3 per group). *, p<0.05, **, p<0.01 between groups. 
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         4.3 Leukemia cells from TCL1-Tg:p53-/- mice or from CLL patients 

with 17p deletion are resistant to chemotherapeutic drugs. The observations 

that the leukemia cells isolated from TCL1-Tg:p53-/- mice exhibited less 

spontaneous apoptosis (Fig 4B, 4D) prompted us to speculate that the leukemia 

cells with loss of p53 might be less sensitive to apoptotic induction and thus 

might be more resistant to chemotherapeutic agents.  To test this possibility, we 

isolated splenocytes from the wild-type control mice and from TCL1-Tg, TCL1-

Tg:p53+/- and TCL1-Tg:p53-/- mice, and then treated the cells with several 

standard anti-CLL chemotherapeutic agents in culture (114).  As shown in 

Figure 5, the splenocytes from the control and TCL1-Tg mice exhibited similar 

sensitivity to F-ara-A (active form of fludarabine, 10 M), chlorambucil (10 

M), and oxaliplatin (10 M). The loss of one p53 allele (TCL1-Tg:p53+/-) 

caused a moderate decrease in drug sensitivity, whereas the loss of both p53 

alleles (TCL1-Tg:p53-/-) led to a significant resistance to all three 

chemotherapeutic agents (Figure 5).  

 

 

 

 

 

   

 

 

 50



Figure 5 
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Figure 5. P53 deletion makes mouse leukemia cells more resistant to 

standard CLL drug treatment. Splenic cells from indicated mouse strains 

were cultured in RPMI1640 medium with 10% FBS plus 1% PS and treated 

with 10uM F-ara-A, Chlorambucil and Oxaliplatin for 48h, and Annexin V-PI 

analysis by FACS was performed to detect apoptosis on those splenocytes (n=4 

per group). 
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        To further confirm the correlation between the loss of p53 and drug 

resistance in primary CLL cells from patients, we compared the drug sensitivity 

of primary leukemia cells from CLL patients with or without 17p deletion.  

Flow cytometry analysis showed that CLL cells isolated from patients without 

17p deletion were sensitive to F-ara-A (10µM) and oxaliplatin (10µM), which 

caused a loss of 40-50% cell viability during the 48-h drug incubation (Figure 

6). For instance, in patient #1 the control cell showed 78% viability, and drug 

treatment led to a substantial decrease of viable cells (37-41%).  Similar results 

were observed in CLL cells from patient #2.  In contrast, CLL cells with 17p 

deletion were highly resistant to F-ara-A and oxaliplatin (Figure 6, patients #3 

& #4).  For instance, in CLL sample #4, the control sample without drug 

treatment showed 87% viable cells.  After treatment with F-ara-A or oxaliplatin, 

the cell viability remained at 85-86%.  Similar drug resistance was observed in 

patient sample #3.  Treatment resistance was also observed in other patient 

samples with 17p deletion (patients #8 to #10) as shown in Figure 7. The Figure 

8 showed similar drug resistance of 17p- B cells isolated from primary CLL 

cells. The results from experiments with leukemia cells from mice and from 

CLL patients consistently suggest that the loss of p53 leads to the drug 

resistance to standard chemotherapeutic drugs.   

 

 

 

  

 53



Figure 6 
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Figure 6. P53 deletion makes human leukemia cells more resistant to 

standard CLL drug treatment.  White blood cells were isolated from CLL 

patients’ blood and cultured in RPMI1640 medium containing 10% FBS and 

1% PS. CLL patient samples with 17p WT (Pt #1 & Pt #2) or with >70% 17p 

deletion (Pt #3 & Pt #4) were treated with 10uM F-ara-A and 10uM Oxaliplatin 

for 48h, respectively. Cell apoptosis was analyzed by Annexin V-PI double 

staining. 
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Figure 7 
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Figure 7. For more patient samples, p53 deletion makes leukemia cells 

more resistant to standard CLL drug treatment.  CLL patient samples with 

17p WT (Pt #5-7) or with 17p deletion (Pt #8-10) were treated with 10uM F-

ara-A and 10uM Oxaliplatin for 48h, respectively. Cell apoptosis was analyzed 

by Annexin V-PI double staining. 
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Figure 8 
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Figure 8. P53 deletion makes human leukemia B cells more resistant to standard 

CLL drug treatment.  White blood cells were isolated from CLL patients’ blood and 

cultured in RPMI1640 medium containing 10% FBS and 1% PS. CD19 positive B cells 

purified from CLL patient samples with 17p WT (Pt A-C) or with 17p deletion (Pt D-F). 

