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STIMULATION THROUGH TLR4 INCREASES FVIII INHIBITOR FORMATION IN A 

MOUSE MODEL OF HEMOPHILIA A 

By: 

Claire Katherine Holley  

Supervisory Professor: Keri C. Smith, Ph.D. 

Hemophilia A is a clotting disorder caused by functional factor VIII (FVIII) deficiency. 

About 25% of patients treated with therapeutic recombinant FVIII develop antibodies 

(inhibitors) that render subsequent FVIII treatments ineffective. The immune mechanisms of 

inhibitor formation are not entirely understood, but circumstantial evidence indicates a role for 

increased inflammatory response, possibly via stimulation of Toll-like receptors (TLRs), at the 

time of FVIII immunization. I hypothesized that stimulation through TLR4 in conjunction with 

FVIII treatments would increase the formation of FVIII inhibitors. To test this hypothesis, FVIII 

K.O. mice were injected with recombinant human FVIII with or without concomitant doses of 

TLR4 agonist (lipopoysaccharide; LPS). The addition of LPS combined with FVIII significantly 

increased the rate and the production of anti-FVIII IgG antibodies and neutralizing FVIII 

inhibitors. In the spleen, repeated in vivo TLR4 stimulation with LPS increased the relative 

percentage of macrophages and dendritic cells (DCs) over the course of 4 injections. However, 

repeated in vivo FVIII stimulation significantly increased the density of TLR4 expressed on the 

surface of all spleen antigen presenting cells (APCs). Culture of splenocytes isolated from mice 

revealed that the combined stimulation of LPS and FVIII also synergistically increased early 

secretion of the inflammatory cytokines IL-6, TNF-α, and IL-10, which was not maintained 

throughout the course of the repeated injections. While cytokine secretion was relatively 

unchanged in response to FVIII re-stimulation in culture, LPS re-stimulation in culture induced 

increased and prolonged inflammatory cytokine secretion. Re-stimulation with both LPS and 

FVIII induced cytokine secretion similar to LPS stimulation alone. Interestingly, long term 

treatment of mice with LPS alone resulted in splenocytes that showed reduced response to FVIII 

in culture. Together these results indicated that creating a pro-inflammatory environment 

through the combined stimulation of chronic, low-dose LPS and FVIII changed not only the 

populations but also the repertoire of APCs in the spleen, triggering the increased production of 

FVIII inhibitors. These results suggested an anti-inflammatory regimen should be instituted for 

all hemophilia A patients to reduce or delay the formation of FVIII inhibitors during 

replacement therapy. 
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INTRODUCTION 

Hemophilia is a blood disorder characterized by the inability to properly clot due to the lack 

of an essential clotting protein or reduced activity of that protein. To understand this disorder, its 

complications, and how to treat patients, it is important to first understand the process of 

coagulation.   

1. Coagulation 

Coagulation, from Latin coagulare ‘to cause to curdle[1],’ is the process in which enzymatic 

activation of a series of proteins initiates the conversion of fibrinogen into fibrin to facilitate 

healing of a damaged blood vessel. Coagulation is a highly regulated[2] part of hemostasis, from 

the Greek haima 'blood' and stasis ‘standing still[1],’ the complex process of wound healing in 

which blood remains in its fluid state within the vascular system but takes on a semi-solid state at 

the site of a breach in a blood vessel.  

In the “classic” view of the coagulation cascade, there are two major pathways that initiate 

formation of fibrin. As reviewed in Roberts et.al[3] (Fig.1), the intrinsic (cell-contact) pathway is 

controlled by vitamin K-dependent protein cofactors, namely factor XII (FXII), factor XI (FXI), 

factor IX (FIX), and factor VIII (FVIII), produced in the liver with circulation in the blood. 

Exposure to prekallikrein, high-molecular-weight kininogen, and collagen on the surface of 

platelets activates FXII (FXIIa) and initiates the clotting cascade. Each successive factor in the 

cascade is similarly activated by the previously activated factor. It is important to note that FVIII 

and factor V (FV) are activated by residual thrombin present in the blood and act as cofactors in 

the activation of FIX and factor X (FX) respectively. The FVIIIa/FIXa complex catalyzes the 

activation of FX in the presence of FVa and initiates the formation of the tenase (FVa/FXa) 

complex. The extrinsic (trauma) pathway, on the other hand, is initiated by factors that are not 

normally circulating in the blood, namely tissue factor (TF, FIII) which is located on the surface 

of endothelial cells. Once TF is exposed to the blood by tissue injury, factor VII (FVII) is 

activated, binds to TF to form a complex that activates FX, and leads to formation of the tenase 

complex. The tenase complex is common to both the intrinsic and extrinsic clotting pathways. 

This complex is stabilized by von Willebrand factor (VWF) on activated platelets and is 

responsible for catalyzing the conversion of prothrombin (Factor II, FII) into thrombin, which 

catalyzes the transition of fibrinogen (Factor I, FI) into fibrin. Factor XIII (FXIII), which is also 

activated by thrombin, is responsible for fibrin cross-linking in the finished clot.  
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Fig.1: Intrinsic and extrinsic pathways as defined in the classic clotting cascade 

The extrinsic cascade is triggered by trauma and utilizes TF while the intrinsic clotting cascade is 
triggered by damaged cell surfaces and utilizes FVIII. Both cascades activate the tenase complex 
that catalyzes the formation of thrombin. The cascade is controlled by negative regulators such as 
Protein C. Adapted with permission from Anesthesiology[3] and Molecular Pathology[4]. 

However, this classic view of coagulation is really a simplified view of the complex interplay 

and feedback that occurs during the coagulation process. As reviewed by Roberts et.al.[3] and Lee 

et.al.[5], the intrinsic and extrinsic pathways are inter-dependent because a deficiency in one of the 

essential clotting factors such as FVIII, FIX, or FVII is not completely compensated for by the 

other intact pathway of the clotting cascade. Therefore, the current model of clotting more closely 

resembles a cross-over positive-feedback loop (Fig.2). The process begins with FVIIa binding to 

TF, anchored to the activated phospholipid (PL) membrane of a TF-bearing endothelial cell, 

which can then activate FX and FIX. FXa, remaining near the TF-bearing endothelial cells, 

activates FV and becomes part of the tenase complex, catalyzing the formation of small amounts 

of thrombin. This initial production of thrombin, in combination with residual levels of thrombin 

in the blood, will catalyze the conversion of fibrinogen to fibrin to form an initial clot, activate 

platelets and essential intrinsic clotting factors (FVIII, FV, FXI), and separate FVIII from VWF 
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to form FVIIIa. FVIIIa will then act as an enzyme cofactor to increase formation of the tenase 

complex five-fold, producing substantially more thrombin for final clot formation. Once a clot is 

formed, FVIIIa and FVa are inactivated by FIXa and activated protein C, which leads to an 

overall down-regulation of the clotting cascade and restoration of hemostasis (Fig.1). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.2: Currently accepted model of interdependent clotting pathways 
Trauma triggers the extrinsic cascade, activating the tenase complex and creating a usable pool of 
thrombin. Thrombin activates intrinsic clotting factors and platelets, increasing tenase activating 
and thrombin formation. The cascades activate each other in order to form clot. Adapted with 
permission from Anesthesiology[3]. 
 

2. Hemophilia 

Hemophilia, from the Greek haima 'blood' and philia 'love'[1], is a general term that 

encompasses three coagulation disorders (hemophilia A, B, and C) caused by the lack of a 

functional form of an essential clotting factor protein. Patients with hemophilia A produce little or 

no functional FVIII. The prevalence of “classic” hemophilia is one in 5,000-10,000 male births[6, 

7]. Patients with hemophilia B produce little or no functional FIX. Hemophilia B is rare in that its 

prevalence is one in 25,000-40,000 male births[8, 9]. Patients with hemophilia C produce little or 

no functional FXI. It is the rarest and least severe form of hemophilia with a prevalence of only 

one in 100,000 individuals, usually individuals of Ashkenazi Jewish descent[9]. 

Hemophilia A is further classified by how the disease first manifests: congenital, due to a 

mutation in the FVIII gene on the X chromosome; or acquired, due to spontaneous production of 
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anti-FVIII antibodies. The majority of hemophilia A patients are congenital and have 

complications that manifest at birth or in early childhood. Acquired hemophilia A, on the other 

hand, affects only one in 1,000,000 persons, most of whom are adults over the age of 50 with no 

previous personal or family history of bleeding disorders or other underlying medical conditions.  

In some patients, acquired hemophilia has been associated with postpartum bleeding as well as 

autoimmune, dermatologic, infectious, or oncologic diseases; however the cause in these cases 

remains unclear and therefore patient prognosis and treatment are variable[10]. 

3. Clinical Diagnosis of Hemophilia A 

There are two routine clinical tests used to identify a clotting disorder, the prothrombin time 

(PT) and the partial thromboplastin time (PTT, aPTT). The PT test evaluates the extrinsic 

(trauma) coagulation pathway by measuring the functionality of FVII, FV, FX, prothrombin, and 

fibrinogen (Fig.3A). Intrinsic coagulation cascade proteins, thromboplastin, and calcium (Ca2+) 

are added to citrated patient plasma. Clotting time is measured; delayed clotting indicates a 

problem with one of the extrinsic clotting factors. Similarly, the PTT (or aPTT) test evaluates the 

intrinsic (cell contact) coagulation pathway by measuring the functionality of FVIII, FXII, FXI, 

FIX, FX, prothrombin, and fibrinogen (Fig.3B). Extrinsic coagulation cascade proteins, PL, 

kaolin, and Ca2+ are added to citrated patient plasma. Clotting time is measured; delayed clotting 

indicates a deficiency in one of the intrinsic clotting factors[5, 11]. Patients with a normal PT but a 

prolonged aPTT are diagnosed with hemophilia[12]. 

 

(A) PROTHROMBIN TIME TEST               (B) PARTIALTHROMBOPLASTIN TIME TEST 

 

 

 

 

 

 

 

 

  

Fig.3: Clinical assays for identifying clotting disorders 
(A) Prothrombin Time Test identifies problems with the extrinsic clotting cascade and (B) Partial 
Thromboplastin Time Test identifies problems with the intrinsic clotting cascade. Adapted with 
permission from the McGill Virtual Physiology lab[11] 
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Hemophilia A severity is classified by the amount of functional FVIII present in the blood, 

which is directly related to the time required for clot formation during the aPTT assay. Severity is 

divided into three classes: severe, moderate, and mild. Patients are “severe” if they have less than 

1% of the normal functional levels of FVIII, “moderate” if they have 1-5% of the normal 

functional levels of FVIII, and “mild” if they have less than 5-25% of the normal functional 

levels of FVIII[12-14]. 

  

4. Factor VIII Gene Structure and Protein Formation 

The F8 gene, first sequenced in 1984[15], is approximately 186 kbp[16] long and located on the 

X chromosome (Xq28). The gene, as reviewed in Lee et.al.[5] and White[17], encodes a 300 kDa 

glycoprotein that is synthesized in the liver and, when released into the bloodstream, acts as a 

pro-cofactor for FIX enhancing its activity by 200,000 fold[18]. In hepatocytes, the gene is 

transcribed into pre-mRNA that undergoes cleavage and splicing until the mature mRNA contains 

the essential 26 exons. The mRNA is translated into a 2332 amino acid (aa)-long polypeptide 

chain which can be divided into 6 domains (A1, A2, B, A3, C1, and C2) and 3 linker regions (a1, 

a2, and a3 acidic residues) based on function (Fig.4)[18]. 

 

 

 
   

 
 
 
 
 
 
 

Fig.4: FVIII gene and protein organization 
(A) The 200 kbp FVIII gene is transcribed and translated into (B) mRNA containing 26 essential 
exons which are cleaved together to form (C) a 300 kDa FVIII protein. Adapted with permission 
from Molecular Pathology[4] and Br J Haematol[14]. 
 

FVIII is a cofactor for FIX; the activation of FIX is performed by the A2+a2 protease 

domain. The other protease domain (A1+a1), in the presence of FIXa, is responsible for 

activating FX. The B domain undergoes multiple and complex post-translational glycosylations 

but does not contain binding sites for any other essential clotting proteins and is later cleaved out 

of the final active FVIII protein complex. Similar to the B domain, the a3 acidic domain is later 

A 

B 

C 
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cleaved out of the final active FVIII protein complex. The C1 and C2 domains are responsible for 

binding and stabilizing the FVIII protein. Both of these domains bind VWF, stabilizing the FVIII 

protein structure in the blood until it is needed for clotting. The C2 domain also binds PL and 

lipoprotein-receptor related proteins (LRP) which stabilize the protein structure on the surface of 

platelets to enable FVIII to properly activate FIX and FX (summarized in Table 1). 

