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MIXL1, an evolutionarily conserved, paired-type homeobox transcription 

factor induced by BMP4/TGFb signaling, is a critical regulator of embryonic and 

adult hematopoiesis.  Several lines of evidence implicate MIXL1 in hematopoietic 

transformation: (i) Aberrant MIXL1 expression is seen in human CML ( Chronic 

Myelogenous Leukemia) in blast crisis, AML (Acute myelogenous leukemia), B 

cell lymphomas and pediatric ALL (Acute lymphocytic leukemia). (ii) Retroviral 

transduction of Mixl1 induces AML in murine models.  Nonetheless, mechanisms 

underlying MIXL1 mediated proliferative, survival advantages are unknown. 

The goal of my studies is to understand if and how aberrant MIXL1 

expression contributes to leukemogenesis.  As a first step, I sought to determine 

transcriptional targets of MIXL1.  Using MIXL1 overexpression lines established 

in the human myelomonocytic leukemia cell line, U937, I performed global 

chromatin immunoprecipitation coupled sequencing (ChIP-Seq), expression 
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profiling studies I identified several putative targets. Of these, the proto-oncogene 

c-REL was an important target. Both ectopically expressed and endogenous 

MIXL1 bound REL promoters in myelogenous leukemia cells.  Furthermore, 

cREL was induced under MIXL1 over-expression conditions in the leukemic cell 

line U937.  Targeted shRNA mediated knockdown of endogenous MIXL1 in AML 

cell lines down regulated REL expression. 

c-REL the cellular homolog of the viral oncogene v-rel encoded by the 

oncogenic reticuloendotheliosis retrovirus, is a member of the Nf-κB/Rel gene 

family. c-REL transcriptionally activates proliferation and immune response and 

represses apoptosis through upregulation of anti-apoptotic genes.  c-REL plays a 

critical role in hematopoietic differentiation.  It is required for B-cell differentiation, 

and dendritic cells to activate T cells.  In the myeloid lineage, c-REL is critical for 

macrophage mediated innate immunity.  My findings suggest that transcriptional 

up regulation of REL by MIXL1, therefore would promote survival or proliferation 

through activation of the Nf-κB pathway in AML cells.  Consistent with these 

established activities of c-REL, expression of two anti-apoptotic genes BCL2A1 

and BCL2L1 increased under MIXL1 over-expression conditions and decreased 

under conditions of MIXL1 knockdown by targeted shRNA in U937 cells.  In 

summary, my studies identify c-REL to be a novel mediator of MIXL1-induced 

survival signals in leukemia. 
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EIF1 – Eukaryotic translation initiation factor 1. 

EOMES – Eukaryotic translation initiation factor 1. 

GSC – Goosecoid homeobox, a paired-type homeobox transcription factor. 

HHEX– Hematopoietically-expressed homeobox, a homeobox transcription 

factor. 
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IL18R1 –Interleukin 18 receptor 1, an Interleukin cytokine receptor, that 

specifically binds to interleukin 18.   
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MIXL1 –Mesoderm inducer in Xenopus like 1, a paired type homeobox 

transcription factor. 

MZF1 – Myeloid zinc finger 1, a C2H2-type zinc finger transcription factor. 

NEUROD1 – Neuronal differentiation 1, a helix-loop-helix transcription factor. 

NF-κB – A ubiquitous transcription factor protein dimer that consists of either NF-

κB1/p50 or NF-κB2/p49 in complex with REL, RELA, or RELB.  The most 

prevalent form is NF-κB1/p50 in complex with RELA. 

NFKB1 –Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, a 

NF-κB/REL-family transcription factor that produces the protein NF-κB1/p50, part 

of the most prevalent “canonical” NF-κB protein dimer alongside RELA. 

NFKB2 – Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2, a 

NF-κB/REL-family transcription factor that produces the protein NF-κB2/p49. 

NFKBIA,B,E – Nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor, alpha, beta, and epsilon, a family of proteins that bind to NF-κB/REL 

dimers to inhibit their function. 

NKX2-1 – NK2 homeobox 1, a homeobox transcription factor. 

OTX2 – orthodenticle homeobox 2, a paired-type homeobox transcription factor. 

PCGF2 – Polycomb group RING finger protein 2, a RING finger containing 

protein. 

PML–Promyelocytic leukemia protein, is a homeobox transcription factor. 

POU4F2 –POU class 4 homeobox 2, is a homeobox transcription factor. 
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c-REL – v-rel avian reticuloendotheliosis viral oncogene, a NF-κB/REL-family 

transcription factor and family member that shares the most sequence homolog 

to the viral oncogene. 

RELA – v-rel avian reticuloendotheliosis viral oncogene homolog A (p65), a NF-

κB/REL-family transcription factor and part of the most prevalent “canonical” NF-

κB protein dimer alongside NF-κB1/p50.  

RELB – v-rel avian reticuloendotheliosis viral oncogene homolog B, a NF-

κB/REL-family transcription factor. 

RUNX1 – RUNT related transcription factor 1, a transcription factor that regulates 

hematopoietic stem cell differentiation. 

SLC39A13 – Solute carrier family 39 (zinc transporter), member 13, a 

transmembrane zinc transporter. 

SMAD – A family of signal transduction proteins that transcriptionally regulate 

targeted genes in response to TGF-β family signaling pathways. 

SMYD5 – SMYD family member 5, a methyltransferase. 

Sp1 – Sp1 transcription factor, a SP/KLF family zinc finger transcription factor. 

T –  A gene that encodes the T box transcription factor Brachyury. 

TBX6 – T-box 6, a T box transcription factor. 

TBX20 – T-box 20, a T box transcription factor. 

TGF-β – Transforming growth factor beta, a family of cytokines that regulate 

proliferation, differentiation, migration, and other pathways through interaction 

with TGF-β receptors.  Part of the same superfamily of cytokines as BMP and 

Activin. 



 

xv 

 

VEG-FR – Vascular endothelial growth factor Receptor, a family of receptors that 

interact with VEGF, and are important for vasculogenesis and angiogenesis. 

YES1 – v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1, src family 

tyrosine kinase and homolog to the Yamaguchi sarcoma virus oncogene. 

ZP3 – Zona pellucida glycoprotein 3 (sperm receptor),  an extracelular matrix 

protein. 
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ABBREVIATIONS – Other 

6-FAM – 6-Carboxyfluorescein, a common fluorescent dye used for attachment 

to oligonucleotides, especially in real time PCR techniques. 

ALL – Acute lymphoblastic leukemia. 

AML – Acute myelogenous leukemia. 

ChIP – Chromatin Immunoprecipitation, A technique for identification of in vitro or 

in vivo interactions between proteins and chromosomal DNA by DNA/protein 

crosslinking, immunoprecipitation and then DNA extraction. 

ChIP-qPCR – ChIP-coupled qPCR, a technique for quantifying and evaluating 

the prevalence of a DNA/protein interaction by using quantitative PCR against 

desired targets on DNA samples produced by ChIP. 

ChIP-Seq  – ChIP-coupled sequencing, a high throughput technique for 

identifying, quantifying, and evaluating the prevalence of DNA/protein 

interactions by using high-throughput sequencings techinues on DNA samples 

produced by ChIP. 

CML – Chronic myelogenous leukemia. 

Ct (qPCR) – Cycle Threshold, a raw data value representing the prevalence of 

nucleic acid sequencing in a quantitative PCR reaction.  The Ct value is the cycle 

of PCR reaction where the fluorescence signal passed a set threshold, so lower 

Ct values mean higher abundance of DNA sequence. 