After purification, B cells were treated with 10uM F-ara-A and 10uM Oxaliplatin for 

48h, respectively. Cell apoptosis was analyzed by Annexin V-PI double staining. 
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          4.4 Loss of p53 in CLL cells promotes Mcl-1 expression associated 

with down-regulation of miR-15a and miR-16-1. To investigate the 

mechanisms that contribute to the drug resistant phenotype in CLL cells lacking 

p53, we first compared the expression of the anti-apoptotic Bcl-2 family 

members including Bcl-2, Mcl-1, and Bcl-XL in CLL cells isolated from the 

spleens and PCs of the TCL1-Tg and TCL1-Tg:p53-/- mice.  Western blot 

analysis showed that the expression of these anti-apoptotic molecules increased 

to various degrees in the p53-null cells (Figure 9A), with the elevation of Mcl-1 

protein being the most prominent event, which was detected in leukemia cells 

isolated from spleen and PC.  Bcl-XL protein levels were also increased in both 

the splenocytes and PC cells from TCL1-Tg:p53-/- mice compared to TCL1-Tg 

mice.  Interestingly, the increased Bcl-2 was observed in the peritoneal 

leukemia cells but not in splenocytes (Figure 9A).  Real-time RT-PCR analysis 

showed a significant increase in mRNA expression of Mcl-1, Bcl-XL, and Bcl-2 

in the splenocytes and PC cells from TCL1-Tg:p53-/- mice compared to those 

from TCL1-Tg mice (Figures 9B-9D).  Importantly, the increase in Mcl-1, Bcl-

XL, and Bcl-2 protein expression was also observed in primary CLL cells 

isolated from patients with 17p deletion (Figure 10A).  Such increase was 

consistently observed in multiple patient samples.  Real-time RT-PCR analysis 

showed that the mRNA expression of these 3 molecules was also increased in 

CLL cells with 17p deletion (Fig 10B).  These data together suggest that the 

increased expression of Bcl-2 family members occurred mainly at 

transcriptional level.  Consistently, both protein and mRNA levels of Mcl-1 and 
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Bcl-XL were increased in 17p- B cells isolated from patient CLL cells (Figure 

11 & Figures 12A-12B). Interestingly, the increased Bcl-2 expression was 

observed in 17p- B cells from part of patient samples (Fig 11 & Fig 12C).   
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Figure 9A 
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Figure 9. Bcl-2 survival family gene expression in mouse splenocytes and 

PC cells isolated from TCL1-Tg and TCL1-Tg:p53-/- mice. (A) Mcl-1, Bcl-

XL and Bcl-2 protein expression shown by Western blot analysis. (splenocytes 

were isolated from 4-month old mice; n=4 per group ). 
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Figure 9B-9D 
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Figure 9. Bcl-2 survival gene expression in cells from TCL1-Tg and TCL1-

Tg:p53-/- mice. (B) Mcl-1 mRNA levels in mouse splenocytes and PC cells 

shown by RT-PCR (n=4 per indicated strain). *, p<0.05, **, p<0.01 between 

groups. (C) Bcl-XL mRNA levels in mouse splenocytes and PC cells shown by 

RT-PCR (n=4 per indicated strain). *, p<0.05, **, p<0.01 between groups. (D) 

