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Abstract 
 

Methylphenidate is currently a drug of abuse and readily prescribed to both 

adolescents and adults. Chronic methylphenidate (MPH) exposure results in an increase 

in DA in the motive circuit, including the caudate nucleus (CN), similar to other drugs of 

abuse. This study focuses on research aimed to elucidate if there are intrinsic underlying 

differences in the CN electrophysiological activity of animals exhibiting different chronic 

responses to the same dose of MPH. Behavioral and caudate nucleus (CN) neuronal 

activity following acute and chronic doses of MPH was assessed by simultaneously 

recording the behavioral and neuronal activity.  The experimental protocol lasted for 10 

days using four groups; saline, 0.6, 2.5 and 10.0mg/kg MPH. Initially, the study 

determined that animals exposed to the same dose of MPH exhibited either behavioral 

sensitization or behavioral tolerance. Therefore animals were classified into two groups 

(behaviorally sensitized/tolerant) and their neuronal activity was evaluated. Four hundred 

and fifty one units were evaluated. Overall, a mixture of increases and decreases in CN 

neuronal populations was observed at initial MPH exposure, and at ED10 baseline and 

ED10 rechallenge. When separated based on their behavioral response 

(sensitized/tolerant), significant differences in neuronal response patterns was revealed. 

Animals exhibiting sensitization were more likely to increase their neuronal activity at 

ED1 and ED10 baseline, expressing the opposite response at ED10 rechallenge.  

Furthermore, when neuronal populations recorded from those animals exhibiting 

behavioral sensitization were statistically compared to those from animals exhibiting 

behavioral tolerance significant differences were observed. Collectively, these findings 

tell us that animals exposed to the same dose of MPH can respond oppositely and 

moreover that there is in fact some intrinsic difference in the two population’s neuronal 

activity. This study offers new insight into the electrophysiological differences between 

sensitized and tolerant animals. 
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1 Introduction 

The History of MPH and its Uses 

 Methylphenidate [Ritalin/MPH] was first synthesized in 1944 (U.S. Pharmacist, 

2002), and by 1954, it was being tested on humans (U.S. Pharmacist, 2002). Initially in 

1957, Ciba Pharmaceutical Company began marketing MPH as Ritalin for the treatment 

of chronic fatigue, depression, psychosis, and narcolepsy (U.S. Pharmacist, 2002). In 

1960, MPH was marketed as Ritonic, which was used as a treatment to improve a 

patient’s mood and to maintain cognitive vitality (U.S. Pharmacist, 2002). By the 1970’s-

80’s, MPH was prescribed for the treatment of attention deficit hyperactivity disorder 

(ADHD). The symptoms of ADHD, as described in the Diagnostic and Statistic Manual 

for Mental Disorders (DSM IV), are as follows:  inattention, hyperactivity, and impulsivity 

for a period of at least six months that causes impairment both at home and at school or 

work (DSM IV 1994 4th Ed.).  From 1990-1999, a 500% increase in the use of MPH in 

the United States was observed (U.S. Pharmacist, 2002) and the daily doses 

administered to patients increased from 75 million in 1990 to 360 million in 1998 

(Woodworth, 2000). Shockingly, the United States alone consumes 85% of the world’s 

supply of MPH (Woodworth, 2000). Based on the 2000 US census population of 

281,421,906, approximately one out of five hundred randomly chosen people are 

currently prescribed Ritalin (Woodworth, 2000). MPH is still the pharmacotherapy of 

choice and top seller for the treatment of ADHD. 

Due to the overabundance of adolescents being prescribed MPH, there is a high 

risk of nonmedical misuse and abuse by patients’ peers and family members. According 

to the National Survey on Drug Use and Health, nonmedical use of a medication is 

defined as;  
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“The use of prescription type psychotherapeutic drugs not prescribed for the 
respondent by a physician or the use of a drug only for the experience or the 
feeling it caused”   
(www.oas.samhsa.gov). 
 
 
Drug abuse is defined as  
“The use of a drug for a nontherapeutic effect, and habitual  use of drugs to alter 
one’s mood, emotion, or state of consciousness” 
(www.oas.samhsa.gov). 

 
A substantial number of studies are available to support the assertion that MPH 

is abused at a high rate by adolescents and adults (McCabe et al., 2007; Teter et al., 

2006; Wilens et al., 2006).  One such study focusing on undergraduate college students, 

found that over 30% of students that were tested had taken non-prescribed MPH either 

to get high or to aid in studying (Teter et al., 2006; Wilens et al., 2006). In a 2006 study 

of college students, McCabe et al. found that 16%of respondents abused stimulants for 

the cognitive enhancement effect, with 96% of them preferring Ritalin/MPH as their drug 

of choice (McCabe et al., 2007). Furthermore, a study involving 700 participants aged 12 

to 44 found that 22.9% had loaned their prescription to someone else, 26.9% had 

borrowed someone else’s medical prescription, and 39.4% were willing to share their 

medication with family members (Goldsworthy et al., 2008). This study also reported that 

20.8% of subjects between the ages of 18 and 25 borrowed prescription medication to 

relax or feel good compared to only 10% of those aged 36 to 44 , indicating that younger 

people are more likely to misuse and abuse MPH.  In addition, this study reported that 

34.1% of adolescents said they were more likely to use Ritalin/MPH if it came from 

someone who was familiar with the drug (Goldsworthy et al., 2008). These statistics on 

non-medical MPH use highlight the importance of performing further studies to examine 

the short- and long-term effects of MPH exposure. 

The behavioral effects following short-term MPH exposure have been well 

documented (Brands et al., 1998), however, the data for long-term MPH exposure has 
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not been fully investigated. The short-term behavioral effects associated with low doses 

of MPH include wakefulness, appetite suppression, impairment of voluntary movement, 

headache, heightened alertness,, and vomiting (Brands et al., 1998). The short-term 

behavioral effects for higher doses of MPH include exhilaration, dilation of pupils, 

agitation, muscle twitching, excitation, confusion, hallucinations, increased blood 

pressure, increased pulse rate, delirium, paranoia, seizures followed by coma, excessive 

repetition of movements and meaningless tasks (Borcherding et al., 1990; Masand and 

Tesar, 1996). Although there are few studies on the long-term effects of low and high 

dose MPH exposure, one study employing positron emission tomography (PET) scans 

found that extended use of MPH constricted blood flow to the brain (Wang et al., 1994), 

which may causes an increase in blood pressure. Other behavioral studies on long-term 

effects of MPH use yielded conflicting results (Wilens et al., 2003; Piazza et al., 1989; 

Lambert , 1999; Robinson and Berridge, 1993). For instance, one study reported that 

MPH treatment protected adolescents from later drug dependence (Wilens et al., 2003), 

another reported MPH use created vulnerability to later drug exposure (Piazza et al., 

1989; Lambert, 1999; Robinson and Berridge, 1993), while yet another longitudinal study 

reported that there was no direct correlation between adolescent or youth stimulant use 

and later drug use (Barkley et al., 2003). Given the amount of conflicting results 

observed in the literature, we believe that recording both behavior and neuronal activity 

together will give us a better idea as to why these reports are conflicting. 

 A better understanding of the short- and long-term neural adaptations that 

occur following MPH exposure is crucial, especially since a large population of those 

consuming this drug are children with central nervous systems (CNS) that are not fully 

developed.  What is known about the mechanism of MPH action and neural responses 

to acute and repetitive exposure is as follows: MPH has a chemical structure and 

neuropharmalogical characteristics similar to drugs with a high probability of abuse, such 
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as cocaine and amphetamines (Teo et al., 2003; Volkow, 2001).  MPH has a similar 

mechanism of action as cocaine in that it acts as an indirect agonist by binding with high 

affinity to the dopamine transporter, blocking dopamine (DA) re-uptake to the 

presynaptic terminal, and thus increasing levels of extracellular DA in the synaptic cleft. 

MPH is absorbed and metabolized via de-esterification to ritalinic acid (Faraj et al., 1974; 

Wang et al., 1997; Wargin et al.,1983) and released into the urine within 48 hours. Since 

the psychostimulant is concentrated in catecholaminergic systems with free flow across 

the blood brain barrier, concentrations of MPH in the brain exceed plasma levels. MPH 

also has a similar rapid uptake in the brain as cocaine,  however MPH has a much lower 

rate of clearance (Morse et al., 1995).  This may explain why IV or intranasal 

administration of MPH yields higher mortality rates than cocaine or amphetamines 

(Gatley et al., 1999; Volkow et al., 1995, 1996, 1999). 

It has also been shown that dose and route of MPH administration play a 

significant role in the experience of the user, as behavioral responses and 

neurochemical reactions to the drug are dependent upon the length of time it takes for 

the drug to reach its peak level in the periphery (Kuczenski and Segal., 2002). When 

MPH is administered orally, it is absorbed through the intestinal tract, has a half-life of 

about 1 hour, and peaks in the blood stream at approximately 60-90 minutes (Gerasmiov 

et al., 2000; Kuczenski and Segal 2002; Stewart & Badiani 1993)   (Garland 1998; 

kuczenski and Segal 1991;2001; Solanto 1998, 2000). However, following intravenous 

(IV) injection or intraperitoneal (IP) administration, peak levels of MPH in the periphery 

are reached at approximately 8-20 minutes and 15-28 minutes, respectively (Gerasmiov 

et al., 2000; Kuczenski and Segal 2002; Stewart & Badiani 1993). The ability to reach 

peak levels rapidly (8-30 minutes) is one of the main factors responsible for both the 

euphoric/pleasure response and adverse effects, such as a sensitization response. 

