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CXCR2 EXPRESSION IN TUMOR CELLS IS A POOR PROGNOSTIC FACTOR AND 

PROMOTES INVASION AND METASTASIS IN LUNG ADENOCARCINOMA 

Erminia Massarelli, MD, PhD 

Supervisory Professor: Jonathan M. Kurie, MD 

CXC chemokine receptor 2 (CXCR2) is a G-protein coupled receptor which mediates 

signaling by binding to CXC chemokines CXCL1-3 and 5-8. In non-small cell lung cancer 

CXCR2 has been studied mainly in stromal cells and is known to increase tumor 

inflammation and angiogenesis. However, there is controversial data in the literature 

about CXCR2 expression in tumor cells and its role in the tumor microenvironment.  We 

hypothesized that tumoral expression of CXCR2 and its ligands promote tumor invasion 

and metastasis in non-small cell lung cancer.  

The effect of CXCR2 expression on tumor cells was studied using stable knockdown 

clones derived from a murine KRAS/p53–mutant lung adenocarcinoma cell line (344SQ) 

with high metastatic potential and an orthotopic syngeneic mouse model and in vitro 

using a CXCR2 small molecule antagonist (SB225002). We showed that in vivo CXCR2 

inhibition by knock-down reduces its invasive ability.  In a murine model of orthotopic 

syngeneic lung adenocarcinoma CXCR2 knock-down 344SQ cell line was found to be 

associated with decreased tumor burden, local and distant metastases.  

In order to translate our preclinical discoveries to human NSCLC, we explored CXCR2 

tumoral immunohistochemical expression in 262 tissue microarrays created from tumor 

specimens of patients with surgically resected stage I-II lung adenocarcinoma and 

correlated it with patient clinic-pathological characteristics including smoking status, 

histological differentiation and survival outcomes. We considered also localization of 

CXCR2 expression in the cytoplasm, membrane and nucleus. High cytoplasmic CXCR2  
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was associated with smoking history, aggressive histological differentiation and worse 

survival. When we screened a publicly available large database of human NSCLC cell 

lines (N=52) and human lung adenocarcinomas (N=442), we found that at the gene 

expression level, CXCL5, a CXCR2-ligand, was the main driver of a cluster of cell lines 

and lung adenocarcinomas with high-risk features, including RAS and MET pathway 

activation, epithelial-to-mesenchimal transition and resistance to epidermal growth factor 

inhibition (i.e., gefitinib). We studied promoter methylation in 70 human non-small cell 

lung cancer cell lines and discovered that CXCL5 was regulated by promoter 

methylation.  

We concluded that the CXCR2 axis may be an important target in smoking-related lung 

adenocarcinoma. 
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INTRODUCTION 

Lung cancer is responsible for over a million of deaths worldwide per year 1. Diagnosis is 

often made at an advanced stage and the 5-years survival remains poor (about 15%) 

with only little progress in the last two decades. Lung cancer histology drives the 

therapeutic decisions and chemotherapy choice.  Small-cell lung cancers and non-small-

cell lung cancers (NSCLC) are the two major histological subtypes2. Lung 

adenocarcinoma, a subtype of NSCLC, represents about 50% of the total number of 

lung cancers. First-line chemotherapy for advanced/metastatic NSCLC consists of 

combination chemotherapy with platinum compounds3. In particular, in non-squamous 

histology, pemetrexed has shown to produce better outcomes than gemcitabine4. 

The discovery of driver molecular alterations, such as EGFR mutations5; 6 and most 

recently ALK-fusion7 predominantly in never-smokers8, has unraveled a new horizon in 

the treatment of lung adenocarcinomas. The concept of “oncogene addiction”9 has 

created the basis for the successful use of targeted therapy of genetic alterations (i.e., 

erlotinib and crizotinib) changing therefore the therapeutic approach to this particular 

subtype of NSCLC10, as cancers harboring these genetic alterations are dependent on 

the expression of these single mutant oncogenes for survival. In the last decade, 

extensive literature has been published on genetic alterations that arise in lung 

adenocarcinoma from never smokers, however little is known about potential targets of 

smoking-related lung adenocarcinoma. Known driving mutations found in lung 

adenocarcinomas from smokers are KRAS and BRAF, however more efforts need to be 

implied to discover novel targets in this setting11. 

The major role of chemokines is to act as a chemoattractant to guide the migration of 

cells. Cells that are attracted by chemokines follow a signal of increasing chemokine 



2 
 

concentration towards the source of the chemokine. Chemokines are functionally divided 

in two groups: homeostatic which are constitutively produced in certain tissues and are 

responsible for basal leukocyte migration (CCL14, CCL19, CCL20, CCL21, CCL25, 

CCL27 and CXCL12, CXCL13) and inflammatory which are produced under pathological 

conditions (i.e., on pro-inflammatory stimuli such as IL-1, TNF-alpha, viruses) and 

actively participate in the inflammatory response attracting immune cells to the site of 

inflammation (i.e., CXCL8, CCL2, CCL3, CCL4, CCL5, CCL11, CXCL10)12. Members of 

the chemokine family are divided into four groups depending on the spacing of their first 

two cysteine residues: CC chemokines with 2 adjacent cysteines, CXC chemokines in 

which the two N-terminal cysteines are separated by one amino acid, C chemokines with 

only two cysteines and CXC3C chemokines with 3 amino acids between the two 

cysteines. CXC chemokines have multiple roles in the tumor microenvironment13; 14; 15 

and they are expressed on multiple cells including neutrophils, monocytes, eosinophils, 

mast cells, basophils, lymphocytes, epithelial cells, and endothelial cells16; 17. One of the 

most important functions is to mediate communication between different cells in the 

tumor microenvironment and immune system16. CXC chemokines containing the 

sequence Glu-Leu-Arg (ELR motif) as compared with members that lack these 3 amino 

acids are potent inducers of angiogenic activity as these 3 amino acids appear to be 

important in ligand/receptor interactions on neutrophils18.  

Two G-protein-coupled receptors, CXCR1 and CXCR2, and the Duffy antigen receptor, 

are the three known receptors for these chemokines. Endothelial cells and neutrophils 

express CXCR2 and migrate toward sites of CXCR2 ligand production such as 

inflammatory foci or nascent tumors, thereby promoting angiogenesis and inflammation 

in tumors that express ELR-positive CXC chemokines19; 20; 21; 22. CXCR2 binds CXCL8 

(IL-8), CXCL1, 2, and 3 (GROα, β, and γ), CXCL5 (ENA-78), CXCL6 (GCP2), and 
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CXCL7 (NAP2), whereas CXCR1 binds only to GCP2, NAP2, and IL-8. Chemokine 

receptors associate with G-proteins to transmit cell signals following ligand binding. 

Activation of G proteins, by chemokine receptors, causes the subsequent activation of 

the phospholipase C (PLC) with subsequent activation of the mitogen-activated protein 

(MAP) Kinase pathway activation with induction of chemotaxis, degranulation, release of 

superoxide anions and changes in the avidity of integrins within the cell harboring the 

chemokine receptor23.  