Bcl-2 mRNA levels in mouse splenocytes and PC cells shown by RT-PCR (n=4 

per indicated strain). *, p<0.05, **, p<0.01 between groups.  
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Figure 10A-10B 
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Figure 10.  Bcl-2 survival family gene expression in CLL cells from human 

patient samples with 17p deletion or with 17p wt. (A) Western blot analysis 

showed Mcl-1, Bcl-XL and Bcl-2 protein levels in CLL cells from human CLL 

patient samples with or without 17p deletion (4 >70% 17p deletion samples: 

del1-4; 6 17p WT samples: WT1-6). (B) Mcl-1, Bcl-XL and Bcl-2 mRNA 

levels in CLL cells from human patients with or without 17p deletion shown by 

RT-PCR. *, p<0.05, **, p<0.01 between groups. 
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Figure 11 
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Figure 11. Bcl-2 survival family gene expression in CLL-B cells from 

patient samples with 17p deletion or with 17p wt. Western blot analysis 

showed Mcl-1, Bcl-XL and Bcl-2 protein levels in CD19 positive B cells from 

human CLL patient samples with or without 17p deletion (3 17p WT samples 

and 4 17p- samples). 
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Figure 12A-12C 
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Figure 12.  mRNA levels of Bcl-2 survival family in CLL-B cells from 

patient samples with 17p deletion or with 17p wt. (A) Mcl-1 mRNA levels in 

CD19 positive B cells from human CLL patient samples with or without 17p 

deletion (3 17p WT samples and 4 17p- samples). (B) Bcl-XL mRNA levels in 

CD19 positive B cells from human CLL patients with or without 17p deletion (3 

17p WT samples and 4 17p- samples). (C) Bcl-2 mRNA levels in CD19 positive 

B cells from human CLL patients with or without 17p deletion (3 17p WT 

samples and 4 17p- samples). 
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To further investigate the possible mechanisms by which loss of p53 led 

to increased expression of multiple Bcl-2 family members, we speculated that 

since the expression of Bcl-2 multiple family members is known to be regulated 

by certain microRNAs (miR15a, miR-16) (115), it is possible that the loss of 

p53 might cause a decrease expression of some specific microRNAs, leading to 

over-expression of Mcl-1, Bcl-XL, and Bcl-2.  To test this possibility, we first 

isolated total RNA from the splenocytes of TCL1-Tg and TCL1-Tg:p53-/- mice, 

and explored the expression profiles of microRNAs.  Among the >300 

microRNAs detected, miR-15a and miR-16-1 were markedly decreased in 

TCL1-Tg:p53-/- mice compared to that of TCL1-Tg mice.  The decrease of miR-

15a and miR-16-1 in cells from TCL1-Tg:p53-/- mice was further confirmed by 

real-time RT-PCR using the leukemia cells isolated from the spleens and PCs of 

TCL1-Tg and TCL1-Tg:p53-/- mice.  As shown in Figure 13A, there was a 

significant decrease in the expression of miR-15a and miR-16-1 in both 

splenocytes and PC cells from mice without p53.  Importantly, the decrease in 

miR-15a/16 expression was further confirmed in primary CLL cells isolated 

from patients with 17p deletion (Figure 13B).   Consistently, similar results 

were observed in B cells isolated from primary CLL cells (Figure 14). These 

data together suggest that suppression of miR15a/miR16-1 expression may be 

an important mechanism by which the loss of p53 enhances the expression of 

Mcl-1, Bcl-2 and Bcl-XL, leading to increased cell viability and drug resistance.      
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Figure 13A-13B 
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Figure 13. Expression of tumor suppressor miR-15a/16-1 in mouse and 

human leukemia cells. (A) MiR-15a/16-1 expression in mouse splenocytes and 

PC cells shown by RT-PCR. *, p<0.05, **, p<0.01 between groups. (B) MiR-

15a/16-1 expression in CLL cells from patient samples with or without 17p 

deletion shown by RT-PCR. *, p<0.05, **, p<0.01 between groups. 
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Figure 14A-14B 
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Figure 14. MiR15a/16-1 expression in CLL-B cells. (A) MiR-15a expression 

in CD19 positive B cells purified from patient samples with or without 17p 

deletion shown by RT-PCR (3 17p WT samples and 4 17p- samples). (B) MiR-

16-1 expression in CD19 positive B cells purified from patient samples with or 

without 17p deletion shown by RT-PCR (3 17p WT samples and 4 17p- 

samples). 
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        4.5 Loss of p53 in CLL cells causes down-regulation of miR-30 family, 

