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Supervisory Professor: Mien-Chie Hung, Ph.D. 

 

ABSTRACT 

 

Brain metastasis is a common cause of mortality in cancer patients.  Approximately 

20-30% of breast cancer patients acquire brain metastasis, yet potential therapeutic 

targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-

IR) is known to play a role in the progression of breast cancer and is currently being 

investigated in the clinical setting for various types of cancer. The present study 

demonstrates that the IGF-IR signaling axis is constitutively active in brain-seeking 

sublines of breast cancer cells, driving an increase in in vitro metastatic properties.  

We demonstrate that IGF-IR signaling is activated in an autocrine manner as a 

result of IGFBP3 overexpression in brain-seeking cells.  Transient and stable 

knockdown of IGF-IR results in a downregulation of IGF-IR downstream signaling 

through phospho-AKT, as well as decreased in vitro migration and invasion of MDA-

MB-231Br brain-seeking cells.  Using an in vivo experimental brain metastasis 

model, we show that IGF-IR ablation attenuates the establishment of brain 

metastases and prolongs survival. Finally, we demonstrate that the malignancy of 

brain-seeking cells is attenuated by pharmacological inhibition with 
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picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data 

suggest that the IGF-IR is an important mediator of brain metastasis and its ablation 

delays the onset of brain metastases in our model system. 
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CHAPTER 1 
 

INTRODUCTION
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1.1 Metastatic Brain Tumors (MBTs) of Breast Cancer 

Brain metastases are the most frequent type of malignant brain tumors, and they 

commonly originate from lung, breast, melanoma, renal, and colon cancers 

(Barnholtz-Sloan et al., 2004; Eichler et al., 2011; Weil, Palmieri, Bronder, Stark, & 

Steeg, 2005). Approximately 10-16% of breast cancer patients develop brain 

metastases, and this continues to be a major cause of mortality in women 

(Barnholtz-Sloan et al., 2004; Cheng & Hung, 2007; Saunus, Momeny, Simpson, 

Lakhani, & Da Silva, 2011; Weil et al., 2005).  The mean survival of patients with 

brain metastases ranges from 3-18 months, with a one-year survival rate of 20% 

(Andrews et al., 2004; Cheng & Hung, 2007; Sperduto et al., 2010).  One recent 

retrospective study found that the presence of leptomeningeal disease (LMD) or 

triple-negative/Her2 status correlated with an even poorer than overall median 

survival of 3.1 months (Quigley, Fukui, Chew, Bhatia, & Karlovits, 2012).  A 

retrospective study found that survival time is longer in patients who had a single 

metastatic lesion at diagnosis that was resected by surgery or gamma knife surgery 

(14.9 months), followed by patients who received whole brain radiotherapy alone 

(5.4 months), as compared to the patients who received no treatment (2.1 months) 

(S. S. Lee et al., 2008).  The incidence of brain metastases is thought to be on the 

rise as patients are living longer due to the success of current therapies at 

controlling systemic disease while increasing the likelihood of circulating tumor cells 

to infiltrate the blood brain barrier (Cheng & Hung, 2007; Steeg, Camphausen, & 

Smith, 2011).  Brain metastases are even more common in patients with Her2-
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positive breast cancer who received treatment with Trastuzumab, which is very 

effective at controlling Her2-positive systemic disease but has poor effectiveness in 

the brain due to presence of the blood-brain barrier (N. U. Lin & Winer, 2007).  

Unfortunately, the increase in the proportion of patients presenting with brain 

metastases has not been met with a corresponding increase in available 

treatments, and there remains an urgent need for effective therapies to prevent and 

treat this condition. 

 

1.2 Organ specificity of breast cancer metastasis 

Stephen Paget’s 1889 “seed and soil” hypothesis predicted that cancer cells, or 

“seeds” crosstalk with certain organ microenvironments, or “soil”, during the process 

of metastasis (Paget, 1989).  Another theory of cancer metastasis is the anatomical 

or mechanical model, which posits that tumor cells metastasize to the first organ 

they encounter in the circulation, as in the case of colon cancer liver metastasis 

(Langley & Fidler, 2011).  The extent to which each of the models most closely 

describes the process of metastasis remains unclear, but the consensus is that both 

anatomical and microenvironmental factors are at play.  Like several other cancer 

types, breast cancer preferentially metastasizes to certain organs, including the 

bone, lungs and liver.  Figure 1 shows a schematic of a metastasizing breast cancer 

cell and the various barriers it must overcome in order to establish successful 

metastases.  The brain is typically the last organ to acquire metastatic lesions, due 

to the initial protection provided by the blood-brain-barrier. 
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Molecular mechanisms underlying organ-specificity are continuously being 

uncovered, but there is still a long way to go in our understanding.  A major 

determinant of breast cancer cells’ ability to colonize in a new niche depends on the 

ability of the tumor cells to arrest, adhere to and penetrate the different organ 

barriers, and subsequent survival and proliferation of the cells in the metastatic 

niche.  Figure 1 depicts a metastatic breast cancer cell in the circulation, and the 

various layers that must be overcome in order for the cell to invade the bone, lung 

and brain (Nguyen, Bos, & Massague, 2009). 

In bone metastasis, chemokines such as SDF-1, osteonectin and osteopontin, 

among others, are known to promote breast cancer cell homing to the bone 

(Langley & Fidler, 2011).  Expression level of CXCR4, the SDF-1 receptor in breast 

cancer cells was found to predict bone relapse in a recent clinical trial of patients 

with breast cancer (Sacanna et al., 2011).  Furthermore, a gene signature 

comprising mainly of cell surface and secreted proteins was found to determine the 

bone-specific metastasis of 231 breast cancer cells (Kang et al., 2003).  Two of the 

genes, interleukin-11 and CTGF, corresponded to osteolytic factors that are further 

enhanced by the prometastatic cytokine TGF beta, which is commonly secreted in 

bone (Buijs, Stayrook, & Guise, 2011). 

Brain metastasis is a relatively new field of study, and it has recently come into 

focus due to its increasing incidence, limited treatment options and dismal survival 

rates.  A 2009 study by Bos. et al. identified several genes that mediate 

extravasation of breast cancer cells through the blood-brain-barrier.  
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Cyclooxygenase COX2, HB-EGF (an EGFR ligand) and ST6GALNAC5, a 

sialyltransferase collectively accounted for the brain-metastatic properties of breast 

cancer cell lines (Bos et al., 2009).  Another study by Palmieri et al. found Her2 

overexpression increases brain metastasis of 231 breast cancer cells in a mouse 

model (Palmieri et al., 2007).  In a subsequent study, the same group discovered 

that PEDF, a secreted cytokine, is downregulated in brain metastases, and its 

restoration inhibits the outgrowth of large brain metastases, while simultaneously 

offering neuroprotection to neuronal cells (Fitzgerald et al., 2012).  Furthermore, a 

recent study by Su et. al. found that TAp63-/- mice can develop mammary 

carcinomas that spontaneously metastasize to the lung, liver and brain (Su et al., 

2010).  Another study showed that CXCR4 and its ligand SDF-1 alpha promoted 

migration the transendothelial migration of breast cancer cells by increasing 

permeability of monolayers of brain microvascular endothelial cells (B. C. Lee, Lee, 

Avraham, & Avraham, 2004).  Most recently, a study by Okuda et al showed 

microRNA-7 is downregulated in brain metastases of breast cancer, resulting in 

upregulation of KLF4, which endows metastatic breast cancer cells with stem-like 

qualities and brain-specificity (Okuda et al., 2013). 

Despite these advances in the study of brain metastasis in breast cancer, there is 

much work to be done to complete our understanding of the disease. 
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Figure 1 
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Figure 1. Potential barriers to metastasis of breast cancer to different sites. 

"Breast cancer cells entering the circulation can infiltrate a distant organ if they 

carry the necessary functions for extravasation. The fenestrated structure of bone 

marrow sinusoid capillaries is more permissive to cancer cell infiltration than the 

contiguous structure of lung capillary walls. Brain capillaries are more difficult to 

penetrate, owing to the unique nature of the blood-brain-barrier. Infiltration through 

these barriers selects for tumor cells that express the necessary extravasation 

functions. These functions can be provided by genes for which expression in 

primary tumors independently provides a selective growth advantage (such as 

vascular remodeling) or by genes for which expression in primary tumors provides 

no benefit but is a consequence of tumor microenvironment signals.” 

Reprinted with permission from Macmillan Publishers LTD: [Nature Reviews 

Cancer] (Nguyen et al., 2009), copyright 2009. 
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1.3 Role of the organ microenvironment in metastasis 

It is well established that the tumor microenvironment actively participates in the 

metastatic process, through the interaction with the Extracellular Matrix (ECM) and 

recruitment of a variety of cells including tumor-associated fibroblasts, immune cells 

and bone-marrow derived cells (Joyce & Pollard, 2009).  A recent study published 

by Luga et. al. showed that breast cancer associated fibroblasts secrete exosomes 

that activate the Wnt-PCP (planar cell polarity) pathway which induces cancer cell 

protrusions and motility, leading to metastasis (Luga et al., 2012).  The tumor 

microenvironment, thus, is an important factor in determining whether metastatic 

foci will establish successfully. 

1.4 EMT and tumor cell plasticity in metastasis 

EMT, or epithelial-mesenchymal-transition, is the process by which cells switch their 

morphology and biochemical properties from epithelial to mesenchymal type (Kalluri 

& Weinberg, 2009).  This process involves loss of expression of epithelial markers 

such as E-cadherin, adherens junction proteins and catenins, concomitant with a 

gain of expression in mesenchymal markers such as vimentin and fibronectin 

(Thiery, 2002).  EMT allows cancer cells to dissociate from the tumor and acquire 

the ability for invasion and metastasis (Kalluri & Weinberg, 2009).  However, the 

role of EMT in metastasis is considered “controversial”, due to a scarcity of in vivo 

evidence of the EMT process.  The controversy is fueled by studies that found 

metastatic tumors tend to have epithelial-like properties, not mesenchymal 

properties as suggested by the EMT theory (Ledford, 2011).  However, many argue 

that EMT must be a reversible process, termed MET, necessary for metastatic cells 
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to survive and proliferate in the target organ.  A recent paper by Tsai and 

colleagues in the journal Cancer Cell showed that inducible expression of the 

transcription factor Twist1 is sufficient to promote the EMT transition in cancer cells, 

and shutting off this protein in the target organ where cells have metastasized 

results in a reversion of EMT, or MET, and allows cells to proliferate successfully in 

the metastatic site (Tsai, Donaher, Murphy, Chau, & Yang, 2012).  In addition, Tsai 

et al. argue that a “partial EMT” may be sufficient for metastasis in some cases, a 

feature that facilitates the MET process in the distant organ and which has been 

reported in a recent study of bladder cancer metastasis (Tran et al., 2013).  

Furthermore, it has been shown that repression of MET-inducing factors (Ocana et 

al., 2012) and a reversal of EMT is a hallmark of successful metastasis (Chaffer et 

al., 2006).  Interestingly, a partial MET phenotype was reported by Chao et al. in 

prostate cancer and breast cancer metastases, including brain metastases, 

characterized by re-expression of E-cadherins with mostly conserved expression of 

mesenchymal markers (Y. Chao, Wu, Acquafondata, Dhir, & Wells, 2012).  The 

authors postulated that a partial MET not only facilitates metastasis in the first target 

distant site, but also facilitates the subsequent round of EMT that enables 

metastasis from metastasis.  Taken together, these recent studies point to a 

metastasis model whereby tumor cells possess a degree of plasticity that is molded 

by the primary tumor and the metastatic site’s stromal microenvironment, rather 

than a fixed genetic signature that dictates a sequence of metastatic steps. 

However, even with mounting evidence in favor of EMT/MET theory, there is a 

different school of thought that advocates for genetic selection, or a kind of 
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Darwinian adaptation as the basis for metastasis.  This theory posits that metastasis 

is the end result of a series of genetic mutations that occur in response to 

environmental pressures.  Rather than one theory prevailing over the other, it is 

likely that both mechanisms are at play in metastasis formation.  Scheel et al., for 

example, propose that genetic selection is likely responsible for the early stages of 

metastasis leading up to the pre-invasive stage, while it is unlikely that genetic 

evolution is responsible for all of the biochemical and morphological changes that 

allow cells to dissociate from the solid tumor.  This is supported by observations that 

EMT typically takes place in the outer edges of “epithelial islands” within solid 

tumors (Scheel, Onder, Karnoub, & Weinberg, 2007); in other words, EMT happens 

primarily in those cells that are in direct contact with the host microenvironment, not 

in the entire tumor as would be expected in a genetic adaptation model.  Still, other 

cases exist that support a clonal selection model in which particular genetic profiles 

give rise to metastasis, such as evidenced in medulloblastoma metastases that 

have nearly identical genetic profiles to each other, but different from their primary 

tumor of origin (Wu et al., 2012).  Therefore, it is important to keep in mind both of 

these theories when evaluating the role of IGF-IR in brain metastasis of breast 

cancer in our model system. 

1.5 Blood-Brain Barrier 

The blood-brain barrier (BBB) is the layer that separates the brain microvessels’ 

capillary lumen from the brain parenchyma, and it plays an important role in both 

initially blocking tumor cell invasion and protection of the tumor cells once they have 

begun the process of invasion (Wilhelm, Molnar, Fazakas, Hasko, & Krizbai, 2013).  
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The BBB is composed of endothelial cells, a basal membrane, pericytes and 

astrocytes(Cheng & Hung, 2007; Wilhelm et al., 2013).  The BBB endothelial cells 

are connected by tight junctions and adherens junctions, which are composed of 

transmembrane proteins such as occludin, claudins, immunoglobulin-like molecules 

also known as junctional adhesion molecules, and others that have not been well 

characterized(Cheng & Hung, 2007; Wilhelm et al., 2013). 