In particular CXCR2 couples to the pertussis toxin-sensitive Gi proteins to stimulate PLC- 

β which ultimately results in hydrolisis of the lipid phosphatidylinositol 4,5-bisphosphate, 

generating diacylglycerol, which activates PKC isoforms, and inositol 1,3,4-triphosphate, 

which releases calcium from intracellular stores. In addition, recently CXCR2 has been 

found to contain specific modular protein interaction domains called PDZ domains that 

may be responsible to nucleate the formation of compartmentalized multiprotein 

complexes that are critical for efficient and specific cellular signaling with scaffold 

proteins24; 25.  

Expression of the ELR+ CXC chemokines in human NSCLC samples correlates with 

worse survival26; 27. Wislez M. et al. showed that CXCR2 ligands are abundant in alveolar 

epithelial cells of lung tumors arising in mice expressing KRASG12D alone and in 

combination with a Tp53 mutation (p53R172H) or Pten deletion28; 29; 30; 31; 32; 33. CXCR2 

neutralization decreased tumor angiogenesis and neutrophilic inflammation and blocked 

the expansion of early alveolar neoplastic lesions in KRASLA1 mice without having direct 

effects on tumor cells, implicating the tumor microenvironment in the anti-tumor effect of 

CXCR2 inhibition33.  
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However, there is controversial data in the literature about CXCR2 expression in tumor 

cells and its role on tumor growth and angiogenesis20; 34; 35; 36; 37. Preclinical models have 

shown that CXCR2 expression can impact cell proliferation, migration, invasion and 

stress-induced apoptosis evasion14; 38; 39; 40; 41. There are missing data, however, about if 

these effects are mediated by a direct effect of CXCR2 expression on cancer cells or by 

an anti-angiogenesis effect20; 39; 42; 43. Pharmaceutical inhibition of CXCR2 is currently 

undergoing clinical development in chronic obstructive pulmonary disease (COPD) to 

counter-act the damaging effects of cigarette smoking that produces inflammation with 

increase in alveolar destruction by neutrophils, goblet cell hyperplasia and pro-

angiogenetic effects17; 44. These compounds therefore may be eventually available to be 

used to target the CXCR2 expression on cancer cells in the future. 

Among the CXCR2 inhibitors, SB225002 (N-(2-hydroxy-4-nitrophenyl)-N′-(2-

bromophenyl)urea) was the first reported potent and selective non-peptide inhibitor of 

CXCR2. It is an antagonist of IL-8 binding to CXCR2 with an IC50 = 22 nM. SB 225002 

showed >150-fold selectivity over CXCR1 and four other chemokine receptors tested. 

This compound inhibited the binding of both CXCL8 and CXCL1 on recombinant and 

native CXCR2 and also blocked CXCL8 and CXCL1-induced chemotaxis and 

margination of human and rabbit neutrophils without having any affinity or activity on 

CXCR145. 

To clarify the effect of CXCR2 inhibition in NSCLC, I hypothesized that CXCR2 ligands 

promote tumor invasion and metastasis in NSCLC. I proposed to test this hypothesis by 

investigating the CXCR2 role in a KRAS/p53−mutant lung adenocarcinoma murine 

model in vitro and in vivo46; 47; 48. To understand the potential translational significance of 

my work in human NSCLC, CXCR2 tumoral expression was assessed in tissue 

microarrays of human NSCLC from stage I-II patients in correlation with patients 
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clinicopathological characteristics and a systematic analysis of gene expression profiles 

of CXCR2 and its ligands (subsequently called the CXCR2 axis) was conducted in 

human NSCLC cell lines and lung adenocarcinomas.  
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MATERIALS AND METHODS 

This thesis is based upon the following article: Massarelli E. and Saintigny P, Lin S, 

Ahn Y-H, Chen Y, Goswami S, Erez B, O’Reilly MS, Liu D, Lee JJ, Zhang L, Ping Y, 

Berhens C, Solis Soto LM, Heymach JV, Kim ES, Herbst RS, Lippman SM, Wistuba II, 

Hong WK, Kurie JM.  Cancer Research. 2013 Jan 15; 73(2):571-82. DOI: 

10.1158/0008-5472. This material is reprinted by permission from the American 

Association for Cancer Research. 