Behavioral Sensitization and Tolerance with MPH Use 
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MPH has been shown to cause different behavioral responses even when 

subjects are given the same dose of the drug. Some studies report that MPH elicits 

behavioral sensitization, whereas other studies report the same dose of the drug can 

also result in behavioral tolerance (Barron et al., 2004; Eckerman et al., 1991; Gaytan et 

al., 1996, 2000; Yang et al., 2003; 2006, 2007). The aim of the latter study was to first 

determine if there are differences in neuronal responses in individuals, particularly with 

respect to neuronal firing patterns in the caudate nucleus (CN), and whether these 

differences are responsible for the conflicting reports on behavioral responses with 

chronic MPH exposure.  We hypothesized that animals will exhibit different overall 

neuronal responses depending on whether that animal exhibits behavioral sensitization 

or behavioral tolerance. Furthermore,  we specifically hypothesize that an increase or a 

decrease in neuronal responses directly correlates to behavioral sensitization or 

tolerance, respectively. 

Several reviews suggest that behavioral tolerance and sensitization are phenomenon 

in animals that represent an enduring response to medications even after the 

discontinuation of drug use (Laasko et al., 2002), and are used as a model for drug 

craving and dependence (Kalivas et al., 1998; Robinson and Berridge, 1993; Wolf, 

1998). Behavioral sensitization is defined as the increased amplification of activity 

resulting from repetitive administration of psychostimulants (Chao and Nestler, 2004; 

Gaytan et al., 1997; Kalivas and Stewart, 1991), and occurs in two phases: induction 

and expression. In the induction phase, transient changes occur following repetitive 

psychostimulant administration that subsequently result in increased behavioral activity. 

The expression phase is characterized by persistent long-lasting neural changes that 

result in sustained augmented behavioral responses despite cessation of 

psychostimulant use (Pierce and Kalivas, 1997). Thus, equal or increased behavioral 

activity is observed when animals are given a re-challenge administration of drugs 
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following a period of time when the drug is no longer in their system.  It is generally 

believed that behavioral sensitization occurs due to synaptic plasticity in the reward 

circuit, including the CNS structures: the nucleus accumbens (NAc), prefrontal cortex 

(PFC), caudate nucleus (CN), etc.  

The Role of the Claudate Nucleus in Responses to MPH 

The CN is part of the basal ganglia and receives input from different cortical areas, 

including the thalamus and substantia nigra, which ascend to the globus pallidus 

(Carpenter 1976; Kande et al., 2000). The main efferent projections come from the 

globus pallidus and project to the thalamus via the ansa lenticularis and lenticular 

fasciculus. From the thalamus projections extend to the cortex via the paliotegmental 

neurons which continue to cover several subcortical areas (Carpenter, 1976). The CN 

contains both a direct excitatory pathway and an indirect inhibitory pathway, which are 

modulated by the activation of CN medium spiny neurons (MSN) that express D1 and 

D2 dopamine neurons.  The CN is stimulated by the cortex to release the 

neurotransmitter gamma amino-butyric acid (GABA), which will project to the globus 

pallidus external (GPe) via the indirect pathway. However, using the direct pathway, 

GABA will project to the globus pallidus internal (GPi). GPe inhibition leads to 

suppression of the subthalamic nucleus, resulting in disinhibition of the GPi and 

ultimately, inhibition of motion through GPi's suppressive action on the thalamus. GPi 

inhibition (through the direct pathway) causes disinhibition of the thalamus, thereby 

allowing motion (Carpenter, 1976; Kreitzer and Malenka, 2008;  Zhang et al., 2004)(Fig. 

1).  This gives rise to the hypothesis that the dominant role of the CN is to regulate motor 

performance (Zhang et al., 2004). 
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Figure 1 shows the direct (excitatory) and indirect (inhibitory) pathway of the CN. The 
direct pathway receives projections from the globus pallidus internal and substantia nigra 
reticular via the thalamus and other cortical areas. The indirect pathway receives 
projections from the globus pallidus external via the subthalamic nucleus and thalamus. 
*Rights for reuse of figure obtained through Sinauer associates.  
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The CN has been reported to be structurally altered by acute and repeated 

administration of MPH. These alterations include the regulation of the transcription 

factors CREB and ∆Fos B, both implemented in drug dependence (Chao and Nestler, 

2004; Nestler 2004, 2008). The CN direct pathway contains an over abundance of D1  

DA receptors which control extracellular signal-kinase (ERK). ∆Fos B  gene expression 

is increased by the upregulation of ERK which has been reported to induce long-term 

neuroadaptions in the brain (Shi and McGinty, 2010 and Zhang et al., 2004). ∆Fos B 

elevation is correlated with increased reliance to the behavioral effects and increased 

motivation for the drug (Nestler, 2001; 2004; 2008). D1 receptor inhibition by blockade or 

ablation results in an increase in phosphorylation of cAMP response element binding 

protein (CREB), inhibiting the excitatory responses (Ferguson et al., 2010). Thus we 

hypothesized that animals expressing behavioral sensitization will also show an increase 

in extracellular neuronal responses following chronic drug exposure.    

MSNs of the indirect pathway coexpress an abundance of D2-like DA receptors 

which exert inhibitory effects (Kreitzer and Malenka, 2008; Zhang et al., 2004). Using 

D3-like DA receptor (subset of D2 receptors) mutant mice Zhang et al. (2004)  exhibited 

an increase in ERK activation, thus increasing sensitivity to the drug.. Previous studies in 

the NAc report that CREB activation via psychostimulants creates a homeostatic 

negative feedback adaption, inhibiting sensitivity to future drug administration (Chao and 

Nestler, 2004 and Nestler, 2004). Therefore I hypothesized for those animals expressing 

behavioral tolerance will exhibit decreased neuronal firing patterns after chronic MPH 

exposure.   

Previous studies reported that the ablation of the CN by nonspecific electrolytic 

lesion and specific ablation of the DA system by 6-OHDA that destroyed the nerve 

endings of the DA system (Claussen et al., 2012) found that the electrolytic lesion 
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animals maintained their response to chronic MPH exposure, however, the 6-OHDA 

lesion group did not respond to the acute and chronic MPH administration. Owing to the 

response following 6-OHDA lesion and no response to the electrolytic lesion we know 

that the push pull mechanism described earlier involves DA transmission (Claussen et 

al., 2012). Therefore, an upset of the balance between the direct and indirect pathways 

is mediated by the DA system and moreover the DA system will mediate the responses 

observed during the current study.  

Previous neurophysiological studies targeting the reward circuit independent of the 

animals behavioral activity show that 2.5 mg/kg MPH modulates the neuronal activity of 

the CNS sites; NAc, PFC, CN following both acute and chronic MPH exposure (Chong et 

al., 2012; Claussen and Dafny, 2012; Salek et al., 2012) 

In this study, we endeavored to compare neuronal responses and behavioral 

responses to acute and chronic MPH use and determine whether there are any 

relationships that can be made between these responses.  We hypothesized that 

animals exposed to the same dose of MPH will exhibit different behavioral responses; 

some exhibiting behavioral sensitization and others behavioral tolerance. Also, we 

hypothesized that when these animals are separated based on their behavioral 

responses of sensitized or tolerance, their neuronal responses will be statistically 

significantly different. We chose to investigate this hypothesis using a rodent model, as 

the relationship between drug doses (milligrams of hydrochloride salt/kilogram of body 

weight) and percentage occupancy of the dopamine transporter (DAT) is identical for 

cocaine and MPH in both rodents and humans (Gately et al., 1999).  We believe that 

finding a correlation between the neuronal and behavioral properties of animals in 

response to acute and chronic MPH will give us insight into why conflicting results are 
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observed across both animal and human studies that investigate the long term adaptations 

occurring in response to chronic MPH exposure. 

Methods 
2. Experimental Procedure  

2.1 Subjects  

Forty-seven (47) adult male Sprague-Dawley rats (Harlan, Indianapolis, IN, USA) were 

obtained.  

The animals weighed 150-175 grams upon arrival and were housed in single 
Plexiglas cages inside a sound-attenuated animal facility room for acclimation. 
The rats homecage used during the acclimation was also used as their test cage 
throughout experiment. The room was maintained on a 12-h light/dark cycle 
(lights on 06:00), at an ambient temperature of 21 ± 200C and at a humidity of 58-
62%. Rats were supplied food and water ad libitum for the entire duration of the 
study. All experiments were approved by our Animal Welfare Committee and 
carried out in accordance with the National Institute of Health Guide for Care and 
Use of Laboratory Animals.  

Chong et al., 2012 

2.2 Drug  

Methylphenidate hydrochloride (MPH) was obtained from Mallinckrodt Inc. (St. Louis, 

MO, USA). A study from 289 patients treated with MPH reported that the range of doses 

ingested by these patients was from 0.06 to 29.3 mg/kg with the majority of patients 

being treated with 1.0 to 3.0 mg/kg MPH. Approximately 2 to 3 mg/kg (i.p.) MPH (White 

and Yadao 2000)  in rodents achieved plasma levels similar to those achieved in clinical 

use (Bowman and Kuhn, 1996; Brandon and Steiner, 2003; Gerasimov et al., 2000).  

