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Abstract 

Methylphenidate (MPD) is a psychostimulant used in the treat treatment of attention 

deficit hyperactivity disorder and more recently is being used as a cognitive enhancement and 

recreational drug. Its therapeutic effects are not fully understood, nor are the long term effects of 

the drug on brain development. The ventral tegmental area (VTA) is a site of psychostimulant 

action thought to be involved in behavioral sensitization. The aim of the this study was to first 

determine if there are differences in neuronal responses between individuals, with respect to 

neuronal firing patterns in the ventral tegmental area (VTA), and whether these differences are 

responsible for the conflicting reports on behavioral responses with chronic MPD exposure. 

Additionally, we wanted to determine if the same dose of MPD can cause both behavioral 

sensitization and behavioral tolerance and to examine if there are intrinsic differences in the VTA 

neuronal activity between the behaviorally sensitized and tolerant animals. One hundred and 

thirteen adolescent animals and 51 adult rats were divided into 4 groups: saline, 0.6, 2.5, and 10.0 

mg/kg MPD and had their neuronal and behavioral activity recorded concomitantly following one 

of the chosen MPD doses. In order to determine if there are neuronal differences between these 

two groups the VTA neuronal activity was evaluated based on the animals’ behavioral response 

to chronic MPD exposure. In conclusion, acute MPD exposure elicits dose related increases in 

behavioral activity and following chronic MPD exposure, it was shown that the same repetitive 

MPD dose can elicit either behavioral sensitization or tolerance in both adolescent and adult 

animals. Differences were observed between the adolescent and adult for both the neuronal and 

behavioral data for each dose of MPD tested.  
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1 Introduction 

The History of MPD and its Uses 

 Methylphenidate (MPD) is a psychostimulant most commonly used in the treatment of 

attention deficit hyperactivity disorder (ADHD) in adolescents and adults (Challman and Lipsky, 

2000; Garland 1998; Lee et al., 2012; Solanto 1998). Methylphenidate (Ritalin) was first synthesized 

in 1944 (U.S. Pharmacist, 2002) in 1954 its testing on humans had begun (U.S. Pharmacist, 2002). 

During the year 1957, Ciba Pharmaceutical Company began marketing MPD for the treatment of 

narcolepsy, chronic fatigue, psychosis, and depression (U.S. Pharmacist, 2002). In 1960, MPD was 

marketed as Ritonic, and was used to treat and improve the patients’ mood and to help maintain 

cognitive vitality (U.S. Pharmacist, 2002). During the 1970’s and 80’s, MPD was starting to be used 

for the treatment of ADHD. The symptoms of ADHD, as described in the Diagnostic and Statistical 

Manual for Mental Disorders (DSM IV), are as follows:  inattention, hyperactivity, and impulsivity 

for a period of at least six months that causes impairment both at home and at school or work (DSM 

IV 1994 4
th
 Ed.).  This disorder can cause children to have trouble concentrating and misbehave in 

school and can also create social misconduct in the affected individuals (Newcorn, 2000). From the 

years 1990-1999, there was a 500% increase in the use of MPD in the United States (U.S. 

Pharmacist, 2002) and the daily doses administered to patients had increased from 75 million in 1990 

to 360 million in 1998 (Woodworth, 2000). It was estimated that the United States consumes 85% of 

the world’s supply of MPD (Woodworth, 2000). In addition, with the 2000 US census population of 

over 281 million individuals, it was approximated that one out of five hundred randomly chosen 

people are currently prescribed with Ritalin (Woodworth, 2000). Today, MPD is still the 

pharmacotherapy of choice and gold standard in the treatment of ADHD. 

However, due to the overabundance of adolescents being prescribed MPD there has become 

a high risk of nonmedical use and abuse by patients and their peers and family members. According 

to the National Survey on Drug Use and Health, nonmedical use of a medication is defined as;  
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“The use of prescription type psychotherapeutic drugs not prescribed for the respondent by a 

physician or the use of a drug only for the experience or the feeling it caused”   

(www.oas.samhsa.gov).   

 

 
Drug abuse is defined as  

“The use of a drug for a nontherapeutic effect, and habitual use of drugs to alter one’s mood, 

emotion, or state of consciousness” 

(www.oas.samhsa.gov). 

 
Recently, the recreational use of MPD by adolescent and young adults has risen dramatically 

(Arria and Wish, 2006; Imbert et al., 2013) and there have been a large number of studies supporting 

the assertion that MPD is abused at a high rate by adolescents and adults (McCabe et al., 2007; Teter 

et al., 2006; Wilens et al., 2005). One such study focusing on undergraduate college students, found 

that over 30% of students that were tested had taken non-prescribed MPD either to get high or to aid 

in their studying (Teter et al., 2006; Wilens et al., 2005). In a 2006 study of college students, 

McCabe et al. found that 16% of those tested had abused stimulants for the cognitive enhancement 

effect, with 96% of them preferring Ritalin/MPD as their drug of choice (McCabe et al., 2007). 

Likewise, a study involving 700 participants aged 12 to 44 found that 22.9% had given some of their 

prescription to someone else, 26.9% had borrowed someone else’s, and 39.4% were willing to share 

their medication with family members (Goldsworthy et al., 2008). This study also reported that 

20.8% of subjects between the ages of 18 and 25 have borrowed prescription medication to relax or 

feel good compared to only 10% of those aged 36 to 44 , which indicates that young people are more 

likely to use and abuse MPD.  Additionally, this study also reported that 34.1% of adolescents said 

they were more likely to use Ritalin/MPD if it came from someone they were close to or who was 

familiar with the drug (Goldsworthy et al., 2008). These statistics on nonmedical MPD use highlights 

the importance of studies which examine the short and long term effects of MPD exposure to further 

expand the long term effects of the drug on the brain and overall health. 

The behavioral effects following short term MPD exposure have been well documented 

(Brands et al., 1998). However, the data for more long term MPD exposures have not been fully 

http://www.oas.samhsa.gov/
http://www.oas.samhsa.gov/
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explored and are still not completely understood. Some of the short term behavioral effects which 

occur with low doses of MPD are wakefulness, heightened alertness, appetite suppression, and 

several negative effects such as impairment of voluntary movement, headache, and vomiting (Brands 

et al., 1998). In addition, with higher doses of MPD, there are many short term behavioral effects 

which include agitation, exhilaration, muscle twitching, excitation, dilation of pupils, increased 

blood pressure, other sympathetic responses, confusion, hallucinations,  increased pulse rate, 

delirium, paranoia, repetition of movements and meaningless tasks and even seizures followed by 

coma can occur (Borcherding et al., 1990; Masand and Tesar, 1996). There have been a few studies 

on the long term effects of low and high dose MPD exposure. One such study with the use of 

positron emission tomography (PET) scans discovered that the extended use of MPD can constrict 

blood flow to the brain which may causes an increase in blood pressure (Wang et al., 1994). Among 

a number of other behavioral studies examining the long term effects of MPD use have come up with 

conflicting results (Lambert, 1999; Piazza et al., 1989; Robinson and Berridge, 1993; Wilens et al., 

2005). One such study reported that MPD treatment provided protection to adolescents from later 

drug dependence (Wilens et al., 2005), while another study found the opposite to be true, namely that 

MPD use created a certain susceptibility to drug use later in life (Lambert, 1999; Piazza et al., 1989; 

Robinson and Berridge, 1993). Additionally, another longitudinal study reported no direct 

correlation between adolescent or youth stimulant use and drug use later on in the individual’s life 

(Barkley et al., 2003). With the amount of contradictory information among the literature, we believe 

that recording both behavior and neuronal activity concomitantly will give us a better idea as to why 

there are so many differing views. We want to first determine if there are differences between the 

adolescent response to MPD and the adult response to MPD. Following this, further research can be 

done to test the same animal throughout adolescence into adulthood to examine whether the 

longitudinal response to MPD has changed. 

Due to the increased prescription of MPD to young children who do not have fully 

developed brains, it is important to understand the way this drug affects adolescents compared to 
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adults. The current research will help show how a stimulant like MPD affects a developing brain in 

young subjects, versus how it affects a brain that is fully developed. Many changes are still occurring 

in young developing brains with synaptic outgrowth and pruning which help to shape the adult brain. 

What effects that drugs like MPD have on the adolescent brain is still largely unknown. MPD has a 

chemical structure similar to amphetamine and methamphetamine and has neuropharmalogical 

characteristics to cocaine (Kallman and Isaac, 1975; Patrick and Markowitz, 1997; Teo et al., 2003; 

Volkow, 2001). Therefore, due to its close similarities to these drugs of abuse, MPD poses the risk as 

a drug of addiction. MPD has a similar mechanism of action to cocaine in that it acts as an indirect 

agonist of dopamine (DA) by binding with high affinity to the dopamine transporter (DAT), blocking 

the DA reuptake back into the presynaptic terminal. This in turn causes increased levels of 

extracellular DA in the synaptic cleft giving the postsynaptic longer exposure to the released DA 

increasing the rate of postsynaptic binding. MPD is absorbed and metabolized via de-esterification to 

ritalinic acid and is usually found in the urine within 48 hours of use (Faraj et al., 1974; Wang et al., 

1997; Wargin et al.,1983). Because the psychostimulant is concentrated in the catecholaminergic 

systems, and has free flow across the blood brain barrier, the subsequent concentration of MPD in 

the brain exceeds the plasma levels. In addition, MPD also has a rapid uptake in the brain like 

cocaine, except MPD has a much lower rate of clearance (Morse et al., 1995).  This may explain why 

i.v. or intranasal administration of MPD has higher mortality rates than both cocaine and 

amphetamines for higher doses (Gatley et al., 1999; Volkow et al., 1995, 1996, 1999). Most users 

who recreationally use MPD to get high are not aware of the dangers associated with their actions, 

thus there is a great danger in the misuse of the drug. 

The dosage and route of administration of MPD plays a large role in the experience of the 

user, due to the fact that the behavioral responses and the neurochemical reactions to the drug are 

dependent upon both the length of time it takes for the drug to reach its peak level in the periphery 

and how long the drug is in the system (Kuczenski and Segal., 2002). When MPD is administered 

orally, which is the normal route for ADHD patients; it is absorbed through the intestinal tract having 
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a half-life around 1 hour and shows peaks in the blood approximately 60-90 minutes after ingestion 

(Garland 1998; Gerasmiov et al., 2000; Kuczenski and Segal 2002; Solanto 1998, 2000; Stewart & 

Badiani 1993). Following intravenous (i.v) injection or intraperitoneal (i.p.) administration, peak 

levels of MPD in the periphery are reached at approximately 8-20 minutes and 15-28 minutes, 

respectively (Gerasmiov et al., 2000; Kuczenski and Segal 2002; Stewart & Badiani 1993). The 

ability to reach peak levels rapidly (8-30 minutes) is one of the main factors responsible for both the 

euphoric/pleasurable responses and the adverse effects, such as a sensitization response. 

ADHD in Adolescents and Adults 

 It has been estimated that worldwide, about 5% of children and 4% of adults are affected 

with ADHD and in the U.S. around 8.7% of the children tested meet the criteria for ADHD 

(Froehlich et al., 2007; Polancyzk and Rohde, 2007; Wilens et al., 2005). Therefore, it is not 

uncommon for MPD to be prescribed to children as early as elementary school, a time when the 

brain is still going through development (Lakhan and Kirchgessner, 2012). In fact, the percentage of 

children between the ages of 4–17 years who have been diagnosed with ADHD has increased from 

7.8% in 2003 to 9.5% in 2007, representing a 21.8% increase in just 4 years (Center for Disease 

Control and Prevention, 2010). Because so many children are being prescribed psychostimulants at 

young ages, more research needs to be carried out to better understand the way that these drugs 

affect young brains. The current literature on adolescent methylphenidate studies is lacking, and it 

remains unclear how exactly drugs like methylphenidate affect young developing brains and whether 

that is different than its effects in adult brains. Between 5 and 15 years of age, the human brain goes 

through a process of over production of synaptic connections and receptors followed by their pruning 

and competitive elimination, which may serve as a factor in the development of behavior disorders 

(Andersen and Teicher, 2000; Brenhouse and Andersen, 2011; Huttenlocher, 1974; Rakic et al., 

1986).  
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Behavioral and chemical studies have reported that MPD affects the young differently than 

adults (Brandon et al., 2003; Canese et al., 2010; Dafny and Yang, 2006; Yang et al., 2011). 

However, there have not been any studies done recording both neuronal and behavioral recordings 

concomitantly. MPD exposure has been shown to produce an age dose dependent increase in 

extracellular levels of DA and in norepinephrine (NE) levels (Kuczenski and Segal, 2001). Walker et 

al. (2010) reported that the extracellular DA levels in adolescents treated with MPD are higher than 

those in adults who have been treated with MPD. In anesthetized animals, MPD was reported to 

affect neuronal functions differently in the young compared to adults (Gronier et al., 2010). A 

functional MRI study has reported drastically different responses to MPD between adolescent and 

adults (Canese et al., 2009). Thus it is possible to assume that MPD efficacy will be different in 

young populations when compared to adults. Therefore it is important to study the role of MPD in 

adolescents as well as adults to examine if differences exist between the two when treated with 

MPD. 

Behavioral Sensitization and Tolerance Following MPD Administration 

Chronic exposure to psychostimulants such as MPD can result in the initiation and alteration 

of biochemical, molecular, and morphological configuration as well as behavioral changes which can 

lead to plasticity in the CNS (Chao and Nestler, 2004; Dafny and Yang, 2006; Dietz et al., 2009; 

Kim et al., 2009; Nestler 2004; Robison and Nestler, 2011). MPD has been shown to cause different 

behavioral responses when subjects are given the same dose of the drug. There are some studies 

which report that MPD elicits behavioral sensitization, whereas there are other studies which report 

that the same dose of MPD results in behavioral tolerance, causing further conflicts in the literature 

(Barron et al., 2004; Eckerman et al., 1991; Gaytan et al., 1996, 2000; Yang et al., 2003; 2006, 

2007). The aim of the this study was to first determine if there are differences in neuronal responses 

between individuals, with respect to neuronal firing patterns in the ventral tegmental area (VTA), 

and whether these differences are responsible for the conflicting reports on behavioral responses with 
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chronic MPD exposure.  I hypothesized that animals will exhibit different overall neuronal responses 

depending on whether that animal exhibits behavioral sensitization or behavioral tolerance. 

Furthermore, I hypothesize that an increase or a decrease in neuronal responses directly correlates to 

behavioral sensitization or tolerance, respectively. 

Several reviews suggest that behavioral tolerance and sensitization are phenomena in animals 

that represent an enduring response to medications even after the discontinuation of drug use , and 

are used as a model for drug craving and dependence (Laasko et al., 2002; Kalivas et al., 1998; 

Kauer, 2004; Robinson and Berridge, 1993; Wolf, 1998). It has been previously shown that 

stimulants such as cocaine, amphetamine, and MPD are able to cause dose dependent behavioral 

sensitization in animals (Algahim et al., 2009; Bergheim et al., 2012; Gaytan et al., 1996, 1999; 

Kalivas et al., 1988; Tang et al., 2009; Yang et al., 2003, 2011). Behavioral sensitization is defined 

as the increased amplification of activity resulting from repetitive administration of psychostimulants 

(Chao and Nestler, 2004; Gaytan et al., 1997; Kalivas and Stewart, 1991). Behavioral sensitization 

occurs in two phases: induction and expression. In the induction phase, transient changes occur 

following repetitive psychostimulant administration that subsequently result in increased behavioral 

activity. The expression phase is characterized by persistent long-lasting neuronal changes that result 

in sustained augmented behavioral responses despite cessation of psychostimulant use (Pierce and 

Kalivas, 1997). Thus, there is an increased behavioral activity response observed when animals are 

given a rechallenge exposure of the drug following a period when the drug is no longer in the 

system.  

