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Abstract

It is well accepted that tumorigenesis is a multi-step procedure involving

aberrant functioning of genes regulating cell proliferation, differentiation, apop-

tosis, genome stability, angiogenesis and motility. To obtain a full understanding

of tumorigenesis, it is necessary to collect information on all aspects of cell activ-

ity. Recent advances in high throughput technologies allow biologists to generate

massive amounts of data, more than might have been imagined decades ago.

These advances have made it possible to launch comprehensive projects such as

(TCGA) and (ICGC) which systematically characterize the molecular fingerprints

of cancer cells using gene expression, methylation, copy number, microRNA and

SNP microarrays as well as next generation sequencing assays interrogating so-

matic mutation, insertion, deletion, translocation and structural rearrangements.

Given the massive amount of data, a major challenge is to integrate information

from multiple sources and formulate testable hypotheses.

This thesis focuses on developing methodologies for integrative analy-

ses of genomic assays profiled on the same set of samples. We have developed

several novel methods for integrative biomarker identification and cancer classi-

fication. We introduce a regression-based approach to identify biomarkers pre-

dictive to therapy response or survival by integrating multiple assays including

gene expression, methylation and copy number data through penalized regres-

sion. To identify key cancer-specific genes accounting for multiple mechanisms of

regulation, we have developed the integIRTy software that provides robust and

reliable inferences about gene alteration by automatically adjusting for sample

heterogeneity as well as technical artifacts using Item Response Theory.

To cope with the increasing need for accurate cancer diagnosis and in-

dividualized therapy, we have developed a robust and powerful algorithm called
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SIBER to systematically identify bimodally expressed genes using next generation

RNAseq data. We have shown that prediction models built from these bimodal

genes have the same accuracy as models built from all genes. Further, pre-

diction models with dichotomized gene expression measurements based on their

bimodal shapes still perform well. The effectiveness of outcome prediction us-

ing discretized signals paves the road for more accurate and interpretable cancer

classification by integrating signals from multiple sources.
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Chapter 1

Introduction

1.1 Background

Recent advances in biotechnology allow biologists to generate massive

amounts of data, which is more than one could imagine decades ago. For exam-

ple, it is routine to monitor the whole genome transcription level through various

microarray and next generation sequencing platforms. Besides the transcrip-

tome, many other aspects of cell activity are also frequently measured, including

mutation, DNA methylation, DNA copy number change, microRNA expression,

protein expression, and phosphorylation. Further, new technologies are still being

developed that will make bioassays more diverse, powerful and inexpensive.

This leads to a rich body of biological information accessible through

various public repositories. According to the update on Bioinformatics Links Di-

rectory [Brazas et al., 2010] and the review by Zhang [Zhang et al., 2011], there

are around 1500 unique publicly available data sources which can be summarized

into six categories: (1) sequence database such as GenBank [Benson et al., 1997],

RefSeq [Pruitt et al., 2009] and CMR (Comprehensive Microbial Resource) [Peter-
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son et al., 2001]; (2) functional genomics database including GEO (Gene Expres-

sion Omnibus) [Barrett et al., 2011], ArrayExpress [Parkinson et al., 2011] and

FFGED (Filamentous Fungal Gene Expression Database) [Zhang and Townsend,

2010]; (3) protein-protein interaction database such as BIND (Biomolecular In-

teraction Network Database) [Bader et al., 2003], DIP (Database of Interacting

Proteins) [Salwinski et al., 2004], IncAct [Aranda et al., 2010]and MINT (Molec-

ular Interactions Database) [Ceol et al., 2010]; (4) pathway database such as

KEGG (Kyoto Encyclopedia of Genes and Genomes) [Kanehisa et al., 2010];

(5) structure database such as CATH (Class Architecture Topology Homology)

[Greene et al., 2007]and PDB (Protein Data Bank) [Rose et al., 2011]; (6) anno-

tation database such as GO (Gene Ontology) [Ashburner et al., 2000]and NCBI

Taxonomy [Sayers et al., 2011].

Given the technology advancement as well as the rich information pro-

vided by public databases, data integration becomes an indispensable component

for biomedical research due to at least two reasons: (1) most of the research ef-

fort becomes the analysis and interpretation of data rather than data generation

because of the high level of automation in data generation. This is especially true

for projects involving next generation sequencing technology where approximately

four fifths of the effort goes to the integration and analysis of the collected data

[Mardis, 2010], and (2) the answers to most biological questions are rarely pro-

vided directly by the experimental results. Downstream bioinformatics analysis

involving integrating diverse data sources is required.