MPH doses between 0.5 to 3.5 mg/kg, i.p., were reported to promote peak plasma 

concentration within the typical clinical range (Kuczenski and Segal, 2002). In rodents, a 

MPH dose below 5.0 mg/kg, i.p., is considered a low dose and is comparable to doses in 

clinical use. The range of 5 to 10 mg/kg MPH is considered moderate dosage and 
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above 10 mg/kg as a high dosage (Bowman and Kuhn, 1996; Brandon and Steiner, 

2003; Faraj et al., 1974; Kollins et al., 2001; Rush et al., 2001; Sagvolden and Sergeant, 

1998; Santosh and Taylor, 2000; Solanto, 1998, 2000; Spear et al., 1983; Stewart and 

Badiani, 1993). Previous work using MPH doses from 0.1 to 40 mg/kg i.p. showed that 

doses of 0.6, 2.5 and 10.0 mg/kg MPH administered intraperitoneal (i.p.) elicited 

behavioral sensitization or tolerance  (Askenasy et aI., 2007; Dafny and Yang, 2006; 

Gaytan et aI., 1997b; 2000; Yang et aI., 2006a; 2007), therefore these were the three 

doses chosen (0.6, 2.5 and 10.0mg/kg). The MPH was dissolved in 0.9% saline (NaCI) 

solution and the dose was calculated as free base. All injections were given between 

08:00am and 9:00am and equalized to 0.8 ml with saline so that all injections volumes 

were the same for all animals.  

2.3 Electrode Implantation  

On the day of surgery rats were weighed and anesthetized with 50 mg/kg i.p. 
pentobarbital. The top of the rat's head was shaved to expose the skin and 
coated with a thin layer of 2% Lidocaine Hydrochloride Jelly (Akorn,lnc.). The 
animal was then placed in a stereotaxic instrument. An inch incision was made 
with muscle and connective tissue removed to expose the skull. A single hole for 
the reference electrode was drilled above the frontal sinus and two bilateral 
0.6mm diameter holes were drilled over the CN, all in accordance to the 
coordinates derived from Paxinos and Watson (1986) rat brain atlas (1.0mm 
anterior from bregma, 3.0mm lateral). Prior to electrode placement 6 anchor 
screws were put in vacant areas of the skull to secure the skull cap with dental 
acrylic cement. Two twisted Nickel-Chromium, Diamel coated; 60 micron 
diameter wire electrodes (fully insulated except at tips) were secured each to a 
1cm copper connector pin made prior to surgery. A reference electrode was 
placed in the frontal sinus and the two twisted recording electrodes were 
implanted each in the CN as follows: One twisted electrode (i.e., two electrodes 
together) was inserted into the drilled hole at an initial depth of 4mm. Unit activity 
was monitored during placement of electrodes by using a Grass emitter Hi Z 
Probe connected to a Grass P511 series pre-amplifier. Electrodes were fixed to 
the skull only when spike activity exhibited at least a 3:1 signal to noise ratio in 
both electrodes. If the activity did not match the 3:1 spike to noise ratio criteria, 
the electrode was moved down in approximate increments of 10 microns until a 
depth of 5.0mm until they displayed a proper signal to noise ratio of neuronal 
activity. Once a sufficient signal was obtained, the electrode was fixed in the skull 
with Webglue, cyanoacrylate surgical adhesive (Webster Veterinary). The 
secondary twisted electrode was implanted using identical procedures in the 
other hemisphere (Chong et al., 2012; Claussen and Dafny, 2012; Dafny, 1982; 
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Dafny et al., 1983; Dafny and Terkel, 1990; Yang et al., 2006a; 2006b; 2006d; 
2007). The electrode connector pins were inserted into Amphenol plugs which 
were positioned on the skull and secured to the skull with dental acrylic cement. 
Rats were allowed to recover from the surgical procedure for approximately 4 to 
7 days. During this recovery period, every day for 2 hours, the rat, with his home 
cage, was placed in the experimental behavioral apparatus and connected to the 
wireless (telemetric) head stage transmitter (Triangle BioSystems, Inc; Durham, 
NC, USA) for daily acclimation to the recording systems. 

Chong et al., 2012 

 On the first day of recording the animals weighed between 200 and 220grams, 

postnatal days P62-65. 

2.4 Experimental protocol  

Animals were randomly assigned to four groups; saline, 0.6, 2.5 or 10.0 mg/kg MPH 

groups. The experimental protocol was adapted from previous experiments (Chong et 

al., 2012; Claussen and Dafny 2012, Salek 2012). Experimentation began 4 to 7 days 

post-surgery and lasted for 10 days. On experimental day 1 (ED1) prior to the start of the 

recording session, animals were again allowed to acclimate to the recording system for 

20-30 minutes. During this time, the recording parameters were organized in order to 

properly record the neuronal activity and save the files. Immediately post saline (0.8 ml 

of 0.9%) injection, a 60 min baseline of neuronal and behavioral activity was recorded 

simultaneously. This was followed by a second injection of saline or 0.6, 2.5 or 10.0 

mg/kg MPH injection and recordings were resumed immediately after injection for 

another 60 minutes. From ED2 to ED6 rats were injected once daily with the same MPH 

concentration and at the same time as they have been injected at ED1. All injections 

were done in their home cages (which were also their test cages), ED7 to ED9 were 

washout days in which no injections were given. On ED10, identical experimental 

protocol as ED1 was followed (Table 1); neuronal and behavioral baseline activity was 

recorded for 60 min following a saline injection, as well as an additional 60 min neuronal 

and behavioral recording after a saline or MPH rechallenge injection (table 1).  
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Table 1: Experimental Protocol 
 
 

 Experimental 

Days: 

Day 1 

Acute (initial) 

Day 2 to 6 

Maintenance  

Day 7 to 9 

Washout 

Day 10 

Rechallenge 

T
re

a
tm

e
n

t:
 

Saline 

N=10 saline / saline saline Washout saline / saline 

0.6 mg/kg 

N=12 saline / 0.6 mg/kg 0.6 mg/kg Washout saline / 0.6 mg/kg 

2.5 mg.kg 

N=12 saline / 2.5 mg/kg 2.5 mg/kg Washout saline / 2.5 mg/kg 

10.0 mg/kg 

N=12 saline / 10.0 mg/kg 10.0 mg/kg Washout saline / 10.0 g/kg 

 

  



14 
 

2.5 Behavioral Recording System  

Locomotor activity was recorded using an open field computerized animal activity 

system (Opto-M3, Columbus Instruments, Columbus, OH). The open field system 

comprised of a clear acrylic cage with infrared beam sensors that run 40 cm in length, by 

20 cm in width with 16 by 8 infrared beams respectively, and their sensors set 5 cm 

above the floor of the cage. Movement across any of the infrared beams results in a 

beam break and was subsequently recorded as total counts (TC) of locomotion. TC's 

were compiled and downloaded to a PC in 10 minute bin increments and were evaluated 

from 60 min post injection for both the saline baseline and MPH administration on ED1 

and ED10. The Opto-M3 software was used to count the number of stereotypic 

movements (NOS) was calculated manually by subtracting the horizontal activity from 

the total counts of locomotion. The objective of the behavioral recoding was to 

distinguish animals that expressed behavioral sensitization following repeated MPH 

exposure from animals that expressed behavioral tolerance. This grouping would be 

used as the basis for the neurophysiological data analyzing.  

2.6 Behavioral Analysis 

The locomotor activity recorded on ED1 and ED10 was summed into 10 min bins for 60 

min (i.e.6 bins/hr). The TC and NOS were then analyzed for each individual rat using a 

paired t test with significance set at P<0.05. Three comparisons were made: (1) ED1 

baseline compared to ED1 post MPH administration to determine the acute effect of the 

drug (Table 1); (2) ED10 baseline compared to ED1 baseline to evaluate whether the six 

daily MPH exposures and the three washout days elicits changes on ED 10 baseline 

compared to ED1 baseline activity (3) ED10 MPH chronic effect compared to ED1 MPH 

acute effect to determine if behavioral sensitization or tolerance was expressed (Table1). 
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Based on the third comparison, the animals were divided into two groups of either 

behaviorally sensitized or no change/tolerant. As a group the rats were then analyzed 

(for all three comparisons) using an ANOVA with repeated measures with adjustments 

for correlation among measurements. Post ad hoc comparisons were used to estimate 

changes between days within groups.   

2.7 Electrophysiology Data Acquisition   

On the experimental recording day, the rat was placed with his home cage in a 
Faraday testing box to reduce noise during signal transmission. The wireless 
Triangle Bio Systems (Durham, NC, USA) head stage was connected to the 
electrode pins of the skull cap. The Triangle BioSystem head stage sent neuronal 
activity signals through a receiver that connects to a Cambridge Electronic 
Design (CED) analog –to- digital converter (Micro1401-3; Cambridge, England) 
which then collected and stored the recorded data on a PC. Spike 2.7 software 
(CED) was used off line to sort for identical spike amplitude and waveforms by 
examining single spike activity exhibiting similar amplitude and wave form 
patterns before and after MPH administration for ED1 and ED10 (See section 
2.7.2 on spike sorting for more details) to produce a sequential frequency 
histogram and to calculate the firing rate in spikes per second. Approximately 
one to two spikes (units) were analyzed per electrode.  