 Generally it is believed that behavioral sensitization occurs due to synaptic plasticity in the reward 

circuit, including the CNS structures: the nucleus accumbens (NAc), prefrontal cortex (PFC), 

caudate nucleus (CN), and the VTA.  

The induction phase is thought to occur at glutamatergic synapses of the dopamine (DA) 

neurons in the ventral tegmental area (VTA) (Kalivas and Weber, 1988; Vezina, 1993; Perugini 

and Vezina, 1994; Pert, 1998).  The expression of behavioral sensitization is suggested to be 

due to repetitive (chronic) psychostimulant exposure causing increased glutamate transmission 

and a decrease of D1 DA to GABAergic neurons in the VTA (Bonci and Williams, 1996; Pierce 
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and Kalivas, 1997; Kalivas and Duffy, 1993). Reprinted from Jones,Z.; Dafny,N. Acute and 

chronic dose-response effect of methylphenidate on ventral tegmental area neurons correlated 

with animal behavior. J. Neural Transm. 2013 In Press. with kind permission of Springer 

Science and Business Media. Copyright © 2013, Springer Science and Business Media.  

 
The Role of the Ventral Tegmental Area (VTA) in Response to MPD 

 The VTA is an extremely important area of the brain when it comes to drug use and 

has a large role in the behavioral effects of psychostimulants. The VTA is a midbrain structure that is 

rich in both DA and gamma amino-butyric acid (GABA) neurons (Grace and Onn; 1989) which 

project to the NAc and PFC and the latter structures also send neurons back to the VTA, thus there is 

communication back and forth between these structures (Figure 1). Both DA and GABA neurons in 

the VTA get input mediated by GABA and glutamate. The primary afferent neurons which are 

excitatory to the VTA and contain glutamate come from the PFC, while those containing GABA 

originate in the NAc (Beckstead et al., 1979; Johnson and North, 1992; Kalivas and Duffy, 1995). In 

addition, the VTA gets other excitatory inputs from the amygdala, laterodorsal tegmental nucleus 

and the bed nucleus of the stria terminalis (Kauer, 2004). The dopaminergic neurons in the VTA co-

express GABA-ergic or glutamatergic markers and it is thought that these DA neurons are activated 

by the glutamatergic inputs that originate in the PFC and specifically that these neurons are involved 

in the induction of behavioral sensitization following repetitive exposure of psychostimulants 

(Scheggi et al., 2002; Tang et al., 2009; Wanchoo et al., 2010). The DA neurons in the VTA that 

express the glutamatergic markers do so for both the metabotropic and ionotropic receptors which in 

turn include the NMDA and AMPA subtypes. In a morphological study, it has been shown that about 

two-thirds of the neurons in the VTA are dopaminergic, while the remaining neurons are mostly 

GABA (Nair-Roberts et al., 2008).   

Subsequently, it has been shown that the mesoaccumbens projection which is formed by the 

ascending VTA DA neurons to the nucleus accumbens (NAc) have been implicated with the 

induction of behavioral sensitization and that the VTA plays an integral role in this phenomena 

(Joyce and Rayport, 2000; Kalivas et al., 1993; Wolf, 1998). For example, in studies that have used 
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amphetamine and DA D1 and NMDA receptor antagonists have shown that the VTA is responsible 

for the induction phase of sensitization following repetitive exposure to psychostimulants and 

perhaps the control of relapse, dependence and drug craving (Kalivas and Weber, 1988; Kalivas and 

Stewart, 1991). In another study, it was shown that with repeated injection of amphetamine into the 

VTA, sensitization can be produced (Vezina, 1993; Perugini and Vezina, 1994). After such 

treatment, it is also possible to become sensitized to systemic morphine injections (Vezina and 

Stuart, 1990). On the other hand, if DA D1 receptor antagonists or NMDA receptor antagonists are 

injected into the VTA, then behavioral sensitization cannot be observed (Kalivas and Stuart, 1991). 

Therefore, it is directly shown that the VTA in absolutely crucial to the development of behavioral 

sensitization. Chronic stimulant use has been reported to be responsible for structurally altering areas 

of the brain affected by MPD such as the CN and VTA following acute and repeated administration 

of MPD. These alterations include the regulation of the transcription factors CREB and ∆Fos B, both 

implemented in drug dependence (Chao and Nestler, 2004; Nestler 2004, 2008). ∆Fos B gene 

expression is increased by the upregulation of ERK which has been reported to induce long-term 

neuroadaptions in the brain (Shi and McGinty, 2010; Zhang et al., 2004). ∆Fos B elevation is 

correlated with increased reliance to the behavioral effects and increased motivation for the drug 

(Nestler, 2001; 2004; 2008). D1 receptor inhibition by blockade or ablation results in an increase in 

phosphorylation of cAMP response element binding protein (CREB), inhibiting the excitatory 

responses (Ferguson et al., 2010). Due to the importance of the VTA in stimulant action like that of 

MPD, the VTA was chosen as the target structure of this study.  
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Figure 1 shows the location of the VTA and its connections to other areas of 

the reward circuit. The VTA sends connections to the prefrontal cortex as 

well as the nucleus accumbens and in turn receives input from those areas. 

Rights for reuse of figure obtained through Elsevier 
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In this study, we strove to compare the neuronal responses and behavioral responses to acute and 

chronic MPD administration and to determine whether there are any relationships which can be 

made between these two types of responses.  We hypothesize that animals exposed to the same dose 

of MPD will exhibit different behavioral responses in that some animals will exhibit behavioral 

sensitization while others will exhibit behavioral tolerance to the same dose of drug. Also, we 

hypothesized that when these animals are separated based on their behavioral responses of 

sensitization or tolerance, their neuronal responses will be statistically significantly different. 

Therefore, the aim of this study was to examine the dose response effects of acute and chronic MPD 

on VTA neurons of non-anesthetized freely moving animals previously implanted with permanent 

electrodes and to evaluate the VTA neuronal activity based on the animals’ behavioral response to 

chronic MPD administration. We chose to investigate this hypothesis using a rodent model, as the 

relationship between drug doses (milligrams of hydrochloride salt/kilogram of body weight) and 

percentage occupancy of the dopamine transporter (DAT) is identical for cocaine and MPH in both 

rodents and humans (Gately et al., 1999).  Previous neurophysiological studies targeting the reward 

circuit independent of the animals behavioral activity show that 2.5 mg/kg MPD modulates the 

neuronal activity of certain CNS sites such as the VTA, NAc, PFC, and CN following both acute and 

chronic MPH exposure (Chong et al., 2012; Claussen and Dafny, 2012; Salek et al., 2012). We 

believe that finding a correlation between the neuronal and behavioral properties of animals in 

response to acute and chronic MPD will give us insight into why conflicting results are observed 

across both animal and human studies that investigate the long term adaptations occurring in 

response to chronic MPD exposure and will further the knowledge of how MPD affects the VTA. 
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2 Materials and Methods  

Parts of this chapter are based on Jones,Z.; Dafny,N. Acute and chronic dose-response effect of 

methylphenidate on ventral tegmental area neurons correlated with animal behavior. J. Neural 

Transm. 2013 In Press. Reprinted from Jones and Dafny, 2013 with kind permission of Springer 

Science and Business Media. Copyright © 2013, Springer Science and Business Media.  

2.1 Animals 

 Male Sprague-Dawley rats (N=51 adult, N=113 adolescent) at post natal of about 50 days 

(adult) and 32 days (adolescent) were purchased (Harlan, Indianapolis, IN, USA) and were allowed 

3-4 days of acclimation in our vivarium room on a 12 hour light/dark schedule (lights on 6:00am).  

Food and water were given ad libitum.  The animals were housed individually in clear acrylic 

standard cages that served as both home cage and test cage for this study.  The experiment was 

approved by our Animal Welfare Committee and carried out in accordance with the National 

Institute of Health Guide for Care and Use of Laboratory Animals. 

2.2 Surgeries 

Prior to surgery, two Nickel-Chromium Teflon coated (fully insulated except at tips) 60 µ in 

diameter wire were twisted to make two recording electrodes for each VTA hemisphere. Each of the 

four wires was secured to a 1.0 cm copper connector pin (A-M systems, INC.). On the day of 

surgery, the rats were anesthetized with an intraperitoneal (i.p.) injection of 25 mg/kg pentobarbital.  

The animal’s head was shaved and lidocaine hydrochloride topical gel was applied to the shaved 

area.  The animal was then placed in a stereotaxic apparatus where an incision was made on the scalp 

and the muscle and connective tissue was removed to expose the skull. Bilateral holes were drilled 

above the VTA at 2.3 mm anterior to lambda and 1 mm lateral to midline with a depth of 7.6 to 8.0 

mm in the adolescent rat using the Sherwood and Timiras (1970) brain atlas coordinates. Bilateral 

holes were drilled above the VTA at 6.0 mm posterior to bregma and 0.5 mm lateral from midline 

with a depth of 8.5 mm, using Paxinos and Watson (1986) brain atlas coordinates for the adult 

animals.  Six anchor screws were inserted in the skull at vacant spots to secure the implanted 

electrodes and the head plug.   
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Electrodes were then inserted individually into the brain from the skull with neuronal activity 

monitored by Grass emitter Hi Z Probe connected to a Grass P511 series amplifier.  When a 3:1 

signal to noise ratio spike activity was obtained, the electrode was permanently secured to the skull 

using web glue cyanoacrylate surgical adhesive.  When the neuronal activity exhibited less than a 3:1 

signal to noise ratio spike activity, the electrode was lowered in 5-10 µm increments until a 3:1 ratio 

activity was observed (Chong et al., 2012; Claussen and Dafny, 2012; Dafny, 1980; 1982; Dafny and 

Terkel, 1990; Salek et. al., 2012). Similar procedures were followed for the second twisted electrode 

which was implanted into the VTA of the opposite hemisphere.  The two copper pins from each 

twisted electrode from the four recording electrodes, were inserted into Amphenol plugs which were 

secured to the skull using dental acrylic cement creating the skull cap. Animals were allowed 3 to 5 

days recovery after electrode implantation during which they were placed daily with their home cage 

in the experimental apparatus and connected to the wireless (telemetric) head stage transmitter 

(Triangle BioSystems Intl (TBSI); Durham, NC, USA) for acclimation for at least 2 hours/day to the 

behavioral and electrophysiological recording systems.  At the first experimental day, the adolescent 

animal’s weight is around 100-120 grams and around 39-45 days post natal, while the adult animal’s 

weight was between 200 and 220 grams and at about post natal 62-64 days. 

2.3 Drugs 

 Three methylphenidate hydrochloride (MPD) (obtained from Mallinckrot Hazelwood, MO, 

USA) doses of 0.6, 2.5, and 10.0 mg/kg, were used; the MPD doses were calculated as a free base 

and were dissolved in 0.9% isotonic saline solution.  Control injections consisted of 0.8 ml isotonic 

saline solution (0.9% NaCl) administered i.p.  All injections were equalized to a volume of 0.8 ml 

with 0.9% saline to keep injection volumes the same for all of the animals and for all the MPD doses. 

Previous MPD dose response experiments, testing behavioral and neurophysiological 

sensory evoked potential procedures, from 0.1 mg/kg to 40.0 mg/kg MPD administration, found that 

behavioral effects of MPD were observed from the 0.6 mg/kg MPD dosage (Algahim et al., 2009; 
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Gaytan et al., 1996, 2000; Lee et al., 2009; Podet et al., 2010; Yang et al., 2003, 2006a; 2006b; 

2006c; 2006d; 2007).  Therefore 0.6, 2.5, and 10.0 mg/kg MPD dosages were selected for this study. 

There are no universally recognized MPD dosage guidelines or blood levels to achieve 

optimum dose treatment. A study of 289 patients treated with MPD (White and Yadao, 2000) 

reported that the range of doses ingested was from 0.06 to 29.3 mg/kg. Approximately 2 to 3 mg/kg 

i.p. MPD in rodent achieved plasma levels similar to those achieved in clinical use (Gatley et al., 

1999; Gerasimov et al., 2000). Drug effects in rodents often require higher doses (on mg/kg basis) 

than humans because rodents exhibit a more rapid metabolism (Gatley et el., 1999).   

2.4 Experimental Protocol 

On experimental day one (ED1), rats with their home cage were placed in a Faraday testing 

box to reduce noise during the recording session.  The wireless (TBSI); (Fan et al., 2011) head stage 

was connected to the electrode pins of the skull cap and the animals were allowed to acclimate for 30 

minutes prior to the recording session.  This time was used to prepare the recording software 

parameters and the injections of both saline and MPD.  After acclimation, the animals received a 

saline injection of 0.8 ml (standardized for all injections) and the neuronal and behavioral activity 

was recorded to obtain the baseline activity for one hour followed by either saline, or 0.6, 2.5 or 10.0 

mg/kg MPD injection, and the behavioral and the neuronal activity recordings were resumed for an 

additional hour post injection (Table 1).  The wireless TBSI head stage sent neuronal activity signals 

from the 4 recording electrodes to a receiver that was connected to a Cambridge Electronic Design 

(CED) Cambridge England analog-to-digital converter (Micro1401-3; CED) which collected and 

stored the recorded data on a PC using Spike 2.7 CED software. On ED2 through ED6 animals 

received either saline or daily MPD injections similar to ED1 injection in their home cage without 

recording. On ED7 through ED9 the animals underwent washout in which no injections were given 

proceeded by ED10 in which a saline injection was given and the neuronal and behavioral activity 

was recorded for an hour post saline injection followed by a rechallenge administration of either 
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saline or MPD similar to ED1 and recordings were resumed for an additional one hour just as on 

ED1 (Table 1). 
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Table 1 

 Experimental Days 

Treatment Day 1 Days 2-6 Days 7-9 Day 10 

Saline Saline/Saline Saline Washout Saline/Saline 

0.6 mg/kg MPD 
Saline/0.6 mg/kg 

MPD 
0.6 mg/kg MPD Washout 

Saline/0.6 mg/kg 
MPD 

2.5 mg/kg MPD 
Saline/2.5 mg/kg 

MPD 
2.5 mg/kg MPD Washout 

Saline/2.5 mg/kg 
MPD 

10.0 mg/kg MPD 
Saline/10.0 mg/kg 

MPD 
10.0 mg/kg MPD Washout 

Saline/10.0 mg/kg 
MPD 

 
Table 1 summarizes the experimental protocol. Four groups of animals were used: saline, 0.6, 2.5 and 

10.0 mg/kg MPD. On experimental day 1 (ED1), animals are given an initial dose of saline and 

recordings were taken for one hour followed by one of the four designated doses and recordings were 

resumed for an additional hour post injection. On days 2-6, the animals are only given an injection of 

the specified dose. Days 7-9 are washout days where the animal gets no injection of any kind. On 

ED10, the animals are given another dose of saline for one hour followed by the designated dose for 

one hour, identical to that given on ED1. 
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2.5 Behavioral Recording System 

Locomotor activity was recorded concomitantly with neuronal activity, using an open field 

computerized animal activity system (Opto-M3, Columbus Instruments, Columbus, OH). The 

animal’s home cage (40 cm in length, 20 cm in width) fit into the recording apparatus allowing the 

recording of the animals in his home cage. The cage and the recording system were located inside a 

Faraday box to reduce noise and any outside interference. The open field system 16 and 8 infrared 

beams and their sensors on the opposite side set at 5 cm above the floor of the cage. The open field 

assay has been previously described in detail (Gaytan et al., 1996, 1997a, b, 2000; Yang et al., 

2006a, 2007, 2011). In short, the activity monitoring system checked each of the sensor beams at a 

100 Hz frequency to determine whether beams were interrupted. The interrupted beams were 

compiled by the software and downloaded to a PC every 10 min, (i.e. 6 bins/hr). The program 

organized the beam interruption into different locomotor movement indices, such as horizontal 

activity (HA) which records the overall locomotor activity that used to assess the overall amount of 

locomotor activity and the number of stereotypic activity (NOS) which counts the number of 

repetitive movement episodes with at least one second interval before the beginning of another 

episode of movements. The 6 bin counts following each hour were used for the statistical analysis 

and to produce temporal graphs and histograms for total activity/hr for both the saline (baseline 

activity) and the activity after MPD administration for ED1 and ED10.  