1.6 Therapies for brain metastatic breast cancer 

Therapeutic approaches for the treatment of brain metastasis are limited.  In cases 

where brain metastases are diffuse, whole-brain radiotherapy (WBRT) is a standard 

therapy, but mainly provides a palliative solution, since tumors inevitably become 

resistant to radiation and recur (Padovani, Muracciole, & Regis, 2012).  One recent 

study identified the Hepatocyte growth factor (HGF) – c-Met pathway as 

overexpressed in breast cancer lines that were irradiated.  By combination of 

radiotherapy and c-Met inhibitors, they were able to harness this resistance 

pathway and synergistic effects in a mouse model, which may be a future direction 

for this line of treatment (Yang et al., 2013). 

Stereotactic radiosurgery (SRS), or gamma-knife radiosurgery, is used in cases with 

3 or less metastatic lesions.  Survival rates of patients treated by gamma-knife vary 

by subtype of the primary tumor, with HR+/Her2+ (luminal Her2) subtypes showing 

the longest survival and HR-/Her2- (basal type) with the lowest survival (Vern-Gross 

et al., 2012).  However, whether survival times are dependent on gamma-knife 

surgery itself is unknown.  A study of WBRT in combination with SRS showed 
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improved local control of disease, although overall survival remained the same 

(Tsao et al., 2012).  However, another study found that omission of WBRT with SRS 

led to progression of brain metastases (Dyer et al., 2012).  Discrepancies between 

the conclusions of these and many other studies highlight the complexity of the 

disease and the need for a better understanding of the underlying mechanisms that 

mediate response to the different available therapies. 

Despite the dearth of therapies for brain metastasis, some new approaches are 

beginning to show promise in the clinic.  In patients with Her2 positive metastatic 

breast cancer, Trastuzumab is the standard of care therapy.  When administered 

after the diagnosis of brain-metastatic disease, Trastuzumab extends overall 

survival, presumably due to control of systemic disease and relatively easier access 

to the brain in patients with a leaky blood-brain barrier (Mehta, Brufsky, & Sampson, 

2012).  In patients with an intact BBB, however, the drug’s molecular weight is too 

large to gain access into the brain parenchyma.  A recent Phase II clinical trial 

tested the efficacy of systemic treatment with lapatinib in combination with 

capecitabine as a first-line therapy for Her2-positive metastatic breast cancers 

previously untreated for brain metastases.  In this setting, the drug combination 

achieved 65% response consisting of at least 50% volumetric reduction of brain 

metastases, and all patients in the study achieved at least a partial response 

(Bachelot et al., 2013).  Interestingly, patients treated with the combination of 

lapatinib plus capecitabine received a 7 month increase in survival compared to 

patients who were treated with trastuzumab-based therapy (Kaplan et al., 2013). 
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Since it is believed that the efficacy of brain metastasis therapies are mostly limited 

by the presence of the blood-brain-barrier, new techniques are under development 

that focus on overcoming this obstacle.  One such new technique is called 

ultrasound-mediated blood-brain-barrier disruption, which permeabilizes the 

BBB/BTB using focused ultrasound bursts and microbubbles in the circulation.  

When combined with trastuzumab treatment, this technique was shown to 

significantly extend the survival of rat model of brain metastasis of BT474 breast 

cancer cells, compared to controls treated with trastuzumab alone (Park, Zhang, 

Vykhodtseva, & McDannold, 2012). 

1.7 The type-I Insulin-like growth factor signaling axis 

Figure 2 shows the key components of the IGF-I Receptor signaling axis discussed 

in the sections that follow. 

1.7.I IGF-I Receptor 

The type I insulin-like growth factor receptor (IGF-IR) is known to promote 

metastasis in several cancers, including those of the colon, pancreas, prostate, and 

breast (Chitnis, Yuen, Protheroe, Pollak, & Macaulay, 2008; Lopez & Hanahan, 

2002; Sachdev, Zhang, Matise, Gaillard-Kelly, & Yee, 2010). IGF-IR is composed of 

an extracellular α ligand-binding subunit and an intracellular β subunit responsible 

for signal transduction.  IGF-IR shares 84% homology with the intracellular tyrosine 

kinase domain of the Insulin Receptor (IR) (Fujita-Yamaguchi et al., 1986), and the 

homology is even higher in the ATP-binding site, at 95%.  It is therefore not 

surprising that IGF-IR receptors have been found to heterodimerize with IR and 



	   14	  

successfully transduce IGF-1-dependent downstream signals (Takata & Kobayashi, 

1994).   

IGF-IR is activated upon binding the IGF-I ligand, although IGF-II ligand, which 

shares 62% amino acid sequence homology with IGF-I, can also bind and activate 

the receptor with a two to fifteen-fold lower affinity (Fernandez & Torres-Aleman, 

2012; Vashisth & Abrams, 2010; Yu & Rohan, 2000). Upon ligand binding, IGF-IR 

becomes autophosphorylated at Tyr 1131, 1135, and 1136 in the β subunit and 

subsequently recruits a host of proteins, including IRS-2, that activate signaling via 

PI3K/AKT and Ras/Raf/MAPK pathways to promote cell motility and pro-metastatic 

behavior in breast cancer cells (Chitnis et al., 2008; Jackson, Zhang, Yoneda, & 

Yee, 2001; Kato, Faria, Stannard, Roberts, & LeRoith, 1994).  It is common for 

breast tumor tissues to express high amounts of IGF-IR, although amplification at 

the DNA level has been found in some cases as well (Adelaide et al., 2007).  

1.7.II IGF-I and IGF-II ligands 

In models of breast cancer bone metastasis, IGF-I ligand promotes motility of bone-

metastatic cells through IGF-IR activation (Yoneda, Williams, Hiraga, Niewolna, & 

Nishimura, 2001), and bone-derived IGF-1 can activate the process of bone 

metastases in breast cancer in a paracrine manner (Hiraga et al., 2012). Inhibition 

of astrocyte-derived IGF-1 ligand was shown to reduce in vitro growth and adhesion 

of a brain metastatic variant of MDA-MB-435 breast cancer cells (Sierra et al., 

1997). 
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In breast cancer patients, phosphorylated IGF-IR associates with poor survival, and 

a recent study further showed that phosphorylation of IGF-IR at Tyr 1135/1136 is 

correlated with brain metastases of breast and lung cancers (Improta et al., 2011; 

Law et al., 2008). However, the biological significance of IGF-IR activation in brain 

metastases of breast cancer has not been addressed to date. 

1.7.II.A IGFBP3 

The regulation of IGF-IR signaling is complex and not yet fully understood; however, 

it is well established that the IGF-IR signaling axis can be dysregulated by altered 

expression of the IGF ligands and IGF-binding proteins. The insulin-like growth 

factor binding protein-3 (IGFBP3) is the major binding protein and regulator of IGF-1 

ligand bioavailability and has been reported to inhibit as well as potentiate the 

activity of IGF-IR signaling in different cancers (Firth & Baxter, 2002; Martin & 

Baxter, 2011; Schedlich & Graham, 2002). In the least malignant breast cancer cell 

lines, IGFBP3 plays an inhibitory role as a tumor suppressor, and this function is 

reversed in highly malignant breast cancer cells which express higher levels of 

IGFBP3 (Schedlich & Graham, 2002).  IGFBP3 also promotes migration in breast 

cancer cells (O'Han, Baxter, & Schedlich, 2009). In melanoma metastasis, IGFBP3 

is overexpressed in metastatic tissues and is associated with malignant progression 

(Xi et al., 2006). IGFBP3 was also shown to stimulate IGF-IR phosphorylation 

indirectly through activation of sphingosine kinase 1 (SphK1) and EGFR 

transactivation (Martin & Baxter, 2011). Adding yet another layer of complexity is 

the finding that IGFBP3 expression itself can be regulated by IGF-1 ligand through 
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PI3K/AKT signaling in mammary epithelial cells, suggesting that the IGF-IR axis is 

self-regulated in an autocrine manner (Sivaprasad et al., 2004). 

1.7.III Insulin receptor substrate (IRS) proteins 

Insulin Receptor substrate proteins act as signaling intermediates between cell 

surface receptors, such as Insulin Receptor and Insulin-like growth factor receptor, 

and downstream signaling molecules such as PI3K and MAPK pathways.  They do 

not possess kinase activity, but instead act as scaffolds upon which other signaling 

molecules dock to form signaling complexes (Mardilovich, Pankratz, & Shaw, 2009).  

The IRS protein family consists of several isoforms: IRS-1 was the first described as 

a phosphoprotein that became phosphorylated in response to insulin stimulation, 

IRS-2 was the second discovered, believed to be homologous to IRS-1, and IRS-4 

which is only expressed in the brain, thymus, liver and kidney (Shaw, 2011).   

The two most significant IRS isoforms in normal physiology are IRS-1 and IRS-2, 

and they perform essential complementary roles in the regulation of glucose 

metabolism (Taniguchi, Ueki, & Kahn, 2005).  Knockdown of IRS-1 in livers of 

normal mice resulted in accumulation of gluconeogenic enzymes and increased 

blood sugar levels, whereas IRS-2 knockdown resulted in upregulation of lipogenic 

enzymes and accumulation of hepatic lipid (Taniguchi et al., 2005).  The general 

consensus about the roles of IRS proteins in cancer is that IRS-1 and IRS-4 

associate with tumor growth and cell proliferation, while IRS-2 promotes invasion 

and motility (Mardilovich et al., 2009).  In breast cancer metastasis specifically, IRS-
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1 appears to be a metastasis suppressor while IRS-2 promotes the metastatic 

process (Gibson, Ma, & Shaw, 2007). 
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Figure 2 

 

domain, and that the insulin receptor A (IR-A) isoform,
in particular, is capable of binding IGF-2 with high affin-
ity and mediating mitogenic signaling and survival (9).
In addition, IGF-1R is capable of forming heterodimers
with insulin receptor that seem to mediate similar signal-
ing events to IGF-1R homodimeric receptors (10).
Several lines of evidence have established a role for the

IGF-1R pathway as an important target for cancer therapy.
A seminal finding was the observation that expression of
IGF-1R is required for neoplastic transformation by a num-
ber of cellular and viral oncogenes, including SV40 large
T antigen, HRAS, and epidermal growth factor receptor
(EGFR), suggesting an obligatory role between expression

of this receptor and the acquisition of a transformed pheno-
type (11, 12). IGF-1R is also highly expressed in a wide va-
riety of human cancers (13), and in rare cases is found to be
amplified at the DNA level (14). This overexpression seems
to have functional consequences, in particular the ability
to block apoptosis induced by a variety of agents or ad-
verse tumor microenvironments (15–17), and can also
confer invasive and metastatic capability in a mouse
model of pancreatic tumorigenesis (18). Epidemiological
and functional studies have also implicated the ligands
IGF-1 and IGF-2 in various aspects of cancer biology. In
particular, elevated levels of circulating IGF-1 have been
associatedwith increased risk of developing breast, prostate,

Fig. 1. Key components of the IGF-1R pathway. The ligands IGF-1 and IGF-2 are both capable of binding and stimulating the catalytic activity of the IGF-1R.
Bioavailability of IGF-1 is modulated by a family of IGFBPs, whereas bioavailability of IGF-2 is modulated both by the IGFBPs and by binding to the
IGF-2R, an event that leads to receptor-mediated internalization and degradation of IGF-2 in lysosomes. Upon binding by either IGF-1 or IGF-2,
the IGF-1R undergoes receptor cross-linking and autophosphorylation, leading to the creation of multiple docking sites for the adaptor proteins IRS-1,
IRS-2, and Shc. IRS-1 and IRS-2 binding results in activation of the class I phosphatidyl inositol 3′ kinase, whose catalytic activity is the conversion of
PIP2 to the lipid second messenger PIP3. This event recruits the AKT family of kinases to the plasma membrane, where they can be phosphorylated and
activated by PDK1 and the mTOR-containing complex mTORC2. Activated AKT then mediates a host of cell signaling events, including disinhibition
of the mTORC1 complex and increased protein synthesis and cell growth, increased conversion of glucose to glycogen via inhibition of GSK-3β, and
increased proliferation and survival by activation or inhibition of key effectors such as the Foxo transcription factors, p27, BAD, and BCL-2. In contrast,
Shc binding to activated IGF-1R results in stimulation of the RAS/MAP kinase pathway, which also leads to increased cell proliferation.
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Figure 2.  Key components of the IGF-IR pathway.  

The IGF-1 and IGF-2 ligands are both capable of binding and stimulating the 

catalytic activity of the IGF-IR.  Bioavailability of IGF-1 is modulated by a family of 

IGFBPs.  Upon binding either IGF-1 or IGF-2, the IGF-IR undergoes receptor cross-

linking and autophosphorylation, leading to the creation of multiple docking sites for 

the adaptor proteins IRS-1, IRS-2 and SHC.  IRS-1 and IRS-2 binding results in 

activation of the class I PI3 Kinase, whose catalytic activity is the conversion of 

PIP2 to the lipid messenger PIP3.  This event recruits the AKT family of kinases to 

the plasma membrane, where they can be phosphorylated and activated by PDK1 

and the mTOR-containing complex MTORC2.  Activated AKT then mediates a host 

of cell signaling events, including disinhibition of the mTORC1 complex and 

increased protein synthesis and cell growth, increased conversion of glucose to 

glycogen via inhibition of GSK-3B, and increased proliferation and survival by 

activation or inhibition of key effectors such as the FOXO transcription factors, p27, 

BAD, and BCL-2.  In contrast, Shc binding to activated IGF-IR results in stimulation 

of the RAS/MAP kinase pathway, which also leads to increased cell proliferation. 