Chong et al., 2012 

2.8 Spike sorting  

For spike sorting Spike2 version 7 software (Cambridge Electronics Design- 
CED) was used. The analog recording (sampling rates up to 200 kHz) was 
captured by the program and processed using low and high pass filters (0.3-3 
kHz). Two window levels were set, one for positive-going spikes and one for 
negative-going spikes. Spikes with peak amplitudes that were triggered by the 
window were used to create templates. One 1000 waveform data points was 
used to define a spike. The spikes were extracted when the input signal enters 
an amplitude window. Spikes with a peak amplitude outside these limits were 
rejected. The algorithm that was used to capture a spike allowed the extraction of 
templates that provide high-dimensional reference points that can be used to 
perform accurate spike sorting, despite the influence of noise, spurious threshold 
crossing and waveform overlap. All temporally displaced templates were 
compared with the selected spike event to find the best fitting template that yields 
the minimum residue variance. Secondly, a template matching procedure is then 
performed; when the distance between the template and waveform exceeds 
some threshold (80%) the waveforms were rejected. That means that the spike 
sorting accuracy in the reconstructed data is about 95%. All these parameters of 
spike sorting for each electrode were sorted and used for the activity recorded in 
experimental day 1 (ED1) and in ED10 i.e., we use identical criteria to sort spikes 
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in ED1 and ED10 to ensure the spike pattern captured on ED1 is the same as 
ED10.  

Claussen et al., 2012 

2.9 Electrophysiological Data Analysis 

The sorted neuronal activity obtained from the fixed template matching system 
was converted by the spike 2 version 7 software (CED) into their firing rates 
(spikes per second) for the baseline control recording and for the activity 
following MPH administration. These firing rates were exported into a spread 
sheet format displaying the rat's number, experimental day, MPH dose and 
recording channel (to distinguish hemisphere). Firing rates were evaluated for 
normality assumptions to determine parametric or non-parametric methods to 
evaluate differences before and after MPH treatments. The firing rates were 
determined to not hold normality assumptions, so we assessed differences in 
mean firing rates by using the critical ratio (CR) test.  

Chong et al., 2012 

This test was used to determine whether acute and chronic MPH treatments altered CN 

unit activity (C.R.=E-C/√� � � ± l.96=P<0.05) when comparing the effect of the initial 

(acute) MPH exposure, C – represents the activity following saline and E – the activity 

post MPH injection; when comparing the effect of six daily MPH exposures and three 

washout days on ED10 baseline C – represents the ED1 baseline, and E – represents 

the ED10 baseline activity; when comparing the effects of MPH rechallenge at ED10 to 

ED1; E represents the effects of MPH at ED10, and C represents the ED1 neuronal 

activity post MPH injection. In addition changes of each unit activity induced by the 

treatment was considered statistically significant if the firing rate after drug treatment 

differed by at least 2 standard error (S.E.) from the mean. (Claussen and Dafny, 2012; 

Dafny, 1980; 1982; Salek et al., 2012). 

 Multiple approaches were used to further analyze the neuronal activity based on 

the behavioral responses. First a natural log odds ratio was utilized to determine the 

likelihood of one group of animals to show an increase in neuronal activity compared to 

the other group of animals (comparing the neuronal population recorded from 
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behaviorally sensitized group to those recorded from animals exhibiting tolerance). This 

was done for all three comparisons; the initial (acute) MPH injection, the baseline 

neuronal activity at ED10 compared to baseline at ED1 and the rechallenge MPH 

administration at ED10 compared to ED1 initial MPH injection. To compensate for the 

smaller values observed on certain days for varying doses, 0.5 was added to all 

numbers for computation of the odds ratio. A number of 1 and higher in the odds ratio 

test indicates a higher likelihood of increased neuronal activity in one group compared to 

the other group of animals, conversely a number smaller than 1 represents a less likely 

increase in neuronal activity.  

A log linear model was used next to control for dose when comparing the overall 

activity (acute, baseline and chronic) between the two groups (behaviorally tolerant and 

sensitized) to determine if there was a significant difference between dose behavior and 

firing patterns for each group (0.6, 2.5 and 10.0 mg/kg). P-values of  <0.05 obtained 

from the log linear model was considered as significant. 

2.10 Histological verification of electrode placement  

At the end of the experimental protocol, rats were deeply anesthetized with 
sodium pentobarbital. The rat's brain was transcardially perfused with 10% 
formalin solution containing 3% potassium ferrocyanide. A 2 mA DC current was 
passed through the electrode connector pin for 40 seconds to produce a small 
lesion. The brain was then excised and stored in 10% formalin for subsequent 
histological processing. Placements of the electrodes were verified in 60 micron 
thick coronal sections that were stained with cresylviolet. Coordinate position of 
the electrode tips were established by matching equivalent locations of the lesion 
and the prussian blue spot by using the Rat Brain Atlas by Paxinos and Watson 
(1986) (Fig. 2).  

Chong et al., 2012 



18 
 

 
 

 
Figure 2 reconstructs the histologically verified electrode tip placement in the caudate 

nucleus (CN). The black dots on the rat atlas plates (Paxinos and Watson, 1986) 

represent the location of the CN recording electrodes in serial coronal sections. The 

number on the top right corner of each section represents the anterior/posterior distance 

(mm) from bregma. *Rights for reuse of figure obtained through Elsevier. 
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3 Results 
3.1 Overall 

3.1.1 Overall Behavioral  

Forty-seven (47) rats that met the histological verification of electrode location placement 

and the neurophysiological requirements and exhibited similar spike amplitude and 

pattern at ED1 and ED10 were included in the study (saline N=10; 0.6 mg/kg N = 12; 2.5 

mg/kg N = 13; 10.0 mg/kg N = 12 animals respectively). Each animal’s Total counts (TC) 

of activity were evaluated separately using a paired t-test to determine whether they 

exhibited behavioral sensitization or tolerance. This was done by comparing their 

locomotor activity after MPH administration at ED10 to the effect of the initial MPH 

exposure on ED1 (Table 1). The number of stereotypic movements (NOS) was analyzed 

as a second measure to verify that animals exhibiting tolerance or no change were not in 

fact exhibiting an increased stereotyped behavior; a form of behavioral sensitization. The 

NOS results show that all animals expressing behavioral tolerance also exhibited 

statistically (p<0.05) significant decreases in stereotypic movement (data not shown). 

The control group showed no effect on behavioral activity following acute or multiple 

injections of saline (data not shown). This lack of change in behavioral activity following 

saline injection shows that our recording procedures have no effect on the rats 

locomotor activity. 

3.2 Overall Saline  

Sixty CN units were recorded from 10 rats injected with saline only. In general these CN 

units exhibited similar neuronal firing activity at ED1 following the second saline injection 

compared to the initial saline injection. Their baseline activity at ED10 following six daily 

saline injections compared to the activity at ED1 showed that the units exhibited similar 

neuronal activity at ED1 and at ED10. This observation in the saline control group 
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provides evidence that daily handling and injection volume did not modulate the CN units 

neuronal firing rates.   

3.3  Results (0.6mg/kg) 

3.3.1 Behavioral Results (0.6mg/kg) 

As a group, the 0.6mg/kg MPH dose had no effect on acute and chronic 

behavioral response (Fig. 3A).  This lack of response as a group is due to some 

individual animals increasing locomotion and others decreasing their locomotion, thus as 

a group they cancel each other out. However, when each animal was analyzed 

individually and grouped based on their response (sensitized or tolerant) to chronic 

MPH; four animals treated with 0.6 mg/kg MPH exhibited significant [F1,6=5.98,P=.03]  

behavioral sensitization (Fig. 3B), the eight animals that individually exhibited no change 

(tolerance) in activity also showed no significant [F1,14=4.6, P=0.2] (Fig. 3C) changes in 

activity as a group.  Thus, the 0.6mg/kg MPH gave two responses; significantly 

sensitized and non significant tolerance. These differences were further evaluated by 

their neuronal responses to elucidate an intrinsic difference as previously hypothesized.  

3.3.2 CN Neuronal (0.6 mg/kg, Table 2A) 
 
A total of 101 units were recorded from the CN following acute and chronic 0.6 mg/kg 

MPH administration.  80 of the units responded to acute 0.6 mg/kg MPH administration, 

the majority 48/80 of the CN MPH responsive units showed an increase in their neuronal 

activity while 32 CN units exhibited attenuation of their neuronal activity (Table 2A, under 

acute). When ED10 baseline neuronal activity was compared to ED1 baseline neuronal 

activity, all CN units exhibited significant (p<0.05) changes, with the majority 70/101 

exhibiting a decrease in baseline neuronal activity (Table 2A, under baseline). MPH 

rechallenge at ED10 elicited in all CN units significant (p<0.05) changes in their neuronal 
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firing rates compared to ED1 initial MPH, with the majority of the CN units, 65/101, 

exhibiting an attenuation of activity (Fig. 4B) and 36/101 exhibited increased neuronal 

firing rates (Table 2A, under rechallenge; Fig. 4A). The balance of increased/decreased 

neuronal firing patterns underlies the respective lack of behavioral response to 0.6mg/kg 

MPH.  

3.3.3 CN neuronal based on behavior (0.6mg/kg, Table 2B and 2C) 

Table 2B and 2C summarizes the CN unit responses to 0.6mg/kg MPH based on their 

behavioral responses to chronic MPH (comparing the effect of MPH at ED10 to ED1). 