Human lung tissues and tissue microarray 
A detailed description of the tissue microarray (TMA) construction is provided 
elsewhere49. In summary, after histological examination of NSCLC specimens, 
the NSCLC TMAs were constructed by obtaining three 1-mm in diameter cores 
from each tumor at three different sites (periphery, intermediate and central 
tumor sites). 
Immunohistochemical analysis 
Mouse monoclonal anti-human CXCR2 antibody (R&D Systems, Minneapolis, 
MN) was used at a dilution of 1:200, according to the manufacturer’s instruction. 
CXCR2 staining was examined using light microscopy by a lung cancer 
pathologist (Dr. Yuan Ping). An independent observer (Dr. Ignacio I. Wistuba) 
reviewed one third of the cores chosen randomly. In case of discordance (~10%), 
both pathologists reviewed the slides jointly in a multiheaded microscope and 
reached consensus. Both pathologists were blinded with respect to the patients’ 
outcome. Only cytoplasmic CXCR2 expression was quantified using a four-value 
intensity score (0, 1+, 2+, and 3+) and extent of reactivity (0-100%). Final score 
was then obtained by multiplying the intensity and reactivity extension values 
(range, 0-300). 
Animal husbandry 
All animal experiments were reviewed and approved by the Institutional Animal 
Care and Use Committee at MD Anderson Cancer Center. For syngeneic tumor 
experiments, 10- to 16- week-old 129/Sv mice were injected with the indicated 
numbers of tumor cells into the left lung and euthanized at the first signs of 
morbidity. 
Establishment of murine lung adenocarcinoma cell lines 
The methods used to establish lung adenocarcinoma cell lines in culture from 
murine tumors have been described previously46. Cell lines were named 
according to the mouse number and site of derivation (e.g., 344SQ for mouse 
344, subcutaneous metastasis). These cells have alveolar type II cell properties 
and variable propensities to undergo the epithelial-to-mesenchymal transition 
and metastasize following injection into syngeneic mice46; 48. 
RNA extraction and quantitative reverse-transcription PCR 
RNAs were extracted using TRIzol (Invitrogen, Carlsbad, CA). mRNA was 
reverse transcribed using the SuperScript First-Strand Synthesis System 
(Invitrogen). For quantitative PCR reactions, 1:10 dilutions of cDNA products 
were amplified by using SYBR Green PCR Master Mix (Applied Biosystems, 
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Carlsbad, CA) and analyzed by using ABI Prism 7500 Fast System (Applied 
Biosystems). mRNA expression values were normalized on the basis of L32 
mRNA. 
Generation of shRNA transfectants 
The shRNA retroviral CXCR2 constructs were purchased (OriGene, Rockville, 
MD). The sequences of the CXCR2 and scrambled shRNA were as follow: 
CAAGGTGGATAAGTTCAACATTGAAGATT (CXCR2 clone 1), 
GTCTGCTATGAGGATGTAGGTAACAATAC (CXCR2 clone 3), and 
GCACTACCAGAGCTAACTCAGATCGTACT (scrambled shRNA). Purified 
plasmids (1 μg of each) were transfected into 344SQ cells by using 
LipofectAmine and PLUS (Invitrogen). After 48 hours, transfectants were replated 
in RPMI 1640 medium containing 10% FBS and 15 μg/ml puromycin for selection 
and passed serially for 4 weeks to generate stable transfectants. 
Cell invasion assay 
As described previously46, cells (cancer-associated fibroblasts) were seeded first 
in the lower chambers (105 cells), and tumor cells (344SQ) were then seeded in 
the upper chambers (5x104) of 24-well Transwell invasion plates (BD 
Biosciences, Bedford, MA) in serum free medium containing mitomycin C to 
block proliferation. Cells in the upper chambers were allowed to invade for 14 to 
16 hours. Cells on the inserts were fixed with 90% ethanol, stained with 0.1% 
crystal violet blue, and washed with ddH2O. Noninvaded cells on the upper side 
of the inserts were wiped off with a cotton swab. Invaded cells were counted in 
five microscopic fields at 4x magnification, and the counts were averaged. A 
small molecule antagonist of CXCR2 (SB225002)  (Calbiochem) was used to 
inhibit CXCR2 invasive properties of 344P cells in Boyden chamber assays and 
included 344SQ cells as positive controls45; 50. 
Gene expression analysis 
Publicly available gene expression profiles and clinical annotations of 442 lung 
adenocarcinomas were downloaded from the NCI Director’s Challenge 
Consortium for the Molecular Classification of adenocarcinoma (DCC)51. CEL 
files of 52 NSCLC cell lines (GSE4824)52; 53, 130 lung squamous cell carcinomas 
with clinical annotations (GSE4573)54, and 7 NSCLC cell lines and 3 human 
bronchial epithelial cell lines (HBEC) before and after treatment with 5-aza-2'-
deoxycytidine (decitabine) (GSE5816)55 were downloaded from Gene Expression 
Omnibus (GEO). The gene expression analysis was generated by using Array 
Studio software (Omicsoft Corporation, Research Triangle Park, NC). Raw 
microarray data were processed using quantile normalization and robust multi-
array average algorithm. Probesets corresponding to CXCR2 axis were identified 
using the NetAffx Analysis Center from Affymetrix website. They were used to 
compute an unsupervised hierarchical clustering of the cell lines and of the lung 
adenocarcinomas using the Pearson's correlation coefficient and Ward's linkage 
method. To summarize the effect of CXCR2 axis, a principal component analysis 
was computed with the first two components. In the DCC, the first principal 
component (PC1) was used for correlative studies with tumor differentiation, 
smoking status, and overall survival. In the cell lines, PC1 was correlated with the 
whole genome. Gene Set Enrichment Analysis (GSEA) using the “pre-ranked” 
tool was done using either the genes ranked according to their correlation with 
PC1, or to fold-change between groups defined by the unsupervised hierarchical 
clustering. Probesets with an absolute Pearson correlation or a fold-change ≥0.5 
were included in network analyses performed using Ingenuity Pathway Analysis 
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(IPA) (Ingenuity® Systems, Redwood City, CA). Details of the GSEA and IPA are 
provided in Supplementary Material and Methods. 
CXCL5 promoter methylation study 
CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6 promoter methylation status was 
obtained from high-throughput promoter methylation profiles of 42 NSCLC cell 
lines overlapping with the panel of 52 NSCLC cell lines analyzed for gene 
expression. CXCL7 and CXCL8 results did not pass the quality control and were 
not included in the analysis. DNA methylation status of a set of 27,579 CpG sites 
around promoters of 14,475 consensus coding sequences was interrogated 
using the Illumina HumanMethylation27 Beadchip (Illumina, Inc., San Diego, CA). 
Genomic DNA (1 μg) was bisulfite-converted using the EZ DNA Methylation kit 
(Zymo Research Corp, Orange CA). Whole-genome amplification, fragmentation, 
hybridization, washing, counterstaining, and scanning were performed according 
to the manufacturer’s instructions. The scanner data and image output files were 
managed with the Illumina BeadStudio software Methylation module v.3.2. The 
normalized data, presented as beta values, represent the degree of methylation 
at each CpG site, 0 being unmethylated and 1 being methylated.  
Gene Set Enrichment Analysis 
GSEA is a robust computational method that determines whether an a priori 
defined set of genes shows statistically significant, concordant correlation with 
the CXCR2/CXCR2 ligands biological axis. GSEA aims to interpret large-scale 
expression data by identifying pathways and processes56. The main advantage of 
this method is its flexibility in creating molecular signature databases of gene 
sets, including ones based on biologic pathways, or expression profiles in 
previously generated microarray data sets. The input data for the GSEA56 were 
the following: (1) a complete table of genes ranked according to their Pearson 
correlation with PC1, (2) a mapping file for identifying probesets in HG-U133A 
and B platforms, and (3) a catalog of functional gene sets from Molecular 
Signature Database (MSigDB, version 3.0, 30-September-2010 release, 
www.broad.mit.edu/gsea/msigdb/msigdb_index.html). A total of 2,480 curated 
gene sets (canonical pathway gene sets, chemical and genetic perturbations 
gene sets, BioCarta gene sets, GenMAPP gene sets, and KEGG gene sets) 
were included in the analysis. Default parameters were used. Probesets (44,754 
unique features in cell lines, 22,283 unique features in lung adenocarcinomas) 
were collapsed into gene symbols (18,770 unique genes in cell lines, 13,321 
unique genes in lung adenocarcinomas). Inclusion gene set size was set 
between 15 and 500, and the phenotype was permutated 1,000 times. Gene sets 
that met the false discovery rate 0.25 criterion were considered. 
Ingenuity Pathway Analysis 
Probesets with an absolute Pearson correlation or a fold-change equal to or 
greater than 0.5 were included in network analyses performed using Ingenuity 
Pathway Analysis (Ingenuity® Systems, www.ingenuity.com). Network 
Generation: a data set containing gene identifiers and corresponding expression 
values was uploaded into in the application. Each gene identifier was mapped to 
its corresponding gene object in the Ingenuity Pathways Knowledge Base. These 
genes, called focus genes, were overlaid onto a global molecular network 
developed from information contained in the Ingenuity Pathways Knowledge 
Base. Networks of these focus genes were then algorithmically generated based 
on their connectivity. Network/My Pathways Graphical Representation: a 
Network/My Pathways is a graphical representation of the molecular 
relationships between genes/gene products. Genes or gene products are 
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represented as nodes, and the biological relationship between two nodes is 
represented as an edge (line). 
All edges are supported by at least one reference from the literature, from a 
textbook, or from canonical information stored in the Ingenuity Pathways 
Knowledge Base. Human, mouse, and rat orthologs of a gene are stored as 
separate objects in the Ingenuity Pathways Knowledge Base, but are 
represented as a single node in the network. The intensity of the node color 
indicates the degree of positive (red) or negative (green) correlation. Nodes are 
displayed using various shapes that represent the functional class of the gene 
product. Edges are displayed with various labels that describe the nature of the 
relationship between the nodes. 
Statistical analysis 
Wilcoxon rank sum test or Kruskal-Wallis test was used to test the differences of 
CXCR2 expression between/among categorical variable levels. Martingale 
residuals were performed from a Cox model that included only baseline hazard 
function but no covariate. By applying a nonparametric smoother, the plots allow 
one to examine visually the nature of the relationship between the residuals and 
CXCR2 H-scores and to define a reasonable cutoff point to dichotomize the 
population. The Kaplan-Meier method was used to construct overall and 
recurrence-free survival curves, and the log-rank test was used to test the 
difference by covariate levels. Univariate and multivariate Cox models were fitted 
to estimate the effect of prognostic factors, including patient age, sex, tumor 
histology, stage, and marker on time to event endpoint. For cell line experiments, 
comparisons between two groups were performed using the Wilcoxon rank sum 
test unless otherwise indicated. One-way ANOVA was performed to compare 
multiple experimental groups. All statistical tests were two-sided, and P-values of 
0.05 or less were considered to be statistically significant.  