Many techniques and systems have been exploited for integrating biomed-

ical data. As summarized in [Goble et al., 2008], current approaches for data

integration can be roughly grouped into five groups: data warehousing, service-

oriented integration, semantic integration, wiki-based integration, and hypothesis-

driven integration. Data warehousing aims to provide a “one-stop shop” access to

different but related data sources. Usually a pre-defined data model is needed to
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extract, clean and formulate data from existing sources. Data warehousing suffers

from frequent data updates. In contrast, service-oriented integration leverages the

power of web services where individual data sources agree to open their data via

web services and thus data integration becomes a communication between com-

puters over the web. Most web pages are created for human reading which are not

efficient for a computer to understand. Therefore, semantic integration that uses

semantic web standards as a universal medium for data exchange has been pro-

posed. To allow user participation and contribution, the wiki-based integration

becomes necessary. Finally, to incorporate domain knowledge, hypothesis-driven

integration is needed which explicitly makes assumptions about the data and

applies statistical approaches for data integration.

This thesis mainly focuses on hypothesis-driven integration. The pri-

mary question we are trying to address is how to extract biological insights from

multiple high throughput biological assays profiled on the same set of samples.

In particular, we are interested in identifying biomarkers and building accurate

classifiers by integrating information from different assay types. The final goal

of our analysis would be to formulate testable hypothesss suggesting follow-up

studies.

1.2 Related work and motivation

It is widely agreed that tumorigenesis is a multi-step procedure that

involves aberrant functioning of genes regulating various aspects of cell prolifer-

ation, differentiation, apoptosis, genome stability, angiogenesis and motility. To

obtain a full picture of cancer, we need to gather information on all aspects of cell

activity. The Cancer Genome Atlas [McLendon et al., 2008] project has taken the

initiative to profile more than twenty cancers with almost all existing biological

assays including mutation, gene expression, DNA methylation, DNA copy num-
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ber (CN), microRNA expression and protein expression. However, data collection

is only the first step towards curing cancer. Extracting biological insights from

this comprehensive dataset through integrated analysis is a major challenge.

Below we review some of the mostly widely used data integration ap-

proaches developed in the last decade. In terms of the adopted procedure for

data integration, current approaches can be classified into four categories: step-

wise, regression-based, correlation based, and latent variable models [Lahti et al.,

2012, Huang et al., 2012]. The last three methods jointly model different assay

types and hence are called joint methods according to Huang et al. [2012]. Step-

wise methods analyze the individual assay type and then manually combine the

results; joint modeling specifies a model, usually in the form of a linear model or

latent variable model, to combine evidence from different sources before making

inferences.

In addition to the various procedures used, existing data integration

methods also differ in their analysis goals. Many current methods focus on the

dependency between gene expression and CN. These include the correlation and

regression based methods that explicitly search for genes with correlated mea-

surements. For example, Menezes et al. [2009] applied linear mixed models to

identify genes whose expression is regulated by CN change. In Peng et al. [2010],

the dependence between RNA expression and DNA copy number change is mod-

eled through penalized multiple regression models. There are also methods that

identify overlapped genetic alterations. The SODEGIR (Significant Overlap of

Differentially Expressed and Genomic Imbalanced Regions) method is designed to

infer genomic regions with both differential expression and copy number change

[Bicciato et al., 2009]. The CONEXIC (COpy Number and EXpression In Cancer)

method aims to identify driving mutations and the affected biological processes

[Akavia et al., 2010]. The remMap method searches concomitant gene expression

and CN alteration in cancer [Peng et al., 2010]. It is also possible to simulta-
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neously integrate gene expression, CN and clinical data. For example canonical

correlation analysis has been used to identify associations among gene expression,

CN change and clinical outcome [Waaijenborg et al., 2008, Lê Cao et al., 2009,

Witten et al., 2009]. The integrated classification problem is still emerging in

high throughput data analysis and hence has not been well studied.

