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The Role of Nucleolin in B-cell Lymphomas and Fas-Mediated Apoptotic 
Signaling 

 

Publication No. ___________ 
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Supervisory Professor: Felipe Samaniego, MD 

 

The death receptor Fas has a key role in mediating homeostasis, elimination of defective 

cells and more recently implicated in cancer promotion. Many effective anti-cancer therapies 

depend on Fas-mediated apoptosis to eradicate tumor cells and ineffective Fas-apoptotic signaling 

is a basis for primary as well as acquired resistance to chemotherapy. We hypothesized that Fas is 

subjected to direct regulation by inhibitory proteins attained by cancer cells. To screen for potential 

binding modulators of Fas, we analyzed lymphoma cells for Fas binding proteins. This purification 

scheme identified high scoring peptides derived from nucleolin, a nuclear protein known to be 

overexpressed in cancer.  

We confirmed binding of nucleolin to Fas and the presence of nucleolin-Fas complexes on 

the surface of lymphoma cells. Using deletion mutants of nucleolin, we identified RBD 4 and 

glycine/arginine rich region of nucleolin to be required for the binding to Fas. BJAB cells, a 

Burkitts lymphoma cell line, with partial knockdown of nucleolin showed significantly higher rates 

of apoptosis in response to Fas agonists and increased ligand binding when compared to non-target 

controls. Transfection of mice with nucleolin-expressing plasmids showed significantly higher 

survival rates in nucleolin-transfected mice than vector control- and non-Fas-binding nucleolin 

mutant- transfected mice after lethal Fas agonist challenge. We next examined the expression of 

nucleolin in human B-cell lymphomas. We observed that nucleolin is overexpressed in multiple B-

cell lymphomas and its localization changes in transformed cells. In a tissue microarray analysis we 

showed that although total nucleolin levels did not correlate with patient outcome, including 

progression free survival and overall survival, the nucleolin levels did correlate with proliferative 

staining. We developed a method for detecting nucleolin surface expression levels and showed that 

surface nucleolin expression is increased in aggressive B-cell lymphoma subtypes including MCL 

and DLBCL yet is low in healthy B cells and chronic lymphocytic leukemia, a low grade cancer. 

We also determined that nucleolin surface expression correlates with a worsening prognostic index.  

Results from this investigation provide the first evidence of nucleolin overexpression as a 

clinical correlate for worsening prognosis of lymphomas.  The potential underlying mechanism 
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involves blocking of Fas-mediated apoptotic death pathway through direct binding of nucleolin to 

the Fas receptor on the extracellular surface of cancer cells. 
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Chapter 1: Review of the Relevant Literature 
 

B-cell Non-Hodgkin’s Lymphomas 

B-cell lymphomas are malignant neoplasms stemming from the B cells of the immune 

system.(3) B cells undergo multiple differentiation and activation steps throughout development 

and therefore malignant transformations can occur at varying stages producing lymphomas of over 

30 categories.(3, 4) Currently, the World Health Organization (WHO) recognizes 34 subtypes of B-

cell lymphomas, although the classification system is dynamic and constantly evolving.(5) The 

subtypes are divided into two major groups, non-Hodgkin’s lymphomas (NHL) and Hodgkin’s 

lymphomas, the difference is based on the presence of characteristic large malignant Reed-

Sternberg cells in Hodgkin’s lymphoma.(4) Given the existence of so many diverse conditions 

within this one immune cell type in the body, successful treatments have to be based on extensive 

basic and clinical research employing multiple strategies. 

In 2011, there were approximately 500,000 people living with NHL, with approximately 

70,130 new cases per year.(6, 7) The incidence of NHL in North America, Western Europe, and 

Australia increased by 3-4% per year throughout the 1970’s and 1980’s and has continued to 

increase since, albeit at a slower rate.(8-11) Between 1978-1995, the rates of high grade NHL 

tripled among males and doubled among females.(10, 11) This increase remains unexplained, yet 

based on the increase of new cases NHL ranks fifth among increasingly common cancers.(11, 12) 

The mortality rate of NHL is 30%, making it the sixth most common cause of cancer death in males 

and seventh in females.(6) To achieve better outcomes for lymphoma patients, the development of 

scientifically sound treatment approaches for the diverse spectra of NHL malignancies will be a 

major step in the eradication of lymphoma and increasing patient’s quality of life. 

To aid in predicting the prognosis of NHL patients, a clinical tool called the International 

Prognostic Index (IPI) was developed. To calculate IPI, points are assigned to different risk factors: 

age greater than 60, Ann Arbor stage III or IV disease, elevated serum lactate dehydrogenase 

(LDH) above 618 UI/L, Zubrod performance status of above 1, and more than one extranodal site. 

Based on the sum of the risk factor score (points) the patients are divided into groups: low risk (0-1 

points), with 5-year survival of 73%; low-intermediate risk (2 points), with 5-year survival of 51%; 

high-intermediate risk (3 points), with 5-year survival of 43%; and high risk (4-5 points), with 5-

year survival of 26%.(13) 
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The most common NHL subtypes in developed countries are diffuse large B-cell lymphoma 

(DLBCL) (20-30%) and follicular lymphoma (FL) (20-30%), with the other subtypes representing 

less than 10% of NHL cases.(14, 15) Our research focused on four of the NHL subtypes: DLBCL, 

Burkitts lymphoma, mantle cell lymphoma (MCL) and small lymphocytic lymphoma/chronic 

lymphocytic leukemia (SLL/CLL). Diffuse large B-cell lymphoma is the most common and the 

most aggressive form of NHL. The median age at presentation of DLBCL is in the mid-60s, and 

most patients present with advanced-stage disease. Diffuse large B-cell lymphoma accounts for 

almost half of NHLs that involve extranodal sites: stomach, small intestine, colon, soft tissue, and 

thyroid gland.(10) The disease is more frequent among males than females of middle ages and more 

common among whites than blacks at older age groups.(10) There are two distinctive types of 

DLBCL, germinal center B-cell like (GCB) and activated B-cell like (ABC). These two subgroups 

share marker expression patterns with normal germinal center B cells and mitogenically activated B 

cells, respectively. Diffuse large B-cell lymphomas often show altered expression of B-cell 

lymphoma 6 (bcl-6), caused by a rearrangement of chromosome 3q27.(16) 

Burkitts lymphoma is an extremely aggressive form of DLBCL associated with a c-myc 

translocation. Burkitts lymphoma accounts for only 1-5% of all NHL in adults.(17) The c-myc 

expression is dysregulated by a balanced recombination event between chromosome 8 at breakpoint 

q24 and either chromosomes 14, 2, or 22.(18) Combination chemotherapy treatments for Burkitts 

have shown up to an 8-year survival rate of 91% in low risk, 90% in low-intermediate risk, 67% in 

high-intermediate risk, and 31% in high risk cases.(19) 

 The MCL subgroup is defined as a moderately aggressive lymphoma with over 99% of 

cases carrying the t(11;14) rearrangement responsible for overexpression of cyclin D1.(20) The 

overexpression of cyclin D1 results in a pathogenesis of constitutive cell cycle dysregulation.(21) 

Originally, MCL’s were classified as a small cleaved cell lymphoma, however after the 

identification of the t(11;14) rearrangement in 1979 and its resulting oncogene, MCLs became a 

separate histology in 1991.(22) Although generally categorized as an aggressive lymphoma, 

indolent subtypes have been identified based on non-nodal disease.(21) The overall 5-year survival 

rate for MCL is generally 50% for advanced stage MCL and 70% for limited-stage MCL.(23, 24) 

 Chronic lymphocytic leukemia is an indolent form associated with increasing age, affecting 

mainly adults around 70. Chronic lymphocytic leukemia rates are higher in people of Jewish, 

Russian, and eastern European background. While CLL is often asymptomatic, with diagnosis 

made through routine blood counts, late stages can be very symptomatic including; fatigue, 

weight loss and large tumor burden. Poor risk features for CLL include expression of ZAP70, 
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CD38, non-mutated immunoglobulin heavy chain gene, and chromosome 17p (p53) 

deletion.(25) There were approximately 16,060 new cases diagnosed in 2012 and the estimated 

deaths are 4,580 per year with an 81% 5-year survival rate.(7)  

Despite the numerous diagnostic and treatment advances, innate and de novo acquired 

resistance to current chemotherapies remains one of the biggest obstacles to the successful 

treatment of patients with lymphoma.(26) An estimated 27% of patients will die because of 

resistance to chemotherapy.(7) Therefore, elucidating and targeting mechanisms of chemoresistance 

remains a key strategy for the successful eradication of NHL.  

 

Recent Advancements in Treatments of B-cell Non-Hodgkin’s Lymphoma 

 Recent advances in the treatment strategies for NHL have resulted in enhanced cure rates 

and a correspondingly increased group of long-term survivors.(27) Therefore, despite the increased 

incidence, lymphoma related deaths have been steadily declining.(11) Although treatment strategies 

vary by subtype, many chemotherapy regimens utilize similar basic combinations. The most 

common combination, CHOP, consists of cyclophosphamide, doxorubicin, vincristine, and 

prednisone. The introduction of novel biological therapies for NHL, such as the monoclonal 

chimeric anti-CD20 IgG1 antibody, rituximab, approved in 1997, have significantly reduced 

mortality of NHL patients.(28-30) Rituximab has been added to a score of standard therapies, in 

particular CHOP, now referred to as R-CHOP. In a 2-year analysis, R-CHOP had shown a 19% 

absolute improvement in event free survival rates and a 13% improvement in over-all survival rates 

when compared to CHOP alone.(29)   

 Multiple long-term complications of NHL treatment have been identified, providing a need 

to scan for therapies with less toxicity. The major long-term complications identified thus far in 

NHL patients post- irradiation and treatment with alkylating agents, especially cyclophosphamide, 

are an increased risk for myelodysplasia, acute myelogenous leukemia (alkylating and irradiation of 

bone marrow), and other types of cancer, including bladder (cyclophosphamide and irradiation), 

lung (CHOP), GI tract (CHOP), head and neck, thyroid gland, central nervous system, sarcoma, 

melanoma, and mesothelioma.(31) Beyond secondary tumors, cardiac disease and gonadal 

dysfunction have been observed as the most common delayed complications of NHL therapies.(31) 

Doxorubicin, a key component of NHL treatment regimens, is associated with cardiomyopathy and 

congestive heart disease with an incidence of 208 per 10,000 NHL patient-years.(31) One NHL 

study reported doxorubicin is associated with a 28% chance of ventricular dysfunction. Specifically 

in patients treated for DLBCL, the risk of congestive heart failure increased to 29%.(31) Gonadal 
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dysfunction seems to be more relevant in men, as women often resume their menstrual cycle.(31)  

With the growing number of survivors, these long-term complications will continue to rise, making 

clear the need for less toxic therapies for NHL patients to avoid long-term complications and to 

increase the quality of life post-NHL.  

Although there have been improvements in the effectiveness of current treatments, patients 

still suffer from early deaths with lymphoma, making it necessary to identify novel therapeutic 

approaches. Therefore, we are focused on finding new treatment targets in B-cell lymphoma to 

enhance the ability to cure patients and to overcome the major hindrances to survival, 

chemotherapeutic resistance and relapse, without adverse side effects. Chemoresistance of tumor 

cells to current clinical treatments may represent an extensive network of responses and 

mechanisms. Current research on chemoresistance mechanisms have focused on a diverse number 

of mechanisms such as decreased efficacy of drug efflux, downregulation of tumor suppressor 

genes, overexpression of oncogene and anti-apoptotic proteins, and modification of the DNA 

damage response elements.(32-36) The working hypothesis in our laboratory is that inhibition of 

a natural form of cell death, apoptosis, is a major reason for the chemotherapeutic resistance of 

B-cell lymphomas. Our group is actively seeking a basic understanding of the underlying 

mechanisms and pursuing strategies to overcome this inhibition of cell death in B-cell 

lymphomas. 

 

Apoptosis 

The elimination of unwanted cells has been observed as having an important role in 

multiple biological processes including embryogenesis, immune monitoring, clonal deletion of 

autoreactive T-cells, tissue remodeling, viral clearance, and even tumor regression.(37, 38) 

Therefore, the process of the host eliminating unwanted cells is a pivotal factor in maintaining 

homeostasis and development of organisms. This process of programmed cell death was termed 

apoptosis by Kerr et al., in 1972, as derived from the Greek term for falling of petals from trees.(39) 

Apoptosis differs from other forms of cell death as it results in multiple morphological changes that 

have been clearly characterized. Necrosis, another form of cell death, is a chaotic process resulting 

in swelling, disorganized breakdown of organelles, and membrane rupture.(40) In contrast, 

apoptosis is a biochemically distinct mode of cell death characterized by cell shrinkage, membrane 

blebbing, apoptotic body formation, and deoxyribonucleic acid  (DNA) fragmentation, often 

followed by phagocystosis by other cells, including neighboring cells and macrophages.(39) 

Apoptosis can be monitored independently of other cell death types by measuring the extent of 
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phosphatidylserine flipping from the inner membrane of cells to their outer surface, a biochemical 

change specific to apoptotic cell death.(41) The DNA fragmentation during the late stages of 

apoptosis is also specific, producing DNA fragments of about 180 base pairs, and is another method 

for monitoring apoptosis.(38)  

One highly studied method of initiating apoptosis occurs through the signaling of death 

receptors. The most well characterized family of death receptors, the tumor necrosis factor (TNF) 

receptor superfamily, is highly regulated and many of the receptors also function in cell survival, 

proliferation, and immune regulation. The TNF receptor with a clear role in apoptosis regulation 

identified as TNF receptor superfamily member 6 or FS-7 associated surface antigen, Fas, is the 

focus of this project.(38) 

 

Fas 

In 1985 Aggarwal et al. discovered the first death receptor termed tumor necrosis factor 

receptor (TNFR).(42)  This discovery led to the identification of the entire new super family of 

death receptors, TNF receptor superfamily, and eventually to the discovery of one of the most well 

characterized receptors, Fas. Nagata et al. were the first to clone Fas and map the essential cysteine-

rich domains of the transmembrane protein necessary for apoptosis initiation by Fas.(38)  

Fas is naturally expressed in the thymus, liver, heart, and ovaries.(43) Fas messenger 

ribonucleic acid (mRNA) transcripts exist as 6 splice variants.(44) However, Fas protein exists in 2 

forms, a membrane-bound form and soluble Fas (sFas).(44) The membrane-bound form contains 3 

extracellular cysteine-rich domains (CRDs) approximately 40 amino acids in length with 6 

conserved cysteine residues, a transmembrane domain, and a 70-amino acid intracellular death 

domain (DD) necessary for transmission of the extracellular death signal into the cells.(45) The 

soluble forms, produced by 5 of the alternative mRNA splicing variants, consist only of portions of 

the extracellular domain.(44) It has been shown that the soluble form of Fas can be released to 

compete with Fas receptors for its ligand, thereby acting as an inhibitor of activation.(46)  

In addition to splice variants, Fas also undergoes multiple post-translational modifications. 

Fas has two N-glycosylation sites within the extracellular domain of Fas at N118 and N136.(47) It 

has been shown that there is about a 3 kilo Dalton (kDa)-size difference between glycosylated and 

unglycosylated Fas, as represented by a double band of 45kDa and 48kDa found by SDS-PAGE 

separation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), however this size can vary 

between cell types.(47, 48) In addition to glycosylation modifications, Fas is reported to be 

sialylated on the N-linked oligosaccharide chains. The multiple sialylation events can account for 
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up to an 8-kDa change in Fas’ molecular mass.(49) It has been determined that both glycosylated 

and non-glycosylated Fas can be presented on the surface and that both forms of Fas can be 

excreted in vesicles from colorectal carcinoma cells. However, mutation of the glycosylation sites 

does not affect either transport to the cell surface (47, 48) or sensitivity to apoptosis and 

downstream signaling events.(47, 50) Moreover, despite total removal of all glycosylated residues 

of Fas, Fas-mediated apoptosis remains intact.(47, 51) Overall, the literature suggests that the 

glycosylation of Fas affects neither its transportation nor its ability to signal apoptosis.  

 

Fas Apoptotic Signaling 

In 1993 the corresponding ligand for the Fas death receptor was cloned (52) and eventually 

the remaining family member ligands were discovered. The TNF superfamily ligands share 

multiple structural elements including (β-sheets) and transmembrane domains, and mechanisms of 

receptor activation through oligomerization. Fas is activated by two methods; either receptor 

binding, through a trimeric association of receptor and trimeric binding of the ligand subunits of 

FasL (Fas ligand), and receptor aggregation in lipid rafts.(53) The carboxy-terminal domain of 

FasL has been determined to bind the Fas receptor; a deletion of only 3 amino acids can interfere 

with Fas receptor binding.(54)  

Fas trimerizes through interaction of the amino-terminus end (N-terminal) pre-ligand 

assembly domains (PLAD).(44) Preassembled trimers bind FasL and the activation continues with 

the opening of the hydrophobic core of Fas by the fusing of helices 5 and 6 of the DD, a region 

essential for signaling apoptosis.(38, 55, 56) Similar domains are found in multiple death receptors 

including TNFR1, Tumor necrosis factor related inducing ligand receptor 1 (TRAILR1), TRAILR2, 

and TNF receptor-related apoptosis-mediating protein (TRAMP).(55, 57) This DD binds similar 

DDs, including death domain adaptor proteins containing homologous DD’s to TNF receptors.(58) 

The adaptor protein involved in Fas signaling is referred to as FADD (Fas-associated death domain) 

and can also act as an adaptor protein for TNFR-1, TRAIL-R1, and TRAIL-R2. FADD’s DD is 

composed of 6 helices at the carboxy-terminus end (C-terminal) domain and binds receptors when 

phosphorylated.(58-61) 

 After forming a complex with Fas, FADD uses its additional 6 helices in the N-terminal 

domain, termed the DED (death effector domain), for recruitment of cysteine proteases crucial for 

apoptotic signaling.(56) Cysteine-dependent aspartate-directed proteases, termed caspases, known 

for cleaving substrates after the P1 aspartic acid residue, include two initiator caspases, caspase-8 

and caspase-10.(59, 60, 62, 63) The caspases’ resting state or zymogen state is termed procaspases. 
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Caspase-8, a ubiquitously expressed protein except in fetal brain, binds to FADD through its N-

terminal pro-domain DED.(61, 62) The formation of the death-inducing signaling complex (DISC) 

consisting of Fas, FADD, and caspase-8 is necessary for the induction of apoptosis (Figure 1). After 

formation of the DISC complex, a conformational change in caspase-8 allows for the 

autoproteolytic cleavage at three aspartate residues, allowing for a heterotetrameric formation of 

caspase-8 into its effector subunits, p10 and p18.(64) Caspase-10 is the only other cysteine protease 

known to have a DED homologous to caspase-8 and is found on the same region of chromosome 

2q33-34, suggesting a shared ancestry.(65) Caspase-10 also has the ability to bind FADD and 

induce apoptosis through Fas and TNF signaling, however caspases-8 and -10 do have 

biochemically distinct cleavage and inhibition specificities.(63, 65) At this point, based on cell 

predisposition, apoptosis in the cell can proceed via two distinct signaling cascades. 

Figure 1: 

 
Figure 1: Death-inducing signaling complex (DISC). 
Schematic of the Fas death receptor and the Fas ligand induced activation/assembly of the 
DISC.    
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In the type I signaling cascade, initial cleavage of caspase-8 is followed by receptor internalization 

and more robust caspase-8 activation at the endosomal membranes.(66) The p18 and p10 subunits 

directly activate additional caspases, known as effector caspases, and bypass the cells 

mitochondria.(67) The executioner or effector caspases include caspases-3,-6,-7,-4 and -9. After 

activation by proteolytic cleavage, the zymogen forms into a heterotetrameric complex of two large 

subunits.(62) Activation of caspases leads to the cleavage and proteolysis of many protein 

substrates resulting in apoptotic dissolution of a cell.(68) The substrates of caspases include 

proteins involved with genomic function, cell-cycle regulators, and structural proteins.(68) One of 

the first substrates known to be cleaved by caspases, therefore making its cleavage useful as a 

marker of cell death, is PARP (DNA repair enzyme poly(ADP-ribose) polymerase).(68) Another 

important cleavage substrate is the inhibitory unit of the caspase-activated DNase (ICAD); by 

removing the inhibitory unit the DNase, the CAD translocates to the nucleus to degrade DNA, 

eventually culminating in the death of the cell.(69)  

 In type II signaling, the cleavage of caspase-8 at the DISC is limited but sufficient to cleave 

Bid into tBID (truncated BH3-interacting-domain death agonist) which activates mitochondrial 

amplification of the death signal.(66, 67) Then, tBID triggers oligomerization of B-cell lymphoma 

2 associated X protein (Bax) and B-cell lymphoma 2 homologous antagonist/killer (Bak) to form 

pores in the mitochondrial membrane in order to release cytochrome c into the cytosol.(70) 

Cytochrome c along with apoptotic protease activating factor one (apaf-1) and deoxyadenosine 

triphosphate (dATP) form an apoptosome that is responsible for the proteolytic cleavage and 

activation of caspase-9.(71, 72) Caspase-9 than in turn activates effector caspases-3 and -7, merging 

with the type I apoptotic signaling cascade to complete cell death.(66, 68) Monitoring the 

mitochondrial membrane potential is an effective way of determining apoptosis induction in type II 

signaling.(73) B cells are known to signal primarily through type I signaling.(74) 

 Although clearly defined as an apoptotic initiator, Fas has more recently been implicated in 

non-apoptotic signaling. Overwhelming evidence now suggests that Fas and FasL can promote cell 

survival in cancer cells. Activation of Fas can produce survival signals through activation of 

nuclear factor kappa-light-chain-enhancers of activated B cells (NF-kB).(75) However, a switch 

between apoptotic and survival Fas signaling has yet to be elucidated and remains a key to our 

understanding of the Fas receptor role in health and disease.(76) 
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Fas-mediated Apoptosis in Disease 

Programmed cell death is a selective process aimed at eliminating defective cells; therefore, 

in order to avoid inappropriate apoptosis, the Fas-mediated apoptotic system has to be tightly 

regulated. Logically, the imbalance of this tightly controlled system contributes to the development 

of multiple diseases.  

Fas-deficient (lpr) and FasL-deficient (gld) mice develop lymphoproliferative disorder 

characterized by the accumulation of activated lymphocytes, mainly T cells, in the spleen and 

lymph nodes, accompanied by autoimmune diseases.(43) The lpr defect also presents with large 

amounts of Immunoglobulin (Ig)G and IgM autoantibodies, including anti-DNA antibodies. 

Additionally, lpr mice produce rheumatoid (Rh) factor and present with a phenotype resembling the 

human autoimmune disease, systemic lupus erythematosus (SLE), suggesting that Fas is necessary 

for the negative selection of autoantigen-targeting T cells.(77) The gld defect, caused by a missense 

point mutation in fasl, changing phenylalanine to leucine at position 273 of the FasL C-terminal 

domain, abolishes FasL’s ability to induce apoptosis.(43, 78)  

Mutations of Fas identified in humans result in autoimmune lymphoproliferative syndrome 

(ALPS) characterized by lymphadenopathy, hepatosplenomegaly, autoimmunity, and altered T-cell 

populations.(79) ALPS also encompass’ human lymphoproliferative diseases resulting from 

mutations within the Fas-apoptotic pathway including caspases-8 and -10.(79) The Fas mutations 

causing ALPS include a deletion of the DD, lack of Fas on the cell surface, and a frame-shift 

mutation rendering the protein unable to signal.(45) The phenotypes of these mutations suggest a 

critical role of Fas in immune system homeostasis.(45, 80) 

In addition to ALPS, Fas signaling defects have been implicated in cancer formation and 

progression. Although Fas mutations are not extremely common in cancer, multiple abnormal 

modulations of Fas-mediated signaling are implicated in the development of cancer.(81) It has been 

reported that multiple cancers upregulate FasL, sFas, and multiple inhibitors of the Fas signaling 

cascade. Although the physiological functions have not been completely defined, it is hypothesized 

that FasL upregulation and release may contribute to the protection of cancer cells from T cells in 

the tumor microenvironment.(82)  

 

Fas Receptor-Targeting Inhibition Mechanisms 

One of the six hallmarks of cancer, defined by Robert Weinberg, include the adaptation of 

cancer cells to evade apoptosis, a key regulatory mechanism that allows the cells to become 

oncogenic.(83) However, only some cancers have mutations in the Fas alleles and Fas surface 



10 
 

expression does not always correlate with susceptibility to FasL-induced apoptosis, raising the 

question of how Fas is dysregulated in cancers and how cells circumvent self-destruction.(81) One 

potential mechanism is the presence of inhibitors of the apoptosis-signaling cascade; thus the 

overexpression of inhibitors of Fas-mediated apoptosis represents one of the escape mechanisms 

employed by cancer cells.  

The first and most proximal step of apoptosis can be targeted by cancer cells through 

interference with ligand binding to the Fas receptor. Tumor cells can avoid detection and 

cytotoxicity of the immune system by releasing sFas, which blocks the killing effects of FasL.(84) 

The release of sFas was shown to correlate with a worse prognosis of multiple cancers, including 

lymphomas and leukemias.(46, 85) Increased sFas levels, as compared with those of healthy 

donors, were seen in patients with T-cell acute lymphoblastic leukemia, hairy cell leukemia, and 

CLL. Additionally, high sFas levels are associated with poor prognosis in aggressive NHL, 

particularly in the IPI’s high-intermediate and high risk groups.(85, 86) In one particular study, it 

was concluded that the sFas levels were significantly higher in those who failed to respond to 

therapy, suggesting that high serum sFas levels could, in fact, offer chemoresistance.(86) The 

correlation of sFas release with the inhibition of Fas-mediated apoptosis and chemoresistance 

further underscores the importance of determining the mechanism(s) of Fas regulation in cancer 

cells.  

Other known competitors for ligand binding are the membrane-bound decoy receptors, such 

as Decoy receptor 3 (DcR3), which lack the DDs necessary for signaling. These inactive receptors 

bind and sequester ligands and desensitize cells to Fas-mediated apoptosis.(87-89) Decoy receptor 

3 is upregulated in B- and T- cell lymphomas, and the overexpression of DcR3 in B-cell 

lymphomas correlates with an overall decreased survival.(90) The decrease in overall survival in 

DcR3-positive lymphomas also correlates with a poor response to CHOP chemotherapy and further 

delineates the desensitization to anthracyclines (e.g., doxorubicin).(90) The upregulation of DcR3 

also correlates with virus-positive lymphomas including Epstein-Barr virus (EBV) and Human T-

lymphotropic virus (HTLV).(91) The correlation between the escape of Fas in cancer and viruses is 

intriguing, as there may be additional undiscovered mechanisms of Fas signaling regulation. 

Moreover, the last 15 amino acids of Fas protein have been shown to interact with an 

inhibitory protein called Fas-associated phosphatase-1 (FAP-1), which has been shown to inhibit 

trafficking of Fas to the surface of cells, thereby preventing its activation.(92) Many of the Fas 

receptor-targeting inhibitory mechanisms clearly affect prognosis and outcome in lymphoma, 

leaving a clear target for therapy that remains mostly unexplored. 

 



11 
 

Downstream Inhibitors of Fas-mediated Apoptosis 

In addition to regulation of Fas-mediated apoptosis by receptor-targeting mechanisms, cells 

have multiple mechanisms to interfere with the downstream steps of the apoptotic cascade, such as 

inhibition of the assembly of the DISC complex and activation of the caspase cascade. In order to 

prevent cellular apoptosis during normal B cell maturation in the lymphoid germinal centers, B 

cells upregulate cellular homologue of FLICE inhibitory proteins (c-FLIP) which bind to the DISC 

and prevent Fas signaling.(81, 93) The c-FLIP protein contains two N-terminal DEDs that act in a 

dominant negative fashion, competing for caspase-8 recruitment to the DISC, and c-FLIP can also 

bind pro-caspase-3 and prevent its activation and thus apoptosis. An additional inhibition of Fas 

signaling stems from the alternative caspase-8 splicing into caspase-8L, which is missing the key 

catalytic sites for activation and thereby acts as an inhibitor of DISC activation.(94) PED/PEA-15 is 

a DED containing multifunctional cytosolic protein which, when biphosphorylated, binds to FADD 

and caspase-8 preventing DISC formation and thereby preventing apoptosis.(95, 96)  

The function of the key DISC adaptor protein, FADD, can also be regulated via post-

translational modifications. Protein kinase C phosphorylation of FADD can reduce its ability to 

form the DISC complex.(81, 97) Sentrin and ALG-2 (asparagine-linked glycosylation 2) are two 

other DD interacting proteins with opposite effects on signaling. Sentrin inhibits Fas- and TNFR1- 

mediated apoptosis and ALG-2 is necessary for successful signaling, yet their exact mechanistic 

roles have yet to be elucidated.(98, 99) 

The B-cell lymphoma 2 (Bcl-2) superfamily oncogenes are inner mitochondrial membrane 

proteins that block programmed cell death through inhibition of the mitochondrial-mediated arm of 

signaling. This superfamily includes Bcl-2, B-cell lymphoma extra-large (Bcl-xl), Mcl-1, Boo, A1, 

Bfl-1, Brag-1, and Bcl-w.(100, 101) B cells exhibit an inverse expression of Fas and Bcl-2 

throughout B-cell developmental stages and maturation, such as the upregulation of Fas and 

concerted downregulation of Bcl-2 in germinal centers during the antigen-dependent selection 

process.(102) 

Inhibitors of apoptosis proteins (IAPs), which interact with and inhibit caspases, include X-

chromosome-linked IAP (XIAP), survivin, cellular IAP1 (cIAP1), cIAP2, neuronal apoptosis 

inhibitory protein (NAIP), IAP-like protein 2, apollon, and melanoma IAP (livin).(103) XIAP, 

cIAP1, cIAP2, and IAP-like protein 2 inhibit caspase-8 activation. Caspase-3 and caspase-7 are 

inhibited by NAIP, XIAP, c-IAP1, c-IAP2, survivin, livin.(100, 101) Interestingly XIAP is the only 

IAP able to bind and inhibit active caspases.(70) 

Heat shock proteins 27 and 70 can inhibit apoptosis inducing factor (AIF) and the 

apoptosome formation.(100) ICAD, which is constitutively expressed in cells, prevents cleavage of 
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DNA by forming complexes with the endonuclease CAD. The localization of the ICAD/CAD 

complex is altered in various cancers and within lymphoma subtypes, with mainly a nuclear 

localization in normal B cells.(69, 104)  

Presently, we have very superficial knowledge of how cancers inhibit and escape antitumor 

apoptosis and chemotherapy-induced Fas activation. Although it appears to be a multistep event, a 

complete description of Fas regulation and its effects on chemoresistance will provide the potential 

to create and design novel therapies to enhance our ability to eradicate lymphoma. 