2.6 Electrophysiological apparatus 

A Triangle BioSystems International (TBSI) telemetric head stage weighing 4.5 g was 

attached to the electrode pins of the skull cap of the rat.  The head stage sent neuronal activity signals 

(sampling rates up to 200 kHz) to a receiver connected to the Cambridge Electronic Design (CED) 

analog-to-digital converter (Micro 1401-3; CED, Cambridge, UK) which stored the data on a PC 

using the Spike 2 version 7 software for offline analysis. 
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2.7 Data analysis 

2.7.1 Behavioral Analysis 

The locomotor activity was recorded and summed in 10 minute bins for 60 minutes after saline 

injection proceeding another 60 minutes of behavioral activity counts recorded following MPD 

injection (12 bins total) on ED1 and again on ED10 following saline and MPD exposure (Table 1).  

1) Behavioral analysis of HA of activity following acute MPD was compared to the activity after 

saline (control) at ED1;  2) the activity post saline at ED10 was compared to the activity after saline 

on ED1 and  3) the chronic MPD effect was determined by comparing the activity following MPD 

on ED10 to the activity after MPD at ED1 using the Critical Ratio CR Test; (C.R.) = 
   

√   
 = ± 1.96 = 

p < 0.05 and the student paired t-test (Chong et al., 2012; Claussen and Dafny, 2012; Salek et al., 

2012; Yang et al., 2012; Yang et al., 2006a; 2006b; 2006d; 2007). Where for example E represents 

the HA after MPD administration at ED1, and C represents the HA after saline injection of ED1. 

When a CR value more than 1.96 was obtained it indicated that the drug elicited significantly 

increased activity i.e. behavioral sensitization and when a CR value more than -1.96 was obtained it 

indicated that the drug elicited significant attenuation as compared to the initial drug effects i.e. 

behavioral tolerance.  

Based on the above analysis each rat was individually classified as expressing either behavioral 

sensitization or tolerance and thus two sub groups were created: sensitized and tolerant/non-

sensitized category. These rat subgroups were analyzed again as a group using analysis of variance 

(ANOVA: treatment days and drug doses). Any statistical significance was determined with the post 

hoc Fischer's LSD method. Statistical significance was set at P < 0.05 for all comparisons.  

2.7.2 Spike sorting 

 The Spike 2 version 7 software (CED) was used for spike sorting. The data was captured by 

the program (sampling rates up to 200 kHz) and processed using low and high pass filters (0.3-3 

kHz). There were two window discriminator levels, one for positive-going spikes and one for 
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negative-going spikes.  The spikes with peak amplitudes within the window were used to create 

templates using 1000 waveform data points.  The parameters that were used to capture a spike 

pattern allows the extraction of templates that provide high-dimensional reference points which can 

be used to perform accurate spike sorting, despite some movement artifacts noise, false threshold 

crossing and waveform overlap.  All temporally displaced templates are compared with the incoming 

spike event to find the best fitting to the selected template amplitude that yields the minimum residue 

variance.  When the distance between the template and waveform exceeds some threshold (80%), the 

waveforms are rejected.  This means that the spike sorting accuracy in the reconstructed data is about 

95%. All of the parameters of spike sorting for each electrode at ED1 were stored and reused for the 

activity sorting at ED10 aiming to count the same spike amplitude and pattern at ED1 and ED10 

following saline and MPD administration from the same electrode.  Spikes with peak amplitudes 

outside these limits and spikes that didn’t fit the template were rejected.  

2.7.3 Electrophysiological Data evaluation 

 Once the neuronal activity was sorted and counted, the activity post saline and MPD 

exposure was exported to a spreadsheet to produce sequential firing rate graph spikes/sec and 

counting the total neuronal activity.  The initial 60 minutes following saline injection at ED1 was 

used as the ED1 baseline activity. Similar calculations were done for ED10, i.e. 60 min post ED10 

saline for the ED10 baseline activity and 60 min post MPD at ED10, the effect of MPD rechallenge. 

The activity post MPD at ED1 compared to ED1 baseline activity was used to determine the MPD 

effect. The baseline activity on ED10 was compared to the baseline activity on ED1 to find out 

whether the six consecutive daily injection and the three washout days resulted in the baseline 

alteration, and lastly, the effect of drug administration on ED10 was compared to the effects of drug 

administration on ED1 to find out whether sensitization or tolerance was expressed.  

Multiple methods were employed to find out whether MPD elicits significant effect on VTA 

neuronal activity as follows: the mean firing rate after MPD treatment needs to be at least two 

standard errors (S.E.) difference from the control mean firing rate. Firing rates were evaluated also 
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for normality assumptions to determine parametric or non-parametric methods. To evaluate 

differences between the above comparisons, the firing rates were determined to not hold normality 

assumptions, so we assessed also differences in firing rates using the Critical Ration test. Critical 

Ratio test ((C.R.) = 
   

√   
 = ± 1.96 = p < 0.05) (C = control, E = activity after drug exposure) for the 

first comparison. For the second comparison, E was the baseline at ED10 and C is the baseline at 

ED1, while for the third comparison E was the data post MPD exposure at ED10 and C the data post 

MPD exposure at ED1 (Chong et. al., 2012; Claussen and Dafny 2012; Dafny, 1975; 1982; Salek et. 

al., 2012; Yang et al. 2006a; 2006b; 2006c). 

In addition, the natural log odds ratio and an ANOVA statistical tests were used: the natural logs 

ratio was utilized to determine the likelihood that VTA neuronal populations recorded from animals 

expressing behavioral sensitization are the same or different from the VTA neuronal populations 

recorded from animals expressing behavioral tolerance to repetitive MPD exposure. This was done 

for the data obtained following the initial (acute) MPD injection compared to ED1 baseline, the 

baseline neuronal activity at ED10 compared to the baseline activity at ED1, and the recording 

following rechallenge of MPD at ED10 compared to the effect of initial MPD injection at ED1. To 

compensate for the smaller values observed on certain days for varying doses, 0.5 was added to all 

numbers for computation of the odds ratio. A number of 1 and higher in the odds ratio test indicates 

a significantly higher likelihood of different responses to MPD exposure (increases or decreases in 

the neuronal activity) in the neuronal populations recorded from behaviorally sensitized animals 

compared to recordings from animals expressing behavioral tolerance. Conversely a number smaller 

than 1 represents a less likely chance of differences between the two VTA neuronal populations 

(Morris and Gardner, 1988) in response to MPD exposure. 

The ANOVA statistical test with statistic value (p<0.05) was used to compare the difference 

in response to MPD exposure between the neuronal population recorded from animals expressing 

behavioral sensitization to the VTA neuronal population recorded from animals expressing 
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behavioral tolerance to acute and chronic MPD exposure, as well as to compare the adult sensitized 

animals to the adolescent sensitized animals and the same for the tolerant animals.  

2.7.4 Histological verification 

 Upon completion of the recording at ED10, the animals were euthanized with sodium 

pentobarbital. The rat was then perfused intracardially with 10% formaldehyde solution containing 

3% potassium ferrocyanide. A 2mA DC current was passed through the tip of each electrode for 40 

seconds to create a small lesion to identify the electrode location; the brain was extracted from the 

skull and placed in 10% formaldehyde for several days. The brains were sliced in 40-60µm sections 

and the position of the electrode tip was identified by the location of the electrolytic lesion in the 

adolescent rat by using the Sherwood and Timiras brain atlas (1970) (Figure 2) and in the adult 

animal using the Rat Brain atlas (Paxinos and Watson, 1986) (Figure 3). 
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Figure 2. Histologically verified electrode tip placement in the VTA using the coordinates given in 

the Sherwood and Timiras rat brain atlas 1970. The black spots are the ideal locations of the 

electrode tips. Rights for reuse of figure obtained through Elsevier. 
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Figure 3 reconstructs histologically verified electrode tip placement in the adult VTA using the plate 

from Paxinos and Watson Rat Brain Atlas 1986. The black triangles indicate areas that are 

considered VTA for histological purposes. Rights for reuse of figure obtained through Elsevier 
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3 Results  

3.1 Adolescent 

A total of 113 adolescent rats with electrodes confirmed to be in the VTA were used in this 

experiment; 11, 28, 31, and 43 rats were treated with saline (control), 0.6, 2.5, or 10.0 mg/kg MPD 

respectively and 307 VTA units were recorded, 26, 81, 99, and 101 after saline, 0.6, 2.5, and 10.0 

mg/kg MPD respectively.  

3.2 Behavioral Results Adolescent   

The overall effect of the acute MPD administration resulted in a dose response dependent 

increase in locomotor activity. In addition, the baseline activity at ED10 after six daily MPD 

exposures and three washout days compared to experimental day 1 (ED1) was increased. In general 

the locomotor activity of all the animals after MPD rechallenge on experimental day 10 (ED10) 

compared to the recording of ED1 after the initial MPD administration for the dose of 2.5 mg/kg 

MPD elicited behavioral tolerance and in the higher MPD dose of 10.0 mg/kg dose the group 

expressed behavioral sensitization as determined by a significant increase in behavioral activity on 

ED10 following MPD compared to the behavioral activity following MPD on ED1. Eleven animals 

were treated only with saline. The locomotor activity (HA) from ED10 compared to ED1 following 

chronic injection of saline exhibited similar locomotor activities with minor non-significant 

fluctuations in the locomotor indices evaluated following single and multiple saline injections.  This 

showed that neither saline, needle injection nor handling had any effect on behavioral activity 

(Figure 4). Therefore any significant changes from baseline after drug treatment were due to the 

effects of MPD. For the adolescent behavioral figures, Sensitized= summarizes the total distance of 

animals expressing behavioral sensitization and Tolerance= summarizes the total distance of the 

individual animals that express behavioral tolerance. 
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Figure 4 summarizes the total distance activity of the control groups (N=11) after injection of 

saline on experimental day 1 (ED1) and ED10. For each experimental day, saline was first 

injected and the behavioral activity was recorded for one hour. Following this, another 

injection of saline was given and again the animals were recorded for another hour. 

Comparison between the 2
nd

 injections to the first for both days, showed no significant 

differences.  
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3.2.1 Adolescent 0.6 mg/kg MPD  

Twenty-eight animals were treated with 0.6 mg/kg MPD and when grouped together, no 

significant changes in behavioral activity were noted for either the acute or the chronic exposures to 

MPD or when comparing the baseline activity on ED10 after six daily 0.6 mg/kg MPD exposures 

and three washout days, to the baseline activity recorded on ED1 using the ANOVA test (Fig 5 All). 

When the animals were separated based on their individual responses to chronic MPD using the C.R. 

test, 14 individual animals failed to respond significantly to the initial (acute) MPD exposure at ED1, 

but expressed significant (p < 0.05) increases in their locomotor activity using the ANOVA test i.e. 

they expressed behavioral sensitization to MPD rechallenge exposure at ED10 (Fig 5 0.6 mg/kg 

MPD Sensitized). Fourteen individual animals exhibited behavioral tolerance to 0.6 mg/kg MPD 

rechallenge at ED10 compared to MPD at ED1 using the C.R. test. These animals at ED1 exhibited 

significant (p < 0.05) increases in their behavioral activity following acute MPD exposures and on 

ED10 exhibited a significant (p < 0.05) decrease in their activity in response to the MPD rechallenge 

compared to activity post MPD at ED1 using the ANOVA test (Fig 5 0.6 mg/kg MPD Tolerance). 

We were able to show that 0.6 mg/kg MPD can induce both behavioral sensitization and behavioral 

tolerance to different animals.  
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Figure 5 summarizes the behavioral activity following acute and chronic injection of 0.6 mg/kg 

MPD. The activity for all the animals grouped together (N=28) is shown on the left with 

comparisons between the ED1 baseline activity, the ED1 MPD injection, and the ED10 MPD 

injection compared to that post MPD on ED1. For the middle and right sides of the histogram, the 

animal groups are broken down into two groups: those animals exhibiting behavioral sensitization 

(N=14) and those exhibiting behavioral tolerance (N=14). For these two groups, the same 

comparisons were made as the ‘all’ group. All= summarizes the total distance of all the animals. *= 

indicates significant (p < 0.05) difference between the effect of the initial MPD exposure at ED1 to 

their baseline activity. ∆= indicates significant difference between the ED10 activity post MPD to the 

activity of ED1 post MPD exposure. 
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3.2.2 Adolescent 2.5 mg/kg MPD 

Thirty-one animals were treated with acute and chronic 2.5 mg/kg MPD. Acute MPD 

exposure elicited significant (p < 0.05) increases in activity while repetitive (chronic) 2.5 mg/kg 

MPD elicited significant (p < 0.05) decreases in activity at ED10 compared to the activity elicited by 

the initial MPD exposure at ED1 i.e., tolerance to MPD rechallenge (Fig 6 2.5 mg/kg MPD All). 

When the animals were separated by their individual behavioral responses to MPD, 22 out of the 31 

animals exhibited individually behavioral sensitization using the C.R. test and as a group using the 

ANOVA test had significant (p < 0.05) increases to acute administration of MPD, and following 

rechallenge dose of 2.5 mg/kg MPD on ED10 exhibited further significant (p < 0.05) increase 

compared to that observed on ED1 i.e. expressing behavioral sensitization (Fig 6 2.5 mg/kg MPD 

Sensitized). Nine individual animals each exhibited behavioral tolerance using the C.R. test. These 

animals showed a significant (p < 0.05) increase in activity to acute administration of MPD, and a 

significant decrease in activity following rechallenge to MPD on ED10 compared to the effect of 

MPD on ED1 using the ANOVA test (Figure 6  2.5 mg/kg Tolerance). Those animals that exhibited 

tolerance to MPD rechallenge at ED10 responded to acute MPD significantly (p <0.05) higher than 

the animals that expressed behavioral sensitization (Fig 6 2.5 mg/kg MPD). 
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Figure 6 summarizes the behavioral activity following acute and chronic injection of 2.5 

mg/kg MPD. The activity for all the animals grouped together (N=31) is shown on the left 

with comparisons between the ED1 baseline activity, the ED1 MPD injection, and the ED10 

MPD injection compared to that post MPD on ED1. For the middle and right sides of the 

histogram, the animal groups are broken down into two groups: those animals exhibiting 

behavioral sensitization (N=22) and those exhibiting behavioral tolerance (N=9). For these 

two groups, the same comparisons were made as the ‘all’ group. All= summarizes the total 

distance of all the animals. *= indicates significant (p < 0.05) difference between the effect 

of the initial MPD exposure at ED1 to their baseline activity. ∆= indicates significant 

difference between the ED10 activity post MPD to the activity of ED1 post MPD exposure. 
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3.2.3 Adolescent 10.0 mg/kg MPD Behavior 

Forty-three animals were treated with 10.0 mg/kg MPD and when grouped together, these 

animals exhibited a significant (p < 0.05) increase in locomotor activity to the acute administration 

of MPD on ED1. Following MPD rechallenge at ED10, these animals exhibited further significantly 

(p < 0.05) increased locomotor activity using the ANOVA test (Fig 7, 10.0 mg/kg MPD, All). When 

the animals were separated based off of their individual responses to 10.0 mg/kg MPD using the C.R. 

test, 37 animals that individually exhibited behavioral sensitization responded significantly (p < 

0.05) to acute MPD exposure by increasing their behavioral activity and had further significant (p < 

0.05) increases in their locomotor activity following rechallenge MPD at ED10 compared to ED1 

activity post MPD exposure using the ANOVA test (Fig 7 10.0 mg/kg MPD Sensitized). Six 

individual animals responded to acute MPD exposure by increasing their locomotor activity and the 

MPD exposure at ED10 resulted in significantly (p < 0.05) less activity compared to the initial MPD 

exposure using the ANOVA test i.e., these animals expressed behavioral tolerance to MPD 

rechallenge at ED10 compared to the initial acute MPD exposure at ED1 (Fig 7 10.0 mg/kg MPD 

Tolerance).  
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Figure 7 summarizes the behavioral activity following acute and chronic injection of 10.0 

mg/kg MPD. The activity for all the animals grouped together (N=43) is shown on the left 

with comparisons between the ED1 baseline activity, the ED1 MPD injection, and the ED10 

MPD injection compared to that post MPD on ED1. For the middle and right sides of the 

histogram, the animal groups are broken down into two groups: those animals exhibiting 

behavioral sensitization (N=37) and those exhibiting behavioral tolerance (N=6). For these 

two groups, the same comparisons were made as the ‘all’ group. All= summarizes the total 

distance of all the animals. *= indicates significant (p < 0.05) difference between the effect 

of the initial MPD exposure at ED1 to their baseline activity. ∆= indicates significant 

difference between the ED10 activity post MPD to the activity of ED1 post MPD exposure. 
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3.3 Adults 

Parts of this chapter are based on Jones,Z.; Dafny,N. Acute and chronic dose-response effect of 

methylphenidate on ventral tegmental area neurons correlated with animal behavior. J. Neural 

Transm. 2013 In Press. Reprinted from Jones and Dafny, 2013 with kind permission of Springer 

Science and Business Media. Copyright © 2013, Springer Science and Business Media.  