The natural log odds ratio shows that for the acute MPH exposure to 0.6 mg/kg, the 

animals expressing behavioral tolerance (Table 2C) were more likely, (ln .046) to show 

an increase in neuronal activity. This increase in neuronal responses for the behaviorally 

tolerant animals explains why those same animals showed a higher increase in 

behavioral activity at ED1 compared to those exhibiting sensitization. For the baseline 

neuronal activities at ED10 compared to ED1 and at ED10 rechallenge MPH 

administration the odd ratio showed that the behaviorally sensitized (Table 2B) were 

likely to show increased neuronal activity with a score of ln1.0, ln 0.322.  Therefore as 

previously postulated the animals exhibiting behavioral sensitization did in fact show an 

increase in their neuronal firing patterns. However when neuronal responses were 

statistically compared for those exhibiting behavioral sensitization to those neuronal 

responses for those exhibiting behavioral tolerance, no significant differences [df 2; 

x2:3.08, p=0.2] were observed. The CN is a motor structure, 0.6mg/kg MPH is 

considered a low dose therefore the lack of statistical difference between the two groups 

could potentially be due to 0.6 mg/kg having minimal effect on the CN.   
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              3A. 

 

3B.                  3C.

  

 

Figure 3: 3A the top histogram summarizes the overall behavioral (N=12) response to 
acute and chronic 0.6mg/kg MPH. The bottom histogram separates the animals based 
on their individual response of either behaviorally sensitized, (N=4) (3B) or behaviorally 
tolerant (N=8) (3C). * represents significant (p<0.05) differences. ED = experimental day; 
v= compared to; BL =baseline activity; MPH = methylphenidate. 

* 

* 

* 
*  

* 
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Table 2 

 

. 

All animals 

Animals Exhibiting 
Behavioral 

Sensitization 

Animals Exhibiting  
Behavioral 
tolerance 

 

A) 0.6 mg/kg total 
(N=101) 

B) 0.6mg/kg (N=32) C) 0.6mg/kg (N=69) 

 
Acute 

ED1 

Baseline 

(ED10 to 

ED1) 

Rechallenge 

(ED10) 
Acute ED1 

Baseline 

(ED10 to 

ED1) 

Rechallenge 

(ED10) 
Acute ED1 

Baseline 

(ED10 to 

ED1) 

Rechallenge 

(ED10) 

increase ↑ 48 31 36 19 15 12 29 16 21 

decrease ↓ 32 70 65 13 17 20 19 53 48 

No change   

≠ 
21 0 0 0 0 0 21 0 0 

 a         

 
  



 

 
 

 
Figure 4A: The figure shows a representative firing rate histogram of a CN units
exposure to 0.6mg/kg MPH. To the left shows the baseline activity at experimental day 
(ED) 1 baseline, followed by initial MPH exposure. To the right the first histogram shows 
the baseline firing activity of the CN unit at ED10, followed by MPD rechalleng
at ED10.  In the upper corners are 20 super imposed spikes during the control, initial 
MPH exposure at ED1 and control and rechallenge MPH exposure at ED10. The spikes 
show that identical spike  
 
Figure 4B shows a representative histogram of a C
To the left shows the baseline activity at experimental day (ED) 1 baseline, followed by 
ED1 drug initial exposure. To the right the histogram shows the baseline firing activity of 
the CN unit at ED10 baseline, followed by
on ED10.   
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figure shows a representative firing rate histogram of a CN units
exposure to 0.6mg/kg MPH. To the left shows the baseline activity at experimental day 
(ED) 1 baseline, followed by initial MPH exposure. To the right the first histogram shows 
the baseline firing activity of the CN unit at ED10, followed by MPD rechalleng
at ED10.  In the upper corners are 20 super imposed spikes during the control, initial 
MPH exposure at ED1 and control and rechallenge MPH exposure at ED10. The spikes 

shows a representative histogram of a CN units exposure to 0.6mg/kg MPH. 
To the left shows the baseline activity at experimental day (ED) 1 baseline, followed by 
ED1 drug initial exposure. To the right the histogram shows the baseline firing activity of 
the CN unit at ED10 baseline, followed by decrease in firing at the rechallenge activity 
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figure shows a representative firing rate histogram of a CN units 
exposure to 0.6mg/kg MPH. To the left shows the baseline activity at experimental day 
(ED) 1 baseline, followed by initial MPH exposure. To the right the first histogram shows 
the baseline firing activity of the CN unit at ED10, followed by MPD rechallenge activity 
at ED10.  In the upper corners are 20 super imposed spikes during the control, initial 
MPH exposure at ED1 and control and rechallenge MPH exposure at ED10. The spikes 

N units exposure to 0.6mg/kg MPH. 
To the left shows the baseline activity at experimental day (ED) 1 baseline, followed by 
ED1 drug initial exposure. To the right the histogram shows the baseline firing activity of 

decrease in firing at the rechallenge activity 

Baseline ED10          ED10 MPH
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3.4 Results (2.5mg/kg) 

 3.4.1 Behavioral Results (2.5mg/kg) 

The 2.5 mg/kg MPH group showed no significant change in activity when 

comparing the effect of the drug at ED10 MPH rechallenge to MPH given at ED1 (Fig. 

5A). This lack of response is due to some individual animals increasing their activity and 

some individual animals decreasing their behavioral activity, so when grouped together 

their activity averages to an amount close to baseline. Analyzed individually, seven 

animals exhibited behavioral sensitization to 2.5mg/kg MPH, and significant [F1,7=4.74, 

P=0.01] differences in behavioral activity at ED10 rechallenge compared to ED1 acute 

injection (Fig. 5B). This significant increase in behavioral activity is expected when you 

look at table 3B, under rechallenge, nearly all units responded majority of excitatory 

responses are observed. Five animals exhibited behavioral tolerance when analyzed 

individually however as a group they did not exhibit significant [F1,8=5.31,P=0.13] 

differences in locomotor activity(Fig. 5C). Table 3C under baseline shows that the 

majority of responses are inhibitory, therefore when the rechallenge was administered 

less units responded with increased activity. This inhibition in neuronal firing rates lead 

to a reduced behavioral response compared to the day one drug. Similar to the 0.6mg/kg 

dose, 2.5mg/kg MPH gave two responses: significantly sensitized and not significantly 

tolerant. Furthermore as above mentioned these responses show a correlation to the 

respective neuronal responses, further detailed below. 

3.4.2 CN Neuronal (2.5 mg/kg, Table 3A) 

A total of 117 CN units were recorded following acute and chronic 2.5 mg/kg MPH 

administration (Table 3). 66/117 of the CN units responded with significant increases in 

neuronal activity (p<0.05) to acute 2.5 mg/kg MPH administration (Table 3A, under 



26 
 

acute). This increase in neuronal responses elucidates why a significant increase in 

behavioral activity was seen (Table 3A). ED10 baseline neuronal activity compared to 

ED1 baseline showed that 116/117 CN units exhibited significant (p<0.05) change in 

their baseline neuronal firing patterns, with the majority, 78/116, decreasing their 

neuronal firing rate at ED10 compared to ED1 (Table 3A, under baseline; Fig. 6A). MPH 

rechallenge at ED10 resulted in 106 of CN units responding with significant (p<0.05) 

changes in their neuronal firing rate when compared to the effect of the acute 2.5 mg/kg 

administration. Of the 106 CN units responding to MPH, 88 exhibited an increase in their 

neuronal firing rates (Table 3A, under rechallenge; fig. 6B); whereas the other 18/106 

decreased their neuronal firing rates. 

3.4.3 CN neuronal based on behavior (2.5 mg/kg, Table 3B and 3C) 

Table 3B and C summarizes the CN unit responding to 2.5mg/kg based on their 

behavioral responses to chronic MPH. The natural log odds ratio shows that for the 

acute exposure to 2.5mg/kg MPH the animals expressing behavioral tolerance were 

more likely, (ln 2.7) to show an increase in neuronal activity. This increase in neuronal 

activity for animals expressing behavioral tolerance is also seen in their acute behavioral 

activity. They show a higher increase in activity following initial drug exposure versus the 

sensitized animals. For the baseline neuronal activities at ED10 compared to ED1 the 

behaviorally sensitized were likely to show increased neuronal activity with a score of ln 

1.47, while at ED10 rechallenge MPH administration the odd ratio showed that the 

behaviorally tolerant animals were more likely to show an increase in activity ln 0.362. 

When a statistical comparison was made from the neuronal responses of those 

exhibiting behavioral sensitization to the neuronal responses of those exhibiting 

behavioral tolerance, as hypothesized, a significant difference was observed [df 2: 

x2:30.41, p=0.001]. This difference between the two groups implies that there are 
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intrinsic differences within animals that can cause them to respond differently to the 

same dose of MPH. 
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         5A. 

 

5B.      5C.

 

 

Figure 5A top histogram summarizes the overall (N=12) behavioral response to acute 

and chronic 2.5mg/kg MPH. The bottom histogram separates the animals based on their 

individual response of either behaviorally sensitized (N=7)(left 5B) or behaviorally 

tolerant (N=5)(right 5C). * represents significant (p<0.05) differences. ED = experimental 

day; v= compared to; BL =baseline activity; MPH = methylphenidate. 