leading to upregulation of downstream oncogenes EZH2 and B-Myb. In 

addition, among the >300 microRNAs detected, miR-30a, miR-30e, and 

particularly miR-30d were markedly decreased in TCL1-Tg:p53-/- mice 

compared to that of TCL1-Tg mice.  The downregulation of miR-30 family in 

cells from TCL1-Tg:p53-/- mice was further confirmed by real-time RT-PCR 

using the leukemia cells isolated from the spleens and PCs of TCL1-Tg and 

TCL1-Tg:p53-/- mice.  As shown in Figure 15A, there was a significant decrease 

in the expression of miR-30 family in both splenocytes and PC cells from mice 

without p53.  Importantly, the decrease in miR-30 family expression was further 

confirmed in primary CLL cells isolated from patients with 17p deletion (Figure 

15B).  It has been reported that miR-30d targets EZH2 which is involved in 

repressing gene expression through methylation of histone H3 on lysine 27 and 

upregulated in anaplastic thyroid carcinomas (90). Over years, many studies 

have established that EZH2 is overexpressed in various cancers including some 

hematologic malignancies, and such overexpression is associated with 

aggressive disease progression (91, 92). The role of EZH2 in CLL has yet to be 

examined in vitro and in vivo. Another target of miR-30 is B-Myb, which 

expression can be regulated by miR-30 and miR-29 during cellular senescence 

(95). B-Myb, a transcription factor, is involved in cell proliferation and 

transcription and carcinogenesis. B-Myb overexpression presents in various 

cancers and is associated with aggressive tumor growth and poor outcomes (96-

98). However, the role of B-Myb in CLL is still unknown. Both EZH2 and B-
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Myb are upregulated in mouse CLL cells with p53 deletion as shown in Figure 

16.  The EZH2 inhibitor 3-deazaneplanocin (DZNep) led to induction of more 

apoptosis in splenocytes isolated from TCL1-Tg:p53-/- mice compared to that of 

TCL1-Tg mice (Figure 17). Taking together, this study provides evidence to 

support the important role of p53miR30dEZH2 & B-Myb axis in the 

development of aggressive CLL.  
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Figure 15A-15B 
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Figure 15. Expression of tumor suppressor miR-30 family in mouse and 

human leukemia cells. (A) MiR-30a, miR-30d and miR-30e expression in 

mouse splenocytes and PC cells shown by RT-PCR. *, p<0.05, **, p<0.01 

between groups. (B) MiR-30a, miR-30d and miR-30e expression in CLL cells 

from human patient samples with or without 17p deletion shown by RT-PCR. *, 

p<0.05, **, p<0.01 between groups. 
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Figure 16A-16B 
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   Figure 16. Expression of EZH2 and B-Myb in mouse and human CLL 

cells. (A) Expression of EZH2 and B-Myb in splenocytes from 3 TCL1-Tg mice, 

3 TCL1-Tg:p53+/- mice, and 6 TCL1-Tg:p53-/- mice. (B) Expression of EZH2 

and B-Myb in 7 human CLL samples with 17p wt and 6 CLL samples with 17p 

deletion.  
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Figure 17 
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Figure 17. DZNep treatment in mouse splenocytes. Splenic cells from 3 

TCL1-Tg and 3 TCL1-Tg:p53-/- mice were cultured in RPMI1640 medium with 

10% FBS plus 1% PS and treated with 3uM SAHA, 3uM 3-DEZNP, 10uM F-

ara-A or their combination for 48h. PEITC treatment was only 4 h. Annexin V-

PI analysis by FACS was performed to detect apoptosis for those splenocytes. 
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        4.6 New compound NL-101 induces significant apoptosis in CLL cells 

with or without p53 deficiency. Despite of the fact that various advanced 

therapeutic strategies have improved the CLL treatment in clinic, the disease is 

not cured yet. As shown in Figures 5-8, CLL cells with p53 deficiency were 

resistant to conventional CLL chemotherapies such as F-ara-A. Therefore it is 

urgent to study new therapeutic strategies for the treatment of the subtype of 

CLL with p53 deficiency. It was observed that new compound NL-101 induced 

significant apoptosis in CLL cell with 17p wt (Figure 18). NL-101 contains both 

the HDACI-SAHA and the alkylating agent-Bendamustine moieties in 1:1 ratio. 