RESULTS 
 
Creation of an orthotopic syngeneic lung adenocarcinoma metastasis 
model 
We recently described the creation of a panel of cell lines from 
KrasLA1/+p53R172HΔG/+ mice, which develop aggressive and metastatic lung 
adenocarcinoma48. One of these cell lines, 344SQ, is highly metastatic when 
injected subcutaneously into syngeneic mice46. In order to refine our lung 
adenocarcinoma metastasis model, we used 344SQ to create a novel orthotopic 
syngeneic model. As previously described57, 2x104 344SQ cells were injected 
into the left lung of syngeneic mice. The mice were euthanized 21 days after 
injection and, at necropsy, had developed metastases to hilar and mediastinal 
lymph nodes (Fig. 1), chest wall, and controlateral lung as well as extrathoracic 
distant metastases in the paraaortic lymph nodes, liver, adrenal glands, kidneys, 
spleen and diaphragm.   
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Figure 1. Mediastinal lymph node metastasis from an orthotopic lung tumor. 
Hematoxylin and eosin-stained tissue section of a mediastinal lymph node from a 
mouse injected intrathoracically (left lung) with 344SQ cells (2x104), killed after 21 
days, and subjected to necropsy (L: lymphocytes; TC: tumor cells) 

 

CXCR2 knockdown decreased tumor cell invasion in vitro 
To investigate the role of CXCR2 expression by tumor cells, we created CXCR2 
shRNA clones from parental 344SQ lung adenocarcinoma cell lines isolated from 
KrasLA1/+p53R172HΔG/+ mice. CXCR2 shRNA clones exhibited significantly 
lower expression of CXCR2 mRNA than scrambled controls (Fig. 2A). To test the 
invasion potential of the shRNA clones, we used cocultures with cancer-
associated fibroblasts, which produce high levels of CXCR2 ligands, as 
previously described58. To block tumor cell proliferation, we added mitomycin C 
to the serumfree medium in which the tumor cells were cultured (344SQ). 
CXCR2 shRNA clones showed a significantly lower invasion potential than 
scrambled controls (Fig. 2B). 
CXCR2 pharmacological inhibition decreased tumor cell invasion in vitro 
To confirm our findings in the 344SQ cells, we carried out experiments by using 
344P, a second highly invasive and metastatic lung adenocarcinoma cell line 
derived from KrasLA1/+p53R172HΔG/+mice. To inhibit CXCR2 using a different 
approach, we used a small molecule antagonist of CXCR2, SB225002, that has 
demonstrated selectivity and potency in vitro and in vivo45; 50. We examined the 
effect of SB225002 on 344P cell invasive properties in Boyden chamber assay 
and included 344SQ cells as a positive control. Treatment with SB225002 

Figure 1 
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inhibited tumor cell invasive properties with as IC50 of 3-4 μmol/Lfor both 344P 
cells and 344SQ cells (Fig. 2C-D). 
CXCR2 knockdown in tumor cells decreased 344SQ metastatic potential 
We used the orthotopic murine model already described to test whether the 
metastatic potential of 344SQ would be affected by CXCR2 knockdown. Two 
shRNA clones (clone-1 and clone-3) and scrambled controls were compared by 
injecting 2x104 cells into the left lung of mice (N=10 in each group, for a total of 
30 mice). Mice were euthanized at 21 days after injection because two of the 10 
mice in the scrambled control group demonstrated poor physical conditions due 
to tumor burden. At necropsy, mice bearing CXCR2-shRNA lung 
adenocarcinoma had significantly fewer lung tumor nodules in the lung of primary 
injection (Fig.2E) and fewer distant metastases (Fig. 2F) than scrambled 
controls. Sites of distant metastases included liver, adrenal glands, ipsilateral and 
controlateral lung, diaphragm, spleen and paraortic lymph nodes.  

 

Figure 2. Effect of CXCR2 downregulation and inhibition. In vitro (A-B) properties of 

shRNA clones (clone-1 and -3) compared to scrambled control: (A) mRNA expression by 

reverse transcription PCR relative to standard, (B) invasion assay using co-cultures with 

cancer associated fibroblasts (CAF) and mitomycin C to block tumor cell proliferation. In 

vitro CXCR2 inhibition with CXCR2-antagonist (C, D): invasion assay using co-cultures 

of 344P (C) and 344SQ (D) cell lines treated with increasing concentrations of 

SB225002.In vivo properties of shRNA clones (clone-1 and -3) compared to scrambled 

control (E, F): number of left lung tumor nodules, (E) number of distant metastases (F). 

Median and inter-quartile range are shown in the dot plots (E, F). Wilcoxon rank sum test 

(A, B, E, and F) between scrambled control and shRNA single clones (clone-1 and 

clone-3) or between different concentrations of SB225002and the control (C, D).  
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CXCR2 protein expression in human NSCLC tumor cells is associated with 
adverse outcome and tobacco smoking 
To investigate the role of CXCR2 in human tumor cells, we stained a tissue 
microarray that included 370 resected NSCLC. For the purpose of this study, we 
considered only 262 patients with stage I and II disease who did not receive 
preoperative chemotherapy. Clinical and pathological characteristics of the 
patient population are described in Table 1. Median age was 67.4 years (range: 
32.2-90.0). Adenocarcinoma was the most frequent histological subtype (N=173, 
66%). With a median follow-up of 5.3 years, 133 patients had developed 
recurrence (50.8%) and 101 had died (38.5%).  
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Table 1. Clinical and pathological characteristics of patients included in the tissue 
microarray (N=262).  