DMSO – Dimethyl sulfoxide. 
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Dorsomorphin –Dorsomorphin dihydrochloride, a serine/threonine kinase 

inhibitor which can potently inhibit  for BMP/Acitivin related receptor kinases and 

AMP-activated protein kinase (AMPK).   

Doxorubicin – A cancer chemotherapy commonly used for leukemia and other 

cancers.  It functions by intercalating DNA, blocking DNA replication. 

ECL Reagent – Enhanced chemiluminescence reagent, a luminol-based 

detection reagent used for western blotting. 

FLAG – A polypeptide epitope tag.  Amino Acid Sequence: DYKDDDDK 

Fibrodysplasia ossificans progressiva – A rare chronic disease that causes 

fibrous tissues to ossify, form bone tissue, when injured or spontaneously.  

Mutations in ACVR1 have been implicated in this disease. 

Gag-pol – Group Antigens (ag)-Pol, A retroviral polyprotein that is cleaved to 

create the non-viral envelope proteins required for producing a retrovirus, 

including the reverse transcriptase (Pol) and retroviral core proteins (Gag).  An 

expression construct containing this is used alongside an envelope-producing 

construct and the desired retroiviral expression vector to create a replication-

dead retrovirus. 

HA –Human influenza hemagglutinin, commonly used as an epitope tag. The 

tag’s Amino Acid Sequence: YPYDVPDYA 

Iowa Black FQ – An IDT (Integrated DNA Technologies)-developed quencher 

with an absorbance range of 420 to 620 nm.  The main use in this case is to 

attachment to oligonucleotides, to quench the activity of the nearby 6-FAM group. 
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LDN-193189 – A serine/threonine kinase inhibitor derived from dorsomorphin to 

be a more specific inhibitor to BMP/Activin related ALKs.  

MTS – 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, a tetrazole that, when present with phenazine 

methosulfate (PMS), produces a formazan product with the absorbance range of 

490-500 nm, when reduced by cellular enzymes.   

qPCR – Quantitative or Real-Time Polymerase Chain Reaction, a quantitative 

form of polymerase chain reaction where an fluorescence activity is tested for at 

the end of each cycle of PCR, with the activation of a fluorescent dye being 

directly linked with each successful polymerase reaction. 

SELEX– systematic evolution of ligands by exponential enrichment.  An 

approach for identifying the binding site of proteins on RNA or DNA in vitro. 

shRNA – small hairpin RNA, a short sequence of RNA, usually artificially 

produced, to silence the targeted gene through RNA interference/post 

transcriptional gene silencing.  

TCGA – The Cancer Genome Atlas, http://cancergenome.nih.gov/ 

TSE – Transcriptional Sequence End, the predicted endpoint for transcription of 

a gene locus.  In this dissertation, TSE refers to a 5 kb untranscribed region 

downstream the endpoint for the purpose of defining the location of ChIP peaks 

in reference to nearby gene loci. 

TSS – Transcriptional Start Site, the transcriptional start site of a gene locus.  In 

this dissertation, the promoter region is defined as a 5 kb region upstream of the 

transcriptional start site. 



Chapter 1. Introduction 

1. MIXL1 

 MIXL1, Mesoderm Inducer in Xenopus Like 1, is the human ortholog of 

Xenopus Mix.1, required for mesoderm development.  MIXL1 is the sole human 

member of the Mix/Bix homeobox sub-family.  While the Mix/Bix family is 

comprised of multiple genes in Xenopus laevis (Mix.1-4, Bix.1-4, and Mixer) and 

Danio Rerio (Bon, Mxtx1 and Mxtx2); birds and mammals each contain only one 

ortholog for Mix.1 and no pseudogenes (1-3).  The Mix/Bix family has been well 

characterized as major regulators of mesoderm and endoderm specification in 

early embryonic development in Xenopus.  Expression of Mixl1, the mouse 

ortholog of MIXL1 was detected at day 5.5 post coitum (dpc) in the visceral 

endoderm (3, 4), primitive streak and in the nascent mesoderm between days 

6.5-8.0 dpc (3-5).  Mixl1-/- embryos died before days 10.5 dpc with multiple 

defects (6).  Enforced expression of Mixl1 in mouse ES cells promoted 

mesodermal, hemangioblastic and hematopoietic progenitors (7).   

As a paired-type subfamily, Mix/Bix family proteins are characterized by 

60 amino acid segments homologous to that of the paired type homeobox 

transcription factors.  Paired-type homeodomain-containing proteins 

preferentially bind to DNA at a sequence motif of “TAAT”.  Mix/Bix family are 

classified as Q50 paired-types, denoting both a glutamine in the 50th amino acid 

in the homeodomain, and a preference for a 3 nucleotide spacer of sequence 

“TGA” between both halves of the dimer motif i.e TAATTGAATTA (8, 9).  The 

preference to a TAATNNNATTA sequence was confirmed for mouse Mixl1(10).  
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While the Mix/Bix family is well characterized to bind as a dimer with other 

mesoderm-specific homeodomain-containing proteins, including other Mix/Bix 

family members, Gsc and Siamois (11), human MIXL1 was found to interact, in 

mammalian a high throughput two-hybrid screen, with homeodomain-containing 

proteins associated with a diverse set of lineages, including the neuronal-

associated POU4F2, OTX2, and DLX1, thyroid-associated NKX2-1, and dermis-

associated ALX4 (12).  In the same study, MIXL1 interacted with the basic helix-

loop-helix transcription factor NEUROD1, implying that MIXL1 may have the 

potential to interact with non-homeobox proteins.   

 

2. MIXL1 is regulated by TGF-β/BMP Pathways 

 One of the developmental roles of the BMP ligand BMP4 is the induction 

of mesoderm during early embryogenesis, and in Xenopus, Mix.1 is an 

necessary intermediate for BMP4 induction of the mesoderm (1).  This translates 

to humans as well; when human embryonic stem cells are exposed to BMP4, 

mesoderm differentiation is induced (13).  Indeed, both Activin A and BMP4 can 

induce MIXL1 expression in human embryonic stem cells (14-16), and Mix.1 is 

an intermediate for BMP4-mediated dorsal-ventral patterning in Xenopus (17).  

The promoter regions for both human MIXL1 and mouse Mixl1 contain multiple 

SMAD binding elements (12).   

 TGF-β ligands have also been implicated in the regulation of MIXL1 

expression.  TGF-β signaling can activate Mixl1 expression in mouse in 

collaboration with the transcription factor FoxH1 (18), and FoxH1 can collaborate 
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with Gsc to suppresses Mixl1 expression (19).  MIXL1 may be transcriptionally 

regulated by the TGF-β superfamily of cytokines through TGF-β/BMP receptors 

to activate the SMAD family of transcription factors.   

  

3. MIXL1 in Hematopoiesis and Hematopoietic Neoplasms 

 While MIXL1 is well characterized in the role of mesoderm formation 

during embryogenesis, its roles in post natal homeostasis have gone 

uncharacterized.  In adults, MIXL1 is expressed in hematopoietic progenitor cells 

(2).  This has implicated a potential role of MIXL1 in hematopoiesis, and indeed 

loss of Mixl1 in mouse embryonic stem cells leads to significant hematopoietic 

defects (20).  Additionally, MIXL1 is highly expressed in Hodgkin’s, Burkitt’s and 

Diffuse Large B Cell Lymphoma (21), and leukemia and lymphoma cell lines (2), 

implying a role in the pathogenesis of hematopoietic neoplasms, leukemia and 

lymphoma progression.   