48h treatment of 3µM NL-101 induced around 85% apoptosis in CLL cells 

cocultured with NKTert cells. 48h treatment of 3µM SAHA only induced about 

75% apoptosis in the CLL cells when cocultured with stromal cells NKTert. 

However, 10µM Bendamustine didn’t induce any apoptosis in the CLL cells 

cocultured with NKTert cells. The combination of 3µM SAHA + 10µM 

Bendamustine almost killed all CLL cells even cocultured with NKTert cells. 

Without coculture, those compounds only or their combination efficiently 

induced apoptosis in the CLL cells (Figure 18A). The bar graph in Figure 18B 

showed efficient killing effect of NL101 or SAHA combined with alkylating 

agents in CLL cells with or without coculture with stromal cells. Interestingly, 

NL-101 and PEITC both can induce significant apoptosis in CLL cells with 17p 

deletion (Figure 19). As mentioned before, a subtype of CLL with chromosome 

17p deletion is associated with accelerated disease progression, drug resistance, 

and poor prognosis due to loss of p53 gene (100). In our studies, we observed 
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that 4h 10µM PEITC treatment or 48h 6µM NL-101 treatment only induced 

significant apoptosis in the subtype of CLL cells with 17p deletion with or 

without coculture with stromal NKTert cells. Similarly SAHA combined with 

Chlorambucil or Bendamustine also induced significant apoptosis in this 

subtype of CLL with or without coculture with stromal NKTert cells. The NL-

101 compound combined with PEITC almost killed all of this subtype of CLL 

cells as shown in Figure 21. Consistently the compound NL-101 also induced 

significant apoptosis in mouse CLL cells when cocultured with stromal cells. 

Interestingly not only NL-101 treatment but also SAHA treatment only induced 

significant apoptosis in mouse splenocytes isolated from TCL1-Tg and TCL1-

Tg:p53-/- mice (Figure 20).  
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Figure 18A-18B 
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Figure 18. NL-101 treatment in human CLL cells with 17p wt. White blood 

cells were isolated from CLL patients’ blood and cultured in RPMI1640 

medium containing 10% FBS and 1% PS. (A) CLL patient samples with 17p wt 

were treated with 3uM NL-101, 3uM SAHA, 10uM Bendamustine and 3uM 

SAHA+10uM Bendamustine for 48h when cocultured with human stromal cells 

NKTert or without coculture. Cell apoptosis was analyzed by Annexin V-PI 

staining. (B) The quantitative bar graph showed the treatment results analyzed 

by Annexin V-PI staining in human CLL cells cocultured with stromal cells 

KTert or Kusa.H1 or without coculture. 
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Figure 19 
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Figure 19. NL-101, PEITC and other treatments in human CLL cells with 

17p deletion 7. White blood cells were isolated from CLL patients’ blood and 

cultured in RPMI1640 medium containing 10% FBS and 1% PS. CLL patient 

samples with 17p deletion were treated with 3uM SAHA, 10uM Chlorambucil, 

20uM Bendamustine, 10uM F-ara-A, 6uM or 10uM NL-101 and their 

combinations for 48h with or without coculture with stromal NKTert cells. 

10uM PEITC treatment was only 4h. Cell apoptosis was analyzed by Annexin 

-PI staining. 
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Figure 20 
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Figure 20. NL-101 treatment in mouse CLL cells with or without p53 

deficiency. Splenic cells from  TCL1-Tg and TCL1-Tg:p53-/- mice were cultured 

in RPMI1640 medium with 10% FBS plus 1% PS and treated with 10uM F-ara-

A or Chlorambucil, 20uM Bendamustine, 3uM SAHA or SAHA combined with 

the alkylating agents and 3uM NL-101 for 48h when cocultured with stromal 

Kusa.H1 cells. Annexin V-PI analysis by FACS was performed to detect 

poptosis for those splenocytes. 
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        4.7 NL-101 and PEITC treatment prolonged the survival time for 

TCL1-Tg:p53-/- mice. Since we observed efficient killing effects of NL-101 and 

PEITC in CLL cells with p53 deficiency in vitro, the NL-101 and PEITC 

treatment in vivo were performed using intravenous injection (i.v. injection). 