 

CXCR2 was expressed mainly in the cytoplasm (mean 31.07±30.78, median 20, 
range 0-130). Distribution of cytoplasmic CXCR2 protein expression in the whole 
population is shown in Fig. 3.  
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Figure 3. Distribution of cytoplasmic CXCR2 protein expression. Distribution of 
cytoplasmic CXCR2 protein expression in 262 non small cell lung cancer cell lines by  
squamous cell carcinoma (SCC) and adenocarcinoma (Adeno) histology. 

 

Figure 4 shows one adenocarcinoma and one squamous cell carcinoma 
expressing CXCR2 with an intensity of 1 in 100% of tumor cells, and an H-score 
of 100. CXCR2 expression was low in the nucleus (mean 16.15±24.88, median 
3.33, range 0-120). Cytoplasmic and nuclear CXCR2 expression levels were not 
correlated (rho=-0.02, P=0.76). No association was observed between 
cytoplasmic CXCR2 and patient sex, race, tumor histology, stage or degree of 
inflammation. Cytoplasmic CXCR2 expression was higher in current smokers 
(32.57±28.28) and former smokers (31.19±33.15) than in never smokers 
(25.28±29.00), although it did not reach statistical significance. Similarly, poorly 
differentiated tumors had higher cytoplasmic CXCR2 levels (39.84±32.20) than 
moderately (29.99±30.18) or well-differentiated (16.46±23.98) tumors 
(P<0.0001).  

Figure 3 
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Figure 4. Expression of CXCR2 in tumor cells and tissues. Immunohistochemical 

expression of CXCR2 in two NSCLC tissue specimens, (A) squamous cell carcinoma 

and (B) adenocarcinoma.  

 

 

The Martingale residual plots showed that median CXCR2 H-score was a 
reasonable cutoff point (Fig. 5).  

  

Figure 4 
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Figure 5. Median CXCR-2 immunohistochemistry score. Martingale residuals 
analysis from a Cox model that includes only baseline hazard function but no covariate, 
are represented on the vertical axis and CXCR2 H-scores (CXCR2c) are represented on 
the horizontal axis. The median H-score for CXCR2 expression is shown by a vertical 
bar.  

 

 

 
 
When cytoplasmic CXCR2 level was dichotomized using the median expression 
of 20, 141 (53.8%) tumors expressed low CXCR2 levels (<=20) and 121 (46.2%) 
tumors expressed high CXCR2 levels (>20). EGFR and KRAS mutational status 
was available for 157 of the lung adenocarcinomas; Figure 6 shows that  
cytoplasmic CXCR2 protein expression was lower, although not reaching 
statistical significance, in EGFR-mutant lung adenocarcinomas (N=17, mean 
24.71±29.49, median 13.33, range 0-90), which are known to be more frequent 
among never smokers, than in KRAS-mutant (N=41, mean 31.02±31.65, median 
20, range 0-110) or wild-type EGFR and wild-type KRAS lung adenocarcinomas 
(N=99, mean 33.05±33.61, median 20, range 0-130), which are more frequent 
among smokers. 

 
 
 

Figure 5 
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Figure 6. CXCR2 expression according to EGFR and KRAS mutation status. 
CXCR2 expression in tumor cells according to EGFR and KRAS mutation status. EGFR 
and KRAS mutation status was available for 157 lung adenocarcinomas analyzed for 
cytoplasmic CXCR2 protein expression.  

 

 

  

Figure 6 
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Using Kaplan-Meier curves, high CXCR2 expression was associated with poor 
overall survival and recurrence-free survival in patients with lung 
adenocarcinoma, although not reaching statistical significance (Fig. 7A-B).  
 
Figure 7. Overall survival and recurrence-free survival as a function of 
cytoplasmic CXCR2 expression in lung adenocarcinoma. Kaplan-Meier 
curves for (A) overall survival and (B) recurrence-free survival as a function of 
cytoplasmic CXCR2 expression in 173 patients who underwent resection for lung 
adenocarcinoma.  
 

 

No such association was observed in patients with squamous cell carcinoma 
(Fig. 8A-B).  

  

Figure 7 
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Figure 8. Overall survival and recurrence-free survival as a function of 
cytoplasmic CXCR2 expression in lung adenocarcinoma. Kaplan-Meier curves for 
(A) overall survival and (B) recurrence-free survival as a function of cytoplasmic CXCR2 
protein expression in 89 patients who underwent resection for lung squamous cell 
carcinoma.  

 

 

Univariate Cox proportional hazards model assessed the effect of covariates on 
survival. High CXCR2 expression was associated with worse overall survival in 
both subtypes [hazard ratio (HR) =1.488 95% confidence interval (95%CI): 
0.905-2.448; HR=1.520 95%CI: 0.798-2.894] (Table 2A and 3A), although not 
reaching statistical significance. For recurrence-free survival, a similar trend was 
observed in adenocarcinoma (HR=1.284 95%CI: 0.830-1.985), but not in 

Figure 8 
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squamous cell carcinoma (HR=1.028 95%CI 0.593-1.782) (Table 2B and Table 
3B).  
 
 

Table 2. Univariate Cox model assessing the effect of covariates on overall survival (A) 
and recurrence-free survival (B) (M: male; F: female; HR: hazard ration; 95CI: 95% 
confidence interval), in adenocarcinoma patients (N=173).  
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Table 3. Univariate Cox model assessing the effect of covariates on overall survival (A) 
and recurrence-free survival (B) (M: male; F: female; HR: hazard ration; 95CI: 95% 
confidence interval), in squamous cell carcinoma patients (N=89).  
 

 

Final multicovariate Cox models are presented in Table 2. Combining all patients 
together, after adjusting for patients’ age, sex, and tumor stage, high cytoplasmic 
CXCR2 expression remained associated with poor overall survival (HR=1.559; 
95%CI: 1.051-2.312, P=0.0273) (Table 4A). 
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Table 4. Final multicovariate Cox models assessing the effect of covariates on overall 
survival in the whole population (N=262), in patients with lung adenocarcinoma 
(N=173) (B), and in patients with lung squamous cell carcinoma (N=89) (C) (M: male; 
F: female; HR: hazard ration; 95CI: 95% confidence interval). 
 