 

Domain Amino Acids Exons Function Binding Sites 
A1 1-336 1-6 FX protease 

domain 
FXa, FIXa, activated protein C 

a1 acidic residues 337-372 7-8 FX, FXa, thrombin 
A2 373-710 9-13 FIX protease 

domain 
FIXa, LRP, HSPGs, activated 

Protein C 
A2 acidic residues 711-740 FXa, thrombin 

B 741-1648 14   
A3 acidic residues 1649-1689 15-19 EGF-like 

domain 
thrombin, VWF, FXa 

A3 1690-2019 FIXa, LRP 
C1 2020-2172 20-22 Binding 

domains 
VWF 

C2 2173-2332 23-26 VWF,PL, LRP, FXa 
Table 1: Components and functions of the FVIII protein domains 

 

5. Factor VIII Post-Translational Processing 

The nascent polypeptide chain is translocated from the cytosol into the ER lumen of 

hepatocytes, chaperoned by binding immunoglobulin protein (BIP), and undergoes signal peptide 

cleavage and N-glycosylation. BIP is released after adenosine tri-phosphate (ATP) hydrolysis to 

allow the polypeptide chain to begin disulfide bond formation during the initial stages of protein 

folding in the presence of Ca2+. This initial FVIII structure is exported to the Golgi where it 

undergoes complex N-glycosylation, S/T-glycosylation, and tyrosine sulfation. The protein is 

cleaved into two chains: the heavy chain (200 kDa) consisting of the A1, a1, A2, a2, and part of 

the B domains; and the light chain (80 kDa) consisting of the a3, A3, C1, and C2 domains. These 

two chains, coordinated and stabilized by Ca2+, form the final FVIII structure that is secreted into 

the blood.  

Once in the blood, the inactive form of FVIII is bound and stabilized by VWF so that the 

half-life of the protein is approximately 8-12 hours[3, 19]. Thrombin activates FVIII by initiating 

cleavage of the remaining portion of the B domain and the a3 acidic domain. The a1 acidic 

domain and the A2 domain are also cleaved, separating the protease domains. The final, activated 

structure is a 170 kDa heterotrimer, coordinated by Ca2+. If not bound by VWF, FVIIIa is quickly 

degraded when activated protein C cleaves the A1 domain and A2 domains, destroying the 

functional protease domains and essential structure of FVIIIa (reviewed in Table 2).   
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A1 
                      A2 
 
     A3 
 
C1 
 
     C2 

Phospholipid membrane 

B 

 

Protein Size Modifications Result Location 
Whole 
protein 

300 kDa Transcription/translation of gene 
Translocation into ER 
N-glycosylation, disulfide bonds 

Formation Hepatocyte 

Hetero-
dimer 

H chain (200 kDa) 
L chain (80 kDa) 

Complex N, S/T glycosylation,  
Tyr sulfation in Golgi 
Cleavage of B domain 
Stabilization by VWF 

Secretion 
(FVIII)  

Hepatocyte 
 

 
Blood 

Hetero-
trimer 

A1 chain (50 kDa) 
A2 chain (43 kDa) 
A3,C1,C2 chain  

(73 kDa) 

Cleavage by thrombin  
Removal of B, a3 acidic domains  
Separation of A1, A2 domains 

Activation 
(FVIIIa) 

Blood 

Degraded particles of FVIII Cleavage of A2, a1 acidic domains 
by activated protein C, FIXa 

Inactivation Blood 

Table 2: Cleavages and post-translational modifications of FVIII protein 

 

The topology of FVIIIa is crucial for its proper function. The protease domains are oriented 

facing out to allow access to the clotting factors and thrombin. The binding domains are oriented 

to face the PL surface of the platelets to which they will bind to stabilize the protein[12, 20, 21] 

(Figs.5-6). 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.5: FVIII protein structure 
(A) Spatial organization of FVIII protein domains and (B) 3-D model representing the topology 
of FVIII protein. Adapted with permission from Haemophilia[21] and N Eng J Med, Copyright 
Massachusetts Medical Society [12]. 
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Fig.6: FVIII protein interactions during coagulation 

FVIII is activated by thrombin before binding to PL on the surface of platelets where it activates 
FIX and FX. Once coagulation is complete, FVIII is deactivated and degraded by activated 
protein C. 

 

6. Factor VIII Mutations 

FVIII gene mutations lead to incorrect protein transcription, translation, and post-translational 

processing. The type and location of the mutation affects whether the protein will be produced 

and if it will be functional. As described by Bowen[4], FVIII gene mutations include missense and 

nonsense point mutations, deletions, insertions, and chromosomal rearrangements/inversions.  

Point mutations, which may or may not change the encoded amino acid, are the most 

common mutations, affecting 90% of patients and resulting in variable hemophilia severity. Some 

missense point mutations, where the transcribed amino acid is unchanged or changed to an amino 

acid with similar properties, have little to no effect on the final protein structure leading to 

production of relatively normal FVIII proteins and only moderate symptoms. Other missense 

mutations can create alternative mRNA splice sites or, where the encoded amino acid has 

completely different properties from the original, alter the final protein structure. These missense 

mutations lead to the production of non-functional or misfolded FVIII proteins and mild-severe 

complications for the patient. Nonsense point mutations, which lead to the formation of a 

premature stop codon, can cause exon skipping, resulting in a truncated and non-functional 

protein and severe patient complications.  

Deletions, the removal of a piece of the FVIII gene, the second most common gene defect, 

are found in 5-10% of patients. Deletions can range in size from whole gene deletions to micro-

deletions and do not appear to cluster to any specific area of the gene. Deletions often also cause 

a frameshift which leads to non-functional protein and severe patient symptoms. Similar to 

FVIIIa 

FX 
FIX 

A1 A2 
  A3 

C1  C2 

VWF 

PLASMA 
MEMBRANE 

thrombin 

A1  A2 
 A3      B 
 
C1   C2 

FVIII 
 
  A3        
 
C1   C2 

Activated 
Protein C 

A1 A2 
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deletions, insertions into the FVIII gene are also very detrimental to functional protein formation 

by altering mRNA splice sites and/or introducing frameshifts. 

Rearrangements (inversions) due to homologous recombination also lead to severe 

hemophilia and are usually the rarest of the FVIII gene mutations. The only exception is the 

intron 22 inversion which is found in 40-50% of patients suffering from severe hemophilia A.  

Bowen[4] also discussed FVIII gene mutations that do not directly effect the transcription, 

translation, and post-translational processing of the FVIII protein but instead affect the secretion, 

stability, and interaction of the FVIII protein with other clotting factors. Missense mutations in 

certain arginine residues lead to increased intracellular accumulation, decreased levels of 

circulating FVIII protein, and mild patient symptoms. Mutations in the FVIII binding and 

protease domains can prevent proper FVIII interaction with VWF, Ca2+, FIX, FX, or PL. Inability 

to interact with VWF or Ca2+ leads to reduced FVIII stability and shorter half-life in the blood[22]. 

At the same time, mutations that prevent proper Ca2+ binding and coordination will prevent proper 

FVIII interaction with FIX, FX, and PL, such that FVIII is no longer able to participate in the 

activation of downstream clotting factors. 

 

7. Pathology of Hemophilia A 

Clinical complications depend on a combination of disease severity and environmental 

factors. As reviewed by Hoyer[12] and Coppola[23], common complications include intramuscular 

bleeding, bleeding into the joints, hemarthrosis (deterioration of the joints due to bleeding), 

swelling, numbness, pain, difficulty with wound healing and inflammation/infection, and the 

formation of FVIII inhibitors (discussed later). Intramuscular bleeding and hemarthrosis, often 

caused by external trauma or surgery, are often the first indication of a bleeding episode due to 

the accumulation of blood in one of the ‘key’ joints, usually a knee or elbow. Swelling, pain, and 

numbness from pinched nerves is usually severe enough that there is a reluctance to use the 

affected joint leading to further joint damage, bone fusion, muscle atrophy below the joint, and 

eventually the need for joint replacement. Inflammation and infections can also lead to and 

exacerbate complications[24, 25], slowing down wound healing compared to people unaffected by 

this disease. Inflammation can be triggered by open or improperly-treated injuries, surgery, or 

already-present infections/immune conditions aggravated by a compromised immune system. 

Infections can be introduced by contaminated blood transfusions or therapeutic treatments. Viral 

infections such as human immunodeficiency virus or hepatitis virus were a major problem in the 

mid-1980’s. Due to the lack of knowledge about these viruses and proper screening technology, 

the use of clotting factor concentrates isolated from contaminated human serum made 
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hemophiliacs more likely to contract these viruses; by 1987, 78% of patients receiving FVIII 

replacement therapy were infected. Treatment has since become much safer with the introduction 

of recombinant and porcine clotting factors, heat-treated clotting concentrates, and better donor 

screening techniques for those patients who are still being treated with human FVIII[26].  

Non-clinical factors include the age of the patient, frequency of replacement therapies, type 

and availability of clotting factor concentrates, and the cost of treatments[23, 27]. Hemophilia A is a 

chronic, incurable disease with a cost of around $80,000-$150,000 a year[28], depending on the 

patient’s FVIII dose regimen and the presence of inhibitors. Costs can often be too much for a 

patient to handle even with medical insurance. Limited availability of the clotting factor 

concentrates is also a barrier to the diffusion of prophylaxis, especially in developing countries[23].  

8. Current Treatments 

The current treatment for hemophilia A is the intravenous application of FVIII, most often a 

recombinant form of the protein that was first synthesized and used in 1987[17]. Recombinant 

human FVIII is derived through transfection of non-human mammalian cell lines capable of 

performing all of the complex posttranslational modifications required for proper protein 

function, either Chinese hamster ovary or baby hamster kidney[19]. Patients can also be treated 

with porcine or human-derived FVIII. The dosage and frequency of FVIII applications is 

individualized for each patient based upon weight, age, frequency of bleeds, type of replacement 

FVIII, and the physician’s choice of treatment regimen[23]. Patients with congenital hemophilia 

are usually diagnosed as infants and placed on a prophylactic FVIII treatment regimen between 

the ages of 1-2 years or after the first joint bleed. This type of treatment is used to regularly 

replenish serum levels of FVIII to minimize bleeding and attempt to convert the severe 

hemophilia into a milder form with reduced clinical complications and increased quality of life[23, 

29]. Prophylactic treatments are much preferred to on-demand FVIII treatments and high dosage 

FVIII applications in cases of emergency bleeds, which have been associated with increased 

instances of anti-FVIII antibody formation[30].  

9. Factor VIII Inhibitors  

During FVIII replacement therapy, about 25-33% of patients with severe hemophilia develop 

neutralizing antibodies or “inhibitors” against FVIII [14]. Anti-FVIII antibodies are polyclonal IgG 

antibodies, usually IgG1, IgG2 and IgG4 subclasses, which target the functional and/or non-

functional domains of the FVIII protein, blocking its pro-coagulant activity and preventing 

activation of downstream clotting factors. These antibodies act by: (1) sterically hindering 
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epitopes required for FVIII interaction with other coagulation molecules, including VWF, FIXa, 

FX or PL; (2) destabilizing the FVIII protein so that it less effective at activating other clotting 

factors; or (3) degrading FVIII either by direct hydrolysis or through formation of immune 

complexes[31-34]. Therefore, the presence of FVIII inhibitors renders FVIII replacement therapy 

less effective. The level of inhibitors in a patient’s circulation is quantitated by the Nijmegen 

modification of the Bethesda assay (Fig.7)[35]. Inhibitor levels are reported in Bethesda Units 

(B.U.), in which one Bethesda unit is the amount of inhibitor required to reduce clotting by 50%. 

For this assay, the cut-off for inhibitor detection is ~0.6 B.U[13, 25, 35, 36].  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7: Nijmegen modified Bethesda assay for inhibitor detection 

Patient plasma (being tested) is mixed 50/50 with buffered normal plasma, incubated, and 
undergoes FVIII assay. The results are compared to those obtained from a 50/50 mixture of 
known FVIII-deficient plasma and buffered normal plasma. Adapted with permission from 
Thromb Haemost[35, 36]. 
 

10. FVIII Inhibitor Risk Factors 

The formation of anti-FVIII antibodies is determined by a delicate balance between genetic 

and environmental risk factors[25, 37](reviewed in Fig.8). Genetic risk factors include the type and 

location of the FVIII gene mutation, family history of inhibitor development, ethnicity, and the 

immuno-genotype of certain inflammatory cytokines. The type of FVIII gene mutation has the 

greatest influence on a patient’s risk for developing inhibitors.  Patients with large deletions, 

nonsense mutations, and chromosomal inversions have the highest incidence of inhibitor 

formation. This may be because the complete deficit of endogenous FVIII production prevents 

establishment of central tolerance to FVIII[24, 38, 39]. Replacement FVIII is seen as “foreign” 

protein by the immune system. Patients with smaller FVIII gene mutations, such as missense 
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mutations or small deletions, may produce the FVIII protein even if it is non-functional, thereby 

enabling central tolerance to the protein and lowering the risk of inhibitor formation during 

replacement therapy. Similarly, family history of inhibitor development also predisposes a patient 

to inhibitor formation[14, 24, 39]. Ethnicity/race is also a risk factor for inhibitor development. 

African-American patients are twice as likely to develop inhibitors as Caucasian patients[40]. The 

immuno-genotype of certain inflammatory cytokines is linked to the increased development of 

FVIII inhibitors. Patients with certain polymorphisms in the promoter regions of the IL-10, TNF-

α, and MHC II genes are more likely to develop inhibitors[41, 42] whereas patients with 

polymorphisms in the CTLA-4 gene are less likely to develop inhibitors[42, 43]. 