Reprinted with permission from the American Association for Cancer Research, 

provided by the Copyright Clearance Center. Copyright 2010, American Association 

for Cancer Research. 
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1.8 IGF-IR Inhibitors 

IGF-IR has become an attractive target in the clinic over the last ten years, due to 

its central role in cancer cell signaling.  Various monoclonal antibodies and tyrosine 

kinase inhibitors (TKIs) against IGF-IR are under investigation for treatment of solid 

tumors (Chitnis et al., 2008).  Most antibody-based IGF-IR inhibitors function by 

blocking IGF-ligand binding to the receptor, decrease expression of IGF-IR at the 

cell surface by mediating receptor internalization, and blocking intracellular signaling 

primarily through PI3K/AKT pathway (Zha & Lackner, 2010).  It is believed that 

monoclonal antibodies are more specific, due to the amino-acid sequence similarity 

of tyrosine kinase domain which makes specificity of TKIs a significant issue 

(Rodon, DeSantos, Ferry, & Kurzrock, 2008).  Initial results of IGF-IR treatment in 

large clinical trials have not been as successful as hoped; however, anecdotal 

cases of individual positive responses to IGF-IR therapies have encouraged 

continued study into biomarkers that will enable selection of the best target 

population (Gombos, Metzger-Filho, Dal Lago, & Awada-Hussein, 2012).   

Picropodophyllin (PPP) is the only tyrosine kinase inhibitor currently available that 

can discriminate between insulin receptor and IGF-IR (Girnita et al., 2004).  PPP is 

thought to inhibit IGF-IR by utilizing the MDM2 E3 ligase, which is known to 

ubiquitinate the IGF-IR and causes its downregulation (R. Vasilcanu et al., 2008). 

1.9 In vivo models of brain metastasis 

Although brain metastasis studies typically rely on a combination between in vitro 

and in vivo experimental approaches to formulate conclusions, some researchers 
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have recently argued that in vitro and in vivo studies of the early steps of brain 

colonization from the bloodstream should only be studied in vivo (Lorger, Lee, 

Forsyth, & Felding-Habermann, 2011).  Behavior of breast cancer cells in in vitro 

cell adhesion and transendothelial migration analyses, for example, correlate poorly 

with the behavior of the same cells in in vivo brain metastasis models.  Since cells 

are injected in the carotid artery, our model of brain metastasis circumvents many 

anatomical barriers and primarily addresses the late stages of brain metastasis.  

1.10 Statement of problem, hypothesis and project goals 

The functional role of IGF-IR in primary breast cancer and breast cancer 

metastasis has been well documented by others.  Furthermore, Improta et. al. have 

found a correlation of phosphorylated IGF-IR in patient samples of brain metastases 

from breast cancer.  However, whether IGF-IR directly plays a functional role in the 

establishment of brain metastases has not been addressed.  It is possible that IGF-

IR activation in brain metastases is a result of the highly malignant primary and/or 

metastatic breast tumors from which they arise.  However, it is also possible that 

IGF-IR activation itself enables the establishment of breast cancer cells in the brain 

by means of a survival advantage.  Further studies are needed in order to discern 

whether IGF-IR provides a survival advantage to breast cancer cells in the brain.  

In the present study, we sought to address the biological relevance of IGF-IR 

signaling in the metastasis of breast cancer to the brain.  We hypothesized that 

IGF-IR activation confers a metastatic advantage and enables the outgrowth 

of breast cancer cells in the brain.  Figure 3 depicts a model of our hypothesis.  
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First, we test whether IGF-IR signaling plays a role in the metastatic potential of 

brain-seeking breast cancer cells in vitro. Using an in vivo experimental brain 

metastasis model, we found that ablation of IGF-IR expression can prevent the 

outgrowth of brain metastases, suggesting that this signaling pathway merits further 

study as a potential target for the treatment of breast cancer brain metastasis. 
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Figure 3 
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Figure 3.  Model depicting project hypothesis.  

Brain-seeking breast cancer cells overexpress the secreted form of IGFBP3, which 

may enhance the bioavailability of IGF-1 or independently activate IGF-I Receptor 

phosphorylation.  Once activated, IGF-IR recruits docking proteins such as IRS-2, 

which enable the assembly of protein complexes that transduce signaling 

downstream through the PI3K/AKT pathway.  IGFBP3 may also modulate the brain 

microenvironment in a paracrine manner, but future studies should explore that 

possibility in further detail.  
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MATERIALS AND METHODS 
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2.1 Cell Culture 
All cancer cell lines were maintained at 37°C in a 5% CO2 incubator. Unless 

otherwise noted, cells were cultured in complete medium containing DMEM/F12 

with 10% fetal bovine serum (FBS) and penicillin/streptomycin. The human MDA-

MB-231Br (brain-seeking) cell line and its corresponding MDA-MB-231P (parental) 

cells were contributed by Dr. Patricia Steeg and previously described (Yoneda et 

al., 2001). The BT474 M1 (parental) and BT474 Br3 (brain-seeking) cell lines were 

established by Dr. Dihua Yu (MD Anderson, Houston, TX) and a detailed 

description of the BT474Br3 cell line will be published later by Dr. Yu’s group. Cell 

lines were validated by STR DNA fingerprinting using the AmpFlSTR Identifiler kit 

according to manufacturer instructions (Applied Biosystems). The STR profiles were 

compared to known ATCC fingerprints (ATCC.org), to the Cell Line Integrated 

Molecular Authentication database (CLIMA) version 0.1.200808 (Nucleic Acids 

Research 37:D925-D932 PMCID: PMC2686526) and to the MD Anderson 

fingerprint database. The STR profiles matched known DNA fingerprints or were 

unique. Cells were incubated with 50 ng/mL human recombinant IGF-1 (#I3769, 

Sigma) for the indicated time points in ligand-stimulation experiments. 

 

2.2 Immunoprecipitation and Western blotting 

Equal numbers of cells per sample well were seeded and cultured in complete 

medium and/or treated as specified. For analysis, cells were washed with PBS, 

trypsinized, and pelleted. Equal amounts of protein were resuspended in IP binding 

buffer (10x RIPA containing 0.5 M Tris-HCl (pH 7.4), 10% NP-40, 1.5 M NaCl, and 
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10 nM EDTA). Either Rabbit IgG (#sc-2027, Santa Cruz Biotechnology) or anti-IGF-

IRβ (#sc-462, Santa Cruz Biotechnology) were added at 4°C overnight. Lysates 

were incubated with Protein G agarose beads for 4 hr at 4°C, pulled down by 

centrifugation, and then washed extensively with IP binding buffer containing 

protease and phosphatase inhibitors. Immunoprecipitates were denatured using 

sample buffer containing β-mercaptoethanol, centrifuged, and the protein-containing 

supernatants were then analyzed by SDS-PAGE. Membranes were incubated with 

anti-IGF-IRβ-pY1131/InsRβ-pY1146 (#3021, Cell Signaling Technology), anti-IGF-

IRβ-pY1135 (#3918, Cell Signaling Technology), and anti-p-Tyr-100 (#9411, Cell 

Signaling Technology) to measure phosphorylation level of IGF-IR.  For IP-Western 

input controls and all other samples analyzed by SDS-PAGE, wells were loaded 

with 70 µg of protein.  Western blot membranes were probed with anti-IGFBP3 (C-

19; #sc-6003, Santa Cruz Biotechnology), anti-AKT (#9272, Cell Signaling 

Technology), anti-pAkt (S473; #9271, Cell Signaling Technology), anti-S6K1 (#sc-

230, Santa Cruz Biotechnology), anti-pS6K1 (T389; #9205, Cell Signaling 

Technology), and anti-tubulin (#T5168, Sigma). For IGFBP3 Western blots, 48-hr 

conditioned medium was collected and concentrated 40-fold using Millipore Amicon 

Ultra-4 centrifugal filters (Fisher). Equal protein amounts were loaded into each well 

of an SDS-PAGE.   

 

2.3 Flow Cytometry 

IGF-IR phosphorylation was measured by flow cytometry.  Cells were prepared as 

previously described (Krutzik & Nolan, 2003).  Briefly, cells were serum-starved for 
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24 hr and then fixed for 10 min at room temperature with 1.5% paraformaldehyde by 

adding it directly into the medium used to collect cells after trypsinization. Cells were 

pelleted, permeabilized by adding ice-cold methanol and vortexing vigorously, and 

then incubated for 10 min at 4°C.  Cells were then washed twice with staining buffer 

(PBS containing 1% BSA) and resuspended in staining buffer at 500,000 cells per 

100 µl.  Finally, cells were stained with AlexaFluor 647 mouse anti-IGF-1 Receptor 

(pY1131; #558588, BD Biosciences) and analyzed using the BC Gallios flow 

cytometer. Unstained cells were used as a control. All data were analyzed using the 

FlowJo version X software. 

 

2.4 Production of stable cell lines 

MDA-MB-231Br cells were first transduced with the luciferase expression vector 

pLenti CMV V5-LUC Blast w567-1 (plasmid #21474, Addgene) and the selected 

using blasticidin. Stable IGF-IR knockdowns (shIGFR) were obtained by 

transfection of MDA-MB-231Br cells with two lentiviral pLKO.1 constructs containing 

shRNA against IGF-IR target sequences, GAGACAGAGTACCCTTTCTTT and 

GCCGAAGATTTCACAGTCAAA (TRCN0000121135 and TRCN0000039675, 

respectively, Open Biosystems). MDA-MB-231Br control cells (Vector) were 

obtained by stable transfection with a pLKO.1 puro empty vector control plasmid 

(Sigma). Luciferase, shRNA, or control constructs were co-transfected with lentiviral 

packaging plasmids into 293T cells, and viral particles were harvested at 24 and 48 

hr post-transfection. MDA-MB-231Br cells were infected with virus for 48 hr in the 

presence of 5 µg/mL polybrene. Luciferase-expressing cells were first selected by 
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incubation in complete medium containing blasticidin (2 µg/ml) for 2 weeks. After 

stable luciferase-expressing MDA-MB-231Br cells were obtained, shRNA and 

control vector infections were carried out and stable clones were selected using 

culture medium containing puromycin (2 µg/ml) for 2 weeks.  Knockdown of IGF-IR 

was verified by Western blot. Luciferase expression was measured using the IVIS 

imaging system to ensure all cell lines retained similar expression level. 

 

2.5 Wound-healing assays 

MDA-MB-231Br shIGF-IR or shControl stable cells were seeded in a Costar 12-well 

dish (Sigma CLS3513) and cultured until confluent.  A wound was introduced using 

a 200-µl pipette tip, and cell migration was monitored using the Zeiss Axiovert 200M 

time-lapse microscope and 10x phase contrast objective. Images of specific 

positions were taken at 30-min intervals over 24 hr and recorded using the 

AxioVision 4.6 software. Relative migration was calculated by measuring wound 

area at different time points using ImageJ. 

 

2.6 Intracarotid mouse model of experimental brain metastasis 

Female Swiss nu/nu mice 8 weeks of age were purchased in-house from MD 

Anderson’s Department of Veterinary Medicine and Surgery – ERO Animal 

Resources.  Mice were anesthetized with ketamine/xylazine and inoculated with 

200,000 MDA-MB-231Br-shControl, -shIGFIR (B) or -shIGFIR (F) cells in 100 µl 

HBSS via injection into the right common carotid artery. Cells were verified to have 

a minimum of 95% viability prior to inoculation in mice. Development of brain 
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metastasis was observed once weekly by luciferase imaging using the IVIS imaging 

system by Caliper Life Sciences.  For imaging, mice were anesthetized by 

isofluorane/O2 and injected intraperitoneally with 100 µL D-luciferin (Caliper Life 

sciences). Ten minutes after D-luciferin injection, images of brain metastases were 

captured using the Living Image 3.2 software. To obtain brain tissues, mice were 

euthanized according to animal facility guidelines under CO2 asphyxiation followed 

by cervical dislocation. Brains were excised immediately following euthanasia and 

fixed in 10% neutral buffered formalin 24-48 hr at room temperature. Samples were 

then washed thoroughly with PBS and cut into sections across the coronal plane. 

Brain cross sections were paraffin embedded for analysis by immunohistochemistry 

(IHC). All animal procedures were performed under the guidelines approved by the 

Institutional Animal Care and Use Committee (IACUC) at MD Anderson Cancer 

Center. 

 

2.7 Immunohistochemistry (IHC) 

For IHC, a modified immunoperoxidase staining method from the avidin-biotin 

complex technique was used as described previously (Xia et al., 2004). Slides (4 

µm thick) were first deparaffinized. Following antigen retrieval, the slides were 

digested with 10 mM Tween 20 citrate buffer (pH 6.0).  The endogenous peroxidase 

activity was blocked by incubation in 0.3% hydrogen peroxide. The slides were then 

blocked with 10% normal goat or horse serum for 30 min and incubated overnight 

with primary antibodies, including anti-IGF-IR pAb (1:80 dilution; Santa Cruz 

Biotechnology), anti-IGF-IR pAb (1:50; Cell Signaling Technology), anti-phospho-
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AKT (Ser473; 1:100; Cell Signaling Technology), anti-ki-67 pAb (ready to use; 

Zymed); and anti-GFAP pAb (1:50; Cell Signaling Technology). After primary 

antibody hybridization, slides were incubated with biotinylated secondary 

antibodies, followed by incubation with avidin-biotin-horseradish peroxidase 

complex (Vector Laboratories). Antibody detection was performed with the 0.125% 

aminoethylcarbazole chromogen (AEC) substrate solution (Sigma). The slides were 

counterstained with Mayer’s hematoxylin (Sigma) and then mounted. For the 

negative control, all incubation steps were identical except that PBS was used 

instead of primary antibody. For the positive control, a previously identified strongly 

staining tumor tissue section was used. The prepared slides were examined by light 

microscopy. To ensure absolute objectivity of these IHC studies, experienced 

pathologists, who stained and evaluated primary tumor sections, conducted the 

experiments. The slides in which there was a scoring discrepancy >10% were re-

evaluated and reconciled on a two-headed microscope. 