In mouse, enforced expression of Mixl1 in hematopoietic stem cells 

resulted in a transplantable acute myeloid leukemia (AML) with a 200 day latency 

in 100% of mice (22).  Furthermore, enforced expression of Mixl1 in 

hematopoietic stem cells conferred abnormal self-renewal potential to 

granulocytic precursors  (23).  Additionally, viral integration into the Mixl1 locus in 

mice was identified as a potential collaborator to p27Kip1 loss in inducing T-cell 

leukemia (24).  MIXL1 therefore may play a significant role in a subset of 

hematopoietic neoplasms. 
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4. Homeobox genes in Acute Myeloid Leukemia 

A large body of evidence implicates the deregulation of homeobox genes 

is important for the progression of AML and is often associated with the poorer 

outcomes.  Aberrant expression of both type I clustered homeobox-containing 

proteins, including HOXA9 and HOXB3 (25-27), and type II non-clustered 

homeobox genes, including HLX and CDX2, have been reported (28-32).  Non-

random chromosomal translocations resulting in homeobox-containing proteins 

are also a common occurrence in AML, and further underscore the importance 

and leukemogenic potential of aberrant expression of homeobox proteins (33, 

34).  While homeobox-containing proteins expression is tightly controlled and 

each protein is only expressed at a restricted stage of differentiation during 

normal hematopoietic maturation, homeobox-containing proteins are 

constitutively expressed in AML.  A recurrent functional consequence of all 

homeobox genes over expression is self-renewal, a limiting step in AML 

pathogenesis (35).  While many homeobox genes identified are strongly 

associated with AML are considered markers of poor prognosis, whether there is 

overlap in expression between many of the identified homeobox proteins in AML 

is unknown.  Similar hematopoietic-relevant homeobox genes may have a similar 

function in transformation of the remaining cases. 

 

 

 

 

4



5. NF-κB Pathway in Leukemia and Lymphoma 

 The NF-κB family includes transcription factors that regulate stress 

response, proliferation, apoptosis, cell growth, and immune response.  Each 

active NF-κB complex consists of a dimer between a NF-κB/REL protein 

including a transactivation domain (RELA, RELB, and c-REL), and one that does 

not (NFκB1 or NFκB2).   Of the five NFkb genes, c-REL is a proto-oncogene as 

the chicken reticuloendotheliosis viral ortholog v-rel   transforms hematopoietic 

cells.  (36).   

 The activation of NF-κB complexes has been implicated in both 

hematopoietic progenitor self-renewal and leukemia and lymphoma progression.  

In hematopoietic stem cell transplantation, knockout of both NF-κB2 and RelB 

impairs engraftment due to increased self-renewal capacity (37).  In Diffuse large 

B-cell lymphoma, NF-κB complexes are commonly activated, and elevated c-

REL expression in the germinal center subtype correlates with poor survival (38).  

NF-κB complexes are also constitutively active in leukemic progenitor cells and in 

acute myeloid leukemia (39). 

 One of the functional consequences of NF-κB activation is the 

transcriptional activation of the BCL2 (B-cell CLL/lymphoma 2) family.  The BCL2 

family consists of three proteins (BCL2, BCL2A1, BCL2L1), all of which function 

as anti-apoptotic factors by inhibiting the release of Cytochrome C release during 

caspase-mediated apoptosis.  Overexpression or amplification of BCL2 are 

common pro-survival modifications in cancer, and  recurrent chromosomal 
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translocations resulting in  constitutive expression of  BCL2  is common  of 

diffuse large B-cell lymphoma (40). 

  

6. Clarifying the role of MIXL1 in Acute Myeloid leukemia 

 While MIXL1 has been implicated in acute myeloid leukemia, little is 

known about its overall role in leukemia.  I hypothesize that MIXL1 is regulated 

by the BMP4 pathway in hematopoiesis and leukemia cell lines to promote 

proliferation through transcriptional activation of downstream targets. In the 

following pages, I identify a novel direct transcriptional target of MIXL1 in 

leukemic cell lines, the proto-oncogene c-REL, by chromatin immunoprecipitation 

(ChIP) and mRNA expression analysis.  I also identify thatMIXL1 is induced in 

normal hematopoietic stem progenitors by BMP4.  Consequently, BMP pathway 

inhibitor LDN-193189 is sufficient to impair growth in MIXL1-expressing AML 

lines in vitro.  
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Chapter 2. Materials and Methods 

1. Cell Culture 

 AML cell lines U937, HL-60, OCI-AML2, ML3, and chronic myeloid 

leukemia cell line K562, were grown under conditions of 5% CO2 and 37C in 

RPMI 1640 with 10% FBS.  AML cell line KG-1 was grown in RPMI 1640 with 

20% FBS. Human embryonic cell line HEK-293T was grown in DMEM with 10% 

FBS under 5% CO2 and 37C. 

Human cord blood hematopoietic stem progenitors cells (CD34)+ from 

three subjects denoted 47, 51, and 60,  were provided by Drs. Lisa St. John and 

Jeffrey Molldrem. 

  

2. Establishment of Overexpression and Knockdown Cell Lines 

 Inducible expression cell lines for FLAG-HA-tagged MIXL1 were 

previously established using U937T cells containing pTET-VP16PURO by 

electroporation following a protocol  previously described by the lab (41).  Clones 

used are denoted U937.1MIXL and U937.2MIXL, while an empty vector control is 

denoted U937.Control. 

 Lentiviral Production: Viral particles were generated  in HEK-293T by 

transient transfection of the lentiviral expression construct, envelope construct 

pCMV-VSV-G, encoding the viral envelop protein VSV-G, and a gag-pol-

encoding construct, at a ratio of 2:1:1 respectively.  Lentiviral constructs were 

purchased from OpenBiosystems (Pittsburg, PA) and designated as such: MIXL1 

KD1 = TRCN0000019155, MIXL KD2 = TRCN0000019156, and c-REL 
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Expression = ccsbBroad304_11094.  The  cells  were incubated for 48 hours at 

37ºC before harvesting the media containing   viral particles.  Viral particles were 

purified by passage through a 45 µm filter, and stored in -80⁰C until use. 

 Lentiviral transductions were performed by resuspending 2x105 cells in 1 

ml of virus-containing conditioned medium with 8 µg/ml polybrene, and then 

incubated at 37⁰C for 24 hours.  After the incubation, the cells were pelleted by 

centrifugation and resuspended in the growth medium.  Growth assay and 

expression experiments were performed 48 hours after transduction. 

  

3. Chromatin Immunoprecipitation 

  Chromatin Immunoprecipitation was based on the one used by Chadee et 

al (42), with the following modifications.   For each U937 cell line, a total of 108 

cells were cross-linked with 1% formaldehyde in growth media at 37ºC for 20 

minutes.  Cells were harvested by centrifugation at 3000 RPM for 10 minutes, 

and resuspended in 500 μL RIPA lysis buffer. After 10 minutes on ice, the cells 

were sonicated 20 times at 4-5 watts for 20 seconds, with a rest time of 40 

seconds between each sonication.  The samples were then centrifuged for 5 

minutes at 4ºC and precleared with 20 μL A/G agarose slurry for 1 hour at 4ºC.  