Non-genetic risk factors for the formation of FVIII inhibitors include the type, concentration, 

and frequency of therapeutic FVIII infusions, along with immunological influences/disorders that 

occur during treatment. Although no significant risk of increased inhibitor formation has yet been 

linked to the type of therapeutic FVIII product, whether it is human plasma-derived or 

recombinant, whole length or B-domain deleted, switching products during treatment carries a 

small risk of inhibitor formation[29]. There is come indication that viral infections can promote 

inhibitor development; increased inhibitor development has been found in patients with Hepatitis 

A, Hepatitis B, and HIV[26, 44]. The largest risk factors for developing inhibitors are the type and 

concentration of therapeutic treatments. Initiating FVIII treatments at an early age and in a 

prophylactic manner carries lower risks of inhibitor development, whereas large, on-demand 

infusions during severe bleeds and major surgery are associated with increased risk of inhibitor 

formation[25]. Although there are many factors that can influence the risk of inhibitor formation, 

there is no definite way to determine if and when a particular patient will begin producing FVIII 

inhibitors. 
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Fig.8: Risk Factors for the development of FVIII inhibitors 

Both genetic and environmental factors have been found to increase the risk of FVIII inhibitor 
development in hemophilia patients. Viewed together, these risk factors indicate that 
inflammation might also be driving the formation of inhibitors. Adapted with permission from 
Haemophilia[37] 
 

11. Current Treatments after FVIII Inhibitor Formation 

FVIII replacement therapy must be adjusted due to anti-FVIII antibodies. Patients with 

inhibitor titers of <5 B.U. can still receive replacement FVIII therapy, just at higher and more 

frequent doses to replenish FVIII levels sufficient to maintain hemostasis[14]. Patients with 

inhibitor titers of >5 B.U. must receive one of several bypass therapies which include the 

application of prothrombin complex concentrates or recombinant human FVIIa, both of which 

work through the extrinsic clotting pathway to activate the tenase complex without requiring 

FVIII. Patients with high inhibitor titers can also undergo immune tolerance induction (ITI), a 

course of treatment designed to eradicate existing FVIII inhibitors and induce FVIII-specific 

immune tolerance[14]. The various ITI protocols utilize regular applications of large doses of 

FVIII and immunosuppressive drugs over the course of several years. High doses of FVIII down-

regulate the FVIII adaptive immune response, specifically by inducing anergy and depleting the 

anti-FVIII antibody secreting plasma cells[45]. If ITI treatment is effective, which occurs in 

approximately 80% of the cases, the patient can restart normal FVIII treatments[45]. 
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12. Role of Inflammation in the Formation of FVIII Inhibitors 

Research has indicated that there might be a relationship between inhibitor production and 

inflammation[14]. The development of inhibitors is caused by highly regulated interactions 

between different cells of the innate and adaptive immune systems[25]. Since recombinant human 

FVIII is immunogenic, repeated therapeutic administration of FVIII can be identified as a foreign 

protein by the immune system triggering a FVIII-specific immune response. During this immune 

response, the FVIII binds to receptors on the surface of APCs, mainly macrophages and DCs. The 

elimination of macrophages and CD11c+/CD8a- dendritic cells abrogated the onset of anti-FVIII 

immune response[33, 44, 46, 47]. APCs then migrate to the spleen where they co-localize with T-cells. 

Removal of the spleen has been shown to prevent inhibitor formation and eradicate any inhibitors 

already present[45]. APCs will internalize and degrade FVIII for presentation on MHC II while 

also secreting inflammatory cytokines (such as IL-6, IL-12, and TNF-α) and up-regulating co-

stimulatory molecules (such as CD40, CD80, and CD86). Previous research has indicated that 

polymorphisms in the TNF-α and IL-10 genes increase a patient’s likelihood to develop 

inhibitors[42, 43]. APCs bind the T-cell receptor (TCR) via MHC II and induce T-cell activation 

through co-stimulatory molecules on T-cells. Lack of CD4+ T-cell stimulation due to loss of 

CD40L, CD80, CD86 or CTLA-4 signaling impairs cellular cross-talk between APCs and CD4+ 

T-cells, preventing initial inhibitor formation and removing any inhibitors already present in the 

blood, as seen from studies in patients infected with AIDS with low CD4+ T-cell counts[33, 48]. 

The activated helper T-cells will then bind the B-cell receptor (BCR) to activate B-cells, 

stimulating production of FVIII-specific plasma cells that produce large amounts of anti-FVIII 

antibodies[33]. B-cell depletion, utilizing anti-CD20 therapy, significantly decreases FVIII 

inhibitor titers in a mouse model[46]. Similarly, re-stimulation using high doses of FVIII inhibits 

FVIII-specific memory B-cells, preventing further differentiation of FVIII plasma cells and 

decreasing the production of anti-FVIII antibodies[45].  

The stimuli that initially trigger and drive the FVIII immune response are not well defined. 

Toll-like receptors (TLRs) might play a role in triggering the FVIII immune response because 

immune cells that express TLR and cytokines secreted after TLR stimulation are key components 

in the FVIII immune response[14]. Previous data from the Smith lab utilizing cytokine multiplex 

analysis and statistical algorithms to model in silico the anti-FVIII immune response (not 

published) suggested that TLR4 might be up-regulated early during the FVIII response in mice. 

To test this prediction, I studied the role of TLR4 stimulation on the formation of FVIII inhibitors 

in a mouse model of hemophilia A.  
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TOLL-LIKE RECEPTORS (TLRs) 

It has been suggested that inflammation triggers the FVIII immune response, leading to the 

production of FVIII inhibitors. Previous experiments in the Smith lab identified Toll-like receptor 

2 (TLR2) and TLR4 as two potential receptors that, when stimulated in conjunction to FVIII, will 

drive this inflammatory response. In order to understand how inflammation is affecting the 

formation of inhibitors, it is important to understand how TLRs trigger the inflammatory response 

and the effect this signaling has on the interaction between the innate and adaptive immune 

responses.  

 

1. History of Toll-Like Receptors 

TLRs are evolutionarily conserved homologs of the Toll protein, a developmental protein 

first identified in Drosophila that also conveyed anti-fungal protection in adult flies[49]. Due to 

domain homology, TLRs are defined as members of a larger superfamily of proteins that includes 

the interleukin-1 receptor (IL-1R) and IL-18[50]. TLRs contain an extracellular binding domain 

consisting of a 31 amino acid (aa) N-flanking region, 19-25 leucine-rich-repeat (LRR) tandem 

motifs that are directly involved in ligand binding, and a cysteine-rich terminal domain. Each 

LRR is 24-29 aa long and contains an xLxxLxLxx motif [50]. TLRs also contain in intracellular 

signaling domain that is homologous to the IL-1R signaling domain, called the Toll/Interleukin-1 

receptor (TIR) domain. These two domains are separated by a transmembrane domain. 

 

2. The Location of Toll-Like Receptors  

Ten human TLRs have been identified. TLR1, 2, 4, 5, and 6 are located in the plasma 

membrane and bind any bacterial, fungal, or other pathogenic proteins that come into contact with 

the TLR-expressing cells. TLR3, 7, 8, and 9 are located in the endosome and bind any nucleic 

acids, mainly viral, that is phagocytosed by the cell [51]. The location and function of TLR10 are 

not yet known. TLRs are expressed in varying degrees and combinations on both immune cells, 

including monocytes, macrophages, DCs, T-cells, and B-cells[52], and non-immune cells, 

including fibroblasts, endothelial cells, adipocytes, epithelial cells, and glial cells[50]. Mice and 

other animals have been shown to possess a greater number of TLRs (TLR11-13). 

 

3. The Function and Agonists of Toll-Like Receptors 

Toll-like receptors are type I integral membrane glycoprotein receptors that act as part of an 

early warning system for infection. They have been dubbed “adjuvant receptors” because they 

bind ligands that are potent adjuvants and trigger a vigorous innate immune response in the 
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attempt to clear bacterial or viral infections[50, 53]. This immune response will eventually lead to 

the induction of the adaptive immune response and the production of antibodies targeting those 

pathogens[52].  

As pattern recognition receptors (PRR), each of the ten TLRs are responsible for binding a 

subset of pathogen-associated molecular patterns (PAMPs) associated with immunological 

danger and stress. The majority of known TLR agonists is derived mainly from bacteria and 

viruses but can also include endogenous ligands (reviewed in Table 3); there are many more 

potential TLR agonists that have yet to be identified including those specific for TLR10. 

 

Toll-Like Receptor Agonist Agonist Origin 
TLR1 N-terminus triacylated lipopeptides 

Soluble factors 
Bacteria 

Neisseria bacteria 
TLR2 

(forms heterodimer 
with TLR1 or TLR6) 

Glycolipids 
Lipopeptides/lipoproteins 

Lipoteichoic acid 
Peptidoglycan 

Heat-shock protein (HSP)70 
Zymosan (β-glucan) 

Porins 

Bacteria 
Bacteria 

Gram- bacteria 
Gram- bacteria 

Host cells 
Fungi 

Neisseria bacteria 
TLR3 double-stranded RNA 

poly I:C (double stranded RNA analog) 
Viruses 

(synthetic) 
TLR4 

(forms homodimer) 
lipopolysaccharide (LPS) 

HSPs 
Fibrinogen 

Heparin sulfate fragments 
Hyaluronic acid fragments 

Nickel 
Opioid drugs 

Gram- bacteria 
Bacteria, host cells 

Host cells 
Host cells 
Host cells 

 
 

TLR5 Flagellin Bacteria 
TLR6 N-terminus diacylated lipopeptides 

Soluble tuberculosis factor 
Mycoplasma 

 
TLR7 Imidazoquinoline 

Loxoribine (a guanosine analogue) 
Bropirimine 

G/U-rich single-stranded RNA 

(synthetic) 
(synthetic) 
(synthetic) 

RNA viruses 
TLR8 Small synthetic compounds 

G/U-rich single-stranded RNA 
 

RNA viruses 
TLR9 CpG DNA 

CpG ODN (unmethylated CpG dinucleotides) 
Bacteria, DNA viruses 

(synthetic) 
TLR10 (unknown) ? 

Table 3: Known human toll-like receptors and their agonists 
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4. Toll-Like Receptor Pathways and Signaling 

As reviewed by Akira[50, 54], TLR signaling is triggered when the TLR LRR-horseshoe 

binding domains recognize and bind specific microbial PAMPs. After ligand binding, TLRs 

undergo a conformational change, sometimes after receptor dimerization, that is required for 

recruitment of downstream intracellular adaptor proteins including TIR-domain-containing 

adaptor protein (TIRAP), myeloid differentiation primary response gene 88 (MyD88), TIR-

domain-containing adapter-inducing interferon-β (TRIF),  TRIF-related adaptor protein (TRAM), 

and IL-1 receptor-associated kinase (IRAK).  These adaptor proteins, all of which contain TIR 

domains, propagate the signal via cascading phosphorylations. The signal eventually activates 

transcription factors including nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), 

interferon regulatory factor (IRF), and activator protein (AP-1). These factors are responsible for 

activating the transcription of inflammatory cytokines and co-stimulatory molecules (summarized 

in Fig.9). 

The majority of TLRs, excluding TLR3, utilize a MyD88-dependent pathway[50, 54]. Plasma 

membrane-bound TLRs activate NF-κB and trigger the transcription of inflammatory cytokines 

while TLRs located in the endosome-bound TLRs activate IRF7 and trigger the transcription of 

type 1 interferons. The resulting immune response is dependent upon the type of agonist, the TLR 

that is stimulated, and the cell types activated by TLR stimulation[55]. For example, TLR2 

signaling preferentially induces a helper T-cell type 2 (TH2) response[55], a humoral response 

characterized by the secretion of IL-4, IL-5, IL-6, IL-10, and IL-13 along with the proliferation 

and maturation of B-cells and the production of antibodies. This response is normally triggered 

by extracellular parasite infections and allergic responses, such as asthma[51]. TLR3 utilizes a 

MyD88-independent pathway to trigger the transcription of type 1 interferons. Instead of MyD88, 

this TLR utilizes TRIF and IRF3 to initiate an immune response.  

TLR4 is unique in that it can utilize either the MyD88-dependent and MyD88-independent 

pathways. It acts in cooperation with LPS-binding protein (LBP), which sequesters LPS from the 

plasma and presents it to the CD14 receptor[52], and MD-2, which associates with TLR4 and 

confers responsiveness to LPS TLR4 is capable of activating multiple transcription factors, 

leading to the transcription of a variety of inflammatory cytokines and the up-regulation of co-

stimulatory molecules[50, 52, 54], to elicit an immune response.  

For example, TLR4 preferentially, and especially in the presence of high doses of LPS,  

triggers a helper T-cell type 1 (TH1) response, a cell-mediated response characterized by the 

secretion of IFN-γ, TGF-β, IL-2, and IL-10 along with the increased killing capability of 

macrophages and cytotoxic (CD8+) T-cells. Along with the activation of lymphocytes and 
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macrophages, the up-regulation of co-stimulatory molecules enhances T-cell activation, 

expansion, and survival.  TH1 responses are normally triggered by intracellular infections like 

leishmaniasis and inflammatory diseases.  

However the pattern of TLR expression and the diversity of cytokines induced by TLR 

stimulation can trigger alternative immune responses depending on how and where the receptor 

has been activated[55]. TLR2 activation normally triggers a TH2 response; however, it also 

increases vascular permeability and neutrophil trafficking to facilitate pathogen clearance during 

inflammation; increases TF expression and fibrinolysis to promote coagulation and wound 

healing. Importantly, signaling through TLR2 can trigger the activation and proliferation of 

regulatory T-cells (Tregs)[51], which play a critical role in tolerance to self antigens and protection 

against autoimmunity[55]. Along those same lines, TLR4 activation normally triggers a TH1 

response; however, low doses of LPS usually found in low level, chronic infections can instead 

trigger a TH2 response[51]. 