 

2.8 Cell cycle analysis 

Equal cell numbers were seeded in complete medium overnight and were either 

untreated or treated with picropodophyllin (Sigma) at 1 µg/mL for 48 hr.  Cells were 

then washed with PBS, trypsinized, and fixed in 70% ethanol for 24 hr.  After 

fixation, cells were washed twice with PBS and incubated with 40 µg/ml propidium 

iodide to stain DNA and 0.5 µg/ml RNAseH to degrade RNA to prevent it from being 

included in the cell cycle analysis. Cell cycle was then analyzed using the BC 

Gallios flow cytometer.  
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2.9 Quantitative real-time PCR of IGFBP3 

RNA from MDA-MB-231P and MDA-MB-231br cells was extracted using the Qiagen 

RNEasy mini kit (Qiagen). cDNA was obtained by using the SuperScript First-

Strand System for RT-PCR (Life Technologies). Real-time PCR reactions were 

prepared with 1x iQ SybrGreen Supermix (Bio-Rad) and 0.250 nM forward and 

reverse primers. Cycling conditions consisted of annealing, amplification and melt 

steps using the Applied Biosystems Veriti real-time PCR thermal cycler. Relative 

gene expression was calculated by dividing the IGFBP3 expression value by the 

HPRT1 expression value. 

 

2.10 Transwell migration and invasion assay 

Migration assays were performed using a 24-well transwell plate (Corning) and 

invasion assays were performed using the 24-well BD BioCoat Matrigel Invasion 

Chambers (BD Biosciences) according to the manufacturer’s instructions. MDA-MB-

231P (25,000) or  MDA-MB-231Br (40,000) cells were seeded in the chamber 

inserts and allowed to migrate for 24 hr. Migrated cells were fixed with 4% 

paraformaldehyde, stained with crystal violet (0.1% in ethanol), and counted. 

Experiments were performed a minimum of 3 times in triplicate, and 5 fields of cells 

were counted at 10x magnification per chamber insert.   

 

2.11 Proliferation assays 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of shIGF-

IR and shControl cells was performed by seeding cells overnight at a concentration 
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of 10,000 cells per well in a 96-well plate.  After 24, 48, and 72 hr, MTT reagent was 

added and cells were incubated at 37°C in 5% CO2 for 4 hr. Medium was then 

aspirated, and cells were lysed with DMSO and shaken gently for 1 hr at room 

temperature before measuring the optical density at 595 nm with a 

spectrophotometer. The growth of shIGF-IR stable transfectants was also measured 

by seeding cells at a concentration of 100,000 cells per well in a 6-well dish and 

counting cells using the Z1 Coulter Particle Counter (Beckman Coulter).  All wells 

for MTT Assay and cell counting experiment were seeded in triplicate and 

experiments performed a minimum of 3 times. 

 

2.12 Statistical analysis  

Significance in the brain metastasis-free survival curve was calculated using the 

Gehan-Wilcoxon test. All other samples were analyzed using a two-tailed student’s t 

test. Results with p < 0.05 were considered statistically significant.   
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CHAPTER 3 
 

THE ROLE OF TYPE I INSULIN-LIKE 
GROWTH FACTOR RECEPTOR IN BRAIN-

SEEKING BREAST CANCER CELLS 
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3.1 Brain-seeking breast cancer cells express higher amounts of IGF-I 

Receptor 

In order to assess the importance of IGF-IR in our model system, we were 

interested characterizing the expression profile of the receptor in our sets of 231 

and BT-474 parental and brain-seeking cell lines.  We performed a western blot of 

total IGF-IR expression in 231P/Br and BT474M1/Br3 cells, and found that IGF-IR is 

highly expressed in parental breast cancer cells, and expression is further increased 

in brain-seeking sublines (Figure 4, top).  Densitometric analysis was done using 

ImageJ software to confirm the increase in IGF-IR expression normalized to tubulin 

loading control (Figure 4, bottom).  Increased IGF-IR expression in brain-seeking 

cell lines suggested that this receptor may be enriched in highly metastatic cells. 

3.2 Type I IGFR is autophosphorylated in brain-seeking breast cancer cells 

Previous studies suggest that IGF-1 signaling and IGF-IR activation play a role 

in the brain specificity of metastatic breast cancer (Improta et al., 2011; Sierra et al., 

1997). To determine the relevance of IGF-IR activation in our model of brain 

metastasis, we characterized the activation profile of IGF-IR in parental MDA-MB-

231 (231P) and parental BT474 M1 breast cancer cells for comparison to their 

respective brain-seeking sublines, MDA-MB-231Br (231Br) (Yoneda et al., 2001) 

and BT474Br3.  One of the current limitations of studying the phosphorylated form 

of IGF-IR is the cross-reactivity of commercially available antibodies with 

homologous phosphorylation sites on the insulin receptor. To circumvent this issue, 

we first immunoprecipitated the IGF-IR β subunit with a specific antibody that does 
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not cross-react with the insulin receptor, followed by immunoblotting with phospho-

IGF-IR antibody against Tyr 1131, the earliest autophosphorylation site that is 

absolutely required for IGF-I ligand-dependent IGF-IR function (Kato et al., 1994). 

We found that 231Br and BT474Br3 cells had higher IGF-IR autophosphorylation 

compared to the parental cells under normal growth conditions in complete medium 

(Figures 5A and 5B). After normalizing each cell line’s phosphorylation signal to its 

own total IGF-IR protein band, autophosphorylation of IGF-IR was increased by 

27.4% and 21.6% in 231Br and BT474 Br3, respectively (Figures 5C and 5D). 

To confirm this observation and to obtain a more detailed picture of the IGF-IR 

activation profile in brain-seeking cells, we examined IGF-IRβ phosphorylation using 

flow cytometry with an Alexa647-conjugated phospho-Tyr1131-IGF-IRβ antibody. 

We found that both 231Br and BT474Br3 cell lines expressed more phosphorylated 

IGF-IR than parental breast cancer cells under normal growth conditions in 

complete medium (Figures 6A and 6B). An average of 36.4% of the 231Br cell 

population was positive for phospho-Tyr1131 IGF-IRβ, compared to 14.6% of 231 

parental cells (p < 0.005, Figure 6C, bottom left panel). Likewise, 81.9% of the 

BT474Br3 cell population was positive for phospho-Tyr1131 IGF-IRβ, compared to 

an average of 51.3% of the BT474 M1 parental cells (p < 0.05, Figure 6D, bottom 

right panel). In addition to the percentage of phospho-Tyr1131 IGF-IR positive cells, 

we also measured the median fluorescence intensity (MFI) of these populations, 

which refers to the shift in overall intensity of the phospho-Tyr1131 IGF-IRβ signal. 

Consistent with the results shown in Figure 6C and 6D, we observed an increase in 

MFI of the 231Br and BT474Br3 cell populations compared to the parental cells 
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such that the MFI of 231Br cells was 3.24, compared to 2.1 in the 231 parental cells 

(p < 0.0005; Figure 6E) while the BT474Br3 cell lines exhibited a similar trend with 

an MFI of 7.29 compared to 4.38 in the parental BT474 cells (p < 0.05, Figure 6F). 

One possible explanation for the higher phospho-IGF-IR observed in brain-seeking 

cells in Figures 5 and 6 is the higher expression level of total IGF-IR protein 

detected in whole cell lysates (Figure 4). The flow cytometry data indicated that 

IGF-IR is autophosphorylated in a higher percentage of brain-seeking cells, and that 

the mean intensity of IGF-IR phosphorylation in these cells is also higher. 

Collectively, these findings demonstrated that the total protein level and 

autophosphorylation of IGF-IR is higher in brain-seeking cells than in parental 

breast cancer cells.  
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Figure 4 
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Figure 4.  IGF-IR expression profile of breast cancer cell lines and brain-

seeking subclones.  

Top, Western Blot of total IGF-IR expression in 231P/Br and BT474M1/Br3 cells.   

Bottom, densitometric analysis of IGF-IR bands from top panel, normalized to 

Tubulin. ImageJ software was used for analysis. 
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Figure 5 
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Figure 5. IGF-IR is activated in brain seeking breast cancer cells.  

A and B, Immunoprecipitates of IGF-IRβ from lysates of the parental MDA-MB-231 

and BT474 breast cancer cells (231P, BT474 M1) and their respective brain-

seeking sublines (231Br, BT474 BR3), were analyzed by SDS-PAGE and 

immunoblotted with antibodies against the IGF-IR Tyr1131 autophosphorylation 

site. Cells were serum-starved overnight prior to lysis. 

C and D, Quantification of IGF-IR-pY1131 expression in 231P/Br, BT474M1/Br3 

cells after normalization to total IGF-IR IP band.  Phosphorylation of IGF-IR 

increased in both brain seeking cell lines. 
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Figure 6 
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Figure 6. IGF-IR is activated in brain seeking breast cancer cells.  

A and B, Flow cytometric analysis of IGF-IR activation in 231P & BT474 M1 breast 

cancer cells and respective brain-seeking sublines, 231Br and BT474 Br3, shown in 

Figure 5. Cells were serum-starved for 24h and stained with AlexaFluor 647-

phospho Y1131 IGF-IR antibody.  

C and D, Quantitation of flow cytometric analyses of fluorescent cells per group is 

shown below each panel. Values shown represent mean ± SEM from 3 replicates 

(*, p < 0.05, ***, p < 0.0005). 

E and F, Median Fluorescence Intensity shift captured by flow cytometric 

measurement of parental and brain-seeking breast cancer cells stained with 

Tyr1131-IGFR-Ax647 antibody. Values represent mean ± SEM (*, p < 0.05, ***, p < 

0.0005). 
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3.3 IGF-1 ligand stimulation drives migration and invasion in brain-seeking 

cells 

In order to test whether IGF-IR autophosphorylation and downstream functions 

are mediated by IGF-1 ligand bioavailability in brain-seeking cells, we examined the 

malignancy of brain-seeking cells under IGF-1 ligand stimulation.  In order to 

evaluate whether 231P and 231Br cells are IGF-1-responsive, we first serum-

depleted cells overnight in order to minimize the IGF-IR autophosphorylation 

observed in Figure 5A.  We then stimulated serum-depleted 231P and 231Br cells 

with IGF-1 and immuniprecipitated of the IGF-I Receptor. In the IGF-IR 

immunoprecipitates, we observed phosphorylation at Tyr1135 in the 231Br but not 

231P cells, suggesting that brain-seeking cells are driven by ligand stimulation 

(Figure 7A). We also examined the phosphorylation status of the insulin-receptor 

substrate (IRS)-1 and -2, which are immediately activated upon IGF-IR activation.  

IRS-2 is known to mediate motility and pro-metastatic behavior of IGF-IR in breast 

cancer cells (Jackson et al., 2001), and indeed, only IRS-2 was phosphorylated 

upon IGF-1 ligand stimulation in 231Br cells but not the parental cells (Figure 7B). 

Downstream of IGF-IR, AKT was also phosphorylated at Ser 473 upon IGF-1 ligand 

stimulation in 231Br cells but not 231P cells (Figure 7C).  The differential AKT 

activation in the two cell types may be due to the serum-free medium used in this 

experiment.  It is possible that the stimulation time (15 minutes) or IGF-1 

concentration may not be high enough to induce AKT Ser 473 phosphorylation in 

parental cells, but the 231 Br cells were sensitive to IGF-1 ligand due to IGF-IR 
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overexpression.  Taken together, these data suggest that the IGF-1 ligand activates 

IGF-IR axis signaling molecules in brain-seeking cells. 

 Next, we performed a transwell assay to measure the response of 231Br cells 

to IGF-1 ligand as a chemoattractant and found that overnight incubation with IGF-1 

stimulated the migration of 231Br but not 231P cells under low serum conditions 

(0.2% FBS DMEM; Figure 8A with quantification in the lower panel).  Similarly, 

231Br cells were more invasive in a matrigel invasion assay when IGF-1 ligand was 

present as a chemoattractant (Figure 8B with quantification in the lower panel). In 

our experience, only the 231Br cells responded to IGF-1 ligand stimulation under 

low serum conditions. We speculate that under low serum conditions, IGF-1 ligand 

stimulation is not sufficient to induce migration and invasion in 231 parental cells, 

but 231Br cells are more sensitive to IGF-1 ligand stimulation due to their higher 

levels of IGF-IR expression. Thus, we concluded that the IGF-IR signaling and pro-

metastatic functions of brain-seeking cells are likely mediated by IGF-1 ligand and 

further amplified by higher expression of IGF-IR protein. 