 

Fas and Chemoresistance 

Fas is implicated as a factor contributing to the success of many cancer treatment regimens, 

yet we know little about how to utilize this observation for a successful eradication of disease 

(Table 1). Resistance to genotoxic drugs can occur when Fas is inactive and unable to signal. 

Thymocytes of lpr mice are resistant to multiple chemotherapeutic agents including 5-fluorouracil 

(5-FU).(105) FasL-deficient gld-mice resist doxorubicin clearance of various tumors, implicating a 

role of Fas/FasL in doxorubicin cell death.(106) Blocking antibodies against the Fas receptor have 

been shown to markedly reduce the effectiveness of multiple chemotherapeutic agents including 

doxorubicin and bleomycin.(67, 107-109) Herr et al showed that transfection of antisense FasL 

protects against doxorubicin-induced cell death.(110) Doxorubicin-induced cell death is also 

diminished by overexpression of the dominant negative form of FADD (FADD-DN) in type I cells, 

specifically.(67, 111) Etoposide also shows decreased activity in type I cancer cells overexpressing 

FADD-DN, and concurring experiments have shown that both etoposide and doxorubicin induce 

DISC formation.(67) 

The inability of chemotherapeutic regimens to eliminate Fas-defective cells suggests the 

utilization of the Fas-/FasL system by our current chemotherapies (Table 1). Although many 

studies have found the role of the Fas pathway in chemotherapy-induced apoptosis as controversial, 

most authors agree that many therapeutic agents have sensitizing effects on Fas-mediated 

signaling.(112) Multiple therapies including cisplatin, mitomycin, methotrexate, mitoxantrone, 

doxorubicin, rituximab and bleomycin upregulate Fas (Table 2).(109, 113-115) The up-regulation 

of Fas occurs in response to therapeutic agents through a variety of mechanisms. A large number of 

our therapeutic agents work through inducing DNA damage, the resulting breaks in DNA are 

identified by ataxia telangiectasia mutated protein (ATM) or similar genes sensing DNA 

damage.(36) These response proteins subsequently modify p53 which results in its activation and 

transcriptional activation of Fas’s intronic p53 response element.(116, 117) The upregulation of Fas 



13 
 

can also occur independent of p53 response to chemotherapeutics. Interferon and tumor necrosis 

factor alpha are two cytokines that are often released by cells post-chemotherapeutic influx and are 

also responsible for the upregulation of Fas. Interferon’s activate Stat1 phosphorylation which 

increases the transcriptional activation of the Fas promoter (118), while tumor necrosis factor alpha 

activates NF-κB signaling resulting in the upregulation of Fas expression.(119) Histone deactelyase 

inhibitors have recently been introduced as a clinical treatment for cancer patients, and can induce 

transcriptional regulator sp3 activation.(120) Sp3 has been identified as an activator of Fas 

transcription.(121) In response to irradiation and other cell stressors the c-jun N-terminal kinases 

(JNK) pathway is activated which results in the activation and transcriptional activation of c-jun, a 

potent activator of Fas expression.(122) Thus, cells can use an extensive network of response 

elements to activate Fas expression post-chemotherapeutic treatment. 

Additional modulation of the Fas receptor system occurs through the upregulation of FasL 

by multiple therapies including doxorubicin, cytarabine, etoposide, teniposide (VM-26), cisplatin, 

bleomycin, irradiation, paclitaxel, thiadiazolide derivatives, ABT-510, and antimetabolites such as 

methotrexate and 5-FU (Table 2).(109, 114, 123-131) FasL upregulation is independent of the p53 

DNA damaging response pathway, and can occur through the activation of NF-κB and sp1 

transcriptional elements.(113, 132) 

Additionally, chemotherapeutic agents modulate signaling events further downstream 

within the Fas apoptotic cascade including upregulation of FADD and caspase-8. FADD and 

caspase-8 overexpression occurs during treatment with theaflavins, doxorubicin, cisplatin and 

mitomycin C.(133, 134) Chemotherapeutic drugs, including rituximab and doxorubicin, have also 

been reported to increase recruitment of DISC proteins.(67, 115) Curcumin, a potent cancer 

prevention method and treatment used in melanoma, activates the Fas pathway by inducing Fas 

expression and aggregation, in addition to down regulating XIAP.(135)  

Several reports disagreeing with Fas’ role in chemotherapeutic responses have concluded 

that drug-induced apoptosis does not rely on Fas, although their use of CD95 blocking antibodies 

and caspase inhibitors did decrease efficacy of current chemotherapies.(136-140) However, all of 

these reports used type II signaling cells (136-138), which have been shown to be less reliant on the 

Fas/FasL system for genotoxic drug-induced cell death.(67) These results suggest that the reliance 

on Fas-mediated apoptosis in genotoxic cell death varies between cell types. However, many of 

these studies did reveal utilization if not dependency on the Fas/FasL system or a synergy between 

chemotherapeutic drugs and the Fas system. Overall the data does not undermine the importance of 

Fas in chemotherapy responses.(137-139) 
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The knowledge that the Fas/FasL system is not fully functional in all cancers and that there 

is a clear resistance of cells deficient in Fas signaling to multiple chemotherapies indicates that 

elucidation of modulators responsible for Fas resistance would have great potential to restore Fas 

signaling and possibly enhance current treatment strategies and outcomes.  
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Table 1: Fas and FasL’s Roles in Chemotherapy-induced Cell Elimination. 

Evidence for FasL/Fas Modulation by Chemotherapy Induced Apoptosis 

Chemotherapies upregulate FasL (109, 114, 123-131) 

Chemotherapies upregulate Fas (109, 113-115) 

Upregulation of Fas is functional (chemotherapy sensitizes cells to Fas-crosslinking) (67) 

Fas-resistant clones are resistant to anticancer therapies (105) 

FasL-negative clones are resistant to chemotherapeutics (106) 

FasL is necessary for caspase-8 activation in doxorubicin treated cells (114) 

Recent findings suggest that genotoxic drugs and other chemotherapies utilize various steps of Fas-

mediated apoptosis for functional cell killing.  

 
 
Table 2: Chemotherapies that Regulate Fas-mediated Apoptotic Factors.  

Chemotherapy Fas 

Upregulation 

FasL 

Upregulation 

Fas-FasL 

Dependency 

Doxorubicin (106, 114, 141) + + + 

Cisplatin (136, 142, 143) + +  

Mitomycin (113, 133) +   

Methotrexate (113, 143, 144) +   

Mitoxantrone (113) +   

Bleomycin (109, 113, 145) + + + 

Cytarabine (111, 123, 144, 146, 147)  +  

Etoposide (123, 126, 147)  + + 

VM-26 (123)  +  

5-FU (105, 130)  +  

Thiadiazolidine (129) 

Derivatives (129) 

 +  

Paclitaxel (130)  +  

ABT-510 (123)  +  

λ- irradiation (123, 127)  +  

Betulinic Acid (123) _ _  

Fludarabine (123, 137)  +  

Chemotherapies that upregulate Fas and or FasL and their receptive dependencies on the 

Fas/FasL system, as determined by blocking antibodies.  
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Fas in Non-Hodgkin’s Lymphomas 

Although Fas is often expressed normally in B-cell lymphomas, certain changes in Fas were 

found to be associated with each diagnosis. In a study of 150 NHL patients, the nine exons of the 

Fas gene were sequenced, and it was determined that 11% of sporadic NHL’s harbor Fas 

mutations. Of the sixteen identified mutations, six were missense variations in exon 9, encoding the 

DD. The Fas mutations were identified in a CLL, two FL’s, three low-grade mucosa-associated 

lymphoid tissue (MALT) lymphomas, nine DLBCLs, and one anaplastic large cell lymphoma. Of 

these patients, 94% showed extranodal involvement, and 37% presented with recurrences, 

suggesting that Fas mutations in NHL patients correlate with extranodal disease presentation.(148)  

Diffuse large B-cell lymphomas have been shown to express a wide range of Fas expression 

levels on the cell surface. Mantle cell lymphoma and SLL express little Fas.(149) Large cell 

lymphoma and FL cells are known to express high Fas levels.(148, 149) Nonetheless, while these 

cancers are resistant to Fas agonists, they are sensitive to the activation of perforin/granzyme B 

pathways, (148) suggesting a non-functional Fas signaling. 

Mantle cell lymphomas often show abnormal expression of Fas and its signaling cascade 

components. First, it has been determined that there is a significant downregulation of Fas 

expression in MCLs.(148) An MD Anderson study showed that while 29% of normal cells 

expressed Fas only 2.1% of MCL cells had Fas expression.(20) Furthermore, it has been 

determined that FADD, caspase 2, and other apoptosis-related genes, are substantially 

downregulated in mantle cell lymphoma tumor samples.(150) The biological consequence of a 

disrupted Fas-apoptotic pathway is decreased Fas sensitivity and Fas-apoptotic impairment in 

MCLs.(20, 148) 

 A resistance to Fas-mediated apoptosis could be one mechanism involved in the 

development of B-cell malignancies and a potential escape mechanism of the tumor’s B cells from 

the immune regulatory system. However, the mechanisms behind Fas evasion differ among 

lymphomas and individual patients and thus, are responsible for our lack of clear knowledge of all 

the mechanisms for Fas inhibition. 

 

Nucleolin 

Nucleolin is a ubiquitously expressed multifunctional protein of 713 amino acids with a 

predicted molecular mass of 77kDa. It was originally identified as a nucleolar protein that can 

account for up to 10% of the total nucleolar region.(151, 152) The nucleolin gene consists of 14 

exons and 13 introns located on chromosome 2q12-qter.(153) It has a characteristic GC-rich 
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Figure 1: 

Adapted from MMDB ID: 81788. 
RBD1(Red) RBD2(Blue). (1)  
 
 

promoter sequence often found in housekeeping genes.(152) Interestingly, three small nucleolar 

RNAs (snoRNAs: U20,U23, and U82) are encoded in introns 11, 12, and 5, respectively.(154, 155) 

The nucleolin protein consists of three different 

structural domains consisting of a highly acidic and 

highly phosphorylated N-terminal domain (151), four 

central RNA-binding domains (RBDs), and a 

glycine/arginine rich C-terminal domain (GAR) with 

high levels of NG, NG-dimethylarginines.(151) 

 The negatively charged amino acids within 

nucleolin’s N-terminal domain are responsible for 

nucleolin’s apparent 105kDa molecular weight by SDS-

PAGE separation.(152) This region also contains a 

nuclear localization signal and multiple modification 

sites, including self-proteolytic sites that control many 

of nucleolin’s functions throughout the cell. The N-

terminal domain has also been implicated in interactions with chromatin and nucleic acids.(152) 

 Human nucleolin consists of 4 central 

globular RBDs that contain alternating hydrophobic 

and hydrophilic stretches with a suggested pocket 

structure (Figure 2).(167) The first two RBDs 

constitute the recognition sites of a small RNA stem 

loop structures present in ribosomal ribonucleic acid 

(rRNA) and the 5’UTR and 3’UTR of the 18S and 

28S RNA sequences.(163) RBD’s 3 and 4 are 

involved in nucleolin’s association with G-rich DNA, 

adenosine triphosphate (ATP), guanosine 

triphosphate (GTP), deoxyadenosine triphosphate 

(dATP), deoxyguanosine triphosphate (dGTP), 

telomerase, and human homolog of mouse double 

minute 2 (HdM2).(152, 162, 165, 168) 

 
 The GAR of nucleolin consists of repeated type 

I ß-turns that are known to facilitate interactions with 

proteins.(158, 160) This domain is interspersed with 

C-terminal GAR Binding Partners 

ErbB receptors (156) 

p53 (157) 

Nucleic acids (158) 

G-G paired DNAs (159) 

ssDNA (151) 

RNA helices (160) 

Urokinase (161) 

Ribosomal proteins (162, 163) 

HIV (164) 

hTERT (165) 

PRMT5 (166) 

Table 3: Binding Proteins of Nucleolin’s 
GAR Domain.  
 

Published results reveal multiple 
binding proteins to the GAR domain of 
nucleolin.  

Figure 2: Ribbon Representation of 
Nucleolin’s RBD1 and 2. Analyzed 
from NCBI molecular modeling 
database. (1, 2).  



18 
 

dimethylarginine and phenylalanine residues.(160) Multiple heterogeneous nuclear 

ribonucleoproteins (hnRNPs), pre-mRNA processing and pre-mRNA nucleocytoplasmic transport 

proteins, have similar C-terminal GAR domains.(169) The GAR domain contributes to DNA 

interactions, localization to the nucleoli, and unwinding of RNA for recognition and 

accessibility.(158, 160, 162, 170) The GAR domain has also been shown to dissipate from the 

essential role of rRNA processing, and is additionally used for multiple protein-protein interactions, 

including viral proteins (Table 3).(156, 157, 163, 164, 166, 168, 171) Additionally, the 

autocatalytic protease activity of nucleolin has been mapped to its GAR domain.(152) 

There is an emerging pattern of stimulations and modifications that control the 

multifunctional aspects of nucleolin’s actions throughout the cell. Nucleolin’s modifications 

include phosphorylation, glycosylation, ADP ribosylation, arginine methylation, and proteolytic 

cleavage.(166, 172) Nucleolin is phosphorylated on serine and threonine residues within its N-

terminal domain.(173) Nucleolin glycosylation involves both N- and O- linked sugars. Two N-

glycosylation sites have been identified at N317 and N492. Five potential O-glycosylation sites are 

predicted at T84, T92, T2105, T106, and T113.(174, 175) Additionally, the premature termination 

of glycosylation, a cancer-related occurrence, results in the incomplete O-glycosylations termed T 

and Tn antigens and have been identified specifically on surface- and cytoplasm- expressed 

nucleolin.(174)  

Moreover, nucleolin is a self-proteolytic protein, which autocatalyzes its own degradation; 

the degradation product bands of 95, 76, 70, 60, and 50 kDa are readily visible on 

immunoblots.(176, 177) The cleavage products of 60 and 50 kDa cannot be detected with 

nucleolin’s N-terminus targeting antibodies, suggesting that these products correspond to the C-

terminal portions of nucleolin.(178) The full-size 105kDa nucleolin protein is stable and increased 

in proliferating and activated cells, versus resting and non-dividing cells.(176, 179-181).  The 

cleavage products increase with decreased proliferation and are intricately regulated with 

preribosome maturation.(177) Therefore, it is not surprising that nucleolin’s synthesis is in parallel 

with the increased rates of cell division and ribosomal gene activity.(152, 177, 181) Nucleolin’s 

expression is stimulated in multiple cells during the G0-G1 transition and mitosis.(152, 181)  On the 

other hand, its expression is low in non-dividing and serum-deprived cells.(152)  

Nucleolin has also been identified as the substrate for several kinases including casein 

kinase II (CKII), p34cdc2, protein kinase C-ζ, and potentially cyclic-AMP kinases, all of which have 

been implicated in cell cycle-specific interactions with nucleolin.(152, 173, 182, 183) Specifically, 

cdc2 kinase phosphorylates nucleolin at a threonine residue during mitosis and stimulates nucleolin 

mitotic reorganization as well as controls its helicase activity.(152, 170, 173, 184)  Serine 
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phosphorylation of nucleolin by CKII during interphase is necessary for transcription of rDNA 

genes and for nuclear-to-cytoplasmic translocation of nucleolin, which is enhanced in tumor and 

embryonic cells (Table 4).(152, 170, 171, 184) 

The diverse roles of nucleolin throughout the cell have been extensively studied; however, 

the most pivotal role remains its essential function in the regulation of rRNA and ribogenesis.(151, 

152, 163, 180, 185, 186)  In addition to nucleolin’s role in rRNA biogenesis, recent evidence 

suggests a role in micro ribonucleic acid (miRNA) processing and stabilization through interaction 

with Drosha.(187) Some of the most studied aspects of nucleolin’s functions, outside its nucleolar 

roles, are processes involved in DNA repair and recombination. These include DNA 

decondensation/chromatin formations through inhibitory interactions with histone H1 and H2AX 

(151, 188, 189), nucleogenesis, DNA/RNA helicase activity (although there are some discrepancies 

and controversies regarding this activity) (170, 190), ssDNA annealing (162), DNA-dependent 

ATPase (170), telomerase localization (165), transcriptional regulation (191-194), interaction with 

DNA repair proteins p53, Y Box-binding protein 1 (YB-1), Rad51, proliferating cell nuclear 

antigen (PCNA), mediator of DNA damage checkpoint protein 1(MDC1), replication protein A 

(RPA), (157, 189, 190, 193, 195-200) and class switching recombination in B-cells.(201, 202) For 

simplicity, these functions are summarized in Table 5. The relationship between nucleolin’s 

nucleolar activities, DNA repair, recombination, and transcription suggests that nucleolin is 

intricately involved in the fundamental aspects of cell proliferation and growth.(152)  

 

Localization of Nucleolin  

 The localization of nucleolin has been avidly pursued in the last 10 years as multiple 

functions have been attributed to nucleolin based on its various positions within the cell, yet its 

translocation mechanism remains elusive. As mentioned above, nucleolin is mainly localized to the 

nucleolus of eukaryotic cells.(177, 203)  Its position within the nucleus during the cell cycle has 

been well characterized.(185, 204-206) During interphase, nucleolin is localized in the 

nucleoli.(207) During mitosis, nucleolin’s localization changes with the progression of the cell 

cycle; it is seen at discrete sites on metaphase chromosomes and is relocated to the cytoplasm after 

nucleolar disintegration. During mitotic disassembly, nucleolin redistributes to the 

perichromosomal sheath and the cytoplasm.(207) In telophase, nucleolin accumulates in 

prenucleolar bodies and in the reforming nucleoli.(206) Many of the localization changes 

throughout mitosis are linked to modifications by V-src, cdc2 kinase, p38α (Table 4).(208) During 

S phase, nucleolin’s DNA binding activity becomes more prominent.(162, 209)  
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Beyond cell cycle regulation of nucleolin’s localization, nucleolin has been implicated in 

responses to trauma and environmental stressors, resulting in further changes to nucleolin’s location 

in the cell. Heat shock can very quickly (5-15minutes) cause a redistribution of nucleolin from the 

nucleolus to the nucleoplasm in a p53 dependent manner.(190, 196, 199) This phenomenon has also 

been shown with other stress inducers including gamma-irradiation, camptothecin treatment, and 

topoisomerase I inhibition, with a p53 dependency (Table 4).(157, 190)  

  



21 
 

Table 4: Cell Treatments Effects on Translocation of Nucleolin. 

 Translocation Response Function 

Heat shock (210) Nucleolar Nucleoplasm Inhibition of chromosomal and DNA 

replication 

γ-irradiation (172) Nucleolar Nucleoplasm  

Camptothecin (211) Nucleolar Nucleoplasm  

Topoisomerase I inhibitor (212) Nucleolar Nucleoplasm  

Protein kinase C-ζ (183) Nucleolar Nucleoplasm  

Mitotic disassembly (207) Perichromosomal Sheath  

Cytoplasm 

 

Inhibition of rRNA synthesis (212) Nucleus  Cytoplasm  

CKII serine phosphorylation (213) Nuclear  Cytoplasmic During Interphase, increase in ribosome 

biogenesis 

PI3K/c-src phosphorylation (214) 

PTN (215) 

Cytoplasm  Surface 

Cytoplasm  Surface 

 

VEGF  (216)   Cytoplasm  Surface  

Serum addition (217) Cytoplasm  Surface  

Laminin-1 (208) Cytoplasm  Surface  

LDLRP-1 (218) Cytoplasm  Surface  

Actinomycin D (175, 219) Cytoplasmic  Nuclear  

High salt concentration (190) Surface  Medium  

Cyclophosphamide (175, 219) Surface  Nuclear  

Tunicamycin (219) Surface  Cytoplasmic  

SAPK p38 activation (208)  Increased RNA binding activity 

Cdc2 kinase threonine 

phosphorylation (173) 

 During mitosis, Enhances helicase activity 

UV irradiation (220)  Increased RNA binding activity, binding of 

PCNA and Inhibition of NER, bcl-xl 

stabilization 

Fibroblast growth factor-2 (213)  Stimulates CKII phosphorylation of 

nucleolin, inducing proliferation and 

mitogenic responses 

IL-2 (221, 222)  Increased nucleolin mRNA expression 

Dexamethasone (223) 

 

 Decreases CKII phosphorylation of 

nucleolin and rRNA synthesis 

Various biological and chemical treatments can cause redistribution of nucleolin throughout the 

cell. The treatments, location changes and the resulting regulation on nucleolin are presented.  
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Adding another layer of complexity to nucleolin’s localization, nucleolin has been 

identified in the cytoplasm and on the cell surface. In intestinal cells and granulocytes, translocation 

of nucleolin from the nucleus into the cytoplasm occurs concomitantly with differentiation, 

implicating a role of nucleolin translocated-associated inhibition of rRNA synthesis during 

differentiation.(208, 224) Nucleolin’s nucleolar-to-cytoplasmic translocation is also associated with 

inhibition of DNA synthesis (Table 4).(196, 199) The nucleo-cytoplasmic trafficking of nucleolin 

has been confirmed by identification of nucleolin as a cytoplasmic-to-nuclear shuttling protein for 

the pro-survival proteins midkine and transforming growth factor beta (TGF-β) receptor 1.(152, 

218, 224-226) Beyond shuttling capacities, cytoplasmic nucleolin is associated with the 

stabilization of multiple mRNA’s including those of amyloid precursor protein, bcl-2, bcl-XL, and 

interleukin 2 (IL-2), resulting in additional survival mechanisms of the cell.(192, 220, 221, 227)  

There is a clear difference between isoelectric points of cytoplasmic and nuclear nucleolin 

suggesting that posttranslational modifications affect nucleolin’s cytoplasmic localization.(178) 

Phosphorylation and arginine methylation have been implicated in nucleolin’s shuttling abilities 

and potential contribution to the observed isoelectric point changes.(151, 169) Cytoplasmic 

nucleolin is reduced by inhibitors of protein synthesis, cyclophosphamide and actinomycin D, but 

not by glycosylation inhibitor tunicamycin, suggesting that newly transcribed and translated 

nucleolin carries out cytoplasmic functions independently of glycosylations.(175, 228)  

The localization of nucleolin on the cell surface is intricately associated with cell growth 

conditions and the proliferation status.(178) The molecular mechanism underlying the translocation 

of nucleolin to the plasma membrane is not fully understood. Nucleolin lacks a transmembrane 

domain or a glycosylphosphatidylinositol (GPI) anchor and is predicated to be held to the plasma 

membrane through an association with an unknown protein.(178, 216) Additionally, nucleolin does 

not translocate to the cell surface through the classical biosynthetic pathway involving the 

endoplasmic reticulum (ER) and Golgi, as inhibitors of this pathway do not affect nucleolin cell-

surface localization.(178) However, nucleolin has been identified in intracytoplasmic vesicles.(178) 

Cross-linking of surface nucleolin with nucleolin antibodies induces clustering, which resembles 

capping, typically observed in membrane-anchored antigens.(178) However, high salt 

concentrations dissociate nucleolin from the cell surface, suggesting that nucleolin associates with 

an integral membrane or GPI-anchored protein through isoelectrostatic interactions.(190) 

Moreover, it has been observed that tunicamycin and cyclophosphamide can inhibit surface 

nucleolin, suggesting that newly translated and glycosylated nucleolin is transported to the cell 

surface.(175, 219) On the other hand, nuclear nucleolin was unaffected by those inhibitors, 
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confirming that other modifications, listed above, control nucleolin trafficking to the nucleus and 

nucleolus.(210) Recent studies have shown that in endothelial cells, glioblastomas, and other 

integrin ανβ3 expressing cells, integrin ανβ3 and phosphatidylinositide 3 kinases (PI3K)/c-src 

signaling are necessary for the translocation of nucleolin to the cell surface.(214) Several molecules 

including vascular endothelial growth factor (VEGF), serum, laminin-1, low density lipoprotein 

receptor related protein-1(LDLRP-1), and pleiotrophin (PTN) have been reported to increase cell 

surface nucleolin (Table 4).(178, 208, 214, 216, 218, 229)  

Nucleolin’s localization at the cell surface is frequently followed by internalization (171), 

or it can eventually be released from the extracellular membrane.(178) Surface-localized 

nucleolin’s degradation half-life is estimated between 45 minutes and one hour, while nuclear 

nucleolin’s half-life is estimated to be up to twenty-four hours, suggesting that nucleolin’s surface 

localization is tightly regulated.(210) Internalization of nucleolin occurs only at 37°C and higher 

temperatures and is abolished at lower temperatures, implying an active internalization 

process.(178, 229, 230) Nucleolin’s entrance into the cell from the surface was determined to be a 

calcium-dependent entry.(210) One report suggests that nucleolin is closely associated with the 

globular actin within the cytoskeleton, and this can be a potential link between its surface 

localization and entry to the cell, as well as being a modulator of its receptor functions (described in 

the next section).(178) In angiogenic cells, non-muscle myosin heavy chain 9 (MyH9) was 

identified as a key player in the organization of nucleolin on the cell-surface.(216) The selective 

cell-surface expression of nucleolin in multiple types of cancer cells implies nucleolin as a potential 

therapeutic target. 

 

Nucleolin as a Receptor 

Although the mechanism of nucleolin’s delivery to the cell surface remains poorly 

understood, multiple interactions and functions within its surface expression have been identified. 

Nucleolin’s recent identification on the surface of cells was facilitated by the discovery of nucleolin 

as a docking protein or entry point for multiple viruses: coxsackie B viruses, hepatitis C, human 

immunodeficiency virus (HIV), and adeno-associated virus type-2 (AAV-2).(164, 231)  

The importance of nucleolin receptor functions in cancer biology was highlighted by 

identification of its ligands, which play a critical role in tumorigenesis and angiogenesis, and by 

relevant transport of multiple pro-survival factors by nucleolin. Nucleolin was identified as the 

receptor for PTN, an angiogenic and mitogenic growth factor,(215, 232); apoB- and apoE- 

containing lipoproteins; and laminin-1 neurite-promoting IKVAV site, a neurite growth and 
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maintenance factor.(233, 234)  Nucleolin is also a receptor for the helicobacter pylori TNF-α 

inducing protein (Tipα), and translocates Tipα into the cell where it engages in the carcinogenic 

process.(235) Lastly, nucleolin mediates the internalization of endostatin, a proteolytic fragment of 

collagen XVIII and potent inhibitor of angiogenesis.(236, 237)  However, nucleolin-mediated 

endostatin internalization is restricted to endothelial cells, suggesting that nucleolin signaling varies 

with cell type.(237) In summary, numerous pro-survival functions attributed to nucleolin are 

associated with its selective extra-nuclear/cell surface localization. 

 

Pro-Survival Functions of Nucleolin  

Nucleolin’s roles in the nucleolar region, its function as a transcriptional regulator, and its 

receptor functions suggest nucleolin serves as a growth enhancing and pro-survival molecule. 

Furthermore, overexpression of nucleolin decreases p53 translation in response to DNA damage, 

suggesting a role in preventing growth arrest and apoptosis in cells.(168, 195) Multiple pro-survival 

molecules and cytokines, including IL-2, fibroblast growth factor -2 (FGF-2), and VEGF (213) 

(216) upregulate and modify nucleolin and enhances nucleolin’s pro-survival functions.(222)  

Nucleolin has been identified as a binding partner and potential regulator of many pro-

survival proteins including, insulin receptor substrate-1, -2, uPAR (urokinase specific receptor) 

(171, 238), laminin-1(234), L-selectin (239), and epidermal growth factor receptor (ErbB).(240) 

The growth factor, midkine, PTN, and heparin binding growth-associated nucleolin-interacting 

molecules are involved in mitogenic, angiogenic, and anti-apoptotic effects in transformed 

cells.(218, 241)  

Nucleolin has been extensively studied within the angiogenic system, because 

angiogenesis-specific cell-surface localization of nucleolin was observed.(216) It is reported that 

nucleolin’s interacts with PTN and stimulates angiogenesis.(232) Additionally, nucleolin binds the 

G-quadruplex-forming region of the VEGF gene promoter cis-element acting as transcriptional 

activator of VEGF, and is a transcriptional promoter of krüppel-like factor-2 during flow-specific 

stress.(242, 243) Anti-nucleolin polyclonal antibodies (pAbs) are able to prevent cell migration and 

tubule formation by angiogenic endothelial cells, (216) and nucleolin is also necessary for integrin 

ανβ3-stimulated migration.(214) 

Many of the mRNAs stabilized by cytoplasmic nucleolin are necessary for cell survival and 

oncogenesis, including bcl-2, bcl-xl, and metalloproteinase-9 (MMP-9).(220, 244, 245) Lastly, 

nucleolin’s role in oncogenesis has been characterized: it cooperates with the Ras oncogene in 

transforming rat fibroblasts, associates and blocks the tumor suppressor retinoblastoma protein (Rb) 
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to trigger human papilloma virus (HPV)-18 positive cervical carcinomas(246), and transcriptionally 

activates B-cell transformation genes c-myc and Epstein-Barr virus nuclear antigen-1(EBNA-1) as 

a part of the lipopolysaccharide-responsive factor 1(LR1) complex.(195, 201, 229, 247) 

Deregulated nucleolin expression is associated with hypertrophy of the nucleolus, a distinct 

cytological feature of cancer cells.(190) Proteomics analysis of etoposide, Adriamycin or 

mitoxantrone-resistant cell lines identified nucleolin overexpression associated with 

chemoresistance (248), suggesting an oncogenic and chemoresistant role of nucleolin in cancers.  