 

 

 
Fig.9: Interlinking pathways of the toll-like receptor family 
Toll-like receptors bind PAMPs and trigger intracellular signaling, via MyD88-dependent and 
MyD88-independent pathways, to initiate the production of inflammatory cytokines and the up-
regulation of co-stimulatory molecules as part of the innate immune response during infection. 
Figure used with permission from Phil Trans R Soc B[50]. 
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5. Toll-Like Receptors and the Immune Response 

TLR stimulation drives the transition from the innate immune response to the adaptive 

immune response by (1) regulating the activation, proliferation, and survival of APCs and T-cells; 

(2) triggering the secretion of inflammatory cytokines; and (3) triggering the maturation of B-

cells into plasma cells. During the innate immune response, macrophages and DCs are the 

principle producers of inflammatory cytokines after TLR stimulation[53]. For example, LPS 

binding to TLR4 triggers an intracellular cascade that activates NF-κB transcription and secretion 

of inflammatory cytokines such as IL-6, TNF-α, and IL-12 and the up-regulation of CD40, CD80, 

CD86, and MHC II[56]. These cytokines, especially TNF-α and IL-12, enhance the activation, 

expansion, and survival of T-cells[57]. The production of these cytokines is important for up-

regulating the inflammatory response, but overproduction can lead to organ damage and septic 

shock[53]. Therefore, macrophages also secrete IL-10 which inhibits continued TNF-α and IL-12 

secretion. IL-10 is secreted by APCs and acts as a negative regulator to inhibit further 

inflammatory cytokine secretion, including TNF-α, IL-1β, and IL-12. While IL-10 also reduces 

APC differentiation, it does not affect T-cell development or activity[56]. Activated T-cells move 

to nearest draining lymph nodes and initiate the adaptive response by activating B-cells, turning 

them into antibody-secreting plasma cells[58]. Therefore, TLR stimulation during the FVIII 

immune response may contribute to the increased production of anti-FVIII antibodies (Fig.10). 

 

 
Fig.10: Model of enhanced development of FVIII inhibitors due to inflammation 
Inflammation activates APCs to secrete inflammatory cytokines and better present FVIII antigens 
to T-cells, activating them. Activated T-cells move to the spleen and activate B-cells, triggering 
them to secrete anti-FVIII antibodies. Figure used with permission from Keri C. Smith, Ph.D. 
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HYPOTHESIS 

Hemophilia patients receiving replacement FVIII therapy mount an immune response against 

exogenous FVIII, due to lack of central tolerance, and produce neutralizing anti-FVIII antibodies 

(inhibitors). Although the FVIII immune response is well documented, the stimulus that initially 

triggers and drives this response is not well defined. Previous research has indicated that this 

FVIII immune response might be enhanced by inflammation. It was suspected that toll-like 

receptors (TLRs) might play a role in triggering this response because immune cells that express 

TLR and cytokines that are secreted after TLR stimulation have been identified as key 

components in the FVIII immune response[14]. Therefore, I hypothesized that stimulation through 

TLR4 in conjunction with FVIII treatment triggers inflammation and drives the increased 

production of anti-FVIII antibodies. 

 

Specific Aims: 

(1) The production of anti-FVIII antibodies and FVIII inhibitors 

 

(2) Effects on antigen presenting cell (APC) populations in the spleen 

 

(3) Effects on inflammatory cytokine (IL-6, TNF-α, and IL-10) secretion 
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SCIENTIFIC METHODS AND REAGENTS 

1. Recombinant Human Factor VIII Preparation and Dialysis 

Lyophilized rhFVIII (Kogenate FS, Bayer Heathcare Pharmaceuticals, Tarrytown, NY) was 

serially reconstituted, 6-8 vials at a time, by addition of sterile water combined in a final volume 

of 1.5 mL. The rhFVIII was then dialyzed into solution (10mM Hepes and 150mM NaCl, pH 7.5) 

using a membrane with 10,000 MWCO (ThermoFisher Scientific, Waltham, MA). The 

concentration of the dialyzed rhFVIII was determined by Pierce MicroBCA Protein Assay Kit 

(ThermoFisher Scientific). 

2. Mice 

FVIII deficient, exon 16 deleted, mice backcrossed onto the C57BL/6 mouse strain were 

kindly provided by David Lillicrap (Queens University, Ontario, Canada). This mouse model is 

known for having a robust TH1 and TH2 inflammatory cytokine response and produces high 

antibody titers in response to FVIII replacement therapy[59]. A breeding colony was established 

and maintained in the Center for Laboratory Animal Medicine and Care facility at the University 

of Texas Health Science Center-Houston under an Animal Welfare Committee approved 

protocol. Mice were housed in IVC (Individually Ventilated Cages, Tecniplast, Buguggiate, VA, 

Italy) under pathogen-free conditions and fed sterile food and water ad libitum. 

3. Experimental Treatments 

Reagents used in the mouse treatments were rhFVIII, TLR2 agonist (synthetic Pam3CSK4 

“PAM”, InvivoGen, San Diego, CA), and/or TLR4 agonist (Lipopolysaccharides “LPS” from 

E.coli O111:B4, Sigma, St. Louis, MO). At 6-8 weeks, mice were given treatment intravenously 

based on Table 4. Mice received treatment once every seven days for up to four weeks. If mice 

received a dual treatment of TLR agonist and rhFVIII, the two compounds were dissolved 

together in 100 µL of PBS and given as a single intravenous dose via tail vein. 

 

Treatment Group Administered Treatment (100 µL total volume) 
1 (control) 100 uL of phosphate-buffered saline (PBS) 
2 2 µg/mouse (10 U) rhFVIII in PBS 
3 10 µg/mouse PAM in PBS 
4 10 µg/mouse LPS in PBS 
5 10 µg/mouse PAM + 2 µg/mouse rhFVIII in PBS 
6 10 µg/mouse LPS + 2 µg/mouse rhFVIII in PBS 

Table 4: Mouse experimental treatments 
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Mice were euthanized at indicated times and the blood and spleen were harvested. Blood 

samples were also collected at weekly intervals during the treatment process via tail snips. Blood 

samples were collected in 10% sodium citrate/blood volume (Becton-Dickinson, Franklin Lakes, 

NJ), centrifuged at 1400 rpm for 20 minutes, and stored at -80oC. Fresh splenocytes were isolated 

by mechanical dissociation, water lysis to remove red blood cells, and filtration through a µM 

screen. Splenocytes were counted on a hemocytometer using 0.4% Trypan Blue (Amresco, Solon, 

OH).  

4. Culture Media 

Splenocytes were cultured in RPMI-1640 media containing L-glutamine, HEPES, sodium 

pyruvate, and glucose (American Type Culture Collection, Manassas, VA) to which 50 µM 2-

Mercaptoethanol (Sigma), 1.6 mM L-glutamine, 100 U and 100 µg/mL penicillin/steptomycin (all 

from Gibco, Grand Island, NY) was also added. Peritoneal macrophages were cultured in DMEM 

media containing glucose, L-glutamine, and sodium pyruvate (Dulbecco’s Modification on 

Eagle’s Medium, Mediatech, Herndon, VA) to which 100 U and 100 µg/mL 

penicillin/streptomycin and 10 mM L-glutamine was also added. Fetal bovine serum (FBS, 

Atlanta Biologicals, Lawrenceville, GA) was heat-inactivated at 56oC for 30 minutes.  

5. Cell Cultures 

Splenocytes were cultured in RPMI-1640 media with 10% FBS at a concentration of 1x106   

cells/mL. Cultures were re-stimulated based on Table 5. Cultures were incubated for 24 hours at 

37oC with 5% CO2 saturation.  After incubation, culture supernatants were harvested and stored at 

-80oC.   

 

Treatment Group Administered Treatment (in 1mL cultures) 
1 (control) media only 
2 0.5 µg rhFVIII 
3 increasing concentrations of PAM (0-4.0 µg/mL) 
4 increasing concentrations of LPS (0-4.0 µg/mL) 
5 increasing concentrations of PAM+0.5 µg rhFVIII 
6 increasing concentrations of LPS+0.5 µg rhFVIII 

Table 5: Splenocyte culture re-stimulation treatments 

6. Cytokine Enzyme-Linked Immunosorbent Assay (ELISA) 

Cell culture supernatants were tested for IL-6, TNF-α, IL-10, and IL-12p70 using 

commercially available DuoSet ELISA detection kits (R&D, Minneapolis, MN). The plates were 

developed with either 3,3’,5,5’-tetramethylbenzidine (TMB) solution, included in the DuoSet kit, 
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or OPD solution containing 0.2 M Na2HPO4, 0.1 M citric acid, OPD (o-phenylenediamine, 

Sigma) and 0.05% H2O2 (Sigma). The substrate was allowed to react at room temperature in the 

dark for 20 minutes. The reaction was stopped by the addition of 2 N H2SO4 and absorbance was 

determined at 450 nm on a Bio-Rad 3550 Plate Reader (Bio-Rad, Hercules, CA). Unknowns were 

determined from a standard curve using GraphPad Prism5 (GraphPad Software, La Jolla, CA). 

7. Anti-FVIII IgG Enzyme-Linked Immunosorbent Assay (ELISA) 

Flat-bottom, medium-binding, Microlon 96-well ELISA plates (Greiner Bio-One, Monroe, 

NC) were coated with 1 µg/mL of rhFVIII dissolved in 100 mM NaHCO3, pH 9.5 and incubated 

at 37oC for 1 hour. The plate was then blocked with 5% skim milk dissolved in 0.05% PBS/T (1X 

PBS mixed with Tween-20 (Sigma) at 37oC for 1 hour. The mouse plasma samples were then 

serially diluted 1:2, starting at 24 dilution, in 1% skim milk dissolved in 0.05% PBS/T and 

incubated at 37oC for 2 hours. The plate was then incubated with a 1:1000 dilution of goat anti-

mouse-horseradish peroxidase (HRP) (Sigma) and incubated at 37oC for 1 hour. The HRP was 

detected by addition of OPD substrate solution and 0.05% H2O2 and allowed to react at room 

temperature in the dark for 20 minutes. The reaction was stopped by the addition of 2N H2SO4 

and absorbance was determined at 490 nm on a Bio-Rad 3550 Plate Reader. Results were 

expressed as the lowest dilution above the endpoint titer of 0.200 OD over the background.  

8. Flow Cytometry 

Antibodies used to mark cells for flow cytometry were anti-mouse CD11b-PerCP Cy5.5 

(clone M1/70), anti-mouse CD11c-PerCP Cy5.5 (clone N418), anti-mouse CD19-PerCP Cy5.5 

(clone eBio1D3), anti-mouse TLR2/CD282-FITC (clone 6C2, all from eBioscience), rat IgG2b κ-

FITC isotype control (eB149/10HS, all from eBioscience), monoclonal anti-rat TLR4-PE (clone 

267518, R&D Systems), and rat IgG2a-PE isotype control (clone eBR2a, eBioscience).  

Splenocytes were re-suspended in 1mL of RPMI-1640 media. The cells were blocked with 

anti-mouse CD16/32 Fc block (clone 93, eBioscience, San Diego, CA) for 30 minutes at 4oC. The 

cells were then washed 1 mL of flow buffer (1% FBS in PBS) and centrifuged at 2000 rpm for 5 

minutes. The splenocytes were then incubated for 30 minutes at 4oC with 0.5 ug/mL of the 

appropriate antibodies based on Table 6. The cells were washed, centrifuged, and re-suspended in 

1 mL of 50% fixation buffer (4% paraformaldehyde in PBS, Sigma) and flow buffer and stored at 

4oC. At the time of analysis, the cells were centrifuged and re-suspended in 500 µL of fresh flow 

buffer. The cells were analyzed on a BD FACSCalibur (Becton-Dickinson) using CellQuest Pro 

Software (Becton-Dickinson). 50,000 events per tube were collected. 
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Staining Group Flow Cytometry Staining Protocol 
1 CD11b-PerCP Cy5.5, TLR2-FITC, TLR4-PE 
2 CD11b-PerCP Cy5.5, TLR2-FITC isotype, TLR4-PE isotype 
3 CD11c-PerCP Cy5.5, TLR2-FITC, TLR4-PE 
4 CD11c-PerCP Cy5.5, TLR2-FITC isotype, TLR4-PE isotype 
5 CD19-PerCP Cy5.5, TLR2-FITC, TLR4-PE 
6 CD19-PerCP Cy5.5, TLR2-FITC isotype, TLR4-PE isotype 

Table 6: Flow cytometry antibody staining protocol 

9. Bethesda Assays 

FVIII:Coagulant inhibitor levels were measured using a modified Bethesda method[60]. Mouse 

plasma serially diluted in Owren’s veronal buffer (Seimens, Marburg, Germany) was mixed with 

an equal volume of normal human pooled plasma (George-King Bio-Medical, Overland Park, 

KS). For the control mixture, normal human pooled plasma was mixed with an equal volume of 

Owren’s veronal buffer. Both mixtures were incubated at 37oC for 2 hours.  

