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Turnover rate of the neuronal connexin Cx36 in HeLa cells  

Publication No. _______ 

Yanran Wang  

Supervisory Professor: John O’Brien, PhD 

Electrical synapses formed of the gap junction protein Cx36 show a great deal of functional 

plasticity, much dependent on changes in phosphorylation state of the connexin.  However, 

gap junction turnover may also be important for regulating cell-cell communication, and 

turnover rates of Cx36 have not been studied.  Connexins have relatively fast turnover rates, 

with short half-lives measured to be 1.5 to 3.5 hours in pulse-chase analyses of connexins 

(Cx26 and Cx43) in tissue culture cells and whole organs.  We utilized HaloTag technology 

to study the turnover rate of Cx36 in transiently transfected HeLa cells.  The HaloTag protein 

forms irreversible covalent bonds with chloroalkane ligands, allowing pulse-chase 

experiments to be performed very specifically.  The HaloTag open reading frame was 

inserted into an internal site in the C-terminus of Cx36 designed not to disrupt the regulatory 

phosphorylation sites and not to block the C-terminal PDZ interaction motif.  Functional 

properties of Cx36-Halo were assessed by Neurobiotin tracer coupling, live cell imaging, and 

immunostaining.  For the pulse-chase study, transiently transfected HeLa cells were pulse 

labeled with Oregon Green (OG) HaloTag ligand and chase labeled at various times with 

tetramethylrhodamine (TMR) HaloTag ligand.  Cx36-Halo formed large junctional plaques 

at sites of contact between transfected HeLa cells and was also contained in a large number 

of intracellular vesicles.  The Cx36-Halo transfected HeLa cells supported Neurobiotin tracer 

coupling that was regulated by activation and inhibition of PKA in the same manner as wild-
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type Cx36 transfected cells.  In the pulse-chase study, junctional protein labeled with the 

pulse ligand (OG) was gradually replaced by newly synthesized Cx36 labeled with the chase 

ligand (TMR).  The half-life for turnover of protein in junctional plaques was 2.8 hours. 

 Treatment of the pulse-labeled cells with Brefeldin A (BFA) prevented the addition of new 

connexins to junctional plaques, suggesting that the assembly of Cx36 into gap junctions 

involves the traditional ER-Golgi-TGN-plasma membrane pathway.  In conclusion, Cx36-

Halo is functional and has a turnover rate in HeLa cells similar to that of other connexins that 

have been studied.  This turnover rate is likely too slow to contribute substantially to short-

term changes in coupling of neurons driven by transmitters such as dopamine, which take 

minutes to achieve.  However, turnover may contribute to longer-term changes in coupling. 
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Introduction 

 In the nervous system, neurons pass information through synapses.  There are two 

main modalities of synaptic transmission: through chemical synapses and through electrical 

synapses.  In chemical synapses, there are distinct pre-synaptic and post-synaptic sides.  The 

pre-synaptic side releases chemical transmitters, known as neurotransmitters, which diffuse 

across the cleft.  The neurotransmitters bind to and then activate specific post-synaptic 

receptors, which in turn generate downstream responses.  Electrical synapses, on the other 

hand, consist of gap junctions that provide a direct pathway of low resistance.  Regulation 

and trafficking of ion channels and receptor proteins in chemical synapses have been well 

studied and have been proven to be an important aspect of synaptic strength and plasticity.  

However, little is known about what contributes to modulating electrical synaptic plasticity.  

It has been shown that electrical synapses are dynamic and possess plastic properties and 

turnover of gap junction proteins could play an important role.  In this study, we focused on 

the turnover rate of Cx36, an important gap junction protein in electrical synapses.  

Understanding the trafficking and regulation of Cx36 will be an important first step in 

understanding whether connexin turnover rate affects electrical synaptic plasticity.   

1. Connexin 36 Gap Junctions 

Gap Junctions are composed of membrane proteins that form a specialized 

intercellular channel that connects the cytoplasm of two adjacent cells. They allow direct 

transfer of ions and small molecules including metabolites and second messengers (Saez et 

al., 2003).  Connexins were identified as the proteins comprising gap junctions in 

vertebrates, and they are diverse and ubiquitous.  There are 21 connexin genes in the human 
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genome and 20 in the mouse genome (Willecke et al., 2002).  Connexins have four trans-

membrane domains, two extracellular loops and one intracellular loop.  Both the carboxyl 

terminus (C-terminus) and amino terminus (N-terminus) are in the cytoplasm.  Six 

connexins oligomerize to form a hexameric structure called a connexon, or a hemichannel.  

Each hemichannel can contain only one type of connexin subunit (homomeric) or a mixture 

of different connexin subunits (heteromeric).  Two connexons from adjacent cells dock 

together to form a functional gap junction channel; the process is known as gap junction 

coupling.   The association of two connexons into gap junctions can be between the same 

two connexon (homotypic) or of connexons with different subunit compositions 

(heterotypic) (Figure 1) (Bloomfield and Volgyi, 2009).   
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A. 

 

B.  

   

Figure 1: structure and molecular organization of gap junctions.  A) Formation of gap junction 
between two cells and various gap junction types.  B) Ribbon structure of a typical connexin.  From 
Bloomfield and Volgyi, 2009 (Originally published in Nature Review Neuroscience).   
 

Although the connexin gene family is large, Cx36 (Cx35 is the non-mammalian 

homolog) is the predominant connexin that forms electrical synapses in neurons.  It is 

widespread in the central nervous system (Condorelli et al., 2000), including retina (Deans 

et al., 2002), olfactory bulb (Christie et al., 2005), neocortex (Deans et al., 2001) (Blatow et 
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al., 2003), hippocampus (Belluardo et al., 2000; Hormuzdi et al., 2001) (Belluardo et al., 

2000), inferior olive (Long et al., 2002) (De Zeeuw et al., 2003), and cerebellum (Belluardo 

et al., 2000).  Cx36 has very low voltage sensitivity (Srinivas et al., 1999) (Al-Ubaidi et al., 

2000).  It is very cation selective, and it has nearly the smallest single channel conductance 

of any connexin (~15pS) (Srinivas et al., 1999).   