* 
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Table 3 
 

All animals 

Animals Exhibiting 
Behavioral 

Sensitization 

Animals Exhibiting  
Behavioral 
tolerance 

 

A) 2.5 mg/kg total 
B) N=117 

C) 2.5mg/kg  
D) N=66 

C) 2.5 mg/kg  
N=51 

 

Acute 

ED1 

Baseline 

(ED10 to 

ED1) 

Rechallenge 

(ED10) 
Acute ED1 

Baseline 

(ED10 to 

ED1) 

Rechallenge 

(ED10) 
Acute ED1 

Baseline 

(ED10 to 

ED1) 

Rechallenge 

(ED10) 

increase ↑ 66 38 88 23 30 46 43 8 42 

decrease ↓ 31 78 18 28 35 16 3 43 10 

No change   

≠ 
20 1 11 15 0 9 5 1 2 

          

 

  



 

 

 

 

 

 

Figure 6A: The figure is a representative histogram showing
expressed for the majority of CN units
right). This CN unit showed significantly decreased 
initial baseline firing activity prior t
Figure 6B: The figure shows a representative 
respond to initial MPH injection (to the left) however at ED10 rechallenge (histogram to 
right) the MPH exposure elicited an increased in this CN u
exhibiting neurophysiological sensitization.
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is a representative histogram showing the baseline activity 
expressed for the majority of CN units at ED1 (left side) with the baseline at ED10 (to the 

significantly decreased neuronal firing rates compared to 
activity prior to 2.5 mg/kg MPD administration.  

shows a representative histogram of CN firing rates that did not 
injection (to the left) however at ED10 rechallenge (histogram to 

MPH exposure elicited an increased in this CN unit’s neuronal firing 
exhibiting neurophysiological sensitization. 
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3.5 Results (10.0mg/kg) 

3.5.1 Behavioral Results (10.0mg/kg) 

10.0mg/kg MPH administration resulted in significant  increased behavioral 

activity at ED1 initial exposure and following MPH rechallenge at ED10 (Fig. 7A).   

Analyzed individually, two animals exhibited behavioral sensitization, and when 

statistical evaluated, they did not exhibit significant [F1,2=18.53, P=0.9] (Fig. 7B) 

differences, due to the small N value. Ten animals exhibited behavioral tolerance, and 

exhibited significant [F1,18=4.41, P=0.01] attenuation post MPH rechallenge at ED10 

when compared to MPH exposure at ED1 (Fig. 7C).  

This data shows that the same dose of chronic 10.0mg/kg MPH in some animal’s 

elicited behavioral sensitization and in others behavioral tolerance.  

3.5.2  CN neuronal Results (10.0mg/kg, Table 4) 

A total of 135 units were recorded from the CN following acute and chronic 10.0 mg/kg 

MPH (Table 4A). The majority of the CN units, 121/135 responded with significant 

(p<0.05) changes in neuronal activity following acute 10.0 mg/kg MPH administration 

(Table 4A, under acute). Of the 121 CN units responding to acute MPH, 90 exhibited 

significant (p<0.05) increase in their neuronal firing rate activity compared to their saline 

baseline activity. This overall increased neuronal firing pattern in the CN elucidates why 

the animals as a group showed significant increased locomotor activity. At ED10, all of 

the CN units exhibited significant (p<0.05) changes in their ED10 baseline neuronal 

firing compared to ED1 baseline (Table 4A, under baseline), with the majority of them, 

101/135, exhibited decreases in their neuronal firing rates. All CN units responded with 

significant (p<0.05) changes in their firing rates to MPH rechallenge at ED10 when 
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compared to acute MPH administration, the majority of the CN units, (98/135), exhibiting 

increased neuronal activity (Table 4A, under rechallenge; Fig. 8)  

3.5.3 CN neuronal based on behavior (10.0mg/kg, Table 4B and 4C) 
 
Table 4B and C summarizes the CN unit responding to 10.0mg/kg based on their 

behavioral responses to chronic MPH. The natural log odds ratio shows that for 

10.0m/kg the animals expressing behavioral sensitization were more likely, (ln 3, ln 1.7) 

to show an increase in neuronal activity during initial (acute) MPH exposure and at ED10 

baseline compared to ED1 baseline. MPH rechallenge at ED10 administration showed 

that the behaviorally tolerant animals were more likely to show an increase in activity ln 

0.32. Furthermore when the CN neuronal population of those exhibiting behavioral 

tolerance was compared to the neuronal activity of those exhibiting behavioral 

sensitization a significant [df 2: x2:13.19; p=0.001) difference was observed. Accordingly, 

proving our hypothesis that there are intrinsic differences in responses to MPH exposure 

that lead to different behavioral responses.   
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         7A. 

 

7B.          7C.

 

 

 

Figure 7: 7A top histogram summarizes the overall (N=12) behavioral response to acute 

and chronic 10.0mg/kg MPH. The bottom histogram separates the animals based on 

their individual response of either behaviorally sensitized (N=2) (left 7B) or behaviorally 

tolerant (N=10)(right 7C). * represents significant (p<0.05) differences. ED = 

experimental day; v= compared to; BL =baseline activity; MPH = methylphenidate. 

 

* * 

* 
* 

* * 



34 
 

Table 4: 
 
 
 

All animals 

Animals Exhibiting 
Behavioral 

Sensitization 

Animals Exhibiting  
Behavioral 
tolerance 

 

A) 10.0mg/kg total 
(N=135) 

B) 10.0mg/kg (N=22) C) 10.0mg/kg (N=113) 

 

Acute 

ED1 

Baseline 

(ED10 to 

ED1) 

Rechallenge 

(ED10) 
Acute ED1 

Baseline 

(ED10 to 

ED1) 

Rechallenge 

(ED10) 
Acute ED1 

Baseline 

(ED10 to 

ED1) 

Rechallenge 

(ED10) 

increase ↑ 90 34 98 22 15 21 68 19 77 

decrease ↓ 31 101 37 0 12 10 31 89 27 

No change   

≠ 
14 0 0 0 0 0 14 0 0 

          

 
  



 

 

Figure 8:  The figure shows a representative histogram of CN unit firing rate following 

saline and MPH (10.0 mg/kg) at experimental day 1 (ED1) and ED10. In the left side are 

the recordings of ED1 following saline and by 

elicited an increase in neuronal firing rates. In the right part of the figure is the histogram 

of the baseline activity and the activity following 10.0 mg/kg 

histogram shows that at ED10 the baseline activity was evaluated comp

baseline and following rechallenge of 10.0 mg/kg 

firing patterns were observed compared to the activity obtained at ED1. This further 

increase in neuronal firing rate at ED10 can be interpreted as the unit is 

neurophysiological sensitization.
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shows a representative histogram of CN unit firing rate following 

(10.0 mg/kg) at experimental day 1 (ED1) and ED10. In the left side are 

the recordings of ED1 following saline and by MPH 10.0 mg/kg acute injection

elicited an increase in neuronal firing rates. In the right part of the figure is the histogram 

of the baseline activity and the activity following 10.0 mg/kg MPH at ED10. The 

histogram shows that at ED10 the baseline activity was evaluated compared to ED1 

baseline and following rechallenge of 10.0 mg/kg MPH exposure a further increase in 

firing patterns were observed compared to the activity obtained at ED1. This further 

increase in neuronal firing rate at ED10 can be interpreted as the unit is expressing 

neurophysiological sensitization. 

MPH ED1
Baseline ED10 MPH ED10 

0                                       60                        120min

↓

                             120min        

 

shows a representative histogram of CN unit firing rate following 

(10.0 mg/kg) at experimental day 1 (ED1) and ED10. In the left side are 

10.0 mg/kg acute injection. The drug 

elicited an increase in neuronal firing rates. In the right part of the figure is the histogram 

at ED10. The 

ared to ED1 

exposure a further increase in 

firing patterns were observed compared to the activity obtained at ED1. This further 

expressing 

MPH ED10 

0                                       60                        120min
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5 Statistical comparisons 

5.1 CN units based on behavior (0.6, 2.5 and 10.0mg/kg MPH) controlling for dose 

 Based on the separations of the neuronal activity for the animals behavioral 

response of either tolerant or sensitized, a log linear model was used to statistical 

compare the relationship between dose, behavior and firing patterns for each group (0.6, 

2.5 and 10.0 mg/kg MPH) with significance set at (P<0.05). The results shows that the 

response pattern of CN units recorded from animals that exhibited behavioral 

sensitization to 0.6 mg/kg MPH dose were not significantly (df 2; X2 :3.08; p = 0.2) 

different from the CN units firing patterns recorded from  animals that exhibited 

behavioral tolerance. The response of CN units to MPH recorded from animals that 

exhibited behavioral sensitization following 2.5 and 10.0 mg/kg MPH were significantly 

(df 2: X2 :30.41; p = 0.001; df 2: X2 :13.19; p = 0.001 ) different from the CN units which 

were recorded from animals exhibiting behavioral sensitization. This statistical 

comparisons show the importance of evaluating the effect of chronic drug exposure on 

neurophysiological events based on animal behavioral response to repetitive drug 

exposure. 
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6 Discussion 

Although MPH is a commonly prescribed drug therapy, its neurochemical mechanism is 

still unclear. Several studies have shown that MPH acts similarly to other 

psychostimulants, such as cocaine and methamphetamine (Gately et al., 1999, Patrick 

and Markowitz, 1997; Teo et al., 2003). Merchant et al., demonstrated that while most 

psychostimulants affect both the limbic and basal ganglia circuitry, MPH appears to act 

selectively on the basal ganglia circuit, including the caudate nucleus (CN). MPH is 

known to indirectly increase synaptic levels of dopamine (DA) by blocking DA re-uptake 

into the presynaptic terminal, thereby increasing the levels of extracellular DA in the 

synaptic cleft (Diaz et al., 2004; Kuczenski and Segal 1997; Nestler 2001; Volkow et al 

1995). In addition to the neurochemical mechanism of MPH being unclear, it is also not 

known how MPH might influence behavioral responses, such as sensitization or 

tolerance. Previous studies have shown conflicting results as to whether certain doses of 

MPH cause behavioral sensitization or behavioral tolerance (Yang et al., 2006). We 

have postulated that MPH causes behavioral sensitization in some animals and 

behavioral tolerance in others, even when the animals have been administered the same 

dose of the drug.  This, perhaps, may explain previous findings that yielded conflicting 

results. In our studies using electrophysiological methodologies, we demonstrated that  

acute and chronic MPH (2.5mg/kg) causes an increase in CN response patterns in some 

animals, while decreasing CN response patterns in others (Claussen and Dafny 2012). 