 Future studies should delve deeper into the molecular mechanisms of 

increased IGF-IR expression of 231Br cells in further detail.  Dysregulation of IGF-

IR expression in cancer is rarely a result of gene amplification or activating genetic 

mutations.  Rather, IGF-IR protein is regulated by a variety of tumor suppressor 

proteins at the pre- and post-transcriptional level.  For example, PTEN is known to 

inhibit the synthesis of IGF-IR precursor, as well as inactivate AKT (Tanno et al., 

2001).  Loss of PTEN results in increased AKT phosphorylation as well as 

increased IGF-IR protein translation (Tanno et al., 2001).  Similarly, mutations of 
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p53 can lead to increased IGF-IR promoter activity and mRNA transcript levels 

(Werner, Karnieli, Rauscher, & LeRoith, 1996).  The IGF-IR promoter is also 

repressed by BRCA1 (Maor, Abramovitch, Erdos, Brody, & Werner, 2000) and VHL 

protein is a post-translational regulator by sequestration of HuR protein that results 

in de-stabilization of IGF-IR mRNA (Yuen et al., 2007).  p53, BRCA1, and VHL are 

all known to downregulate IGF-IR transcription through interaction with Sp1 

transcription factor and disrupting its binding to the IGF-IR promoter (Abramovitch, 

Glaser, Ouchi, & Werner, 2003; Ohlsson, Kley, Werner, & LeRoith, 1998; Yuen et 

al., 2007). Furthermore, Wilms Tumor Protein 1 (WT1) can also bind the IGF-IR 

promoter directly on consensus sites on either side of the promoter through its zinc 

finger domain and repress transcription (Werner et al., 1993).   
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Figure 7 
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Figure 7.  IGF-IR activation is IGF-1 ligand-dependent in brain-seeking cells.  

A, 231P and 231Br cells were serum-starved overnight, and then stimulated with 50 

ng/ml IGF-1 for 15 min. IGF-IR was immunoprecipitated and then immunoblotted 

with phospho-Y1135-IGF-IR antibody.  

B, Immunoprecipitates of IRS-1 and IRS-2 proteins from serum-starved 231P and 

231Br cells, unstimulated or stimulated with 50 ng/ml IGF-1 for 15 min.   

C, Western blot analysis of whole cell lysates of 231P and 231Br cells after 

stimulation with IGF-1.
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Figure 8 
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Figure 8.  IGF-1 stimulation drives in vitro migration and invasion in brain-

seeking breast cancer cells.   

A, Transwell migration assay of cells incubated for 24h in low serum with or without 

IGF-1 as a chemoattractant (top panel), quantitative analysis of relative cell invasion 

(bottom panel).  

B, Matrigel invasion assay of cells incubated for 24h in low serum with or without 

IGF-1 as a chemoattractant (top panel), quantitative analysis of relative cell invasion 

(bottom panel). Bars represent mean ± SEM. 
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3.4 Secreted form of IGFBP3 is overexpressed in brain-seeking cells 

Since the basal level of IGF-IR autophosphorylation in 231Br and BT474Br3 

cells is much higher under normal culture conditions, we asked whether the IGF-IR 

signaling axis is constitutively activated in an autocrine manner, either dependent or 

independent of IGF-1 ligand. Along with IGF-1 ligand, IGFBP3 is one of the major 

regulators of receptor activity in the IGF-IR signaling axis and a major binding 

protein of IGF-1 ligand that both potentiates and inhibits its interaction with IGF-IR in 

different cancers (Firth & Baxter, 2002; Martin, Lin, McGowan, & Baxter, 2009; Xi et 

al., 2006). In Hs578T breast cancer cells, IGFBP3 promotes attachment and 

survival on fibronectin (McCaig, Perks, & Holly, 2002), which is present in the 

perivascular space of the brain microenvironment and known to promote the growth 

of breast cancer cells in the brain (Carbonell, Ansorge, Sibson, & Muschel, 2009). 

However, IGFBP3 has also been reported to modulate IGF-IR phosphorylation 

independently of IGF-1 (Martin & Baxter, 2011; Schedlich & Graham, 2002). When 

we examined the IGFBP3 mRNA expression level in 231Br cells, we found that it is 

expressed 25-30 fold more than in 231P (Figure 9A). While IGFBP3 is traditionally 

studied as a secreted protein, it is known to carry out some of its functions 

intracellularly (Grkovic et al., 2012; Paharkova-Vatchkova & Lee, 2010). We first 

analyzed the levels of secreted IGFBP3 by collecting the conditioned medium of 

231P and 231Br cells. As a secreted protein, IGFBP3 exists in a non-glycosylated 

form (29kDa), 2N-glycosylated (40kDa), and 3N-glycosylated (45kDa) forms (Firth & 

Baxter, 1999). Based on the mRNA expression levels, we expected that the protein 

levels of IGFBP3 would be higher in brain-seeking cells. Indeed, as shown in Figure 
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9B, the wide IGFBP3 band indicates that all three glycosylated forms are highly 

secreted in 231Br cells but were undetectable in 231P cells. We also analyzed the 

levels of intracellular IGFBP3 and found no difference in expression between 231P 

and 231Br cells (Figure 9C). These results suggest that IGFBP3 exerts its function 

in 231Br cells in an extracellular autocrine manner. 

We did not test the molecular mechanism behind IGFBP3 observed in our 

model system, but it is known that IGFBP3 expression is stimulated by IGF-1 ligand 

(57).  IGFBP3 transcription is also regulated by promoter methylation and directly by 

the p53 tumor suppressor binding both in the promoter region and intronically 

(Hanafusa et al., 2005; Torng et al., 2009).  Furthermore, Vitamin D Receptor (VDR) 

binds the IGFBP3 promoter either alone or in association with Retinoid X, in order to 

enhance its transcription (Peng, Malloy, & Feldman, 2004).  Interestingly, VDR 

expression is also closely tied to IGF-IR signaling, and its expression is regulated by 

IGF-1 ligand stimulation (Welsh et al., 2002).  Therefore, we hypothesize that the 

IGFBP3 is overexpression observed in 231Br cells is a result of an autocrine 

positive feedback loop that is stimulated by enhanced IGF-IR pathway activation 

through IGF-1 signaling.  Further studies should test this hypothesis and elucidate 

the molecular mechanism of IGFBP3 regulation in our model system. 

3.5 Secreted IGFBP3 level correlates with autocrine IGF-IR activation in brain-

seeking cells 

In this study, we sought to measure the intrinsic properties acquired by 231Br 

cells that may be responsible for their enhanced ability to attach to and survive in 
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the brain parenchyma to a greater degree than the 231 Parental cell line.  Since we 

observed a dramatic overexpression of IGFBP3 in 231Br cells, our goal was to 

determine if IGFBP3 is functionally significant in promoting IGF-IR activation.  To 

test this, we knocked down the expression of IGFBP3 by transiently transfecting 

231Br cells with two different IGFBP3 siRNAs (Figure 10A) and analyzed the 

receptor autophosphorylation under normal growth conditions in complete medium. 

Knockdown of IGFBP3 by two siRNAs potently inhibited IGF-IR Tyr phosphorylation 

(Figure 10B).  A similar inhibitory effect was observed by flow cytometry on the 

phosphorylation of Tyr-1131-IGF-IR (Figure 10C), suggesting that IGFBP3 

stimulates IGF-IR activation in an autocrine manner.  Our study tested whether 

IGFBP3 confers enhanced intrinsic IGF-IR activation, which may result in a survival 

advantage when 231Br cells arrest in the brain parenchyma.  Indeed, is possible 

that the properties measured in this study may be equally important for metastasis 

to the lymph nodes, bone, or lung for example.  In order to specifically test the 

importance of IGFBP3/IGF-IR signaling in brain-specific metastasis, it would be of 

great interest to study effect of brain-derived IGF-1 ligand and IGFBP3 on IGF-IR 

activation and 231Br cell migration/invasion.  Although our study does not rule out 

whether IGFBP3/IGF-IR pathway is also involved in other organ metastases of 

breast cancer cells, it does highlight that in a heterogeneous population of breast 

cancer cells that arrest in the brain parenchyma, those cells that contain IGFBP3 

overexpression and subsequent IGF-IR pathway activation possess a survival 

advantage in the brain microenvironment, as discussed in the following Chapter.  
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The significance of IGFBP3/IGF-IR in the honing of breast cancer cells to the brain 

should be the subject of future studies.  
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Figure 9 
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Figure 9. The secreted form of IGFBP3 is overexpressed in brain-seeking 

breast cancer cells. 

A, Real-time quantitative RT-PCR of IGFBP3 in 231P and 231Br cells. Data are 

expressed as relative expression as a ratio to housekeeping gene HPRT1 

expression.   

B, Western blot analysis of secreted IGFBP3 protein in the conditioned medium of 

231P and 231Br cells. Equal cell numbers were incubated in serum-free medium for 

48 hr, and then the conditioned medium was collected and concentrated by 40-fold.  

C, Western blot analysis of IGFBP3 protein in lysates of 231P and 231Br cells. 
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Figure 10 
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Figure 10. IGFBP3 knockdown results in decreased IGF-IR activation in brain 

seeking cells.  

A, Conditioned medium of 231Br cells transiently transfected with control or IGFBP3 

siRNAs for 48 hr. Medium was concentrated by 40-fold and the protein expression 

of IGFBP3 was analyzed using Western blot.  

B, IGFBP3 knockdown downregulates IGF-IR phosphorylation. Cells were 

transfected with either control or IGFBP3 siRNAs. IGF-IR was immunoprecipitated 

(IP) and immunoblotted with phospho-Tyr antibody. Whole cell lysate (WCL) was 

used as input control.  

C, Flow cytometric analysis of 231Br cells after IGFBP3 knockdown. Cells were 

transfected with either control or IGFBP3 siRNAs, and stained with AlexaFluor 647-

phospho Y1131 IGF-IR antibody. IGF-IR phosphorylation decreased in the siRNA 

groups. 

 

 

 

 

 



	   59	  

 

 
 
 
 

CHAPTER 4 
 

IN VITRO AND IN VIVO EFFECTS OF TYPE 
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4.1 Transient knockdown of IGF-IR impairs wound healing in 231 brain-

seeking cells  

In order to determine the biological relevance of IGF-I Receptor in brain-seeking 

cells, we transiently transfected small interfering RNAs targeting the IGF-IR, and 

evaluated the cells’ ability to close the gap in a wound healing assay.  The wound-

healing assay measures cell motility, as well as the degree of cell-cell and cell-

matrix interactions in a cell monolayer (Rodriguez, Wu, & Guan, 2005).  Figure 11A 

is a control showing the efficiency of IGF-IR knockdown achieved by a universal 

negative control siRNA, and two different IGF-IR siRNAs in both 231 parental and 

brain-seeking lines.  Figure 11B shows time-lapse images at 0, 12, 24, and 48 

hours after introduction of the wound, and the 231Br cells transfected with IGF-IR 

siRNAs had significantly impaired wound healing ability.  The impaired ability of 

cells to migrate at the leading edge of the wound also suggests that IGF-IR 

knockdown may result in stronger cell-cell interactions between 231Br cells, and 

thus render them less metastatic. 

4.2 Transient knockdown of IGF-IR inhibits IGF-1-mediated AKT 

phosphorylation in brain seeking cells. 

To further validate whether IGF-IR knockdown plays a significant role in the 

intracellular signaling of 231 brain-seeking cells, we transfected both parental and 

brain-seeking 231 cells with IGF-IR siRNA and observed the effect of IGF-1 ligand 

stimulation at 48 hours after transfection.  As in Figure 7C, IGF-1 ligand stimulation 

induced AKT Ser473 phosphorylation of 231Br cells but not parental cells.  In 
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support of our hypothesis, IGF-IR siRNA inhibited AKT Ser473 phosphorylation in 

231 Br cells (Figure 12).  Therefore, we concluded that IGF-IR is important for 

intracellular signaling of brain seeking breast cancer cells. 
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Figure 11 
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Figure 11. Transient knockdown of IGF-IR inhibits migration of brain-seeking 

cells 

 

A, Western blot of lysates from 231P and 231Br cells collected 72 hours after siRNA 

transfection, the timepoint when siRNA shows the highest knockdown efficiency. 

 

B, Wound healing assay of 231Br cells.  Cells were transfected with Control siRNA 

or IGF-IR siRNA #1 or #2, allowed to recover overnight and then re-seeded in a 

monolayer overnight in a 12-well dish for wound healing assay.  Scratch wound was 

introduced at 48 hours after siRNA transfection, and wound closure was captured 

by time-lapse microscopy over the next 36 hours.  
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Figure 12 
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Figure 12. Transient knockdown of IGF-IR downregulates IGF-1-induced AKT 

activation 

231P and 231Br cells were transiently transfected with control, IGF-IR #1 or IGF-IR 

#2 siRNAs and stimulated with 50ng/mL of IGF-1 ligand for 15 minutes at 48 hours 

after transfection.  IGF-IR knockdown efficiency and AKT Ser473 phosphorylation 

were observed by western blot. 
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4.3 Stable knockdown of IGF-IR in brain-seeking breast cancer cells inhibits 

cell proliferation in vitro 

 In order to study the relevance of IGF-IR in the development of brain metastasis 

in vitro, and to follow up on our transient siRNA knockdown experiments (Figures 11 

and 12), we developed a model system using 231Br cells stably expressing 

luciferase and either empty vector (control) or IGF-IR shRNA. Of six sh-IGFR 

knockdown cell lines generated, two IGF-IR knockdown clones, shIGF-IR (B) and 

shIGF-IR (F), were selected for further characterization for comparison with the 

vector clone (vector). We first verified that IGF-IR was knocked down and AKT-

Ser473 phosphorylation was reduced (Fig. 13A).  To further assess the in vitro 

biological significance of IGF-IR knockdown in brain-seeking cells, we measured 

cell proliferation of knockdown and control cells using an MTT assay. As shown in 

Figure 13B, IGF-IR knockdown cells proliferated more slowly at all three time points. 