Cx36 gap junction coupling is regulated by protein kinase A activity.  In early scrape 

loading experiments using HeLa cells stably transfected with wild-type Cx36, treatment of 

PKA activator Sp-8-cpt-cAMPS (Sp) decreased Cx36 coupling, while treatment of PKA 

inhibitor Rp-8-cpt-cAMPS (Rp) increased coupling (Ouyang et al., 2005) (Figure 2A-D).  

Scrape loading experiments using transiently transfected HeLa cells (unpublished data from 

O’Brien lab) show similar result in Rp treated condition, but failed to reduce coupling while 

treated with Sp, possibly due to activation of phosphatases by the transfection reagent 

(Figure 2E).  In the transiently transfected HeLa cells, the control and Sp conditions gave a 

background coupling that was comparable to non-transfected HeLa cells.  This background 

coupling of HeLa cells can be explained by a recent publication by Marandykina et al.  In 

the Marandykina study, it showed that Cx36 gap junction coupling in HeLa transfectants can 

be inhibited by the presence of endogenous arachidonic acid, which stabilizes a closed 

conformation state of the channel that leads to low fraction of functional channels.  

Transfection reagent could be activating a phospholipase pathway, or lipids in the 

transfection reagent could be causing uncoupling directly (Marandykina et al., 2013).  In 

tracer coupling experiments done in both non-transfected and empty vector transfected cells, 

there is still coupling observed when treated with PKA activator, probably due to the 

background coupling by other connexins.   
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Cx36 is regulated by PKA at two major regulatory sites, Ser110 in the intracellular 

loop and Ser293 (S276 in Cx35) in the C-terminus (Figure 3A).  Phosphorylation of these 

two sites is critical in regulation of coupling mentioned in the figure above (Ouyang et al., 

2005) (Kothmann et al., 2007).  The Intracellular loop also harbors Cam Kinase binding site 

(Alev et al., 2008).  Ser315, located towards the end of the C-terminus, has long been an 

important candidate in possibly assembling a protein complex that contributes to the 

phosphorylation states of the regulatory sites (Figure 3B).  Ser315 is phosphorylated by 

D. E. 

Figure 2: Effects of PKA activation and inhibition on tracer coupling in Cx35-HeLa cells 
measured by scrape-loading.  (A-D) from Ouyang et al., 2005 (Originally published in Brain 
Research.  Molecular Brain Research.  (E) unpublished data from O’Brien Lab.   
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CamKII (Alev et al., 2008), and Ouyang et al. showed that mutation at Ser315 (S298 in 

Perch Cx35) invert the coupling mechanism when measured by tracer coupling in HeLa 

cells (Ouyang et al., 2005).  However preserving Ser315 alone was not enough to prevent 

inversion of the coupling mechanism.  Unpublished data from O’Brien lab showed that 

keeping Ser315 intact while truncating the last four amino acids of Cx36 C-terminus also 

caused inversion of the coupling mechanism.  This data suggested that PDZ domain binding 

site at the end of the Cx36 C-terminus also plays a role in regulation.  Nagy lab showed that 

the a number of PDZ domain containing proteins, including ZO-1,  ZO-2, ZO-3 and 

MUPP1, bind directly to the tip of the C-terminal of Cx36 (Li et al., 2004) (Li et al., 2009b) 

(Li et al., 2012).  Phosphorylation of Ser315 and PDZ proteins interaction with the Cx36 C-

terminal tip could both contribute to regulation of assembly of a protein complex, that 

disruption of Cx36 C-terminal could lead to inverted regulation and coupling (Ouyang et al., 

2005).  In this study we inserted the HaloTag protein into the C-terminus of the connexin, 

between Ser293 and Ser315, to avoid interference of regular Cx36 activities.   
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A. 

 
 
 
B. 

 
Figure 3.  Important regulatory sites in Cx36.  A) Ribbon structure of Cx36 showing 
phosphorylation sites Ser110 and Ser293.  B)  Cx36 C-terminus structure showing regulatory 
phosphorylation sites.  From Kothmann et al., 2007 (Originally published in Journal of 
Neuroscience).   
 

2. Turnover rate of Connexins 

The regulation of the biosynthesis and degradation of gap junction protein is an 

essential element in the control of intercellular communication.  Connexins are synthesized 

and co-translationally inserted into the endoplasmic reticulum (ER) as four trans-membrane 

integral membrane proteins.  They are post-translationally assembled into hexamers, known 

as hemichannels or connexons.  The hemichannels insert themselves into the plasma 

membrane and form functional gap junctions with hemichannels from the adjacent cells 

(Ahmad et al., 1999b) (Thomas et al., 2005) (Zhang et al., 1996).  Assembly of connexins 
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into gap junctions usually involves the traditional ER-Golgi-TGN-plasma membrane 

pathway.  Cx43 and Cx46 oligomerize into connexons in compartments that include the 

TGN (Koval et al., 1997) (Musil and Goodenough, 1993), while Cx26 and Cx32 

oligomerize primarily in the ER (Falk and Gilula, 1998) (Falk et al., 1994) (Falk et al., 

1997).  Delivery of new connexin to the plasma membrane is prevented when ER-Golgi 

transport is blocked by Brefeldin A (BFA) treatment. However, there are reports suggesting 

that Cx26 can bypass Golgi and directly insert into plasma membrane (Ahmad and Evans, 

2002) (George et al., 1998) (Evans et al., 1999) (George et al., 1999) (Martin et al., 2001).   