 

Nucleolin and the Apoptotic Pathway 

 Nucleolin’s localization during apoptosis has been extensively studied, as it was assumed to 

be a contributing factor to the distinctive morphological and biochemical events that determine cell 

death pathways. Nucleolin is clearly redistributed rapidly after apoptosis induction, leaving the 

nucleus to be relocated throughout the cell.(172) However, a fraction of nucleolin remains in 

micronuclei bodies referred to as HERDS (heterogeneous ectopic RNP-derived structures) that are 

enriched in nuclear matrix proteins and nucleolar proteins. Nucleolin is also released in apoptotic 

bodies during leukemia cell apoptosis, which leads to production of nucleolin autoantibodies if the 

apoptotic bodies are not efficiently cleared and autophagocytosed.(249) The nucleolin 

autoantibodies are the first autoantibodies that appear in the sera of SLE patients, as they are the 

earliest autoantibodies made.(250, 251) Interestingly, the model used to study SLE and 

autoantibodies production is a Fas-defective lpr mouse model. In a multiple sclerosis disease 

model, decreased nucleolin levels in the sera are a potential prognostic marker for a relapse.(252) 

Therefore, nucleolin’s localization and secretion during apoptosis is clinically important, yet its 

functions remain to be elucidated. 

In Burkitts lymphoma cell line BL60, nucleolin is cleaved after apoptosis induction, and 

caspase-3 inhibition prevents nucleolin’s cleavage.(253) Nucleolin’s cleavage has also been 

identified in association with another form of cell death, cytotoxic T-cell mediated granzyme 

degradation, in which nucleolin was identified as a substrate for granzyme A.(254) In this instance, 

cleaved nucleolin is utilized to activate autolytic endonucleases for DNA fragmentation. However, 

in a different study, ultraviolet radiation (UV) and camptothecin-induced apoptosis triggered 

nucleolin’s translocation into the nucleus, release in apoptotic bodies, and overall decrease in 

protein, without cleavage.(172, 211) Therefore, the cleavage of nucleolin may be cell type- and cell 

death pathway-specific, or the 76kDa nucleolin fragment observed in the former studies may be one 

of the cell cycle-specific, self-proteolytic sites of nucleolin and may not be representative of a 
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caspase-3-specific cleavage product. Nucleolin was also shown to increase its RNA-binding 

activity during genotoxic stress induced by ionizing or UV radiation through SAPK (stress 

activated protein kinase) p38 phosphorylation.(255) Therefore, nucleolin’s behavior during 

apoptosis in response to various stimuli and in different cell types needs to be clarified. 

In addition to changes in localization and potential modifications of nucleolin during 

apoptosis, nucleolin associates with and regulates multiple apoptotic proteins, including 

PARP.(172) Its association with PARP is hypothesized to be involved in translocation of PARP and 

nucleolin into apoptotic bodies and poly ADP-ribosylation of nucleolin.(172)  In a search for the 

receptor of sialoglycoprotein CD43 on monocytes and macrophages responsible for capping, an 

early apoptotic step for cells undergoing oxidized cell death, a nucleolin 50kDa fragment was 

discovered as the receptor for phosphatidylserine and CD43. The amino acids 295-302 were 

necessary for this recognition.(256) Also, Factor J, a cationic glycoprotein acting as an inhibitor of 

the complement activation, was identified as a ligand for surface nucleolin.(230, 257)  

Lastly, nucleolin is also an important stabilizer of anti-apoptotic mRNAs, binding the AU-

rich element (ARE) in bcl-2 mRNA and competing for binding of ARE binding/degradation factor 

(AUF1), thus preventing bcl-2 mRNA degradation.(258) Nucleolin also stabilizes anti-apoptotic 

bcl-xl mRNA.(220) These interactions, although they appear to be multifactorial, may expose 

nucleolin as a key regulator of the apoptotic pathway. 
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Table 5: Nucleolin Interacting Proteins and their Functions.  

Location Interaction Proposed Function 

Surface Phosphatidylserine (256) Macrophage receptor 

 CD43 (256) Macrophage receptor 

 Factor J (230) Inhibition of complement activation 

 uPAR (161) Induce translocation of receptor/ligand and stimulate mitogenic 

response 

 MyH9 (216) Translocation of nucleolin within surface and cytoplasm with 

VEGF stimulation 

 Endostatin (237) Receptor and surface  cytoplasmic  nuclear shuttling 

 Laminin-1 (234) Neurite growth and maintenance 

 Tipα (259) Receptor and surface  cytoplasmic  nuclear shuttling 

 Viral receptor (231, 260, 261) Coxsackie B, Hepatitis, HIV, AVV-2 

 PTN (232) Angiogenesis stimulation 

 ErbB (240) Receptor dimerization and phosphorylation 

 Integrin ανβ3 (214) Migration stimulation 

 Hepatocyte growth factor 
(262) 

Receptor and inducer of proliferation stimulation 

 LDL receptor (263) Low affinity receptor of HepG2 cells 

 L-Selectin (239) Receptor  and adhesion of leucocytes 

Cytoplasm bcl-2 ARE (258) mRNA stabilization 

 bcl-xl ARE (220) mRNA stabilization 

 MMP-9 (244) mRNA stabilization 

 APP 3’UTR (192) Cytoplasmic RNA stability 

 Granzyme A (254) Degradation protein of Granzyme A 

 YB-1 (221) IL-2 mRNA stabilization 

 Midkine (241) Anti-apoptotic cytoplasm  nuclear transport  

 PRMT5 (166) Nucleolin methylation 

 TGF-β receptor 1(226) Cytoplasmic  nuclear transport 

 HdM2 (264) Inhibition of p53 ubiquitination 

Nucleus LR1 complex (201) Immunoglobulin switch recombination, c-myc and EBNA-1 

transcription 

 Histone H1 and H2AX (188) Chromatin decondensation 

 Factor B B-motif (191) Transcriptional repression of AGP 

 RPL26 (193) Repression of p53 translation 

 p53(195) Inhibition of DNA replication and repair during stress 

 Rad51 (197) Recombinational DNA repair 

 MDC1 (189) Accumulation at DSB in DNA repair 
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Nucleolin is a multifunctional protein that interacts with various molecules throughout the cell. 

Described are nucleolin binding partners by location within the cell and the various roles of the 

interactions.  

 
  

 hRPA (196) Inhibition of chromosomal replication during stress 

 Viral proteins (246) Transcription factor 

 VEGF promoter (242) Transcriptional activator 

 Krüppel-like-factor-2 (243) Transcriptional promoter 

 Rb (247) G1 phase transcriptional repressor of HPV18 oncogenes 

 Insulin-receptor substrate- 1 
(238) 

Nuclear  cytoplasmic shuttling during differentiation 

 A- and C- Myb (194) Repressor of Myb transcriptional regulation 

 YB-1 (198) DNA repair  

 Telomerase (165) Telomerase nucleolar localization 

 PCNA (200) During stress inhibits NER   

 PRMT5 (166) Nucleolin methylation 

 Drosha (187) MicroRNA biogenesis 
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Nucleolin as a Prognostic Indicator of Neoplasms 

Nucleolin’s association and accumulation with silver-stained nucleolar organizer regions 

(AgNORs) correlates with cell proliferation in human cancers.(181) Since this initial finding, 

nucleolin has been assigned as a prognostic marker for a growing number of cancers. The 

Children’s Cancer and Leukaemia Group Biological Studies Committee was one of the first to 

report that high nucleolin levels were the single most important biological predictor of a worsening 

outcome in pediatric intracranial ependymomas.(265) A secondary study of childhood 

ependymomas by the Associazione Italiana Ematologia Oncologia Pediatrica, also determined that 

nucleolin protein expression was a credible prognostic marker for both worsened overall survival 

and decreased relapse-free survival rates.(266)  Most recently, another group further substantiated 

surface and cytoplasmic localization of the glycosylated form of nucleolin as a prognostic marker in 

gliomas. The antibody gp273 against the glycosylated form of nucleolin was able to decipher 

nucleolin’s localization throughout tumor cells.(267) Results obtained consistently showed an 

increase of glycosylated nucleolin in the cytoplasm and cell surface in high grade gliomas, 

suggesting that nucleolin’s deregulation and glycosylation-related changes in localization are a 

major contributing factor to poor outcomes in patients with gliomas. 

In a study designed to compare various stages of melanoma, it was shown that malignant 

and atypical lesions have abnormal nucleolin staining, but that abnormal staining appears during 

early melanogenesis, accumulates during melanoma progression, and presents a worse 

prognosis.(268) Furthermore, a significantly higher nucleolin nuclear expression was found in 

pancreatic ductal adenocarcinoma than in non-neoplastic pancreatic ductal epithelial cells with the 

significant correlation with prognosis in stage II disease.(269)  

Nucleolin may also serve as a peripheral blood biomarker indicating the presence of early 

stage of cervical cancer.(270) Collectively, these studies suggest that nucleolin could serve as a 

prognostic and diagnostic marker for other cancers such as lymphomas, and suggest that the 

nucleolin levels may represent a diverse and important diagnostic tool.  

 

Targeting Nucleolin as a Cancer Therapy 

 The anti-cancer agent dexamethasone has been shown to decrease phosphorylation of 

nucleolin by CKII, resulting in a loss of RNA polymerase activity, and suggesting that nucleolin 

has been unknowingly targeted in cancer therapeutics for a long time.(271) Inhibition of RNA 

polymerase has induced tumor regression.(272)  In recent years nucleolin has been selected as a 

target in multiple therapeutic strategies. Nucleolin was targeted by anti-HIV pentameric 
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pseudopeptide HB-19, which binds irreversibly to the RGG C-terminal domain of nucleolin and is 

currently being tested as a potential therapeutic in cancer beyond its original purpose in HIV 

infection. The HB-19 pseudopeptide and derived pseudopeptide targeting nucleolin-termed nucants 

(nucleolin antagonists) showed varying effects depending upon tumor type.(273) In leukemia and 

lymphoma models, the nucants induced cell death and proliferation inhibition, while in the adherent 

cell type cancers including breast, colon, cervical, and melanoma they induced little cell death but 

marked growth inhibition.(229, 273, 274)  

 In addition to the HB-19 pseudopeptide, additional peptides targeting nucleolin have moved 

into pre-clinical testing. During the screening of tumor blood vessels for specific markers, tumor 

homing peptide F3, a nucleolin ligand, was identified.(275) Interestingly, F3 is selectively 

internalized by tumor and angiogenic cells, which led to the use of the F3 peptide in multiple 

successful and specifically targeted therapeutic delivery systems. The F3 peptide was modified into 

a F3 peptide-targeted sterically stabilized pH-sensitive liposomes for delivery of doxorubicin to 

breast tumor cells and angiogenic vesicles.(276) The treatment proved effective in delivery of the 

chemotherapeutic agent to the tumor microenvironment with significantly decreased uptake in non-

specific cells and tissues, as compared to other commercially available liposomes.(276) The F3 

targeting moiety was also conjugated to single-walled carbon nanotubes (SWNT), which when 

targeted with near-infrared light therapy cause thermal ablation of nearby cells with a polyethylene 

glycol-linker.(277) In an in vitro model in which cells were killed with F3-SWNT followed by laser 

treatment, 99.8% of angiogenic cells were killed while there was no uptake of the F3-SWNT in 

non-angiogenic endothelial cells. 213Bi-DTPA (an alpha-emitter radionuclide which causes 

induction of double stranded breaks in cells) conjugated F3 was used as a delivery method in 

peritoneal carcinomatosis breast cancer models.(278)  The homing radionuclide was taken up in a 

breast cancer cell in vitro model 200 times more than 213Bi-DTPA used alone, showed decreased 

formation of peritoneal carcinomatosis, and increased survival of mice by 80%.(278) Lastly, PEG-

PLA nanoparticles loaded with paclitaxel with surface-functionalized F3 peptide and  co-

administered with tLyP-1 to gliomas showed improved penetration and increased survival of mice 

in a glioma model.(279) These results prove that nucleolin is a high-quality therapeutic target for 

endothelial cells and cancers.  

Beyond peptides, nucleolin antibodies have also been tested for their ability to prevent 

allograft failure in organ transplants. Antibodies against endothelial cells were found in transplant 

patients that failed allografts, and many of these antibodies targeted nucleolin. It was determined 

that nucleolin antibodies from transplant patients’ sera and a crosslinked commercial anti-nucleolin 

antibody inhibited growth of endothelial cells and induced apoptosis.(280) Although the focus of 
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this study was to determine reasons for allograft failure, it revealed the potential of anti-nucleolin 

antibodies as a potential therapeutic.  

Aptamers, ssDNA/RNA molecules, targeting nucleolin have recently come to the forefront 

in the translational and clinical search for potential therapeutics in neoplasms. A novel class of 

aptamers called GROs, G-rich oligonucleotides, with a strong secondary structure, binds nucleolin 

and inhibits growth of tumors in prostate, breast, and cervical carcinoma models.(209) The most 

successful nucleolin, GRO, AS1411, has shown anti-proliferative activity in almost every cancer 

cell type tested, and thus appears to have a broad therapeutic potential (281);  AS1411 moved from 

Phase I clinical trials, in a variety of advanced solid tumors, into two Phase II clinical trials for 

acute myeloid leukemia and renal cell carcinoma. It is also interesting to note that in breast cancer 

cells, AS1411 destabilizes bcl-2 mRNA by interfering with nucleolin bcl2 mRNA binding.(282) 

Recently, AS1411 was attached to a nanoparticle for delivery of the anti-miRNA 221 and miR-

221MB in a rat glioma tumor burden model where it successfully reduced tumor volume.(283) 

Also, the nucleolin-targeting aptamer, LNA-aptamer, obtained from the cell-SELEX (systematic 

evolution of ligands by exponential enrichment) technology(284), was developed into a SPION 

(superparamagnetic iron oxide nanoparticle)(285) called LNA-aptamer, which is currently showing 

potential against cancer cells in cell culture models.(286) 

The successful elimination and inhibition of tumor growth by direct nucleolin targeting or 

through the use of nucleolin ligand-linked drug delivery systems further underscores nucleolin’s 

potential as a cancer therapy. Advancements in our understanding of nucleolin’s role and its 

localization in tumor cell survival and apoptosis will greatly improve the effectiveness and 

specificity of interventions using this promising target in cancer therapy. In this regard, the current 

investigation focused on characterizing nucleolin’s expression in B-cell lymphomas and 

showed that nucleolin is directed to the extracellular cell surface specifically in oncogenic B 

cells. 
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Chapter 2: Background, Rationale and Research Plans 
 

Background  

Progress in the management and understanding of NHL, the fifth leading incidence of cancer 

in North America, has made it clear that there are multiple clinical characteristics, gene profiles, 

expression patterns, and chemotherapeutic responses among patients beyond the defined NHL 

subtypes. These differing characteristics, particularly chemotherapeutic responses, have a major role 

in the 27% death rate for NHL.(7, 26) This clearly points to the need for further advancements in the 

screening and identification of possible diagnostic and therapeutic targets for the multiple profiles of 

NHL in order to more effectively stratify patients into varying risk and treatment groups.(6, 7) 

The largest hindrance to effective elimination of cancer cells is chemoresistance resulting in 

chemotherapy-refractory disease and minimal residual disease. Defining the attributes that cause 

chemoresistance would be a major step toward eradicating NHL. Some of the chemoresistance of 

cancer cells can be based on the decreased ability of tumor cells to undergo apoptosis. In multiple 

cancers the inhibition of the death receptor Fas results in a decrease in chemotherapeutic 

sensitivity.(82, 105, 287-289) Moreover, several forms of chemotherapy induce higher expression 

levels of Fas and/or FasL in order to effectively eliminate tumor cells.(109, 130, 143, 290) Despite 

often adequate levels of Fas expression, NHL cells are commonly resistant to Fas-mediated 

apoptosis.(102, 149) Investigations into the defects of Fas-mediated apoptosis show there are 

multiple layers of controls affecting Fas signaling. However, for the vast majority of lymphomas a 

complete explanation of Fas obstruction remains elusive.(291) Therefore, clarification of Fas 

inhibition and subsequent restoration of Fas signaling in B-cell lymphomas will allow efficient 

chemotherapy induced cell death.(101) 

 

Rationale 

We set out to identify novel modulators of Fas-mediated apoptosis whose expression may 

correlate with chemoresistance in B-cell lymphomas. The idea to look for Fas-associated regulators 

came from our previous work that revealed the oncogene K1of human herpesvirus-8 binds to Fas, 

inhibits FasL binding, and subsequently blocks apoptosis.(292-294) We also discovered that PML-

RARα, an oncogenic fusion protein, binds Fas and recruits c-FLIP to the DISC and ultimately 

prevents Fas-mediated apoptosis in acute promyelocytic leukemias (APL).(295) Moreover, we 

showed that these interactions can be targeted and modified in order to sensitize cells to 

apoptosis.(292) Based on these findings, we hypothesized the existence of potential endogenous 
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and analogous Fas binding partners to K1 in lymphomas. The main aim of this thesis is the 

characterization of nucleolin, one of the Fas-binding proteins identified through a screening process 

isolating binding partners of inactive/activation-resistant Fas.  

Nucleolin was selected for extensive study as a potential novel modulator of Fas-mediated 

apoptosis. At the time nucleolin was known mainly as a nuclear protein associated with rRNA and 

ribosome modulation. However, nucleolin is a strongly multifunctional protein and its roles change 

depending on its location, post-translation modifications, cell cycle status, and proliferative 

capacity of the cell. The localization of nucleolin is altered in highly proliferating cells, where it has 

been shown to translocate out of the nucleus into the cytoplasm and on to the plasma 

membrane.(172, 178, 256, 260, 273, 275) In recent years, nucleolin has been found upregulated in 

cancer and cancer-associated endothelial cells, and in certain cases its upregulation correlates with 

clinically worse outcomes.(163, 245, 265, 267-269, 275, 281, 296, 297) The functions and roles of 

nucleolin within the cancer cell all indicate that nucleolin serves as a pro-survival protein. 

However, nucleolin’s localization, expression levels, and functions in B-cell lymphomas remain 

elusive.(152, 275) Based on previously described roles of nucleolin in the survival of cancer cells, 

its selective surface expression, and our identification of nucleolin as a Fas-binding partner, we 

investigated nucleolin’s effect on Fas-mediated apoptosis.  

 

Research Plan 

Based on previous findings, we hypothesized that nucleolin is overexpressed in lymphomas 

where it acts as an inhibitor of apoptosis signaling through direct interaction with Fas on the cell 

surface. In order to investigate this hypothesis I have set out to characterize nucleolin’s expression 

and role in Fas-mediated apoptosis in B-cell lymphomas, with intent to complete the following 

aims: 

 

AIM 1: To characterize nucleolin’s binding of Fas in B-cell lymphomas 

We set out to identify potential binding partners of Fas by isolating complexes associated 

with activation-sensitive and activation-resistant Fas. Through a screening process, we identified 

nucleolin as a binding partner and potential modulator of Fas in B-cell lymphomas. Our objective in 

this aim was to confirm the ability of nucleolin to form complexes with Fas in B-cell lymphomas 

and characterize the nucleolin-Fas complex by studying formation of the complex, specifically 

through investigations of the binding sites and localization of the complex within the cell. I 
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anticipated that nucleolin-Fas complexes would exist selectively on the extracellular surface in 

lymphoma tissues. 

 

AIM 2: To characterize the effect of the nucleolin-Fas complex on Fas-mediated apoptosis 

The objective of this aim was to determine if nucleolin or nucleolin-Fas complexes 

modulate Fas-mediated apoptosis. We set out to determine the effects of nucleolin levels and the 

presence of nucleolin-Fas complexes on Fas signaling and to clarify a potential mechanism of 

modulation through investigations with nucleolin knockdown cells and an in vivo mouse 

overexpression model. I anticipated that nucleolin would act as an inhibitor of Fas-mediated 

apoptosis and thus, decreased nucleolin in B-cell lymphomas would sensitize cells to Fas-mediated 

apoptosis. The overexpression of nucleolin in B-cell lymphoma cells would be anticipated to inhibit 

Fas receptor activation and thus desensitize cells to Fas-mediated apoptosis. 

 

AIM 3: To characterize the expression and localization of nucleolin in B-cell lymphomas 

 The objective of this aim was to characterize nucleolin’s expression in B-cell lymphomas 

through investigations of protein levels, protein localization, mRNA levels, transcriptional rates, 

and correlation with diagnosis, prognosis, and outcome of B-cell lymphomas. I anticipated that in 

comparison to healthy donor B cells, nucleolin protein and mRNA will be overexpressed in both 

lymphoma cell lines and primary lymphoma tissue. 

 

Significance 

Targeted therapeutics aimed to cancer-specific surface molecules show much promise and 

may help improve the treatment efficacy of many medical conditions especially cancer. Nucleolin’s 

selective surface localization in highly proliferating cancer and cancer-associated cells makes it an 

ideal target for cancer therapeutics, which should theoretically have low cytotoxic effects on normal 

cells. In this project, we studied nucleolin’s expression and localization patterns in B-cell 

lymphomas in relation to clinical outcomes, thereby extending nucleolin’s suggested oncogenic role 

to NHL. Characterization of nucleolin expression in B-cell lymphomas underscores nucleolin’s 

potential as a feasible prognostic marker and therapeutic target in NHL.  

 In addition, we focused on defining nucleolin’s potential to interfere with Fas-mediated 

apoptosis and subsequently induce chemoresistance. Failure to induce apoptosis and eliminate 

damaged cells is thought to permit gene abnormalities and promote genetic instability. Thus, an 

inability to activate Fas can contribute to the generation of viable but genetically altered cells that 
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can undergo malignant transformation. Resistance to chemotherapies and Fas-mediated apoptosis 

may have multiple causes. Thus, an understanding of the mechanism of nucleolin’s interference 

with Fas signaling will contribute to the development of novel therapeutic strategies for B-cell 

lymphomas.  
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Chapter 3: Nucleolin Interacts with Fas 

Rationale 

Our previous work characterized two Fas binding and modulatory proteins, K1 and 

PMLRARα, which are key to the pathogenesis of human herpesvirus-8 infected Kaposi’s sarcoma 

and APL, respectively.(293, 295) Based on the viral mimicry theory, we hypothesized the existence 

of endogenous proteins that are similar to the viral protein. In order to identify these potential 

binding partners of Fas we developed a screening process for proteins associated with activation-

resistant Fas. In this chapter we identified, through our screening process, that nucleolin is a Fas 

interacting protein. We pursued confirmation of nucleolin as a potential Fas-binding partner and 

characterization of the interaction. By defining and characterizing the interaction of nucleolin and 

Fas in B-cell lymphomas, we are further expanding our ability to create a therapeutic concept for 

targeting the nucleolin-Fas complex for a clinical application. 

 

Results 

Identification of Nucleolin in Fas-resistant Complexes 

To identify potential binding partners of Fas contributing to the inhibition of Fas signaling, 

we analyzed activation-resistant Fas complexes from interacting proteins. We subjected the EBV 

negative human Burkitts lymphoma line BJAB, which expresses Fas but shows low response to Fas 

activation, and cells from a human primary NHL tissue to Fas activation and immunodepletion by 

agonistic Fas antibody, CH-11. The remaining supernatants, harboring any inactive/activation-

resistant/inaccessible Fas, were subjected to a second Fas IP with a B-10 antibody directed to an 

intracellular Fas epitope. The precipitated proteins were separated by gel electrophoresis and 

visualized by silver stain. Any protein band found selectively in the activation-resistant lane was 

destained, excised, trypsin digested, and analyzed by nanoflow-LC-mass spectroscopy (MS)/MS 

(298) (Figure 3a-b).(295) The resulting collision-induced dissociation (CID) fragmentation spectra 

results were searched against the National Center for Biotechnology Information (NCBI) non-

redundant protein database with MASCOT. Six of the peptide spectra found in the Fas-resistant 

specific 100-kDa-excised band (Figure 3b, asterisk) matched nucleolin with a rank 1 (Figure 

3c-m), suggesting that nucleolin is part of an activation-resistant Fas complex. 
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Figure 3: Nucleolin Binds Activation-Resistant Fas.  

(a) Schematic of activation-resistant Fas isolation process. (b) Silver-stained gel separating primary 
NHL and BJAB samples subjected to Fas activation with subsequent IP with agonistic antibody 
CH-11 (CH-11 Lanes). The remaining lysates were subjected to a second Fas IP (B-10) of any 
remaining activation-resistant Fas. (B-10 Lane)  (b) Specific activation-resistant Fas bands from a 
silver stain gel were excised, trypsin digested, and analyzed by nanoflow-LC-MS/MS 
fragmentation by a CID spectra profiling. A 100 kDa band of interest (asterisk) represents the 
protein that is the focus of the current study. (c-m) Eleven fragmentation spectra profiles and the 
fragmentation ions of the peptides produced by the tryptic digestion and CID of the 100 kDa band; 
the spectra profiles match to known nucleolin peptides through MASCOT. (n) The protein 
sequence of nucleolin. The peptides in red font represent peptides from the 100 kDa band identified 
by nanoflow-LC-MS/MS. The peptides map to the RBD’s in the C-terminal region of nucleolin. 
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Nucleolin Forms a Complex with Fas in B-cell Lymphomas 

To confirm the formation of nucleolin-Fas complexes in B-cell lymphomas, we subjected 

lymphoma cell lines, a monocytic-like histocytic lymphoma line and two healthy B-cell samples 

(CD19-positive isolated cells from healthy donors) to Fas IP and detection of nucleolin 

(coimmunoprecipitation (coIP)) (Figure 4a). The U937 cell line was used because of previous work 

showing expression of surface nucleolin. Nucleolin represents 5% of non-DNA-associated protein 

in the nucleus (296), therefore, we hypothesized that Fas is the limiting factor in our assay, which is 

implicated by of our analysis of a Fas IP followed by nucleolin immunoblotting (IB) versus the 

reciprocal. The nucleolin-Fas complex was detected in all B-cell lymphoma cell lines, but was 

absent in the histocytic lymphoma and B lymphocytes. Detection of nucleolin results in a 105, 80, 

70 kDa pattern due to autodegradation of the N-terminal domain. (176, 179) Fas protein is detected 

in a double or triple staining pattern due to protein glycosylation and sialylation. A repeated IP with 

increased numbers of healthy B lymphocytes, to increase Fas IP, confirmed a lack of nucleolin-Fas 

association in B lymphocytes (Figure 4b). Next, to confirm the complex formation exists in 

primary B-cell lymphomas, we performed a Fas-nucleolin coIP analysis on ten primary samples to 

test for presence of the complex. Two primary lymphoma samples, a DLBCL and MCL, yielded a 

nucleolin-Fas complex (Figure 4c-d). 
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Figure 4 
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Figure 4: Nucleolin Interacts with Fas in B-cell lymphoma Cell Lines and B-cell Lymphoma 

Primary Samples.  

(a) Whole-cell extracts from BJAB, Raji, Daudi, BC-3, and U937 cell lines and two B-lymphocyte 
isolations from healthy donors were subjected to IP with anti-Fas agarose and analyzed by IB for 
the presence of nucleolin. Representative data from three different experiments are shown. (b) 
Healthy donor B cells, with an increased cell number and protein loading, were re-subjected to Fas 
IP followed by Fas and nucleolin IB. The expression level of nucleolin and β-actin in whole-cell 
extracts are shown by western blot in the lower panels-input control. (c-d) Shown is analysis of two 
primary lymphoma samples (MCL and DLBCL) demonstrating nucleolin-Fas complex from a 
screen of four DLBCL and six MCL primary samples. Extracts were immunoprecipitated with Fas 
agarose and analyzed by IB for the presence of nucleolin in precipitated complexes. BJAB cells and 
isotype IP were used as positive and negative controls, respectively; β-actin was used as a loading 
control. 
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The RNA-binding Domain 4 and Glycine/arginine Rich Domain of Nucleolin are 

Required for Fas Binding 

Nucleolin consists of 6 domains, the N-terminal domain, 4 RBDs, and a GAR domain 

(Figure 5a). To identify the domain responsible for interaction with Fas, we created various single- 

and multi-domain DDK-tagged deletion constructs of nucleolin (Figure 5b and Appendix A Figure 

26). DDK-tagged mutants, transiently expressed in human embryonic kidney (HEK) cells, 

subjected to coIP of Fas and nucleolin (Figure 5c) showed that the interaction of nucleolin with Fas 

was ablated with the deletion of the GAR domain (as represented by the lack of detection in the 

NR1234 lane). Binding of full-length nucleolin and nucleolin domains R34GAR and R4GAR was 

detected, yet absent in all other nucleolin domain proteins. The shortest nucleolin mutant protein 

capable of binding to Fas consisted of the R4 and GAR domains. However, neither GAR alone nor 

domains consisting of R4 without GAR were found in complex with Fas, suggesting that both the 

GAR and RBD 4 are necessary for the interaction. 

 

The Nucleolin-Fas Complex Exists Selectively on the Surface of B-cell Lymphomas  

To assess the localization of the nucleolin-Fas complex within the cell, we analyzed BJAB 

cells, NHL tissue, and healthy donor peripheral blood mononuclear cells (PBMCs) by confocal 

fluorescence microscopy. Fas and nucleolin co-localized on the surface of BJAB cells and NHL 

cells (Figure 6a-b), whereas intracellular staining revealed no complex inside the cells (Figure 7a-

b). PBMCs showed no detectable Fas-nucleolin complex formation (Figure 6c, Figure 7c). Results 

suggest that the nucleolin-Fas complex exists selectively on the surface of B-cell lymphomas. To 

confirm their surface interaction, we incubated recombinant nucleolin with the extracellular portion 

of Fas fused to a chimeric Fc fragment. An IP of the Fc fragment showed a dose-dependent binding 

of nucleolin (Figure 8), confirming a direct interaction between nucleolin and the extracellular 

domain of Fas.  
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Figure 5  
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Figure 5: Nucleolin’s R4 and GAR Domains are Necessary for its Interaction with Fas. 