 

A total of 51 rats with 111 electrodes confirmed to be in the VTA were used in this experiment. 

Twenty, 14, 7, and 10 rats were treated with saline, 0.6, 2.5, and 10.0 mg/kg MPD respectively and 

361 units were recorded, 76, 132, 62, and 91 after saline, 0.6, 2.5, and 10.0 mg/kg MPD respectively.  

3.4 Behavioral Results Adult  

Control: Twenty animals were treated only with saline. Following acute and repetitive saline 

injection, all animals expressed similar locomotor activity following the 2
nd

 saline injection 

compared to the first on ED1. This showed that saline and handling had no effect on the rats’ 

behavioral activity. Therefore the activity after saline injection at ED1 can be used and was used as 

the control for the MPD effects, i.e., any significant changes due to drug exposure were due to the 

effects of MPD. 

3.4.1 Adult 0.6 mg/kg MPD  

Fourteen animals were treated with 0.6 mg/kg MPD, the ANOVA test showed no significant changes 

in locomotor activity after acute or chronic 0.6 mg/kg MPD or when the baseline activity at ED10 

(after 6 daily 0.6 mg/kg MPD and 3 washout days) was compared with ED1 baseline (Fig 8Aa). 

When these 14 animals were divided based on their individual behavioral responses to chronic MPD 

exposure, 3 animals at ED10 following MPD exposure exhibited significant (p < 0.05) increases in 

their locomotion compared to the activity following MPD injection on ED1 (Fig 8 Ab). These 3 

animals at ED1 responded to MPD by significant (p < 0.05) decreases by 52% in their locomotor 

activity compared to their ED1 baseline (Fig 8 Ab). The baseline locomotor activity at ED10 after 6 

daily injections of 0.6 mg/kg MPD and 3 washout days was significantly (p < 0.05) elevated by 38% 
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compared to the baseline at ED1 (Fig 8 Ab). The remaining 11 animals treated with 0.6 mg/kg MPD 

showed reduction in their locomotor activity at ED10 post MPD compared to ED1 post MPD 

exposure, but this attenuation appears to be non-significant as a group. These animals did not 

respond significantly to acute 0.6 mg/kg MPD and their ED10 baseline behavioral activity compared 

to ED1 baseline behavioral activity was relatively unchanged (Fig 8 Ac). 
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Figure 8 shows the horizontal activity (HA) traveled data following 0.6 mg/kg MPD dose. 

The top histogram (Aa) summarizes all the animals (N = 14). In addition, data was broken 

down into those animals that exhibited behavioral sensitization (N = 3) (Ab) and those 

animals that exhibited behavioral tolerance (N = 11) (Ac) to chronic MPD exposure 

respectively. For each group, the HA of ED1 after MPD exposure is compared to ED1 

Baseline activity; the ED10 Baseline HA is compared to ED1 Baseline HA; and the HA 

activity on ED10 following MPD exposure is compared to the ED1 HA post MPD exposure. 

ED - experimental day; BL – baseline; MPD – methylphenidate; * - P < 0.05. 

 

 

 

 

 

 

 



35 
 

3.4.2 Adult 2.5 mg/kg MPD  

Seven animals were treated with acute and chronic 2.5 mg/kg MPD, and when grouped 

together for analysis of their behavioral activity, it was observed (ANOVA test) that all the animals 

exhibited significant (p < 0.05) increases in their locomotion following the initial (acute) 2.5 mg/kg 

MPD exposure at ED1 (Fig 9 Bd). However, the activity post MPD exposure at ED10 compared to 

activity post MPD at ED1, as well as the baseline activity at ED10 compared to the baseline at ED1, 

was about the same, i.e. was not significantly different (Fig 9 Bd). When these seven rats were 

evaluated individually using the C.R. test and then grouped based on their individual responses to 

chronic MPD exposure, 3 animals exhibited behavioral sensitization (using the ANOVA test, p < 

0.05). The acute 2.5 mg/kg MPD to these 3 animals elicited non-statistically significant increases in 

locomotion (Fig 9 Be). The baseline activity at ED10 of these 3 animals compared to baseline at 

ED1 exhibited non-significant attenuation, and there were increases in their locomotor activity at 

ED10 compared to ED1 post MPD exposure, but due to a large standard error and small N, it was not 

significant (Fig 9 Be). The remaining 4 rats that individually exhibited a decrease in their locomotor 

activity (p < 0.05) following chronic MPD exposure, i.e. exhibited behavioral tolerance. Their 

behavioral response to the initial (acute) MPD was robustly (p < 0.05) increased (Fig 9 Bf) and the 

baseline activity of this group at ED10 compared to ED1 baseline exhibited a non-significant 

difference. The activity following chronic MPD exposure at ED10 compared to the effect of MPD on 

ED1 (Fig 9 Bf) after 2.5 mg/kg MPD exposure as a group, exhibited a non-significant decrease in 

their behavioral activity.  
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Figure 9 shows the horizontal activity (HA) traveled data following 2.5 mg/kg MPD dose. 

The top histogram (Bd) summarizes all the animals (N = 7). In addition, data was broken 

down into those animals that exhibited behavioral sensitization (N = 3) (Be) and those 

animals that exhibited behavioral tolerance (N = 4) (Bf) to chronic MPD exposure 

respectively. For each group, the HA of ED1 after MPD exposure is compared to ED1 

Baseline activity; the ED10 Baseline HA is compared to ED1 Baseline HA; and the HA 

activity on ED10 following MPD exposure is compared to the ED1 HA post MPD exposure. 

ED - experimental day; BL – baseline; MPD – methylphenidate; * - P < 0.05. 
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3.4.3 Adult 10.0 mg/kg MPD  

The 10 animals treated with 10.0 mg/kg MPD exhibited a significant (p < 0.001) increase in 

locomotor activity by 580% compared to their baseline arbitrarily set at 100% (Fig 10 Cg).  The 

ED10 baseline activity remained the same compared to the initial baseline activity at ED1. MPD 

exposure at ED10 compared to the initial MPD exposure at ED1 elicits similar effects (Fig 10 Cg). 

When the animals were analyzed individually based on their chronic response to the drug to the 

acute effect, 5 of the animals exhibited significant (p < 0.05) behavioral sensitization (Fig 10 Ch), 

and 5 animals exhibited a significant (p < 0.05) reduction in their locomotor activity (Fig 10 Ch, Ci). 

Those individual animals that exhibit behavioral sensitization exhibited significantly (p < 0.05) 

increased responses to MPD in response to the acute dose of 10.0 mg/kg by 487% (Fig 10 Ch). The 

baseline activity at ED10 compared to ED1 baseline was increased, but non-significantly. The 

chronic effect of the drug at ED10 was compared to the initial MPD exposure at ED1, there was a 

significant (p < 0.05) increase in activity by 177% (Fig 10 Ch). The 5 animals that individually 

exhibited behavioral tolerance in response to 10.0 mg/kg MPD exhibited a significant (p < 0.05) 

increase in response to acute drug on ED1 by 665%. Their acute response to MPD was significantly 

(p < 0.05) higher compared to those animals in the sensitized group (Fig 10 Ci). The baseline activity 

of these 5 tolerant rats at ED10 was similar to ED1 baseline. In response to chronic MPD on ED10 

compared to ED1 post MPD, the animals exhibited a decrease in activity, but this reduction in 

activity was not significant due to a large SE (Fig 10 Ci).  
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Figure 10 shows the horizontal activity (HA) traveled data following 10.0 mg/kg MPD dose. 

The top histogram (Cg) summarizes all the animals (N = 10). In addition, data was broken 

down into those animals that exhibited behavioral sensitization (N= 5) (Ch) and those 

animals that exhibited behavioral tolerance (N = 5) (Ci) to chronic MPD exposure 

respectively. For each group, the HA of ED1 after MPD exposure is compared to ED1 

Baseline activity; the ED10 Baseline HA is compared to ED1 Baseline HA; and the HA 

activity on ED10 following MPD exposure is compared to the ED1 HA post MPD exposure. 

ED - experimental day; BL – baseline; MPD – methylphenidate; * - P < 0.05. 
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3.5 Comparison between Adolescent and Adult animal behavior 

When comparing the adult to the adolescent behavioral following MPD administration using 

an ANOVA test, there were no significant differences between the two groups for all three doses for 

both ED1 and ED10. However, when they were separated out based on behavior, there were 

significant differences between the adult and adolescents. For the tolerant animals, there were 

significant differences between adults and adolescents for 2.5 and 10.0 mg/kg MPD on both ED1 and 

ED10 (F: 7.194, P: 0.05; F: 10.466, P: 0.03; F: 9.908, P: 0.01; F: 12.832, P: 0.007). For the sensitized 

animals, there were no significant differences most likely due to a low N, however, near significance 

was seen for the 0.6 and 10.0 mg/kg MPD doses on ED10. 

3.6 Neuronal Activity Adolescent 

Two hundred and eighty-one VTA units were recorded following acute and chronic MPD 

exposure. Fifty-nine percent (165/281) of the VTA units exposed to acute (0.6, 2.5, or 10.0 mg/kg) 

MPD responded significantly (p < 0.05) to the drug at ED1 by changing their firing rate compared to 

their baseline activity and the majority of the VTA responsive units, 73% (121/165), exhibited 

significant (p < 0.05) increases in their neuronal firing rates in response to the initial (acute) MPD 

exposure. Seventy percent (197/281) of the units exhibited significant changes in their baseline 

activity at ED10, after six daily MPD injections and 3 washout days (see Table 1), compared to ED1 

baseline, and 62% (122/197) of them exhibiting an increase in their neuronal activity. At ED10, 68% 

(192/281) of the VTA units responded significantly (p < 0.05) to MPD rechallenge by changing their 

firing compared to the acute MPD exposure at ED1 and the majority of them, 62% (118/192), 

exhibited significant (p < 0.05) increases in their neuronal activity following MPD exposure at ED10 

compared to the effect of MPD exposure at ED1. 
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Figure 11 is a representative histogram showing the baseline (BL) neuronal firing rates of adolescent 

VTA neurons on ED1 and the baseline activity at ED10 after six daily MPD exposure and three 

washout days. In Part A, the baseline activity (BL) is shown for ED1 and then again on ED10. This 

animal’s baseline activity was potentiated after the 6 days of MPD exposure and 3 washout days. In 

Part B, the baseline activity is shown for ED1 and again for ED10 expressing attenuation in their 

activity following 6 days of MPD exposure and 3 washout days.   
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3.6.1 Adolescent VTA Neuronal (0.6 mg/kg) 

The neuronal activity following 0.6 mg/kg MPD was recorded from 81 VTA units in 28 

animals. Only 38% (31/81) of the VTA units responded to acute 0.6 mg/kg MPD exposure and of 

those responding units, 55% (17/31) exhibited an increase in their firing rate. In addition, when 

comparing the baseline neuronal activity on ED10 to baseline activity at ED1, 51% (41/81) of the 

units exhibited a significant (p < 0.05) change in their firing rate, with 51% (21/51) exhibiting a 

significant (p < 0.05) decrease in their firing rate. Upon MPD rechallenge at ED10 compared to the 

activity post MPD on ED1, 47% (38/81) of VTA units responded significantly (p < 0.05) different by 

changing their firing rate, with 66% (25/38) of them exhibiting an increase in firing rate (Table 2A).  

3.6.2 Adolescent VTA neuronal based on behavior (0.6 mg/kg) 

Fifty four VTA units were recorded from 14 animals that exhibited behavioral tolerance.  

Following acute administration of MPD, 41% (22/54) of the VTA units responded significantly (p < 

0.05) to the drug by changing their firing rate, with 55% (12/22) of these responding VTA units 

exhibiting a decrease in their firing rates. Comparing the baseline activity of ED10 after six daily 

MPD exposures and three washout days to that of ED1 shows that 59% (32/54) of the units changed 

their firing rate significantly (p < 0.05), with 56% (18/32) of those units exhibited an increase in their 

firing rates. Upon MPD rechallenge at ED10, 54% (29/54) of the VTA units responded with 

significant (p < 0.05) changes in their firing rate and from these responding units, 62% (18/29) of 

them exhibited significantly (p < 0.05) increased firing rates following MPD exposure on ED10 

compared to that observed following MPD exposure at ED1 (Table 2C). 