The remaining FVIII:C activity in the test and control mixtures was determined using a one-

stage clotting assay (ACL 300 Beckman Coulter, Lexington, MA) with reagents from the 

manufacturer with the exception of FVIII-deficient plasma (George-King Bio-Medical, Overland 

Park, KS). The residual FVIII activity in the test mixture was determined as a percentage of the 

activity present in the control mixture and the inhibitor activity of the test mixture. Activity was 

then calculated using a linear regression of inhibitor titer versus log of residual activity. One 

Bethesda unit is defined as the amount of inhibitor that reduces the FVIII:C activity to 50% after 

two hours of incubation at 37oC. 

10. TLR4 Competition Assay 

Peritoneal macrophages were isolated from naïve FVIII deficient C57BL/6 mice[61]. The 

peritoneum was exposed and cold Dulbecco’s phosphate-buffered saline (dPBS) without calcium 

and magnesium was injected into the peritoneal cavity, massaged, and then extracted. The fluid 

was centrifuged at 1000 rpm for 10 minutes at 4oC at 400 x g. The macrophages were counted 

using 0.4% Trypan Blue and then cultured in DMEM media at 1-3x10^6 cells/mL. To upregulate 

TLR4 expression, the culture was stimulated with 1µg/mL of LPS for 24 hours at 37oC with 5% 

CO2 saturation. After incubation, the cells were harvested, centrifuged at 2000 rpm for 5 minutes, 

and re-suspended in fresh medium. The cells were then blocked with anti-mouse CD16/32 Fc 

block for 30 minutes at 4oC. Next, the cells were incubated with media only, 5 µg/mL rhFVIII, or 

5 µg/mL BSA (Bovine Serum Albumin, Sigma) for 30 minutes at 4oC. The cells were then 

washed with 1mL of flow buffer and centrifuged. The cells were then incubated with 0.5 ug/mL 
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anti-mouse TLR2/CD282-FITC, monoclonal anti-rat TLR4 or polyclonal rabbit anti-mouse TLR4 

followed by goat anti-rabbit IgG-FITC (both from Abcam, Cambridge, MA) for 30 minutes at 

4oC. The cells were then washed, centrifuged, and re-suspended in 1 mL of 50% fixation buffer 

and flow buffer and stored at 4oC. At the time of analysis, the cells were centrifuged and re-

suspended in 500 µL of fresh flow buffer. The cells were analyzed on a BD FACSCalibur using 

CellQuest Pro Software. 50,000 events per tube were collected. 

 

11. Endotoxin Assay 

Common laboratory solutions (sterile water, media, flow buffer, reagent diluent, PBS/T, PBS, 

and FVIII dialysis buffer) were tested for trace levels of endotoxin using a commercially 

available ToxinSensor Chromogenic LAL Endotoxin Assay Kit (GeneScript, Piscataway, NJ). 

Absorbance was determined at 545 nm on a Molecular Devices SPECTRAmax250 Microplate 

Reader (GMI, Ramsey, CA). Unknowns were determined from a standard curve using GraphPad 

Prism5. 
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STIMULATION OF TLR4 INCREASES FVIII INHIBITOR PRODUCTION 

I hypothesized that stimulation of TLR4 in conjunction with FVIII treatment would drive the 

increased production of anti-FVIII antibodies. To test this hypothesis, I i.v. injected FVIII-

deficient mice once a week for four weeks with PBS, FVIII, TLR4 agonist (LPS), or LPS+FVIII. 

It was important to utilize several different methods to accurately assess the presence and 

magnitude of anti-FVIII antibodies present in the serum samples because anti-FVIII antibodies 

have been identified as being directed towards both functional and non-functional domains of the 

FVIII protein[34]. Therefore, blood samples were collected every seven days post-primary 

injection and analyzed using (1) enzyme-linked immunosorbant assay (ELISA) for the presence 

of total (functional and non-functional) anti-FVIII IgG antibodies, and (2) Bethesda assay for the 

presence of only functionally inhibitory anti-FVIII IgG antibodies (FVIII inhibitors).  ELISA 

results were reported as FVIII specific IgG antibody end titer, the lowest dilution of the plasma in 

which antibodies are detectable above the standardized clinical threshold of 0.200 OD over the 

background. Bethesda results were reported as Bethesda Units (B.U.) where one B.U. is the 

amount of inhibitor that reduces the FVIII:C activity by 50% after two hours of 37oC incubation. 

To first confirm the kinetics and magnitude of the antibody response to therapeutic treatment, 

mice injected with only FVIII were tested for anti-FVIII antibodies over the course of the 

injections. End titer levels of approximately 27 were detected at day 21 post-primary injection 

(Fig.11). Antibody levels continued to increase as FVIII injections continued, with a maximum 

end titer level of 211 at day 28 post-primary injection. Similarly, FVIII inhibitor levels of 

approximately 20 B.U. were also detectable by day 21 post-primary injection (Fig.12). Inhibitor 

levels also increased significantly as FVIII treatments continued, with a maximum level of 330 

B.U. at day 28 post-primary injection (p<0.05). This is the normal course of anti-FVIII antibody 

and FVIII inhibitor development in hemophilic mice that have no central tolerance to FVIII[59]. It 

should be noted that control mice injected with PBS or LPS never developed anti-FVIII IgG 

antibodies as there was no FVIII present in the blood. Since the production of total anti-FVIII IgG 

antibodies and functional anti-FVIII antibodies (inhibitors) have a direct correlation[62], the 

control mice were not tested for inhibitors. 

To determine if TLR4 stimulation during FVIII treatment would increase the production of 

anti-FVIII antibodies, I next measured the kinetics and magnitude of the antibody response in 

mice injected with LPS+FVIII over the course of time. End titer levels were approximately 214 at 

day 21 and 215 at day 28 post-primary injection, which was significantly increased (p<0.001) 

compared to mice that received FVIII alone (Fig.11). At the same time, anti-FVIII IgG antibody 

levels were also detectable earlier during the course of treatment with end titer levels of 
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approximately 27 at day 14 post-primary injection. Similarly, inhibitor levels were approximately 

270 B.U. at day 21 (p<0.01) and 1075 B.U. at day 28 post-primary injection (p=0.0135), which 

was also significantly increased compared to mice that received FVIII alone (Fig.12). These data 

indicated that, as hypothesized, TLR4 stimulation significantly increased FVIII inhibitor 

production. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.11: Repeated in vivo LPS and FVIII stimulation increases the production of anti-FVIII 
IgG antibodies. Antibody titers were measured from citrated plasma using a modified ELISA. 
Significance determine by 2-way ANOVA and unpaired t-test with Welch’s correction where 
*p<0.05, ***p<0.001 
 

 

 

 

 

 

 

 

 

 

 

 
Fig.12: Repeated in vivo LPS and FVIII stimulation increases the production of FVIII 
inhibitors. Inhibitors were measured from citrated plasma using a modified Bethesda assay. 
Significance determine by 2-way ANOVA and unpaired t-test with Welch’s correction where 
*p<0.05, **p<0.01, ***p<0.001 
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STIMULATION OF TLR4 INCREASES PERCENTAGE OF APCS EXPRESSING TLR4 
 BUT DECREASES TLR4 DENSITY ON APCs 

I hypothesized that stimulation of TLR4 in conjunction with FVIII injections would increase 

the formation of FVIII inhibitors due to increased expression of TLR4 on the surface of antigen 

presenting cells (APCs). In order to test this hypothesis, I i.v injected FVIII-deficient mice once a 

week for four weeks with FVIII, TLR4 agonist (LPS), or LPS+FVIII. Splenocytes were harvested 

every seven days post-primary injection and stained for flow cytometry analysis as previously 

described in Chapter IV. The cell plots were gated in order to observe live splenocyte populations 

(Fig.13). The resultant flow plots (Fig.14) then underwent quadrant analysis (Fig.15) to determine 

if the different in vivo injections over time changed the relative percentage of APCs in the spleen 

and the expression of TLR4 on those splenic APCs  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig.13: Splenocyte population analyzed in flow cytometry experiments. 
Splenocytes were analyzed using Forward Scatter (FSC) to identify relative cell size and Side 
Scatter (SSC) to identify relative cell complexity. The depicted gate (R1) identifies the spleen cell 
population, consisting of lymphocytes and granulocytes, later utilized in TLR4/APC analysis. 
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Fig.14: Analysis of splenocyte populations for APC and TLR4 expression.  
Splenocytes, from (A-C) FVIII and (D-F) LPS+FVIII injected mice 28 days post-primary 
injection, incubated with fluorescently-labeled antibodies specific for (A,D) CD11b+ 
macrophages, (B,E) CD11c+ DCs, or (C,F) CD19+ B-cells together with antibodies specific for 
TLR4 or IgG2a isotype control. Antibodies detected via flow cytometry and analyzed based on 
fluorescence.  
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TLR4 

Fig.15: Quadrant analysis of gated splenocyte populations. 
Quadrants drawn onto the flow cytometry plots represent cell populations that are positive for 
CD11b macrophages and TLR4 antibodies. Statistical analysis of the quadrants indicated the 
relative percentage and density of cells binding only APC antibodies or both APC and TLR4 
antibodies. 

 

First, I wanted to determine if stimulation through TLR4 would significantly increase the 

relative percentage of macrophages, DCs, and B-cells in the spleen in comparison to in vivo FVIII 

stimulation over the course of four injections. Results indicated that repeated LPS stimulation 

with or without concurrent FVIII injections significantly increased the relative percentage of 

macrophages (p<0.001) and DCs in the spleen (p<0.001) (Fig.16A-B). Repeated stimulation 

through TLR4 did not, however, increase the percentage of B-cells but instead significantly 

decreased (p<0.05) the percentage of B-cells detected in the spleen after only one injection. This 

lower percentage of B-cells remained constant over the course of the LPS injections. 

Interestingly, while initially spleens from FVIII injected mice consisted of 55% B-cells, the 

percentage of B-cells steadily decreased over the course of the FVIII injections (Fig.16C).  

While stimulation through TLR4 increased in the relative percentage of macrophages and 

DCs in the spleen, it did not explain the relationship between TLR4 stimulation and the formation 

of FVIII antibodies. Therefore, I wanted to determine if stimulation through TLR4 would 

significantly increase the percentage of APCs expressing TLR4 and, since the level of TLR4 

expression can change, I also wanted to determine if stimulation through TLR4 would 

significantly change the density, as measured by fluorescence intensity, of TLR4 expressed on 

APC surfaces in the spleen in comparison to in vivo FVIII stimulation over the course of four 

injections. Results indicated that, compared to in vivo FVIII stimulation, repeated stimulation 

through TLR4 increased the percentage of macrophages (p<0.05), DCs, and B-cells expressing 

TLR4 in the spleen (Fig.17A-C). However, TLR4 stimulation decreased the density of TLR4 

expressed on the surface of all APCs (p<0.05) (Fig.17D-F). Concurrent stimulation with 

LPS+FVIII had the same effect as LPS stimulation on the percentage of APCs expressing TLR4 

in the spleen and the density of TLR4 expressed on the APCs.   

% cells in R1 
fluorescence 
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Fig.16: Repeated stimulation through TLR4 increases percentage of macrophages and DCs 
in the spleen compared to mice responding to FVIII alone. The percentage of total APCs was 
calculated by addition of the percentage of gated cells from quadrants with positive APC staining. 
(A) CD11b+ macrophages, (B) CD11c+ DCs, or (C) CD19+ B-cells. Avg. PBS depicts the 
average percentage of APCs isolated from untreated control mice. Significance determined by 
unpaired t-test with Welch’s correction where *p<0.05, ***p<0.001 
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Fig.17: Repeated stimulation through TLR4 increases percentage of APCs expressing TLR4 
but decreases density of TLR4. (A-C)The percentage of APCs expressing TLR4 was calculated 
from the change in APC+/TLR+ cells over total APC+ cells. (D-F)The mean fluorescence 
intensity (MFI) of APCs expressing TLR4 was calculated from the difference of TLR4+ MFI 
compared to isotype MFI. (A,D) CD11b+ macrophages, (B,E) CD11c+ DCs, and (C,F) CD19+ 
B-cells. Avg. PBS depicts the average percentage or MFI of APCs isolated from untreated control 
mice. Significance determined by unpaired t-test with Welch’s correction where *p<0.05 
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When viewed together (Fig.18), these results indicated that, in comparison to in vivo FVIII 

stimulation, early stimulation through TLR4 only affected the relative percentage of B-cells in the 

spleen.  The relative percentages of macrophages and DCs, as well as the expression of TLR4 on 

the APCs in the spleen, were unchanged. Over the course of the injections, the repeated 

stimulation of TLR4 increased not only the relative percentage of macrophages and DCs in the 

spleen but also the percentage of all APCs expressing TLR4 in the spleen. This was an indication 

that stimulation through TLR4 over time triggered the activation and proliferation of 

macrophages and DCs in the spleen and the up-regulation of TLR4. While repeated FVIII 

stimulation did not change the relative percentage of APCs in the spleen, it instead resulted in 

increased density of TLR4 expressed on specific populations of each APC. This was an indication 

that FVIII stimulation over time did not trigger APC proliferation but instead triggered the 

activation of a specific subset of APCs capable of increased TLR4 presentation.  