(a) Schematic of the nucleolin domains and their known modifications: NDR (N-terminal domain 
region), NLS (nuclear localization signal), R 1-4 (RBD’s 1-4), and GAR (glycine/arginine rich C-
terminal domain). Glycosylation sites are represented by Y, phosphorylation sites by yellow circles, 
protein-binding sites by stars, and 3 defined proteolytic cleavage sites (of a potential 18 putative 
sites) by a blue lightning bolt. (b) Domain deletions were created by using the Stratagene Quick 
Change II XL mutagenesis kit using C-terminal DDK/myc-tagged PCMV-ENTRY construct of 
full-length nucleolin (Origene) as a template. (c) 293T HEK cells were transfected with the 
indicated nucleolin domain deletion mutants and lysed for IP/IB analysis. Whole-cell lysates were 
subjected to Fas IP with anti-Fas agarose. Proteins were separated and immunoblotted for detection 
of co-precipitated domain mutants with an anti-DDK- horseradish peroxidase (HRP) antibody. A 
mixture of all domain mutants was precipitated with mouse IgG and protein G agarose as a negative 
control. Whole-cell lysate samples prior to IP were immunoblotted with anti-DDK-HRP to reveal 
expression levels of the transfected constructs -input control.  Representative data from three 
different experiments are shown. 
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Figure 6: Nucleolin Associates with Fas on the Surface of B-cell Lymphoma Cells.  

BJAB cells (a), NHL primary tissue (b) and PBMCs (c) were incubated with an anti-nucleolin 
antibody (MS-3), anti-Fas antibody (Abcam), and respective secondary antibodies stepwise at 4°C.  
Subsequent incubation with wheat germ agglutinin (WGA) alexa555 was followed by mounting 
with prolong gold anti-fade reagent containing 4',6-diamidino-2-phenylindole (DAPI) and 
examination by confocal microscopy. The images were captured by the Nikon A1R confocal laser 
microscope system (Nikon Instruments). All images were acquired at similar voltages for Channel 
1 (488nm) 620V and Channel 3 (647nm) 510V. An aberration corrected objective (Paplon 1:40) 
and Nomarski prism for Brightfield DIC image was used for acquiring images. Original image size 
1024×1024 with clip size of 302×280. Powerpoint was used for further image processing; all panels 
were adjusted for brightness at correction 44. Top panels (left to right): nucleolin staining on the 
surface of BJAB cells (green), Fas staining on the surface of BJAB cells (red), WGA revealing 
surface sialic acid-modified proteins (white) as a control for extracellular membrane localization. 
Bottom panels (left to right): Brightfield image revealing whole cell structure, DAPI nuclear stain 
(blue), merged/overlaid images of nucleolin, Fas and DAPI. Note an almost a complete 
colocalization of Fas and nucleolin throughout the surface of BJAB and primary NHL cells 
(yellow) and no co-localization on the surface of a healthy lymphocyte largely because of a lack of 
surface Fas and low levels of nucleolin. We selected a healthy PBMC that had some positive 
nucleolin staining as an example. Two of 15 B lymphocytes from healthy donors, scanned by flow 
cytometry for surface nucleolin, identified a small shift in staining median fluorescence intensity 
(MFI) (data not shown) (d) Intensity profile and Pearson coefficient analysis for colocalization, 
revealing positive co-localized staining of Fas and nucleolin in BJAB cells (merged image from A). 
(e-g) Isotype staining of BJABs, NHL primary tissue, and PBMCs following the same procedure 
showed little to no non-specific staining. 
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Figure 7 
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Figure 7: Nucleolin and Fas do not Colocalize in the Intracellular Compartments in B cells.  

Fixed and permeabilized BJAB cells (a), primary NHL tissue (b) and PBMCs (c) were incubated 
with an anti-nucleolin antibody (MS-3), anti-Fas antibody (Abcam), and respective secondary 
antibodies stepwise at 4°C.  Subsequent mounting with prolong gold anti-fade reagent containing 
DAPI was followed by examination by confocal microscopy. BJAB cells, top panels (left to right): 
nucleolin staining (green), Fas staining (red), DAPI nuclear stain (blue).  Bottom panels (left to 
right): Brightfield image revealing whole cell structure, merged/overlaid images of nucleolin, Fas, 
and DAPI; note a faint Fas cytoplasmic staining and nucleolin nuclear and nuclear/cytoplasmic 
staining in the two BJAB cells yet a lack of co-localization. Overall, there was a much lower signal 
of Fas (cytoplasmic) and nucleolin (nuclear) in PBMCs than primary NHL and BJAB cells.  
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Figure 8 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Nucleolin Binds to the Extracellular Portion of Fas Directly.  

A chimeric Fc:Fas (extracellular domain of Fas fused to the two heavy domains of the constant 
region of an antibody) was incubated with varying concentrations of recombinant nucleolin-GST 
for 1.5 hours at 4°C. Fc:Fas was immunoprecipitated with protein A overnight and precipitates 
were separated by SDS-PAGE gel electrophoresis. In Western blots nucleolin (NCL)-GST was 
found in Fas-precipitated complexes in a dose-dependent manner.  Lower panels of GST and Fas IP 
represent input controls. 
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Summary  

In this study, we designed and performed a screening process for the identification of novel 

activation-resistant Fas binding partners (Figure 3a) and identified nucleolin as found in complex 

with activation-resistant Fas. We were able to confirm the presence of nucleolin-Fas complexes in 

B-cell lymphomas and a lack of the complex in healthy donor B cells (Figure 4a-d). Our initial 

analyses deserved further investigation due to the low Fas expression in the healthy donor B cells. 

In order to confirm that healthy B cells are void of nucleolin-Fas complex, the coIP of nucleolin-

Fas was repeated with increased protein amounts. Analysis showed that even with the increase of 

Fas utilized for coIP, there was an absence of nucleolin-Fas complex, thereby confirming that the 

nucleolin-Fas complex is a complex of lymphoma cells (Figure 4b). We further examined the 

presence of nucleolin-Fas complexes by screening multiple primary lymphoma samples by coIP. 

We were able to detect a nucleolin-Fas interaction in four of ten primary samples tested (Figure 4c-

d). The absence of nucleolin-Fas complex in the remaining samples may be explained by either low 

Fas expression, sensitivity of the assay, the heterogeneity of tumors, or potentially a lack of 

utilizing nucleolin for Fas inhibition in a particular tumor, as this may be an adapted phenotype of 

tumors that may not be used consistently. As not all properties of cells that are observed in cell 

culture, will be observed in the clinical or in vivo setting, we examined human tissue and the 

nucleolin-Fas complex is present in primary lymphomas. These results suggest that the nucleolin-

Fas complex formation is present in B-cell lymphomas, confirming and expanding the results from 

our initial Fas inhibitor screening process.  

We further clarified the nucleolin-Fas association by mapping the Fas interacting domain of 

nucleolin to the R4-GAR domain (Figure 5c). Signaling through Fas, in type I cells, is initiated at 

the plasma membrane, and it depends on lipid raft formation and receptor internalization. Fas is 

transported to the surface through the classical secretory pathway involving the ER and the Golgi 

apparatus. Trafficking of nucleolin is still elusive; it by-passes the classical pathway and seems to 

involve an actin-dependent trafficking mechanism.(178, 299) The different mechanisms of cell 

surface transport of nucleolin and Fas should limit their interaction within the cell, and most cell 

complexes should reflect cell surface nucleolin-Fas complexes. Thus, we used confocal microscopy 

and an in vitro binding assay with the extracellular portion of Fas to detect nucleolin-Fas complexes 

(Figure 6, Figure 7, Figure 8). We observed that the nucleolin-Fas complexes exist on the 

extracellular surface of B-cell lymphomas and are absent in healthy donor PBMC’s, as determined 

by confocal microscopy of BJAB cells, primary NHL tissue, and healthy donor PBMCs. CoIP of 

recombinant extracellular Fas protein and recombinant nucleolin in solution determined that 
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nucleolin interacts with the extracellular Fas protein and showed a direct binding of Fas and 

nucleolin (Figure 8). In conclusion, we determined that nucleolin binds Fas through its R4-GAR 

domain on the extracellular surface of B-cell lymphomas but not in healthy donor PBMC. 

Limitations and Future Directions 

Our results could be further strengthened by the selective overexpression of surface 

nucleolin as a tool to study nucleolin’s surface function in B-cell lymphomas. For over 20 years we 

have known that nucleolin is transported to the surfaces of tumor cells. Yet, the mechanism of 

transporting and tethering nucleolin on the cell surface still remains elusive. In order to perform 

functional studies of nucleolin interactions on cell surface, we will first need to know more about 

its transport and adhesion to cell surface. After this information becomes available, studies can be 

done to map interactions with properly delivered mutants to the cells surface and better characterize 

its interactions with Fas.(178, 216)  

Despite the limitations, taken together, the provided experimental evidences indicate 

nucleolin as a novel surface binding partner of Fas in B-cell lymphomas. The specificity of surface 

nucleolin and nucleolin-Fas complex formation in B-cell lymphomas compared to healthy B cells 

suggests an acquired function of nucleolin in the survival of lymphomas, and led us to investigate 

its role in protection against Fas-mediated apoptosis. 
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Chapter 4: Nucleolin’s Regulation of Fas-mediated Apoptosis  
 

Rationale 

Fas is present on the surface of multiple B-cell lymphomas, often without mutations, yet 

unable to signal, suggesting it is subjected to regulation. The formation of Fas-nucleolin complexes 

selectively in B-cell lymphomas suggests an acquired/adapted regulation in cancer cells. In order to 

determine if nucleolin-Fas complexes modulate Fas-mediated apoptosis, we set out to determine the 

effects of nucleolin levels and the presence of nucleolin-Fas complexes on Fas signaling and to 

clarify a potential mechanism of Fas modulation by creating nucleolin partial knockdown B-cell 

lymphoma cell lines. BJAB’s were selected for these experiments because they exhibited 

overexpression of nucleolin compared to healthy donor B cells, surface nucleolin expression, 

decreased Fas sensitivity, absence of Fas mutations, and nucleolin-Fas complex formation 

without an EBV infection.(300) Also, BJABs undergo mainly type I Fas signaling (67), are 

Bcl-2, Bcl-xl, Mcl-1, and bcl-2, bcl-xl and mcl-1 negative, making them an applicable model 

for studying nucleolin and Fas interaction for B-cell lymphomas (300) (Figure 9e), as nucleolin 

has been reported to stabilize bcl-2 mRNA.(227, 245) Through the use of nucleolin partial 

knockdowns and an in vivo mouse overexpression model we pursued the elucidation of the 

molecular mechanism behind Fas’s inability to signal, despite adequate expression levels, with the 

motivation of contributing to a more complete understanding of the mechanisms of 

chemoresistance in lymphomas. 

 

 
Results 

Partial Knockdown of Nucleolin Expression Results in Ablation of Surface Expression 

and Nucleolin-Fas Complex Formation 

We used a small/short hairpin RNA (shRNA) micro ribonucleic acid (miR)30 construct to stably 

reduce the level of nucleolin in BJAB cells. We created a pooled partial knock-down (pKO) BJAB 

cell line (906P1) and four single-cell clones (906S1, -S2, -S4 and -S5) (Figure 9a-b). We observed 

at least a 50% suppression of nucleolin compared with the parental and non-silencing BJAB cells 

(controls) by IB and mRNA analysis (Figure 9b-d). We confirmed the lack of Bcl-2 expression in 

parental BJAB and shRNAmiR30 transfected BJAB cells (Figure 9e). Biotinylation of surface 

proteins showed an absence of surface nucleolin in pKO clones compared with controls (Figure 9f). 
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Further analysis confirmed ablation of the nucleolin-Fas complex formation in the nucleolin pKOs 

(Figure 9g).  
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Figure 9  
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Figure 9: Creation and Characterization of Nucleolin Partial Knockdown BJAB Cells. 

(a) Nucleolin-specific (906), control non-targeting (non-silencing), and a glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) targeting shRNAmiR30 constructs were used for transfection 
of BJAB cells to create a pooled non-silencing (NS) control, GAPDH control, and nucleolin pKO 
(906P1) cell line. Four single-cell clones (906S1, -S2, -S4, -S5) were derived from the original 
pooled cell line 906P1. (b) Whole-cell lysates were analyzed by IB for nucleolin and Fas protein 
expression. β-actin was used as a loading control.  (c) Densitometry analysis showed a minimum of 
50% knock-down of nucleolin in the pKO cells compared with parental BJAB cells, non-silencing 
and GAPDH controls (906P1: P< .026; 906S1: P< 035; 906S2: P< 027; 906S4: P< .013; 906S5: 
P< .0114) Mean data and standard error of the mean (SEM) of three independent experiments are 
shown. (d) Nucleolin pKO cells, BJAB, and non-silencing controls were analyzed for nucleolin 
mRNA levels and normalized to GAPDH (906P1: P<.031, 906S1: P< .095, 906S2: P< .038, 
906S4: P< .026, 906S5: P<.038). (e) Whole-cell lysates were analyzed by IB for Bcl-2 to confirm 
the absence of protein. β-actin was used as a loading control. (f) Surface levels of nucleolin and Fas 
were analyzed in the parental BJAB, non-silencing control, and nucleolin pKOs by biotinylation 
followed with strepavidin agarose IP. Histone 3 IB was used as a control for purity of the surface 
fraction. BJAB whole cell extracts were used as a positive control for antibody specificity. Input 
levels of nucleolin and β-actin were used as a loading control. Representative data from three 
different experiments are shown. (g) Association of nucleolin and Fas was analyzed in parental 
BJAB cells, non-silencing control, a GAPDH control, and pKOs by IP with Fas agarose. Nucleolin 
was detected by IB. Mouse isotype-matched IgG and protein G agarose were used as a negative 
control for non-specific binding. BJAB whole-cell extracts were used as a positive protein control. 
Expression levels of nucleolin and β-actin in whole-cell extracts were determined by IB analysis 
and used as input and loading controls. Representative data from three different experiments are 
shown. 
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Partial Knockdown of Nucleolin Expression Results in Decreased Proliferation, 

Dysregulated Centromere Formation and Multinucleation  

Previous reports on nucleolin observed that decreasing nucleolin levels in cancer cells 

resulted in a decrease in proliferation, dysregulated centromere formation, and multi-nucleated 

cells.(301) Thus, our next step was to prove the functional reproducibility of previous work with 

our B-cell nucleolin pKO model. As expected, we observed similar effects on proliferation (Figure 

10a). Multinucleation of nucleolin pKOs was also confirmed by TEM (transmission electron 

microscopy), DRAQ5 nuclear staining, and phalloidin/DAPI confocal microscopy (Figure 10b-d). 

Transduction of pKOs, BJABs and non-silencing controls with red fluorescent protein (RFP)-

tubulin confirmed observations of centromere formation increases resulting in dysregulated cell 

division by video time lapse microscopy (VTLM) imaging (Video 1.1).(301) The dysregulated 

centromere formation and cell division resulted in division of pKO cells into three or four daughter 

cells followed by a fusion back together, resulting in the previously characterized multinucleated 

cells (Video 1.2). These results confirm research by previous investigators on the induction of 

nucleolin knockdown in cells and further expand the observations to B-cell lymphomas. 

   

Ablation of the Nucleolin-Fas Complex by Nucleolin Suppression Enhances Fas 

Sensitivity 

To assess whether the pKO of nucleolin affects Fas signaling, we incubated cells with FasL 

or Fas-agonistic antibody (Figure 11a-b). Cell death was significantly increased in nucleolin pKOs 

after either stimulation. Detailed analysis of the Fas signaling cascade by coIP showed increased 

DISC formation in the pKO cells compared to non-silencing controls (Figure 11c-d), thus revealing 

the increase in proximal Fas signaling events in nucleolin pKOs. We observed a similar increase in 

the caspase 8 cleavage, by IB of caspase-8 in the pKO cells compared to non-silencing controls 

(Figure 11e-g). The dependency of increased apoptosis susceptibility on caspase-8 cleavage was 

confirmed by treatment with Z-IETD-FMK caspase-8 inhibitor prior to CH-11 challenge. (Figure 

11h)  To determine whether the sensitivity to Fas-mediated apoptosis was specific, we challenged 

pKO and control cells with the closely related tumor necrosis factor related inducing ligand 

(TRAIL). There was no significant change in sensitivity to TRAIL (Figure 12a) and there was no 

physical interaction between nucleolin and TRAIL-R1 (Figure 12b), indicating a Fas-specific effect 

of nucleolin. 
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 Figure 10 
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Figure 10: Characterization of the Physiological Effects of the Down-regulation of Nucleolin 

in BJAB Cells. 

 (a) Trypan blue live cell stain was used to determine BJAB, non-silencing, 906P1, 906S1-S5 cell 
counts every twenty-four hours for 100 hours. Proliferative calculations identified a trend of 
decreased proliferation in nucleolin pKOs to control BJAB and non-silencing cells. (b) 
Transmission electron microscopy was used to capture images of fixed BJAB, non-silencing and 
906S2 cells. The images were captured by the JEM 1010 transmission electron microscope 
(JEOL USA, Inc.) equipped with a digital camera (AMT). All images were acquired at a 5000 
magnification. Original image size at 6440X at 7 inches. Multinucleation was observed in 906S2 
cells in comparison to BJAB and non-silencing controls. (c) DRAQ5 staining was used on live non-
silencing and 906S2 cells. Whole cell and nuclear images were captured with the Nikon VTLM 
Biostation (Nikon). All images were acquired using NIS-Elements AR software (Nikon). 
Multinucleation of up to five nuclei in nucleolin pKO’s 906S2 was observed (d) Fixed and 
permeabilized 906S2 cells were incubated with a dilute phalloidin-568 methanolic solution for 20 
minutes at room temperature (RT). Subsequent mounting with prolong gold antifade reagent with 
DAPI was followed by examination by confocal microscopy. The images were captured by the 
Nikon A1R microscope (Nikon) and NIS Elements software. Merge/overlaid images of F-actin 
phalloidin-568 (pink) and DAPI nuclear stain (blue) revealed that downregulation of nucleolin in 
906S2 increased the number of self-contained nuclear structures.  
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Video 1.1:  

See attached CD for Video1.1 

Video 1.1: Centromere Formation Deregulation in Nucleolin Partial Knockdown Cells. Non-
silencing control and 906S2 cells were transduced at a MOI of 1 with a Tubulin-RFP containing 
virus. Live cell imaging using VTLM with an RFP fluorescence filter was used for visualization of 
centromere formation and cell division. The 906S2 transduction of tubulin-RFP showed the 
malfunctional division of multiple cells; in the displayed video a cell shows formation of three 
centromeres. Each image was recorded at 1600×1200 pixels via a 20X objective using phase 
contrast and fluorescent channels with an exposure time of 1 minute for twenty-four hours. 
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Video 1.2: 

See attached CD for Video 1.2 

Video 1.2: Dysregulated Cell Division with the Downregulation of Nucleolin Results in Large 
Multinucleated Cells. VTLM was used to observe non-silencing and 906S2 nucleolin pKO cells 
for twenty-four hours.  The 906S2 nucleolin pKO cells were observed undergoing irregular cell 
division, specifically with division into three/four cells that eventually fuse back together to form 1 
large multinucleated cell. Each image was recorded at 1600×1200 pixels via a 20X objective using 
phase contrast and fluorescent channels with an exposure time of 1 minute for twenty-four hours.  
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 Figure 11 
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Figure 11: Loss of Surface Nucleolin and Nucleolin-Fas Complex Sensitizes B-cell 

Lymphomas to Fas-mediated Apoptosis.  

(a) Indicated cells were challenged with FasL (100ng/mL) overnight and analyzed for apoptosis 
levels by Annexin V/7AAD staining and flow cytometry. The nucleolin pKO cells 906S2, 906S5, 
and 906P1 showed significant increases in FasL sensitivity compared to non-silencing control cells 
(906S2: P<.001, 906S5: P<.02, 906P1: P<.01). A Fas-sensitive T-cell line, Jurkat, was used as a 
positive control for Fas activation. Mean data and SEM of three or more independent experiments 
each with three replicates are shown. (b) Cells were challenged with the agonistic Fas antibody CH-
11 (25ng/mL) overnight and analyzed for apoptosis levels as in (a). The nucleolin pKO cells 
showed significant increases in apoptosis compared to non-silencing control cells (906S2: P<.001, 
906S5: P<.001, 906P1: P<.02). Mean data and SEM of three independent experiments each with 
three replicates are shown. (c)  Parental BJAB, non-silencing control, 906P1, and -S2 cells were 
subjected to IP of Fas pre- and 1 hr post- CH-11 (25ng/mL) challenge. The immunoprecipitated 
proteins were analyzed for Fas, caspase-8, and nucleolin by IB. Note a lack of nucleolin binding to 
Fas in 906 -P1 and -S2 cells. Lower panels of nucleolin, Fas and β-actin expression levels in whole-
cell extracts as determined by IB analysis were used as input and loading controls. Representative 
data from three different experiments are shown. (d)  Densitometry analysis of the caspase-8 levels 
co-precipitated with Fas. The results are shown as a ratio of caspase-8 to Fas band intensity levels. 
Mean data and SEM of three independent experiments are shown (906P1: P< .02, 906S2: P<.038). 
(e) Parental BJAB, non-silencing control, and nucleolin pKO’s 906P1 and 906S2, were treated with 
25ng/ml of CH-11. Cells were analyzed for caspase-8 and caspase-3 cleavage by IB. Expression 
levels of nucleolin and β-actin in whole-cell extracts were used as loading controls. Representative 
data from three different experiments are shown. (f-g) Subsequent densitometry for caspase-8 
cleavage products. Increased levels of p43 and p18 caspase cleavage products were observed in 
906P1 and 906S2 nucleolin knockdowns as compared to parental BJAB and non-silencing clones. 
(P=.008, .05, respectively)  (h) Parental BJAB, non-silencing control, 906P1, and -S2 cells were 
subjected Z-IETD-FMK caspase-8 inhibitor at the indicated doses one hour prior and eighteen 
hours post CH-11 (25ng/mL) challenge. Cells were subsequently analyzed for apoptosis levels by 
Annexin V/7AAD staining and flow cytometry.  Note the dependency of apoptosis sensitization on 
caspase-8 cleavage. 
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Figure 12: Nucleolin’s Effect on Apoptosis is Fas Specific. 

 (a) Parental BJAB, non-silencing control, and partial knockdowns of nucleolin 906P1, 906S2, and 
906S5 were treated with indicated doses of killerTRAIL or superFasL. There were no significant 
differences between control BJAB/non-silencing clones and nucleolin pKOs 906P1, 906S2, and 
906S5 as measured by frequency of hypodiploid cells. (b) Parental BJAB, non-silencing control, 
and nucleolin pKO’s 906P1, 906S2 were subjected to TRAIL-R1 IP.  A Fas IP of non-silencing 
lysates was used as a positive control. Although TRAIL-R1 was efficiently precipitated (Middle 
panel), IB analysis showed a lack of nucleolin co-IP with TRAIL-R1 (Top panel). Nucleolin was 
efficiently co-precipitated with Fas from non-silencing cells. Lower Panels: IB analysis of nucleolin 
and β-actin levels in whole cell lysates prior to IP –loading control. 
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Downregulation of Nucleolin Increases Fas-FasL Interaction 

Thus far, we determined that nucleolin interacts with Fas on the surface of B-cell 

lymphomas and interferes with Fas-meditated apoptosis at the most proximal signaling steps. To 

determine whether the observed sensitization is due to modulation of receptor-agonist interaction, 

we used flow cytometry to evaluate the ability of the nucleolin pKOs to bind Fas agonists (FasL and 

CH-11). The nucleolin pKOs bound significantly higher levels of both agonists than did controls 

(Figure 13c-d), confirming that the lack of nucleolin-Fas complexes (Figure 9g) is associated with 

intensity of the Fas receptor-ligand interaction. 

To exclude the possibility that increased agonist binding results from increased surface Fas, 

we analyzed the levels of surface Fas in pKOs in comparison with controls and surface-Fas 

negative Daudi cells. No significant increase or decrease in surface Fas levels was observed (Figure 

13e). It is noticeable that the higher molecular weight Fas was not immunoprecipitated nor 

biotinylated in the nucleolin partial knockdown cell lines (Figure 9f-g). However, the total levels of 

higher-molecular-weight Fas remained unchanged, thereby indicating the possibility that the 

absence of nucleolin has changed the accessibility or ability to immunoprecipitate the higher 

molecular weight Fas (Figure 9b). Further analysis determined that the higher-molecular-weight 

bands represent sialylated and glycosylated Fas (Figure 14) as reported previously.(47, 49) Fas 

glycosylation does not alter apoptosis sensitivity suggesting that the observed changes do not 

interfere with our functional studies. (28, 30) Thus, as clearly indicated by the increase in ligand 

binding to the receptor, nucleolin acts to hinder FasL binding to Fas receptor in B-cell lymphomas.  
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Figure 13 
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Figure 13: Absence of Nucleolin-Fas Complex Enhances FasL Binding.  

(a) Flow cytometric analysis and gating strategy for CH-11 binding in BJAB cells. (b) Flow 
cytometric analysis and gating strategy for FasL binding in BJAB cells. (c) Indicated cell lines were 
incubated with CH-11 (Ig-M subclass) for 20 minutes and the amount of bound antibody was 
analyzed by flow cytometry by measuring an anti-IgM-APC secondary antibody signal. The 
nucleolin pKO cells showed a significant increase in CH-11 signal from non-silencing controls 
(906S2: P<.001, 906S5: P< .03, 906P1: P< .04). Mean data and SEM of three independent 
experiments each with three replicates are shown. (d) Cells were incubated with FasL (FLAG-
tagged) for 20 minutes and cells were analyzed for the presence of ligand with an anti-FLAG-PE 
secondary antibody by flow cytometry. The nucleolin pKO cells showed significantly increased 
FasL signal compared to non-silencing controls (906S2: P<.01, 906S5: P< .01, 906P1: P< .03). 
Mean data and SEM of three independent experiments each with three replicates are shown. (e) 
Surface levels of Fas in parental BJAB, non-silencing control, 906P1, -S1,-S2, -S4,-S5, and a 
surface-Fas negative control Daudi cells were measured by flow cytometry using the UB2 
extracellular anti-Fas antibody conjugated to PE. Note the absence of significant alterations in Fas 
surface levels in the nucleolin partial knock-down cells compared with non-silencing cells. Mean 
data and SEM of three independent experiments each with three replicates are shown. 
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Figure 14 

 
 
Figure 14: High Molecular Weight Fas is not Affected in the Downregulation of Nucleolin.  

Parental BJAB, non-silencing control, and nucleolin pKO’s 906P1, 906S1, 906S2, 906S4 lysates 
were treated with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase (PNGase) F, a 
deglycosylase, following the manufacturers’ protocol. Non-treated and treated whole cell lysates 
were separated on a 7% SDS-PAGE gel and analyzed for Fas levels. Deglycosylation ablated the 
high molecular weight Fas band, leaving the two lower molecular weight bands intact and produced 
a third lower molecular weight band, suggesting that the highest molecular weight band is a 
glycosylated form of Fas (upper panel). Parental BJAB, non-silencing control, and nucleolin pKO’s 
906P1, 906S1, 906S2, 906S4 and 906S5 cells were pretreated with a de-sialylase, vibrio cholerae 
neuraminidase (VCN), and analyzed by IB for Fas levels. The banding of Fas appears to shift 
down, suggesting that the upper molecular weight band of Fas had sialylation modifications, yet 
contained an additional modification.  
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Nucleolin Overexpression and Nucleolin-Fas Complexes Protect Mice from a Lethal Fas-

Agonist Challenge 

To further confirm the ability of nucleolin to block Fas signaling, we used a mouse liver 

overexpression model (Figure 15a) to determine whether nucleolin expression affects Fas-mediated 

apoptosis in vivo, as interaction in cell culture may not have relevance to interactions in an in vivo 

setting. We transfected mice with plasmid expressing full-length nucleolin and empty vector (302, 

303), and evaluated their ability to protect the mice from a lethal challenge with Fas agonistic 

antibody (Jo2). Eight hours after the challenge, nucleolin-transfected mice showed a significantly 

increased survival rate (P < .006) (Figure 15b). Gross examination of the livers showed extensive 

hemorrhaging in vector-transfected livers, which was confined to segregated areas in nucleolin-

transfected livers (Figure 15c). H&E staining confirmed massive hemorrhaging, extravasations, 

and dead cells in livers transfected with vector alone, whereas these effects were less dramatic in 

nucleolin-expressing livers (Figure 15d). Apoptosis analysis by terminal deoxy-nucleotidyl 

transferase-mediated Z’-deoxyuridine S’-triphosphate nick end labeling (TUNEL), cleaved caspase-

3, and cleaved PARP staining showed increased numbers of apoptotic cells in vector- compared to 

nucleolin-transfected livers (Figure 15d). Analysis of liver tissues by IB (Figure 15e) further 

confirmed decreased levels of PARP, caspase-3, and caspase-8 cleavage in nucleolin-transfected 

livers. Note that one nucleolin-transfected mouse that did not survive the Jo2 agonistic Fas 

challenge, included in the immunoblot analysis, showed increased expression of the downstream 

mediators of Fas, yet did not show overexpression of nucleolin. Nucleolin overexpression did not 

correlate directly with bcl-2 overexpression, suggesting nucleolin’s protection was not conferred 

through enhanced bcl-2 mRNA stabilization (Figure 15e). The presence of nucleolin was 

confirmed by FLAG staining in vector- and nucleolin-transfected livers (Figure 15f). These results 

show that nucleolin overexpression confers resistance to Fas-mediated apoptosis in vivo. 

Our tissue culture results indicate the need for nucleolin-Fas interaction to block Fas. To 

test for this requirement, we transfected mice with plasmids expressing the full-length nucleolin, 

Fas-non-binding nucleolin construct NR123, and empty vector to evaluate the respective constructs 

ability to protect the mice from a lethal Jo2 challenge. Eight hours after the challenge, none of the 

seventeen NR123 mice, and only one of thirteen vector-transfected mice survived, whereas seven of 

the eleven nucleolin-transfected mice remained alive (P < .003) (Figure 16a). Gross examination of 

the livers showed extensive hemorrhaging in vector- and NR123-transfected livers. In contrast, 

hemorrhaging was confined to small segregated areas in nucleolin-transfected livers (Figure 16b). 

Apoptosis analysis by TUNEL, cleaved caspase-3, and cleaved PARP staining showed increased 
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numbers of apoptotic cells in vector- and NR123- compared to nucleolin-transfected livers (Figure 

16c). We confirmed expression of nucleolin and NR123 by IB of anti-FLAG and anti-nucleolin in 

liver tissue (Figure 16d). Additional analysis of liver tissues by IB (Figure 16d) confirmed 

decreased levels of PARP and caspase-8 cleavage in nucleolin-transfected livers compared to 

vector- and NR123- transfected livers. These results support our finding that nucleolin-Fas 

interaction is necessary for nucleolin-mediated inhibition of Fas signaling.  
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Figure 15: Overexpression of Nucleolin Protects Mice from a Lethal Fas Activation. 