 

Gene expression pattern of CXCR2 axis is associated with human smoking-
related adenocarcinoma and adverse clinical features 
High-throughput gene expression profiles offer the opportunity to study CXCR2 
as well the genes that encode for its known ligands. We took advantage of 
publicly available profiles of 52 NSCLC cell lines and 442 early stage resected 
lung adenocarcinoma. Gene expression patterns of CXCR2 ligands in NSCLC 
cell lines and lung adenocarcinoma were comparable (Fig. 9). Unsupervised 
hierarchical clustering using the CXCR2 axis identified a cluster of cell lines with 
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high expression of CXCR2 ligand genes, which we called the CXCR2/CXCR2 
ligands cluster, that included nine (17%) of the cell lines analyzed (Fig. 9A). 
This group was enriched in KRAS mutations (Fisher’s exact test, P=0.0548). 
HCC827, an EGFR-mutant cell line with an exon 19 deletion, was also part of 
this group. In lung adenocarcinomas, a similar cluster of 115 (26%) tumors was 
identified (Fig. 9B). EGFR mutation status was available for 170 
adenocarcinomas. None of the 30 tumors included in the CXCR2/CXCR2 ligands 
cluster harbored EGFR mutations, whereas 24 of the remaining 140 
adenocarcinomas did harbor an EGFR mutation (Fisher’s exact test, P=0.0295). 
A similar CXCR2/CXCR2 ligands cluster was observed in each of the four 
individual cohorts forming the DCC (data not shown). From Massarelli E. and 
Saintigny P., Cancer Res. 2013 Jan 15; 73(2):571-82. DOI: 10.1158/0008-5472. 
 

Figure 9. Distribution of expression of CXCR2, its ligand genes and IL8 in non-
small cell lung cancer cell lines and lung adenocarcinomas. Distribution of 
expression of CXCR2 and its ligand genes (CXCL1,CXCL2, CXCL3, CXCL5, CXCL6, 
PPBP [CXCL7], and IL8 in non-small cell lung cancer cell lines (panel A; N=52) and lung 
adenocarcinomas (panel B; N=442).  

 

 

A trend toward a worse prognosis in the high CXCR2/CXCR2 ligands cluster was 
observed (Fig. 10A). Using a similar approach in 130 patients resected for 
squamous cell carcinoma and included in the GEO series GSE457354, we did 
not see any association between high CXCR2/CXCR2 ligands cluster and poor 
outcome (Fig. 10B,C). 

Figure 9 
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Figure 10. CXCR2/CXCR2 ligands association with overall survival in patients with 

lung adenocarcinoma. CXCR2/CXCR2 ligands cluster is associated with a worse 

overall survival in patients with lung adenocarcinoma (N=442) (A). CXCR2/CXCR2 

ligands cluster is not associated with outcome in patients with lung squamous cell 

carcinoma (N=130) (B, C).  

 

Figure 10 
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In both cell lines and lung adenocarcinoma, we compared the genes differentially 

expressed between the CXCXR2/CXCR2 ligands cluster and the remaining 

samples across the whole genome. In both cases, CXCL5 gene was the most 

frequently upregulated in the CXCR2/CXCR2 ligands cluster. Members of the 

aldo/keto reductase superfamily (AKR1B10, AKR1C2, AKR1C3), associated with 

tobacco exposure, were also upregulated. In cell lines, TGFB1, vimentin (VIM), 

and osteopontin (SPP1) were upregulated in the CXCR2/CXCR2 ligands cluster, 

while desmoplakin (DSP) and hepatocyte growth factor activator inhibitor 1 

(SPINT1) were downregulated. These changes may be associated with the 

epithelial-to-mesenchymal transition and promote invasion and metastasis. In 

lung adenocarcinomas, genes encoding the matrix metalloproteinases were 

upregulated in the CXCR2/CXCR2 ligands cluster, as was the dual specificity 

phosphatase 4 (DUSP4) gene, which is known to be downregulated in EGFR-

mutant NSCLC. Consistent with the association between poor differentiation and 

CXCR2 protein expression observed in the tissue microarray, another striking 

change was the downregulation of differentiation-associated genes, including 

thyroid transcription factor 1 (NKX2-1) (Fig. 11A) and surfactant proteins B 

(SFTPB), C (SFTPC), and D (SFTPD), in the CXCR2/CXCR2 ligands cluster. 

Interestingly, ribonucleotide reductase M2 (RRM2) was upregulated in the 

CXCR2/CXCR2 ligands cluster, while folic acid receptor 1 (FOLR1) was 

downregulated. RRM2 and FOLR1 have been reported to modulate response to 

gemcitabine and pemetrexed, respectively, in NSCLC. Similar trends were 

observed in cell lines for FOLR1 and NKX2-1 downregulation (Fig. 11B). 
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Figure 11. TTF-1 gene expression in lung adenocarcinomas and cell lines. TTF-1 

gene expression was more frequently lower in lung adenocarcinomas (A) and cell lines 

(B) included in the CXCR2/CXCR2 ligands cluster.  

 

Figure 11 
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The most significant network associated with differential gene expression, with 

an absolute fold-change ≥0.5 between the CXCR2/CXCR2 ligands cluster and 

the remaining samples, was related to NFKB in both the cell lines and lung 

adenocarcinoma (data not shown). Using as input the fold-change in gene 

expression between the CXCR2/CXCR2 ligands cluster and the remaining lung 

adenocarcinomas, GSEA showed enrichment of genes associated with poor 

survival (Fig. 12C) (28). We also found enrichment in gene sets associated with 

poor differentiation and proliferation (data not shown), as well as MET 

transcriptionally co-regulated genes (Fig. 12D). Using as input the fold-change in 

gene expression between the CXCR2/CXCR2 ligands cluster and the remaining 

cell lines, GSEA showed a significant upregulation of gene sets related to the 

RAS pathway (Fig. 12E) and resistance to gefitinib (Fig. 12F), and enrichment of 

target genes of hsa-miR-let7, a known regulator of KRAS expression, and of 

genes associated with the epithelial-to-mesenchymal transition was observed 

(data not shown). 

 
Figure 12. Identification of a CXCR2/CXCR2 ligands cluster. Unsupervised clustering 

using gene expression of CXCR2 and its ligands (CXCL6, IL8, CXCL2, CXCL1, CXCL3, 

PPBP [CXCL7], and CXCL5) in (A) 52 NSCLC cell lines and (B) 442 lung 

adenocarcinomas. For Gene 23 Set Enrichment Analysis, genes were preranked 

according to the fold-change observed between samples with the CXCR2/CXCR2 

ligands cluster and the remaining samples in both lung adenocarcinomas (C, D) and cell 

lines (E, F); representative gene sets enriched with a P-value and a false discovery rate 

<0.0001 are shown for lung adenocarcinomas (C, D) and NSCLC cell lines (E, F).  
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Figure 12 
A 
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As an alternative approach to studying the effect of the CXCR2/CXCR2 ligands 
axis, we summarized the effect of this axis by computing a principal components 
analysis (Fig. 13A and 14A). The distribution of PC1 in cell lines was bimodal, a 
group of 12 cell lines having a high PC1 (≥1.5) and the remaining cell lines 
having a low PC1 (Fig. 13B). Interestingly, cell line H1395, which has been 
reported to harbor an inactivating CXCR2 G354W mutation, had a low PC1 (Fig. 
13B). Cell lines included in the CXCR2/CXCR2 ligands cluster or with a high PC1 
had low levels of NKX2-1 gene expression, except HCC827 (Fig. 13C). 