Tail inflammation was observed after 6 times of iv injection for some TCL1-

Tg:p53-/- mice. As shown in Figure 21, only 6 times i.v. injection of NL-101 

prolonged the survival time of TCL1-Tg:p53-/- mice. PEITC treatment 

significantly prolonged the survival time for the TCL1-Tg:p53-/- mice (Figure 

21).  
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Figure 21 
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Figure 21. Survival curve (Kaplan-Meier) of TCL1-Tg:p53-/- mice treated 

with NL-101 or PEITC (n=20 per group).  NL-101 treatment plan: 2 

times/month i.v. injection of 6mg/ml for 3 months; PEITC treatment plan: i.v. 

injection of Nano-PEITC weekly by 10mg/ml (1mg/10g weight) concentration. 
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        4.8 Underlying mechanisms of NL-101 induced apoptosis in CLL cells. 

After observing significant killing effect of NL-101 in CLL cells, we 

hypothesized that the HDACI-moiety of NL-101 can overcome resistance of the 

alkylating agent-moiety in CLL treatment. More DNA strand breaks were 

observed in CLL cells treated with NL-101 only or SAHA combined with 

Bendamustine than Bendamustine treatment only analyzed by comet assay 

(Figure 22). In addition, HDACI such as SAHA can overcome resistance of 

alkylating agents in CLL treatment by reducing CXCL12 secreted from stromal 

cells. RT-PCR experiments showed reduced levels of CXCL12 in stromal 

NKTert cells treated with HDACI or NL-101 (Figure 23). In Figure 24, ELISA 

assay showed significant decrease of CXCL12 levels in Kusa.H1 and NKTert 

cells treated by HDACI such as SAHA and LBH. Interestingly the CXCL12 

level was very low in stromal HS5 cells.  
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Figure 22 

 

 

 

 

CLL+20µM BendamustineCLL‐no drug  CLL+3µM SAHA

 

CLL+3µM SAHA+20µM Bendamustine CLL+3µM NL‐101

 

 

 

 

 

 

 

 

 97



 

 

 

 

 

 

Figure 22. DNA strand breaks in CLL cells analyzed by Comet assay. CLL 

cells were treated with 3µM SAHA, 3µM NL-101, 20µM Bendamustine or 

3µM SAHA+20µM Bendamustine for 24h. The comet assay was performed as 

described above. 
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Figure 23 
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Figure 23. CXCL12 mRNA levels in NKTert cells treated with HDACI, 

HDACI combined with alkylating agents or NL-101 analyzed by RT-PCR. 

1X105 NKTert cells were seeded in a 6-well plate. The HDACI or NL-101 

treatment was performed when the cells were 70% confluent. 48h later, the cells 

were collected and prepared for RNA isolation, cDNA synthesis and RT-PCR. 
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Figure 24 
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Figure 24. CXCL12 levels in stromal HS5, Kusa.H1 and NKTert cells 

treated with SAHA or LBH determined by ELISA assay. 6X105 HS5 cells, 

1X104 Kusa.H1 cells and 4X104 NKTert cells were seeded in 24-well plates 

with RPMI1640 medium at day 1. At day 3, the medium was removed and 

500µL fresh medium was added for each well. HDACI treatment was 

performed at day 3. ELISA assay was performed at day 4.  
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5. DISCUSSION 

         Recent progress in investigation of CLL biology and the development of 

new therapies such as F-ara-A-based regimens has led to significant 

improvements of therapeutic outcomes. However, many CLL patients, 

particularly those with loss of p53 function due to chromosome 17p deletion 

and p53 mutations, are refractory to the current therapeutic regimens with poor 

prognosis (56).  Loss of p53 function can be due to deletion or mutations of the 

gene that encodes for p53, epigenetic silencing, and functional inactivation.  In 

CLL, chromosome 17p deletion and p53 mutations are well-documented 

mechanisms that lead to loss of p53 function associated with poor prognosis (56, 

116). The exact mechanisms by which loss of p53 may lead to aggressive 

disease progression and poor clinical outcomes in CLL remain illusive. Based 

on the important role of p53 in cell cycle control and regulation of apoptosis 

(117), it is generally speculated that loss of p53 function may result in 

impairment of cycle-cycle checkpoints and compromised apoptotic response, 

leading to disease progression and drug resistance.  However, there is no 

conclusive evidence in vivo to support this notion, perhaps in part due to the 

lack of proper CLL animal model with loss of p53.   