Twenty seven VTA units were recorded from 14 animals that exhibited behavioral sensitization to 

0.6 mg/kg MPD.  Only 33% (9/27) of the units responded to MPD administration on ED1 and on 

ED10 and of these responding VTA units, 78% responded with an increase in their neuronal activity 

(Table 2B). When the baseline activity on ED10 was compared to ED1 baseline activity, 33% (9/27) 

of the units exhibited significant (p < 0.05) change in their firing rate and of these VTA units, 66% 

exhibited an increase in their neuronal activity on ED10, after six daily MPD injections and 3 
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washout days, compared to ED1 baseline activity (Table 2B). Upon MPD rechallenge at ED10, 33% 

(9/27) of the VTA units responded with significant (p < 0.05) changes in their firing rate compared 

to the activity post MPD exposure on ED1 and of these responding units, 78% (7/9) of them 

exhibited further significantly (p < 0.05) increased firing rates (Table 2B). 
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0.6 mg/kg MPD 

Subject Group   Acute (ED1) 
Baseline (ED10 

to ED1) 
Rechallenge 

(ED10) 

A) Total                 
N= 81 

↑ 17 (21%) 20 (24.7%) 25 (30.9%) 

↓  14 (17.3%) 21 (25.9%) 13 (16%) 

↔  50 (61.7%) 40 (49.4%) 43 (53.1%) 

  

B) Rats   
Exhibiting 
Behavioral 

Sensitization     
N= 27 

↑ 7 (25.9%) 6 (22.2%) 7 (25.9%) 

↓ 2 (7.4%) 3 (11.1%) 2 (7.4%) 

↔ 18 (66.7%) 18 (66.7%) 18 (66.7%) 

  

C) Rats 
Exhibiting         

Non-Sensitized 
Behavior              

N= 54 

↑  10 (18.5%) 14 (25.9%) 18 (33.3%) 

↓ 12 (22.2%) 18 (33.3%) 11 (20.4%) 

↔ 32 (59.3%) 22 (40.8%) 25 (46.3%) 

 
Table 2 summarizes the VTA neuronal activity following 0.6 mg/kg MPD administration. In part A, 

all of the neuronal units are grouped together. The unit response is shown as either an increase in 

activity, decrease in activity or no change. Data is shown for the acute administration of MPD on 

ED1, the baseline activity on ED10 compared to ED1 baseline activity, and the rechallenge dose of 

MPD on ED10 after 6 daily injections and 3 washout days. In part B, the data is shown for the 

animals which exhibited behavioral sensitization, and in part C, the data is shown for the animals 

which exhibited behavioral tolerance. 
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3.6.3 Adolescent VTA Neuronal (2.5 mg/kg) 

The neuronal activity following 2.5 mg/kg MPD was recorded for 99 VTA units from 31 

animals. Fifty-five percent (54/99) of these units responded to the acute administration of the drug by 

significantly (p < 0.05) changing their firing rates, 59% (31/54) of these responding VTA units 

responded with a significant (p < 0.05) increase in their firing activity. When comparing the ED10 

baseline activity to the ED1 baseline activity, 64% (63/99) of the units exhibited significant (p < 

0.05) changes in their activity, with 68% (40/63) of them exhibiting a significant (p < 0.05) increase 

in their ED10 baseline activity compared to ED1 baseline activity. In response to MPD rechallenge 

on ED10, 64% (63/99) of the units responded significantly (p < 0.05) to the drug, the majority of 

these responding units 68% (43/63) responded to MPD rechallenge with further significant increases 

in their neuronal activity (Table 3A). 

3.6.4 Adolescent VTA neuronal based on behavior (2.5 mg/kg) 

Forty VTA units were recorded from 9 animals that exhibited behavioral tolerance.  

Following acute administration of MPD, only 40% (16/40) of the VTA units responded significantly 

to the drug with 56% (9/16) of these responding units exhibiting significant (p < 0.05) decreases in 

their firing rates. Comparing baseline activity on ED10 to that of ED1 baseline activity, 40% (16/40) 

of the units exhibited significant (p < 0.05) changes in their baseline firing rate after the six daily 

MPD exposures and three washout days, with half of them exhibiting decreases in their firing rates 

and the other half exhibiting an increase in their baseline firing rate (Table 3C). Upon MPD 

rechallenge at ED10, 45% (18/40) of the units responded with significant (p < 0.05) changes in their 

firing rates compared to the activity post MPD exposure on ED1 and of these responding VTA units, 

61% (11/18) of them exhibited significantly (p < 0.05) increased firing rates following 2.5 mg/kg 

MPD at ED10 compared to MPD exposure at ED1 (Table 3C). 

Fifty nine VTA units were recorded from 22 animals that exhibited behavioral sensitization to 2.5 

mg/kg MPD.  In response to acute exposure of 2.5 mg/kg MPD, 64% (38/59) of the units responded 

to drug administration by significantly (p < 0.05) changing their firing rate and of these 38 
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responsive VTA units, 63% (24/38) responded to MPD with significant (p < 0.05) increases in their 

neuronal activity. When baseline activity on ED10 was compared to ED1 baseline activity, 80% 

(47/59) of the units exhibited a significant (p < 0.05) change in their baseline activity after the six 

daily MPD exposures and three washout days and of these 47 VTA units, 68% (32/47) exhibited an 

increase in their ED10 baseline neuronal activity compared to ED1 baseline activity. When given a 

rechallenge dose of 2.5 mg/kg MPD on ED10, 76% (45/59) of the units responded significantly (p < 

0.05) to the drug compared to the activity post MPD exposure on ED1 and of the 45 responding 

VTA units, 71% (32/45) exhibited significant (p < 0.05) increases in their firing rates to MPD 

rechallenge (Table 3B) (Figure 12). 
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Figure 12 is a representative histogram showing the neuronal activity post MPD exposure on ED1 

and ED10. In Part A, 2.5 mg/kg MPD rechallenge exposure at ED10 compared to ED1 elicited 

further potentiation as a result of 6 days of daily MPD exposure, and 3 washout days. Part B is VTA 

representative of units showing the neuronal activity post MPD on ED1 and again on ED10 where 

the neuronal activity is on ED10 attenuated following 6 days of MPD (2.5 mg/kg) exposure, 

followed by 3 washout days and MPD rechallenge compared to ED1 post MPD exposure. At the top 

is 20 superimposed analog neuronal spike activity, showing that the spike recorded post MPD on 

ED1 is similar to the spike post MPD rechallenge on ED10. 
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2.5 mg/kg MPD 

Subject Group 

 

Acute (ED1) 
Baseline (ED10 

to ED1) 

Rechallenge 

(ED10) 

A) Total                 

N= 99 

↑ 31 (31.3%) 40 (40.4%) 43 (43.4%) 

↓ 23 (23.2%) 23 (23.2%) 20 (20.2%) 

↔ 45 (45.5%) 36 (36.4%) 36 (36.4%) 

 

B) Rats   

Exhibiting 

Behavioral 

Sensitization     

N= 59 

↑ 24 (40.7%) 32 (54.2%) 32 (54.2%) 

↓ 14 (23.7%) 15 (25.4%) 13 (22.1%) 

↔ 21 (35.6%) 12 (20.4%) 14 (23.7%) 

 
C) Rats 

Exhibiting         

Non-

Sensitized 

Behavior              

N= 40 

↑ 7 (17.5%) 8 (20%) 11 (27.5%) 

↓ 9 (22.5%) 8 (20%) 7 (17.5%) 

↔ 24 (60%) 24 (60%) 22 (55%) 

 
Table 3 summarizes the VTA neuronal activity following 2.5 mg/kg MPD administration. In part A, 

all of the neuronal units are grouped together. The unit response is shown as either an increase in 

activity, decrease in activity or no change. Data is shown for the acute administration of MPD on 

ED1, the baseline activity on ED10 compared to ED1 baseline activity, and the rechallenge dose of 

MPD on ED10 after 6 daily injections and 3 washout days. In part B, the data is shown for the 

animals which exhibited behavioral sensitization, and in part C, the data is shown for the animals 

which exhibited behavioral tolerance. 
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3.6.5 Adolescent VTA Neuronal (10.0 mg/kg) 

The neuronal activity following 10.0 mg/kg MPD was recorded from 101 VTA units in 43 

animals. The majority, 72% (73/101) of these VTA units following 10.0 mg/kg MPD exposure 

responded significantly (p < 0.05) by changing their firing rate, 91% (73/80) of the responding VTA 

units, exhibited a significant (p < 0.05) increase in their neuronal activity to MPD exposure (Table 

4A).  When comparing the baseline neuronal activity of ED10 to the baseline activity of ED1, 92% 

(93/101) of these units exhibited significant (p < 0.05) changes in their ED10 neuronal firing rate, 

and 67% (62/93) of these units exhibited a significant (p < 0.05) increase in their neuronal activity. 

When MPD rechallenge was given on ED10, 90% (91/101) of the VTA units responded by 

significantly (p < 0.05) changing their firing rate compared to the activity from acute MPD exposure 

at ED1, and of those responding units, 55% (50/91) of them exhibited a further significant (p < 0.05) 

increase in their activity compared to the initial effect of 10.0 mg/kg MPD at ED1 (Table 4A).   

3.6.6 Adolescent VTA neuronal based on behavior (10.0 mg/kg) 

Twenty VTA units were recorded from 6 animals that exhibited behavioral tolerance.  

Following acute administration of MPD, 65% (13/20) of these VTA units responded significantly (p 

< 0.05) to the drug by changing their firing rate with 62% (8/13) of these responding VTA units 

exhibiting significant (p < 0.05) increases in their firing rates following MPD exposure. Comparing 

baseline activity on ED10 to the baseline activity at ED1 reveals that 90% (18/20) of the units 

changed their firing rate significantly (p < 0.05) after the six daily MPD exposures and three washout 

days, with 56% (10/18) of them exhibiting a significant (p < 0.05) decrease in their neuronal firing 

rates. Upon MPD rechallenge at ED10, 85% (17/20) of the units responded with significant (p < 

0.05) changes in their firing rate and of these responding VTA units, 59% (10/17) of them exhibited 

further significant (p < 0.05) decreases in their firing rates compared to the effect elicited by the 

initial MPD exposure (Table 4C). 

Eighty one VTA units were recorded from 37 animals that exhibited behavioral sensitization.  In 

response to acute exposure of MPD, the majority of these units, 83% (67/81) responded to the drug 
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administration by significantly (p < 0.05) changing their firing rate and of these responding units, 

97% (65/67) responded significantly (p < 0.05) with an increase in their neuronal activity. When the 

baseline activity on ED10 was compared to the ED1 baseline activity, 93% (75/81) of the VTA units 

exhibited significant (p < 0.05) changes in their firing rate at ED10 and of these 75 VTA units, 72% 

(54/75) exhibited significant (p < 0.05) increases in their neuronal activity at ED10 compared to ED1 

baseline neuronal activity. When given a rechallenge dose of 10.0 mg/kg MPD on ED10, 91% 

(74/81) of the VTA units responded significantly (p < 0.05) to the drug by changing their firing rate 

and of these responding 74 VTA units, 58% (43/74) exhibited further significant (p < 0.05) increases 

in their firing rate at ED10 when compared to the effect of MPD on ED1 (Table 4B) (Fig 13).   
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Figure 13 is a representative histogram showing VTA neuronal activity post saline injection 

i.e. the baseline (BL) activity and the activity post 10.0 mg/kg MPD administration. The drug 

was injected at 60 minutes post saline. In Part A, VTA neuronal activity following acute MPD 

exhibits a potentiation of neuronal activity. In contrast, Part B shows VTA neuronal activity 

units exhibiting attenuation following MPD administration. 
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10.0 mg/kg  

Subject Group 

 

Acute (ED1) 
Baseline (ED10 

to ED1) 

Rechallenge 

(ED10) 

A) Total                 

N= 101 

↑ 73 (73.3%) 62 (61.4%) 50 (49.5%) 

↓ 7 (6.9%) 31 (30.7%) 41 (40.6%) 

↔ 21 (20.8%) 8 (7.9%) 10 (9.9%) 

 

B) Rats   

Exhibiting 

Behavioral 

Sensitization     

N=81 

↑ 65 (80.2%) 54 (66.7%) 43 (53.1%) 

↓ 2 (2.5%) 21 (25.9%) 31 (38.3%) 

↔ 14 (17.3%) 6 (7.4%) 7 (8.6%) 

 

C) Rats 

Exhibiting         

Non-Sensitized 

Behavior              

N= 20 

↑ 8 (40%) 8 (40%) 7 (35%) 

↓ 5 (25%) 10 (50%) 10 (50%) 

↔ 7 (35%) 2 (10%) 3 (15%) 

 

Table 4 summarizes the VTA neuronal activity following 10.0 mg/kg MPD administration. In part A, 

all of the neuronal units are grouped together. The unit response is shown as either an increase in 

activity, decrease in activity or no change. Data is shown for the acute administration of MPD on 

ED1, the baseline activity on ED10 compared to ED1 baseline activity, and the rechallenge dose of 

MPD on ED10 after 6 daily injections and 3 washout days. In part B, the data is shown for the 

animals which exhibited behavioral sensitization, and in part C, the data is shown for the animals 

which exhibited behavioral tolerance. 
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3.7 Neuronal Activity Adult 

A total of 321 units were histologically confirmed to be recorded from the VTA and 

exhibited similar amplitude and wave form at ED1 and ED10. Thirty-six VTA units were recorded 

following acute and repetitive saline injection. Two units showed decreased activity at ED1; the 

baseline activity of one VTA unit at ED10 compared to ED1 baseline exhibited a decrease in 

activity, and one VTA unit exhibited an increase in activity at ED10 following saline injection 

compared to ED1 baseline activity. This observation revealed that the saline injections and animal 

handling did not alter the neuronal activity of VTA neurons.  

Two hundred and eighty-five VTA units were recorded following acute and chronic MPD 

exposure. Seventy-six percent (217/285) of the VTA units exposed to acute (0.6, 2.5 or 10.0 mg/kg) 

MPD responded significantly (p < 0.05) to MPD at ED1 and the majority, (61%; 133/217) of these 

responding units exhibited significant (p < 0.05) increases in their neuronal firing rates. Ninety-six 

percent (274/285) of the total units expressed significant changes in their baseline activity at ED10 

compared to ED1 with 65% (178/274) exhibiting a decrease in their baseline activity. At ED10 95% 

(272/285) of the VTA units responded significantly (p < 0.05) to MPD rechallenge compared to 

activity post MPD exposure on ED1 where the majority, 60% (163/272), exhibited a significant (p < 

0.05) decrease in their neuronal activity. 

 
3.7.1 Adult VTA Neuronal (0.6 mg/kg) 

The neuronal activity of 132 VTA units were recorded after acute and chronic administration 

of 0.6 mg/kg MPD; 71% (93/132) of the VTA units responded significantly (p < 0.05) to the initial 

exposure of the drug (Table 5A Acute) by changing their firing rates compared to their baseline 

firing rate. Most of the units, 94% (124/132), exhibited significant (p < 0.05) changes in their ED10 

baseline activity after six daily MPD injections and three washout days compared to their ED1 

baseline (Table 5A Saline). At ED10, upon MPD rechallenge compared to the initial MPD exposure 
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at ED1, 91% (120/132) of the VTA units exhibited significant (p < 0.05) changes in their neuronal 

activity (Table 5A Rechallenge).   

Of the 93 responsive VTA units to the initial (acute) MPD exposure on ED1 (Table 6A), the 

majority, 57% (53/93), exhibited a significant (p < 0.05) decrease in firing rate in response to acute 

MPD exposure (Table 6A Acute).  Of the VTA units that exhibited significant change at ED10 

baseline compared to ED1 baseline activity, the majority 60% (75/124) showed a significant (p < 

0.05) decrease in baseline activity (Table 6A Saline).  Following rechallenge of 0.6 mg/kg MPD at 

ED10 compared to the initial MPD injection at ED1, the majority of the responding units, 52% 

(62/120), responded to the drug by attenuating their neuronal activity (Table 3A Rechallenge). The 

27 VTA units that did not respond to MPD exposure on ED1, exhibited a significant (p < 0.05) 

change in their ED10 baseline as well as in response to MPD rechallenge at ED10 after the six daily 

injections and three washout days (Table 6A All). 

 
3.7.2 Adult VTA neuronal based on behavior (0.6 mg/kg) 

The neuronal activity of 110 VTA units was recorded from animals that exhibited behavioral 

tolerance following acute and chronic 0.6 mg/kg MPD administration.  The majority, 67% (74/110) 

of them responded to acute administration of MPD (Table 5A Tolerance Acute), while 94% 

(103/110) exhibited significant (p < 0.05) changes in their ED10 baseline compared to their ED1 

baseline (Table 5A Tolerance Saline). At ED10 upon rechallenge with 0.6 mg/kg MPD compared to 

post MPD given at ED1, the majority 89% (98/110) of these VTA units exhibited significant (p < 

0.05) changes in their neuronal activity (Table 5A Tolerance Rechallenge).  