 
 

Figure 13. Expression of CXCR2 and its ligand genes in NSCLC cell lines. The first 
two principal components were computed using expression of CXCR2 and its ligand 
genes (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, PPBP [CXCL7], and IL8) in 52 
NSCLC cell lines. (A) The first principal component (PC1) accounted for 48.25% of the 
variation of the principal components analysis and allowed identification of two groups of 
cell lines (bimodal distribution). (B) Cell lines with a high PC1 had a significant overlap 
with cell lines included in the CXCR2/CXCR2 ligands cluster. (C) TTF-1 gene expression 
was low in almost all the cell lines with high PC1 outlined by the blue box. NCI-H1395 
(shown by a star) has an inactivating CXCR2 G354W mutation.  
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Figure 13 
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In lung adenocarcinomas, a similar bimodal distribution of PC1 was observed 
(Fig. 14A). Consistently with our immunohistochemical results, PC1 was 
statistically significantly higher in poorly differentiated adenocarcinomas than in 
moderately (P=0.0065) and well-differentiated tumors (P=0.0006) (Fig. 14B), and 
higher in current smokers than in former (P=0.0010) and never smokers 
(P=0.0085) (Fig.14C).  
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Figure 14. Expression of CXCR2 and its ligand genes in lung adenocarcinomas. 
The first two principal components were computed using expression of CXCR2 and its 
ligand genes (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, PPBP [CXCL7], and IL8) in 444 
lung adenocarcinomas. (A) The first principal component (PC1) accounted for 46.15% of 
the variation of the principal component analysis in lung adenocarcinomas. (B) PC1 was 
statistically higher in poorly differentiated versus moderately (P=0.0065) or well 
differentiated (P=0.0006) lung adenocarcinomas and (C) in current versus former 
(P=0.0010) or never smokers P=0.0085.  

 

 

Figure 14 
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When PC1 was dichotomized based on the median, tumors with low PC1 linked with 
longer OS (Fig. 15); low PC1 was associated with HR of 0.6907 (95CI: 0.5302-0.9000, 
Pvalue= 0.0061). After adjusting for patient age, sex, tumor stage, and institution, low 
PC1 remained associated with longer overall survival (HR of 0.6827; 95CI: 0.5046-
0.8701,P=0.0031) (Fig 15).  

Figure 15. PC1 and overall survival.  

 

 

CXCL5 is the main driver of the CXCR2/CXCR2 ligands cluster in 
adenocarcinomas and is regulated through promoter methylation 
CXCL5 was the gene most upregulated in the CXCR2/CXCR2 ligands cluster in 
comparison to other samples across the whole genome, in both the cell lines and 
lung adenocarcinomas. CXCL5 upregulation was associated with poor overall 
survival (Fig. 16).  

  

Figure 15 
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Figure 16. CXCL5 upregulation and overall survival.  

 

 

Its distribution was bimodal in both cell lines and lung adenocarcinomas (Fig. 
17A and B). This led us to hypothesize that promoter methylation might regulate 
its expression. CXCL5 gene expression was inversely correlated with the 
average beta-value, which measures the degree of methylation of the promoter 
(Fig. 17C). Data generated in an independent study with publicly available raw 
data 55 confirmed high levels of expression of CXCL5 in cell lines included in the 
CXCR2/CXCR2 ligands axis, and low levels in other cell lines, including 
immortalized HBEC lines (Fig. 17D).  

  

Figure 16 
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Figure 17. CXCL5 drives the CXCR2/CXCR2 ligands cluster and is regulated 
through promoter methylation. CXCL5 is the gene most frequently upregulated across 
the whole genome in samples with the CXCR2/CXCR2 ligands cluster compared to 
other samples, both in vitro (A) and in vivo (B). (C) CXCL5 gene expression was 
inversely correlated with the average beta-value, and (D) was increased after treatment 
with decitabine in most of the cell lines with low baseline CXCL5 expression.  

 

 

Figure 17 
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Moreover, CXCL5 expression was induced by decitabine in most of the cell lines 
with low CXCL5 expression that were shown to be methylated, as well as in 
HBEC cells. Expression of CXCL1 (r = -0.46, P=0.0021), CXCL2 (r= -0.49, 
P=0.0010), CXCL3 (r = -0.32, P=0.0390), and CXCL6 (r = -0.46, P=0.0022) 
genes was significantly inversely correlated with the average beta-value of their 
respective promoter, suggesting regulation through promoter methylation (Fig. 
18A-D).  
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Figure 18. Promoter methylation of CXCR2 ligand genes. Expression of (A) CXCL1, 
(B) CXCL2, (C) CXCL3, and (D) CXCL6 genes was negatively correlated with the level 
of their promoter methylation as indicated by average beta-value.  

 

However, only CXCL1 and CXCL3 had patterns similar to CXCL5 in terms of 
response to decitabine (Fig. 19A-D). 
 

Figure 18 



39 
 

Figure 19. Effect of decitabine on CXCR2 ligand genes. The effect of two doses of 
decitabine on (A) CXCL1, (B) CXCL2, (C) CXCL3, and (D) CXCL6 gene expression 
levels in 10 lung cell lines is shown.  

 

  

Figure 19 
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DISCUSSION 

We show that in vivo CXCR2 inhibition by knock-down in a murine cell line (344SQ), 

which has a known high metastatic potential, reduces its invasive ability.  In a murine 

model of orthotopic syngeneic lung adenocarcinoma CXCR2 knock-down 344SQ cell 

line was found to be associated with decreased tumor burden, local and distant 

metastases. In order to translate our preclinical discoveries to human NSCLC, we 

explored CXCR2 tumoral immunohistochemical expression in tissue microarrays from 

patients with surgically resected stage I-II lung adenocarcinoma and correlated it with 

patient clinic-pathological characteristics including smoking status, histological 

differentiation and survival outcomes. We considered also localization of CXCR2 

expression in the cytoplasm, membrane and nucleus. High cytoplasmic CXCR2 was 

associated with smoking history, aggressive histological differentiation and worse 

survival. When we screened a publicly available large database of NSCLC cell lines 

and lung adenocarcinomas, we found that at the gene expression level, CXCL5, a 

CXCR2-ligand, was the main driver of a cluster of cell lines and lung adenocarcinomas 

with high-risk features, including RAS and MET pathway activation, epithelial-to-

mesenchimal transition and resistance to epidermal growth factor inhibition (i.e., 

gefitinib). We have named this CXCR2/CXCR2 ligands cluster and we discovered that 

CXCL5 in this cluster was regulated by promoter methylation.  