Turnover rates of connexins are exceptionally high.  Connexin half-lives reported in 

the literature range from 1 to 10 hours, with one exception in lens cells (Table 1) (Herve et 

al., 2007).   
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(From Herve et al., 2007, originally published in Journal of Membrane Biology) 

The summarized literature in table 1 addressed mostly non-neuronal gap junction 

proteins (except Cx45).  There was no literature studying the turnover rate of the 

predominant neuronal gap junction protein, Cx36, until one recent manuscript from the 

Pereda group (Flores et al., 2012).  The Pereda group studied the connection between gap 

junction turnover and electrical synaptic strength for the first time in goldfish Mauthner 

cells.  Mauthner cells are motor neurons that possess both chemical and electrical synapses.  
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These synapses are large myelinated club endings (CEs) that belong to auditory afferents 

that synapse onto Mauthner cells (Figure 4A).  The Pereda lab showed ultrastructural 

evidence that supported the theory that connexin channels are added and removed from the 

gap junction simultaneously.  New connexons are inserted outside of the preexisting gap 

junction as unpaired gap junction hemichannels, and removed from the gap junction plaque 

as annular junctions, i.e. double membrane vesicles formed by paired connexons (Figure 4B) 

(Flores et al., 2012).   

 

Figure 4:  Mauthner cell CEs.  A) CEs have a mixture of chemical and electrical synapses on the 
lateral dendrites.  B) Trafficking and turnover of gap junction channels.  From Flores et al., 2012	  
(Originally published in PNAS).    
 

The Pereda lab also used peptides to interfere with exocytosis and endocytosis of gap 

junction protein.  They measured the peptides’ effects on the electrical (gap junction 

mediated) and glutamatergic (chemical synapses mediated) components of the mixed 

excitatory postsynaptic potential (mixed EPSP) evoked.  The electrical and glutamatergic 

components are separated in time due to membrane time constant of the Mauthner cell and 

can be identified and measured unambiguously (Figure 5A).  The peptides applied are 

known to modify the strength of glutamatergic transmission at mammalian synapses.  
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Measuring the glutamatergic component of the mixed EPSP provided a good positive 

control for their effects on the electrical component (Figure 5D, 5E).  Intradendritic 

application of the dynamin-inhibitory peptide D-15 (amino acids 828-842 of rat dynamin), 

which is a proline-rich domain that interferes with endocytosis by interrupting dynamin’s 

interaction with amphiphysin, increased the electrical component of the mixed EPSP (Figure 

5B), showing that preventing removal of gap junction protein strengthened electrical 

transmission within minutes.  Similarly, injecting SNAP-25 peptide (amino acids 182-192 of 

SNAP-25), which interferes with formation of SNARE complex, hence interfering with 

insertion of new hemichannels, decreased the electrical component of the mixed EPSP 

(Figure 5C), showing that reduced exocytosis weakened electrical transmission.  The group 

reported a half-life of gap junction channels at CEs of 1-3 hours, which is consistent with 

previous studies of connexin half-lives shown in Table 1 (Flores et al., 2012).   
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Figure 5:  Interfering with endocytosis and exocytosis modifies synaptic strength.  A) 
Experimental apparatus for intradendritic injection of peptides.  B, D) D-15 strengthened the 
electrical transmission as well as chemical transmission.  C, E) SNAP-25 pep weakened electrical 
transmission as well as chemical transmission.  From Flores et al., 2012 (Originally published in 
PNAS).     
 

Most of the turnover rate studies use pulse-chase analysis.  A pulse-chase analysis is 

a method for examining a cellular process occurring over time by successively exposing the 

cells to a labeled compound (pulse) and then to the same compound in an unlabeled or 

differently labeled form (chase).  Traditional pulse-chase analysis studies use one of the four 

following methods: metabolic labeling with [14C]-bicarbonate (Fallon and Goodenough, 

1981), immunofluorescence (Fishman et al., 1995), [35S]-labeling (Musil et al., 2000), and 
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FlAsH (Fluorescein arsenical helix binder) (Gaietta et al., 2002).  These methods require the 

usage of radioactive elements, or use time consuming procedures that require specialized 

training.  In the recent study of electrical synapse turnover rate in Mauthner cells, the 

turnover rate was assessed by measuring response time of electrical transmission after 

SNAP-25 and CT-peptide injections.  This method presents its own problem due to the 

susceptibility of the peptides to the actions of peptidases and diffusion from the injection site 

(Flores et al., 2012).  In order to study turnover rate of gap junction in electrical synapses, 

we need to find a better way to label the connexin, as well as an efficient way to measure 

and quantify gap junction protein at a particular time point.    

3. HaloTag Technology 

The ability to label protein efficiently and specifically is very important in studying 

intracellular protein interactions.  Traditional approaches in studying protein interaction 

include biochemical analysis, cell based analysis, and in vivo models.  A variety of methods 

have been employed for protein interaction studies, such as using antibodies to target 

endogenous proteins, creating affinity tags to pull down proteins, or attaching florescent 

proteins to protein of interest for imaging.  These methods, however, can be time 

consuming, or only cover a small spectrum of the study of protein interactions.  HaloTag 

fusion protein provides a new approach to specifically label a protein of interest, and it is 

applicable to all the approaches in protein analysis.  

HaloTag protein is a 34kDa monomeric protein.  It is derived from a prokaryotic 

hydrolase which is not endogenous in eukaryotic cells, allowing high specificity (Georgyi V. 

Los, 2005).  It can be used to generate either N- or C-terminal fusion that can be efficiently 
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expressed in a variety of cell types.  It is genetically engineered to form a covalent bond 

with specific, synthetic HaloTag ligands (Figure 6A).  The HaloTag ligands are 

chloroalkanes that are modified to carry a variety of functional chemical tags for different 

types of studies (Los et al., 2008) (Los and Wood, 2007).  In this study, we used two cell 

permeable HaloTag fluorescent ligands, Oregon Green (OG) and tetramethylrhodamine 

(TMR), to label Cx36-HaloTag fusion protein (Figure 6B) (G. Los, 2006).   