 (a) A schematic of the hydrodynamics-based transfection mouse model used to analyze inhibitors 
of Fas-mediated apoptosis. We evaluated nucleolin’s effect on Fas apoptosis by intravenous 
transfection of a large injection volume of plasmids expressing indicated proteins into the tail veins 
of C57B6 mice. Twenty-four hours post-injection and plasmid uptake into the liver, mice were 
challenged with a lethal dose Jo2. Mice were monitored for up to eight hours and scored for 
survival, as Jo2 injections kill mice by liver hemorrhaging and damage (63). Shown is the 
expression of an YFP plasmid in whole liver as representative transgene expression twenty-four hrs 
post transfection. (b) Mice were hydrodynamically transfected with a vector control or a plasmid 
expressing DDK-tagged full-length nucleolin. Twenty-four hours later, the mice were challenged 
with a lethal dose of Jo2 agonistic anti-Fas antibody (2 µg/g weight) and monitored for survival for 
up to eight hours post-challenge. The survival rate of nucleolin-transfected mice was significantly 
higher than mice transfected with vector alone (P< .006; log rank (mantel-cox) test). Representative 
data from three different experiments are shown. (c) Gross examination of vector and non-
transfected livers challenged with Jo2 revealed massive hemorrhaging as indicated by darkening 
and swelling. Nucleolin expressing livers challenged with Jo2 showed decreased hemorrhaging as 
indicated by less darkened portions. (d) Livers were harvested, resected, and stained with 
haematoxylin and eosin (H&E) (upper panel), were analyzed using cleaved caspase-3, cleaved 
PARP antibody or TUNEL assay to evaluate apoptosis. The images were captured by the Olympus 
BX41 (Olympus) UPlan FL N 40X/0.75 objective. Images were acquired with DP Controller 
(Olympus) with a -2 exposure adjustment for TUNEL staining with a Fluorescein isothiocyanate 
(FITC) filter (Olympus). Adobe Photoshop PS2 was used for further image enhancement of FITC 
with+30 brightness for all 4 panels equally. (e) Homogenized vector-, nucleolin- and non-
transfected Jo2 challenged and unchallenged liver samples were subjected to lysis, SDS-PAGE and 
IB analysis of nucleolin, caspase-8, caspase-3, PARP, Bcl-2, and β-actin. (f) Livers were harvested, 
resected, and stained with H&E (lower panel), or were analyzed using FLAG antibody to evaluate 
nucleolin expression. (upper panel). Boxes represent the area used for 40X magnification in the 
middle panel. A black arrow reveals positive nuclear nucleolin staining and outlined arrow reveals a 
negative nuclei. The images were captured by the Olympus BX41 (Olympus) UPlan FL N 
40X/0.75 objective. Images were acquired with DP Controller (Olympus).   
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Figure 16: Nucleolin Protects Mice from a Lethal Fas Activation through Nucleolin-Fas 

Complex.  
 (a) Mice were transfected with vector control, DDK-tagged full-length nucleolin, or DDK-tagged 
mutant, lacking the Fas-nucleolin binding domain, NR123 plasmids. Mice were challenged with a 
lethal dose of Jo2 antibody (.5 µg/g weight) and monitored for survival for up to eight hours post-
challenge. The survival rate was significantly higher for nucleolin-transfected mice than for mice 
transfected with vector alone or non-binding mutant NR123 (P< .003; log rank (mantel-cox) test). 
Mean data and SEM of 2 independent experiments are shown.(b) On gross examination, non-
transfected, vector- and NR123-transfected livers challenged with Jo2 exhibited massive 
hemorrhaging as shown by darkening and swelling. Nucleolin livers challenged with Jo2 showed 
decreased hemorrhaging as shown by lighter liver portions. (c) Livers were harvested, resected, and 
stained with H&E (upper panel), or were analyzed using cleaved caspase-3, cleaved PARP 
antibody or TUNEL assay to evaluate apoptosis. The images were captured by the Olympus BX41 
(Olympus) UPlan FL N 40X/0.75 objective. Images were acquired with DP Controller (Olympus) 
with a -2 exposure adjustment and 4.01 level adjustment for TUNEL staining with a FITC filter 
(Olympus). (d) Homogenized vector-, nucleolin- and NR123- Jo2 challenged and unchallenged 
liver samples were subjected to lysis, SDS-PAGE and IB analysis of nucleolin, FLAG, caspase-8, 
PARP, and β-actin. 
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Summary 

To determine nucleolin’s role in Fas-mediated apoptosis, we created nucleolin pKOs in 

BJAB cells, which lost the Fas-nucleolin complex and surface nucleolin expression (Figure 9). 

Characterization of nucleolin pKOs by confocal microscopy, TEM, and VTLM determined that 

defects in proliferation and centrosome formation resulting in the accumulation of multi-nucleated 

cells as previously described existed (Figure 10).(301) All of these results confirm that nucleolin’s 

down-regulation in B cells mimics previously described roles of nucleolin in cell biology, and it 

confirms the specificity of the knockdown. Analysis of Fas-mediated apoptotic response in 

nucleolin pKOs revealed a sensitization to Fas agonists (CH-11 and FasL) in comparison to 

parental and non-silencing BJAB controls (Figure 11). Further analysis of downstream signaling 

events revealed increased DISC formation and caspase cleavage in pKO cells (Figure 11). These 

results suggest a sensitization to Fas agonists at proximal signaling events. Binding experiments 

revealed that FasL and CH-11 bound to nucleolin pKO cells more efficiently than to control BJABs 

without an increase in levels of surface Fas (Figure 13). A lack of enhanced TRAIL sensitivity and 

binding in nucleolin pKO cells suggests that nucleolin’s inhibition of apoptosis may be Fas specific 

(Figure 12).  

We further elucidated nucleolin’s regulation of Fas-mediated apoptosis by overexpression 

of nucleolin and a nucleolin non-Fas binding mutant NR123 in vivo (Figure 15, Figure 16). 

Challenge of mice with an intraperitoneal injection of Fas agonist Jo2 results in apoptosis and 

massive hemorrhaging in mice livers and eventual death. This hydrodynamic based transfection 

model is an accepted model for expressing proteins of choice in mouse liver and for study of cell 

signaling, including Fas-mediated signaling.(302) Analysis of mice challenged with Jo2 revealed a 

protection against death and apoptosis in nucleolin-transfected mice in comparison to vector- and 

NR123-transfected mice (Figure 15, Figure 16). Taken together, these results reveal that nucleolin 

confers resistance to Fas-mediated apoptosis when in complex with Fas.  

Limitations and Future Directions 

The study of nucleolin knockout cells has been impractical. Nucleolin is essential for cell 

survival, and thus most cell culture knockouts last less than a week and no nucleolin knockdown 

mice have been successfully generated.(159, 301) The creation of an inducible system could 

overcome some these issues. Thus, it would be intriguing to create a Tet-on/off shRNA system to 

study the effects of gradual nucleolin downregulation.(304) Additionally, by creating an inducible 

knockdown system, we would be able to achieve an acute nucleolin protein decrease and potentially 

see more dramatic responses to Fas signaling. A creation of a Tet-on/off shRNA system would also 
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allow for investigations with an in vivo tumor growth model. However, due to nucleolin’s diverse 

and ubiquitous interactions in oncogenesis and proliferation, it would be difficult to confirm 

nucleolin’s regulation of Fas as a key step to chemotherapeutic resistance in such in vivo tumor 

growth studies.  

Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus 

prevents induction of Fas-mediated apoptosis in B-cell lymphomas. The regulation of apoptosis is a 

key step in malignant transformation as well as in response to chemotherapy. Our novel findings 

support the importance of nucleolin in blocking Fas-mediated apoptosis, which could contribute to 

cancer immune evasion as well as cancer chemoresistance. In addition, nucleolin surface expression 

in cancer could serve as a therapeutic target in B-cell lymphomas and many other cancers that 

overexpress nucleolin.  
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Chapter 5: Nucleolin Expression in B-cell Lymphomas 
 

Rationale 

 The failure of chemotherapy and the resulting 27% death rate in NHL underscores the necessity 

to be able to stratifying patients according to prognostic risk analysis and to prospectively identify 

chemosensitive and chemoresistant lymphomas.(7) The comparison of cancer and healthy tissue 

proteomes has revealed important cancer-specific targets for the treatment of NHL.(305) Nucleolin 

has recently been identified as a pro-survival protein that is frequently up-regulated in cancer and 

cancer-associated endothelial cells.(163, 267-269, 275, 281, 296, 297) Furthermore, nucleolin’s 

localization is often altered in highly proliferating cells, where it translocates out of the nucleus into 

the cytoplasm and exterior surfaces of cells.(172, 178, 256, 260, 273, 275) The selective surface 

expression of nucleolin further underscores its potential as a therapeutic target. 

Nucleolin’s role in promoting the survival of cancer cells may affect the clinical outcome of 

patients with B-cell lymphomas. This had been an unexplored topic, so we aimed to investigate 

nucleolin’s expression and localization patterns in B-cell lymphomas and examine whether 

nucleolin expression correlates with clinical outcomes. We aimed to define whether or not 

nucleolin’s expression and localization could serve as a novel biomarker and target in B-cell 

lymphomas. 

 

Results 

Nucleolin Expression and Localization in Human B-cell Lymphoma Tissues 

To identify potential nucleolin alterations in B-cell lymphomas, we performed IB of 

nucleolin in two cell lines each of Burkitts lymphoma, MCL, DLBCL cell lines; five primary 

DLBCL tissues; nine primary MCL tissues, and compared them with healthy donor B cells (Figure 

17a-c). Densitometry of nucleolin bands revealed elevation of nucleolin levels in B-cell lymphoma 

cell lines when compared to that of corresponding normal tissues (Figure 17a). As seen in Figure 

17b-c, nucleolin expression in DLBCL and MCL primary tissues was also elevated from normal B-

cell tissues, suggesting that increased nucleolin expression may be a consistent property of B-cell 

lymphomas.  

In order to identify changes in location of nucleolin, the extracts of cell lines were subjected 

to subcellular fractionation. The cell extracts were separated into nuclear and cytosolic protein 

fractions by partial hypotonic lysis (Figure 17d). A comparison of the densitometry readings of 
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bands from cytosolic fraction of B-cell lymphoma cell lines and that in normal B cells (Figure 17d) 

showed an increase in cytosolic nucleolin fraction as a percentage of total nucleolin in B-cell 

lymphomas compared with B cells. Thus, a shift in nucleolin’s localization to the cytoplasm/surface 

occurs in B-cell malignancies. This is in agreement with features of transforming and aggressive 

properties of cancer cells.(247, 306)    

 

Nucleolin mRNA Expression in Human B-cell Lymphoma Tissues 

To determine whether the increase in nucleolin protein expression was caused by an 

increase in its mRNA levels, we analyzed nucleolin mRNA levels in healthy B cells, B-cell 

lymphoma cell lines, primary MCL, primary DLBCL and primary CLL tissues. Nucleolin mRNA 

levels in MCL subjects were significantly elevated from normal B cells (P = .013); however, no 

such effects were identified in the B-cell lymphoma cell lines, DLBCL and CLL subjects (Figure 

17f). Thus, nucleolin mRNA should not be regarded as a driving force for high levels of nucleolin 

proteins.  

 

Nucleolin Surface Expression in Human B-cell Lymphoma Tissues 

To further delineate the cellular localization changes of nucleolin in B-cell lymphomas, we 

developed a flow cytometry staining protocol to measure surface nucleolin levels in primary 

tissues. The gating strategy for primary lymphoma cell (source cells were collected from apheresis, 

fluid, and leukemic blood) samples is demonstrated in Figure 18a. The shift in the intensity of 

nucleolin staining is highly specific yet not intense enough to produce two distinct populations. It 

displays a small shift of the entire population instead, suggesting the amount of nucleolin molecules 

on the surface is detectable but rather low (Figure 18a). Similar shifts of the entire nucleolin 

surface population have been reported previously.(275)  

Comparison of the surface expression of nucleolin in B-cell lymphomas with healthy 

individuals’ B cells reveals a significantly higher level in B-cell lymphomas (P-value=.001) (Figure 

18b-c). However, the nucleolin levels in CLL samples were similar to those in healthy B cells, 

suggesting that nucleolin surface levels are increased in aggressive B-cell lymphomas and lower in 

indolent B-cell lymphomas (Figure 18b). The latter lymphomas are known to have lower cell 

proliferation rates, which may account for this difference.  

Previous findings have indicated that the deregulation and overexpression of nucleolin 

correlated to a worse prognosis in ependymomas, stage II pancreatic ductal adenocarcinomas, and 
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relapsed acute leukemias (265, 269, 297). Here we examine whether nucleolin surface levels 

correlate with prognosis in lymphomas. We compared nucleolin surface levels with the IPI 

lymphoma risk groups. For MCL patients, IPI calculations were adjusted for the Mantle Cell 

Lymphoma International Prognostic Index (MIPI) (Figure 18c).(307) The CLL patients were 

applied to the IPI (which is typically used for DLBCL) in order to have a common stratification in 

these patients. The nucleolin levels among IPI groups were significantly different (P-

value=0.0137), with high risk IPI groups having increased surface levels of nucleolin (Figure 18c). 

Taken together, B-cell lymphomas elevate nucleolin protein levels, correlating with a worsening 

prognosis as determined by the relationship between surface nucleolin and IPI.  

  



85 
 

 
Figure 17 
  

            Nucleolin mRNA Levels

He
al

th
y 

Do
no

r
Ce

ll 
Li

ne
s

Pr
im

ar
y 

M
CL

Pr
im

ar
y 

DL
BC

L
Pr

im
ar

y 
CL

L

0

200000

400000

600000

800000

N
uc

le
ol

in
 m

R
N

A 
Le

ve
l

 (N
or

m
al

iz
ed

 to
 G

AP
D

H
)

*p=.013

a 

b 

c 

d 

e 

f 



86 
 

Figure 17: B-cell Lymphomas Express Higher Levels of Nucleolin Compared to Healthy B 

cells.  

(a) A representative immunoblot of nucleolin levels in paired cell lines: BJAB, Raji (Burkitts 
lymphoma); Jeko, MINO (MCL); DB, SU-DHL-9 (DLBCL); and two healthy donor CD19-positive 
B-cell populations. Densitometric analysis of IB of nucleolin protein expression levels normalized 
to β-actin loading control. (b) A representative IB of nucleolin levels in DLBCL primary tissues 
and two healthy donor CD19 positive B-cell populations. Densitometric analysis of IB of nucleolin 
protein expression levels normalized to β-actin loading control. (c) A representative IB of nucleolin 
levels in MCL primary tissues and one healthy donor CD19 positive B-cell population. 
Densitometric analysis of IB of nucleolin protein expression levels normalized to β-actin loading 
control. The multiple bands of nucleolin match the nucleolin 105, 80, 70 kDa pattern that has been 
attributed to autodegradation of its N-terminal domain. (d) A representative immunoblot of 
nucleolin levels from a cytosolic/nuclear fractionation assay with the paired cell lines: BJAB, Raji, 
Jeko, MINO, DB, SU-DHL-9, and a healthy donor CD19 positive B-cell population. GAPDH and 
p84 were used to test the purity of fractions. (e) Surface levels of nucleolin was analyzed in BJAB, 
Raji, Daudi, BC-3(a primary effusion lymphoma), U937 (histocytic lymphoma) and a two healthy 
donor CD19 positive B-cell populations by intact cell biotinylation followed with streptavidin-
agarose IP. Histone 3 was used as a control for purity of the surface fraction. BJAB whole-cell 
extracts were used as a positive control for antibody specificity. Input levels of nucleolin and β-
actin were used as loading controls. Representative data from three different experiments are 
shown. (f) Dot-plot of nucleolin mRNA expression levels in healthy donor B cell, MCL, DLBCL, 
and CLL tissues normalized to GAPDH as the internal control. The horizontal bar represents the 
means with the vertical bars representing the SEM. 
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Figure 18 
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Figure 18: Differential Expression of Surface Nucleolin in Lymphoma Primary Samples. 

(a) Gating strategy to analyze nucleolin levels in B-cell populations. Initial gating for normal 
forward (size) and side (granulation) scatter populations (1). Doublet cells were excluded by gating 
on single cell populations through side scatter area and side scatter wide (2). Live cells were next 
gated by live cell staining through negative exclusion of sytox blue positive cells. Our results with 
Sytox staining also eliminate the possibility that antibodies entered the cell through permeabilized 
membranes (3). This was followed by separation of live singlet cells, which were gated for CD19-
positive population representing B cells (4). Finally, the detected nucleolin levels were analyzed on 
FlowJo using a log scale of FITC median fluorescent intensity (5). (b) Dot-plot of surface nucleolin 
levels in healthy donor B cells and MCL, DLBCL, and CLL tissues as determined by flow 
cytometry. The horizontal bars represent the means with the vertical bars representing the SEM. A 
P-value of 0.001 from Wilcoxon rank sum test indicates that the difference in nucleolin levels 
between the healthy patients and patients with tumor is statistically significant. (c) Dot-plot of 
surface nucleolin levels in healthy donor B cells and MCL, DLBCL, and CLL tissues stratified into 
low, intermediate, or high risk populations by IPI or MIPI, depending on diagnosis. A P-value of 
0.0137 from Kruskal-Wallis test indicates that the difference in nucleolin levels among the IPI 
groups is statistically significant. 
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Patients’ Characteristics and Outcome 

To further demonstrate the biological relevance of nucleolin deregulation in B-cell malignancies, 

we created a retrospective tissue microarray (TMA) from 119 patients with B-cell lymphoma. The 

median age of the patients at biopsy was 56 years (range, 24 - 84). Their clinical characteristics are 

reported in Table 6. Overall survival (OS) time was calculated from biopsy date to death date. 

Patients were censored at last follow-up date if death had not occurred. The median OS time was 

102 months (95% confidence interval (CI): 52.1, 147). The median follow-up time for the censored 

observations was 137.98 months (range: 0.39 – 212.62). The 5-year OS rate of the 119 patients 

from this study cohort was 58% (95%CI: 0.5, .68), and the 5-year progression free survival (PFS) 

rate was 41% (95%CI: .33, .51). (Figure 20) (Table 11, Table 10). Of the known associated 

clinically relevant prognostic variables, the performance score was significantly associated with 

best complete response status (p-value=0.0072), PFS (p-value=0.0006), and OS (p-value=0.0247) 

(Table 7, Table 8, Table 9, Table 10, Table 11). The Ann Arbor Stage was significantly associated 

with histology (p-value=0.0289) (Table 8). The diagnosis was also significantly associated with 

PFS (p-value=0.047) (Figure 20b) (Table 10). 

 

Marker Expression 

 Three markers were evaluated for association with response status, patient demographics, 

clinical characteristics, PFS, and OS: Ki-67 intensity, average number of nucleolin positive cells, 

and nucleolin intensity. Zero (0), low (1), intermediate (2) and high (3) nucleolin-positive cell 

populations were defined as 0=no zero staining, 1= 1-25% cut point, 2=25-75% cut point, 3= >75% 

cut point (Figure 19a). Low (1) and high (2) nucleolin intensity scores were defined by pathologists 

(Figure 19b). Low (1) intermediate (2) and high (3) Ki-67 intensity scores were defined by 

pathologists (Figure 19c).    
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Figure 19 

Figure 19: Nucleolin and Ki-67 Marker Expression.  

Representative immunohistochemistry cases from the TMA to assess nucleolin expression. (a) 
Representative DLBCL with nucleolin positive cell scores of 0-3. (b) Representative DLBCL with 
nucleolin intensity scores of 1-2. (c) Representative DLBCL with Ki-67 intensity scores of 1-2. The 
images were captured by the Olympus BX41 microscope system. An Olympus Model DP72 camera 
and cellSens Standard 1.6 software (Olympus Corporation) was used for acquiring images. Each 
case is shown as acquired under 10X and 60X magnifications.  
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Nucleolin Protein Expression and Clinical Characteristics 

The number/percentage of nucleolin-positive cells associated significantly with both 

histology (P<0.0001) and patients Zubrod performance score (P-value=0.0096) at the time of 

biopsy (Table 8, Table 9). The number of positive cells in patients with DLBCL was distinctly 

higher (range 0 % to <75%, median <75%) than that in the indolent lymphoma CLL/SLL (range 

0 % to <75%, median 1-25%) (Table 8). The average intensity score of nucleolin also correlated 

significantly with histology (P-value=0.0015) but less significantly with the patient’s Zubrod 

performance score (P-value=0.0585) at the time of biopsy. Neither the average percentage of 

nucleolin-positive cells nor the average nucleolin intensity score was significantly associated with 

PFS and OS (Figure 20f-g, Figure 21f-g). Multivariable analysis confirmed that the markers are not 

significant with the adjustment of age and performance scores in the model. 

 

Ki-67 Intensity and Clinical Characteristics 

The proliferative marker, Ki-67, is often used to determine treatment strategies for patients 

with B-cell lymphomas. At the time of biopsy the average intensity of Ki-67 associated 

significantly with histology (P-value=0.0003) (Table 8). The average intensity in patients with 

DLBCL was distinctly higher (range 1-3, median 3) than that in the indolent lymphoma SLL 

(range1-3, median 2) (Table 8). The average Ki-67 intensity score was not significantly associated 

with PFS and OS (Figure 20h, Figure 21h). 

Interestingly, Ki-67 intensity score was significantly associated with the average number of 

nucleolin-positive cells (p-value<0.0001) and the average intensity score of nucleolin-positive cells 

(P-value<0.0001) (Table 12) (Figure 22).  

 

  



92 
 

Table 6 : Clinical Characteristics of the 119 B-cell Lymphoma Patients. 
Variable Category  Frequency count (Percentage) 
Gender F 53 (44.54%) 

  M 66 (55.46%) 

Diagnosis DLBCL 67 (56.3%) 

  FL 34 (28.57%) 

  MCL 4 (3.36%) 

  MZL 3 (2.52%) 

  SLL 11 (9.24%) 

Initial or Relapsed Patients I 81 (68.90%) 

  R 37 (31.09%) 

Performance  Score 0 50 (43.86%) 

  1 44 (38.6%) 

  2 16 (14.04%) 

  3 4 (3.51%) 

Ann Arbor Stage 1 7 (6.19%) 

  2 13 (11.5%) 

  3 35 (30.97%) 

  4 58 (51.33%) 

First Rx After Biopsy A: CHOP Therapy 45 (43.69%) 

  B: Combination Therapy 37 (35.92%) 

  C: Fludarabine Therapy 16 (15.53%) 

  D: Other 5 (4.85%) 

Response to First Rx CR 75 (72.12%) 

  PR 10 (9.62%) 

  Progression 17 (16.35%) 

  Stable 2 (1.92%) 

Total Treatments 0 1 (0.89%) 

  1 49 (43.75%) 

  2 15 (13.39%) 

  3 18 (16.07%) 

  4 21 (18.75%) 

  5 2 (1.79%) 

  6 4 (3.57%) 

  10 1 (0.89%) 

  12 1 (0.89%) 

Average Number NCL Positive 0 5 (4.2%) 

  1 20 (16.81%) 

  2 29 (24.37%) 

  3 65 (54.62%) 

Average Intensity of NCL 0 5 (4.2%) 

  1 59 (49.58%) 

  2 55 (46.22%) 

Average Intensity of Ki67 1 19 (18.27%) 

  2 35 (33.65%) 

  3 50 (48.08%) 

Last Follow-up Status Deceased 69 (57.98%) 

  Lost 6 (5.04%) 

  Remission 44 (36.97%) 

Cause of Death Remission 13 (20.97%) 

  Unknown 1 (1.61%) 

  With Lymphoma 48 (77.42%) 

 
Analysis Variable : Age  

N Mean Std Dev Minimum Lower Quartile Median Upper Quartile Maximum 

119 55.48 14.58 0.00 45.40 56.27 66.76 84.50 
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Data regarding performance status (n=114), Ann Arbor score (n=113), first reaction after biopsy 

(n=103), response to first treatment (n=104), total treatments (n=112), Ki-67 staining (n=104) and 

cause of death (n=62) were not available for all patients. The average number of nucleolin stained 

cells was coded as follows: no staining of nucleolin = 0, 1-25% = 1, 25-75% = 2, >75% = 3. 

Nucleolin intensity was scored as low or high correlating to 1 and 2, respectively. Ki-67 intensity 

was scored as 1, 2 or 3 from the lowest to the highest intensity.  
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Table 7: Response Status to the First Treatment after Biopsy and by Patients Characteristics.  
Variable  Levels 0: not CR 1: CR p-value 

Gender F 16(34%) 31(66%) .2035 

  M 13(22.8%) 44(77.2%) . 

Diagnosis  DLBCL 20(35.1%) 37(64.9%) .4672 

  FL 7(21.9%) 25(78.1%) . 

  MCL .(.%) 3(100%) . 

  MZL .(.%) 3(100%) . 

  SLL 2(22.2%) 7(77.8%) . 

Performance Score  0 5(11.4%) 39(88.6%) .0072** 

  1 16(41%) 23(59%) . 

  2 5(38.5%) 8(61.5%) . 

  3 1(33.3%) 2(66.7%) . 

Ann Arbor Stage  1 .(.%) 5(100%) .1724 

  2 3(25%) 9(75%) . 

  3 6(18.8%) 26(81.3%) . 

  4 18(36.7%) 31(63.3%) . 

First Rx After Biopsy  A:CHOPTher 11(24.4%) 34(75.6%) .7097 

  B:CombTher 13(36.1%) 23(63.9%) . 

  C:FludTher 4(26.7%) 11(73.3%) . 

  D:Other 1(20%) 4(80%) . 

Average Number NCL 
Positive  

0 .(.%) 4(100%) .1777 

  1 5(27.8%) 13(72.2%) . 

  2 4(15.4%) 22(84.6%) . 

  3 20(35.7%) 36(64.3%) . 

Average Intensity of 
NCL  

0 .(.%) 4(100%) .5585 

  1 14(26.9%) 38(73.1%) . 

  2 15(31.3%) 33(68.8%) . 

Average Intensity of 
Ki67  

1 5(27.8%) 13(72.2%) .1945 

  2 6(18.8%) 26(81.3%) . 

  3 16(38.1%) 26(61.9%) . 

 
Variable  CR to 

First Rx 
n mean std min q1 median q3 max p-value 

Age 0: not CR 29 57.714 15.856 27.748 45.402 62.552 70.335 84.498 0.14916 

  1: CR 75 53.198 14.062 0.000 44.099 54.472 61.782 76.468 . 

Data regarding performance status (n=114), Ann Arbor score (n=113), first treatment after biopsy 

(n=103) for initial or relapsed presentation of lymphoma, and Ki-67 staining (n=104) were not 

available for all patients; the patients were stratified according to their response status. Fisher’s 

exact test or Chi-square test was used to evaluate the difference in complete response rate 

between/among patient groups. ** The association between performance score and best complete 

response status was significant (P-value=0.0072). The difference in age between the groups of 

patients who achieved CR and the group of patients who did not achieved CR was not significant 

(P-value=0.15, Wilcoxon rank sum test). 
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 Table 8: Clinical Characteristics of 119 B-cell Lymphoma Patients Grouped According to 
Histology. 

Variable  Levels DLBCL FL MCL MZL SLL p-value 

Gender F 33(49.3%) 12(35.3%) .(.%) 2(66.7%) 6(54.5%) .1964 

  M 34(50.7%) 22(64.7%) 4(100%) 1(33.3%) 5(45.5%) . 

Performance Score  0 22(34.9%) 16(48.5%) 2(50%) 3(100%) 7(63.6%) .4872 

  1 26(41.3%) 12(36.4%) 2(50%) .(.%) 4(36.4%) . 

  2 13(20.6%) 3(9.1%) .(.%) .(.%) .(.%) . 

  3 2(3.2%) 2(6.1%) .(.%) .(.%) .(.%) . 

Ann Arbor Stage  1 6(9.4%) .(.%) .(.%) 1(33.3%) .(.%) .0289** 

  2 7(10.9%) 5(15.6%) .(.%) 1(33.3%) .(.%) . 

  3 22(34.4%) 10(31.3%) 2(50%) 1(33.3%) .(.%) . 

  4 29(45.3%) 17(53.1%) 2(50%) .(.%) 10(100%) . 

First Rx After Biopsy  A:CHOPTher 33(57.9%) 10(31.3%) .(.%) 1(50%) 1(11.1%) <.0001** 

  B:CombTher 23(40.4%) 11(34.4%) 3(100%) .(.%) .(.%) . 

  C:FludTher .(.%) 9(28.1%) .(.%) .(.%) 7(77.8%) . 

  D:Other 1(1.8%) 2(6.3%) .(.%) 1(50%) 1(11.1%) . 

Average Number NCL Positive  0 2(3%) 2(5.9%) .(.%) 1(33.3%) .(.%) <.0001** 

  1 7(10.4%) 4(11.8%) 1(25%) .(.%) 8(72.7%) . 

  2 9(13.4%) 15(44.1%) 2(50%) 1(33.3%) 2(18.2%) . 

  3 49(73.1%) 13(38.2%) 1(25%) 1(33.3%) 1(9.1%) . 

Average Intensity of NCL  0 2(3%) 2(5.9%) .(.%) 1(33.3%) .(.%) .0015** 

  1 24(35.8%) 20(58.8%) 3(75%) 2(66.7%) 10(90.9%) . 

  2 41(61.2%) 12(35.3%) 1(25%) .(.%) 1(9.1%) . 

Average Intensity of Ki67  1 9(15%) 6(21.4%) 1(25%) .(.%) 3(33.3%) .0003** 

  2 12(20%) 12(42.9%) 2(50%) 3(100%) 6(66.7%) . 

  3 39(65%) 10(35.7%) 1(25%) .(.%) .(.%) . 

Data regarding performance status (n=114), Ann Arbor score (n=113), first treatment after biopsy 

(n=103), and Ki-67 staining (n=104) were not available for all patients; the patients were stratified 

according to their diagnosis. Fisher’s exact test was used to evaluate the associations between 

histology and other patient characteristics. ** The associations between diagnosis and the 

following variables were significant: Ann Arbor stage, first treatment after biopsy, the average 

number of nucleolin-positive cells, the intensity of nucleolin staining and the intensity of Ki-67 

staining (P-values=0.0289, <.0001, <.0001, .0015, and .0003, respectively).  