Two aliquots from each lysate was processed as follows  (i) Flag-IP: 240 μL of 

the lysate, 250 μL lysis buffer, and 8.4 μg mouse anti-flag antibody (anti-Flag-M2, 

Sigma), (ii) IgG-IP  240 μL of the lysate, 250 μL lysis buffer, and 8.4 μg mouse 

IgG.  The samples were incubated overnight at 4ºC with rotation, and then 

incubated for an additional hour with 20 μL A/G agarose slurry.  The agarose 
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beads were recovered by centrifugation and washed for 15 minutes each in: 

RIPA lysis buffer, high salt RIPA buffer, lithium chloride RIPA buffer, and finally 

TE  prior to Proteinase K and RNAse  treatment at 37ºC overnight.  The samples 

were incubated for 6 hours at 65ºC to reverse crosslinking.  DNA was 

precipitated overnight at -20ºC in 75% ethanol, and then washed twice in 75% 

ethanol.  For each sample  DNA from a 20 μL aliquot of the pre immune 

precipitation lysate diluted with 180 μL TE buffer served as another control for 

target amplification. The DNAs were resuspended in 50 μL ddH2O and the Pre-

IP sample was then diluted with 450 μL of ddH2O.    

50 ng each of immuno precipitated DNAs from (1)  U937 Control IgG-IP, 

(2) U937 Control Flag-IP, (3) U937 1MIXL Flag-IP, and (4) U937 2MIXL-IP were 

used to construct libraries by the Sequencing and Microarray Facility (SMF) at 

MD Anderson Cancer center using the Beckman SPRIworks system. Illumina 

analysis pipeline GAPipeline-1.5.0 was used for base calling and alignment to 

human genome.  Peak calling was done by MACS v1.3.7.1 at pvalue<=1e-5.  

Peaks were identified against the human genome (UCSC assembly hg18, 

NCBI36) using genome model-based analysis of ChIP-Seq [MACS](43), and 

were generated by normalizing to the two control samples in three combinations: 

Flag-1MIXL to IgG-Control and Flag-Control, Flag-2MIXL to IgG-Control and 

Flag-Control, and Flag-1MIXL and Flag-2MIXL combined to IgG-Control and 

Flag-Control.  The primary dataset used for analysis was overlapping peaks in all 

three analyses. The combined dataset was tested for predicted Paired-Q9 

binding motifs(8) using Motif alignment and Search Tool [MAST](44), and 
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enriched motifs were identified using Multiple EM for Motif Elicitation 

[MEME](45). 

Peaks were allocated to genes within a 25kb region, designated as 

follows:  upstream – 5 to 25 kb upstream of the transcription start site, promoter – 

0 to 5 kb upstream of the transcription start site, body – between the transcription 

start and end, TSE – 0 to 5 kb downstream of the transcriptional end, 

downstream – 5 to 25 kb downstream of the transcriptional end, and distant – not 

allocated to a gene.   

 ChIP-qPCR confirmation was performed by SYBR green quantitative PCR 

using primersets for each peak region identified and an exonic c-REL region 

primer set for control, as listed in Table 1.  For ChIP-qPCR against endogenous 

proteins, 5 μg anti-MIXL1-N and anti-MIXL1-C antibodies (2) and anti-MZF1 (sc-

66991, Santa Cruz Biotechnologies, Dallas, TX) were used for 

immunoprecipitation. 

 

4. Global Expression Analysis 

The original microarray analysis was performed previously by Dr. Hong 

Liang.  To identify potential targets of the MIXL1 transcription factor, Dr. Liang 

performed global expression profiling analysis on MIXL1-expressing cells by 

microarray.  The cell lines 1MIXL and Control were cultured without TET for 24 

hours at 5X104 cells/mL.  RNA was extracted from 5x106 cells by RNEASY 

Minikit (QIAGEN, Valencia, CA).  Extracted RNA was hybridized against a 

Human Genome Affymetrix HG133A Microarray (Affymetrix, Santa Clara, CA). 
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For analysis, dChip analyzer software (46) was used, normalizing the 

1MIXL dataset to the Control dataset, and gene expression models were 

obtained through PM (Perfect Model)-only approach.  Differentially expressed 

genes were defined as genes in which the difference between the detected 

expression levels was at least 100, and the ratio was at least 1.2. 

 The networks analyses were generated through the use of Ingenuity 

Pathway Analysis (Ingenuity Systems, www.ingenuity.com). 

 

5. RT-QPCR 

 RNA was purified using RNeasy Mini Kit from 5x106 cells for each line.  

200 ng from each sample was then reverse transcribed and diluted 10-fold.  The 

samples were assayed by qPCR in triplicate using Taqman primers obtained 

from Applied Biosystems/Life Technologies (Carlsbad, CA) and Integrated DNA 

Technologies (Coralville, Iowa), as denoted in Table 2, and then quantified by 

delta-delta-CT method. 

 For CD34+ cells, RNA was harvested in triplicate from ~2500 cells by 

RNeasy Micro Kit + (QIAGEN, Valencia, CA) 2 hours after addition of either 50 

ng/ml BMP4 (314-BP, R&D Systems, Minneapolis, MN) or 2 ng/ml TGF-β1 

(Sigma-Aldrich) in X Vivo-15 medium (Lonza, Allendale, NJ), then 100 ng from 

each sample was reverse transcribed and assayed. 
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Table 1.  Primer sets used for ChIP-qPCR.  Listed are the primers used for 

quantitative PCR analysis of the Chromatin Immunoprecipitation techniques.  

Each primer set is will generate a 100-200 bp product encoded near the center of 

the ChIP-Seq identified gene locus peak, with exception of Rel-Int-F/-R, which 

covers a 100-200 bp region internal of the REL gene locus not enriched in the 

ChIP-Seq analysis. 
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Primers used ChIP-qPCR 

Rel-Int-F 5-TTACCAGGATTTTGGCAAGG-3 

Rel-Int-R 5-CAGGCAGTTTGGGGATAAGA-3 

Rel-F 5-GGAACCACCTCTCGAAAACC-3 

Rel-R 5-TCCAGGTTGTTCTTCCGAGT-3 

EIF1-F 5-TGACTCCGTGGGTAGTAGGG-3 

EIF1-R 5-CCTTCTTGACCCTGTTGCAT-3 

SLC39A13-F 5-CCTGAGGTTCCCAGTGAAAA-3 

SLC39A13-R 5-GAGGACTACTGTGCGCTCCT-3 

SMYD5-F 5-TTCCCCCTTTCATGACTCTG-3 

SMYD5-R 5-CTCAGCTCAGTCCCCAAGAG-3 

ZP3-F 5-ACCTCAGCCTCCCCAGTAGT-3 

ZP3-R 5-TTGATCCAAAAGCAGCTGAA-3 
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Table 2.  Probe-sets used for RT-QPCR analysis.  Listed are the probes used 

for reverse transcription-coupled quantitative PCR for each of the respective 

genes.  Probes for MIXL1, REL, BCL2L1, and BCL2A1 were supplied by Applied 

Biosystems (Carlsbad, CA), while probes for APBB2, IL18R1, and PCGF2 were 

customized and ordered from Integrated Integrated DNA Technologies 

(Coralville, Iowa), to be fully compatible with TaqMan analysis.  
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Probes used for qPCR 

MIXL1 Hs00968440_m1 TaqMan, Applied Biosystems 

REL Hs00231279_m1 TaqMan, Applied Biosystems 

BCL2L1 Hs99999146_m1 TaqMan, Applied Biosystems 

BCL2A1 Hs00187845_m1 TaqMan, Applied Biosystems 

EGR1 Hs00152928_m1 TaqMan, Applied Biosystems 

APBB2 

Probe   5-CTCCCCAAATCCCGACTGTGTCT-3 
5' 6-FAM, 3' Iowa Black FQ 
Primer1 5-GATGGGTAGAGATGGCAGAAG-3 
Primer2 5-GGATCAGGTACATGTCTTTCCC-3 
Integrated DNA Technologies 