However, there are currently no studies that combine the simultaneously recorded 

behavioral activities and neuronal responses  following MPH administration. We 

endeavored to compare behavioral activities to neuronal responses in order to aid in 

further understanding their relationship after either acute or chronic MPH exposure. We 

investigated this relationship using freely behaving rats as a model, as their behavioral 
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and neuronal responses to MPH are similar to those responses observed in humans. 

The results obtained from these investigations will aid in better understanding the 

mechanism(s) of how acute and chronic MPH exposure may cause behavioral 

sensitization or tolerance. We hypothesized that, following chronic MPH exposure, the 

CN neuronal population activity from animals exhibiting behavioral sensitization would 

respond differently than the CN units recorded from animals exhibiting behavioral 

tolerance.  The first specific aim of this project was to individually analyze the animals’ 

behavioral responses to acute and chronic MPH exposure in varying doses (0.6, 2.5 and 

10.0mg/kg) to determine if the animals exhibited behavioral sensitization or behavioral 

tolerance. The second specific aim involved recording all of the CN neuronal responses 

with no relation to the animals’ behavior. Finally, in the third specific aim we sorted the 

CN neuronal responses from animals into two groups: 1) those that exhibited behavioral 

sensitization and 2)  those that exhibited behavioral tolerance.  We then determined if 

there was a difference between these two groups’ electrophysiological responses. To 

accomplish all of these aims, we simultaneously recorded the neuronal and behavioral 

activity of animals exposed to single and repetitive doses (0.6, 2.5 and 10.0mg/kg) of 

MPH.  

Overall, we observed that MPH, in fact, caused behavioral sensitization in some 

animals and behavioral tolerance in others, even when these animals were administered 

the same dose of the drug. We also demonstrated that there were differences in CN 

neuronal responses to acute and chronic MPH exposure that were independent of their 

behavioral responses. Finally, we observed that these different responses were 

statistically significant in regard to the CN activity between animals that exhibited 

behavioral sensitization and those that exhibited behavioral tolerance when administered 

specific doses of MPH.  Taken together, the results from this study support our 
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hypothesis that the behavioral responses following acute and chronic MPH exposure are 

related to neuronal activity in the CN. 

Behavioral Responses to Varying Doses of MPH 

 Previous experiments have reported that both behavioral sensitization 

and tolerance can occur when an animal is given the same dose of MPH (Yang et al., 

2006a; Yang et al., 2006b). Therefore, we investigated the behavioral responses, 

measured as locomotor activity, in all animals, initially as a group, and then individually 

to determine if individual responses were observed using the same dose of MPH. The 

saline control group showed no changes in locomotor activity. This suggests that animal 

handling for the duration of the study had no significant effects on their behavioral 

responses. We next investigated how acute exposure to MPH altered behavioral 

responses.  Animals that were acutely exposed to MPH exhibited an increase in 

locomotor activity  in a dose-dependent manner. We also examined how MPH elicited a 

chronic effect by re-challenging the animals at a later time after cessation of acute 

exposure. The behavioral responses observed on re-challenge were then compared to 

responses recorded during the first day of initial acute exposure to MPH. This 

comparison was performed for each dose of MPH (0.6, 2.5, and 10mg/kg) that was 

administered. Interestingly, upon re-challenge, some animals exhibited decreased 

locomotor activity, while others exhibited greatly increased locomotor activity. While 

there was a dichotomy in behavioral responses upon re-challenge, there were no 

significant differences in the combined locomotor activity for all of the animals re-

challenged with MPH, as there was a cancelling out effect during statistical analyses. 

Based on this observation, animals were subsequently analyzed individually and then 

separated into two groups: behaviorally sensitized and behaviorally tolerant. When the 

animals were separated based on their behavioral responses, the animals exhibiting 

behavioral tolerance to chronic MPH showed both a larger and a dose-dependent 
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increase in response to the initial (acute) MPH exposure when compared to the 

behaviorally sensitized animals’ responses (Fig. 3B&C, 5B&C, 7B&C). This was true for 

all doses administered. The opposite was seen following MPH re-challenge; the 

sensitized groups showed significant increases in locomotor activity upon re-challenge 

compared to their initial response, and the tolerant group showed significantly decreased 

locomotor activity. In conclusion, it is evident that MPH can elicit either behavioral 

sensitization or tolerance that is independent of the dose administered and that the 

varying levels of behavioral responses following acute MPH exposure may predict  

behavioral responses to chronic MPH exposure. 

 CN Neuronal Responses to Acute MPH Exposure 

 Saline administration (N=10) did not have an effect on CN neuronal activity, 

suggesting that the handling of the animals also had no effect.  The 0.6, 2.5 and 10.0 

mg/kg MPH exposures altered the majority of CN neuronal activity. Some CN units 

responded with increased neuronal activity, while others responded with attenuation of 

neuronal responses or were nonresponsive. The CN is comprised of approximately 90% 

medium spiny neurons (MSNs); there are two types of MSNs which express two different 

DA receptors: D1- and D2-like receptors. The D1 receptors act on the direct output 

pathway that connects to the thalamus and other cortical areas by way of the globus 

pallidus internal (GPi) and substantia nigra pars reticulars (SNPr) (Hummel & Unterwald, 

2002). Acute MPH administration is believed to stimulate C-Fos mRNA expression in the 

direct pathway, which increases D1 receptor-mediated signal transduction and causes 

an overall excitatory response for all doses (Yano and Steiner 2005; Chase et al., 2005). 

Therefore, D1 receptors have an excitatory effect when activated. The indirect pathway 

is regulated by D2 receptors with connections that project to the globus pallidus external 

(GPe), which then project to the subthalamic nucleus and causes an overall inhibition of 

activity (Henry & White, 1995). Extracellular recordings from permanent electrodes 
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previously implanted into the CN are not able to identify the exact origin of the 

recordings or whether they are comprised of neurons expressing a majority of D1 or D2 

DA receptors.  Therefore, it has been postulated that when excitatory responses are 

observed, across all doses, that this is due to D1 receptor activity; whereas, when 

inhibitory responses are observed, D2 receptors are involved. It is known that the MSN 

are usually quiet and do not exhibit any spontaneous activity, therefore, when no 

response is observed, it may be because of a week stimulus that is unable to activate 

the cell.  

CN Neuronal Responses to Chronic MPH Exposure 

 The saline control group showed no changes in neuronal firing patterns at 

experiment al 10 (ED10) when compared to their activity at ED1, confirming that 

handling of the animals and multiple injections had no effect on the CN neuronal 

responses. When the CN units were exposed to a rechallenge (chronic) MPH, following 

6 days of administration and 3 days washout, we observed three types of 

neurophysiological sensitization and three types of neurophysiological tolerance. 

Neurophysiological sensitization was considered if the neuronal population at ED1 was 

increased compared to the ED1 baseline neuronal responses and then a further 

increase at ED10 compared to ED1 neuronal activity or similarly a decrease at ED1 and 

ED10, also when no changes were observed at ED1 drug compared to ED1 baseline 

neuronal activity followed by an increase at ED10 drug rechallenge when compared to 

ED1 drug neuronal responses.  Neurophysiological tolerance was observed when 

neuronal responses at ED1 were increased following acute drug exposure followed by a 

decrease in neuronal firing rates at ED10 drug compared to ED1 drug or oppositely a 

decreased followed by increase, also when there were no response at ED1 drug 

however a decrease in neuronal firing was at ED10 compared to ED1 drug was 

observed. When the CN neuronal responses were analyzed independently of the 
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animals’ locomotor behavior, the CN units responded initially to 0.6mg/kg MPH, with a 

majority showing an increase at ED1. However, at ED10, the majority of the CN 

neuronal responses elicited an opposite response by exhibiting a decrease in neuronal 

activity. An increase in neuronal activity following initial MPH exposure and then a 

decrease following chronic MPH exposure can be interpreted as neurophysiological 

tolerance. The 2.5 and 10.0 mg/kg MPH exposures elicited increases in CN neuronal 

activity and revealed an overall greater rise in activity at ED10 following re-challenge 

with MPH compared to their acute response at ED1. This increase in CN neuronal 

activity at ED1 followed by a further increase at ED10 re-challenge with MPH can be 

interpreted as neurophysiological sensitization.  There were also CN units that exhibited 

a decrease in neuronal activity at ED1 followed by a further decrease in neuronal firing 

rates, thereby exhibiting neurophysiological sensitization. There were some units for all 

doses (0.6, 2.5 and 10.0mg/kg) that did not respond following initial MPH exposure but 

did elicit an increase in activity at ED10 re-challenge. Therefore, these CN units 

exhibited neurophysiological sensitization. Some CN units responded to initial MPH 

exposure at ED1 but were nonresponsive at ED10 re-challenge. These CN units were 

classified as expressing neurophysiological tolerance. Based on these experiments it is 

clear that there are different responses occurring at different days and across different 

doses. Therefore, as hypothesized we further separated the animals based on their 

behavioral response and compared the CN neuronal activity. First, however, I will 

attempt to explain the reasons for why there are differing results across doses and days. 