Moreover, we measured the cell growth of IGFR knockdown and vector control cells 

over a 72-hr period and calculated the total cell number. In agreement with the MTT 

assay results, IGF-IR knockdown cells grew more slowly than vector control cells 

(Fig. 13C). 

 

4.4 Stable knockdown of IGF-IR in brain-seeking breast cancer cells 

attenuates their migratory and invasive potential in vitro 

Next, we examined the effect of IGF-IR knockdown on the in vitro properties 

that are used as surrogate measures of metastatic potential of 231Br cells.  We first 
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used a wound-healing assay to determine the effect of IGF-IR knockdown on 

migration and found that IGFR knockdown cells were less efficient at closing the 

wound than the vector control cells, indicating both reduced motility and an increase 

of cell-cell adhesion in 231Br cells  (representative images shown in Figure 14A and 

quantification shown in Figure 14B).  To determine the effect of IGF-IR knockdown 

on the invasive potential of 231Br cells, we performed a matrigel invasion assay. 

Consistent with our hypothesis, we found that IGF-IR knockdown indeed attenuated 

the invasiveness of 231Br cells (representative images shown in Figure 14C and 

quantification shown in Figure 14D).  Taken together, these data demonstrate that 

the loss of IGF-IR expression and subsequent inactivation of its downstream 

signaling molecules attenuate the vitro invasive phenotypes, including proliferation, 

migration/motility and invasiveness, while enhancing in vitro cell-cell adhesion of the 

brain-seeking cells. 
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Figure 13  
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Figure 13. IGF-I Receptor knockdown in brain-seeking breast cancer cells 

suppresses proliferation in vitro.  

A, Immunoblot of IGF-IRβ and AKT total and phospho-Ser473 expression in 231Br 

cells stably transfected with control shRNA (vector) or IGF-IRβ shRNA (shIGF-IR B 

and F clones).  

B, MTT assay of control and IGF-IR beta knockdown cells at 24, 48 and 72 hr. 

Values represent mean ± SEM.  

C, Vector control and shIGF-IR 231Br cells were seeded 100,000 cells per well and 

were counted after 72 hr. 
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Figure 14 
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Figure 14. IGF-I Receptor knockdown in brain-seeking breast cancer cells 

suppresses cell migration and invasion in vitro. 

A, Wound-healing assay of vector and shIGF-IR 231Br cells. Images are 

representative of triplicates at 0 and 21 hr.   

B, Quantitative measurement of wound closure area from (A). Data were calculated 

from one representative experiment out of three performed.  

C, Matrigel invasion assay of vector and shIGF-IR 231Br cells performed in triplicate 

over 24 hr with complete medium as a chemoattractant.  

D, Quantitative analysis results of one representative experiment out of three 

performed in triplicate from (C). Values represent mean ± SEM.
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4.5 IGF-IR knockdown delays the outgrowth of brain metastases in vivo 

 To further characterize the functional consequences of IGF-IR knockdown on 

the development brain metastasis in vivo, we performed an experimental brain 

metastasis assay as described in Chapter 2. Stable 231Br-Vector, 231Br-shIGF-IR 

(B), and 231Br-shIGF-IR (F) cells were inoculated in the carotid artery of female 

swiss nu/nu mice, and brain metastasis development was monitored for 12 weeks. 

After the first 4 weeks, mice in the vector group developed physiological symptoms 

of brain metastases, such as weight loss, crouching, lethargy and/or disorientation.  

Figure 15 shows representative bioluminescence images of brain metastasis 

formation in mice from each experimental group during weeks 1-4.  Mice inoculated 

with 231Br cells with IGF-IR knockdown demonstrated significantly longer survival 

than those in the vector group (Figure 16A). Mice in both knockdown groups also 

developed brain metastases, albeit significantly later than the vector group (p < 

0.05).  The vector group mice had a median survival of 46 days while the shIGF-IR 

(B) and shIGF-IR (F) groups had median survival of 77 days and 55.5 days, 

respectively (Figure 16B).  

 

4.6 H&E and IHC analysis of mice that developed brain metastases 

Brain sections of representative mice from each group (n=3 each Vector and 

shIGF-IR (B); n=2 shIGF-IR (F)) were also analyzed by H&E staining (Figure 17A) 

and IHC for the expression of IGF-IR (Figure 17B) and AKT-pSer473 (Figure 17C) 

proteins. All mice included in the analysis were sacrificed at later time points (5-10 

weeks after intracarotid inoculation).  H&E staining revealed visible brain 
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metastases in most brain sections analyzed, although metastases from the IGF-IR 

knockdown groups were generally smaller in size than the vector group (Figure 

17A) with the exception of one sample from the shIGFR (B) group (not shown). 

Most metastases expressed IGF-IR protein (Table 1) although metastases in the 

shIGF-IR (B) and shIGF-IR (F) groups expressed lower levels of IGF-IR protein than 

the vector group (Figure 17B).  Expression of AKT-pSer473 likewise correlated 

positively with IGF-IR expression levels, with the vector group expressing the 

highest level of AKT-pSer473 and IGF-IR knockdowns expressing the lowest 

(Figure 17C). These results imply that in a heterogeneous starting population of 

IGF-IR knockdown cells, those that retain IGF-IR and AKT-pSer473 expression are 

able to survive and establish tumors within the brain microenvironment in a process 

of positive selection. 

 

4.7 Brain metastases induce reactive astrocytes 

Furthermore, it has previously been reported that metastatic brain tumors cause 

the activation of astrocytes in the brain microenvironment, resulting in the support of 

tumor growth and vascularization (Yoshimine et al., 1985). The expression of glial 

fibrillary acidic protein (GFAP) is a marker of this astrocytic activation, and IHC 

staining revealed that the brain tissue surrounding brain metastases expressed high 

amounts of GFAP (80% positive cells control group, 52%-58% positive cells shIGF-

IR groups, Table 1 and Figure 18). Remarkably, approximately 5-10% of GFAP 

positive cells infiltrated the edges of the tumor, suggesting that the activation and 

infiltration of astrocytes is associated with the growth of IGF-IR positive brain tumors 
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(Figure 18, white arrows).  Interestingly, studies by Fidler et al. found that reactive 

astrocytes play a role in the resistance of melanoma cells to chemotherapy (Q. Lin 

et al., 2010).  Future studies should investigate the functional significance of GFAP 

activation and its implications on the effect of tumor cell modulation of the brain 

microenvironment. 

 

4.8 IGF-IR positive brain metastases highly express nuclear proliferation 

marker ki-67 

 In addition to IGF-IR expression, the metastases we detected also expressed 

the nuclear proliferation marker ki-67 (Figure 19). Tumors from the control group 

had an overall higher percentage of ki-67 positive cells compared with those from 

the shIGF-IR (B) and shIGF-IR (F) groups (Table 1). Although the IGF-IR 

knockdown cells eventually formed brain tumors, these metastases were less 

proliferative than the vector control tumors at the time of mouse morbidity. 

 

4.9 Heterogeneous effects of IGF-IR knockdown on the growth of mammary 

fat pad tumors 

In order to determine whether IGF-IR knockdown in 231Br cells inhibited tumor 

cell proliferation in vivo, we inoculated 231Br Vector and 231Br-shIGF-IR (B) and 

231Br-shIGF-IR (F) into the mammary gland of nude mice.  Tumors were measured 

bi-weekly for 8 weeks and the diameters are shown in Figure 20.  The group of mice 

inoculated with 231Br-Vector cells behaved as expected, with tumor volumes 

gradually increasing over time.  The 231Br-shIGF-IR (B) experimental group had 
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remarkably no tumor formation over the 8 weeks, while the 231Br-shIGF-IR (F) 

group behaved very closely to the Vector group.  We hypothesized that the 

difference in proliferation may be due to the different levels of IGF-IR knockdown in 

each cell line.  As shown in Figure 13A, the sh-IGFR (B) cell line had complete IGF-

IR knockdown, while the shIGF-IR (F) cell line did not have complete knockdown of 

IGF-IR protein.  This suggests that even low amount of IGF-IR is sufficient to 

support cell proliferation of 231Br cells in vivo, at least in the mammary fat pad.  

Indeed, the IHC staining in Figure 21 confirms that the mammary fat pad tumors 

from mice in the shIGF-IR (F) group expressed lower amounts of IGF-IR protein, but 

developed normal mammary tumors as in the Vector group.  

Thus, partial IGF-IR knockdown is not sufficient to prevent in vivo survival of 

231Br cells.  This result could offer an explanation why some of the mice inoculated 

with both 231Br knockdown cell lines eventually developed brain metastases 

(Figures 16), and why the observed metastases expressed IGF-IR (Figure 17).  This 

result also raises questions about our experimental brain metastasis model.  In 

particular, whether factors other than IGF-IR-driven proliferation and survival of cells 

in vivo are at play in the development of brain metastasis, such as interactions with 

the brain microenvironment and/or MET which could be necessary for successful 

brain colonization. 

In order to test whether the inhibition of mammary fat pad tumor formation in the 

shIGF-IR (B) cell line was indeed due to the complete IGF-IR knockdown achieved 

in this cell line, it would be useful to repeat the experiment side-by-side with 

additional conditions.  In particular, we could test our hypothesis that incomplete 
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IGF-IR inhibition is insufficient for inhibition of in vivo cell proliferation in the 

mammary fat pad by adding several 231Br-Vector control groups with the addition 

of incremental doses of the IGF-IR inhibitor PPP.  In this setting, there should be an 

inverse relationship between tumor volumes and PPP concentrations if our 

hypothesis is correct that IGF-IR expression level dictates 231Br cell survival and 

proliferation in vivo.  Confirmation of our hypothesis would imply that survival of 

231Br shIGF-IR (B) cells in our brain metastasis model is a result of a re-expression 

of IGF-IR protein in our shIGF-IR cell lines, perhaps by epigenetic modulation, since 

we know that we started with a population with complete IGF-IR knockdown (Figure 

13A).  Another possibility is that IGF-IR is not the only factor dictating in vivo cell 

proliferation and brain metastasis in our model, in which case microenvironmental 

factors such as the induction of MET may be at play.  Both possibilities could 

account for the differences in brain metastasis development evidenced in the 

shIGF-IR (B) group, where 5 out of 8 mice (62.5%) eventually bypassed the barrier 

posed by IGF-IR knockdown, and the remaining 3 mice (37.5%) never developed 

brain metastases (Figure 16).  We originally hypothesized that IGF-IR knockdown in 

shIGF-IR (B) cells would result in complete inhibition of brain metastasis, but our 

results suggest an epigenetic modulation of IGF-IR expression and perhaps other 

IGF-IR-independent mechanisms of cell survival such as MET in the brain 

microenvironment. Further testing using the experiment proposed in this section, 

and the investigation of EMT/MET markers in our brain metastasis and mammary 

fat pad models would help to discern between these two possibilities. 



	   77	  

Figure 15 

 



	   78	  

 

 

Figure 15. IGFR knockdown delays brain metastasis development in vivo. 

Mice were anesthetized and injected with 200,000 231Br cells in the carotid artery; 

231Br-Luc-Vector (n=9), 231Br-Luc-shIGF-IR (B) (n=8), and 231Br-Luc-shIGF-IR 

(n=8).  Mice were imaged the day after surgery to ensure cells were arrested in the 

brain capillary.  Brain metastasis progression was monitored weekly by imaging with 

the IVIS imaging system following intraperitoneal administration of D-Luciferin. 
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Figure 16 
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Figure 16.  IGF-IR knockdown increases survival of mice bearing brain 
metastases. 
 

A, Survival curve of mice injected with 231Br cells stably expressing IGF-IR shRNA 

or vector shRNA. Mice were monitored weekly and sacrificed when moribund. 

shIGF-IR(B) and shIGF-IR(F) groups had significantly longer survival, p = 0.0012 

and p = 0.0133, respectively.   

 

B, Median survival of each group from (A). 
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Figure 17 
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Figure 17.  IGF-IR knockdown delays brain metastasis in vivo.  

H&E and IHC staining of representative brain metastases from each group.  

 

A, H&E panels: dark red = tumor tissue; blue = nucleus; light red = negative.   

 

B and C, IGF-IR and AKT-pSer473 panels, respectively: red = positive; blue = 

nucleus.  Images were taken at 200x and 400x magnification, as indicated. 
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Figure 18 
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Figure 18. IHC staining of GFAP of brain metastases of mice inoculated with 

Vector, shIGF-IR (B) and shIGF-IR (F) 231Br cells.  GFAP: dark red/brown = 

positive; blue = nucleus; black arrows = tumor cells; white arrows = tumor-infiltrating 

astrocytes. Images were taken at 200x and 400x magnification, as indicated. 
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Figure 19 
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Figure 19. IHC staining of ki-67 of brain metastases of mice inoculated with 

Vector, shIGF-IR (B) and shIGF-IR (F) 231Br cells.  Red = nuclear ki-67 staining.  

Images were taken at 200x and 400x magnification, as indicated. 
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Table 1 
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Table 1. Summary of H&E and IHC staining of brain metastases of mice inoculated 

with Vector, shIGF-IR (B) and shIGF-IR (F) 231Br cells. Higher IGF-IR and ki-67 

staining appears to correlate with formation of larger metastases. 
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Figure 20 
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Figure 20.  Tumor formation in the mammary fat pad is heterogeneous in IGF-

IR knockdown cell lines. 

 

Female nude mice were inoculated with 231Br-Vector (n=10), 231Br-shIGF-IR (B) 

(n=10), or 231Br-shIGF-IR (F) (n=10) cells in the mammary fat pad.  Tumor growth 

was measured bi-weekly for eight weeks beginning on the second week, and 

average tumor volumes are plotted.  
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Figure 21 
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Figure 21.  Tumor formation in the mammary fat pad from IGF-IR knockdown 

cells is heterogeneous.  