IL18R1 

Probe   5-CCTCCAGGCACTACATCCCTTTCAA-3 
5' 6-FAM, 3' Iowa Black FQ 
Primer1 5-CACCTTTGCTGTGGAGATTTTG-3 
Primer2 5-TCTTCGGCTTTTCTCTATCAGTG-3 
Integrated DNA Technologies 

PCGF2 

Probe 5-TGGACATCGCCTACATCTACCCCT-3 
5' 6-FAM, 3' Iowa Black FQ 
Primer1 5-GACGAGCCACTGAAGGAATAC-3 
Primer2 5-GCTGGACACGGTACTTGAG-3 
Integrated DNA Technologies 
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6. Co-Immunoprecipitation 

 107 cells of U937-1MIXL were lysed with 1 ml ice-cold RIPA buffer 

(150 mM NaCl, 1.0%. NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris 

(pH 7.5), 5 µg/ml leupeptin, 8 µg/ml aprotinin, 1 mM PMSF, 0.7 µg/ml pepstatin A 

and 1 mM EDTA (pH 8.0)).  900 µl of the lysate was precleared by incubation with 

protein A/G-agarose beads for 1 hour at 4ºC. 5 µg M2 anti-flag monoclonal 

antibody and 5 µg mouse IgG antibody were each added to separate aliquots of 

450 µl cleared lysate, and incubated for 2 hours at 4ºC.  20 µl of protein G-

agarose beads was added to the immune complexes and incubated for 1 hour at 

4°C. After four washes with NET-N buffer (100 mM NaCl, 1 mM EDTA (pH 8.0), 

20 mM Tris (pH 8.0), 0.2% NP-40, 5 µg/ml leupeptin, 8 µg/ml aprotinin, 

1 mM PMSF, 0.7 µg/ml pepstatin A), the precipitated proteins were eluted in 20 µl 

of 2  SDS loading buffer (100 mM Tris (pH 6.8), 200 mM DTT, 4% SDS, 0.2% 

bromophenol blue, 20% glycerol) and then resolved by 10% NuPAGE gel 

(Invitrogen, Carlsbad, CA). 

 

7.  Immunoblotting 

 Cells were lysed in Whole Cell lysis buffer (20 mM Tris, 250 mM NaCl, 2 

mM EDTA, 1% Triton X-100, 1 mM DTT, 2 µg/ml Aprotinin, 2 µg/ml Leupeptin, 2 

µg/ml Pepstatin A, 1 mM NaVO3, 1 mM PMSF), then denatured in 4x SDS buffer 

at 90ºC for 10 minutes, then resolved on 10% NuPAGE gel (Life Technologies) 

using MOPS buffer, and transferred to a PVDF membrane (GE Healthcare, 

Pittsburgh, PA). 
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 Membranes were first blocked by incubation in TBS-T (50 mM Tris, 150 

mM NaCl, and 0.05% Tween 20 adjusted to pH 7.6) with 5% milk for one hour, 

after which they were washed in TBS-T two times for two minutes.  The 

membrane was then incubated with the first antibody for 2 hours 2% milk TBS-T 

at room temperature then washed in TBS-T two times for 5 minutes, then once 

for 15 minutes.  The blot was then incubated with the secondary antibody in 2% 

milk TBS-T for 1 hour, followed by another round of washes in TBS-T.  Blots 

were visualized using Amersham ECL western blotting detection reagent (GE 

Healthcare) with 5 minutes of film exposure. 

 Primary antibodies used were anti-MIXL1-N at 1:1500, MZF1 (sc-66991, 

Santa Cruz Technologies, Dallas, TX) at 1:100, and beta-actin (Sigma Aldrich) at 

1:5,000.  The secondary antibodies used were anti-rabbit-HRP (GE Healthcare) 

at 1:10,000 for the majority of primaries and anti-mouse-HRP (GE Healthcare) at 

1:7,000 for the beta-actin primary antibody. 

  

8. Luciferase Reporter Assay 

 Luciferase constructs were generated by PCR amplification of segments 

of the c-REL peak region identified by ChIP-Seq.  Promoter segments were 

amplified from genomic DNA extracted from human placenta with the primers 

listed in Table 3 and sub-cloned into the pBV-Luc vector between Mlu1 and 

EcoR1 sites.  Each luciferase reporter vector insert was then confirmed by 

sequencing.  293T cells were transfected with 200 ng of expression vector, 200 

ng of luciferase vector, and 0.2 ng Renilla Luciferase vector by Lipofectamine 
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Table 3.  Primers used for REL Promoter Luciferase construct construction.  

Listed are the primer sets used to generate the REL promoter region inserts for 

construction of p-BV-Luc-based luciferase vectors for use in the luciferase 

reporter assay.  Each forward primer contains a Mlu1 target sequence and each 

reverse primer contains an EcoR1 target sequence for restriction digest.  Primers 

were used in pairs.  First set: Rel-R-EcoR1 paired with Rel-FM-130, Rel-FM-500, 

Rel-FM-700, and Rel-FM-944, with the Forward primer name denoting length of 

product.  Second set: Rel-FM-700 paired with Rel-RE-150, Rel-RE-200, Rel-RE-

300, and Rel-RE-580, with the Reverse primer pair denoting length of product. 
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Primers used for Luciferase Reporter Construction 

Rel-R-EcoR1 5-ctgt-gaattc-CGCAGTCAGTCAGTCAGGAG-3 

Rel-FM-130 5-ctgt-acgcgt-AGAATTCAGGGGTTGGGAAG-3 

Rel-FM-500 5-ctgt-acgcgt-GGAAGAACAACCTGGAGGAG-3 

Rel-FM-700 5-ctgt-acgcgt-GAACCACCTCTCGAAAACC-3 

Rel-FM-944 5-ctgt-acgcgt-GGAGCTTTGGAGTCAGACAA-3 

Rel-RE-150 5-ctgt-gaattc-CAGGTTGTTCTTCCGAGT-3 

Rel-RE-200 5-ctgt-gaattc-GGCTAGCAGCGTGAGAAGG-3 

Rel-RE-300 5-ctgt-gaattc-GACGCAGCAACCCTCACC-3 

Rel-RE-580 5-ctgt-gaattc-AACCCCTGAATTCTTGCAC-3 
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(Invitrogen, Grand Island, NY).  The activity was then tested by Dual Luciferase 

Reporter Assay System (Promega, Madison, WI) 48 hours post-transfection. 

 

9. MTS Assay 

 The growth assay for comparison of knockdown cell lines were performed 

by plating 3x104 cells/well for each line into a 96-well plate in triplicate, then 

testing the culture growth by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay every 24 hours 

of incubation.  

 For comparative analysis of the effects of doxorubicin on U937 MIXL1-

overexpressing lines, the three clones (Control, 1MIXL, and 2MIXL) were seeded 

to a 96-well plate at a density of 3x104 cells/well.  Doxorubicin (Sigma-Aldrich, St. 

Louis, MO) was added to each well at 0 – 2 µM in triplicates, for 24 hours before 

MTS treatment. 

 To measure survival response to high concentrations of LDN-193189, 

each cell line was plated at 3x104 cells/well on 96-well plates and treated with 

either 3 µM LDN-193189 (Cellagen, San Diego, CA) or the equivalent 

concentration of DMSO in triplicate.  Each line was then tested by MTS assay 

immediately, then again every 24 hours. 