Most existing integration methods deal with two assay types such as GE

and CN. The CNAmet method advances by simultaneously integrating GE, CN

and methylation data [Louhimo and Hautaniemi, 2011]. Still, due to the high

degree of heterogeneity in the data, existing approaches are not flexible enough

to integrate an arbitrary number of assay types. This motivates us to develop a

more general approach for data integration. The first approach we use is through

regression where different assay types enter the regression model as covariates.

This approach enables us to evaluate how predictive a gene is by combining in-

formation from diverse sources. Our second approach is similar in concept to

Louhimo and Hautaniemi [2011] where the integration is performed on binary

signals derived from the original data. By integrating data from derived binary

signals, we gain several benefits: (1) data integration becomes more flexible; (2)

the binary signals are easy to interpret and understand; (3) the implementation

and inference becomes simpler. Under this framework, we have developed several

methods. For example, we have developed the integIRTy pipeline which is able

to integrate an arbitrary number of assay types [Tong and Coombes, 2012]. We

have also developed the SIBER algorithm which systematically extracts binary

signals from the data [Tong et al., 2013]. We also formally investigate how well

the binary signals perform in terms of predicting clinical outcome and estab-

lished that bimodal genes contain the same information as provided by all genes.

The effectiveness of building classifiers from discrete signals will greatly facilitate

integrated classification using multiple data sources.
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1.3 Thesis organization and contributions

This thesis focuses on approaches for the integrative analysis of genomic

assays profiled on the same set of samples. We have developed several novel

methods to solve problems not addressed by existing approaches.

We begin with integrative biomarker identification in Chapter 2. We

first propose a regression framework to integrate multiple assays including gene

expression, methylation, and copy number data. We discuss the dependency

problem where measurements from different assays are correlated violating the

standard regression assumption, and we propose a penalized regression approach

to obtain accurate inference. The proposed model is applied to the TCGA

(http://cancergenome.nih.gov/) ovarian serous cystadenocarcinoma (OV) datasets

and identifies a set of genes predictive of treatment response and overall survival.

We find that known cancer related genes are not enriched for predictive genes.

We then introduce the integIRTy method in Chapter 3 to identify gene

alterations from multiple assays using the Item Response Model. This is another

way to identify biomarkers through data integration. This method is motivated

by the fact that tumor suppressors can be blocked (or oncogenes activated) by

different mechanisms in different patients. Hence, simply looking at one assay

at a time will miss genes that alter rarely in individual assay but in a consistent

manner across assays. After extensive simulation and real data analysis, we find

that integIRTy is more robust and reliable than conventional methods when ap-

plied to a single assay. When applied to multiple assays, integIRTy can identify

novel genes that cannot be found by looking at individual assays separately. Fur-

ther, integIRTy allows us to explore the global alteration pattern across multiple

assays.

Chapters 4 and 5 provide the foundation for integrative classification

http://cancergenome.nih.gov/
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using information from multiple sources. We base the integration on discrete

signals. Differing from most current approaches which model continuous signals,

we find that discrete signals such as bimodal expression and discrete copy number

changes are effective and easy for data integration. We start with bimodality

which identifies natural binary signals in the cell. Chapter 4 deals with how to

identify bimodal genes from RNAseq data. We present the Bimodality Index (BI)

approach which generalizes the existing method by Wang et al. [2009] developed

for microarray data based on mixture model. The generalized BI proves to be

robust, powerful, invariant to shifting and scaling, has no blind spots, and has a

sample-size-free interpretation.

Chapter 5 addresses the question: are bimodal genes enough for predic-

tion? This question is important because it is the basis for discrete-scale integra-

tion. We approach this problem by assembling an established benchmark dataset,

and we compare the classification performance between bimodal-gene-only model

and all-gene model. We find there is no significant difference between the two

models and conclude that bimodal genes contain all the information needed to

predict outcome. These results pave the road for a comprehensive study that per-

forms classification with discrete features extracted from different data sources.

Finally, Chapter 6 concludes the thesis and discusses several future re-

search directions.
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Chapter 2

Prognostic biomarker identification through data

integration

2.1 Background

Biomarkers play a crucial role in medicine. The usage of biomarkers

enables more accurate diagnosis, prognosis, and more effective treatment. For

example, predictive biomarkers give indications of the probable effect of a certain

treatment. These include drug-related biomarkers that indicate whether a drug

is likely to be effective on a specific patient. Prognostic biomarkers provide in-

formation on how a disease may develop. It is thought that genetic biomarkers

are the key to personalized medicine [Tevzak et al., 2010]. The great promise

of biomarkers has led many organizations and big pharmaceutical companies to

invest heavily in biomarker and drug development.