        5.1 Rapid disease progression and treatment resistance 

occurred in TCL1-Tg:p53-/- mice. In the present study, we generated a mouse 

colony with TCL1-Tg:p53-/- genotype, and demonstrated that these mice 

developed leukemia that resembles aggressive human CLL.  The TCL1-Tg:p53-

/- mice exhibited signs of CLL disease around 3 months, with early appearance 
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of CD5+/IgM+ cells in the PC and spleen. Most TCL1-Tg:p53-/-  mice showed 

highly abnormal accumulation of WBC in the blood and developed severe 

splenomegaly at 3-4 month, and died before 6 months.  This is in contrast with 

the TCL1-Tg mice, which develop CLL approximately at the age of 1 year, and 

the disease progresses slowly (60).  In the TCL1-Tg:p53-/- mice, we observed a 

significant increase in lymphoid cell proliferation in the spleen and a decrease in 

apoptosis.  This may explain why these mice had severe accumulation of 

leukemia cells and enlargement of the spleen at early age. The control p53-/- 

mice didn’t accumulate much leukemia cells at 4-month old of age, however, 

our mouse model exhibited significant higher number of leukemia cells,  

suggesting that TCL1-Tg:p53-/- mice had specific CLL features rather than 

lymphoma occurring in p53-/- mice. Since p53 plays a key role in enhancing the 

expression of apoptotic molecules such as Bax and PUMA (118), loss of p53 

function would significantly compromise this apoptotic pathway, leading to 

resistance to chemotherapeutic agents.  In fact, we observed that the leukemia 

cells isolated from TCL1-Tg:p53-/- mice or from CLL patients with 17p deletion 

were highly resistance to standard anti-CLL drugs F-ara-A and oxaliplatin. 

Furthermore, CD19 positive B cells purified from CLL patients with 17p 

deletion were highly resistance to F-ara-A and oxaliplatin. To overcome 

treatment resistance, new therapeutic strategies need to be applied in clinic such 

as PEITC and NL-101 compound. 

        5.2 Up-regulated Mcl-1 in leukemia cells with p53 deletion. An 

important observation in this study was the significant up-regulation of Mcl-1 
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expression in the leukemia cells lacking p53.  This was seen both in the 

leukemia cells from the TCL1-Tg:p53-/- mice and in primary CLL cells from 

patients with 17p deletion (Figure 9 & 10).    Mcl-1 is a key anti-apoptotic 

protein in the Bcl-2 family, and this molecule is known to be particularly 

important for the survival of CLL cells (85).  Thus, upregulation of Mcl-1 may 

play a major role in apoptosis resistance in CLL cells lacking p53, and the 

moderate increase in Bcl-XL and Bcl-2 expression may also contribute to the 

increased viability of leukemia cells in TCL1-Tg:p53-/- mice. Since the increase 

in Mcl-1 expression was observed at mRNA and protein levels, it is likely that 

loss of p53 may promote Mcl-1 expression mainly at the transcriptional level.  

This is consistent with the observation that p53 transcriptionally represses Mcl-

1 (119-122).   

5.3 Down-regulated miR-15a/miR-16-1 in leukemia cells with p53 

deletion. Interestingly, the miRNA expression levels of miR15a and miR-16-1 

were significantly decreased in CLL cells with loss of p53.  This was observed 

both in the TCL1-Tg:p53-/- mouse model and in primary CLL cells isolated from 

patients with 17p deletion. Because Mcl-1 is a target of miR-15a and miR-16-1 

(123, 124), the decrease in these miRNAs would release their suppression on 

Mcl-1 and thus lead to its elevated expression.  Thus, it is possible that p53 

might regulate Mcl-1 expression through modulating miR15a/16.  It has been 

shown previously that miRNAs may be involved in CLL pathogenesis and 

prognosis due to their function as oncogenes or tumor suppressors (102). For 

example, miR-15a/miR-16-1 is located in chromosome 13q14.3, a region that is 
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frequently mutated or deleted in CLL patients and may affect CLL cell survival 