 For the dose response experiments for LDN-193189, each line was plated 

at 3x103x104 cells/well on 96-well plates and treated with 0 – 0.7 µM LDN-

193189 in triplicate.  The cells were then incubated for 4 days, with additional 

treatments of 0 – 0.7 µM LDN-193189, before being tested by MTS assay. 
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 The MTS assay was performed by the CellTiter 96 AQueous Non-

Radioactive Cell Proliferation Assay kit (Promega) with an incubation time of 1 

hour. 

 

10. Analysis and Data mining 

 TCGA AML database (47) was accessed and analyzed through the 

cBioPortal (48, 49) for cases either with a mutation, copy-number alteration, or 

expression change of 2-fold or over (1.0 threshold). 

 Identification of transcription factor binding motifs in the c-REL promoter 

was performed using TFSearch. (50)  
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Chapter 3. Results 

1. Characterization of AML cell lines with overexpression of MIXL1 

 To identify the role of MIXL1 in AML, I used FLAG-HA-tagged MIXL1 

inducible expression cell lines established in U937, a hystiocytic lymphoma, 

previously created in the lab, denoted U937.1MIXL and U937.2MIXL with an 

empty vector control line U937.Control.  While these clones were initially 

established with MIXL1 expression inducible by tetracycline withdrawal, after 

multiple passaging both clones exhibited enforced MIXL1 expression regardless 

of tetracycline induction, and were subsequently treated as overexpression lines.   

To determine if the levels of MIXL1 protein in the overexpression lines was 

comparable to endogenous protein levels in leukemia, I compared the protein 

levels of 1MIXL and 2MIXL to that of three AML lines, the high-expressing KG1 

and ML3 and low-expressing HL60, where MIXL1 protein levels had already 

been tested (2), the previously untested AML OCI-AML2, and the CML line K562 

(Figure 1).  Protein expression in 1MIXL and 2MIXL was comparable to that of 

the expressing cell lines K562, KG1, ML3, and OCI-AML2, while U937.Control 

and HL60 had no detectable levels of MIXL1. 

  To test if MIXL1 infers a survival advantage in leukemic cell lines, I 

performed a MTS assay comparing the survival of the U937 subclones under 24 

hour exposure to 0 – 2 µM of the leukemia chemotherapy drug doxorubicin 

(Figure 2).  After 24 hours of treatment, doxorubicin had a LD50 of 0.25 µM for the 

U937.Control line and 0.75 µM for 1MIXL and 2MIXL, with only the Control line 

nearly completely eliminated at the 1.75 µM concentration of doxorubicin.  
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Figure 1.  Stable transfectants of U937 cells express MIXL1 at levels similar 

to endogenous protein in AML cell lines.   MIXL1 detected by probing 30ug 

whole cell lysates resolved on SDS-PAGE, transferred to PVDF membrane,  with 

rabbit antibodies against N–terminal epitope of MIXL1  and  β actin  for loading 

control.  
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Figure 2. MIXL1 expression reduces sensitivity of U937 cells to 

doxorubicin.  The cell lines were treated with 0 µM to 1.75 µM Doxorubicin on 

Day 0. Cell survival was measured at 24 hours by MTS assay.  Absorbance of 

untreated cells was normalized to 1.  Relative viability at varying concentrations 

of doxorubicin is denoted. 

  

25



 

  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75

R
el

at
iv

e 
V

ia
bi

lit
y

µM Doxorubicin

U937 Control

U937 1MIXL

U937 2MIXL

26



 

2. ChIP-Seq analysis of MIXL1 overexpression lines to identify 

transcriptional targets 

 As few transcriptional targets for MIXL1 in hematopoiesis have been 

identified, I performed ChIP-Seq in our overexpression clones to identify 

transcriptional targets of MIXL1.  Flag-HA-MIXL1 and bound DNA segments 

were immunoprecipitated from both 1MIXL and 2MIXL by FLAG antibodies, 

alongside two control samples of FLAG-IP in U937.Control with no expected 

target, and IgG-IP in U937.Control.  The sequenced samples were then aligned 

to the genome and analyzed in different pairwise combinations by Dr. Yue Lu 

and Dr. Shoudan Liang:  1MIXL-Flag normalized to Control-Flag and Control-

IgG, 2MIXL-Flag normalized to Control-Flag and Control-IgG, 1MIXL-Flag and 

2MIXL-Flag combined then normalized to Control-Flag and Control-IgG.  Each of 

these sets identified over 1500 peaks, though only a small subset containing 179 

peaks was present in all four groups (Figure 3).  The overlap subset shared by all 

three groups was isolated and used in further studies (Appendix). 

As a homeobox transcription factor, we expected MIXL1 to primarily 

interact with promoter regions of gene loci.  To determine if this was the case, 

Yue Lu and Dr. Shoudan Liang identified where each peak in the 179 peak set 

was in relation to its nearest gene loci (Appendix and Figure 4).  Out of the 179 

peaks, 64% of the peaks localized to the promoter region (within 5 kb upstream 

of the transcription start site), 8% were localized to transcribed gene regions, 4% 

were between 25 kb and 5 kb upstream of the transcription start site, 1% were 

27



 

 

 

 

 

 

Figure 3.  Multiple analyses of MIXL1-ChIP-Seq identify 179 high-quality 

peaks.  Venn diagram of all the peaks identified using three different analyses of 

the two experimental (Flag immunoprecipitation in U937 1MIXL or 2MIXL) and 

two negative control (Flag or IgG immunoprecipitation in U937 Control) : 1MIXL 

vs Controls, 2MIXL vs Controls and 1MIXL+2MIXL vs Controls.  Out of the peaks 

identified, 179 peaks were significantly enriched in all sets. 

This figure was generated as part of the statistical analysis performed by Dr. Yue 

Lu and Dr. Shoudan Liang for ChIP-seq. 
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Figure 4.  The majority of peaks for MIXL1 identified by ChIP-Seq localize to 

the Promoter region.  Pie chart depicting the localization of MIXL1 to human 

genome. Peaks were classified based on distance to nearest transcribed gene 

locus, using the following criteria:  upstream – 5 to 25 kb upstream of the 

transcription start site, promoter – 0 to 5 kb upstream of the transcription start 

site, body – between the transcription start and end, TSE – 0 to 5 kb downstream 

of the transcriptional end, downstream – 5 to 25 kb downstream of the 

transcriptional end, and distant – not allocated to a gene. Note that  majority of 

peaks (67%) localized to gene promoters.     
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within 5 kb of the transcription sequence end, and 3% were between 25 kb and 5 

kb of the transcription sequence end.  20% of the peaks were classified as not 

being within 25 kb of any known genes. 

As stated in the introduction, MIXL1 is a paired type homeobox with a 

previously characterized predicted motif (8).  To determine if this motif is how 

MIXL1 is bound to the identified motif locations, Dr. Yue Lu and Dr. Shoudan 

Liang analyzed the 179 peak set (Appendix) and a comparable randomized DNA 

fragment set for two different variants of the motif using the Motif alignment and 

Search Tool [MAST] (44) (Figure 5).  Neither motif was significantly over-

represented in the 179 peak set compared to the random set; therefore, the 

expected motif for MIXL1 is not enriched in our peak set.  To characterize what 

motifs were enriched in our peaks, Dr. Yue Lu and Dr. Shoudan Liang next 

performed Multiple EM for Motif Elicitation [MEME] (45) for the sequences 200 

base-pairs around each peak summit.  The two highest peak motifs (Figure 6) 

are CG-rich and show no similarity to the AT-rich predicted homeobox motifs 

(TAAT); instead, they are more similar to zinc finger motifs. 