It turns out that biomarker identification is a central component for drug

development. With the completion of the Human Genome Project, biomedical

research has advanced tremendously in the past ten years. Rather than mea-

sure cell activities one at a time, it has now become easy and cheap to monitor
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genome-wide events thanks to the evolving high throughput technologies that

cover DNA, mRNA, protein and metabolites. It is expected that these biotech-

nologies will usher in a paradigm shift in genomic medicine where patients can

receive personalized treatment tailored to their genetic composition. There is

no doubt that data can be collected at an unprecedented pace. However, the

challenge becomes how to analyze this data and transform it into knowledge. It

becomes a more serious problem when deriving candidate biomarkers since it is

almost impossible to follow up every target that is measured. Further, it is one

thing to identify therapeutic candidates through these high throughput assays,

but it is another to have these biomarkers going through clinical trials and being

marketed.

There are two major methods for biomarker identification: filter and

wrapper [Inza et al., 2004]. The filter method selects biomarkers by examining the

relevance of the features to the outcome. Usually this is in the form of statistical

tests (e.g., student’s t-test or F test) or information metric e.g., information gain

or mutual information) [Liu and Motoda, 1998]. Feature selection by the filter

method is separated from evaluating the prediction model. In comparison, the

wrapper method embeds feature selection into the prediction model. Wrappers

train a new model for each subset of features and scores the feature subset with the

prediction performance. As a result, wrappers can produce a feature set that is

tuned to a specific predictive model and usually yield better accuracy in industrial

machine learning applications. However, wrappers are computationally intensive

and more likely to overfit for high throughput data. Instead, filter methods are

mostly adopted in the analysis of high throughput data [Chu et al., 2005, Inza

et al., 2004].

Here we propose a regression framework that integrates information across

different types of assays for biomarker identification. This method is an example

of a filter method that is flexible enough to deal with both binary and survival
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outcome. The rest of this chapter is organized as follows. We first introduce the

multiple logistic regression and Cox proportional hazard models in section 2.2.

We discuss the collinearity issue arising from the correlated measurements as well

as methods to solve it. We then present the results of applying this method to

identify prognostic markers in TCGA ovarian cancer data in Section 2.3. We

finish this chapter with a brief summary and discussion of future research.

2.2 Methods

We formulate a multiple regression framework for integrated biomarker

identification. The goal is to identify genes predictive of therapy response (com-

plete response/non-complete response) or overall survival time. This is a gener-

alization of the commonly used student’s t-test and univariate Cox Proportional

Hazards (PH) regression models applied to one assay type.

2.2.1 Logistic regression model

In the first model, we investigate the relationship between the binary

therapy response and measurements from gene expression, methylation and copy

number assays. For individual i (i = 1, 2, ..., N), the measurements for a particu-

lar gene are denoted by xi = (1, xi1, ..., xik, ..., xiK) where xik is the measurement

from the kthassay (k = 1, 2, ..., K). Note that β0 is the intercept term. In our case,

there are two expression assays, one methylation assay, and one copy number as-

say, and hence K = 4. The therapy response is denoted by yi = (y1, y2, ..., yN)

where yi = {0, 1}.

We apply the following logistic regression model:
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log
pi

1− pi
=

k=K∑
k=0

βkxik (2.1)

where pi = P (yi = 1) is the probability of achieving complete response for

individual i (i = 1, 2, ..., N). βk for k = 1, 2, ..., K is the regression coefficient for

the kthassay. Note that the gene index is suppressed in this formula.

The expression, methylation, and copy number measurements are ex-

pected to be correlated, which violates the independence assumption for multiple

regression. Several approaches have been proposed to deal with this issue in-

cluding LASSO regression [Tibshirani, 1996] and ridge regression [Marquaridt,

1970].

Given a set of predictors, it is desirable to identify which set of variables

predicts best. Therefore, a model selection procedure is needed. One common

practice is to apply a stepwise selection procedure that can be either forward

selection, backward elimination, or bidirectional selection. In our implementation,

we adopt backward elimination and use (AIC) to select the best model among

the candidate models.