A. 

 

B.  

 

Figure 6:  HaloTag technology.  A) Ribbon structure of HaloTag protein, the enlarged picture 
shows the active binding site between HaloTag protein and HaloTag TMR ligand.  B) Structure of 
HaloTag TMR ligand and HaloTag Oregon Green Ligand.  Originally published on Promega website 
(Images reproduced with permission from Promega Corporation).   
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To this date, very limited studies have investigated the link between Cx36 turnover 

rate and electrical synapse plasticity.  We wanted to see whether the HaloTag technology 

mentioned above can be used as a new tool for more specific and efficient labeling of Cx36, 

and is going to be beneficial in future turnover rate studies. In this study, we created a 

construct of Cx36 and HaloTag fusion protein and used this fusion protein to study Cx36 

turnover rate in HeLa cells.  We also examined the possible delivery and removal 

mechanisms of Cx36.  We hope by establishing that HaloTag technology can be a useful 

tool for Cx36 turnover rate study, we can provide insight on how the turnover rate 

participates in regulating electrical synapse plasticity.   
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Materials and Methods: 

Cells and Reagents 

All media, fetal bovine serum and cell culture reagents were obtained from 

Invitrogen (Grand Island, NY).  HeLa cells were obtained from American Type Culture 

Collection (Rockville, MD, Cat#CCL-2).  HeLa cells were grown in complete MEM 

supplemented with 10% fetal bovine serum, 1% antibiotic-antimycotic 

(Penicillin/Streptomycin/amphotericin B).  Transfection of HeLa cells was performed with 

GenePORTER® 2 transfection reagent kit from Genlantis (San Diego, CA).  PKA activator, 

Sp-8-cpt-cAMPS and PKA inhibitor, Rp-8-cpt-cAMPS, were from Alexis (San Diego, CA).  

HaloTag vector, HaloTag ligands Oregon Green (OG) and tetramethylrhodamine (TMR) 

were purchased from Promega (Madison, WI), and Brefeldin A was purchased from Cell 

Signaling Technology (Danvers, MA).   

Creating Cx36-HaloTag construct and transfection 

The HaloTag open reading frame was inserted into an internal site in the C-terminus 

of Cx36 using Cold Fusion cloning kit.  The location of the insertion we chose would not 

disrupt the regulatory C-terminal phosphorylation sites nor block the C-terminal PDZ 

interaction motif (see Figure 9).   

HeLa cells were plated on 12mm cover glasses and grown to 75% confluence 

overnight in 35mm culture dishes. HeLa cells were transiently transfected using 

GenePORTER® 2.  We used 1.5µg of GenePORTER® 2 and 2µg of Cx36-Halo plasmid 

DNA per 35mm culture dish.  All the following experiments were conducted 24 hours after 

transfection.   
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Tracer coupling   

Transfected HeLa cell cover glasses were maintained in Ringer’s medium 

supplemented with 0.05% Neurobiotin.  Cells were scraped with a 25-gauge needle.  

Incubation was done at 25oC in the oxygenated medium with Neurobiotin for 10 minutes to 

allow loading and diffusion.  Cells were then fixed with 4% paraformaldehyde (in PBS with 

0.5% Triton X-100 and 0.1% NaN3, pH7.4) after two washes to remove excess Neurobiotin.  

PKA activator and inhibitor were added to the oxygenated incubation medium at the 

beginning of the incubation period.  Cells were then visualized with streptavidin-Cy3 

(Jackson ImmunoResearch, West Grove, PA), and photographed on a Zeiss fluorescence 

microscope using Simple PCI software (Compix, Cranberry Township, PA).  The diffusion 

coefficient of the coupled HeLa cells was calculated by measuring the fluorescence intensity 

of the cells (O'Brien et al., 2004)(Figure 7).   

The analysis utilizes a linear 25-compartment diffusion model of the type described 

by (Zimmerman and Rose, 1985) to fit the Neurobiotin concentration and diffusion distance 

data. This model has been applied to neural networks to assess gap junction coupling in the 

retina (Mills and Massey, 1998) (O'Brien et al., 2004) (Li et al., 2009a).  In this model, the 

compartments are defined as individual cells, and the major parameter that governs diffusion 

of Neurobiotin is the diffusion coefficient through gap junctions between two adjacent cells 

(Figure 7A).  The movement of tracer, i.e. Neurobiotin, between adjacent compartments is 

described by a series of 25 differential equations that are solved for tracer flux given the 

total amount of diffusion time and a diffusion coefficient, k.  The diffusion coefficient k 

represents the proportion of tracer that diffuses from the first compartment to the next per 

second.  The diffusion coefficient k will be a value between 0 and 1, and all values larger 
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than 0 represent measurable amount of tracer diffused, hence the presence of gap junction 

coupling.        

Optimal fitting of intensity data to the model was determined in MatLab 

(Mathworks, Natick, MA) by varying the diffusion coefficient k and another parameter, bo, 

the bolus loading rate. The parameter bo was defined as the rate of addition of tracer to the 

initial compartment for the loading period, which was assumed to be 1 minute in the scrape-

loading experiments, and was set to zero thereafter.  The value of the parameter bo was 

determined by the total amount of tracer in all the compartments and is not affected by the 

diffusion coefficient between adjacent cells.  Data fits were determined by plotting cell 

intensities on a log intensity axis and determining the diffusion coefficient k that best fit the 

rate of decline of cell intensity with distance from cell of origin, and the rate of delivery, bo, 

that fit the overall tracer concentration (Figure 7B).  The effect of varying bo was only to 

translate the position of the curve vertically on the log intensity axis (data not shown).  It 

was not affected by and has no effect on the diffusion coefficient k (Mills and Massey, 

1998) (O'Brien et al., 2004) (Ouyang et al., 2005) (Li et al., 2009a).  Diffusion coefficients 

were compared under different drug treatment conditions using t-test.   
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A. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
B. 