  



96 
 

 
Table 9: Clinical Characteristics of 119 B-cell Lymphoma Patients Grouped According to 
Performance Score. 

Variable Levels PS=0 PS=1 PS=2 PS=3 p-value 

Gender F 20(39.2%) 21(41.2%) 10(19.6%) .(.%) .1274 

  M 30(47.6%) 23(36.5%) 6(9.5%) 4(6.3%) . 

Diagnosis DLBCL 22(34.9%) 26(41.3%) 13(20.6%) 2(3.2%) .4872 

  FL 16(48.5%) 12(36.4%) 3(9.1%) 2(6.1%) . 

  MCL 2(50%) 2(50%) .(.%) .(.%) . 

  MZL 3(100%) .(.%) .(.%) .(.%) . 

  SLL 7(63.6%) 4(36.4%) .(.%) .(.%) . 

First Rx After Biopsy  A:CHOPTher 21(46.7%) 16(35.6%) 6(13.3%) 2(4.4%) .0467** 

  B:CombTher 8(25%) 18(56.3%) 6(18.8%) .(.%) . 

  C:FludTher 9(56.3%) 5(31.3%) 1(6.3%) 1(6.3%) . 

  D:Other 4(80%) .(.%) .(.%) 1(20%) . 

Average Number NCL Positive  0 4(80%) .(.%) .(.%) 1(20%) .0096** 

  1 8(40%) 11(55%) 1(5%) .(.%) . 

  2 15(55.6%) 4(14.8%) 7(25.9%) 1(3.7%) . 

  3 23(37.1%) 29(46.8%) 8(12.9%) 2(3.2%) . 

Average Intensity of NCL  0 4(80%) .(.%) .(.%) 1(20%) .0585 

  1 27(47.4%) 21(36.8%) 9(15.8%) .(.%) . 

  2 19(36.5%) 23(44.2%) 7(13.5%) 3(5.8%) . 

Average Intensity of Ki67  1 8(44.4%) 8(44.4%) 1(5.6%) 1(5.6%) .0938 

  2 21(60%) 12(34.3%) 2(5.7%) .(.%) . 

  3 15(32.6%) 19(41.3%) 10(21.7%) 2(4.3%) . 

Data regarding Ann Arbor score (n=113), first treatment after biopsy (n=103), and Ki-67 staining 

(n=104) were not available for all patients; the patients were stratified according to their 

performance score. Fisher’s exact test was used to evaluate the associations between performance 

score and other patient characteristics. ** The associations between performance score and the 

following variables were significant or marginally significant: first treatment after biopsy and the 

average number of nucleolin positive cells and the intensity of nucleolin staining (P-

values= .0467, .0096, and 0.0585, respectively). 
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Figure 20
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Figure 20: Progression Free Survival of Patients with B-cell Lymphomas.  

According to (a) gender stratified by male and female; (b) diagnosis stratified by DLBCL, FL, 
MCL, marginal zone lymphoma (MZL) and SLL; (c) performance score stratified by 0-3 scoring; 
(d) Ann Arbor staging stratified by 0-4 staging; (e) first treatment after biopsy stratified by CHOP, 
combination, Fludarabine, or other treatment regimens; (f) average number of nucleolin positive 
cells stratified by 0-3 scoring; (g) average intensity of nucleolin staining stratified by 0-2 scoring; 
(h) average intensity of Ki-67 staining stratified by 1-3 scoring. Time was calculated from biopsy 
date to progression date or death date, whichever occurred first.  Patients were censored at the last 
follow-up date if progression or death had not occurred.  The median PFS time was 27.1 months 
(95% CI: 18.9, 78.8). The difference in PFS among performance score and diagnosis groups were 
significant (P-values=.0006 and .047, respectively) 
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Table 10: The Progression Free Survival Rates at Years 1, 3, and 5 along with the 95% 
Confidence Intervals. 

Variable Level N Event 
Median PFS time in 

months (95%CI) 
PFS Rate at 1 
Year (95%CI) 

PFS Rate at 3 
Years (95%CI) 

PFS Rate at 5 
Years (95%CI) p-value 

  All patients 119 82 27.1 ( 18.89 , 78.75 ) 0.65 ( 0.57 , 0.74 ) 0.46 ( 0.37 , 0.56 ) 0.41 ( 0.33 , 0.51 ) 
 

    
       

Gender F 53 37 26.22 ( 13.44 , 134.1 ) 0.64 ( 0.52 , 0.78 ) 0.45 ( 0.33 , 0.6 ) 0.41 ( 0.29 , 0.56 ) 0.9434 

  M 66 45 
28.55 ( 15.08 , 

107.79 ) 0.66 ( 0.55 , 0.78 ) 0.46 ( 0.36 , 0.61 ) 0.41 ( 0.31 , 0.56 ) 
 

Diagnosis DLBCL 67 49 13.47 ( 7.88 , 29.17 ) 0.54 ( 0.43 , 0.67 ) 0.36 ( 0.26 , 0.5 ) 0.31 ( 0.21 , 0.45 ) 0.047** 

  FL 34 19 107.23 ( 28.12 , NA ) 0.76 ( 0.63 , 0.92 ) 0.53 ( 0.39 , 0.73 ) 0.53 ( 0.39 , 0.73 ) 
 

  MCL 4 3 79.24 ( 2.07 , NA ) 0.75 ( 0.43 , 1 ) 0.75 ( 0.43 , 1 ) 0.75 ( 0.43 , 1 ) 
 

  MZL 3 2 141.08 ( 129.93 , NA ) 1 ( 1 , 1 ) 1 ( 1 , 1 ) 1 ( 1 , 1 ) 
 

  SLL 11 9 43.92 ( 21.91 , NA ) 0.82 ( 0.62 , 1 ) 0.55 ( 0.32 , 0.94 ) 0.36 ( 0.17 , 0.79 ) 
 Performance 

Score 0 50 27 129.93 ( 30.91 , NA ) 0.8 ( 0.7 , 0.92 ) 0.62 ( 0.49 , 0.77 ) 0.57 ( 0.45 , 0.73 ) 0.0006** 

  1 44 34 13.45 ( 8.08 , 78.75 ) 0.52 ( 0.39 , 0.7 ) 0.38 ( 0.26 , 0.56 ) 0.33 ( 0.22 , 0.51 ) 
 

  2 16 13 24.31 ( 6.34 , NA ) 0.56 ( 0.37 , 0.87 ) 0.31 ( 0.15 , 0.65 ) 0.31 ( 0.15 , 0.65 ) 
 

  3 4 4 7.15 ( 4.37 , NA ) 0.25 ( 0.05 , 1 ) 
   Ann Arbor 

Stage 1 7 4 152.23 ( 133.18 , NA ) 1 ( 1 , 1 ) 0.83 ( 0.58 , 1 ) 0.83 ( 0.58 , 1 ) 0.3927 

  2 13 8 129.93 ( 6.64 , NA ) 0.54 ( 0.33 , 0.89 ) 0.54 ( 0.33 , 0.89 ) 0.54 ( 0.33 , 0.89 ) 
 

  3 35 23 27.83 ( 18.89 , NA ) 0.71 ( 0.57 , 0.88 ) 0.41 ( 0.28 , 0.62 ) 0.41 ( 0.28 , 0.62 ) 
 

  4 58 43 15.08 ( 9.82 , 49.47 ) 0.56 ( 0.45 , 0.71 ) 0.4 ( 0.29 , 0.55 ) 0.33 ( 0.23 , 0.48 ) 
 First Rx After 

Biopsy 
A: CHOP 
Therapy 45 31 39.39 ( 21.52 , 138.7 ) 0.64 ( 0.52 , 0.8 ) 0.51 ( 0.38 , 0.68 ) 0.47 ( 0.34 , 0.64 ) 0.3665 

  
B: Comb 
Therapy 37 29 18.89 ( 10.78 , 79.24 ) 0.62 ( 0.48 , 0.8 ) 0.37 ( 0.24 , 0.56 ) 0.31 ( 0.19 , 0.51 ) 

 
  

C: Flud 
Therapy 16 10 60.87 ( 13.83 , NA ) 0.81 ( 0.64 , 1 ) 0.56 ( 0.37 , 0.87 ) 0.5 ( 0.31 , 0.82 ) 

 
  D: Other 5 2 NA ( 28.55 , NA ) 0.8 ( 0.52 , 1 ) 0.6 ( 0.29 , 1 ) 0.6 ( 0.29 , 1 ) 

 Average 
Number NCL 
Positive 0 5 3 181.87 ( 24.93 , NA ) 1 ( 1 , 1 ) 0.6 ( 0.29 , 1 ) 0.6 ( 0.29 , 1 ) 0.3154 

  1 20 16 23.14 ( 13.83 , 79.24 ) 0.7 ( 0.53 , 0.93 ) 0.4 ( 0.23 , 0.68 ) 0.35 ( 0.19 , 0.64 ) 
 

  2 29 17 53.45 ( 28.12 , NA ) 0.79 ( 0.66 , 0.96 ) 0.5 ( 0.35 , 0.73 ) 0.47 ( 0.32 , 0.7 ) 
 

  3 65 46 17.67 ( 8.21 , 107.23 ) 0.54 ( 0.43 , 0.68 ) 0.44 ( 0.33 , 0.58 ) 0.39 ( 0.29 , 0.53 ) 
 Average 

Intensity of 
NCL 0 5 3 181.87 ( 24.93 , NA ) 1 ( 1 , 1 ) 0.6 ( 0.29 , 1 ) 0.6 ( 0.29 , 1 ) 0.2722 

  1 59 40 
31.04 ( 21.91 , 

129.93 ) 0.73 ( 0.62 , 0.85 ) 0.49 ( 0.37 , 0.63 ) 0.45 ( 0.34 , 0.6 ) 
 

  2 55 39 13.47 ( 7.88 , 107.13 ) 0.53 ( 0.41 , 0.68 ) 0.41 ( 0.3 , 0.57 ) 0.35 ( 0.24 , 0.51 ) 
 Average 

Intensity of 
Ki67 1 19 12 24.93 ( 13.67 , NA ) 0.68 ( 0.5 , 0.93 ) 0.42 ( 0.25 , 0.71 ) 0.37 ( 0.2 , 0.66 ) 0.2062 

  2 35 24 
79.24 ( 30.91 , 

152.23 ) 0.85 ( 0.74 , 0.98 ) 0.64 ( 0.49 , 0.83 ) 0.58 ( 0.43 , 0.77 ) 
 

  3 50 36 13.47 ( 8.02 , 107.13 ) 0.53 ( 0.41 , 0.69 ) 0.38 ( 0.27 , 0.55 ) 0.34 ( 0.23 , 0.5 ) 
 Performance status (n=114), Ann Arbor score (n=113), first treatment after biopsy (n=103), and 

Ki-67 staining (n=104) were not available for all patients. PFS rates at years 1, 3, and 5 along 

with the 95% confidence intervals and the P-values from the log-rank test (univariable analysis) 

are provided.  ** The difference in PFS among the five histology groups was significant (P-

value=0.047).  The difference in PFS among the 4 performance score groups was also significant 

(P-value=0.0006). 
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Figure 21: Overall Survival of Patients with B-cell Lymphomas.  

According to (a) gender stratified by male and female; (b) diagnosis stratified by DLBCL, FL, 
MCL, MZL and SLL; (c) performance score stratified by 0-3 scoring; (d) Ann Arbor staging 
stratified by 0-4 staging; (e) first treatment after biopsy stratified by CHOP, combination, 
fludarabine, or other treatment regimens; (f) average number of nucleolin positive cells stratified by 
0-3 scoring; (g) average intensity of nucleolin staining stratified by 0-2 scoring; (h) average 
intensity of Ki-67 staining stratified by 1-3 scoring. OS time was calculated from biopsy date to death 
date.  Patients were censored at the last follow-up date if death had not occurred.  The median overall 
survival time was 102 months (95% CI: 52.1, 147).  The median follow-up time for the censored 
observations was 137.98 months (range: 0.39 – 212.62). The difference in OS among performance 
scores was significant (P-value=.0247) 
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Table 11: The Overall Survival (OS) Rates at Years 1, 3, and 5 along with the 95% 
Confidence Intervals. 

Variable Level N Event 
Median OS time in 
months (95%CI) 

OS Rate at 1 Year 
(95%CI) 

OS Rate at 3 
Years (95%CI) 

OS Rate at 5 
Years (95%CI) p-value 

  All patients 119 69 101.77 ( 52.14 , 146.81 ) 0.77 ( 0.69 , 0.85 ) 0.65 ( 0.57 , 0.75 ) 0.58 ( 0.5 , 0.68 ) 
 

    
       

Gender F 53 31 111.3 ( 42.61 , NA ) 0.71 ( 0.6 , 0.85 ) 0.65 ( 0.53 , 0.8 ) 0.55 ( 0.43 , 0.71 ) 0.8548 

  M 66 38 84 ( 52.14 , NA ) 0.81 ( 0.72 , 0.91 ) 0.65 ( 0.55 , 0.78 ) 0.6 ( 0.49 , 0.74 ) 
 

Diagnosis DLBCL 67 41 67.74 ( 27.1 , 144.28 ) 0.72 ( 0.62 , 0.84 ) 0.59 ( 0.48 , 0.72 ) 0.5 ( 0.39 , 0.65 ) 0.0969 

  FL 34 14 NA ( 101.77 , NA ) 0.82 ( 0.7 , 0.96 ) 0.71 ( 0.57 , 0.88 ) 0.68 ( 0.54 , 0.85 ) 
 

  MCL 4 3 79.24 ( 2.07 , NA ) 0.75 ( 0.43 , 1 ) 0.75 ( 0.43 , 1 ) 0.75 ( 0.43 , 1 ) 
 

  MZL 3 2 143.36 ( 134.49 , NA ) 1 ( 1 , 1 ) 1 ( 1 , 1 ) 1 ( 1 , 1 ) 
 

  SLL 11 9 62.19 ( 43.2 , NA ) 0.82 ( 0.62 , 1 ) 0.73 ( 0.51 , 1 ) 0.55 ( 0.32 , 0.94 ) 
 Performance 

Score 0 50 23 152.23 ( 107.13 , NA ) 0.88 ( 0.79 , 0.97 ) 0.82 ( 0.72 , 0.93 ) 0.73 ( 0.62 , 0.87 ) 0.0247** 

  1 44 29 49.11 ( 13.86 , 134.1 ) 0.69 ( 0.56 , 0.84 ) 0.54 ( 0.41 , 0.71 ) 0.49 ( 0.36 , 0.67 ) 
 

  2 16 11 35.56 ( 6.96 , NA ) 0.62 ( 0.43 , 0.91 ) 0.5 ( 0.31 , 0.82 ) 0.44 ( 0.25 , 0.76 ) 
 

  3 4 3 11.32 ( 4.37 , NA ) 0.5 ( 0.19 , 1 ) 0.25 ( 0.05 , 1 ) 0.25 ( 0.05 , 1 ) 
 Ann Arbor 

Stage 1 7 4 143.45 ( 133.18 , NA ) 1 ( 1 , 1 ) 1 ( 1 , 1 ) 1 ( 1 , 1 ) 0.2015 

  2 13 6 154.4 ( 13.86 , NA ) 0.77 ( 0.57 , 1 ) 0.69 ( 0.48 , 0.99 ) 0.69 ( 0.48 , 0.99 ) 
 

  3 35 17 111.3 ( 52.14 , NA ) 0.88 ( 0.78 , 1 ) 0.73 ( 0.59 , 0.9 ) 0.64 ( 0.49 , 0.82 ) 
 

  4 58 38 43.92 ( 16.59 , 144.28 ) 0.65 ( 0.54 , 0.79 ) 0.54 ( 0.43 , 0.69 ) 0.47 ( 0.36 , 0.62 ) 
 First Rx 

After Biopsy 
A: CHOP 
Therapy 45 23 134.66 ( 78.98 , NA ) 0.82 ( 0.72 , 0.94 ) 0.75 ( 0.64 , 0.89 ) 0.66 ( 0.54 , 0.82 ) 0.3789 

  
B: Comb 
Therapy 37 25 75.3 ( 23.82 , 144.28 ) 0.75 ( 0.63 , 0.91 ) 0.59 ( 0.45 , 0.77 ) 0.53 ( 0.39 , 0.72 ) 

 
  

C: Flud 
Therapy 16 9 101.77 ( 43.92 , NA ) 0.88 ( 0.73 , 1 ) 0.81 ( 0.64 , 1 ) 0.69 ( 0.49 , 0.96 ) 

 
  D: Other 5 2 NA ( 28.58 , NA ) 0.8 ( 0.52 , 1 ) 0.6 ( 0.29 , 1 ) 0.6 ( 0.29 , 1 ) 

 Average 
Number NCL 
Positive 0 5 3 134.66 ( 134.66 , NA ) 1 ( 1 , 1 ) 0.8 ( 0.52 , 1 ) 0.8 ( 0.52 , 1 ) 0.8077 

  1 20 15 78.53 ( 43.92 , NA ) 0.8 ( 0.64 , 1 ) 0.75 ( 0.58 , 0.97 ) 0.55 ( 0.37 , 0.82 ) 
 

  2 29 15 133.18 ( 42.61 , NA ) 0.83 ( 0.7 , 0.98 ) 0.68 ( 0.53 , 0.88 ) 0.61 ( 0.46 , 0.82 ) 
 

  3 65 36 107.13 ( 28.58 , NA ) 0.71 ( 0.61 , 0.83 ) 0.6 ( 0.48 , 0.73 ) 0.56 ( 0.45 , 0.7 ) 
 Average 

Intensity of 
NCL 0 5 3 134.66 ( 134.66 , NA ) 1 ( 1 , 1 ) 0.8 ( 0.52 , 1 ) 0.8 ( 0.52 , 1 ) 0.7331 

  1 59 34 101.77 ( 52.14 , NA ) 0.79 ( 0.7 , 0.9 ) 0.67 ( 0.56 , 0.8 ) 0.6 ( 0.48 , 0.74 ) 
 

  2 55 32 67.74 ( 39.39 , NA ) 0.72 ( 0.61 , 0.85 ) 0.62 ( 0.5 , 0.77 ) 0.54 ( 0.42 , 0.69 ) 
 Average 

Intensity of 
Ki67 1 19 12 49.11 ( 31.04 , NA ) 0.74 ( 0.56 , 0.96 ) 0.63 ( 0.45 , 0.89 ) 0.47 ( 0.29 , 0.76 ) 0.8729 

  2 35 22 84 ( 77.83 , NA ) 0.91 ( 0.82 , 1 ) 0.82 ( 0.7 , 0.96 ) 0.7 ( 0.56 , 0.87 ) 
 

  3 50 26 107.13 ( 27.1 , NA ) 0.71 ( 0.59 , 0.85 ) 0.58 ( 0.46 , 0.74 ) 0.58 ( 0.46 , 0.74 ) 
 Performance status (n=114), Ann Arbor score (n=113), first treatment after biopsy (n=103), and 

Ki-67 staining (n=104) were not available for all patients. Survival rates at years 1, 3, and 5 along 

with the 95% confidence intervals and the P-values from the log-rank test (univariable analysis) 

are provided.  ** The difference in OS among the five histology groups was marginally significant 

(P-value=0.0969).  The difference in OS among the 4 performance score groups was significant (P-

value=0.0247). 
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Table 12: Association between Nucleolin and Ki-67 Markers. 

Variable  Levels Average intensity of Ki67 
=1 

Average intensity of Ki67 
=2 

Average intensity of Ki67 
=3 

p-value 

Average Number NCL Positive  0 2(40%) 3(60%) .(.%) <.0001 

  1 6(33.3%) 9(50%) 3(16.7%) . 

  2 7(29.2%) 10(41.7%) 7(29.2%) . 

  3 4(7%) 13(22.8%) 40(70.2%) . 

Average Intensity of NCL  0 2(40%) 3(60%) .(.%) <.0001 

  1 12(23.1%) 24(46.2%) 16(30.8%) . 

  2 5(10.6%) 8(17%) 34(72.3%) . 

 
Fisher’s exact test was used to evaluate the association between average intensity of Ki67 and the 

two values representing NCL staining. The association between average intensity of Ki67 and 

average number of positive NCL was significant (P-value<0.0001).  The association between 

average intensity of Ki67 and average intensity of NCL was also significant (p-value<0.0001). 
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Figure 22 

 
Figure 22: Correlation between Nucleolin and Ki-67 Staining in a DLBCL and SLL.  

Representative examples of nucleolin and Ki-67 correlative staining. (a) DLBCL with 1-25% 
nucleolin-positivity average and low nucleolin intensity score at 10X and 40X, left to right and (b) 
corresponding low Ki-67 expression at 10X and 40X. (c) DLBCL with <75% nucleolin-positivity 
average and high nucleolin intensity score at 10X and 40X, left to right; and (d) corresponding high 
score 3 Ki-67 expression at 10X and 40X. (e) SLL with 1-25% nucleolin-positivity average and low 
nucleolin intensity score at 10X and 40X, left to right; and (f) corresponding low Ki-67 expression 
at 10X and 40X. (g) SLL with 25-75% nucleolin-positivity average and low nucleolin intensity 
score at 10X and 40X, left to right and (h) corresponding intermediate Ki-67 score of 2 at 10X and 
40X. The images were captured by the Olympus BX41 microscope system. An Olympus Model 
DP72 camera and cellSens Standard 1.6 software (Olympus Corporation) was used for acquiring 
images. 
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Summary  

 Our analysis of nucleolin expression revealed that mRNA levels are neither significantly 

nor consistently upregulated in B-cell lymphomas when compared to healthy individual’s B cells. 

However, as determined by IB, nucleolin protein expression levels were elevated in multiple B-cell 

lymphoma cell lines, DLBCL and MCL tissues compared to healthy donor isolate B lymphocytes. 

The fractionation of cytosolic and nuclear proteins from B-cell lymphoma cell lines and healthy 

donor’s B cells revealed increased nucleolin levels in the cytosolic fraction from lymphoma cells. 

Membrane biotinylation followed by IP of biotin revealed the presence of nucleolin on the cell 

surface in various B-cell lymphoma cell lines. The preferential nucleolin overexpression and 

translocation to the cytosol and cell surface indicated deregulation of nucleolin expression in B-cell 

lymphomas. 

We addressed the clinical impact of surface nucleolin by analyzing and comparing healthy 

individual B cells, cell lines, and MCL, DLBCL, and CLL primary samples by flow cytometry. We 

found that surface nucleolin was significantly increased in B-cell lymphomas compared to healthy 

donor B cells. The presence of surface nucleolin was associated with a high risk IPI in patients with 

B-cell lymphoma.  Total nucleolin expression was evaluated by a TMA analysis of a large series of 

samples from patient with DLBCL, FL, MZL, MCL, and SLL/CLL treated with various 

chemotherapy regimens. Total nucleolin levels did not show an association with poor clinical 

outcome, nor with response to chemotherapy as our previous studies on surface nucleolin and Fas 

had suggested. The 119 TMA patient samples included five different histologic lymphomas, and 

tissue from naïve as well as relapsed lymphoma which could hinder our assessment of patients. The 

performance score was highly associated with response status, PFS, OS, and clinical characteristics 

of our cohort and represented the best single clinical correlative associated with the clinical 

outcome in this patient population. We found that total nucleolin levels correlated positively with 

aggressive lymphoma types with the highest nucleolin levels were expressed in DLBCL and lowest 

levels in CLL/SLL. This relationship may simply be related to the Ki-67 proliferation rates and 

nucleolin levels. Thus nucleolin levels and Ki-67 levels both indicated a reflection of proliferation 

levels in these cancers and substantiate the agreement of two prognostic markers in B-cell 

lymphomas. 

Limitations and Future Directions 

This report extends the observations of cancer-specific overexpression of nucleolin to B-

cell lymphomas, which was not previously characterized. As a retrospective study, there are key 

elements that could be improved to allow a more robust and comprehensive analysis. The surface 
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nucleolin was detected in recently collected samples from the MD Anderson Lymphoma Tissue 

Bank, and therefore follow-up data is limited. Additionally, the Ki-67 staining was not completed 

on all patients in this cohort, and therefore we were unable to determine if nucleolin’s surface 

expression also correlates with Ki-67 staining scores. It will be beneficial to design a prospective 

study collecting the follow-up data over time to determine if surface nucleolin is a predictor of 

outcome.  

The surface nucleolin levels were not correlated with the clinical outcome in our TMA, 

largely because we were unable to distinguish nuclear, cytoplasmic, and surface nucleolin by the 

employed immunohistochemistry (IHC) method using nucleolin H-6 antibody (Santa Cruz 

Biotechnologies). Subcellular location of an antigen is a challenge in tissue sections and other 

staining methods may offer better resolution. This analysis will require a single cell suspension, 

surface-specific nucleolin antibody or at least a cytoplasmic nucleolin antibody (as both 

localizations appear to be affected in B-cell lymphomas). It has been reported that nucleolin 

antibody D3 produces a high surface staining; it may be interesting to determine if we see better 

extra-nuclear staining by IHC.(178) Moreover, a glycosylated nucleolin specific antibody, gp273, 

created by Galzio et al. (267), could be utilized to detect surface destined nucleolin, as it has been 

suggested that newly glycosylated nucleolin is targeted to the surface and cytoplasm.(175)  

Unfortunately, neither antibody is commercially available. By enriching the TMA with these 

antibodies, we can better address whether redistribution of nucleolin to the cell surface is a 

predictor of clinical outcome in B-cell lymphomas, as suggested by correlation of our flow 

cytometry data with IPI.  

Lastly, selection of a group of patients that represents a more homogenous population with 

fewer variables would strengthen our data. A better group of patients to study would be patients of 

a single histologic type with all biopsies take prior to treatment start dates which have long follow-

up periods. We predict that an SLL cohort may give a significant correlation of nucleolin levels 

with chemotherapeutic response and outcome, as SLL patients in our cohort had a wide range of 

Ki-67 and nucleolin marker staining. This would help eliminate most confounding factors caused 

by the differences in natural history of lymphomas, treatment plans and toxicity profiles. 
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Chapter 6: Discussion  
 

Fas apoptotic signaling is important for chemotherapy-induced tumor cell elimination. 

Multiple chemotherapies, including those for lymphomas (doxorubicin, methotrexate, 

mitoxantrone, bleomycin and rituximab), have been shown to upregulate Fas or/and FasL to 

promote a more robust tumor elimination potential.(108-111, 113, 115, 143, 308) However, cancers 

often block Fas signaling through Fas mutagenesis, downregulation of key players in the Fas 

signaling cascade, and overexpression of apoptosis inhibitors such as c-FLIP and bcl-2 family 

proteins to achieve chemoresistance.(149, 309) Therefore, it is clear that chemoresistance in cancer 

has multifactorial origins that converge at Fas signaling.(46, 82, 105, 108, 141) In lymphomas, 

wild-type Fas is commonly expressed, and overexpression of c-FLIP and bcl-2 family members 

cannot always explain the observed resistance to Fas-mediated apoptosis.(310) In our investigation 

into the mechanisms of Fas evasion, we discovered nucleolin as a novel binding partner in 

activation-resistant Fas in B-cell lymphomas. Nucleolin is a multifunctional protein associated with 

pro-survival functions in actively dividing cells and its targeting may represent a novel clinical tool 

for the treatment of B-cell malignancies.  

This work revealed that nucleolin-Fas complexes exist on the surface of B-cell lymphomas 

but not in healthy B cells. We mapped the Fas binding site of nucleolin to the R4-GAR C-terminal 

domains. We successfully created stable partial nucleolin knockdown cells. Remarkably, nucleolin 

knockdowns were sensitive to Fas-mediated apoptosis without an increase in Fas surface levels. 

Further supporting evidence was revealed by evaluation of DISC assembly and caspase activation 

post-CH-11 challenge of nucleolin partial knockdown cells. We showed an increase in Fas agonist 

binding to nucleolin in partial knockdowns in comparison with parental and non-silencing BJAB 

cells. In vivo data confirmed protection against Fas-induced death by nucleolin but not by the 

nucleolin mutant that did not bind Fas. 

Results from previous investigations revealed a correlation with nucleolin and overall 

survival of pediatric ependymoma, glioma, and melanoma patients.(265, 267, 268) We obtained 

evidence through flow cytometry that nucleolin surface levels correlate with a worse prognostic 

risk as determined by the IPI. However, analysis of total nucleolin levels in a TMA of 119 B-cell 

lymphoma patients did not show an association with nucleolin levels and with progression free 

survival or overall survival. These results are consistent with surface nucleolin and nucleolin that 

can bind Fas as the clinically important fraction. We acknowledge there are limitations of the study 

in that the differences in nucleolin expression as a prognostic and diagnostic marker could be 
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related to the lack of uniformity among staining techniques. Our assays were performed with a 

nucleolin antibody different from other studies.  Nucleolin levels were associated with diagnosis 

and performance score and correlated with Ki-67 staining, suggesting total nucleolin as having a 

proliferative measurement capacity.  

We conclude that nucleolin is a novel binding modulator of the Fas death receptor 

selectively present on the surface of human lymphomas where it effectively blocks Fas signaling as 

diagramed in Figure 23.  Given the common surface expression of nucleolin and the often-impaired 

Fas signaling in cancer, we predict that nucleolin contributes to chemoresistance and, because of its 

surface localization, is a viable target for new therapeutic interventions. Therefore, future studies 

building on the results of this investigation would develop nucleolin-targeting therapeutics with 

effectiveness in eliminating multiple cancers.   
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Figure 23: 

 
Figure 23: Nucleolin and Fas Regulation in B cells. 
Diagram representing our conclusions on nucleolin in B cells and its effects on Fas-mediated 
apoptotic signaling.   
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Future Studies 

Nucleolin’s Effect on Chemotherapy-induced Cell Death 

This dissertation clearly demonstrates that nucleolin binds Fas and negatively affects its 

ability to signal apoptosis. As Fas signaling has been implicated in responses to and the 

effectiveness of multiple chemotherapy regimens, the next logical extension of our investigation 

would be to test the sensitivity of nucleolin knockdowns to chemotherapies which have been 

suggested to utilize Fas, doxorubicin, bleomycin and etoposide. To accomplish these studies, our 

current stable nucleolin partial knockdown cell lines can be utilized in cell death and cell 

proliferation assays post-chemotherapy treatment to determine sensitivity. Alternatively, as 

mentioned previously, a tet-on/off system would allow for a more significant nucleolin decrease 

and could be utilized in a mouse xenograft tumor growth model in which the effects of doxorubicin, 

bleomycin, and etoposide could be tested in vivo. These assays would provide further information 

on levels of nucleolin contributing to chemoresistance, and they could extend to investigations into 

nucleolin’s contribution to chemoresistance in the clinic. 