The parameters β = (β1, β2, β3, β4) for the logistic regression model in

equation 2.1 can be estimated by maximizing the following log-likelihood func-

tion:

`1(β) =
i=N∑
i=1
{yiln( 1

1 + exp(−xi′β)) + (1− yin)ln( exp(−xi′β)
1 + exp(−xi′β))} (2.2)

The LASSO version of logistic regression is nothing but adding an L1

penalty on the regression coefficients. This corresponds to maximizing the fol-

lowing constrained log-likelihood equation:
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`1(β)LASSO = `1(β)− λ
k=K∑
k=1
|βk|

where λ > 0 is a Lagrangian multiplier. The optimal λ can be obtained through

cross-validation.

The Ridge regression model is quite similar. We only need to add an L2

penalty on the regression coefficients:

`1(β)Ridge = `1(β)− λ
k=K∑
k=1

β2
k

2.2.2 Cox Proportional Hazards model

To investigate the relationship between overall survival time and whole-

genome assays, we apply the Cox PH model. For individual i, we observe (ti, δi)

where ti is the overall survival time and δiis the censoring indicator (δi = 1 means

no censoring; δi = 0 means censoring.)

hi(t|xi) = h0(t)exp(
k=K∑
k=1

βkxik) (2.3)

where h0(t) is the baseline hazard function. h0(t) can have a parametric form or

remain unspecified leading to a semi-parametric model. This model assumes the

proportional hazard condition, which means that the hazard ratio between two

individuals is independent of time and only time-independent covariates are

allowed.

The parameters β = (β1, β2, β3, β4) for the Cox PH model are usually

estimated by maximizing the partial log-likelihood without specifying h0(t):
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`2(β) =
i=N∑
i=1

δi[xi′β − log{
∑
j∈R(i)

exp(xi′β)}] (2.4)

where R(i) is the set of indices for individuals that are at risk at time i.

To impose LASSO type penalty on the regression coefficient, we modify

the partial log-likelihood as:

`2(β)LASSO = `2(β)− λ
k=K∑
k=1
|βk|

The Ridge regression is quite similar:

`2(β)Ridge = `2(β)− λ
k=K∑
k=1

β2
k

Both the LASSO and Ridge versions for the logistic regression and Cox

PH regression models can be fit through the glmnet package in R.

2.2.3 Hypothesis testing

Given a fitted modelM1 which may include a single covariate or multiple

covariates, we want to test if this model is better than a null model M0 where

only an intercept term is fitted. Under the generalized linear model framework,

this can be done through the Analysis of Deviance [McCullagh and Nelder, 1989].

The deviance of model M1 is defined as:

D(M1) = −2{logL(M1)− logL(Ms)}
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where L(M1) is the likelihood fitted by model M1 while L(Ms) is the likelihood

from the saturated model Ms. The saturated model Ms is the model that fits a

parameter for each observation and hence fits the data exactly.

Similarly, the deviance of null modelM0 which only fits an intercept term

to the data can be defined as:

D(M0) = −2{logL(M0)− logL(Ms)}

It then follows that the difference of deviance D(y) follows a χ2 distribu-

tion with a degree of freedom equal to the number of extra parameters d in M1

compared to M0:

D(y) = D(M0)−D(M1) ∼ χ2
d

Note that it is not needed to evaluate logL(Ms) in computing D(y) since

logL(Ms) is cancelled out:

D(y) = −2{logL(M0)− logL(M1)}

Since we are testing each of the genes separately, we have to deal with the

multiplicity of simultaneous tests. Many methods have been proposed to account

for multiplicity. Usually these methods control different type I error rates such

as family-wise error rate, false discovery rate, per-comparison error rate, or per-

family error rate [Dudoit et al., 2003]. We adopt the method developed by ? that

controls the False Discovery Rate (FDR) . In particular, the set of p values is

modeled by a Beta-Uniform Mixture (BUM) model where the uniform component

represents non-informative genes while the beta component corresponds to the

set of predictive genes.
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2.3 Results

2.3.1 Cancer subtypes and prognosis

We performed an exploratory data analysis to examine if there were obvi-

ous subtypes among the samples. We focused on TCGA (http://cancergenome.nih.gov/)

ovarian serous cystadenocarcinoma (OV) data, as this data contained the most

samples at the time of analysis in March 2010.