H&E and IHC staining of representative mammary fat pad tumors from each group.  

 

A, H&E panels: dark red = tumor tissue; blue = nucleus; light red = negative.   

 

B and C, IGF-IR: red = positive; blue = nucleus.  Images were taken at 200x and 

400x magnification, as indicated. 
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4.10 Inhibition of the IGF-IR by picropodophyllin induces G2/M cell cycle 

arrest and inhibits downstream signaling and biological function 

 Several monoclonal antibodies and TKIs against IGF-IR are currently under 

study in the clinical setting and have shown promise in the treatment of solid tumors 

(Chitnis et al., 2008). Picropodophyllin (PPP) causes an induction of cell cycle arrest 

in the G2/M phase and is the only inhibitor that can specifically inhibit IGF-IR 

without affecting the insulin receptor (Stromberg et al., 2006).  PPP also leads to 

inhibition of cell growth, migration and invasion, and metastasis in a PI3K/AKT-

dependent manner (Girnita et al., 2004; Menu et al., 2006; D. Vasilcanu et al., 

2004).  We analyzed the effect of PPP on the cell cycle and demonstrated that PPP 

induces an increase of cells in G2/M phase by 86% in 231Br cells and 35% in 

BT474Br3 cells (Figure 22).  This result is consistent with other published studies 

that demonstrated arrest in the G2/M transition upon PPP treatment (Stromberg et 

al., 2006),(Karasic, Hei, & Ivanov, 2010).  However, PPP-induced G2/M cell cycle 

arrest is an interesting phenomenon given that the IGF-IR’s major effect on the cell 

cycle is not primarily exerted in G2/M, but in the G1/S transition.  IGF-IR regulates 

the G1/S transition by activation of PI-3K/Akt and/or ERK pathways, which leads to 

Cyclin D1 and CDK4 expression and cell cycle progression (Lavoie, L'Allemain, 

Brunet, Muller, & Pouyssegur, 1996). IGF-IR may also regulate the G2/M transition 

by upregulation of Cyclins A and B, and cdc2 synthesis, but this function is not as 

well documented (Furlanetto, Harwell, & Frick, 1994). 

Concomitant with G2/M cell cycle arrest, PPP treatment of 231Br and BT474 

Br3 cells potently blocked the activation of molecules downstream of IGF-IR in a 
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dose-dependent manner, in particular the phosphorylation of AKT-Ser473 and 

p70S6 kinase-Thr389 (Figure 23).  It is unlikely that inhibition of AKT 

phosphorylation by PPP is responsible for the G2/M cell cycle arrest we observed, 

since AKT is primarily involved in the G1/S transition. It is possible that the G2/M 

cell cycle arrest resulted in less cycling cells and therefore a decrease in overall 

AKT activation.  Another explanation could be off-target effects of PPP treatment, 

such as inhibition of the EGFR or c-Met receptors, which are both known to play a 

role in the G2/M transition (Baker & Yu, 2001) (Factor et al., 2010).  Further studies 

should address whether PPP-induced G2/M arrest and AKT pathway 

downregulation are linked, or a result of off-target effects in our cell lines. 

In addition, PPP inhibited biological functions of the 231 brain-seeking cells in 

which PPP-treated cells had impaired migration (Figure 24A, quantitation shown in 

Figure 24B) and invasion (Figure 24C, quantitation shown in Figure 24D).  PPP did 

not significantly inhibit the migration or invasion of BT474 Br3 cells (Figure 24E), 

which may be due to the low baseline in vitro metastatic properties of this luminal-

type cell line.  Perhaps overexpression of IGF-IR in BT474 M1 (parental) or BT474 

Br3 cells combined with PPP inhibitor experiments using IGF-1 as a 

chemoattractant would better address the significance of IGF-IR in these less 

aggressive, yet still brain-seeking, breast cancer cells.  Furthermore, treatment of 

231 Parental and brain-seeking breast cancer cells with different concentrations of 

PPP inhibited wound-healing (Figure 25A) and cell proliferation (Figure 25B), and 

these effects were more pronounced in the brain-seeking cells that overexpress 

IGF-IR.  Thus, PPP inhibits cell migration and proliferation while enhancing cell-cell 
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adhesion, similar to the effects achieved by siRNA and shRNA ablation of IGF-IR.  

Taken together, these data indicate that IGF-IR-driven signaling could be potentially 

targeted by PPP in highly invasive brain-seeking cells.  Further studies should test 

this hypothesis in a mouse model of experimental brain metastasis.
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Figure 22 
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Figure 22. Picropodophyllin induces G2/M cell cycle arrest in brain-seeking 

breast cancer cells. 

 

Cell cycle analysis by propidium iodide staining of brain-seeking cells (231Br and 

BT474 Br3) treated with 1 µg/mL PPP for 48 hr.  
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Figure 23 
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Figure 23. Picropodophyllin inhibits activation of IGF-IR downstream targets 

in brain-seeking breast cancer cells. 

Immunoblot of phospho-proteins activation downstream of IGF-IR in brain-seeking 

cells treated with escalating concentrations of PPP for 24h. 
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Figure 24 
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Figure 24. Picropodophyllin inhibits migration and invasion in 231 brain-

seeking breast cancer cells.  

A, Transwell migration assay of 231Br cells treated with 1 µg/mL PPP for 24 hr.   

B, Quantitative analysis of relative number of migrating cells from (A).   

C, Matrigel invasion assay of 231Br cells treated with 1 µg/mL PPP for 24 hr.   

D, Quantitative analysis of relative number of migrating cells from (D).  

All migration and invasion assays used complete medium as a chemoattractant. 

Images shown are representative of one of three experiments performed.  Bars 

represent mean ± SEM. 

E, Transwell migration and matrigel invasion assay of BT474 Br3 cells. 
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Figure 25 
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Figure 25. Picropodophyllin inhibits wound healing and proliferation in brain-

seeking breast cancer cells. 

 

A, Wound healing assay of parental and brain-seeking 231 cells treated with 

different concentrations of PPP.  Brain-seeking cells have decreased wound healing 

ability in response to PPP. 

 

B, MTT assay of cells treated with PPP for 48 hours.  Proliferation of brain-seeking 

cells is more sensitive to PPP treatment than parental cells. 
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CHAPTER 5 
 

SUMMARY AND DISCUSSION 
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5.1 Summary 

 The work described in this thesis is summarized in the model depicted in 

Figure 32.  In brief, the IGF-IR signaling axis was activated both endogenously and 

in an IGF-1 dependent manner in brain-seeking subclones of breast cancer cell 

lines.  IGF-IR activation is determined by the level of total tyrosine phosphorylation 

of the IGF-I receptor, and by the phosphorylation of specific tyrosine residues 1131 

and 1135, which pertain to the kinase domain.  IGF-IR activation was also evident 

by the tyrosine phosphorylation detected in IRS-2, the scaffold protein immediately 

downstream of IGF-IR that is known to activate migratory and invasive functions in 

metastatic breast cancer cells.  AKT, but not ERK, was also phosphorylated both 

endogenously and upon IGF-1 stimulation of brain-seeking cells.  We found that 

IGF-IR activation was at least partially dependent on IGFBP3 protein, which is 

highly secreted in 231Br cells but not in parental 231 cells.  IGFBP3 knockdown 

resulted in significant downregulation of IGF-IR tyrosine phosphorylation. 

When we experimentally ablated IGF-IR protein in brain-seeking cells, either by 

transient siRNA transfection or stable shRNA transfection, we observed a decrease 

in the proliferation, motility and invasiveness of cells.  When injected into the 

intracarotid artery of nude mice, these IGF-IR shRNA knockdown cells displayed a 

delay in their colonization of the brain, which led to a significantly longer lifespan of 

these mice that acquired brain metastases.  The IHC staining confirmed that IGF-IR 

expression was high in the control brain-seeking cells, but interestingly the brain 

metastases formed from shRNA groups had retained or partially re-expressed IGF-

IR, although lower than the control groups.  IGF-IR shRNA effects on mammary fat 
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pad tumor growth did not behave as expected, with one knockdown group 

completely unable to form tumors and the other producing equal tumor volumes as 

the control groups. The IGF-IR inhibitor PPP caused G2/M cell cycle arrest as well 

as dose-dependent downregulation of AKT phosphorylation and p70S6Kinase. 

In a separate study aimed at better characterize the AKT activation profile 

between brain-seeking and parental breast cancer cells, we found that AKT is 

constitutively phosphorylated in the nucleus of brain-seeking cells, and this 

phosphorylated form is stimulated by the IGF-IR signaling axis.  Nuclear phospho-

AKT was enhanced upon IGF-1 stimulation and downregulated in IGF-IR shRNA 

knockdown cell lines.  However, when stimulated with EGF-ligand or treated with 

the EGFR inhibitor Tarceva, nuclear phospho-AKT remained unchanged.  

Furthermore, we found that transient transfection with a combination of AKT1 and 

AKT3 are the two major isoforms of AKT that are phosphorylated in the nucleus of 

brain-seeking cells. 
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Figure 26 
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5.2 Discussion 

An important step in the development of rational therapies for brain-metastatic 

breast cancer is the identification of major molecular drivers of the disease. The 

study presented here supports the notion that (A) the IGF-IR signaling axis is active 

and mediates malignant phenotypes in brain-seeking breast cancer cells, (B) both 

genetic and pharmacological inhibition IGF-IR decrease the malignancy of brain-

seeking cells in vitro, and remarkably (C) IGF-IR shRNA-expressing breast cancer 

cells have a decreased ability to form brain tumors in an in vivo model of 

experimental brain metastasis. The studies presented here support that IGF-IR 

signaling is a driver of brain metastases, with important implications in which 

therapeutic inhibition of this receptor may prevent or delay the establishment of IGF-

IR-positive metastatic brain tumors from breast cancer. 

 In our model system, 231Br and BT474Br3 cells expressed more of the 

autophosphorylated form of IGF-IR.  This result is in agreement with previous 

studies that found activated phospho-IGF-IR/IR and phospho-S6K are associated 

with poor survival in patients with invasive breast cancer (Law et al., 2008).  

Furthermore, phospho-IGF-IR and phospho-AKT were recently shown to correlate 

with metastases of breast cancer to the brain in a cohort of 42 brain metastases 

from breast and lung cancer patients (Improta et al., 2011).  In our study, we found 

constitutively activated IGF-I Receptor when cells were examined in normal serum 

conditions (10%FBS/DMEM), concomitant with a baseline AKT phosphorylation at 

Ser473, suggesting constitutive IGF-IR pathway activation (Figs. 5A, 5B, 12, 26).  

This constitutive IGF-IR activation was abrogated when we eliminated the IGF-I 
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Receptor through siRNA, shRNA, or by treatment with PPP (Figs. 11-14, 22-25).  

Indeed, phosphorylated IGF-IR appears to be a recurrent theme in advanced breast 

cancers, and our results further elucidated its biological significance. 

 We concluded that constitutive autophosphorylation of IGF-IR is likely due to 

regulation by the autocrine components of the IGF-IR signaling axis, such as IGF-1 

and IGFBP3.  IGFBP3 was overexpressed in 231Br brain-seeking cells, and its 

knockdown by siRNA resulted in a significant decrease of IGF-IR Tyr 

phosphorylation. These findings led us to believe that IGFBP3 may enhance IGF-1 

bioavailability and subsequently activate IGF-IR in our model system.  Various 

studies suggest mechanisms of IGF-IR induction by IGFBP3, including signaling 

through sphingosine kinase (Sphk) and cross-activation of IGF-IR and EGFR and 

binding of IGFBP3 (Martin et al., 2009). However, further work is needed to confirm 

the IGF-1 ligand-dependent function of IGFBP3 on IGF-IR. 

 To address the biological significance of IGF-IR, we constructed brain-seeking 

231 cells stably expressing IGF-IR shRNA. Ablation of IGF-IR diminished the 

proliferation, migration, and invasion of 231Br cells in vitro. Knocking down IGF-IR 

delayed the outgrowth of brain metastases and extended the survival of mice 

bearing brain metastases. When we examined the brains of mice bearing brain 

metastases of shIGF-IR 231Br cells, we were surprised to find that these 

metastases expressed IGF-IR, albeit at lower levels than the brain metastases from 

the vector 231Br group. We speculate that in our model, the brain microenvironment 

selected for, if not promoted, the survival of tumor cells with remaining expression of 

IGF-IR.   
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5.2.I Implications for brain metastasis in Her2+ and triple negative breast 

cancer 

 The cause of brain metastasis remains elusive although 25 to 40% of patients 

with Her2+ and triple-negative breast cancer (TNBC) have a significantly increased 

likelihood of developing brain metastases (Duchnowska et al., 2012; Steeg et al., 

2011) (Hicks et al., 2006). Interestingly, the increased signaling of the IGF-IR has 

been shown to associate with resistance of Her2+ breast cancers to trastuzumab 

(Gallardo et al., 2012).  A recent preclinical study showed the expression of an IGF-

IR gene signature in TNBC that consequently sensitizes this cancer subtype to anti-

IGF-IR therapy (Litzenburger et al., 2011). IGF-IR signaling was also shown to 

promote the proliferation and survival of TNBC cells, and it was associated with 

early tumor recurrence in TNBC patients when accompanied by PTEN loss 

(Davison, de Blacquiere, Westley, & May, 2011; Iqbal, Thike, Cheok, Tse, & Tan, 

2012). In addition, other groups have also suggested the reliance of TNBC cell lines 

on IGF-1 signaling (Davison et al., 2011).  It is worth noting that the 231Br cell line 

used in our model system is a TNBC cell line, and our results support the notion 

that IGF-IR might play a role in brain metastasis of TNBC. Future studies with 

additional TNBC models should explore the role of IGF-IR in this aggressive subset 

of breast cancers in further detail.   