To confirm the peak regions enriched in SET4 of the ChIP-seq analysis, I 

reanalyzed five of those regions, peaks near EIF1, c-REL, SLC39A13, SMYD5, 

and ZP3, by ChIP-qPCR in U937.Control, 1MIXL and 2MIXL by ChIP-qPCR 

using the Flag-antibody for immunoprecipitation (Figure 7).  While each peak was 

enriched by ChIP-qPCR, only EIF1, SLC9A13, and SMYD5 had the scale of 

enrichment over the control samples that were seen in the ChIP-seq.  This may 

be due to variability between the techniques.  
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Figure 5. Predicted MIXL1 motifs are not enriched in U937 overexpression 

MIXL1 ChIP-seq Peaks.  Motif1 and Motif2 were previously characterized 

putative MIXL binding motifs, and were searched against the stringent set of 

peaks (Appendix) at various distances (1000bp, 500bp, 200bp, or 100bp as 

listed) from the peak apex (top lines) and from the center of randomized 

sequences of the same length (bottom lines) , at either a p-value of 1e-4, 5e-4, or 

1e-3.   In all cases, the likelihood of finding the MIXL1 binding motif was either not 

statistically significantly different or even lower than the likelihood of identifying 

the motif in randomized sequences, therefore the MIXL1 binding motif is not 

enriched in this dataset. 

This figure was generated as part of the statistical analysis performed by Dr. Yue 

Lu and Dr. Shoudan Liang for ChIP-seq. 
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Motif1 
 

 
 
Motif2 

 
 

Motif1 (179 peaks)   Motif2  (179 peaks) 
pvalue  1e-4 5e-4 1e-3  pvalue  1e-4 5e-4 1e-3 
1000bp 3 31 59  1000bp 4 13 27 

  4.97 44.6 77.75    3 17.57 37.06 
500bp 1 9 18  500bp 2 3 9 

  1.65 18.2 35.65    0.98 6.49 14.55 
200bp 0 2 3  200bp 0 1 2 

  0.43 5.76 12.06    0.32 1.72 4.57 
100bp 0 0 1  100bp 0 0 0 

  0.18 2.75 5.62    0.11 0.91 2.1 
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Figure 6.  The most commonly occurring motifs in the ChIP-seq peaks are 

Zinc-Finger binding motifs.  Motif1 and Motif2 were the two most statistically 

significant common motifs generated using the Multiple EM for Motif Elicitation 

[MEME] against the peak regions identified in the ChIP-seq analysis (Appendix).  

Both motifs are C/G-heavy regions of similarity to known zinc finger motifs.   

This figure was generated as part of the statistical analysis performed by Dr. Yue 

Lu and Dr. Shoudan Liang for ChIP-seq. 

 

  

35



 

 

 

 
 
MOTIF 1 width = 15 sites = 65 E-value = 1.1e-027 

 
 
MOTIF 2 width = 15 sites = 112 E-value = 3.6e-015 
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Figure 7.  ChIP-qPCR analysis of selected gene-associated peaks confirms 

enrichment.  ChIP of 5 candidate peaks with FLAG antibodies identified by 

ChIP-Seq (EIF1, c-REL, SLC39A13, SMYD5, ZP3) showed specific MIXL1 

binding both 1MIXL and 2MIXL clonal ChIP with normal mouse IgG served us 

control.  Error bars represent standard deviation between triplicates.  * denotes p 

value <0.05.  The chart below is the ChIP-seq results for the constrained (179-

peak) dataset for each of the peaks tested, for comparison.  
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ChIP-Seq Results for selected Peaks 
Gene Peak Location Enrichment Proximity to Gene 
EIF1 chr17:37097849-37099490 7.55 promoter 
REL chr2:60961441-60962652 9.79 promoter 
SLC39A13 chr11:47385814-47387193 6.87 promoter 
SMYD5 chr2:73293129-73293533 7.38 upstream 
ZP3 chr7:75905120-75905486 20.74 body 
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3. Global Expression Profiling of MIXL1 overexpression to confirm 

transcriptional targets 

 To better identify direct transcriptional targets of MIXL1, I took a previous 

global expression profiling experiment performed in the lab on U937.Control and 

1MIXL using the U133 Plus 2.0 microarray by Dr. Hong Liang and reanalyzed it.   

To confirm the microarray analysis, a small subset of genes was tested by RT-

qPCR in U937.Control 1MIXL and 2MIXL (Figure 8).  While the expression of 

APBB2 and EGR1 were comparable between both methods at approximately -2-

fold and +2-fold change, respectively, IL18R1 expression was significantly higher 

in 1MIXL by qPCR at 3.5-fold in comparison to the 2.6 identified by microarray.  

Of specific note is c-REL, a gene also identified by ChIP-seq as a putative MIXL1 

transcriptional target, where both methods found a 1.66-fold increase in 1MIXL,  

and interestingly 2MIXL1 expressed 3.5-fold over U937.Control by qPCR. 

 

4. c-REL as a transcriptional target of MIXL1 

 Since c-REL was identified as a putative transcriptional target of MIXL1 by 

both ChIP-Seq and global expression profiling, I decided to get a broader look at 

the expression of the overall NF-κB pathway (Figure 9).  In the NF-κB pathway, 

NFκB1 or NFκB2 herterodimerize with RELA, RELB, or c-REL to transcriptionally 

regulate downstream targets, with the most common and best studied dimer pair 

being the RELA-NFκB1 dimer.  One of the common transcriptional targets of the 

NF-κB dimers is the anti-apoptotic BCL2 family (BCL2, BCL2L1, and BCL2A1).  
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Figure 8. RT-qPCR confirms change of expression in selected genes as 

identified by Microarray.  Quantitative RT-PCR confirms expression changes of 

selected genes identified by global expression profiling.  Quantitative RT-PCR 

showing differences in gene expression between U937 control, 1MIXL and 

2MIXL.  Transcript levels were normalized to 18srRNA.  Error bars represent 

standard deviation between triplicates. * denotes p value <0.05. The chart below 

is the Micorarray results for the 5 genes tested, for comparison.   
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Microarray Results for selected genes 
probe set gene Accession EntrezGene Fold Change 
216747_at APBB2 AK024871 323 -2.45 
201694_s_at EGR1 NM_001964 1958 2.78 
206618_at IL18R1 NM_003855 8809 2.63 
240752_at PCGF2 AW510760 7703 5.65 
206035_at REL NM_002908 5966 1.66 
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Figure 9. The NF-κB pathway is regulated by MIXL1.  The NF-κB pathway is 

regulated by MIXL1.  Output from HG133A affymetrix microarray expression 

profiling was analyzed by Ingenuity Pathway analysis software (IPA).  Green 

denotes decreased expression and red denotes increased expression relative to 

U937.control.  
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The activity of these NF-κB dimers can be inhibited by binding with IκB family 

proteins (NFKBIA/B/E), which block nuclear localization of the dimer.  In the 

global expression profile under MIXL1 overexpression in 1MIXL, all these genes 

are differentially regulated: the IκB family members and both components of the 

abundant NF-κB dimer (RELA and NFκB1) are down-regulated, while the less 

abundant NF-κB members c-REL and RELB and the anti-apoptotic BCL2L1 and 

BCL2 are up-regulated.  The anti-apoptotic BCL2A1, however, was down-

regulated. 