	  
	  
Figure 7. Scrape-loading analysis.  A) Picking compartments. In this experiment, compartment 
represents one HeLa cell that is coupled to two neighbors in a linear array via a coupling resistance 
(a gap junction) characterized by the diffusion coefficient. B) Intensity data are plotted vs. distance 
from the cut edge in cell-to-cell spacing (mean of spacing measured from the same image).  The data 
are fit to the model by systematic adjustment of the k (diffusion coefficient) and bo (tracer loading 
rate into the initial compartment at the cut edge) parameters.  Diffusion time for the model is set by 
the actual time from cutting to fixation of the sample (16 minutes in this experiment). 
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Imaging: Live cell imaging, fixed cell imaging and immunolabeling  

Transfected HeLa cell cover glasses were incubated in Ringer’s medium containing 

5µM HaloTag TMR fluorescent ligand for 15 minutes.   Cover glasses were then washed to 

remove unbound ligand and transferred to a microscope to capture images.    

After live cell imaging, cells were fixed in Ringer’s medium with 4% 

paraformaldehyde for 10 minutes.  Cover glasses were then incubated in PBST with 10% 

donkey serum to block non-specific binding.   Cover glasses were incubated overnight at 

4oC with Cx36 primary antibody in PBST with 10% donkey serum followed by fluorescent 

secondary antibody in 5% donkey serum for 3 hours.  Cover glasses were then washed, 

mounted and transferred to a confocal microscope to capture image.  HaloTag TMR was 

visualized with the TRITC filter set, and the Cx36 was visualized with the Cy5 filter set.  

Images of HeLa cells were digitally captured using a Zeiss LSM 510 Meta confocal 

microscope (Thornwood, NY) with similar settings of pinhole, contrast, and brightness 

parameters.   

Pulse-chase analysis    

Transfected HeLa cell cover glasses were incubated in Ringer’s medium containing 

5µM pulse labeling ligand Oregon Green (OG) for 15 minutes in a 24-well plate in 37 

degree incubator.  Cover glasses were then washed to remove unbound ligand and incubated 

with Ringer’s medium at 37 degrees, and were labeled with tetramethylrhodamine (TMR) 

HaloTag ligand at various times (0.3, 1, 2, 3, 4, and 5 hours after pulse labeling) for 15 

minutes.  All cover glasses were fixed with 4% paraformaldehyde, and transferred to a 
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confocal microscope for image capturing.  HaloTag TMR was visualized with the TRITC 

filter set, and HaloTag OG was visualized with the FITC filter set.   

Images were captured with a Zeiss LSM 510 confocal microscope and analyzed with 

the same settings using SimplePCI software.  Regions of interest (ROIs) were selected by 

setting an intensity threshold and applying a minimum size threshold.  ROIs were defined as 

contiguous pixels with intensity threshold greater than 20% of the total intensity range, and 

which covered a minimum area of 200 pixels.  Each image was then manually scanned for 

individual ROIs that fit in the criteria but were not part of the gap junction plaques.  They 

were manually removed from the analysis (Figure 8A).  Mean and total fluorescent intensity 

was measured in each channel for each ROI (Figure 8B).  At any given time point, the 

amount of pulse labeling present is defined as the percentage of the total of pulse labeling 

over total labeling (pulse + chase).   The half-life of Cx36 was calculated by fitting an 

exponential curve to the percentage of pulse labeling over time.   
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A. 

 

 
B. 

 
 
Figure 8. Pulse-chase experiment data collecting with SimplePCI.  A) Choose the ROIs by 
setting a size (200 pixels) and intensity (20% of maximum intensity) threshold.  Areas selected that 
did not represent gap junction plaques were manually removed from the data pool.  B) Mean and 
total fluorescent intensity for both the TMR channel and OG channel were measured in each ROI. 
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Drug Treatment: BFA 

To analyze the transport of Cx36 from ER to the PM, transfected HeLa cells were 

treated with BFA (2µg/ml) during the pulse-chase analysis.  BFA was added to the cells 

after 15 minutes of pulse label OG incubation and washing, and was left in the wells before 

the chase label TMR was added.  Cells were incubated in TMR for 15 minutes.  In the 

control experiment, cover glasses were treated with DMSO (2µg/ml) and the treatment was 

identical to that of BFA.   
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Results 

1. Cx36-HaloTag fusion protein can form functional Cx36 gap junction in HeLa cells. 

The gap junctions formed are regulated by PKA activity like the wild-type.   

To study Cx36 without interfering with its protein-protein interactions, we had to 

carefully choose a site to insert the HaloTag open reading frame where it is not close to the 

functional or regulatory amino acids.  The insertion site was in the internal site of the C-

terminus of Cx36, between the two important serine sites (S293 and S315) (Figure 9).    

	  

A.

 
 
B. 

 
Figure 9.  Insertion of HaloTag vector into Cx36 C-terminus. A) Sequence of perch Cx35 C-
terminal indicating the insertion point of HaloTag open reading frame.  Red arrows indicate 
regulatory serines (S276 and S298).  B) Ribbon structure of Cx35 showing relative location of 
HaloTag.   
 