Of the responding 74 VTA units to acute MPD on ED1, the majority, 54% (40/74) exhibited 

a significant (p < 0.05) increase in neuronal firing rate in response to MPD (Table 6A Tolerance 

Acute; Fig 14B). Of the 103 VTA units that exhibited significant change at ED10 baseline compared 

to ED1 baseline activity, the majority, 59% (61/103) showed a significant (p < 0.05) decrease in their 

neuronal activity (Table 6A Tolerance Saline). Upon rechallenge of 0.6 mg/kg MPD on ED10 
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compared to the initial effect of MPD at ED1, 51% (50/98) of the responsive VTA units exhibited a 

significant (p < 0.05) increase in their neuronal activity (Table 6A Rechallenge). The 24 units that 

did not respond to 0.6 mg/kg MPD on ED1 (Table 5A Tolerance Acute), exhibited a significant (p < 

0.05) change in their ED10 baseline activity compared to ED1 baseline activity as well as to MPD 

rechallenge at ED10 after six daily MPD injections and three washout days compared to ED1 post 

MPD administration. 

The neuronal activity of 22 VTA units was recorded from animals that exhibited behavioral 

sensitization following acute and chronic 0.6 mg/kg MPD administration. The majority of them, 86% 

(19/22), responded significantly (p < 0.05) to acute administration of MPD and all 19 responsive 

VTA units exhibited a decrease in their neuronal activity following 0.6 mg/kg MPD exposure (Table 

5A Sensitization Acute). Most of these sensitized VTA neuronal units, 95% (21/22), exhibited 

significant (p < 0.05) changes in their ED10 baseline compared to ED1 baseline, and the majority of 

them, 67% (14/21) exhibited attenuation in their ED10 baseline compared to ED1 baseline (Table 5A 

Sensitization Saline). At ED10 upon rechallenge with MPD compared to post MPD given at ED1, all 

of the VTA units, (22/22) exhibited significant (p < 0.05) changes in their neuronal activity (Table 

5A Sensitization Rechallenge) and 64% (14/22) of these responding VTA units exhibited a 

significant (p < 0.05) decrease in their activity following 0.6 mg/kg MPD exposure on ED10 

compared to 0.6 mg/kg MPD exposure on ED1.  

The 3 VTA units that did not respond to 0.6 mg/kg MPD dose on ED1 (Table 5A Sensitization 

Acute), exhibited a significant (p < 0.05) change in their ED10 baseline activity as well as to MPD 

rechallenge at ED10 after six daily MPD injections and three washout days. 
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Table 5 summarizes the neuronal recording results 0.6 mg/kg. The left, middle, and right columns 

summarize the data from all the animals, from those animals expressing behavioral sensitization, and 

from those animals expressing behavioral tolerance respectively. The arrows pointing upwards 

summarizes the VTA units exhibiting significant increases in neuronal unit activity whereas a 

downward arrow implies a decrease in neuronal unit activity and (≠) shows the number of units that 

did not respond. The percentages shown next to the numbers summarizes the percentage of units that 

responded i.e. total responsiveness. BL- baseline; BL1 – baseline of ED1; BL10 – baseline of ED10; 

Rechallenge – MPD exposure at ED10. 

 

 

 

 

 

 

 

 

 

 

 

A 0.6 mg/kg MPD All 
0.6 mg/kg MPD Exhibiting 
Behavioral Sensitization 

0.6 mg/kg MPD Exhibiting 
Behavioral Tolerance 

  
Acute 
MPD  

Saline 
(BL10 

to 
BL1) 

Rechallenge 
MPD 

Acute 
MPD 

Saline 
(BL10 

to 
BL1) 

Rechallenge 
MPD  

Acute 
MPD 
D1 

Saline 
(BL10 

to 
BL1) 

Rechallenge 
MPD  

Increase 
↑ 

40 49 58 0 7 8 40 42 50 

Decrease 
↓ 

53 75 62 19 14 14 34 61 48 

No 
Change ≠ 

39 8 12 3 1 0 36 7 12 

 N =  132 132 132 22 22 22 110 110 110 
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Table 6 summarizes the electrophysiological results of only the units that responded significantly to 

the treatment from Table 5. The units that did not respond to MPD are not represented. Each column 

for each dose summarizes the acute and chronic effects of the drug. Acute MPD on ED1 after drug 

exposure is compared to ED1 Baseline activity; the ED10 Baseline is compared to ED1 Baseline 

activity and the ED10 post MPD is compared to the ED1 post MPD exposure. The same is shown for 

each dose broken down into all the recordings (All) and to those animals that exhibited behavioral 

sensitization and to those animals that exhibited behavioral tolerance. The arrow pointing upwards 

implies a significant increase in neuronal unit activity whereas a downward arrow implies a 

significant decrease in neuronal unit activity following MPD exposure. The percentages shown next 

to each group is the percentage of units that responded with an increase or decrease in activity (total 

responsiveness arbitrarily set as 100%). 

 

 

 

 

 

 

 

 

 

A 0.6 mg/kg MPD All 
0.6 mg/kg MPD Exhibiting 
Behavioral Sensitization 

0.6 mg/kg MPD Exhibiting 
Behavioral Tolerance 

  
Acute 
MPD 
ED1 

Saline 
(BL 

ED10 to 
BL ED1) 

Rechallenge 
MPD ED10 

Acute 
MPD 
ED1 

Saline 
(BL 

ED10 
to BL 
ED1) 

Rechalleng
e MPD 
ED10 

Acute 
MPD 
ED1 

Saline 
(BL 

ED10 to 
BL ED1) 

Rechallenge 
MPD ED10 

Increase 
↑ 

40 
(43%) 

49 
(40%) 

58  
(48%) 

0 
(0%) 

7 
(33%) 

8  
(36%) 

40 
(54%) 

42 
(41%) 

50 
 (51%) 

Decrease 
↓ 

53 
(57%) 

75 
(60%) 

62 
 (52%) 

19 
(100%) 

14 
(67%) 

14 
 (64%) 

34 
(46%) 

61 
(59%) 

48 
 (49%) 

N = 93 124 120 19 21 22 74 103 98 
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Figure 14 A representative of sequential frequency firing rates of two VTA units following acute 0.6 

mg/kg MPD. Both histograms show the neuronal unit activity post saline for 60 minutes, followed by 

the neuronal unit activity after MPD on ED1 for the following 60 minutes. The left histogram (14A) 

shows the VTA unit exhibited a decrease in firing rate activity to acute MPD administration 

compared to the baseline activity, while the right histogram (14B) shows the VTA unit exhibited an 

increase in firing rate activity to acute MPD administration compared to the baseline activity. 
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3.7.3 Adult VTA Neuronal (2.5 mg/kg) 

The neuronal activity of 62 VTA units were recorded after acute and chronic administration 

of 2.5 mg/kg MPD; 84% (52/62) of the VTA units responded significantly (p < 0.05) to the initial 

exposure of the drug (Table 7B Acute) and of these, the majority 79% (41/52) exhibited a significant 

(p < 0.05) increase in firing rate in response to the initial MPD exposure (Table 7B Acute). The 

baseline activity of ED10 was altered significantly (p < 0.05) in 95% (59/62) of the VTA units 

compared to ED1 baseline (Table 7B Saline; Fig 15) activity as a result of six daily MPD exposures 

and three washout days. Of the above VTA units, the majority 53% (31/59), showed a significant (p 

< 0.05) decrease in their neuronal activity (Table 7B Saline). At ED10, upon MPD rechallenge 

compared to the initial MPD exposure at ED1, 98% (61/62) of the VTA units exhibited significant (p 

< 0.05) changes in their neuronal activity (Table 7B Rechallenge), of which the majority 52% 

(32/61) of the VTA units responded to the drug by significantly (p < 0.05) attenuating their neuronal 

activity (Table 7B Rechallenge). The 9 VTA units that did not respond to MPD exposure on ED1, 

exhibited a significant (p < 0.05) change in their ED10 baseline as well as in response to MPD 

rechallenge at ED10 after the six daily MPD injections and three washout days (Table7B All). 

 
 

3.7.4 Adult VTA neuronal based on behavior (2.5 mg/kg) 

The neuronal activity of 38 VTA units was recorded from animals that exhibited behavioral 

tolerance following acute and chronic 2.5 mg/kg MPD administration. The majority, 90% (34/38), 

responded to acute administration of MPD (Table 7B Tolerance Acute), of which 91% (31/34) 

exhibited a significant (p < 0.05) increase in neuronal firing rate in response to MPD exposure (Table 

8B Tolerance Acute). The ED10 baseline activity compared to ED1 baseline activity was 

significantly (p < 0.05) changed for 95% (36/38) of the VTA units (Table 7B Tolerance Saline) and 

of these units, 64% (23/36) showed a significant (p< 0.05) increase in their neuronal baseline activity 

(Table 8B Tolerance Saline). At ED10 upon rechallenge with MPD compared to post MPD given at 

ED1, all of the VTA units (38/38) exhibited significant (p < 0.05) changes in their neuronal activity 
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(Table 7B Tolerance Rechallenge) of which 63% (24/38) exhibited a significant (p < 0.05) increase 

in their neuronal activity. The 4 units that did not respond to the 2.5 mg/kg MPD dose on ED1 (Table 

7B Tolerance Acute), exhibited a significant (p < 0.05) change in their ED10 baseline activity as 

well as MPD rechallenge at ED10 after six daily MPD injections and three washout days.  

The neuronal activity of 24 VTA units was recorded from animals that exhibited behavioral 

sensitization following acute and chronic 2.5 mg/kg MPD administration. The majority, 75% 

(18/24), responded to acute administration of MPD (Table 7B Sensitization Acute) and of these 18 

responding VTA units, 56% (10/18) exhibited a significant (p < 0.05) increase in neuronal firing rate 

in response to MPD (Table 8B Sensitization Acute). The ED10 baseline activity compared to ED1 

baseline was changed significantly (p < 0.05) by 96% (23/24) of the VTA units (Table 7B 

Sensitization Saline) of which the majority, 78% (18/23), showed a significant (p < 0.05) decrease in 

their neuronal activity (Table 8B 2.5 mg/kg Sensitization Saline). At ED10 upon rechallenge with 

MPD compared to post MPD given at ED1, the majority of the VTA units, 96% (23/24) exhibited 

significant (p < 0.05) changes in their neuronal activity (Table 7B Sensitization Rechallenge), of 

which the majority of these responsive units, 78% (18/23) exhibited a significant (p < 0.05) decrease 

in their neuronal activity. The 5 units that did not respond to the 2.5 mg/kg MPD dose on ED1 (Table 

8B Sensitization Acute), exhibited a significant (p < 0.05) change in their ED10 baseline activity as 

well as MPD rechallenge at ED10 after six daily MPD injections and three washout days. 
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Table 7 summarizes the neuronal recording results 2.5 mg/kg. The left, middle, and right columns 

summarize the data from all the animals, from those animals expressing behavioral sensitization, and 

from those animals expressing behavioral tolerance respectively. The arrows pointing upwards 

summarizes the VTA units exhibiting significant increases in neuronal unit activity whereas a 

downward arrow implies a decrease in neuronal unit activity and (≠) shows the number of units that 

did not respond. The percentages shown next to the numbers summarizes the percentage of units that 

responded i.e. total responsiveness. BL- baseline; BL1 – baseline of ED1; BL10 – baseline of ED10; 

Rechallenge – MPD exposure at ED10. 

 

 

 

 

 

 

 

 

 

 

 

B 2.5 mg/kg MPD All 
2.5 mg/kg MPD Exhibiting 
Behavioral Sensitization 

2.5 mg/kg MPD Exhibiting 
Behavioral Tolerance 

  
Acute 
MPD  

Saline 
(BL10 

to BL1) 

Rechallenge 
MPD  

Acute 
MPD  

Saline 
(BL10 

to BL1) 

Rechallenge 
MPD  

Acute 
MPD 

Saline 
(BL10 

to BL1) 

Rechallenge 
MPD  

Increase 
↑ 

41 28 29 10 5 5 31 23 24 

Decrease 
↓ 

11 31 32 8 18 18 3 13 14 

No 
Change ≠ 

10 3 1 6 1 1 4 2 0 

N =  62 62 62 24 24 24 38 38 38 
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Table 8 summarizes the electrophysiological results of only the units that responded significantly to 

the treatment from Table 7. The units that did not respond to MPD are not represented. Each column 

for each dose summarizes the acute and chronic effects of the drug. Acute MPD on ED1 after drug 

exposure is compared to ED1 Baseline activity; the ED10 Baseline is compared to ED1 Baseline 

activity and the ED10 post MPD is compared to the ED1 post MPD exposure. The same is shown for 

each dose broken down into all the recordings (All) and to those animals that exhibited behavioral 

sensitization and to those animals that exhibited behavioral tolerance. The arrow pointing upwards 

implies a significant increase in neuronal unit activity whereas a downward arrow implies a 

significant decrease in neuronal unit activity following MPD exposure. The percentages shown next 

to each group is the percentage of units that responded with an increase or decrease in activity (total 

responsiveness arbitrarily set as 100%). 

 

 

 

 

 

 

 

 

 

 

 

B 2.5 mg/kg MPD All 
2.5 mg/kg MPD Exhibiting 
Behavioral Sensitization 

2.5 mg/kg MPD Exhibiting 
Behavioral Tolerance 

  
Acute 
MPD 
ED1 

Saline 
(BL 

ED10 to 
BL ED1) 

Rechallenge 
MPD ED10 

Acute 
MPD 
ED1 

Saline 
(BL 

ED10 to 
BL ED1) 

Rechallenge 
MPD ED10 

Acute 
MPD 
ED1 

Saline 
(BL 

ED10 to 
BL ED1) 

Rechallenge 
MPD ED10 

Increase 
↑ 

41 
(79%) 

28 
(47%) 

29        
(48%) 

10 
(56%) 

5   
(22%) 

5        
(22%) 

31 
(91%) 

23 
(64%) 

24      
(63%) 

Decrease 
↓ 

11 
(21%) 

31 
(53%) 

32       
(52%) 

8 
(44%) 

18 
(78%) 

18      
(78%) 

3     
(9%) 

13 
(36%) 

14      
(37%) 

N = 52 59 61 18 23 23 34 36 38 
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Figure 15 A representative of sequential frequency firing rates of the baseline of two VTA units at 

experimental day 1 (ED1) compared to the baseline at ED10 following six daily 2.5 mg/kg MPD 

injections and three washout days. The left histogram (15A) shows the VTA unit that exhibited a 

decrease in its baseline firing rate activity at ED10 following six daily 2.5 mg/kg MPD injections and 

three washout days compared to the baseline activity on ED1, while the right histogram (15B) shows 

the VTA unit exhibited an increase in its baseline firing rate activity at ED10 following six daily 2.5 

mg/kg MPD injections and 3 washout days compared to the baseline activity on ED1. 
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3.7.5 Adult VTA Neuronal (10.0 mg/kg) 

The neuronal activity of 91 VTA units were recorded after acute and chronic administration 

of 10.0 mg/kg MPD; 79% (72/91) of the VTA units responded significantly (p < 0.05) to the initial  

exposure of the drug (Table 9C Acute) and of these, the majority, 72% (52/72), exhibited a 

significant (p < 0.05) increase in firing rate in response to MPD exposure (Table 10C Acute). All of 

the units (91/91) exhibited significant (p < 0.05) changes in their ED10 baseline compared to their 

ED1 baseline of which, the majority 79% (72/91) showed a significant (p < 0.05) decrease in their 

baseline activity (Table 10C Saline). At ED10, upon MPD rechallenge compared to the initial MPD 

exposure at ED1, 100% (91/91) of the VTA units exhibited significant (p < 0.05) changes in their 

neuronal activity (Table 9C Rechallenge), of which the majority 76% (69/91) of the VTA units 

responded to the drug by attenuating their neuronal activity (Table 10C Rechallenge). The 19 VTA 

units that did not respond to MPD exposure on ED1, exhibited a significant (p < 0.05) change in 

their ED10 baseline as well as in response to MPD rechallenge at ED10 after the six daily MPD 

injections and three washout days (Table 9C All). 