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.18: In vivo LPS stimulation increases percentage of macrophages and DCs in the spleen 
while in vivo FVIII stimulation increases density of TLR4 expression on APCs. Empty circles 
represent cell populations (red=macrophages, green=DCs, blue=B-cells), filled circles represent 
APCs expressing TLR4 where “patterned” circles are APCs that have normal TLR4 expression 
and “solid” circles are APCs that have highly dense TLR4 expression.  
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STIMULATION OF TLR4 INCREASES EARLY INFLAMMATORY 
CYTOKINE SECRETION 

It has been shown that LPS stimulates TLR4 triggering enhanced TNF-α and IL-6 secretion 

during an inflammatory response; IL-10 is secreted to regulate the production of TNF-α and 

prevent sepsis[51, 56]. I hypothesized that stimulation of TLR4 in conjunction with FVIII injections 

would increase the formation of FVIII inhibitors by triggering the secretion of TNF-α, IL-6 and 

IL-10. In order to test my hypothesis, I i.v. injected FVIII deficient mice once a week for four 

weeks with FVIII, TLR4 agonist (LPS), or LPS+FVIII. Splenocytes were harvested every seven 

days post-primary injection, cultured, and the secretion of IL-6, IL-10, and TNF-α was measured 

by ELISA as previously described in Chapter IV. I analyzed the change in inflammatory cytokine 

secretion from mice injected with LPS with or without concurrent FVIII compared to the level of 

cytokines secreted by mice injected with FVIII. 

First, I wanted to determine the effects of in vivo TLR4 stimulation on the secretion of IL-6, 

IL-10, and TNF-α. In comparison to in vivo FVIII injections, injections of LPS with or without 

concurrent FVIII injections significantly increased early IL-6 (p<0.001), IL-10 (p<0.05-0.001), 

and TNF-α (p<0.05) secretion (Fig.19). All cytokine secretion decreased significantly (p<0.01-

0.001) over the course of the remaining injections. IL-6 secretion remained low despite repeated 

TLR4 stimulation while secretion of IL-10 and TNF-α increased again by day 28. Interestingly, 

repeated injections of FVIII increased the secretion of IL-6, though not significantly, by day 28 

indicating the beginning of a FVIII-specific response (Fig.19A). However, there was no 

indication of a FVIII-specific response in the secretion of IL-10 or TNF-α (Fig.19B-C).  

Next, I analyzed the effect of FVIII re-stimulation in culture on IL-6, IL-10, and TNF-α 

secretion in order to determine if FVIII could generate a continued inflammatory response after 

repeated in vivo agonist stimulation. When re-stimulated with FVIII in culture, trends similar to 

those previously seen in un-stimulated cultures (Fig.19) were observed. In vivo injections of LPS 

again significantly increased early IL-6 (p<0.001), IL-10 (p<0.01), and TNF-α secretion (Fig.20). 

The secretion of all three cytokines (p<0.01-0.001) synergistically increased after in vivo 

injections of LPS+FVIII. Again all cytokine secretion decreased significantly (p<0.01-0.001) 

over the course of the remaining injections. Unlike un-stimulated cultures, FVIII re-stimulation 

induced increased secretion of IL-6 (p<0.001) and TNF-α by day 28 (Fig.20A,C). The secretion 

of IL-6 and TNF-α after LPS stimulation did not increase at this time indicating a FVIII-specific 

response in the secretion of IL-6 and TNF-α.  

A comparison of cytokine secretion after in vitro FVIII re-stimulation (Fig.20) relative to 

cytokine secretion without any re-stimulation (Fig.19) indicated that there was relatively no 
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difference in IL-6 or IL-10 secretion between the different treatment groups during the early 

inflammatory response after FVIII re-stimulation (Fig.20D-E). By 28 days post-primary injection, 

IL-6 secretion increased 2-fold (p<0.01) from splenocytes of mice injected with FVIII, indicating 

the presence of a long-term FVIII recall response (Fig.20D). TNF-α secretion presented the 

opposite trend in that secretion increased 2-fold (p<0.05) during the early (day 7) inflammatory 

response splenocytes of mice injected with FVIII and re-stimulated with FVIII in culture 

(Fig.20F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.19: In vivo TLR4 stimulation increases early inflammatory cytokine secretion.  
Splenocytes were isolated every 7 days post-primary injection and cultured for 24hrs. without 
additional re-stimulation. The culture supernatants were collected and measured via ELISA for 
(A) IL-6, (B) IL-10, and (C) TNF-α. Avg. PBS depicts the average cytokine detected from 
untreated control mice. Significance determined by unpaired t-test with Welch’s correction where 
*p<0.05, ***p<0.001 

A 

B 

C 



36 
 

Day 7 Day 14 Day 28
0

50

100

150

200

**

Days post-primary injection

T
N

F
αα αα

 (
pg

/m
L

)

Day 7 Day 14 Day 28
0

100

200

300

400

500

***

**

Days post-primary injection

IL
10

 (
pg

/m
L

)

Day 7 Day 14 Day 28
0

50

100

150

200

***

***

***

*
*

LPS+FVIII, n=2-3
LPS, n=2-3
FVIII, n=2-3

avg. PBS

Days post-primary injection

IL
6 

(p
g/

m
L

)

Day 7 Day 14 Day 28
0

1

2

3

4

**

Days post-primary injection

F
ol

d 
IL

-6
 S

ec
re

ti
on

Day 7 Day 14 Day 28
0

1

2

3

4

**

Days post-primary injection

F
ol

d 
IL

-1
0 

Se
cr

et
io

n

Day 7 Day 14 Day 28
0

1

2

3

4

* *

Days post-primary injection

F
ol

d 
T

N
F

αα αα
 S

ec
re

ti
on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig.20: In vivo TLR4 stimulation synergistically increases early inflammatory cytokine 
secretion in response to FVIII re-stimulation in culture. Splenocytes isolated every 7 days 
post-primary injection and re-stimulated in culture for 24hrs. with 0.5ug FVIII. (A-C) Culture 
supernatants collected and measured via ELISA for cytokine secretion. Avg. PBS depicts the 
average cytokine detected from untreated control mice. (D-F) Ratio comparison of cytokine 
secretion from splenocyte cultures re-stimulated with 0.5ug FVIII over cultures that were not re-
stimulated. Values >1 indicate increased cytokine secretion from re-stimulated cultures. (A,D) 
IL-6, (B,E) IL-10, and (C,F) TNF-α.  Significance determined by unpaired t-test with Welch’s 
correction where *p<0.05, **p<0.01, ***p<0.001 
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 Since FVIII stimulation alone was not inducing discernable differences in cytokine secretion, 

I then analyzed the effect of LPS re-stimulation on IL-6, IL-10, and TNF-α secretion in order to 

determine if cells were capable of responding to additional inflammatory stimulus in culture.  

Previous studies have shown that stimulation through all TLRs can to some degree modulate 

both the re-stimulation and inhibition of FVIII-specific memory B-cells. While those studies were 

focused specifically on the adaptive immune response, it has been postulated that this same effect 

will also be observed on APCs during the inflammatory response[63]. When re-stimulated with 

LPS in culture, the kinetics of the inflammatory cytokine secretion changed compared to cultures 

that were un-stimulated or re-stimulated with FVIII alone. Compared to in vivo FVIII injections, 

in vivo injections of LPS+FVIII significantly increased (p<0.01) IL-6 and TNF-α secretion in 

response to LPS by day 14 post-primary injection (Fig.21A,C). However, this increased cytokine 

secretion was not maintained throughout the remainder of the injections, resulting in a significant 

decrease (p<0.01) in IL-6 and TNF-α secretion by day 28. Levels of IL-6 increased significantly 

(p<0.001) in mice injected with LPS alone, compared to mice injected with FVIII, and continued 

to increase significantly in a linear manner over the course of the injections so that, by day 28, the 

IL-6 secretion was significantly increased (p<0.05) compared to all other treatment groups 

(Fig.21A). Therefore, the decrease in IL-6 secretion from mice injected with LPS+FVIII was 

caused by the presence of FVIII as the secretion of IL-6 after in vivo LPS stimulation was not yet 

exhausted. The kinetics of IL-10 secretion also changed after LPS re-stimulation in culture but in 

a different manner than previously seen with IL-6 or TNF-α. IL-10 secretion was significantly 

increased (p<0.05) in mice injected with LPS, compared to mice injected with FVIII alone, and 

this level of secretion was maintained over the course of the injections. IL-10 was significantly 

increased (p<0.001) in mice injected with LPS +FVIII, compared to mice injected with FVIII, 

and continued to decrease significantly (p<0.05) in a linear manner over the course of the 

injections (Fig.21B). These results indicated that, unlike IL-6 and TNF-α, IL-10 secretion could 

not be extended as the result of re-stimulation.  

A comparison of cytokine secretion after in vitro LPS re-stimulation (Fig.21) relative to 

cytokine secretion without any re-stimulation (Fig. 19) indicated that there was significantly 

increased secretion of IL-6, IL-10, and TNF-α after re-stimulation in culture (Fig21D-F). After 

LPS re-stimulation, IL-10 secretion was increased 8-fold for all mouse treatment groups and 

remained relatively consistent over time (Fig.21E). IL-6 secretion peaked for all mouse treatment 

groups by 14 days post-primary injection. Splenocytes from LPS+FVIII treated mice that were 

re-stimulated in culture secreted 7-fold increased IL-6 while splenocytes from FVIII treated mice 

that were re-stimulated in culture secreted significantly increased levels of IL-6 (34-fold, p<0.05) 
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compared to splenocytes that were not re-stimulated in culture. IL-6 secretion decreased in all 

mouse treatment groups by 28 days post-primary injection (Fig.21D). Similarly, TNF-α secretion 

also peaked for all mouse treatment groups by 14 days post-primary injection. For this cytokine, 

however, splenocytes from LPS+FVIII treated mice that were re-stimulated in culture secreted 

17-fold increased TNF-α which was significantly increased (p<0.001) compared to splenocytes 

from FVIII treated mice that were re-stimulated in culture that secreted 4-fold increased TNF-α, 

which remained relatively consistent over time (Fig.21F). Again TNF-α secretion decreased in 

LPS+FVIII treated mice by 28 days post-primary injection. 
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Fig.21: In vivo TLR4 stimulation changes the kinetics of inflammatory cytokine secretion in 
response to in vitro TLR4 re-stimulation. Splenocytes isolated every 7 days post-primary 
injection and re-stimulated in culture for 24hrs. with 1.0 ug LPS. (A-C) Culture supernatants 
collected and measured via ELISA for cytokine secretion. Avg. PBS depicts the average cytokine 
detected from untreated control mice. (D-F) Ratio comparison of cytokine secretion from 
splenocyte cultures re-stimulated with 1.0 ug FVIII over cultures that were not re-stimulated. 
Values >1 indicate increased cytokine secretion from re-stimulated cultures. (A,D) IL-6, (B,E) 
IL-10, and (D,F) TNF-α. Significance determined by unpaired t-test with Welch’s correction 
where *p<0.05, **p<0.01, ***p<0.001 
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Lastly, since LPS stimulation changed the kinetics of the inflammatory cytokine secretion, I 

wanted to analyze the effect of LPS and FVIII re-stimulation together on IL-6, IL-10, and TNF-α 

secretion in order to determine if the co-administration of these agonists also affected the kinetics 

of cytokine secretion after in vivo re-stimulation. When re-stimulated with LPS and FVIII in 

culture, trends similar to those previously observed in LPS re-stimulated cultures (Fig.21) were 

observed (Fig.22). Again in vivo injections of LPS+FVIII significantly increased (p<0.01) IL-6 

and TNF-α secretion by day 14 and significantly decreased (p<0.01) IL-6 and TNF-α secretion 

by day 28 (Fig.22A,C). IL-10 secretion was again significantly increased (p<0.001) in mice 

injected with LPS+FVIII, compared to mice injected with FVIII, and continued to decrease 

significantly (p<0.05) in a linear manner over the course of the injections (Fig.22B). 

Interestingly, it was observed that IL-6 secreted by mice injected with LPS, while still 

significantly increased (p<0.05) in comparison to mice injected with FVIII, was no longer 

increasing at day 28 as was observed in cultures responding to LPS alone (Fig.21A). Instead, IL-6 

secretion was decreased compared to mice injected with LPS+FVIII (Fig.22A). These results 

suggested some level of stimulatory exhaustion which was only observed in mice injected with 

LPS but were naïve to FVIII. 