We started with data assembly. For genewise integration, four assay

types are available: Affymetrix U133A expression (BI HT_HG-U133A), Illu-

mina Infinium 27K methylation arrays (JHU-USC HumanMethylation27), Agi-

lent CN arrays (HMS HG-CGH-244A), and Agilent expression arrays (UNC Ag-

ilentG4502A_07). We obtained genewise summary for CN data by mapping the

segments to the human genome. The details are provided in Section 3.5.1. We

restricted our attention to the solid tumor samples simultaneously measured by

all platforms. There were four types of tissues selectively profiled for the OV data

at the time of analysis: solid tumor (coded as 01 by TCGA consortium), normal

tissue (11), cell line (20) and normal blood (10). Most of the profiled samples

were from the solid tumor tissue. As a proof of concept, we aimed to integrate

across all platforms and thus only focused on genes measured in all assays. At

the end, we got 207 shared solid tumor samples and 9855 genes for integration

(see Figure 2.1).

Measurements (β values) from the methylation data are bounded between

0 and 1. Measurements from the CN data are log2 intensity ratios (log2R) between

two channels. For easy interpretation, we categorize the methylation data into

three groups: β < 0.25 (no methylation), 0.25 ≤ β < 0.75 (partial methylation),

β ≥ 0.75 (complete methylation). We also categorize the CN data into three

groups: log2R < −0.35 (loss), −0.35 ≤ log2R < 0.2 (neutral), log2R ≥ 0.2 (gain)

http://cancergenome.nih.gov/
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Figure 2.1: Data assembling for TCGA OV data. TCGA level 3 data for gene ex-
pression (U133A, Agilent), methylation and copy number (CN) are downloaded from
http://cancergenome.nih.gov/ and assembled by breaking down the tissue types. Clinical in-
formation including vital status, overall survival and therapy response is also indicated.

based on exploratory analysis.

We also examined the clinical data. The clinical file contained basic in-

formation about the patients including age, sex, ethnicity group, tumor grade,

primary therapy response and survival information. The primary therapy re-

sponse fell into four categories: complete response, partial response, progressive

disease and stable disease. We found that the survival for partial response, pro-

gressive disease and stable disease is quite similar. Therefore, we grouped the

three categories into non-complete response. Figure 2.2 shown that the overall

survival differed between complete response and non-complete response. It is

therefore important to examine whether there are markers that predict complete

response/non-complete response status.

An immediate question to ask is whether there are subtypes among the

OV patients. Further, we would like to evaluate if the patients with complete

response and non-complete response form natural groups. To answer these ques-

tions, we performed two-way clustering using the Affymetrix expression data with

all 379 solid tumor samples. We selected genes with the BI method which led to
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Figure 2.2: Kaplan-Meier survival curves for TCGA ovarian cancer patients. For patients with
primary therapy response status, 216 have complete response while 91 have non-complete re-
sponse. The median survival time is indicated by the red dashed line.

1130 bimodal genes [Wang et al., 2009]. Figure 2.3 shows the dendrogram from

two-way clustering. The samples form three groups, while there are at least four

groups of genes. We split the samples based on the clustering result and exam-

ined if this grouping is associated with therapy response status or overall survival.

Unfortunately, this analysis did not find any significant association between the

patient clusters and clinical outcome (therapy response or survival time). For

the four groups of genes, we queried the DAVID (http://david.abcc.ncifcrf.gov/)

database and found that the second group indicated in Figure 2.3 was significantly

associated with immune response (p value=10−31) by GO term enrichment anal-

ysis.

The patient clusters using all bimodal genes did not associate with either

therapy response or overall survival time. We conjectured that clusters derived

from a subset of the genes are correlated with clinical outcome. We therefore

split the genes into four groups based on the gene clustering result and repeated

our analysis. Unfortunately, the clusters formed by subsets of genes still do not

http://cancergenome.nih.gov/
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Figure 2.3: Two-way clustering of 379 solid tumor samples for TCGA OV expression data

predict outcome. This suggests that a supervised learning approach is needed to

derive predictive markers and signatures.

2.3.2 Predictive power of different assay types

Our logistic regression model, as well as the Cox PH model, can identify

biomarkers (either expression, methylation or copy number) predictive of clinical

outcome. After fitting the regression models, we obtain a p value for each gene.