 

5.2.II Implications for pharmacological targeting of the IGF-IR signaling axis 
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 We found that PPP potently inhibited IGF-IR signaling in breast cancer cells in 

vitro.  A previous report identified that the major IGF-regulated process in the cell 

cycle is upregulation of genes involved in the G2/M transition (Litzenburger et al., 

2011). Our findings confirmed that the same holds true in brain-seeking breast 

cancer cells. Furthermore, in an intracranial xenograft model of glioblastoma, PPP 

demonstrated ability to cross the blood-brain-barrier and cause tumor regression as 

well as downregulation of p-AKT, suggesting its potential usefulness in brain 

metastasis treatment (Yin et al., 2010). However, a recent study of drug delivery in 

mouse models of breast cancer brain metastasis found the heterogeneity of blood-

tumor-barrier permeability to be a major obstacle to drug efficacy, and further 

validation of PPP in these mouse models is needed (Lockman et al., 2010). To our 

knowledge, this is the first study to establish a clear biological role of the IGF-IR and 

its activation in brain-specific metastases of breast cancer, suggesting that 

dysregulated molecules along the IGF-IR signaling pathway play a significant role in 

the establishment of brain metastasis. Further studies should pursue the utility of 

IGF-IR inhibitors for the prevention and treatment of brain metastases of breast 

cancer, particularly in a setting where the patient is refractory to other therapies. 

 

5.2.III Implications of using human breast cancer cell lines in models of brain 

metastasis 

Our model of experimental brain metastasis consisted of injection of human breast 

cancer cell lines that had been selected in vitro for their brain-seeking properties.  
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Our model, therefore, may not be the best for studies of spontaneous brain 

metastasis, or to study the early steps of brain metastasis when tumor cells leave 

their primary and/or metastatic tumor site and the characteristics that attract these 

cells to the brain as a metastatic site.  Injection of the tumor cells into the carotid 

artery of mice circumvents all of these early steps, and even the major anatomical 

barrier of the lung that tumor cells encounter prior to reaching the brain.  Therefore, 

it is important to note that our model primarily deals with the effect of IGF-IR 

knockdown in the ability of breast cancer cells to arrest and attach to the capillary 

bed of the brain, cross the blood-brain-barrier, survive in the brain to establish 

metastases and eventually cause morbidity due to tumor burden.  Future studies 

should fine-tune exactly which of these later steps of metastasis the IGF-IR is 

involved in.  For example, in vitro transendothelial migration assays using human 

brain microvascular endothelial cells using IGF-1 as a chemoattractant would 

provide clues about brain-derived IGF-1’s role in inducing breast cancer cells to 

cross the blood-brain barrier, much like SDF-1 acts on the cell surface receptor 

CXCR4.  Co-culture studies of astrocytes and our IGF-IR-knockdown breast cancer 

cells would yield more information about the crosstalk between breast cancer cells 

with cells of the brain parenchyma in the activation of survival cues. 

5.2.IV Implications of using epithelial vs. mesenchymal cell types in modeling 

brain metastasis.   

The MDA-MB-231 breast cancer cell line is a highly malignant and metstatic breast 

cancer cell line from epithelial origin.  Despite its epithelial origin, the 231 cell line 
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behaves like an undifferentiated, mesenchymal cell type and in gene expression 

profiling studies it was found to express mostly mesenchymal genes (Charafe-

Jauffret et al., 2006).  This is in contrast to the BT-474 cell line that is also from 

epithelial origin but is more differentiated and has been classified into the luminal 

subtype.  Luminal cell types are believed to be less invasive than mesenchymal or 

basal types due to the expression of the cell-fate differentiating factor GATA-3 

(Asselin-Labat et al., 2007), although recent evidence suggests that luminal cell 

types also possess the ability to initiate metastatic tumors (Kim et al., 2012).  It is 

important to note the difference in intrinsic behaviors between the 231 and BT-474 

cell lines, because this may explain the differences we observed between the two 

cell types in in vitro experiments in our model of brain metastasis.  In Figure 24, for 

instance, the migratory and invasive behavior of the 231Br cell line was inhibited by 

treatment with the IGF-IR inhibitor PPP, while the migration of BT474 Br3 cells was 

unchanged, and invasion was not as pronounced as in 231Br cells.  Due to its non-

invasive phenotype, the baseline metastatic potential of BT474 Br 3 cells is already 

very low, which presents a challenge in experiments where a decreased metastatic 

potential is expected.  A more appropriate experiment for this cell type may be to 

measure the increase in in vitro metastatic potential under exogenous 

overexpression of IGF-IR. 

5.2.V  Role of EMT/MET and the brain microenvironment 

Epithelial-to-mesenchymal transition (EMT) is the process by which tumor cells 

originating in the epithelium degrade the extracellular matrix and separate from the 
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tumor to become undifferentiated, mesenchymal-like cells with enhanced invasive 

and metastatic ability (Gao, Vahdat, Wong, Chang, & Mittal, 2012; Kalluri & 

Weinberg, 2009). 

It was recently shown that mesenchymal-like 231 breast cancer cells can revert to 

the epithelial phenotype in the metastatic organ microenvironment in a process 

called MErT, or mesenchymal to epithelial reverting transition (Y. L. Chao, Shepard, 

& Wells, 2010). MErT was achieved by re-expression of E-cadherin in the 

metastatic tumor microenvironment, through a loss of methylation of the E-cadherin 

promoter.  It would be of interest to perform IHC studies of brain metastases arising 

from 231Br cells, to test whether the brain microenvironment indeed induces the re-

expression of E-cadherin in these cells, and whether IGF-IR has any part in this 

process.  Since IGF-IR knockdown reduced brain metastasis in our model system, it 

would further strengthen our hypothesis that IGF-IR provides a survival advantage if 

somehow as a result of IGF-IR knockdown, E-cadherin re-expression was inhibited 

as well.  Previous studies have found that IGF-IR overexpression in breast cancer 

cells promotes E-cadherin dependent cell-cell adhesion, cellular aggregation and 

survival (Guvakova & Surmacz, 1997).  Also, IGF-IR knockdown in breast cancer 

cells resulted in a decrease of E-cadherin expression and destabilization of the E-

cadherin-catenin complex, which is responsible for epithelial cell-cell adhesion and 

maintenance of the tumor architecture (Pennisi, Barr, Nunez, Stannard, & Le Roith, 

2002; Wijnhoven, Dinjens, & Pignatelli, 2000). 

5.3 Future Studies 
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This dissertation deals primarily with characterization of the intrinsic metastatic 

properties of brain-seeking breast cancer cells, the autocrine signaling that 

enhances metastatic properties, and the role of IGF-IR expression in the later 

stages of the metastatic process in vivo.  Future studies should address the 

interactions between IGF-IR expressing breast cancer cells and other cell types in 

the brain microenvironment, such as vascular endothelial cells, astrocytes, and 

pericytes.  The role of brain-derived IGF-1 and IGFBP3 in the promotion of 

metastatic cell survival is also of interest, as is the effect of breast cancer cells’ 

intrinsic IGFBP3 overexpression in modulation of the brain parenchyma.   

It is known that breast cancer patients differentially express IGF-1 and IGFBP3 

in the circulation, but the relevance of their expression levels and their contribution 

to metastasis is still unknown.  Therefore, the effect of circulating IGF-1 and 

IGFBP3 levels on the outcome of brain metastases of IGF-IR-positive breast 

cancers should be a subject for future studies. 

We show that PPP successfully induced G2/M cell cycle arrest in both, 231Br 

and BT474 Br3 cells.  As a next step, in vivo studies should examine the efficacy of 

PPP in preventing or reducing brain metastases at different doses, in order to 

establish whether inhibition of IGF-IR would be a good target to pursue in further 

pre-clinical studies.  

 

 



	  116	  

 
 
 
 

CHAPTER 6 
 

APPENDIX: 
NUCLEAR AKT IN BRAIN SEEKING 

BREAST CANCER CELLS 
 

 

 

 

 

 

 

 

 



	  117	  

6.1 Nuclear AKT signaling  

Activated AKT has been previously shown to localize in the nucleus of cancer 

cells and correlates with poor progression in several cancers.  In myocardial cells, 

for example, targeting of AKT to the nucleus resulted in enhanced cell survival and 

increased kinase activity (Shiraishi et al., 2004).  Furthermore, myocardial epithelial 

cells that overexpress IGF-IR have an enrichment of nuclear phospho-AKT Ser47, 

which is also associated with enhanced cell survival (Camper-Kirby et al., 2001).   

We previously observed that AKT signaling is stimulated by IGF-IR signaling in 

our model system (Figures 7 and 12).  When we looked at the subcellular activation 

profile of AKT, we were surprised to find that AKT was constitutively phosphorylated 

in the nucleus of 231Br cells (Figure 26).  Importantly, nuclear phospho-AKT 

observed most likely has active kinase function, since we also detected enhanced 

endogenous phosphorylation of AKT nuclear substrates, compared to 231 parental 

cells which did not express nuclear phospho-AKT (Figure 26).  Furthermore, AKT 

phosphorylation was further enhanced by stimulation with IGF-1 ligand, which 

suggests that constitutive IGF-IR signaling may be at least partially responsible for 

enhanced nuclear AKT signaling. 

 In order to test the hypothesis that IGF-IR increases nuclear AKT signaling, we 

obtained nuclear lysates from the 231Br-Vector, 231Br-shIGF-IR (B) and 231Br-

shIGF-IR (F) cell lines.  231Br Vector cells had Ser473 and Thr307 AKT 

phosphorylation, as expected. Ser473 phosphorylation was unaffected by IGF-IR 

knockdown in the shIGFR cells, however, AKT phosphorylation at Thr308 was 
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downregulated.  The phosphorylation of nuclear AKT ser/thr substrates at the 

RXXS/T motif was also partially downregulated in the IGF-IR knockdown cell lines, 

although not dramatically, perhaps due to the residual Ser473 phosphorylation. 

 Next, we were interested in discerning which of the three AKT isoforms is 

phosphorylated in the nucleus of 231Br cells. We transiently transfected 231Br cells 

with control siRNA, or siRNAs targeting a combination of two or three AKT isoforms.  

We then isolated nuclear lysates from siRNA-transfected cells, and assessed the 

resulting AKT phosphorylation.  AKT1 and AKT3 knockdown contributed the most 

significant decrease in phospho-AKT at both Ser473 and Thr308.  This is an 

important result since both AKT1 and AKT3, have been implicated in metastasis 

and/or in vitro metastatic properties.  In thyroid cancer, for example, it was shown 

that AKT1 and activated AKT co-localize in the nucleus of malignant cells, but not 

normal thyroid cells, and correlates with increased malignancy and migration 

(Vasko et al., 2004).  Interestingly, it was also shown that an AKT1 mutant lacking a 

nuclear export sequence is sufficient to cause increased in vitro migration of Akt1 -/- 

fibroblasts (Saji et al., 2005).  Akt3 deregulation was found to correlate with 

melanoma malignancy, and AKT3 expression progressively increases in more 

advanced stages of metastasis (Stahl et al., 2004).  Taken together, our data 

suggest that IGF-IR signaling axis activation in brain-seeking breast cancer cells 

may lead to an enrichment of phosphorylated and kinase-active nuclear AKT, 

primarily AKT1 and AKT3, which then may activate nuclear substrates that promote 

migration and metastasis.  Further studies should validate specific targets enhanced 

by this signaling axis, and further clarify the functional significance of nuclear AKT in 



	  119	  

vivo.
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Figure 27 
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Figure 27. Nuclear localization of phospho-AKT and enhanced AKT nuclear 

substrate activation in brain-seeking breast cancer cells 

 

Lysates of cytosolic and nuclear compartments of 231 and 231Br cells were 

obtained.  Cytosolic fraction on the left is confirmed by Tubulin expression, and 

purity of the nuclear fraction on the right is confirmed by Lamin-B expression.  

Nuclear phospho-AKT is found in 231Br cells, but not parental cells. Constitutive 

AKT kinase activation is confirmed by serine/threonine phosphorylation of AKT 

substrates on the RXXS/T motif.  Nuclear AKT and nuclear AKT substrate Ser/Thr 

phosphorylation are further stimulated by IGF-1 ligand. 

 

 

 



	  122	  

Figure 28 
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Figure 28. Nuclear phospho-AKT and nuclear substrate activation are 

downregulated in IGF-IR knockdown brain-seeking breast cancer cells 

 

Lysates of cytosolic and nuclear compartments of 231Br-Vector, 231Br-shIGF-IR 

(B) and 231Br-shIGF-IR (F) were obtained.  Nuclear AKT phosphorylation at Ser473 

is found in 231Br Vector cells and unaffected by IGF-IR knockdown.  AKT 

phosphorylation at Thr308 is downregulated in IGF-IR knockdown cells.  

Phosphorylation of nuclear AKT serine/threonine substrates on the RXXS/T motif is 

partially downregulated in the IGF-IR knockdown cell lines. 
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Figure 29 
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Figure 29. Nuclear phospho-AKT signal observed is primarily from AKT1 and 

AKT3 isoforms. 

 

231Br cells were transiently transfected with control siRNA, or siRNAs targeting a 

combination of two or three AKT isoforms.  Nuclear lysates from siRNA-transfected 

cells were isolated, and AKT phosphorylation was assessed.  AKT1 and AKT3 

knockdown contributed the most significant decrease in phospho-AKT at both 

Ser473 and Thr308. 
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