A comparison of cytokine secretion after in vitro LPS+FVIII re-stimulation (Fig.22) relative 

to cytokine secretion after in vitro FVIII re-stimulation (Fig.20) indicated that the additional LPS 

in culture stimulated similar patterns of cytokine secretion seen after LPS re-stimulation alone; 

however, levels of all three cytokines were increased significantly (10-fold) after concurrent 

LPS+FVIII re-stimulation even over the levels of cytokines secreted after FVIII re-stimulation 

alone (Fig.23A-C). A comparison of cytokine secretion after in vitro LPS+FVIII re-stimulation 

relative to cytokine secretion after in vitro LPS re-stimulation indicated that the additional FVIII 

in culture had little/no effect on IL-6, IL-10, or TNF-α secretion between the different treatment 

groups throughout the inflammatory response (Fig.23D-F). These results indicated that the 

majority of cytokine was produced in response to LPS alone. Concurrent re-stimulation did have 

an effect on IL-6 secretion which increased significantly (4-fold, p<0.01) during the early 

inflammatory response from splenocytes of FVIII treated mice that were concurrently re-

stimulated in culture. Together, these results indicated that concurrent LPS+FVIII re-stimulation 

in culture does synergistic affect early inflammatory cytokine secretion, specifically IL-6.  
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Fig.22: Concurrent LPS+FVIII re-stimulation induced same changes in inflammatory 
cytokine kinetics as LPS re-stimulation alone. Splenocytes were isolated from mice every 7 
days post-primary injection and re-stimulated in culture for 24hrs. with 1.0ug LPS and 0.5ug 
FVIII . The culture supernatants were collected and measured via ELISA for (A) IL-6, (B) IL-10, 
and (C) TNF-α. Avg. PBS depicts the average cytokine detected from untreated control mice. 
Significance determined by unpaired t-test with Welch’s correction where *p<0.05, **p<0.01, 
***p<0.001 
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Fig.23: In vitro FVIII+LPS re-stimulation synergistically increased late inflammatory 
cytokine secretion. Ratio comparison of cytokine secretion from splenocyte cultures re-
stimulated with 0.5 ug FVIII + 1.0 ug LPS over cultures that were re-stimulated with either (A-C) 
0.5 ug FVIII or (D-F) 1.0 ug LPS. Values >1 indicate increased cytokine secretion from re-
stimulated cultures. (A,D) IL-6, (B,E) IL-10, and (C,F) TNF-α. Significance determined by 
unpaired t-test with Welch’s correction where *p<0.05, **p<0.01, ***p<0.001 
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In order to understand why FVIII stimulation in culture was decreasing cytokine secretion 

after long-term in vivo agonist stimulation, I further analyzed the IL-6 secretion from mice 

injected with LPS with or without concurrent FVIII injections which were then re-stimulated in 

culture with varying doses of LPS with or without constant FVIII (Fig.24). In both of the 

treatment groups, there was no difference in IL-6 secretion between cultures re-stimulated with 

LPS or LPS+FVIII during the early (day 7) inflammatory response (Fig.24A). In both mouse 

groups, IL-6 secretion significantly increased in response to LPS (p<0.01) in cultures containing 

FVIII compared to cultures that did not receive this extra re-stimulation at day 14 (Fig.24B). In 

mice injected with LPS+FVIII, this same trend continues at day 28 (p<0.001). However, by day 

28, splenocytes from mice injected with only LPS and re-stimulated with FVIII in culture 

secreted significantly decreased (p<0.001) levels of IL-6 (Fig.24C). It has not yet been 

determined why mice stimulated only with LPS (naïve to FVIIII) have a reduced IL-6 response 

upon introduction to FVIII in culture during the late inflammatory response while mice that 

received concurrent in vivo agonist injections continued to have an increased IL-6 response to 

FVIII in culture. There is some implication that this might be due to splenocyte exhaustion or 

competition between LPS and FVIII to bind to TLR4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

0ug 0.2ug 0.4ug 0.6ug 0.8ug 1.0ug
0

100

200

300

400

500

Concentration LPS in culture

IL
6 

(p
g/

m
L

)

                     Mice injected with LPS                Mice injected with LPS+FVIII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

             cultures not re-stimulated with FVIII                                cultures re-stimulated with FVIII 

Fig. 24: Cells primed with multiple LPS doses secreted decreased IL-6 when treated with 
FVIII in culture. Splenocytes were isolated every 7 days post-primary injection of LPS (green) 
or LPS+FVIII (purple) and re-stimulated in culture for 24hrs. with increasing amounts of LPS 
without FVIII (―) or with 0.5ug FVIII (- - -). The culture supernatants were collected and 
measured via ELISA for IL-6 at (A) 7 days, (B) 14 days, and (C) 28 days post-primary 
injection. Significance determined by 2-way ANOVA where **p<0.01, ***p<0.001 
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 To determine if there was competition between LPS and FVIII to bind TLR4, a competition 

assay was performed as previously described in Chapter IV. Peritoneal macrophages were 

stimulated with LPS for 24hrs. to up-regulate TLR4 and then pre-treated with either FVIII or 

BSA (as a control) to determine if FVIII was capable of preventing the binding of TLR2 

(control), monoclonal TLR4, or polyclonal TLR4 antibodies. My results indicated that pre-

treating peritoneal macrophages with FVIII had no significant effect on the percentage of 

macrophages that bound TLR4 antibody. This indicated that the presence of FVIII in culture is 

not directly competing with LPS to bind TLR4 (Fig.25). The different pre-treatments had no 

affect on TLR2 expression, used as a negative control, indicating that the FVIII pre-treatment was 

specific for TLR4.  

 

 

 

 

 

 

 

 

 

 
 
 
Fig.25: FVIII is not directly binding to TLR4.  
Peritoneal macrophages were incubated with LPS for 24hrs, pretreated with BSA or FVIII, and 
incubated with TLR2, monoclonal TLR4 or polyclonal TLR4 antibodies. Antibodies were 
detected via flow cytometry, gated, and statistical analysis of the gates was performed. 
Significance determined by unpaired t-test with Welch’s correction where **p<0.01 

 

Overall, stimulation through TLR4 with or without concurrent FVIII injections increased the 

secretion of IL-6, IL-10, and TNF-α during the early inflammatory response, but was not 

maintained during repeated in vivo stimulation, indicating that TLR4-induced cytokine secretion 

is a tightly regulated, time specific process. Repeated LPS stimulation eventually over-stimulated 

the inflammatory response so as to have an antagonistic effect on IL-6 secretion. Even though I 

observed a FVIII-specific response during the late inflammatory response, FVIII was most likely 

not competing with LPS to bind TLR4.  
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ADDENDEUM: ENDOTOXIN ASSAY 

To rule out the possibility that experimental solutions were contaminated with endotoxin 

(E.coli LPS) thereby introducing additional agonist and altering my results, I tested the PBS, 

culture medium, water, and FVIII dialysis buffer for trace levels of endotoxin as described in 

Chapter IV. The results (Fig.26) indicated that the PBS used to dissolve agonists for mouse 

injections, contained approximately 0.42 E.U./mL endotoxin. The FDA has determined that non-

intrathecal drugs must have <5 E.U./kg endotoxin in order to be permissible for distribution. 

Since 1 E.U. (endotoxin unit) is equivalent to 100 pg LPS[64], the PBS I used contained 

approximately 42 pg/mL endotoxin, which was within the designated FDA guidelines. I could not 

discount the effect of trace levels of endotoxin in the PBS; however, since all of the mice received 

this extra endotoxin, the effect should be the same across all injection groups. I concluded that the 

relative changes, trends, and relationships detected in antibody production, APC populations, 

mean fluorescence, and cytokine production were indeed specific for LPS stimulation and not a 

by-product of contamination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig.26: Presence of trace levels of endotoxin detected in PBS and MilliQ water. 
Solutions were tested for trace levels of endotoxin via an LAL chromogenic assay. Results 
detected as absorbance. Unknowns were calculated from a standard curve.  
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DISCUSSION 

Hemophilia patients receiving replacement FVIII therapy mount an immune response against 

the exogenous FVIII, due to lack of central tolerance, and may produce neutralizing anti-FVIII 

antibodies (inhibitors). During this immune response, FVIII binds to inflammatory receptors (like 

TLRs) on the surface of APCs[33, 44, 46, 47], which migrate to the spleen[65] where they co-localize 

with T-cells. APCs will internalize and degrade FVIII for presentation on MHC II while also 

secreting inflammatory cytokines (such as IL-6, IL-12, and TNF-α) and up-regulating co-

stimulatory molecules (like CD40, CD80, and CD86). APCs bind TCR via MHC II and induce T-

cell activation[33, 48] through co-stimulatory molecules, initiating either a TH1 or TH2 response. 

Activated helper T-cells will then stimulate B-cells to become FVIII-specific plasma cells that 

produce large amounts of anti-FVIII antibodies[33, 46]. Previous research has indicated that this 

FVIII immune response might be triggered and driven by inflammation. It was suspected that 

toll-like receptors (TLRs) might play a role in triggering this response because immune cells that 

express TLR and cytokines secreted after TLR stimulation have been suggested as key 

components in the FVIII immune response[14]. My model, which stimulated inflammation through 

TLR2 or TLR4 in a mouse model of hemophilia A, was designed to test this theory, identify the 

major components and cells involved, and discuss the possible implications this would have on 

future research and patient treatment.    

 

1. The Effects of FVIII Stimulation Alone 

Repeated in vivo injections of recombinant human FVIII over the course of four weeks 

increased anti-FVIII antibody and FVIII inhibitor production (Fig.11-12). Repeated in vivo FVIII 

stimulation, while having no significant effect on the relative percentage of macrophages or DCs 

in the spleen, decreased the relative percentage of B-cells present in the spleen (Fig.16). The 

overall decrease in splenic B-cells was most likely due to the fact that anti-CD19, the antibody 

used to identify B-cells using flow cytometry, is expressed on activated B-cells but not on plasma 

cells[66]. Since anti-FVIII antibody production increases after repeated injection of FVIII, it can be 

concluded that the decrease in B-cells in the spleen was most likely the direct result of increased 

FVIII-specific plasma cells. Interestingly, while repeated in vivo FVIII stimulation did not 

significantly change the percentage of APCs expressing TLR4, it instead significantly increased 

the density of TLR4 expressed on the surface of all APCs (p<0.05-0.01) (Fig.17). This up-

regulation of the innate immune system receptors was an indication that FVIII stimulated an 

inflammatory response in APCs. This observation was further supported by the effect of FVIII 

stimulation on inflammatory cytokine secretion. TNF-α secretion was increased 7 days after the 
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first injection, after which it decreased and remained undetectable for the remainder of the 

injections. IL-10 did not appear to be significantly secreted in response to FVIII as it remained 

low throughout the course of the FVIII injections. IL-6 secretion, while initially undetectable, was 

slightly increased by the fourth injection of FVIII. FVIII re-stimulation in culture revealed 

increased TNF-α and IL-6 (p<0.05) secretion during the late (day 28) immune response 

indicating that APCs are capable of a FVIII recall response (Fig.19-20). These results indicated 

that FVIII did trigger an immune response but this response required multiple rounds of re-

stimulation and time to develop. It is important to note that all my cultures were re-stimulated for 

24hrs, which was determined as the optimal time frame for LPS stimulation. However, previous 

research has indicated that 72hr FVIII re-stimulations are usually required to produce more 

significant results. My cytokine results will need to be repeated utilizing this extended time 

frame. 

 

2. The Effects of LPS Stimulation Alone 

LPS stimulation alone cannot trigger the formation of FVIII antibodies so no inhibitors were 

detected. However, in vivo LPS stimulation significantly increased the relative percentage of 

macrophages (p<0.001) and DCs (p<0.001), but not B-cells, in the spleen. Interestingly, in vivo 

LPS injections increased the relative percentage of DCs more slowly than in vivo LPS+FVIII 

injections (Fig.16). In vivo LPS injections also increased the relative percentage of APCs 

expressing TLR4 in the spleen (p<0.05) but had no affect on the density of TLR4 expressed on 

APCs (Fig.17). Therefore, stimulation of TLR4 changed the repertoire of APCs in the spleen 

during the immune response. LPS stimulation significantly increased (p<0.001-0.05) the 

secretion of TNF-α, IL-6, and IL-10 7 days post-primary injection but secretion decreased after 

subsequent injections (Fig.19). Re-stimulation in culture increased the secretion of IL-6 in a 

linear manner over the course of the injections, which indicated that the APCs were not yet 

exhausted (Fig.21). The levels of IL-10 and TNF-α were also high (p<0.05) and maintained at 

that level throughout the repeated injections. Therefore, LPS stimulation is normally limited to an 

early inflammatory response but repeated stimulation additively increased cytokine secretion in 

the late inflammatory response (28 days post-primary injection). These results suggest that 

chronic inflammation not only changes the APC populations but also increases cytokine secretion 

which can lead to tissue damage. 
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3. The Effects of Concurrent LPS+FVIII Stimulation 

Repeated in vivo injections of LPS and FVIII over the course of four weeks resulted not only 

in significantly increased anti-FVIII antibody and inhibitor titer (p<0.001), but inhibitors were 

also detectable earlier during the course of the injections (Fig.11-12). Repeated LPS+FVIII 

stimulation additively increased cytokine secretion during the early inflammatory response as 

seen from the significantly increased (p<0.001-0.05) secretion of IL-6, TNF-α, and IL-10  7 days 

post-primary injection (Fig.19). Concurrent re-stimulation in culture significantly increased and 

prolonged secretion of IL-6 (p<0.05) and TNF-α (p<0.01) in comparison to in vivo FVIII 

stimulation alone such that the highest levels of these cytokines were detected 14 days after the 

initial injection (Fig.19,22-23). Concurrent stimulation also significantly increased the overall 

percentage of macrophages (p<0.001) and DCs (p<0.001), but not B-cells, present in the spleen 

in comparison to in vivo FVIII stimulation (Fig.16). There was also an increased percentage of 

APCs that expressed surface TLR4 (p<0.05). Interestingly, the relative percentage of DCs in the 

spleen and the percentage of DCs expressing TLR4 quickly increased by the second injection (14 

days post-primary injection), a trend not seen in mice injected with LPS. These results suggested 

that FVIII might be preferentially acting on DCs, changing the APC repertoire, while also 

expanding the APC populations overall.  