For a direct comparison of the predictive power of different assays as well as

the combined data, we first fit univariate regression model only allowing one

covariate. We then compared the results to a full model where all measurements

enter the model. We found that the LASSO and ridge regression behave similarly.

Therefore, we only present results from ridge regression.

Figure 2.4 shows the results from our logistic regression models. In each

panel, we show the histogram with a fitted Beta-Uniform Mixture (BUM) model

superimposed [Pounds and Morris, 2003]. The blue line indicates the uniform

component while the green line indicates the beta component. The uniform com-

ponent corresponds to no predictive power while the Beta component suggests
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Figure 5.2: The dependency network learnt by Bayesian network on Director’s challenge lung
data. (a) The network with 181 genes and clinical outcome. The red node on top left indicates
the outcome node. (b) The Markov blanket for the outcome node. This is the network that is
needed to predict outcome.

significantly associated with outcome (p value<0.05). The red point on the top

left indicates the outcome variable. We see that there are many edges between

the nodes. Since there are only 248 samples used in training, most of these edges

might be dubious. In fact, not all nodes and edges learnt in BN are used for

making predictions. Only nodes serving as the Markov blanket (shown in Figure

5.2(b)) of the outcome variable are needed to make predictions. This further

explains why BN tends to overfit microarray data.

5.4 Discussion

Genes with bimodal expression play very important roles in various bi-

ological processes especially in carcinogenesis. The two modes of expression are

a reflection of switch-like regulation [Ertel and Tozeren, 2008]. Multiple studies

have suggested that bimodal genes can separate patients with different survival

[Tomlins et al., 2005] or cancer subtypes [Teschendorff et al., 2006]. The anal-

ysis done by Hellwig et al. 2010 evaluates the performance of different methods

for identifying bimodal genes and examine how the identified genes correlate to
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clinical outcome. The Bimodality Index approach [Wang et al., 2009] turns out

to outperform other methods by identifying more predictive genes. It remains a

question whether bimodal genes alone are enough for building predictive mod-

els.

In this chapter we formally evaluate the performance of classifiers built

from bimodal genes, unimodal genes and all genes using several benchmark

datasets. Then benchmark datasets cover a wide variety of endpoints, species

and array platforms. We choose the PAM classifier for all models to eliminate

the bias introduced by different classification methods. The built-in feature se-

lection in PAM further removes artifacts from fine tuning parameters during the

training process. We also check potential batch effects for each dataset to ensure

data quality as recommended in Luo et al. 2010. Practically, genes with low

variation are deemed as noise and filtered out before building classifiers. We also

adopt this practice to ensure a fair comparison.

Through extensive evaluation, we confirm that bimodal genes contain

the same information as all genes in predicting various binary and categorical

outcome. In the MAQC-II data, classifiers built from bimodal genes perform

best in 7 out of the 11 outcomes. Classifiers built from all genes perform best

in 6 outcomes. There are 4 tied accuracies between the bimodal-gene model and

the all-gene model. In terms of classification accuracy, the bimodal-gene model

is slightly better than the all-gene model and both are much better than the

unimodal-gene model. The result on Tan et al data is quite similar. Classifiers

built from bimodal genes perform best in 6 of the 10 data sets while the classifiers

built from all genes perform best in 7 of the data sets with 3 data sets having tied

accuracies. The accuracies in our analysis is similar to those reported publicly.

After establishing the predictive power of bimodal genes, we further eval-

uate how these genes perform when data is dichotomized. For the dichotomized
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data, PAM becomes inappropriate. We therefore choose three representative

classifiers including NB, CART and BN. The NB classifier achieves the best per-

formance among the three classifiers, and it is comparable to those reported in

Shedden et al. [2008]. Both CART and BN tend to overfit. We find that BN in-

fers too many edges even when the data is limited which explains why BN tends

to be overfit.

The effectiveness of building prediction models solely with bimodal genes

has great implications. Our analysis has established the predictive power of bi-

modal genes. This means we can extract natural binary signals such as bimodal

expression for prediction. Further, where there are multiple assays, it is straight-

forward to integrate the data when they are discretized. In terms of classification,

we can build classifiers with discretized data such as categorized copy number

change, methylation change and mutation data.