 

HT 
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                To determine if Cx36-Halo construct can form gap junctions properly in HeLa 

cells, we transfected HeLa cells with Cx36-Halo construct, and labeled the cover slips with 

HaloTag TMR ligand 24 and 48 hours after transfection.  To better determine the efficiency 

of the TMR ligand, we labeled the Cx36-Halo construct at 0.5x, 1x, and 1.5x the 

concentration of the 1x TMR ligand working solution.  After labeling, we transferred the 

cover slips on a microscope for live cell imaging.  We can see that Cx36 gap junction 24 

hours after transfection with Cx36-Halo construct (Figure 10a-c).  In the 24 hour after 

transfection images, we can see that Cx36-Halo transfected HeLa cells have successfully 

formed gap junctions with one another; the concentration of TMR ligand did not have a 

noticeable effect on the labeling of gap junction.  In the 48 hour after transfection images, 

we can still find gap junctions (Figure 10d-f).  There are also many brightly labeled clusters 

inside the cells, suggesting internalization of Cx36-Halo protein is common 48 hours after 

transfection.  To achieve the best result in labeling Cx36-Halo in HeLa cells, we transfect 

HeLa cells with Cx36-Halo construct for 24 hours, and label them with 1x TMR ligand 

working solution for all the future experiments.  
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Figure 10. Live cell imaging of HeLa cells transfected with Cx36-Halo structure.  (a-c) are 
images 24 hours after transfection.  (d-f) are images 48 hours after transfection.  (a,d), (b,e), (c,f) are 
labeled with 0.5x, 1x, 1.5x the concentration of TMR ligand working solution.   

 

In order to confirm that the gap junctions we observed were formed by Cx36, we co-

labeled the cover slips with Cx36 antibody.  The gap junctions that showed HaloTag TMR 

labeling were positively labeled with Cx36 antibody (Figure 11), confirming that TMR 

labeling is efficient and sufficient in labeling Cx36 gap junctions in transfected HeLa cells.   
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Figure 11. Fixed cell imaging of HeLa cells double labeled with Cx36 primary antibody and TMR 
ligand.    

 

In previous studies, we established that Cx36 coupling is regulated by PKA activity.  

In order to see whether introducing the HaloTag protein to Cx36 caused any functional 

changes in Cx36 regulation, we performed scrape-loading experiments using HeLa cells 

transiently transfected with Cx36-Halo construct.  We observed similar regulation as the 

ones transiently transfected with wild-type Cx36 (Figure 12).  Treatment of Rp increased 

coupling significantly, while the treatment of Sp showed no significant changes.  Control 

experiment was performed with HeLa cells transfected with HaloTag protein vector alone 

(Halo-EV) without Cx36.  Altering PKA activity did not change the amount of coupling.  

We observed coupling in the control experiment as well, presumably from endogenous 

connexin present in HeLa cells, and it was not regulated by changes in PKA activity.                         
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A. 

 

B. 

                                          
 
Figure 12. Tracer coupling measurements in HeLa cells transiently transfected with Cx36-Halo 
construct.  Ctrl – control; Sp – 20 µM Sp-8-cpt-cAMPS (PKA activator); Rp – 20 µM Rp-8-cpt-
cAMPS (PKA inhibitor).  Data are means ± SEM, * P<0.05. 
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2. Cx36 has a half-life of 2.8 hours in HeLa cells.   

To study the turnover rate of Cx36 in HeLa cells, we performed pulse-chase study 

using two different fluorescent ligands of HaloTag protein.  Cover slips that were plated 

with Cx36-Halo transfected HeLa cells were labeled with HaloTag OG ligand at time 0, and 

followed by HaloTag TMR labeling at hour 0.3, 1, 2, 3, 4, 5.  At 0.3 hours, we can see that 

the majority of the gap junction was labeled with OG (Figure 13A).  As the time progressed, 

the amount of TMR labeling increased in the gap junction and the amount of OG labeling 

decreased.   
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Figure 13.  Pulse-chase analysis of Cx36 turnover rate.  A-F) confocal microscope images of 
Cx36-Halo in HeLa cells labeled with OG (pulse) and TMR (chase) at hour 0.3, 1, 2, 3, 5, 6.   
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               In the last time point, the majority of the gap junction was labeled with TMR.   The 

TMR label was largely present in small vesicles throughout all the time points, and partially 

and increasingly infused into the gap junction (Figure 13Aii-Fii).  The TMR label at hour 6 

was mixed throughout the whole gap junction (Figure 14), not just on the outer edge as 

previously reported (Falk et al., 1994).  It showed a progressive removal of the old gap 

junction protein, which was labeled with OG, and replacement of new gap junction protein, 

which was labeled with TMR.   

 

 
 
Figure 14.  Zoomed in image at hour 6.   

 
 
 
             We used SimplePCI program to measure the amount of OG and TMR labeling in 

each time point, and calculated the percentage of the old gap junction protein in relationship 

with the total amount of gap junction protein present (Figure 15).  The decay was plot in 
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exponential curve (we used scatter plot of individual data point to provide a more accurate 

fit for the curve).  The calculated half-life for the decay was 2.8 hours, which is consistent 

with the previous studies.  

 

Figure 15.  Calculation of Cx36 half-life in HeLa cells.  . 
 
 
 
 
 
 3. Treatment of the transfected cells with Brefeldin A successfully blocked the 

assembly of new gap junction. 

With the exception of Cx26 (Zhang et al., 1996), it is generally considered that 

connexins are modified in the ER (Ahmad et al., 1999a)	  (Zhang et al., 1996), transported to 

Golgi, assembled in the TGN (Koval et al., 1997)	  (Musil and Goodenough, 1993), and 

finally inserted into the plasma membrane (Laird, 1996; Thomas et al., 2005)	  (Laird, 1996).  
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To confirm that the assembly of Cx36 to the plasma membrane involves the same pathway, 

we repeated the pulse chase analysis with treatment of BFA, which disassembles the Golgi 

apparatus complex.  The original gap junctions were again labeled with OG, and chased 

with TMR.  We saw that at time 0.3 hours, all the gap junctions were labeled with OG, with 

minimal amount of TMR labeling (Figure 16A).  As time progressed, the amount of TMR 

labeling did not increase in the gap junction. Most of the TMR label was present in small 

vesicles and some large vesicles; almost none integrated into the gap junctions (Figure 

16Aii-Fii).  At the 5th hour, the OG was still the only labeling present in the gap junctions 

(Figure 16F).  We concluded that Golgi was essential for Cx36 gap junction assembly.  
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Figure 16.  Pulse-chase analysis of Cx36-Halo in HeLa cells with treatment of BFA.   
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We performed the same SimplePCI analysis to evaluate the fraction of OG labeling 

throughout the time points.  The fraction of OG present in the gap junction showed no 

significant change from hour 0 to 5 (Figure 17).  OG label remained to be the majority of the 

entire label present in the gap junction.  There was a small amount of TMR label present 

throughout all the time points, probably due to incomplete OG labeling at hour 0.                    