3.7.6 Adult VTA neuronal based on behavior (10.0 mg/kg) 

The neuronal activity of 51 VTA units was recorded from animals that exhibited behavioral 

tolerance following acute and chronic 10.0 mg/kg MPD administration.  The majority, 69% (35/51) 

of them responded to acute administration of MPD (Table 9C Tolerance Acute), of which 91% 

(32/35) exhibited a significant (p < 0.05) increase in their neuronal firing rate in response to MPD 

exposure (Table 10C Tolerance Acute). All of the units (51/51) exhibited significant (p < 0.05) 

changes in their ED10 baseline activity compared to ED1 baseline (Table 9C Tolerance Saline) of 

which the majority, 88% (45/51) showed a significant (p < 0.05) decrease in their neuronal activity 

(Table 10C Tolerance Saline). At ED10 upon rechallenge with MPD compared to post MPD given at 

ED1, all of the VTA units (51/51) exhibited significant (p < 0.05) changes in their neuronal activity 

(Table 9C Tolerance Rechallenge) and 84% (43/51) of these exhibited a significant (p < 0.05) 

decrease in their neuronal activity. The 16 units that did not respond to the 10.0 mg/kg MPD dose on 
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ED1 (Table 9C Tolerance Acute), exhibited a significant (p < 0.05) change in their ED10 baseline 

activity compared to their ED1 baseline neuronal firing rate as well as following MPD rechallenge at 

ED10 after six daily MPD injections and three washout days, compared to the initial MPD exposure. 

The neuronal activity of 40 VTA units was recorded from animals that exhibited behavioral 

sensitization following acute and chronic 10.0 mg/kg MPD administration. The majority, 93% 

(37/40) responded significantly (p < 0.05) to acute administration of MPD (Table 9C Sensitization 

Acute) and of these, 54% (20/37) exhibited a significant (p < 0.05) increase in neuronal firing rate in 

response to MPD (Table 10C Sensitization Acute). All of the units (40/40) exhibited significant (p < 

0.05) changes in their ED10 baseline firing rate compared to ED1 baseline firing rate (Table 9C 

Sensitization Saline), of which the majority 67% (27/40) showed a significant (p < 0.05) decrease in 

neuronal activity (Table 10C Sensitization Saline). At ED10 upon rechallenge with MPD compared 

to post MPD given at ED1, all of the VTA units (40/40) exhibited significant (p < 0.05) changes in 

their neuronal activity (Table 9C Sensitization Rechallenge) of which 65% (26/40) exhibited a 

significant (p < 0.05) decrease in their neuronal activity (Table 10C Sensitization Rechallenge). The 

3 units that did not respond to the 10.0 mg/kg MPD dose on ED1 (Table 9C Sensitization Acute), 

exhibited a significant (p < 0.05) change in their ED10 baseline activity as well as following MPD 

rechallenge at ED10 after six daily MPD injections and three washout days. 
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Table 9 summarizes the neuronal recording results 0.6 mg/kg. The left, middle, and right columns 

summarize the data from all the animals, from those animals expressing behavioral sensitization, and 

from those animals expressing behavioral tolerance respectively. The arrows pointing upwards 

summarizes the VTA units exhibiting significant increases in neuronal unit activity whereas a 

downward arrow implies a decrease in neuronal unit activity and (≠) shows the number of units that 

did not respond. The percentages shown next to the numbers summarizes the percentage of units that 

responded i.e. total responsiveness. BL- baseline; BL1 – baseline of ED1; BL10 – baseline of ED10; 

Rechallenge – MPD exposure at ED10. 

 

 

 

 

 

 

 

 

 

 

 

C 10.0 mg/kg MPD All 
10.0 mg/kg MPD Exhibiting 

Behavioral Sensitization 
10.0 mg/kg MPD Exhibiting 

Behavioral Tolerance 

  
Acute 
MPD  

Saline 
(BL10 

to 
BL1) 

Rechallenge 
MPD  

Acute 
MPD  

Saline 
(BL10 

to 
BL1) 

Rechallenge 
MPD  

Acute 
MPD 

Saline 
(BL10 

to 
BL1) 

Rechallenge 
MPD  

Increase 
↑ 

52 19 22 20 13 14 32 6 8 

Decrease 
↓ 

20 72 69 17 27 26 3 45 43 

No 
Change ≠ 

19 0 0 3 0 0 16 0 0 

N =  91 91 91 40 40 40 51 51 51 
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C 10.0 mg/kg MPD All 
10.0 mg/kg MPD Exhibiting 

Behavioral Sensitization 
10.0 mg/kg MPD Exhibiting 

Behavioral Tolerance 

  
Acute 
MPD 
ED1 

Saline 
(BL 

ED10 
to BL 
ED1) 

Rechallenge 
MPD ED10 

Acute 
MPD 
ED1 

Saline 
(BL 

ED10 
to BL 
ED1) 

Rechallenge 
MPD ED10 

Acute 
MPD 
ED1 

Saline 
(BL 

ED10 
to BL 
ED1) 

Rechallenge 
MPD ED10 

Increase 
↑ 

52 
(72%) 

19 
(21%) 

22        
(24%) 

20 
(54%) 

13         
(33%) 

14      
(35%) 

32 
(91%) 

6 
(12%) 

8            
(16%) 

Decrease 
↓ 

20 
(28%) 

72 
(79%) 

69       
(76%) 

17 
(46%) 

27 
(67%) 

26      
(65%) 

3   
(9%) 

45 
(88%) 

43         
(84%) 

N = 72 91 91 37 40 40 35 51 51 

 

Table 10 summarizes the electrophysiological results of only the units that responded significantly to 

the treatment from Table 9. The units that did not respond to MPD are not represented. Each column 

for each dose summarizes the acute and chronic effects of the drug. Acute MPD on ED1 after drug 

exposure is compared to ED1 Baseline activity; the ED10 Baseline is compared to ED1 Baseline 

activity and the ED10 post MPD is compared to the ED1 post MPD exposure. The same is shown for 

each dose broken down into all the recordings (All) and to those animals that exhibited behavioral 

sensitization and to those animals that exhibited behavioral tolerance. The arrow pointing upwards 

implies a significant increase in neuronal unit activity whereas a downward arrow implies a 

significant decrease in neuronal unit activity following MPD exposure. The percentages shown next 

to each group is the percentage of units that responded with an increase or decrease in activity (total 

responsiveness arbitrarily set as 100%). 
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Figure 16 A representative of sequential frequency firing rates of two VTA units following acute and 

chronic MPD administration. Both histograms show the neuronal unit activity after 60 minutes of 

saline i.e. baseline activity, followed by an additional 60 minutes post 10.0 mg/kg MPD on ED1, and 

finally by another 60 minutes post 10.0 mg/kg MPD administration on ED10. In 16A, the acute 

effect of MPD on ED1 elicits an increase in VTA neuronal unit firing rate compared to the baseline 

activity. The effect of MPD rechallenge on ED10, after six daily MPD injections and three washout 

day of no drug, results in a lower response to the drug when compared to the effect of the drug on 

ED1. This neuronal unit activity was classified as neurophysiological tolerance. In 16B, the acute 

effect of 10.0 mg/kg MPD on ED1 results in an increase in neuronal unit activity compared to the 

ED1 baseline activity. The effect of MPD administration on ED10 after six daily MPD injections and 

three washout days results in a further increase in neuronal unit activity compared to the initial MPD 

effects on ED1. This type of response was classified as neurophysiological sensitization.  
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3.8 Statistical Comparisons 

3.8.1 Adolescent behavioral tolerance compared to sensitized (0.06 mg/kg) 

The natural log odds ratio statistical test shows that for 0.6 mg/kg the neuronal recordings 

obtained from animals expressing behavioral sensitization were more likely (1.09) to show an 

increase in neuronal activity during initial (acute) MPD exposure than those animals expressing 

behavioral tolerance. Additionally, for the baseline neuronal activity of ED10 compared to baseline 

neuronal activity recorded at ED1 and the neuronal activity recorded on ED10 following rechallenge 

with MPD compared to the neuronal activity on ED1 following MPD, the odds ratio revealed that the 

behaviorally sensitized animals were more likely (1.21) than the behaviorally tolerant animals to 

show an increased neuronal activity on ED10. When comparing the effect of MPD on ED10, both 

the behaviorally sensitized and tolerant animals were about as likely to have an increase in activity. 

When using a one-way ANOVA comparing the VTA units of those sensitized animals to those 

animals who are tolerant, there were no significant differences between the two groups both for ED1 

MPD as well as the chronic exposure to MPD on ED10.  

3.8.2 Adolescent behavioral tolerance compared to sensitized (2.5 mg/kg) 

The natural log odds ratio statistical test shows that for 2.5 mg/kg the neuronal recordings 

obtained from animals expressing behavioral sensitization were more likely (1.78, 1.86, 1.42) to 

show an increase in neuronal activity for all three comparisons, i.e. the initial (acute) MPD exposure, 

the baseline neuronal activity at ED10 compared to baseline activity at ED1 and the neuronal activity 

recorded at ED10 following MPD rechallenge compared to the neuronal activity on ED1 in response 

to the initial MPD exposure. When using a one-way ANOVA comparing the VTA units of those 

sensitized animals to those animals who are tolerant, there were no significant differences between 

the two groups both for ED1 MPD as well as the chronic exposure to MPD on ED10.  

3.8.3 Adolescent behavioral tolerance compared to sensitized (10.0 mg/kg) 

The natural log odds ratio statistical test shows that for 10.0 mg/kg the neuronal recordings 

obtained from animals expressing behavioral sensitization were more likely (2.12, 1.72, 1.14) to 
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show an increase in neuronal activity for all three comparisons, i.e. the initial (acute) MPD exposure, 

the baseline neuronal activity at ED10 compared to baseline activity at ED1 and the neuronal activity 

recorded at ED10 following MPD rechallenge compared to the neuronal activity on ED1 in response 

to the initial MPD exposure. When using a one-way ANOVA comparing the VTA units of those 

sensitized animals to those animals who are tolerant, there were no significant differences between 

the two groups both for ED1 MPD as well as the chronic exposure to MPD on ED10.  

3.8.4 Adult behavioral tolerant to sensitized (0.06 mg/kg) 

The natural log odds ratio statistical test shows that for 0.6 mg/kg the neuronal recordings 

obtained from animals expressing behavioral tolerance were more likely (3.82) to show an increase 

in neuronal activity during initial (acute) MPD exposure than those animals expressing behavioral 

sensitization. In addition, for both the baseline neuronal activity of ED10 compared to baseline 

neuronal activity recorded at ED1 and the neuronal activity recorded on ED10 following rechallenge 

with MPD administration compared to the neuronal activity on ED1 following MPD exposure, the 

odds ratio revealed that both the behaviorally sensitized and behaviorally tolerant animals were about 

as likely to show increased neuronal activity. When using a one-way ANOVA comparing the VTA 

units of those sensitized animals to those animals who are tolerant, there were no significant 

differences between the two groups both for ED1 MPD as well as the chronic exposure to MPD on 

ED10 for 0.6 mg/kg MPD.  

 
3.8.5 Adult behavioral tolerant to sensitized (2.5 mg/kg) 

The natural log odds ratio statistical test shows that for 2.5 mg/kg the neuronal recordings 

obtained from animals expressing behavioral tolerance were more likely (1.99, 1.77 and 1.74) to 

show an increase in neuronal activity for all three comparisons, i.e. the initial (acute) MPD exposure, 

the baseline neuronal activity at ED10 compared to baseline activity at ED1 and the neuronal activity 

recorded at ED10 following MPD rechallenge compared to the neuronal activity on ED1 in response 

to the initial MPD exposure. When using a one-way ANOVA comparing the VTA units of those 
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sensitized animals to those animals who are tolerant, there were no significant differences between 

the two groups both for ED1 2.5 mg/kg MPD, however on ED10 there was a significant (p < 0.05) 

difference between the two groups.  

 

3.8.6 Adult behavioral tolerant to sensitized (10.0 mg/kg) 

The natural log odds ratio statistical test shows that for 10.0 mg/kg the neuronal recording 

obtained from animals expressing behavioral tolerance were more likely (2.07) to show an increase 

in neuronal activity during the initial (acute) MPD exposure phase compared to the VTA units 

recorded from animals expressing behavioral sensitization to chronic MPD exposure. In addition, the 

odds ratio statistical test of the VTA units recorded from animals exhibiting behavioral tolerance 

showed that they are more likely (1.23, 1.03) than the behaviorally sensitized animals to exhibit a 

decrease in their baseline neuronal activity at ED10 compared to their ED1 baseline activity as well 

as for ED10 neuronal activity after MPD rechallenge compared to the neuronal activity on ED1 

following MPD administration respectively. When using a one-way ANOVA comparing the VTA 

units of those sensitized animals to those animals who are tolerant, there were no significant 

differences between the two groups for ED1 10.0 mg/kg MPD, however there was a large significant 

difference (p < 0.05) between the two groups on ED10 to chronic 10.0 mg/kg MPD. 

3.8.7 Comparison between Adolescent and Adult animals 

When we compared the adult and adolescent animals based on their neuronal activity, there 

was a significant difference for 0.6 mg/kg MPD on ED1 and ED10 (F: 11.3, P: 0.001; F: 8.9, P: 

0.003) for the tolerant animals. In addition, there was a significant difference for 2.5 mg/kg on ED10 

only for the sensitized animals (F: 10, P: 0.002). And finally for the dose of 10.0 mg/kg, there was a 

significant difference between the adult and adolescent neuronal activity for both ED1 and ED10 and 

both the sensitized and tolerant animals (F: 11.3, P: 0.001; F: 64, P: 0.001; F: 6.9; P: 0.01; F: 6.4, P: 

0.04). 
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4 Discussion 

Methylphenidate (MPD) is one of the most prescribed medications for ADHD. However the 

its mechanism of action is not fully known and is still under study (Seeman and Madras, 1998; 

Solanto 1998; Vanderschuren et al., 2012). MPD has mechanistic similarities to several drugs of 

abuse including cocaine, and it also has a chemical structure similar to amphetamine and 

methamphetamine (Kallman and Isaac, 1975; Patrick and Markowitz, 1997; Teo et al., 2003). It is 

currently hypothesized that ADHD is mostly due to an imbalance in the DA levels in the brain and 

drugs like MPD that target the DA systems are effective therapeutic choices for such a disease 

(Izenwasser et. al., 1999; Massello and Carpenter, 1999; Patrick and Markowitz, 1997; Volkow and 

Swanson, 2008). MPD binds to the dopamine transporter (DAT) which prevents the reuptake of DA 

back into the presynaptic terminals from the synaptic cleft causing the extracellular DA to have a 

more lasting effect (Volkow et al., 2002). It has been noted that many addictive drugs can elicit 

sensitization, tolerance, withdrawal symptoms and dependence, through their action in the CNS 

neuronal circuits among them which the VTA plays a critical role (Pierce and Kalivas, 1995; Kalivas 

et al. 1993; Nestler, 2008).   

In the current study, we recorded VTA neuronal unit activity concomitantly with the 

animal’s behavioral locomotor activity both before and after the administration of several acute and 

chronic MPD doses.  In order to eliminate any environment contributions to the recorded data which 

could affect the drug’s effect such as novel condition, all the recordings were done in the animal’s 

home cages. Doing so makes sure that any change from baseline activity is due to the drug’s (MPD) 

effect and not outside stimulations. The main findings of the current study for the adolescent animals 

are that acute MPD elicits a dose response increase in locomotor activity. Similarly, observations 

were repeated by Chelaru et al., (2012) in adolescents and by Gaytan et al., (1997; 2000) and Yang et 

al., (2003) in adult rats. The same repetitive (chronic) MPD exposure of 0.6, 2.5, or 10.0 mg/kg 

elicits either behavioral sensitization in some animals or behavioral tolerance in other animals which 

confirms our hypothesis that the same chronic MPD dose will elicit behavioral sensitization in some 
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animals and behavioral tolerance in others. This dual observation is the rational as to why we 

evaluate the VTA neuronal activity based on the animals’ behavioral response to chronic MPD.  