Nikolaus et al. (2011) used in vivo experiments to measure the level of D2 

inhibitory receptors in the striatum of both baboons and rats and reported that there was 

a decrease in the amount of D2 receptors when animals were exposed to increasing 

doses of MPH. Also, chronic MPH exposure has been shown to increase the number of 

∆FosB positive MSN D1, ∆FosB is a transcription factor that is shown to increase in 
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concentration on the medium spiny neurons (MSN) that express D1 like Dopamine (DA) 

receptors (Nikolaus et al., 2011). The above reports could explain why the majority of 

CN units exhibited increased firing rates at ED10 when exposed to 10.0 mg/kg of MPH. 

For those animals administered 0.6 mg/kg of MPH, we found that the majority of CN 

units demonstrated either no change in activity or a decrease in neuronal activity, which 

contradicts what was found in previous studies.  This type of activity may result from 

more D2 receptor availability, which would mediate inhibition. 

 The phenomenon of sensitization can be examined by looking at gene 

expression and neuropeptides levels  (Alburges et al., 2011; Brandon and Steiner, 2003; 

Nikolaus et al., 2011; Yano and Steiner, 2005).  The differential behavioral and neuronal 

responses following MPH exposure that we observed in this study may be explained by 

two possible mechanisms. One of these possible mechanisms is that chronic MPH 

ultimately increases the expression of ∆FosB leading to sensitization. The striatum is 

believed to be involved in psychostimulant induced gene regulation due to 

overstimulation of DA receptors (Yano and Steiner 2005). It has been demonstrated in 

some animals that chronic exposure to psychostimulants results in an increase in the 

density of dendrite spines in MSNs that express D1 DA receptors (Kim et al., 2009) as 

well as the transcription factor ∆FosB (Robison and Nestler, 2011).  Psychostimulant 

induced overexpression of ∆FosB has been linked to the exhibition of a sensitized state 

in animal models (Kim et al., 2009).It has also been shown that repetitive exposure to 

psychostimulants results in super sensitivity of D1-like DA receptors in the nucleus 

accumbens (NAc), which leads to the expression of the sensitized response (Wolf, 2002; 

Wolf et al., 2003; 2004).  This increase in the upregulation of ∆FosB, which causes units 

to express a sensitized state, explains the results of our current study. We found that 

when animals were exposed to either 2.5 or 10.0 mg/kg of MPH, the majority of CN 

neuronal units showed a greater increase in firing rates and therefore exhibit 
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neurophysiological sensitization. ∆FosB is generated by alternative splicing and lacks 

the two degron domains present in the full-length protein (Kelz et al., 1999). Without 

these two domains, previous studies have shown there is a four-fold increase in protein 

stability (Robinson and Nestler, 2011). In addition, using both in vitro and in vivo 

methodologies, studies have demonstrated that ∆FosB is phosphorylated, which further 

stabilizes the protein by approximately ten-fold (Kelz et al., 1999). This intrinsic protein 

stability provides a molecular mechanism by which psychostimulant changes in gene 

expression can persist long after the administration of MPH is ceased (Robinson and 

Nestler 2011). Another possible mechanism to explain the results of this study is that the 

alterations in the neuronal activity that we observed may be due to the structural 

plasticity of the neurophil (soma and dendrite spine morphology) in the brain reward 

circuitry as a result of repetitive MPH exposure (Dietz et al., 2009; Robinson and Kolb, 

2004; Russo et al., 2010). Increased activation of D1-like DA receptors and increases in 

neurophil density may also result in neurophysiological sensitization. Further studies are 

needed to be performed to further dissect which mechanisms may be involved in MPH 

modulation of behavioral responses. 

Previously, it has been shown that overexpression of cAMP- responsive element 

binding protein (CREB) occurs both in the D1 and D2-like DA receptors and decreases 

the rewarding effects of psychostimulants, thereby causing neurophysiological tolerance 

(Robinson and Nestler, 2011). Activation of D2-like DA receptors and decreases in 

neurophil density result in attenuated MPH-mediated effects that can be explained as 

neurophysiological tolerance. Moreover, Madsen et al. (2012) reported that mice 

deficient in striatal CREB1, a transcription factor that is known to initiate downstream 

genes and is specific to MSNs of the dorsal striatum and CREB-binding protein (CBP)-, 

created a heightened sensitivity to psychostimulants by causing a prolonged to them.  
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Comparison of CN neuronal activity in animals exhibiting behavioral sensitization 

to those expressing behavioral tolerance after chronic MPH exposure 

The CN neuronal responses recorded following MPH exposure were evaluated 

based on the animals’ behavioral responses to chronic MPH administration. Animals 

were then classified based on their behavioral response and grouped as either 

behaviorally sensitized or behaviorally tolerant. Finally, their neuronal activity was 

evaluated based on their separate behavioral responses.  First, we applied statistical 

analyses to CN neuronal activities recorded from animals exhibiting behavioral 

sensitization and those exhibiting behavioral tolerance to determine if a significant 

difference was found in their responses to acute and chronic MPH .These statistical 

analyses were also performed to compare groups that were acutely and chronically 

exposed to MPH. 

In the group of animals exposed to 0.6 mg/kg of MPH, there were no significant 

differences in the neuronal responses for those exhibiting behavioral sensitization 

compared to those exhibiting behavioral tolerance. Furthermore, when investigating 

neuronal responses to better understand behavioral responses, no significant 

correlations were observed. This is explained by the fact that the CN is a motor circuit, 

and 0.6 mg/kg of MPH is considered a low dose that does not modify the motor 

responses; therefore, this response was expected.  

Significant differences were found in CN neuronal populations exposed to 2.5 

mg/kg of MPH when results were separated based on the animals’ behavioral response 

of either sensitization or tolerance. The CN neuronal responses to acute 2.5 mg/kg MPH 

exposure in animals exhibiting behavioral sensitization showed a combination of 

increases and decreases in neuronal activity, whereas the majority of those animals that 

exhibited behavioral tolerance showed an increase in their neuronal responses. This 

may be explained by the fact that the tolerant animals showed a heightened behavioral 
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response (Table 3C, Fig. 5C) to the initial (acute) drug exposure compared to sensitized 

animals (Table 3B, Fig. 5B).  This same correlation phenomenon was seen when 

animals were re-challenged with 2.5 mg/kg MPH at day 10 after the initial administration 

of MPH had ceased. The behaviorally sensitized animals that were re-challenged with 

MPH exhibited more CN units that increased their firing rates, resulting in increased 

behavioral responses (Table 3B, Fig. 5B).The behaviorally tolerant animals showed a 

significant decrease in their baseline firing rate coupled with a mixture of neuronal 

response types (Table 3C, Fig. 5C).  

The CN neuronal responses to 10.0 mg/kg MPH were also found to be 

statistically different when separated based on the animals’ behavioral responses of 

sensitization or tolerance. When comparing the CN neuronal activity to the respective 

behavioral responses, similar results were observed as those seen when animals were 

administered the 2.5 mg/kg MPH dose. The CN neuronal responses to acute 10.0 mg/kg 

MPH, from animals exhibiting behavioral sensitization, exhibited a combination of 

increases and decreases, whereas the neuronal responses from the majority of those 

exhibiting behavioral tolerance were increased. This could be because the tolerant 

animals showed a heightened behavioral response (Table 4C, Fig. 7C) to the initial 

(acute) drug exposure compared to the sensitized animals (Table 4B, Fig. 7B), similar to 

what was observed at the lower dose of 2.5 mg/kg of MPH.  This same correlation 

phenomenon was observed when animals were re-challenged at ED10 with 10.0 mg/kg 

MPH, as the behaviorally sensitized animals expressed more units that increased their 

firing rates, resulting in increased behavioral responses (Table 3B, Fig. 7B).  The 

behaviorally tolerant animals showed a significant decrease in their baseline firing rates 

and a mixture of neuronal responses (Table 3C, Fig. 7C), which, again, is similar to what 

was observed when the animals received a lower dose of MPH.  
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 In conclusion, experiments in which both neuronal and behavioral responses 

were examined using an MPH dose response protocol, it was found that MPH can elicit 

different locomotor and neuronal responses to acute and chronic MPH exposures. Also, 

as hypothesized, we observed that there is, in fact, a statistically significant difference in 

the firing patterns of CN neurons when animals are grouped based on their behavioral 

responses to higher doses (2.5 and 10.0 mg/kg) of MPH. Moreover, correlations were 

observed when we compared the neuronal responses to the behavioral responses. 

Understanding the differences in animals’ reactions to chronic exposure of MPH, in 

terms of both the behavioral and neuronal aspects, following chronic MPH exposure is 

imperative in future research for analyzing the mechanism by which MPH acts on 

neuronal events based on behavioral responses. MPH acts predominately on the DA 

receptors, and activation of D1 and D2 DA receptors is known to elicit differing 

responses, further studies using specific DA antagonists are needed to investigate their 

specific roles in the behavioral and neuronal sensitization/tolerance responses. 
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