 

Figure 17.  The fraction of OG and TMR labels present throughout the time points.   

                   

4. Cx36 is trafficked to the plasma membrane in vesicles, and removed as annular gap 

junctions 

It has been reported that new connexins are trafficked in vesicles as undocked 

hemichannels and removed as double membrane vesicles called annular junctions (Laird, 
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1996).  In our confocal microscope images, we observed two different types of vesicles 

close to the gap junctions.  These vesicles were present throughout all the time points 

(Figure 18).   

 

Figure 18. Presence of vesicles throughout all time points in pulse-chase analysis.   

 

The first type of vesicle is small in size and solid.  These vesicles were mostly 

labeled with chase label (TMR).  They were often observed on the periphery of the pre-

existing gap junction plaques (Figure 19 arrows). In a few scenarios, they were present in 

the gap in an existing gap junction (Figure 19A yellow arrow).  These small vesicles were 

often found on the end of newly synthesized gap junctions, with a few in the middle section 

as well (Figure 19B).  The second type is significantly larger in size, and these vesicles are 

usually hollow in the middle.  In the HeLa cells with control treatment (Figure 16i-iii), these 
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vesicles were usually a mixture of OG labeled (Figure 19 solid arrowheads) and TMR 

labeled (Figure 19 asterisks).  The OG labeled large vesicles were usually close to pre-

existing gap junctions whereas the TMR labeled large vesicles were generally further away 

(Figure 19B and C).  We also found OG labeled Cx36 budding off the pre-existing gap 

junction (Figure 19B blue arrows) near the end as well as in the middle of a gap junction.  In 

the BFA treated cells (Figure 18iv-vi) where gap junctions are less abundant, we found that 

most of the large vesicles were OG labeled in the beginning hour, most of the large vesicles 

were TMR labeled in the final hour, and a mixture of both in between.  We speculate that 

the small vesicles are synthesis vesicles that contain undocked hemichannels that are 

transported to the gap junction for exocytotic incorporation.  The large ring shaped vesicles 

are removal vesicles.  They form double membrane annular junction, where connexons are 

paired as gap junctions.  Usually the removal vesicles would be OG labeled, but we saw 

TMR labeled removal vesicles as well.  This is probably because Cx36 is synthesized in 

excess.  As a result, newly synthesized Cx36 proteins get packaged into vesicles to be 

removed before ever incorporated into gap junction plaques.  In the BFA treated cells, newly 

synthesized Cx36 cannot integrate into gap junctions. They still formed large hollow 

vesicles that morphologically resemble annular junctions.  They are unlikely to be the 

conventional annular junctions since these newly synthesized Cx36 never reached the 

plasma membrane and docked with hemichannels from the adjacent cells.  A previous study 

showed that when connnexins are over-expressed, double-membraned gap junctions form 

within the intracellular compartment, including the ER (Kumar and Gilula, 1992).  These 

annular junctions formed by TMR labeled Cx36 double-membraned gap junctions are 

probably the artifact of over-expresion of Cx36 in HeLa cells.  These annular junctions are 



38	  
	  

transported to lysosomes subsequently where the gap junction proteins are degraded (Laird, 

1996)	  (Thomas et al., 2002).  
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A. 

                     

B. 

                           
C. 

                          

Figure 19.  Endocytosis and exocytosis of Cx36 into the gap junction.   
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Discussion 

Gap junction protein turnover 

To study the turnover rate of gap junction protein, it is important to develop a means 

to label and track gap junction protein efficiently and specifically.  In this study, we 

employed the new HaloTag technology to label Cx36 in HeLa cells.  We created one genetic 

construct inserting HaloTag protein into the C-terminal of Cx36.  Our live and fixed cell 

imaging suggests that the Cx36-Halo construct can successfully migrate to the plasma 

membrane and form gap junctions.  We labeled the HaloTag protein with HaloTag TMR 

ligand, which formed irreversible covalent bonds with the HaloTag protein.  Expression of 

Cx36-Halo construct is the most efficient 24 hours after transfection in HeLa cells.  Double 

labeling of HaloTag ligand and Cx36 antibody confirmed that imaging with HaloTag ligand 

is efficient and sufficient to label Cx36 gap junction.  To confirm that the insertion of 

HaloTag protein did not alter the properties of Cx36, we performed a scrape loading 

experiment to see how gap junctions formed by Cx36-Halo construct are regulated by PKA 

activity.  Wild-type Cx36 gap junction coupling is inhibited by activation of PKA and vice 

versa.  Our scrape loading experiment confirmed that Cx36-Halo gap junctions are regulated 

by PKA the same way as the wild-type Cx36 gap junction.   

Pulse-chase analysis is the most common way to study turn over rate of a protein in 

cell cultures.  With the Cx36-Halo construct, we were able to label Cx36 at two different 

time point efficiently and specifically.  Our results demonstrated that Cx36 migrates to and 
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away from the gap junction plaque with a half life of 2.8 hours, which is consistent with 

prior studies of turnover rates of other connexins.   