Several studies have reported a critical role of CXCR2 inhibition in melanoma43; 59, 

ovarian59, prostate60, and esophageal cancers61 mainly by regulating the cell cycle, 

apoptosis and angiogenesis via multiple signaling pathways including PI3K/AKT, NF-

kB, MAPK and STAT3. However, there is not a clear understanding if CXCR2 inhibition 

plays a direct effect on tumoral cells. We have tested our hypothesis using a novel 

orthotopic syngeneic lung cancer metastasis model with preserved immunity via 
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injection of a highly metastatic cell line (344SQ) derived from 

KrasLA1/+p53R172HΔG/+ mice. This murine model reliably represents the 

developmental process of human lung adenocarcinomas29. The effect of CXCR2 

knock-down in shRNA stable clones on the substantial reduction of the thoracic 

tumors, lymphatic and distant metastases, is unlikely due to regulation of angiogenesis. 

In fact, data published showing the effect of CXCR2 knockdown in ovarian cancer cell 

lines on decreasing tumor angiogenesis by VEGF activation, were obtained using 

immunosuppressed murine xenografts tumor models which do not take into 

consideration the interaction between the tumoral cells and the tumor 

microenvironment62.  We understand that our work lacks of a direct evaluation on tumor 

angiogenesis, therefore, we cannot completely rule out a direct effect of CXCR2 

knockdown in the 344SQ cells on tumor angiogenesis. 

When we explored in human NSCLC samples the tumoral cell localization of CXCR2 

by IHC, we observed that only cytoplasmic expression was associated with significant 

difference in terms of smoking history, histologic differentiation and survival. Although 

many chemokine receptors internalize through clathrin-coated pits, regulation of the 

receptor trafficking is not fully understood. Fan GH et al. showed colocalization of 

CXCR2 with transferrin and low-density lipoprotein (LDL) after agonist treatment for 

different periods of time, suggesting 2 intracellular trafficking pathways for this 

receptor. CXCR2 was colocalized with Rab5 and Rab11a, which are localized in early 

and recycling endosomes, respectively, in response to agonist stimulation for a short 

period of time, suggesting a recycling pathway for the receptor trafficking63. The altered 

distribution of CXCR2 into the cytoplasm may start an autocrine loop that may 

contribute as a transcriptional signaling to augment expression of receptor-ligand 

production as previously suggested in prostate cancer progression60
. 
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CXCR2 inhibition has been reported to also affect the epithelial to-mesenchymal 

transition via abrogation of the Snail-mediated increase in tumor burden in murine 

models of NSCLC39; 64. However, contrasting results were described on this topic in a 

small cohort of 20 NSCLC showing a correlation between CXCR2 expression and 

improved survival65. In addition, a role of CXCR2 as tumor suppressor gene was also 

underscored in studies about tumor senescence and response to oncogenic signals66. 

Our GSEA analysis results show that c-MET oncogenic pathway is expressed in the 

CXCR2/CXCR2 ligands cluster, which is in line with the observation of downregulation 

of SPINT1, a potent inhibitor specific for HGF activator, and upregulation of TGFB1 

and VIM in the CXCR2/CXCR2 ligands cluster67.  

Another interesting finding of our tissue microarray and GSEA analysis was the 

association of CXCR2 protein expression, the CXCR2/CXCR2 ligands cluster and high 

histological grade. The thyroid transcription factor 1 (TTF1, NKX2-1), which is a lineage 

survival gene abnormally expressed in about 70% of lung adenocarcinoma, was one of 

the genes most frequently downregulated in the cluster compared to other lung 

adenocarcinomas. Interestingly, NKX2-1 protein expression in human NSCLC has 

been reported in the literature to be prevalent in lung adenocarcinoma, female gender, 

non-smoking history, presence of epidermal growth factor receptor (EGFR) mutation 

and better overall survival and it is one of the routinely tested immunohistochemical 

markers for the pathological diagnosis of NSCLC68. Absence of NKX2-1 expression 

may identify lung adenocarcinomas with CXCR2 activation, with interesting 

repercussion on the identification of tumors which may be targeted by CXCR2 

inhibition. In addition, the correlation between NKX2-1 protein expression and 

presence of epidermal growth factor receptor (EGFR) mutation, is in line with the 

findings of absence of EGFR mutations in the lung adenocarcinoma included in the 
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CXCR2/CXCR2 ligands cluster in the DCC dataset which doesn’t express NKX2-1 

protein. Our findings in the DCC dataset also highlight the association of CXCR2 

expression and KRAS mutation which is indication of EGFR tyrosine kinase inhibitor 

therapy resistance69. These observations are in line with the strong inhibitory effect of 

CXCR2 knockdown in our orthotopic syngeneic lung adenocarcinoma metastasis 

model, which harbors a KRAS mutation. Therefore, CXCR2 may represent an 

important target of KRAS-driven lung adenocarcinomas. 

The findings of CXCL5 being the main driver gene in the CXCR2/CXCR2 ligands 

cluster add to the current literature where there are controversial reports about its 

significance in different tumor types. In head and neck squamous cell carcinoma 

CXCL5 has been associated with tumor cell proliferation, migration and invasion70. On 

the other hand, knock down cell clones of colon carcinoma resulted in a rapid tumor 

growth and in a number of tumor metastases in vivo71. In the same study  low 

expression of CXCL5 by immunohistochemistry was significantly associated with poor 

outcome in human colon cancer patients71. In human lung adenocarcinoma there is no 

data on the association of CXCL5 expression and prognosis. However, in NSCLC 

methylation appears the main mechanism of regulation72. We found that about 75-80% 

of NSCLC harbor CXCL5 promoter methylation with sub sequential silencing of the 

gene. These observations may suggest that CXCL5 might promote tumorigenesis in 

20% of lung adenocarcinomas through CXCR2 autocrine and paracrine loop. 

In conclusion, our data show that tumoral CXCR2 inhibition has an important role on 

regulation of invasion, growth in vitro and in vivo in an orthotopic syngeneic lung 

adenocarcinoma metastasis model with KRAS and TP53 mutations. We identified a 

cluster of human NSCLC cell lines and lung adenocarcinomas, in which prognosis 

seems to be affected by the CXCR2-CXCL5 axis with an interesting association to 

aggressive histology and smoking history. Pharmaceutical inhibition of CXCR2 is 
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currently undergoing clinical development in COPD to counter-act the damaging effects 

of cigarette smoking that produces inflammation with increase in alveolar destruction 

by neutrophils, goblet cell hyperplasia and pro-angiogenetic effects17; 44. In addition, the 

finding of a cluster of lung adenocarcinomas with CXCR-2 ligand overexpression may 

of great value in directing novel approaches in T cell adoptive therapy of lung cancer, 

as showed by Peng W. et al, who introduced the CXCR2 gene into tumor-specific T 

cells to enhance their localization to tumors and improve antitumor immune 

responses73. Therefore, with the future availability of CXCR2 targeted therapy in clinical 

cancer research, CXCR2 expression may become an interesting target to validate in 

prospective clinical trials in NSCLC.  
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