and drug resistance (115).  Intriguingly, p53 may regulate the expression of 

multiple miRNAs, many of which are closely involved in cell cycle regulation, 

proliferation and apoptosis (104). Our initial study using miRNA array to 

examine the effect of loss of p53 on miRNA expression in the TCL1-Tg:p53-/- 

mice had identified miR-15a and miR-16-1 being significantly down-regulated, 

which was further validated by real-time RT-PCR. Clearly, miR-15a/16-1 

expression is significantly lower in splenocytes and PC cells from TCL1-

Tg:p53-/- mice than that of TCL1-Tg mice. These observations together suggest 

that p53miR-15a/16-1Mcl-1 axis may be an important pathway in 

regulating CLL cell apoptosis and drug resistance. The important role of the 

p53miR-15a/16-1Mcl-1 axis in the development of aggressive CLL merits 

further investigation in clinical setting.  

5.4 Down-regulated miR-30d in leukemia cells with p53 deletion. 

Our initial study using miRNA array to examine the effect of loss of p53 on 

miRNA expression in the TCL1-Tg:p53-/- mice had identified miR-30a, miR-

30e and particularly miR-30d being significantly down-regulated, which was 

further validated by real-time RT-PCR. Clearly, miR-30a/miR-30d/miR-30e 

levels were significantly lower in splenocytes and PC cells from TCL1-Tg:p53-/- 

mice than that of TCL1-Tg mice. It has been reported that EZH2 and B-Myb are 

targets of miR-30 family (90, 95). Since we observed significant up-regulation 

of EZH2 and B-Myb in leukemia cells with p53 deletion, p53miR-
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miR30EZH2 & B-Myb axis may be another important pathway in regulating 

CLL cell apoptosis and drug resistance.  

 

6. SUMMARY AND CONCLUSIONS 

The whole study can be summarized in the following diagram.  I have 

generated TCL1-Tg:p53-/- mice, which develop aggressive CLL with an early 

disease onset, likely due to increase proliferation of the leukemia cells and 

decrease in apoptosis.  The CLL cells lacking p53 exhibited low sensitivity to 

standard anti-CLL drugs. In our study, we tested new compound NL-101 and 

PEITC in our mouse model. It has been reported that PEITC effectively 

eliminates F-ara-A-resistant CLL cells through ROS accumulation and 

glutathione depletion (45). We observed that PEITC was very efficient to 

eliminate CLL cells both in vitro and in vivo. The underlying mechanism for 

efficient killing effect of NL-101 in CLL is possible through HDAC inhibitor-

overcoming the treatment resistance of alkylating agents by inhibiting CXCL12 

and inducing more DNA damage to CLL cells. Our study also provided in vivo 

evidence that loss of p53 led to upregulation of Mcl-1 expression, probably 

though the down regulation of miR-15a and miR-16-1 and thus released their 

suppression on Mcl-1 expression. Another possibility is that p53 

transcriptionally represses Mcl-1, leading to decrease in apoptosis and drug 

resistance in CLL cells from TCL1-Tg:p53-/- mice. Furthermore, loss of p53 

cause down-regulation of miR-30 family especially miR-30d which regulates 

up-regulation of EZH2 & B-Myb, probably leading to rapid disease progression 
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and treatment resistance in leukemia cells lacking p53. The TCL1-Tg:p53-/- 

mouse colony may serve as a valuable mouse model to further investigate the 

pathogenesis of aggressive CLL due to loss of p53 function.  In addition, since 

these mice develop leukemia at early age and die within 6 months, this animal 

model may be useful in testing new drugs for their in vivo therapeutic activity 

against aggressive CLL with loss of p53 function.  
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42

Summary

P53 deletion in TCL1-Tg mice

Down-regulated MiR-15a/16-1

Up-regulated Mcl-1

Decreased apoptosis, increased proliferation, treatment resistance……

CLL development at early stage 
with hyperproliferation, reduced 
apoptosis, treatment resistance 

short survival timeand 

Down-regulated miR-30d

Up-regulated oncogenes:
B-Myb, EZH2

PEITC, NL-101,…
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