The VTA neurons of adolescent rats responded to acute MPD exposure with a dose response 

characteristic, as the MPD dose was increased, more VTA units responded to the drug by changing 

their firing rate. The overall baseline activity at ED10 compared to the baseline neuronal activity at 

ED1 after six daily MPD exposures and three washout days showed dose response increases in the 

total number of units whose baseline was changed; i.e. with increasing the MPD dose from 0.6 to 

10.0 mg/kg MPD, more VTA units expressed changes in their ED10 baseline activity compared to 

ED1 baseline. This change in ED10 baseline may be expressive of expectation to get the drug again 

or withdrawal expression from abrupt stopping of drug exposure (Algahim et al., 2009; Bergheim et 

al., 2012; Lee et al., 2011). In response to the chronic administration of MPD at ED10 more units 

responded by changing their firing rate compared to the initial MPD exposure. The majority of these 

units responded with significant differences in response to MPD rechallenge at ED10 compared to 

the responses observed at ED1 after MPD exposure.  

Due to the different responses of the VTA neuronal activity following acute compared to 

chronic MPD administration, it is possible to classify that there are several types of responses; one 

type express neurophysiological sensitization (Fig 16B) and the other type express 

neurophysiological tolerance (Fig 16A). Those units that express both an increase in neuronal 

activity on ED1 following MPD exposure and a further increase in their neuronal activity on ED10 

to MPD rechallenge and those VTA units that exhibit a decrease in neuronal activity to the initial 

MPD exposure on ED1 and a further decrease activity on ED10 to MPD rechallenge, are said to 

show neurophysiological sensitization. The units that did not respond significantly to MPD on ED1, 

but did respond significantly to MPD on ED10 can also be said to exhibit neurophysiological 

sensitization. Those VTA units that at ED1 responded to the drug by either increase or attenuation in 
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their neuronal activity and at ED10 failed to respond to MPD rechallenge or those VTA units that 

show the opposite effects at ED1 compared to ED10 are said to show neurophysiological tolerance.   

Since the same dose of MPD either 0.6, 2.5, or 10.0 mg/kg elicits either behavioral 

sensitization or tolerance, the VTA neuronal recording from animals expressing behavioral 

sensitization to chronic MPD exposure were evaluated separately from the VTA units recorded from 

animals expressing behavioral tolerance. It was found that there were significant differences in 

response to MPD between these two groups of VTA neuronal populations. The VTA units recorded 

from behaviorally sensitized animals were much more likely to show an increase in firing response 

upon initial exposure to the drug. Conversely, the VTA units recorded from animals expressing 

behavioral tolerance were more likely to exhibit a decrease in the firing rate to acute MPD exposure. 

Similar results were observed with the chronic effect of the drug, with the exception of 0.6 mg/kg 

group which exhibited more increases in their firing activity in response to the drug from the 

behaviorally tolerant animals. 

The main findings of the study confirm that the repetitive exposure to each dose of MPD 

elicited behavioral sensitization in some animals while eliciting behavioral tolerance in other 

animals. This confirmed our study aim that the same repetitive MPD dose can elicit both behavioral 

responses.  Due to this effect of MPD at each of the doses, we evaluated the neuronal unit activity for 

all the animals first with no correlation to their behavioral responses to chronic MPD exposure, 

followed by a comparison based on their behavioral response. This was to determine if the VTA 

neurons recorded from animals expressing behavioral sensitization responded to acute or chronic 

MPD differently than those VTA units recorded from the animals expressing behavioral tolerance. 

With this evaluation, we were able to show that in general, the VTA neuronal population recorded 

from animals expressing behavioral sensitization did in fact respond differently to MPD compared to 

those VTA neuronal populations recorded from animals expressing behavioral tolerance. 

Could it be possible that the same dose of MPD can elicit two separate phenomena? 

Castellanos et al., (1996) and Arnsten and Dudly (2005) reported such individual differences due to 
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varieties in phenotype and also drug metabolic rate between animals following MPD exposure. 

Additionally, Volkow and Swanson (2003) who used MRI scans in humans reported different 

responses to MPD in normal patients as well as patients who had ADHD which were due to 

differences in basal activity of DA in these individuals. In the current study, each shipment contained 

about four animals, which could make it possible that each shipment had animals with a different 

phenotype and metabolism rate of MPD, which may explain as to why we saw the different 

responses observed. This observation stresses the importance to evaluate each animal individually.  

Overall, each of the MPD doses (0.6, 2.5 and 10.0 mg/kg) stimulated the majority of the 

VTA neuronal units’ activity.  The lowest number of VTA units that responded to acute MPD was 

observed following 0.6 mg/kg MPD, while 2.5 mg/kg MPD exhibited the highest rate of 

responsiveness, followed by 10.0 mg/kg MPD. Following 0.6 mg/kg MPD exposure, the majority of 

the VTA units responded to acute MPD by attenuating their firing rate, while following 2.5 and 10.0 

mg/kg MPD, the majority of the VTA units responded by increasing their firing rate. Overall, the 

ED10 baseline activity when compared to the ED1 baseline showed a dose response increase in the 

total number of units that had a change in baseline; i.e. increasing the MPD dose from 0.6 mg/kg to 

10.0 mg/kg MPD, the more units that expressed changes in their ED10 baseline compared to ED1 

baseline following MPD rechallenge. This change in baseline activity could be the animal expressing 

either withdrawal or expectation of MPD (Algahim et al., 2009; Bergheim et al., 2012; Lee et al., 

2011). Upon the rechallenge dose of MPD on ED10 compared to MPD at ED1, the majority of the 

VTA units responded to MPD with a decrease in their neuronal activity. For the animals that 

expressed behavioral sensitization, there was a “U shape” in the number of units which responded to 

the MPD while the opposite was seen from the units recorded from animals expressing behavioral 

tolerance which showed a reverse “U shape”.  Likewise, the responses to MPD exposure recorded 

from animals expressing behavioral sensitization were significantly different when compared to 

those VTA units recorded from animals expressing behavioral tolerance. 
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There have been several molecular studies (Chao and Nestler, 2004; Kim et al., 2009; 

Nestler, 2004) done which have in essence shown similar observations to the current study using 

dose response protocols with cocaine, morphine and amphetamine. These studies showed dual 

observations which may provide a possible explanation why the same dose of MPD can cause some 

VTA units to have excitation and attenuation in other units, as well as behavioral sensitization in 

some animals and behavioral tolerance in others. In these studies with cocaine and 

methamphetamine, it was noted that some animals expressed the upregulation of the transcription 

factor ΔFosB or CREB levels during behavioral sensitization and behavioral tolerance respectively. 

The upregulation of CREB in the NAc as a result of chronic drug administration decreased the 

rewarding effects of cocaine and morphine (Chao and Nestler, 2004). One of the targets of CREB is 

the opioid peptide dynorphin which is expressed in NAc medium spiny neurons (MSN). Dynorphin 

release is known to contribute to dysphoria through a negative-feedback loop from the NAc to the 

VTA DA neurons which in turn inhibits their activity (Hyman and Malenka, 2001; Spanagel et. al., 

1992). Therefore for the animals that exhibit behavioral tolerance in response to repetitive MPD 

exposures, it is possible that the upregulation of CREB is partly responsible for the attenuating 

effects of the drug and that the upregulation of CREB induces behavioral tolerance in addition to a 

decrease in neuropil density (Chao and Nestler, 2004; Dietz et al., 2009; Kim et al., 2009; Nestler, 

2004; 2008). These molecular changings can cause a decrease in the rewarding aspects of MPD and 

other psychostimulants (Chao and Nestler, 2004).  

Acute exposure to psychostimulants such as MPD and cocaine can induce the upregulation 

of ΔFosB (Moratalla et. al., 1996, Chao and Nestler, 2004). This upregulation of ΔFosB following 

cocaine exposure results with increased locomotion and is involved in eliciting behavioral 

sensitization in mice and is partly responsible for the motivational effects of cocaine (Kelz et. al., 

1999; Chao and Nestler, 2004). Blocking ΔFosB is shown to have opposite effect (Peakman et. al., 

2003). These opposite changes in activity could be attributed to the molecular and morphological 

plasticity, which takes place in the MSN density, as well as the upregulation of ΔFosB. 
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Consequently, animals which exhibited higher MSN density or expressed an upregulation of ΔFosB 

following chronic MPD exposure would show a further increase in activity to rechallenge MPD 

respectively. As a result, it is possible that the animals that expressed behavioral sensitization or 

behavioral tolerance to MPD in the current study could be experiencing these dual molecular 

transcription factor changes in the CNS circuitry; and can provide further explanation to the present 

observation why the same dose of MPD can cause both behavioral sensitization and tolerance or 

increase activity in some VTA units and decreases in their activity in response to MPD exposure in 

other VTA units. 

VTA neurons contain both D1 and D2 DA receptors, which are affected by drugs like MPD 

and the glutamatergic afferent inputs from the PFC, in addition to other neurons in the VTA. DA D1 

receptors have an excitatory effect when activated, while the DA D2 receptors have an inhibitory 

effect on other cells when they are activated.  It is possible that the VTA neurons which exhibit 

mainly a decrease in their activity are being recorded from an area of the VTA that contains mostly 

DA D2 receptors whose activation gives the decrease in activity. Conversely, the cells which 

exhibited mainly an increase in activity could be recorded from an area of the VTA containing 

mostly DA D1 neurons.  Furthermore to these units, the afferent input of glutamatergic neurons from 

the PFC to DA neurons in the VTA can be affected by MPD which in turn affect how they fire to the 

VTA and could also be partially responsible to the different responses to MPD.  

It was reported that low doses of MPD mainly affect the DA D2 autoreceptors in the VTA 

which leads to the attenuation of DA release in response to a stimulus such as MPD (Seeman and 

Madras, 1998, 2002). These auto-receptors counter regulate the extracellular DA released from the 

same cell and are likely the reason that 0.6 mg/kg MPD elicited a decrease in the locomotor activity 

of some animals. The exposure to the higher doses of 2.5 mg/kg and 10.0 mg/kg MPD overcome the 

inhibitory effects of the presynaptic auto-receptors with increased DA levels in the cleft and post 

synaptic activation which causes amplification of the DA signals as observed in this study (Volkow 

et. al., 2005). For the animals which exhibited behavioral sensitization, the majority of their neuronal 
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responses to MPD elicited a decrease in activity on ED10 regardless of an increase or decrease in 

activity on ED1 following MPD administration. For the animals that expressed behavioral tolerance, 

different patterns were observed.  

It is believed that MPD works in a biphasic action, which includes a “spontaneous” phasic 

and tonic release of DA. The phasic release of DA from synaptic terminals is large but brief, and 

activates the postsynaptic DA receptors evoking DA dependent behavioral responses (Seeman and 

Madras, 1998, 2002). The other mode of action, tonic DA release, from the VTA is regulated by the 

presynaptic NMDA receptors controlled by glutamatergic afferents from the PFC (Grace, 1991). 

During normal nerve impulses the basal levels of DA rise about 60-fold and quickly diminish back to 

normal levels. With the low doses of MPD (0.6 mg/kg), the resting level of DA rises about 6-fold 

and is thought to act mostly on DA D2 autoreceptors which reduce the impulses which triggered the 

DA release. At higher doses of MPD exposure (2.5 and 10.0 mg/kg), both the resting DA levels and 

the triggered DA output are increased significantly causing the wide spread stimulation of 

postsynaptic DA receptors which cause strong stimulation (Seeman and Madras, 1998, 2002) and 

can help to explain why low doses of MPD can cause lower levels of activation and the higher doses 

of 2.5 mg/kg and 10.0 mg/kg MPD provide increased levels of activity upon acute administration of 

the drug.  

In several studies, it has been reported that psychostimulants such as MPD can elicit 

increases in neuropil (the density and the dendritic branching of the MSN) in the NAc and PFC, 

while at the same time in other animals, elicits a decrease in the neuropil levels following the same 

dose of stimulant (Kim et al., 2009; Nestler, 2008; Robinson and Kolb, 1997; 1999). We suggest that 

the animals which expressed the increases in their neuropil as a result of chronic psychostimulant 

exposure would respond to rechallenge drug administration by increasing their firing rate and those 

animals which elicited decreases in their neuropil would respond to MPD by decreasing their firing 

rate. 
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Based on the responses to acute and chronic MPD, we have classified two types of neuronal 

activity. The first type of neuronal unit activity expresses neurophysiological sensitization and the 

second type expresses neurophysiological tolerance. The units that express both an increase in 

neuronal activity on ED1 after MPD administration and yet a further increase in their neuronal 

activity on ED10 following the MPD rechallenge dose, as well as the VTA units that exhibit a 

decrease in their neuronal activity to MPD on ED1 and a further decrease activity on ED10 to MPD 

rechallenge, exhibit neurophysiological sensitization. Some units did not respond significantly to 

MPD administration on ED1, but did respond significantly on ED10 following MPD can also be said 

to exhibit this neurophysiological sensitization. Those VTA units who responded to the drug by 

either increase or attenuation in their neuronal activity at ED1 and failed to respond to MPD 

rechallenge on ED10, as well as those VTA units that show the opposite effects at ED1 compared to 

ED10 are said to show neurophysiological tolerance.  

When we applied the one way ANOVA and odds ratio tests comparing the effect of MPD on 

the VTA neuronal units recorded from animals expressing behaviorally sensitization to those units 

recorded from behaviorally tolerant animals for each dose, we found that the neuronal population 

recorded in the VTA from animals that express behavioral sensitization to repetitive MPD exposure 

did in fact respond differently to MPD compared to those VTA units recorded in animals expressing 

behavioral tolerance. These two tests show the importance of evaluating the neuronal firing rates 

following psychostimulant exposure based off of the animal’s behavior in order to find any 

correlations between drug dose and firing rates with behavioral activity. We observed differences 

between the adolescent and adult animals in how they responded to MPD. In general, both groups 

showed dose response effects to the drug. The adolescents seemed to have higher activation to low 

dose MPD, while the adults had more activity following higher doses of MPD. This helps to show 

that there are inherent differences between the two age groups in how they respond to MPD and that 

the drug affects younger individuals differently than older individuals. This could be due to the 

adolescent brains continuing to go through synaptic pruning and shaping of the adult brain as well as 
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different molecular, morphological, and metabolic differences that come with age. We highlighted 

the importance of looking at both groups of animals as well as shed light on the differences between 

them. It will be important in future experiments to further the knowledge of MPD’s effects on both 

groups and why the changes in activity  

 In conclusion, the current study showed that the VTA neuronal population activity recorded 

from animals expressing behavioral sensitization to chronic MPD, responded to MPD exposure 

differently from those VTA units recorded in animals expressing behavioral tolerance and that the 

effect of MPD on VTA neurons is different from other psychostimulants, i.e. MPD has its own 

unique effect that needs to be elucidated. We were able to show differences between the adolescent 

and adult animals which show that MPD can have differing effects on each group. This study can 

help to explore those differences and shows the importance of looking at both adult and adolescent 

studies for drugs such as MPD due to their wide usage in society and the potential risks they pose. 

Additionally, this study shows the importance of looking at individual responses to the acute effect 

of the drug and the baseline levels of individuals as a way to gauge how they will react to 

psychostimulants such as MPD. Moreover, the observation that the same repetitive MPD dose 

elicited behavioral sensitization in some animals while causing behavioral tolerance in others is 

essential information that the professional practitioners and the MPD users need to consider. 
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