Most connexins are synthesized in the ER, modified in the Golgi apparatus and 

TGN, and finally inserted into the plasma membrane, where they dock with hemichannels 

from the adjacent cell membrane.  We repeated the pulse-chase analysis with treatment of 

BFA, which disrupted the TGN, and successfully prevented the addition of new connexins 

into the gap junction plague.  This confirmed that Cx36 travels through the traditional ER-

Golgi-TGN-plasma membrane in order to form gap junction plaque.   

Previous studies have reported that connexons are incorporated in the gap junction as 

undocked hemichannels packaged in vesicles (Gaietta et al., 2002) (Lauf et al., 2002), and 

removed as paired channels that form a double membrane vesicle known as annular junction 

(Laird, 1996) (Gaietta et al., 2002) (Laird, 1996) (Lauf et al., 2002).  These annular gap 

junctions subsequently are transported to lysosomes, where they are degraded (Laird, 1996) 

(Piehl et al., 2007).  Our microscopic evidence is consistent with this theory by showing two 

different classes of vesicles: the small synthesis vesicles for exocytosis and the large ring 

shaped vesicles for endocytosis.  Future studies could be done to verify the identities of two 

classes of vesicles.  We could do electron microscopy to see whether the vesicles are single 

or double membrane vesicles.  We could also double-label Cx36-Halo with lysosomal 

markers to identify the removal vesicles.   

 

 

 



42	  
	  

Factors influencing turnover rate studies 

Although our reported half-life of Cx36 in HeLa cells is consistent with the studies 

of other connexins in cell cultures and whole organs (Herve et al., 2007), as well as the 

electrophysiology data of Cx36 half-life in Mauthner cells reported by the Pereda group 

(Flores et al., 2012), there are still considerable factors that may influence the measurement 

of half-lives.  Turnover rate of plasma membrane proteins have been reported to be very 

different in different cell types.  It is believed that the turnover rate of a certain protein can 

be cell type specific instead of protein specific.  For example, Cx32 showed a half-life of 4-6 

hours in rat hepatocytes (Traub and Wong, 1983), but only 2.5-3 hours in mouse embryo 

hepatocytes (Traub et al., 1987), suggesting that Cx32 gap junctions turn over faster in 

embryo cells.  When turnover rate studies are carried out in primary cultures of cells, cells 

may contain intact gap junctions from their previous neighbors before cell division and 

isolation, and these gap junctions are removed and internalized in a very rapid rate (Herve et 

al., 2007).  In these conditions, connexin turnover rate might be faster in cell cultures than 

intact tissues.  However, pulse-chase analysis showed that Cx43 had similar half-life in 

metabolically labeled rat heart (Beardslee et al., 1998) and cultured myocytes (Laird et al., 

1991) (Darrow et al., 1995) (Laing et al., 1998).  In some cases, connexins in primary cell 

culture even showed a slower turnover rate, i.e. Cx45 reported a half-life of 4.2 hours in 

HeLa cells (Hertlein et al., 1998), but only 2.9 hours in rat cardiac myocytes (Darrow et al., 

1995).   
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Contribution of turnover to electrical synaptic plasticity 

Connexin proteins have relatively fast turnover rates, with short half-lives of a few 

hours.  The reasons for this fast turnover rate have remained elusive.  It is possible that 

connexin proteins, like many other integral membrane proteins, have to constantly respond 

to physiological changes.  Their up- or down-regulation in response to certain physiological 

changes may be crucial in cell survival.  One example is given by the hyperglycemia 

enhanced degradation of Cx43 in bovine retinal endothelial cells, where half-life of Cx43 

reduced from 2.3 hours to 1.9 hours (Fernandes et al., 2004).  This implied that natural 

stress, like oxidative or heat stress, can affect the turnover rate of connexins.     

In previous studies, the numbers and size of Cx36 has been assessed in different 

conditions with different treatments.  Kothmann et al. showed that phosphorylation of 

regulatory sites on Cx36 did not alter trafficking and distribution of the protein. Cx36 plaque 

size and number of Cx36 plaques per unit area remained the same after treatment of 

dopamine receptor agonist and antagonist on AII amacrine cell dendrites in IPL of rabbit 

retina while tracer coupling changed 20-fold (Kothmann et al., 2009).   Li et al. also showed 

that the number of Cx36 plaques per unit area in the OPL was not affected by light or dark 

adaptation of the mouse retina while coupling changed dramatically (Li et al., 2013).   One 

recent publication from the Sekaran lab showed that Cx36 protein level was regulated by 

diurnal and circadian rhythm (Katti et al., 2013). The level of Cx36 transcript peaked in the 

late night phase and immune-labeling showed a higher Cx36 expression level in the night 

phase than in the day in the OPL of mouse retina.  This contradicts the findings in the Li et 

al. paper where number of Cx36 gap junction plaques did not change with time of day.  

Sekaran lab measured the amount of Cx36 present with western blot and Cx36 transcript 
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expression level, which could be measuring a combination of membrane and intracellular 

pool of proteins.  It reflected the fluctuation in Cx36 protein synthesis rate, which could be 

contributing to the change in protein level.   

The turnover rate we observed is too slow to contribute substantially to short-term 

changes in coupling of neurons driven by transmitters such as dopamine, which take minutes 

to achieve.  But with further physiological and electrophysiological studies, we may be able 

to show that Cx36 turnover rate contributes to long-term plasticity in electrical synaptic 

strength.  Katti et al. suggested that turnover of Cx36 was more likely affected in the protein 

synthesis and transcriptional level with diurnal and circadian regulation.  It is possible that 

Cx36 turnover rate changes to alter long term plasticity in response to the change in levels 

neurotransmitters such as dopamine and adenosine, which are key regulators in Cx36 gap 

junction coupling (Li et al., 2009a) (Kothmann et al., 2009) (Li et al., 2013).  With HaloTag 

technology, we can use the metabolic labeling and pulse-chase analysis to further study 

Cx36 turnover rate in different conditions and its role in electrical synapse plasticity.    
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