Our comparison is based on empirical criteria. A rigorous statistical test

for asserting the performance difference would be attractive. However, there is

no effective test developed yet. Both the NRI and IDI tests [Pencina et al., 2008]

do not work well in our context.

Our current analysis does not use gene modules that explicitly incorpo-

rate dependency among the genes. Due to the strong contrast of expression in

the bimodal genes, inferring regulatory networks from bimodal genes and building

classifiers with networks would be quite interesting.
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Chapter 6

Conclusions and future research

6.1 Conclusions

Throughout this thesis, we focus on developing statistical approaches for

integrating multiple high throughput assays. The key question we try to address

is how to extract biological insights and formulate testable hypothesis based on

the combined information. We have developed a variety of methodologies for

integrative analysis that cover both supervised and unsupervised learning. We

devote Chapters 2 and 3 to integrative biomarker identification and Chapters 4

and 5 to integrative classification.

Chapter 2 introduces a regression based approach to identify biomarkers

by integrating multiple assays including gene expression, methylation and copy

number data. This method allows us to evaluate the predictive power of each

individual assay as well as the combined data. We implement penalized regression

so that correlated measurements can be dealt with. To specifically identify a

subset of the measurements that is most predictive, we adopt a stepwise model

selection procedure. An application to the TCGA ovarian cancer data shows that
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gene expression, methylation, and copy number have different power to predict

either therapy response status or overall survival. Interestingly, genes predictive

of therapy response also differ from genes predictive to overall survival despite

significant overlap. We also find that the prognostic genes identified through

our integrated analysis rarely overlap with known cancer genes characterized by

mutation.

Chapter 3 shifts gears to identify biomarkers based on gene alteration.

In particular, we have developed a latent trait model for identifying altered genes

accounting for different mechanisms. This model automatically adjusts for the

heterogeneity among different assay types and samples such that the latent traits

for different genes are placed on a common scale. Compared to conventional

methods, our method is able to identify altered genes that are more reliable and

biologically meaningful. Further, our method can identify novel altered genes

that cannot be found by looking at individual assay separately.

Chapters 4 and 5 approach the data integration problem in the classifi-

cation setting. Both chapters resemble Chapter 3 in the sense that they perform

data integration with discrete signals. Chapter 4 proposes a novel method to

extract binary signals from RNAseq expression data. We present the Bimodality

Index (BI) approach which generalizes a previous method developed for microar-

ray data. The proposed method compares favorably with other methods in both

simulation and real data analysis. Chapter 5 evaluates the predictive power of

bimodal genes. Through extensive analysis on several benchmark datasets, we

find that bimodal genes contain the same amount of information as all genes

for predicting various endpoints. Further, even after converted into binary, bi-

modal genes still provide accurate classification. For these binary features, it is

found that the Naive Bayes classifier performs better than several other candidate

classifiers in terms of both the accuracy and ROC curve.
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6.2 Future research

Data integration has become an ongoing challenge in biomedical research.

The explosion of high throughput profiling technologies has enabled cheaper and

faster data generation. For example, both array-based and sequencing-based

platforms have been used to obtain profiles of whole genome expression, methy-

lation and copy number. Over the years, the biomedical community has collected

various sources of information stored in diverse repositories. How to link and in-

tegrate the collected data is a big challenge. We have developed several methods

for integrative analysis. Still, there are many topics that need further research.

An immediate project expanding our research would be classification with

multiple data sources. It is expected that by integrating information from differ-

ent sources, classification performance would be greatly enhanced. Our analysis

has shown the predictive power of binary signals. It is straightforward to build

classifiers with discretized copy number, methylation and mutation data. In our

evaluation, we choose to investigate the PAM, Naive Bayes, Bayesian Network

and CART classifiers. In terms of integrative classification, it is likely that dif-

ferent data sources might prefer different classifiers. To unleash the power of

integrated analysis, we can apply the boosting algorithm such that the weights

of different data sources can be learnt [Schapire, 2002].

Our research on data integration has explored both biomarker identifica-

tion and classification. What we have not touched is data integration using gene

networks. Network-based biomarker identification and classification is a natural

generalization of our work. In terms of integrative analysis, a network-based ap-

proach is quite attractive. We can first identify functional modules from different

data sources. These functional modules, jointly modeled through a dependency

network, will illuminate the inherent structure within the data. Classification

based on network modules would further help us understand how pathways as a
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whole affect phenotype.
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