 

Nucleolin-Fas Complexes and their Dependency on Cell Cycle  

Previous studies suggest that nucleolin’s modifications, localization and functions have 

been linked to cell cycle progression, specifically that nucleolin levels rise during G0-G1 transition 

and mitosis.(152, 181) It would be interesting to decipher whether the nucleolin-Fas complex is cell 

cycle regulated within the context of B cells. For example, does nucleolin bind Fas during or prior 

to cell division to prevent inadvertent apoptosis at vulnerable phases of the cell cycle or does it 

constantly protect Fas from FasL stimulation? Specifically, we propose to evaluate nucleolin 

expression through PCR analysis and Western blotting along with nucleolin-Fas complex formation 

through coIP following artificial cell cycle synchronization. Cell cycle synchronization can be 

achieved by several treatments listed in Table 13(311, 312) and can be monitored by flow 

cytometry analysis of cell cycle in propidium iodide-stained cells.(313) It is important to note that 

many of the chemical blocks can induce apoptosis and alter Fas-trafficking, therefore it will be 

important to monitor cell viability and nucleolin function prior to analysis. By performing the 

proposed analyses we can shed more light on the role of nucleolin-Fas complex regulation in B-cell 

lymphomas. 
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Table 13: Potential Cell Cycle Synchronization Methods. 

Treatment/Method Treatment Schedule Cell Cycle Enrichment Phase 

Nocodazole(312)     12-16hrs M Phase 

Excess Thymidine(312)     10hrs M Phase 

Serum Starvation(312)     24-48hrs G0 Phase 

Isoleucine Depletion(312)     36-42hrs G0 Phase 

Lovastatin(312)     24-36hrs G1 Phase 

Double-Thymidine(312) 

(Hydroxyurea, Aphidicolin) 

12hrs  release 8hrs  12hrs S Phase 

Cell synchronizations can be tested with various chemicals and treatments: nocodazole, excess 
thymidine, serum starvation, isoleucine depletion, lovastatin, and double-thymidine. The treatment 
time and resulting cell cycle enrichment phase is given for each potential method.(312)      
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Nucleolin’s Role in Apoptosis Regulation throughout B-cell Development 

Apoptotic signaling is used throughout every step of B-cell differentiation, and therefore 

Fas regulatory mechanisms are carefully coordinated throughout the maturation process.(4) The 

apoptotic and anti-apoptotic molecules that orchestrate the survival or death of cells during B-cell 

development work in collaboration. Fas and Bcl-2 are two molecules whose expression is finely 

tuned throughout B-cell development. As B cells proceed through the negative selection processes 

in the germinal centers of the lymphoid tissue, the anti-apoptotic Bcl-2 molecule is downregulated 

while apoptosis-mediating Fas molecule is expressed in high levels. In the mantle zones of 

lymphoid tissues, in which the antigen-dependent humoral response of B cells occurs, Fas 

expression is lowered while Bcl-2 is inversely upregulated.(102, 149) Therefore, the inverse 

relationship between Fas and Bcl-2 expression is essential for an effective development and 

response by B cells (Figure 24). However, disruption of this balance can result in 

lymphoproliferative disease, lymphoma development and inadequate immune responses. On the 

basis of our and previous findings that nucleolin participates in the regulation of both molecules, 

through the stabilization of bcl-2 mRNA and inhibition of Fas signaling, it is an intriguing idea to 

track nucleolin’s expression and function during B-cell development by paying close attention to 

these two regulatory aspects.  

To address the cellular dynamics of nucleolin throughout B-cell development, 

immunofluorescence, immunohistochemistry and in situ hybridization can be used to analyze 

various lymphoid compartments to track nucleolin, Fas, and Bcl-2 protein and bcl-2 mRNA 

levels.(102) Additionally, coIP of the Fas-nucleolin and nucleolin-bcl-2 mRNA complexes can be 

performed in order to determine if these two nucleolin associations change throughout B-cell 

development. Our assumption is that nucleolin expression would be low in B cells, except during 

the proliferative clonal expansion stages (Figure 24). In normal B cells, even when Fas is 

upregulated, we would not expect to see nucleolin-Fas complexes, as Fas signaling must be active 

during germinal center selection. However, nucleolin may be utilized to stabilize bcl-2 mRNA in 

the mantle zone B cells. Due to the deregulation of bcl-2 and Fas in B-cell lymphomas, it would be 

beneficial to monitor nucleolin’s expression levels and its Bcl-2 and Fas regulatory functions in B 

cell malignancies. Potentially, in malignant B cells nucleolin may bind Fas and bcl-2 mRNA 

simultaneously as a dual protective effect against cell death. These results may lead to further 

delineation of nucleolin’s role in oncogenesis and its discrepancies from healthy B cells.  
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Figure 24 

 
 

 

 
Figure 24: Schematic of Bcl-2 and Fas Levels throughout B-cell Development.  

During B-cell differentiation, as represented by colored arrows, Bcl-2 (blue line) and Fas (red line) 
expression levels fluctuate. Acquired with kind permission from John Wiley and Sons (License 
3125510179463). (102) There is potential for nucleolin protein fluctuation throughout B-cell 
differentiation also.   
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Expansion of the Characterization of the Nucleolin-Fas Complex 

In order to develop targeting agents against the nucleolin-Fas complex, further analysis into 

the interaction and its kinetics must be carried out. We were able to determine that the extracellular 

domain of Fas is utilized for complex formation. Further analysis of the interaction should analyze 

Fas-deletion mutants to identify nucleolin binding site on Fas. The PLAD domain of Fas is essential 

for these studies. However, the constructs obtained by our laboratory are missing the PLAD domain 

of Fas, necessary for Fas trimerization, thereby affecting the correct folding and translocation 

abilities of these Fas mutants. In order to overcome this limitation a new set of Fas mutants with a 

preserved PLAD domain should be created in order to determine Fas’s interaction site with 

nucleolin.  

Additional in depth analysis of the nucleolin R4-GAR domain interaction with Fas through 

a more detailed mutational analysis on the molecular level would increase our ability to target Fas-

nucleolin interaction by peptides or peptidomimetics. This is a potentially very important site for 

treatment of medical problems mediated via nucleolin overexpression. Logistical issues with 

mutational analyses arise due to the nature of the GAR domain, essential for nucleolin-Fas complex 

formation. There is no crystallography data available regarding the GAR domain. However, it is 

known that the GAR domain has rather high phenylalanine content and is composed predominantly 

of β-sheets. Mutations of the phenylalanines within this domain would significantly change the 

hydrophobicity index of nucleolin and potentially cause a loss of β-sheets. Far-UV (190-250nm) 

circular dichroism (CD) spectroscopy takes advantage of the fact that the polarized light is absorbed 

differently by alpha-helices, β-sheets and random coils, which allows for quantitation of the relative 

content of each of those structures within the protein.(314) Therefore CD spectroscopy would be 

necessary to obtain information about the secondary structure of nucleolin mutants and to compare 

this information with the wild type nucleolin to determine functionality of the mutant GAR 

domains. 

Additionally, further elucidation of the kinetics of the Fas-nucleolin direct interaction would 

provide valuable information for targeting the complex. The biacore system, which utilizes 

immobilization of a protein on a sensor surface, can determine the extent to which different 

molecules interact, the affinity of binding, the kinetics of complex formation and dissociation.(315, 

316) Its use would support and extend our characterizations of the nucleolin-Fas complex 

formation. 
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Mechanistic Studies of Nucleolin’s Fas-FasL Inhibition 

The ability of nucleolin to disrupt the physical interaction between Fas and FasL should be 

further investigated, as it will provide more extensive insight into the mechanism behind nucleolin-

mediated inhibition of Fas. We originally planned to use and expand the validated binding assay 

described in Figure 8, revealing the interaction of chimeric extracellular Fc:Fas and nucleolin, and 

add recombinant FasL in order to determine if nucleolin directly competes with FasL for Fas 

binding. However, our current commercial source of the recombinant nucleolin has been unreliable. 

Because we have been unable to obtain a validated product for determining interaction, we could 

not complete the assay. Further collaborations to obtain or create recombinant nucleolin are 

necessary.  

Thus far, there are many unknowns about nucleolin’s trafficking and positioning on the cell 

surface. First, transport of nucleolin to the cell surface was only partially described; it is known to 

involve a non-classical transport possibly associated with actin cytoskeleton.(178, 216) Second, 

nucleolin is tethered to the cell surface through an uncharacterized association. Third, extracellular 

nucleolin is a glycosylated and phosphorylated protein and thus far the recombinant nucleolin 

available is bacterially produced.(219, 228) There are additional aspects of the nucleolin-Fas model 

that make it difficult to study nucleolin-Fas interactions. Our unpublished data showed that 

recombinant nucleolin added to cells does not adhere to the cell surface and does not interfere with 

the Fas/FasL interaction, underscoring the importance of having an appropriate model with the 

proper positioning of nucleolin and Fas for complex formation at the plasma membrane. The 

impact of nucleolin and Fas positioning is further confirmed by our direct interaction data presented 

in Figure 8. Although, the dose dependent binding of nucleolin confirms a specific direct 

interaction, only a small fraction of nucleolin bound to Fas even in solution. This suggests that the 

kinetics of binding may be low or that additional factors not reproduced in the recombinant 

nucleolin, such as posttranslational modifications and proper folding, affect binding efficiency. 

Hence, simple addition or secretion of the recombinant R4-GAR mutant to the tissue culture media 

may not be sufficient for functional assays. It is apparent that further investigations into nucleolin’s 

trafficking and positioning on the cell surface, to identify nucleolin interacting domain(s) required 

for those processes, are necessary before we can properly study nucleolin on the cell surface. In 

order to complete mechanistic experiments, future collaborations with protein chemists and 

pharmacology/kinetic facilities will be necessary.   
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Targeting Nucleolin-Fas Complexes  

 By describing the expression of nucleolin in cancer and the role of nucleolin in Fas-

mediated apoptosis, we have laid out the basis for the design of novel nucleolin-targeting cancer 

therapies based on competition; designed molecules targeting the interaction site could cause 

disassociation of the complex, and thus further enhance killing of tumor cells by increased 

sensitivity to Fas-mediated apoptosis and combination chemotherapies. It is plausible that by 

disrupting the nucleolin-Fas complex, by creating small interfering proteins, peptides, or 

nanobodies derived from or directed to the R4-GAR domain, we could exert a dominant negative or 

inhibitory effect on the nucleolin-Fas complex. These molecules may by themselves induce 

apoptosis or sensitize B-cell malignancies to Fas-mediated apoptosis and potentially genotoxic 

therapies. Once a model of the nucleolin-Fas complex is available, it can be probed with 

recombinant GAR domain, peptides spanning the R4-GAR domains, and nanobodies targeting the 

R4-GAR domain.  

Monoclonal antibodies targeting nucleolin as a form of treating cancer have been tested. 

Nucleolin antibodies are already protected by US patents. Nucleolin antibodies are present in 

systemic lupus erythematosus and allograft failure, suggesting potential unwanted effects that 

could be mediated by clinical approaches using anti-nucleolin antibodies.(250, 280) Thus, an 

attractive option is the use of nucleolin with nanobodies containing the variable domain of the 

heavy chain antibodies from the camelid family.(317) Nanobodies are the smallest fragment of 

antibodies that are produced naturally to specifically target antigens and therefore their 15kDa size 

is below the threshold of renal filtration, thereby avoiding renal drug clearance, and their mass 

production is cheaper than monoclonal antibodies.(318) Nanobodies also display higher affinities, 

in the nanomolar range, with increased solubility and high thermal stability.(317) Nanobodies are 

resistant to high pressure, chemical unfolding and various detergents thereby, making them resistant 

to the harsh conditions within the gastro-intestinal tract. The compact shape and convex binding 

sites allow for binding in clefts and pockets not normally exposed to larger therapeutics.(318) The 

compact shape and convex binding site also allows for binding to glycoproteins not accessible to 

conventional antibodies, due to the large solvent exposed CDR loops.(317) Nanobodies can, similar 

to conventional antibodies, be humanized and even be created in multimeric forms.(319) 

Nanobodies are an intriguing option as surface nucleolin targeting nanobodies could be conjugated 

to toxic chemicals for the delivery of therapeutic agents selectively to tumor cells.(320) Lastly, 

nanobodies against surface nucleolin conjugated to a labeling reagent could be potentially used as a 

diagnostic biomarker and prognostic tool for cancers.  
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In addition, nucleolin-targeting nanobodies can be optimized as diagnostic and imaging 

tools for enzyme-linked immuno sorbent assay (ELISA) and immunoassays as described below. 

This experimental plan will allow us to develop therapeutic interventions that may either induce or 

serve to sensitize cells to Fas-mediated apoptosis when combined with other drugs. Therapies 

designed against nucleolin may have a competitive edge over current antibodies, such as 

Rituximab, which targets B-cell markers present on both healthy and cancerous cells. However, 

nucleolin may have a comparable spectrum of positive and negative effects as nucleolin may be 

expressed on the surface of normal rapidly proliferating tissues. 

 

Developing Nucleolin as a Diagnostic/Prognostic Tool 

 Early cancer detection and treatment is known to be an effective plan for the development 

of a cancer free population. Tumor markers are important for diagnosis, detection, surveillance and 

management of various malignancies. Currently, there are several tumor-specific markers in clinical 

practice monitoring lymphomas and leukemias including; beta-2-microglobulin, Philadelphia 

chromosome, and PML-RARα fusion protein.(321-323) Surface nucleolin has the potential to be 

used for screening, diagnosis, and prediction of cancer as well as any medical disorders associated 

with nucleolin dysregulation.(250) In order to determine/develop nucleolin as a potential tumor 

marker, nucleolin’s presence in blood, other bodily fluids and tissues of patients with cancer should 

be analyzed in more depth.  

We determined that total nucleolin in tissue samples correlates with Ki-67 staining, 

diagnosis and performance score. It is not surprising that nucleolin would have prognostic 

importance in lymphoma. The aggressiveness of lymphoma across different histologic types is 

affected by their rate of proliferation. Adverse outcomes have been consistently linked to high rates 

of proliferation, including proliferation detected by Ki-67.(324-326) In meningioma nucleolin 

intensity has also been correlated with Ki-67 and cell proliferation.(327) Our results also show that 

Ki-67 levels correlated with nucleolin staining intensity and number of cells nucleolin-positive 

cells. In cases where Ki-67 proliferation is used to determine treatment regimens, surface nucleolin 

levels by single cell suspension may represent a more feasible testing method as tissue biopsies are 

an invasive test, they do not allow for population screening, and the quantities of the material 

obtained from a single individual are typically insufficient to run multiple assays.   

Therefore, blood and other bodily fluid markers are more practical approaches. Various 

approaches can be explored to determine nucleolin’s potential as a tumor marker including sera 

testing and potential development of ELISAs against nucleolin, its various cleavage products, and 
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glycosylated forms. Beyond sera testing, flow cytometry could be utilized as a diagnostic or 

prognostic method for leukemia and lymphoma by measuring lymphocyte surface levels of 

nucleolin. Additionally, previous findings using oligomicroarrays indicated that nucleolin 

expression is upregulated in peripheral blood lymphocytes in early stage cervical cancer, signifying 

that nucleolin in peripheral blood has already been applied for cancer detection.(270) An ELISA for 

nucleolin has recently become commercially available and subsequent studies can be done to 

determine nucleolin levels should the assay be validated for low level detection of nucleolin. 

Our studies revealed an increase in nucleolin surface levels in cancers compared to healthy 

donor B cells that correlated with IPI risk analysis. However, a few healthy donor samples had 

elevated levels of surface nucleolin. This may be real or false positive result. This finding can be 

further investigated to clarify the results before using our current staining method and flow 

cytometry as a clinical tool. Potential explanations for detection of high nucleolin levels in healthy 

donors include ongoing inflammation/the health status of the donors and assay manipulations which 

can lead to increased proliferation and membrane permeability, respectively. However, as 

mentioned earlier, the D3 and gp273 antibodies may be better suited for surface nucleolin staining 

as a clinical tool.(178, 267) Additional limitations in the use of  nucleolin as a tumor marker stems 

from the fact that various other conditions, including SLE and multiple sclerosis, may produce 

nucleolin autoantibodies and interfere with nucleolin expression and its levels.(250) However, 

nucleolin as a potential marker in lymphomas and in cancer can become a tool for use in clinical 

patient assessment.  

Nucleolin as a prognostic/diagnostic tool by immunohistochemistry of B-cell lymphomas 

will need further investigations. It appears that additional studies in immunohistochemistry will 

reveal whether this approach has any potential for drawing prognostic information. Our cohort has 

large variations histological lymphomas and the distribution of scoring among marker level was 

greatly biased towards a high percentage of cells and intensity. Another contributing factor may 

have been the various treatment regimens within the cohort. However, our surface nucleolin flow 

cytometry showed intriguing results that suggest the need for further investigation into nucleolin’s 

role in B-cell lymphoma outcomes using either a larger group of the same cohort of patients with 

fewer variables or an antibody that is specific for the translocated nucleolin. There are results from 

other groups that utilize TMA’s with uniform histological groups and treatment strategies. This 

approach may enhance our ability to evaluate nucleolin levels and outcomes. However, it may be 

nucleolin’s translocation that is an important prognostic/diagnostic tool for B-cell lymphomas and 

therefore repeating the analysis with an antibodies targeting cytoplasmic and surface nucleolin 

should be performed. Antigen retrieval is a complex procedure particularly when attempts to reach 
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cell surface in formalin-fixed tissue. Galzio et al demonstrated nucleolin’s prognostic role in human 

gliomas using an anti-glycosylated nucleolin antibody.(267) Previous reports also demonstrate that 

glycosylated nucleolin is directed to the cytoplasm and surface of cells, and the gp273 antibody 

developed by Galzio et al was shown to specifically target these locales within glioma cells. Thus, 

an enrichment of our TMA with the gp273 antibody is warranted to elucidate nucleolin’s role in B-

cell lymphoma outcome.  

 

Impact and Significance 

Cell Surface Nucleolin 

Recent studies have identified nucleolin on the cell surface of multiple cancers and cancer-

associated endothelial cells and nucleolin is now recognized as a tumor marker.(178, 210, 215, 229, 

275, 328) The existence of cell surface nucleolin, although initially surprising, is in accordance 

with a growing number of studies revealing that under certain conditions nuclear proteins, such as 

Ku, nucleophosmin, Nopp140, and high mobility group box 1 protein (HMGB1), are present on the 

cell surface.(190, 329) Membrane localization of HMGB1 and heat shock protein is associated with 

cytokine signaling in damaged tissues. These two proteins belong to the damage-associated 

molecular pattern molecules (DAMPs) released during stress, apoptosis, and necrosis. Recently, 

HMGB1 membrane localization has also been identified during cell growth, suggesting the 

involvement and a complex role of nuclear proteins in membrane signaling.(330) The surface 

expression of HGMB1 correlated with a worse prognosis in nasopharyngeal and colon 

cancers.(331-333) Interestingly, both nucleolin and Nopp140 are proteins phosphorylated by 

ectokinase, found on the surface of cancer cells.(329) Ku protein expression patterns have been 

correlated with the prognosis and outcome of melanomas and rectal carcinoma.(334, 335) Similar 

to nucleolin, autoantibodies for Ku70 have been documented in an autoimmune disease, Graves’ 

disease.(250, 336) The selective expression of nuclear proteins on surface of cancer cell and their 

correlation with worsening prognosis, points to a new family of prognostic and diagnostic markers 

to be explored. 

Although the surface presence of nucleolin has been observed in multiple disease 

phenotypes, all of its known surface functions point to it as an indiscriminative docking protein for 

substrates that support cell survival such as P-selectin, lactoferrin, and hepatocyte growth factor. 

Nucleolin also acts as a gateway into cells for viruses.(226, 237, 328, 337-341) We confirmed 

nucleolin’s surface localization in lymphomas, and our results reveal that it binds endogenous Fas 

and promotes survival of lymphoma cells by interfering with Fas apoptotic signaling, thereby 
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describing a key role of surface nucleolin in cell survival. These cell survival functions may offer 

additional layers of protection acquired by transformed cells as a novel form of immune protection 

and chemoresistance.  

Recent reports revealed that certain cell surface receptors bind to and block Fas signaling in 

addition to their own pro-survival signaling functions. Hepatocyte growth factor receptor 

(HGFR)/c-MET, human herpesvirus-8 K1 and CD44v6/v9 were identified as modulators of Fas 

signaling through direct interaction with Fas at the cell surface (Table 14).(292-294, 342-346) The 

presented results add nucleolin to this growing category of Fas regulators. Interestingly, these 

proteins interact with the extracellular domain of Fas seemingly without a common binding motif. 

We provide evidence that nucleolin, similar to these receptors, negatively regulates Fas-mediated 

apoptosis by inhibiting the interaction between Fas and FasL by forming complex with the 

extracellular domain of Fas on the cell surface. We predict that nucleolin, and these previously 

identified receptors, bind and lock Fas in an inactive preassembled trimer conformation(347) that 

prevents FasL ligand access to its binding site or interferes with conformational changes required 

for efficient FasL binding. Moreover, should this Fas-regulator complex be targeted, we showed 

that a peptide derived from Fas-binding domain of K1 induces Fas apoptotic signaling, suggesting 

these receptor-Fas interactions are accessible and amenable to manipulation.(292) A more complete 

description of how these Fas binding proteins make Fas inaccessible to activation would greatly 

improve the effectiveness of the numerous lymphoma chemotherapies that depend on Fas signaling 

for cell elimination.(293-295, 342, 344, 346)  
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Table 14: New Category of Membrane –Associated Fas Regulators.  
 Membrane-

associated 

localization 

Pro-survival 

receptor 

signaling w/o 

Fas 

involvement 

Transforming 

potential 

Inhibition 

of Fas 

signaling 

FasL-Fas 

disruption 

Expression 

associated 

with 

cancer  

K1 (293, 294) + - + + +  
HGFR/Met (342, 344) + + + + + + 
CD44v6/v9 (346) + + enhances + ? + 
Nucleolin (348) + + + + + + 
PML-RARα (295) + - + + - + 
CD74 + + ? + ? + 

Previously published data has revealed a new category of surface receptors with their own pro-

survival signaling capabilities that also bind and interfere with Fas signaling and contribute to the 

formation of cancer.  
 

Nucleolin as a Prognostic Marker 

Studies determining the association of nucleolin expression levels and outcome of patients 

have shown that nucleolin levels correlate with a progressively worsening cancer phenotype.(265, 

268, 297) The identification of nucleolin as a prognostic marker and our determination of nucleolin 

as an anti-apoptotic protein led us to investigate nucleolin’s expression patterns in B-cell 

lymphomas. The surface expression of nucleolin by flow cytometry correlated to a prognostic value 

for B-cell lymphomas. However, this was not the case in our TMA analysis studying the correlation 

of nucleolin levels with survival of B-cell lymphoma patients. Our cohort’s outcome could not be 

explained by differences in total nucleolin levels. However, our demonstration of nucleolin surface 

level’s association with IPI suggests that the prognostic role of nucleolin in B-cell lymphomas is 

associated with nucleolin translocation abnormalities.  

Our results confirm and extend previous findings that nucleolin is associated with distinct 

pathogeneses of B-cell lymphomas. Moreover, they support findings that nucleolin translocation is 

a major contributor to nucleolin’s correlation with the outcomes of malignancies.  

 

Targeting Nucleolin 

Nucleolin is an attractive target for cancer therapy, as it appears to have low off-target 

effects primarily because of its restrictive expression on the cell surface of cancer cells and cancer 
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associated cells. Nucleolin serves as a target in pre-clinical trials include F3 peptide, AS1411 

aptamer, and LNA-aptamers linked to various drug carriers for delivery of microRNAs, 

radionuclides and doxorubicin.(277-279, 283, 286, 349) Additionally, anti-nucleolin antibodies in 

pre-clinical models induce downregulation of bcl-2 mRNA levels and subsequent apoptosis.(350)  

However, nucleolin antibodies are present in systemic lupus erythematosus and allograft failure, 

suggesting potential unwanted effects that could be mediated by anti-nucleolin antibodies.(250, 

280)  

Some agents have advanced to testing in clinical trials. Nucleolin-targeting nucant 

pseudopeptide (Immupharma) (273) are currently under evaluation in a phase II clinical trial. The 

nucants predicted mechanisms of action include inhibition of proliferation and angiogenesis and 

induction of apoptosis. A phase II clinical trial of AS1411 GRO (Antisoma) which destabilizes bcl-

2 and induces apoptosis, has shown a 3% partial response rate and 60 % stable disease rate in 

relapsed renal cell carcinoma.(351, 352) AS1411has also showed a 15% response rate in the 

treatment of relapsed acute myeloid leukemia.(166, 273, 282, 351, 352)  

By defining a novel role for nucleolin as an anti-apoptotic surface protein, we further 

underscore the potential of these and other nucleolin-targeting therapeutics. Furthermore, our 

results may explain the variable outcome of nucant pseudopeptide treatments, tested by the 

Hovanessian group, showing cell death in lymphomas and leukemias and response was restricted to 

only growth inhibition in other malignant cell types.(229, 273, 274) The differential response by the 

various malignancies, specifically the apoptotic responses, may be associated with nucleolin’s 

inhibitory effect on Fas-mediated apoptosis. As we only revealed nucleolin-Fas complexes in 

lymphoid tissues the complex may play prominent role in lymphoid cancers and warrants further 

investigation. Moreover, given that Fas apoptosis has been linked to the effectiveness of multiple 

chemotherapies, our discovery that nucleolin regulates Fas-mediated apoptosis indicates that the 

nucleolin-targeting therapies currently in clinical and pre-clinical trial may benefit from 

combination with Fas-dependent genotoxic drugs.   

The identification and validation of tumor-specific targets for cancer therapy is a primary 

step in drug discovery and the development process of new therapeutics. The key criterion for 

target selection includes: overexpression in tumor versus healthy tissues, a pivotal role in the 

pathogenesis of cancer and the ability to develop small molecules or biologicals targeting its 

function(s). We conclude that nucleolin not only fits these criteria, but because it functions in 

multiple hallmarks of cancer: evasion of apoptosis, sustained angiogenesis and limitless replicative 

potential, nucleolin presents an ideal target for the treatment of cancer. Generation of novel 



123 
 

nucleolin-targeting molecules will be a significant advancement in the elimination of lymphomas 

and other cancers. 
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Chapter 7: Materials and Methods 
 
 
Isolation of Activation-resistant Fas Complexes and Identification of Peptides: BJAB cells and 

a NHL primary tissue were activated and immunodepleted with the CH-11 anti-Fas antibody (Ig-M 

subclass; Millipore, Temecula, CA) using anti-IgM agarose beads (Sigma Aldrich, Ayrshire KA).  

The remaining extracts were immunoprecipitated with agarose beads conjugated with B-10 anti-Fas 

antibody (Santa Cruz Biotechnology, Santa Cruz, CA). Both fractions were separated by 

electrophoresis and visualized on silver-stained SDS-PAGE. Any band found exclusively in the B-

10 precipitation lane, was excised and digested in-gel using 200 ng of modified sequencing grade 

trypsin (Promega, Madison, WI) for 18 hours at 37°C.  The resulting peptides were extracted for 

nanoflow liquid chromatography (LC)-mass spectrophotometry (MS)/MS fragmentation with on-

line desalting using a Famos autosampler, UltiMate Nano-LC module and Switchos precolumn 

switching device (Dionex, Sunnyvale, CA). Electrospray ion trap mass spectrophotometry was 

performed on a linear ion-trap mass spectrophotometer (LTQ Thermo, San Jose, CA). On average, 

one survey scan was followed by three data-dependent MS/MS scans, using CID to induce 

fragmentation. Spectra profiles were analyzed for protein matches by database search of the 

fragment spectra versus the National Center for Biotechnology Information’s (NCBI) non-

redundant protein database, using the MASCOT search engine (Matrix Science, London, UK). 

 

Cells and Primary B-cell Tissues: Human lymphoma Raji, Jurkat, and BC-3 cell lines were 

obtained from the NIH AIDS Research & Reference Reagent Program (Pittsburgh, PA) and human 

BJAB, Daudi, U937, Hela, DB and 293T cell lines were obtained from American Type Culture 

Collection (ATCC) (Manassas, VA). Jeko and MINO cells were kindly donated by Dr. Eric Davis. 

Cells were maintained in RPMI 1640 medium (Hyclone Thermo Scientific, Logan, UT) 

supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologicals, Lawrenceville, GA) in 5% 

CO2 atmosphere at 37°C. Cells were passaged at a ratio of one to 4 every 3 days. Cell lines were 

authenticated by STR analysis (MD Anderson Cancer Center) (10/31/2012) and regularly tested for 

mycoplasma contamination using mycoALERT mycoplasma detection kit. (Lonza, Rockland, ME). 

Experiments were performed using early passages of cells obtained from commercial sources. 

Peripheral blood B-cells were isolated from healthy donors’ blood purchased from Gulf 

Coast Blood Center (Houston, TX). Isolation was achieved with CD19Pan B Dynabeads, CD19-

positive magnetic beads, (Invitrogen Life Technologies, Oslo, Norway). The isolated B-cells were 

released with the competitive reagent CD19 DETACHaBEAD (Invitrogen Life Technologies, Oslo, 
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Norway). For confocal PBMC’s isolation was achieved by Histopaque-1077 (Sigma Aldrich, 

Alyshire, KA) gradient centrifugation at 400 g for 30 minutes at RT. Buffy coats were then washed 

in phosphate-buffered saline (PBS). 

Patient cells were collected after written consent from patients at The University of Texas 

MD Anderson Cancer Center under research protocols LAB08-0190, 2008-0075, and 2005-0656. 