Overall, these results indicated that repeated FVIII stimulation increased the density of TLR4 

on the APCs, stimulated a late immune recall response capable of increasing IL-6 and TNF-α 

secretion (28 days post-primary injection), and decreased the relative percentage of B-cells in the 

spleen possibly due to an increase in plasma cells.  Repeated LPS stimulation increased the 

relative percentage of macrophages and DCs in the spleen, increased the percentage of 

macrophages and B-cells expressing TLR4 in the spleen, and additively increased cytokine 

secretion in the late immune response (28 days post-primary injection). Taken together, repeated 

LPS+FVIII stimulation should have increased the percentage of APC expressing TLR4, 

especially DCs, and increased cytokine secretion throughout the inflammatory response which 

would eventually lead to inhibitor production, all of which were observed.  

Only the increased density of TLR4 on APCs due to FVIII stimulation was not seen in mice 

injected with LPS+FVIII. The density of TLR4 expressed on APC surfaces did not change 

however (Fig.17) indicating that concurrent stimulation was not up-regulating TLR4, perhaps due 

to competition between LPS and FVIII. LPS is small, binds to a specific receptor on the surface 

of APCs, and is a potent adjuvant. Therefore it probably preferentially binds TLR4. FVIII, on the 

other hand, is large, complex, and there is evidence that it could be binding to one of several 

receptors, including low-density lipoprotein receptors, mannose receptors, or asialoglycoprotein 
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receptor which binds glycoproteins lacking terminal salicylic residues[33], however FVIII binding 

is not yet definitive. Therefore while my results indicated that FVIII is not directly competing 

with LPS to bind TLR4 (Fig.25), the slight decrease in antibody binding polyclonal TLR4 

observed after both FVIII and BSA pre-treatment suggested that there might be some indirect 

competition for TLR4 binding due to steric hindrance from the massive size of these proteins, 

FVIII (170 kDa) and BSA (66.5 kDa) or interference with CD14. Competition does not explain 

the increased IL-6 secretion detected after concurrent re-stimulation in culture during the late 

immune response (Fig.22-24) suggesting that a change in APC repertoire due to concurrent 

stimulation is the most probable explanation for increased inhibitor production. 

 

4. The Effects of Long-Term IL-6 Secretion 

Interestingly, after the fourth in vivo LPS injection, IL-6 secretion significantly decreased 

after concurrent LPS+FVIII re-stimulation compared to IL-6 secretion after only LPS re-

stimulation (Fig.24). This phenomenon was only observed during the late (day 28) immune 

response and only in cells naïve to FVIII before culture. This was unexpected because mice 

injected with both LPS+FVIII secreted significantly increased levels of IL-6 when concurrently 

re-stimulated compared to being re-stimulated with only LPS. 

There are several possible explanations for this decreased IL-6 secretion. First, as previously 

discussed, FVIII could be competing with LPS to bind TLR4 (discussed above). If so, the 

presence of FVIII in culture would hinder LPS binding and reduce IL-6 secretion. However, this 

does not explain why concurrent LPS+FVIII re-stimulation triggers increased IL-6 secretion. 

Second, repeated LPS stimulation could be triggering the internalization or down-regulation of 

TLR4 during that late stage of the immune response. This decrease in available receptor would 

prevent a further increase in cytokine secretion in the presence of additional FVIII in culture. 

Concurrent in vivo LPS+FVIII stimulation should still have moderate levels of TLR4 expression 

due to the presence of FVIII. However, TLR4 density indicated that this was not the case, which 

could again be due to LPS potency, or could indicate that there is come level of compensation 

from the increase percentages of APCs expressing TLR4. Lastly, repeated LPS stimulation 

(without FVIII) may have changed the repertoire of the APCs in the spleen such that it is no 

longer responding normally to FVIII. The chronic LPS stimulation might have “educated” the 

APCs, forcing them into a solely LPS-driven pathway of development and proliferation, while 

killing off other “unnecessary” APCs. Therefore, FVIII re-stimulation would not have the same 

binding capabilities and stimulatory effects normally observed, resulting in reduced IL-6 

secretion[51, 56]. 
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5. LPS Stimulation Triggers Coagulation through Tissue Factor Production 

During the course of these experiments, I observed that mice injected with LPS or 

LPS+FVIII were able to sufficiently clot after tail snips. This was unexpected as mice injected 

with LPS+FVIII were also producing very high levels of inhibitors which impede clotting. 

Previous studies have shown that LPS up-regulates TF release from endothelial cells, which then 

initiates clotting through the extrinsic coagulation pathway and completely bypasses the need for 

FVIII in the intrinsic coagulation pathway (Fig.1)[3, 67, 68]. 

While this dual LPS effect needs to be studied further, it might be a different method by 

which concurrent agonist stimulation induces inhibitor production. As discussed in the 

interdependent model of coagulation (Fig.2), TF activates FVII, initiating the extrinsic clotting 

cascade. This cascade activates FX, forming the tenase complex, and triggering the formation of 

thrombin. While involved in the formation of a primary clot, thrombin also activates components 

of the intrinsic pathway (like FVIII, FIX, FV) which are also important for increased catalysis of 

tenase complex formation and formation of a solid secondary clot. This alternative activation of 

FVIII enables efficient clotting, observed in mice receiving concurrent LPS and FVIII injections. 

The FVIII-enhanced clotting would also be responsible for quickly using up, and then triggering 

the degradation or, the replacement FVIII. The FVIII particles could then be more readily 

phagocytosed and presented by APCs, driving the immune system to more readily produce anti-

FVIII antibodies. While mice receiving LPS injections alone were also able to clot via the 

extrinsic pathway, they had no FVIII to increase this process. The lack of FVIII also means that 

the protein would not be degraded and presented to the immune system by APCs, which is why 

no anti-FVIII antibodies are produced. This theory needs to be confirmed with future 

experimentation. 

 

6. Relevance to Clinical Treatment 

There is currently little to no reported incidence of gram-negative bacterial infections in 

patients with Hemophilia A. So while this model of inflammation does not directly apply to 

patient treatment, we have supplied evidence that a pro-inflammatory environment leads to the 

increased formation of FVIII inhibitors. Therefore, patients receiving treatment, especially those 

patients that have not yet developed inhibitors, should be monitored for infections and 

inflammation especially in areas where bleeding is common like the joints. Patients should be 

placed on a low-dose anti-inflammatory regimen (ie. NSAIDs, COX-2 inhibitors). If infection is 

identified, patients should also be place on an appropriate antibiotic regimen. Patients receiving 

on-demand therapy, who are already at risk for FVIII inhibitor formation compared to patients 
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receiving prophylactic treatment, receive treatment in instances of injury or surgery where 

infection and inflammation are more likely to occur. Therefore, this anti-inflammatory regimen 

should definitely be administered with all on-demand treatments. 

Other treatment options could include: (1) blocking/antagonizing innate immune system 

receptors like TLR4, (2) preventing the production and/or secretion of inflammatory cytokines 

like IL-6 or TNF-α[66, 69], a method already used to treat inflammatory diseases like rheumatoid 

arthritis or (3) temporary drug suppressing of APC or CD4+ T-cell function (ie. cyclosporin).  

Unfortunately, most of these options involve large-scale suppression of the immune system 

which would leave a patient immuno-compromised and open to other disease. A more likely 

method of treatment would be the up-regulation of anti-inflammatory components of the immune 

system which would dampen but not completely eliminate the innate immune system. Some 

treatment options further discussed in Chapter IX could include: (1) the up-regulation of anti-

inflammatory receptors like TLR2, (2) up-regulation of anti-inflammatory cytokines like IL-10, 

or (3) activation of immuno-suppressive cells like Tregs.  
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STIMULATION THROUGH TLR2 DOES NOT INCREASE  

FVIII INHIBITOR PRODUCTION 

As discussed in previous chapters, it has been suggested that inflammation specifically 

through the stimulation of toll-like receptors (TLRs) might be playing a role in triggering the 

FVIII immune response, leading to the production of FVIII inhibitors. Previous data from the 

Smith lab utilizing cytokine multiplex analysis and statistical algorithms to model the anti-FVIII 

immune response in silico suggested TLR2 would also be up-regulated early during the FVIII 

immune response in mice and drive increased inhibitor formation. Therefore, I also studied the 

role of TLR2 stimulation on the formation of FVIII inhibitors in a mouse model of hemophilia A.  

For these experiments, I i.v. injected FVIII-deficient mice once a week for four weeks with 

PBS, FVIII, TLR2 agonist (PAM), or PAM+FVIII. Blood samples were collected every seven 

days post-primary injection and analyzed using ELISA and Bethesda assay (as described in 

Chapter IV). To determine if TLR2 stimulation during FVIII treatment would increase the 

production of anti-FVIII antibodies as was observed with TLR4 stimulation, I measured the 

kinetics and magnitude of the antibody in mice injected with PAM+FVIII over the course of time. 

Unexpectedly, end titer levels were approximately 24 at day 21 post-primary injection, which was 

significantly decreased (p<0.05) compared to mice that received FVIII alone (Fig.27). By day 28 

post-primary injection, end titer levels increased to approximately 27 such that they were no 

longer significantly different compared to mice that received FVIII alone. Inhibitor levels were 

approximately 104 B.U. at day 28 post-primary injection (p<0.05), which is significantly 

decreased compared to mice injected with FVIII alone (Fig.28). This data indicated that TLR2 

stimulation did not significantly increase, but instead significantly decreased, FVIII inhibitor 

production. Since there is a linear relationship between anti-FVIII IgG production and FVIII 

inhibitor production[62], it was surprising to observe that concurrent PAM+FVIII IgG antibody 

secretion, while delayed, was not significantly different from IgG titers produced by mice 

injected with FVIII. This suggests that TLR2 stimulation might be affecting B-cell populations 

and the IgG subclasses they produce such that now more non-inhibitory IgG antibodies were 

being secreted. The anti-inflammatory effect of TLR2 needs to be studied further. 
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Fig.27: Repeated in vivo TLR2 stimulation delayed production of anti-FVIII IgG antibodies. 
Antibody titers were measured from citrated plasma using a modified ELISA. Significance 
determine by 2-way ANOVA and unpaired t-test with Welch’s correction where *p<0.05 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.28: Repeated in vivo TLR2 stimulation decreases production of FVIII inhibitors. 
Inhibitors were measured from citrated plasma using a modified Bethesda assay. Significance 
determine by 2-way ANOVA and unpaired t-test with Welch’s correction where **p<0.01 
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Unlike stimulation through TLR4, TLR2 stimulation appears to have an anti-inflammatory 

effect during the FVIII immune response, resulting in decreased inhibitor formation. This anti-

inflammatory effect could be the result of (1) secretion of cytokines that switch immune system 

to an anti-inflammatory (tolerogenic) response, (2) activation of different APC populations, or (3) 

the up-regulation of anti-inflammatory receptors. 

TLR2 and TLR4 share a MyD88-dependent NF-κB pathway that drives secretion of 

inflammatory cytokines including IL-6 and TNF-α. However, TLR4 has multiple routes by which 

to stimulate cytokine secretion and APC maturation; it can be concluded that the balance of 

secreted cytokines is what determines the type of inflammatory response. As previously 

discussed, TLR2 signaling preferentially induces a humoral, helper T-cell type 2 (TH2) 

response[55], with increased IL-8, IL-23/p19, and MIP-1alpha secretion[70]. It was also observed 

that stimulation of TLR2 increased IL-12p40 secretion[70, 71], a subunit that it inhibitory on its 

own, which might explain some of the anti-inflammatory effects of TLR2.  

Other studies have observed that there are distinct subclasses of DCs which are responsible 

for triggering the various immune responses during inflammation. Of the 3 different subclasses of 

DCs (monocytes, conventional myeloid, and plasmacytoid[72]), in humans only monocytes 

express TLR2 and TLR4. This subset of APCs will not only respond to bacterial infections but 

also, when stimulated by inflammation or TLR activation, are activated into mature APCs 

capable of migration, increased cytokine secretion, increased antigen presentation, and improved 

T-cells interactions[71, 73]. Due to its TH2-driven effects, stimulation through TLR2 not only affects 

the proliferation and maturation of B-cells[55], but also triggers the activation and proliferation of 

regulatory T-cells (Tregs)[51]. The activation of Tregs might also explain the observed anti-

inflammatory effects of TLR2 stimulation. 

During monocyte activation, mature DCs will up-regulate migration/homing receptors such 

as CCR7, MHC, and T-cell co-stimulatory molecules CD80, CD86, and CTLA-4[71, 73]. Activated 

DCs have also been found to up-regulate PD-1 (programmed cell death protein 1) and its two 

ligands, PD-L1 and PD-L2. PD-L1 is found on resting DCs as well as other immune and non-

immune cells while PD-L2 is found exclusively on activated APCs. Binding of PD-L1 to PD-1 

protein creates a suppressive environment including inhibition of T-cell activation via blocking 

PI3K, suppression of cytokine secretion, induction of apoptosis of active APCs, and activation of 

Tregs[73]. It is possible that the up-regulation of this receptor is responsible for the anti-

inflammatory effects observed after TLR2 stimulation. All of these possibilities are areas of 

future research in order to understand the FVIIII immune response and the formation of inhibitors 

in patients with hemophilia A. 
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