From these samples, tumor cell enriched buffy coats were isolated by Histopaque-1077 (Sigma 

Aldrich, Ayrshire, KA) gradient centrifugation at 400 g for 30 minutes at RT. Buffy coats were then 

washed in PBS supplemented with FBS and aliquoted for storage in RPMI 1640 supplemented with 

10% FBS and 5% dimethyl sulfoxide (DMSO) (Fisher, Fairlawn, NJ) at -80°C for further analysis.  

For the TMA, 156 cases biopsied between 1993 and 2002 were collected under LAB08-

0190.  Patients with Hodgkin’s lymphoma, T-cell lymphomas, seminomas, and tonsils were 

excluded from the analysis.  Twenty nine patients had missing information on either follow-up or 

marker expression and were thus excluded from the analysis.  One patient had two records and the 

record labeled as ‘L144’ was excluded from the analysis. One patient was lost to follow-up right 

after the biopsy date therefore excluded from the analysis.  The final analysis is performed on 119 

patients. These cases were analyzed for nucleolin and Ki-67 protein expression. Patients in this 

study were treated under a variety of drugs and therefore a regimen scheme of CHOP related, 

Fludarabine related, and Combination therapies was created.  

 

Immunoprecipitation (IP) and Immunoblotting (IB) Analysis: Indicated cells, or homogenized 

mouse liver tissues were collected by centrifugation, and lysed in lysis buffer (20mM Tris-HCl, 

150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% Triton, 2.5 mM sodium pyruvate, 1mM β-

glycerophosphate, 1 mM Na3VO4, 1 μg/mL leupeptin) (Cell Signaling, Danvers, MA) with a 

phosphatase inhibitor cocktail mix (Roche Diagnostics, Mannheim, Germany) for 1 hour on ice. 

Whole-cell extracts were clarified by centrifugation at 13,000 rpm for 10 minutes at 4°C. Protein 

content was quantified using the Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA). 

Lysates were then denatured with SDS loading buffer with dithiothreitol (DTT) (Cell Signaling, 

Danvers, MA or Boston BioProducts, Ashland, MA) and boiled for 5 minutes prior to loading (25-

100µg).    

For IP, 3×107 cells, 5 mg of homogenized liver protein or primary lymphoma tissue were 

incubated for 1 hour at 4°C in the cell lysis buffer and the extracts were clarified by centrifugation at 

13,000 rpm for 1 minute. Supernatants were incubated with 1-2 µg of the indicated primary 

antibodies: anti-human Fas (B-10) (Santa Cruz Biotechnologies, Santa Cruz, CA), anti-human Fas 
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(CH-11) (Millipore, Temecula, CA), anti-TRAIL-R1 HS101 (Axxora, San Diego, CA) and mouse 

IgG or normal rabbit serum (Invitrogen, Carlsbad, CA) for 1 hour at 4°C with rotation. Where 

primary antibody agarose conjugates were not available, protein A/G sepharose (Pierce 

Biotechnology, Rockford, IL), IgM agarose (Sigma Aldrich, Ayrshire KA), or strepavidin agarose 

(Thermo Scientific, Lafayette, CO) were added to the supernatant pre-incubated with the primary 

antibody and the mixture was incubated for an additional 1 hour at 4°C.  

For recombinant protein assays, a chimeric Fc:Fas (BD Biosciences, San Jose, CA) and 

recombinant nucleolin-GST (Abnova, Heidelberg, Germany) were resuspended in 300 µl of RIPA 

buffer (Cell Signaling, Danvers, MA). Fc:Fas was incubated with increasing amount of nucleolin-

GST for 1.5 hours at 4°C followed by incubation with protein A agarose for 1 hour at 4°C.  

Complexes were washed 5 times with co-IP washing buffer (50 mM Tris, pH 8.0, 300 mM NaCl, 

0.5% NP-40) containing a protease inhibitor cocktail (Roche Diagnostics, Mannheim, Germany).  

The precipitated protein complexes were released from agarose by the addition of 50 μl of 

SDS with DTT and boiling for 5 minutes prior to being run on 7.5%, 10%, or 15% SDS-PAGE 

(Bio-Rad Laboratories, Hercules, CA) and transfer to a nitrocellulose membrane at 100V for 1 hour 

(Schleicher & Schuell, Keene, NH). Proteins were analyzed by IB with 20 µg of antibody: anti-Fas 

(B-10)-HRP, anti-Fas (N-18), anti-nucleolin MS3-HRP, anti-histone-3, anti-GST (Santa Cruz 

Biotechnologies, Santa Cruz, CA), anti-Flag (M2)-HRP, anti-β-actin-HRP (Sigma Aldrich, 

Ayrshire, KA), anti-PARP, mouse specific anti-PARP (D214), anti-cleaved capase-3, anti-caspase-

8, mouse specific caspase 8, anti-bcl-2 (Cell Signaling, Danvers, MA), anti-DDK (Origene, 

Rockville, MD), anti-TRAIL-R1 (Enzo Life Sciences, Farmingdale, NY), anti-p84, anti-GAPDH 

(Genetex, Irvine, CA). Incubation of membranes with un-conjugated primary antibodies was 

followed by incubation with corresponding HRP-conjugated secondary antibody. Proteins were 

visualized by Supersignal West Pico chemiluminescent substrate or Supersignal West Femto 

chemiluminescent substrate (Thermo Scientific, Rockford, IL) and exposure to film (Bioexpress, 

Kaysville, UT). Intensity of bands was compared by densitometry using Image J (NIH, 

http://rsb.info.nih.gov/ij/) 

 

Flow Cytometry Analysis: The degree of apoptosis induced by FasL or CH-11 was evaluated 

through Annexin V and 7-amino-actinomycin D (7AAD) staining. Cells were washed twice with 

cold PBS supplemented with 1% FBS, and then resuspended in binding buffer prior to incubation 

with Annexin V-PE and 7AAD (BD Biosciences, San Jose, CA) for 15 minutes in the dark at RT. 

Annexin V/7AAD staining was assessed with a BCI XL Analyzer utilizing System II software 

(Beckman Coulter, Miami, FL).  
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For detection of surface proteins, cells were washed twice with cold wash buffer PBS 

supplemented with 1% FBS and subjected 0.25µg/mL of mouse IgG blocking reagent (Invitrogen, 

Frederick, MD) for 15 minutes at 4°C followed by an additional wash in the wash buffer. The cells 

were then incubated with the anti-CD95 (UB2)-PE (Beckman Coulter, Marseilles, France) CD19-

APC (BD Biosciences, San Jose, CA), C23 (H-6)-AF488 (Santa Cruz Biotechnologies, Santa Cruz, 

CA) and isotype control mouse IgG1-PE (BD Biosciences, San Jose, CA), APC Mouse IgG1 kappa 

(BD Biosciences, San Jose, CA), and A488 Mouse IgG2a (eBioscience, San Diego, CA) antibodies 

at 4°C for 20 minutes in the dark, washed twice with the wash buffer and resuspended in 200µl of 

1% FBS PBS. One microliter of Sytoxblue stain (Invitrogen, Eugene, OR) was added to assess dead 

cells. Analysis of staining was performed on a LSR Fortessa flow cytometer with Diva software 

(BD Bioscience, San Jose, CA). Data analysis was performed with FlowJo software (Tree Star Inc, 

Ashland, OR).  

For agonistic antibody and FasL binding and detection, cells were incubated with 7µg of 

CH-11 or 3µg of FasL (Enzo Life Sciences, Farmingdale, NY) for 20 minutes at 4°C, followed by 2 

washes in 1%FBS/PBS. Cells were incubated with 0.25µg/mL of blocking reagent (normal mouse 

IgG) for 15 minutes at 4°C, followed by an additional wash in 1% FBS/PBS. Subsequently, cells 

were incubated with APC rat anti-mouse IgM (BD Biosciences, San Jose, CA) and Phycolink anti-

FLAG-RPE (Prozyme, Hayward, CA), respectively, at 4°C for 20 minutes in dark, again followed 

by 2 washes in 1% FBS/PBS. Cells were resuspended in 200µl of wash buffer and analyzed on a 

LSR Fortessa flow cytometer using Diva software and data analysis was performed using FlowJo 

software.  

 

Confocal Imaging: BJAB, NHL-derived primary cells, and PBMC’s were either stained for 

surface proteins without fixation or with fixation and permeabilization. Cells were washed in PBS 

with 1%BSA. For fixation, cells were fixed with 4% paraformaldehyde (Electron Microscopy 

Sciences, Hatfield, PA) in PBS for 20 minutes at RT and subsequently permeabilized in 0.5% 

Triton X100 (BioRad, Hercules, CA)  in PBS. All cells were then blocked with 1% BSA and 10% 

goat serum in PBS. Cells were then stained stepwise with the following antibodies in 1%BSA/PBS: 

anti-Fas antibody (1µg; rabbit anti-CD95; Abcam, Cambridge, MA), alexaflour-647 antibody 

(1:500; 1%BSA/PBS), anti-nucleolin MS-3 (1µg; 1%BSA/PBS), secondary alexaflour-488 

antibody (1:500; 1%BSA/PBS) for 1.5 hrs on ice. Cells were washed twice in 1%BSA/PBS and 

incubated with WGA alexafluor-555 (Invitrogen, Eugene, OR) for 5 minutes. Cells were washed in 

PBS followed with 0.1% Tween-20 (Fisher, Fairlawn, NJ) and mounted onto a slides using 

cytospin and prolong gold antifade reagent with 4',6-diamidino-2-phenylindole, dihydrochloride 
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DAPI (Invitrogen, Eugene, OR). Images were acquired using a Nikon A1R confocal laser 

microscope system (Nikon Instruments, Melville, NY). For fluorescent phalloidin-568 staining, 

BJAB, non-silencing and 906S2 cells were cultured as monolayers on coverslips. Cells were fixed 

in a 4% formaldehyde solution (Electron Microscopy Sciences, Hatfield, PA) in PBS for 10 

minutes at RT and permeabilized with 0.1% Triton X-100 (Bio-Rad, Hercules, CA) in PBS for 5 

minutes. Cells were subsequently blocked 1% BSA in PBS (Sigma Aldrich, St. Louis, MO) for 30 

minutes. Cells were treated with a dilute 5 µL methanolic stock solution of phalloidin-568 

(Invitrogen, Eugene, OR) in 200 µL of PBS containing 1% BSA for 20 minutes at RT and mounted 

in a prolong gold antifade reagent with DAPI (Invitrogen/Eugene, OR). Images were acquired 

using a Nikon A1R Confocal Laser Microscope System (Nikon Instruments Inc., Melville, NY). 

 

Plasmids and Transfections: For cell transfections, a plasmid encoding C-terminal myc- and flag- 

tagged nucleolin, pCMV6-Nucleolin (TrueORF cDNA clones) and the vector control pCMV-

ENTRY were used (Origene, Rockville, MD). Partial nucleolin mutants and DNA primers (Sigma 

Aldrich, St. Louis, MO) (Appendix A) were designed according to the manufacturer’s protocol for 

Quick Change II XL site-directed mutagenesis (Stratagene, Cedar Creek, TX) on pCMV6-

Nucleolin. Plasmids were endotoxin-free and sequences were confirmed by GENEWIZ (South 

Plainfield, NJ). Cells were transfected using Lipofectamine 2000 transfection reagent (Invitrogen, 

Carlsbad, CA), according to the manufacturer’s recommendations, with Opti-Mem Reduced Sera 

Media (MediaTech, Manassas, VA). 

To produce the nucleolin partial knockdowns, 1.2 mg of plasmids encoding shRNAmir30 

constructs (OpenBiosystems-ThermoScientific, Lafayette, CO), lentiviral plasmids: pGIPZ-non-

silencing, and pGIPZ- GAPDH were transfected into cells using Lipofectamine 2000 transfection 

reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s recommendations. Transfected 

cells were selected with 1 µg/mL of puromycin (Sigma Aldrich, St. Louis, MO) for 2 weeks. Cells 

were subsequently sorted for green fluorescent protein (GFP) expression in an Aria flow activated 

cell sorter (FACS) (BD Biosciences, San Diego, CA). Single-cell clones were developed through the 

standard dilution method.  

 

Proliferation Analysis: 0.4% trypan blue cell stain (MP Biomedicals, Solon, OH) was added at a 

1:1 ratio of trypan blue to medium containing cells and 10µl  was loaded onto a Countess cell 

counter chamber slide and analyzed for viability and cell number using the Countess automated cell 

counter (Invitrogen, Oregon). Cell counts were taken every 24 hours for 100 hours. 
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Transmission Electron Microscopy: Ultrastructural features of BJAB, Non-Silencing, and 906 

nucleolin partial knockdowns were obtained and assessed at the High Resolution Electron 

Microscopy Facility at MD Anderson Cancer Center with Kenneth Dunner. The 1×106 cells were 

washed and fixed in 0.5ml of TEM fixative 2% glutaraldehyde in 0.2 M sodium cacodylate buffer 

overnight at 4°C. Cells were post-fixed in cacodylate-buffered 1% osmium tetroxide, dehydrated, 

and embedded in plastic. Thin sections were post-stained with uranyl acetate and lead citrate.  

Images were obtained using a JEM 1010 transmission electron microscope (JEOL USA Inc, 

Peabody, MA). 

 

Video Time-Lapse Microscopy: To directly visualize the division patterns of nucleolin partial 

knockdowns, we used VTLM using the Biostation IM Cell-S1/Cell-S1-P system (Nikon 

Instruments Inc., Melville, NY). The BJAB, Non-silencing, 906S2, and 906S5 cells at 2×104 cells 

were resuspended in 300µl of fresh media in a Hi-Q4 multi-experiment tissue culture-treated dish 

(Ibidi, Martinsried, Germany). For tubulin fluorescence, CellLight Tubulin-RFP Bacman 2.0 

(Invitrogen, Eugene, OR) was added at 50 PPC (particles per cell) or 20µl per 40,000 cells in 500ul 

media prior to Hi-Q4 plating. For nuclear staining with VTLM, a nuclear fluorescent dye DRAQ5 

(Cell Signaling, Danvers, MA) was added to the media before addition to the Hi-Q4 plate at 1uM 

concentration. Each image was recorded at 1600x1200 pixels via a 20X objective, using phase 

contrast and fluorescent channels with an exposure time of 1 minute for 24 hours. 

 

Glycosylation and Sialylation Analysis: 1.5×106 BJAB, Non-Silencing control, 906 -P1, -S1, -S2, 

-S4, and -S5 cells per treatment group were harvested by centrifugation. For sialylation analysis 

cells were resuspended in 100mU of VCN (Sigma Aldrich, St. Louis, MO) for 1 hr at 37°C. Cells 

were subsequently washed and collected by centrifugation and lysed in cell SDS/DTT loading 

buffer (Cell Signaling, Danvers, MA). For glycosylation analysis cells were lysed in RIPA buffer 

(Cell Signaling, Danvers, MA) for 30 minutes at 4°C. Insoluble material was removed by 

centrifugation followed by addition of glycoprotein denaturing buffer (New England BioLabs, 

Ipswich, MA) and incubation for 10 minutes at 100°C. 15uL of 10X reaction buffer, 15uL of NP40 

(nonyl phenoxypolyethoxylethanol) and 7.5 uL of PNGaseF (New England BioLabs, Ipswich, MA) 

were added and incubated at 37°C for 1 hr. Protein levels were analyzed as described in 

“Immunoprecipitation (IP) and Immunoblot (IB) Analysis” 

 

RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (PCR): Cells were 

pelleted at 1×106 per tube and stored at -80°C. Thawed pellets were subjected to RNA isolation 
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using a column centrifuge Qiagen kit (Qiagen Sciences, Germantown, MD) according to the 

manufacturer’s protocol and resuspended in RNAase-free water (Qiagen Sciences, Germantown, 

MD). RNA levels were measured by spectrophotometry at 260/280nm absorbance using a Victor3V 

spectrophotometer (PerkinElmer, Waltham, MA).  

First-strand cDNA was synthesized using a Superscript™ II reverse transcriptase kit 

(Invitrogen Life Technologies, Grand Island, NY) according to the manufacturer’s protocol. Five 

hundred nanograms of total RNA was used in a 20µl reaction volume with components oligo (dT) 

12-18 (500µg/mL), dNTP mix, and nuclease free water (Invitrogen Life Technologies, Grand Island, 

NY). The mixture was heated to 65°C for 5 minutes, quickly chilled on ice, and briefly subjected to 

centrifugation. This step was followed by the addition of First-Strand buffer, 0.1M DTT, and 

RNaseOUT (40 units/µl) (Invitrogen Life Technologies, Grand Island, NY) and the mixture was 

further incubated at 42°C for 2 minutes. Finally, 200 units of Superscript™ II reverse transcriptase 

was added and the total mixture was incubated at 42°C for 50 minutes, followed by heat inactivation 

at 70°C for 15minutes.  

Triplicate samples were analysed on 96-well microtiter plates with the StepOnePlus™ Real-

Time PCR Systems (Applied Biosystems, Singapore) using thermocycles of: 95°C for 20 seconds 

and 60°C for 30 seconds, for 40 cycles. The PCR for bcl-2, nucleolin, fas, GAPDH reaction was 

performed using TaqMan probes in a 20μl mixture containing a 1:10 volume of cDNA preparation, 

10µl of 2X TaqMan Master Mix, and 0.2 μM of each primer (nucleolin, bcl-2 and GAPDH as 

internal controls) (Applied Biosystems, Foster City, CA) using cycles of 95°C for 15 seconds and 

60°C for 1 minute, for 40 cycles. 

 

Surface Biotinylation: To evaluate surface proteins, 15×106 cells per cell line were collected and 

20×106  CD19-positive lymphocytes from healthy donors were used directly after isolation. Cells 

were washed twice with ice-cold PBS with Ca2+ and Mg2+ (MediaTech, Manassas, VA) centrifuged 

at 300 g for 5 minutes to prevent cell breakage, and incubated with 1mg/mL 

 of EZlink sulfo-NHS-biotin (Thermo Scientific, Rockford, IL) in PBS with Ca2+ and Mg2+ for 40 

minutes at 4°C with gentle rotation. After an additional centrifugation at 300 g for 5 minutes, the 

cells were resuspended in ice-cold serum-free medium, for quenching the reaction and gently rotated 

for 10 minutes at 4°C. Finally the cells were washed twice in PBS with Ca2+ and Mg2+, lysed, and 

subjected to IP following the protocol described under “Immunoprecipitation (IP) and 

Immunoblotting (IB) Analysis.”  

 

In vivo experiments: Six-8 week old (National Cancer Institute, Bethesda, MD), or 8 week old 
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(Harlan Laboratories, Indianapolis, Indiana) C57BL/6 mice were transfected with 100 µg of pnuc-

myc, PNK-FLAG PSG5, PSG5, nucleolin-PCMVENTRY, NR123-PCMVENTRY,  or 

PCMVENTRY plasmids by rapid tail vein injection in a single bolus dose. At 24 hours after 

injection, apoptosis was induced by intraperitoneal injection of a lethal dose of of Jo2 agonistic 

anti-Fas antibody (BD Biosciences, San Jose, CA) (2µg/g or .5µg/g mouse weight for NCI or 

Harlan mice, respectively). Additional mice were transfected without Jo2 challenge to evaluate the 

effect of transfection on the livers in the absence of the challenge or were left un-transfected for 

comparison of normal liver tissue and evaluation of the effect of Jo2 in the absence of rapid tail 

vein injection. Mice were monitored for 8 hours post-challenge and scored for survival, after which 

surviving mice were killed by inhalation of 100% CO2. Liver images were acquired with a Cannon 

EOS7D with macro lens EF-S 60mm. The livers of all the mice were harvested, divided into 4 

sections, and either frozen for homogenization or embedded in paraffin for immunostaining. All 

procedures were performed in accordance with the guidelines of the Institutional Animal Care and 

Use Committee at MD Anderson Cancer Center. 

 

Immunostaining: Formalin-fixed, paraffin-embedded liver tissue sections on microscope slides 

were subjected to deparaffinization, rehydration through a xylene and graded alcohol series, and 

antigen unmasking (1:1000; Vector Labs, Burlingame, CA). Slides were quenched, blocked to lower 

nonspecific antibody binding (Vector Labs, Burlingame, CA) and subsequently incubated with 

primary antibody (1:500) in a humidifier overnight at 4°C. Staining was performed using anti-FLAG 

M2 (Sigma Aldrich, St Louis, MO) anti-cleaved PARP, and anti-cleaved caspase-3 antibodies (Cell 

Signaling, Danvers, MA) followed by diluted biotinylated secondary antibody, enhanced with 

vectastain elite ABC, and developed with a 3,3'-diaminobenzidine (DAB) peroxidase kit (Vector 

Labs, Burlingame, CA). Sections were then counterstained using an H&E (Vector Labs, 

Burlingame, CA) and mounted with Permount (Fisher, Fair Lawn, NJ) 

TUNEL staining was performed using a DeadEndTM fluorometric TUNEL kit (Promega, 

Madison, WI) following the manufacturer’s protocol. Stained slides were fixed in prolong gold 

antifade reagent with DAPI. Staining was performed by Vel-labs (Vel-labs, Missouri City, TX). 

The images were captured by the Olympus BX41 (Olympus) UPlan FL N 40X/0.75 objective. 

Images were acquired with DP Controller (Olympus) with a -2 exposure adjustment for TUNEL 

staining with a FITC filter (Olympus). Adobe Photoshop PS2 was used for further image 

enhancement of GFP with a +30 brightness for all 4 panels equally. 

The TMA was constructed at the MD Anderson Cancer Center McDonnell Morphonomic 

Core Laboratory under protocol LAB08-0190 using an Advanced Tissue Arrayer ATA-100 
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(Chemicon International, Temecula, CA). Nucleolin and Ki-67 staining was performed at the MD 

Anderson Cancer Center Research Histopathology Facility using a Shandon Gemini Stainer 

(Thermo Scientific, Rockland, IL). The anti-nucleolin H-6 (Santa Cruz, Santa Cruz, CA) antibody 

was used a concentration of 1:5000. The Ki-67 staining was performed according to standard 

protocol the of MD Anderson Cancer Center’s Core Histology facility. The TMA tissue images 

were captured by the Olympus BX41 microscope system. An Olympus Model DP72 camera and 

cellSens Standard 1.6 software (Olympus Corporation) was used for acquiring images. 

Immunoreactivity was determined without knowledge of the patients’ survival or clinical 

data. The nucleolin scores were analyzed independently by two hematopathologists. The TMA was 

stained three times and the average score per case was used for analysis. The classification model 

was developed prior to staining. No staining of nucleolin was considered a 0 score, a percentage of 

tumor cell staining 1-25% was considered a 1 score, 25-75% was considered a 2 score, >75% was 

considered a 3 score. Nucleolin intensity was scored as low or high correlating to the number scale 

of 1 and 2. Ki-67 intensity was scored as 1, 2 or 3 from lowest to highest.  

 

Apoptosis Induction: To evaluate the sensitivity of cells to Fas-mediated apoptosis, .5×106 

cells/mL cells were seeded on 24-well plates. For CH-11(Ig-M subclass; Millipore, Temecula, CA) 

treatment, cells were resuspended in 1mL of serum-free RPMI1640 with the indicated doses of CH-

11 and rotated for 1 hour at RT in the dark. Cells were collected by centrifugation at 1000rpm for 5 

minutes and resuspended in fresh medium with 10%FBS for overnight incubation at 37°C (18 

hours). FasL-mediated cell death was induced by incubating cells with the indicated dose of FasL or 

superFas (Enzo Life Sciences, Farmingdale, NY) in RPMI 1640 with 10% FBS overnight (18 hours) 

at 37°C. Cells were stained with AnnexinV and 7AAD and cell death was measured by flow 

cytometry as described previously under “Flow Cytomety Analysis”. For detection of activation of 

downstream apoptotic targets, 1×106 cells were lysed in 50µl of cell lysis buffer (Cell Signaling, 

Danvers, MA) and subjected to the IB protocol as indicated under the section “Immunoprecipitation 

(IP) and Immunoblotting (IB) Analysis”.  

TRAIL treatment was performed on .5×106 cells per mL with the indicated doses of TRAIL 

(Enzo Life Sciences, Farmingdale, NY) (5, 10, or 20 ng) in RPMI1640 supplemented with 10% FBS 

for approximately 16 hours at 37°C. Cell death was evaluated by DNA content (hypodiploid cells) 

analysis (353). Briefly, cells were harvested by centrifugation and stained for 4 hours with a 

hypotonic solution containing propidium iodide (40mg/mL 0.1% sodium citrate, and 0.1% Triton X-

100) (Santa Cruz Biotechnology, Santa Cruz, CA) (40 µg/mL in 0.1% sodium citrate (Sigma 

Aldrich, St. Louis, MO), 0.1% Triton X-100 (BioRad, Hercules, CA). Hypodiploid cells were 
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quantified by flow cytometry by FACSCalibur (BD Biosciences, San Jose, CA) and analyzed by 

FlowJo software version 7.6.5 for Microsoft (TreeStar, San Carlos, CA).  

 

Caspase Inhibition: Cells were collected at 0.5×106 cells and treated with the indicated dose of 

caspase 8 inhibitor Z-IETD-FMK (BD Biosciences, San Jose, CA) for 30 minutes in 500µl sera free 

media RPMI1640 (MediaTech, Manassas, VA) at 37°C. Subsequently, cells were incubated in 

500µl of sera free media containing 50ng/ml of CH-11 (Millipore, Temecula, CA) and cells were 

rotated at RT for 1 hour. Cells were then spun down and resuspended in fresh RPMI1640 

supplemented with 10%FBS containing the indicated dose of caspase inhibitor for 16 hours at 

37°C. Cell death was measured by Annexin V/7AAD staining as indicated previously. 

 

Cytosolic and Nuclear Fractionation: Cells were collected at 2×106 cells or 10×106  healthy B 

cells and fractionated with a Nuclear/Cytosol fractionation kit according to the manufacturers 

protocol (Biovision, Milpitas, California). Briefly, cells were collected by centrifugation at 600 g 

for 5 minutes at 4°C. 0.2 ml of buffer 1 (CEB-A Mix containing DTT and Protease Inhibitors) was 

added for 10 minutes at 4°C.Subsequntly lysates were incubated with 11 μl of ice-cold buffer 2 

(Cytosol Extraction Buffer-B) for 1 minute at 4°C. Supernatants were collected after centrifugation 

for 5 minutes at maximal speed and the remaining pellet was resuspended in 100 μl of buffer 

3(Nuclear Extraction Buffer Mix) for a total 40 minutes. Lysates were cleared of insoluble proteins 

by centrifugation at 16,000 g for 10 minutes. 

 

Statistical Analysis: Experimental data are reported as ±SEM of 3 independent samples, unless 

otherwise indicated. Differences between groups were calculated using the 2-tailed student’s t-test 

with paired samples (GraphPad Prism, La Jolla, CA). A P value of less than .05 was considered 

statistically significant. 

Patient summary statistics including mean, standard deviation, median, and range for 

continuous variables (such as age), frequency counts and percentages for categorical variables (such 

as histology and gender) were reported.  The Chi-square test or Fisher’s exact test was used to 

evaluate the association between two categorical.  Wilcoxon rank sum test or Kruskal-Wallis test 

was used to evaluate the difference in a continuous variable between the responders and the non-

responders.  Kaplan-Meier method was used to estimate time-to-event outcomes including 

progression free survival, overall survival, and disease specific survival. Median time to event in 

months with 95% confidence interval was calculated.  The log-rank test was used to evaluate the 

difference in time-to-event outcomes between patient groups.  Cox proportional hazards models 
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were used for the multivariate analyses.  Statistical software SAS 9.1.3 (SAS, Cary, NC) and S-Plus 

8.0 (TIBCO Software Inc., Palo Alto, CA) were used for all the analyses. 
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Appendix  
 
A 

Figure 26 
 
  GAR 

Forward GAR-F  5'-CCGCGATCGCCATGGGTGAAGGTGGCTT-3' 
Reverse GAR-R  5'-AAGCCACCTTCACCCATGGCGATCGCGG-3' 
R4GAR 
Forward R4-GAR-F  5'-CGCCGCGATCGCCATGAAAACTCTGTTTGTCAA-3' 
Reverse R4-GAR-R  5'-TTGACAAACAGAGTTTTCATGGCGATCGCGGCG-3' 
R34GAR 
Forward R3,4-GAR-F  5'-CGCCGCGATCGCCATGAAAACTCTGGTTTTAAG-3' 
Reverse R3,4-GAR-R  5'-CTTAAAACCAGAGTTTTCATGGCGATCGCGGCG-3' 
R234GAR 
Forward R2,3,4-GAR-F  5'-CGCCGCGATCGCCATGAGAACACTTTTGGCTA-3' 
Reverse R2,3,4-GAR-R  5'-TAGCCAAAAGTGTTCTCATGGCGATCGCGGCG-3' 
NR1234 
Forward N-R1,2,3,4-F  5'-GACTGGGCCAAACCTAAGACGCGTACGCGG-3’ 
Reverse N-R1,2,3,4-R  5'-CCGCGTACGCGTCTTAGGTTTGGCCCAGTC-3' 
Nterm 
Forward N-ter-F  5'-CACAGAACCGACTACGGCTACGCGTACGC-3' 
Reverse N-ter-R  5'-GCGTACGCGTAGCCGTAGTCGGTTCTGTG-3' 
NR123 
Forward NR1,2,3-F  5'-AAGCCAGCCATCCACGCGTACGCGGC-3' 
Reverse NR1,2,3-R  5'-GCCGCGTACGCGTGGATGGCTGGCTT-3' 
NR12 
Forward NR1,2-F 5'-AGCACTTGGAGTGGTGAATCAACGCGTACGCG-3' 
Reverse NR1,2-R 5'-CGCGTACGCGTTGATTCACCACTCCAAGTGCT-3' 
NR1 
Forward NR1-F 5'-AGAGCGAGATGCGACGCGTACGCGGC-3' 
Reverse NR1-R 5'-GCCGCGTACGCGTCGCATCTCGCTCT-3' 
 

Figure 25: Primers for the Design of Nucleolin Domain Mutants.  

DNA primers were constructed by Sigma Aldrich (St. Louis, MO) and were designed according to 
the manufacturer’s protocol for Quick Change II XL site-directed mutagenesis (Stratagene, Cedar 
Creek, TX) on pCMV6-Nucleolin (Origene, Rockville, MD). 
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