 To confirm the change of expression characterized in the global 

expression profiling for c-REL, BCL2A1 and BCL2L1, I analyzed RNA expression 

levels by RT-qPCR between U937.Control, 1MIXL and 2MIXL (Figure 10).  

Expression of c-REL increased approximately 1.8-fold in 1MIXL and 3-fold in 

2MIXL, in agreement with the previous run (Figure 8); BCL2L1 expression 

increased approximately 2-fold in each line in confirmation with the microarray 

results, while BCL2A1 expression increased approximately 2-fold as well,   

raising  the possibility of a potential technical difference between the two assays. 

 While I have identified c-REL promoter region as a target for MIXL1, it is 

possible that the perceived interaction is either an artifact of the Flag antibody or 

unique to U937 cells.  To test both of these possibilities, I performed ChIP-qPCR 

on the  endogenous C-REL promoter in the AML cell line KG1 using both our N-

terminal and C-terminal MIXL1 antibodies (Figure 11).  In both cases, the c-REL 

promoter was enriched: 3-fold for MIXL-N and 2-fold for MIXL-C, while the 

internal  genomic locus was not. 
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Figure 10. MIXL1 expressing clones show enhanced transcript levels for c-

REL, BCL2A1, and BCL2L1.  Quantitative RT-PCR results showing the 

difference in expression between U937control, 1MIXL and 2MIXL for c-REL, 

BCL2A1, and BCL2L1.  Expression was normalized to 18srRNA transcript levels. 

Error bars represent standard deviation between triplicates. * denotes p value 

<0.05 
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Figure 11.  ChIP localizes endogenous MIXL1 to c-REL promoter in KG1 

cells.  Quantitative genomic PCR analysis shows specific enrichment of 

endogenous MIXL1 immunopreciptated with either N-terminal or C-terminal 

MIXL1 antibodies,on the c-REL promoter whereas an internal locus within the c-

REL gene showed no MIXL1 occupancy.  Error bars represent standard 

deviation between triplicates.  * denotes p value <0.05. 
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5. MIXL1 knockdown in KG1 represses c-REL and BCL2A1/L1 expression 

 To confirm MIXL1 regulation of c-REL and its downstream targets, I 

knocked down MIXL1 expression by shRNA lentiviral transfection in the high-

MIXL1 expression AML cell line KG1, and then attempted to reverse the 

phenotypes by enforcing expression of c-REL. I first tested the expression of 

MIXL1, c-REL, BCL2A1, and BCL2L1 under knockdown of MIXL1 and enforced 

expression of c-REL by RT-qPCR (Figure 12).   Under MIXL1 knockdown, MIXL1 

expression is down to 0.25-fold, while expression of c-REL, BCL2A1, and 

BCL2L1 down to about 0.6-fold, 0.5-fold, and 0.7-fold, respectively.  With the 

enforced expression of c-REL, expression of c-REL, BCL2A1, and BCL2L1 

increase approximately 2-fold, regardless of MIXL1 expression level. 

 To identify if loss of MIXL1 affects the growth rate of KG1 cells, I assayed  

the knockdown lines over the course of four days for growth by MTS assay 

(Figure 13).  While the control shRNA cell line and REL-enforced expression line 

grew at a stable rate over 4 days, the knockdown lineages had lower cell counts 

than the starting count  at 24 hours before recovering to a stable growth rate by 

day four.   

 

6. MZF1 and MIXL1 interact with the c-REL promoter 

 From the ChIP-seq analysis, I have identified the c-REL promoter as a 

binding target for MIXL1; however the peak region identified is over 1000 base-

pairs long, and is lacking in putative MIXL1 motifs.  These details pose the 
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Figure 12.  Knockdown of MIXL1 decreased while enforced expression of c-

REL increased c-REL, BCL2A1, and BCL2L1 transcript levels.  MIXL1 

shRNA lentivirus, c-REL retrovirus were transduced into KG1 cells. RT-qPCR in 

triplicates was performed on RNAs isolated 48 hours after transduction. 

Expression was normalized to 18srRNA levels, and error bars represent standard 

deviation between triplicates.  * denotes p value <0.05 
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Figure 13. c-REL over expression rescues of  MIXL1 knockdown mediated 

growth arrest in KG1 cells.  Growth was measured by MTS assay every 24 

hours over a 4 day period in KG1 cells transduced with   MIXL1 shRNA lentivirus 

and c-REL retrovirus.  Absorbance was normalized to that of a non-transfected 

control sample. 
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question: what part of this region is required for MIXL1 interaction and what else 

is required for it?  To answer this question, I first tried to identify which region of 

the peak MIXL1 needs to regulate c-REL expression by performing a luciferase 

reporter assay with nested deletions of the c-REL promoter.  By subcloning 

genomic fragments of the c-REL promoter generated by PCR (Figure 14, 130 to 

944), I generated luciferase constructs in the backbone pBV-Luc. The luciferase 

constructs were then co-transfected into HEK293T cells with a MIXL1 expression 

construct, a homeoboxless truncated MIXL1 expression construct, or an empty 

expression vector; the cells were tested for luciferase activity.  Of these first sets, 

only the 700 base-pair and 944 base-pair promoters were significantly induced 

by full-length MIXL1.  To narrow down the region further, I took the N-terminus 

region of the 700 base-pair promoter insert and extracted progressively shorter 

segments of the promoter in it (Figure 14, 550 to 150).  The only promoter 

segment that was significantly induced by full-length MIXL1 was the 550 base-

pair segment. 

 To identify potential binding partners for MIXL1 that are required for c-REL 

transcriptional regulation, I searched the 550 base-pair region of the c-REL 

promoter for known transcription factor binding motifs (Figure 15).  The motifs 

identified included 2 NF-κB motifs, a RUNX1 motif, 2 Sp1 motifs, and 4 MZF1 

motifs.  As MZF1 (myeloid zinc finger 1) is a transcription factor associated with 

the myeloid lineage and implicated in myeloid leukemia (51, 52), it may be 

expressed in MIXL1 expressing cells and may in fact have a synergistic role.  To 

determine if MIXL1 and MZF1 are actually interacting, I performed co-
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Figure 14.  MIXL1 interacts with the center of the identified peak region of 

the REL promoter.  (Above) c-REL promoter peak region identified by ChIP-

Seq, as generated by UC Santa Cruz genome browser is shown.  The location 

and size of each promoter fragment used for the luciferase reporter assay  is 

displayed underneath.  (Below) MIXL1 binds to  a 550 bp region within the c-REL 

promoter.  Regions of the DNA depicted in 5A were cloned into the reporter 

vector pBV-Luc luciferase, transiently co-transfected into HEK293T  with MIXL1, 

MIXL1 Homeobox-less, or empty expression vector. Equal amount of  Renalia 

Luciferase co-transfected with the reporter constructs allowed normalization.  

Luciferase activity of each combination was tested after 48 hours in triplicate.  

Error bars represent standard deviation between triplicates. * denotes p value 

<0.05 
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Figure 15.  Known Transcription Factor Binding Motifs in the REL 

Promoter.  A visual representation of the location of identified transcription factor 

binding motifs by TFSearch in the 550 bp REL promoter identified by luciferase 

reporter assay.  Of note, the most prevalent motif in this region is the MZF1 zinc 

finger binding motif (marked in blue), which is present in four locations. 
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immunoprecipitation by anti-Flag antibodies in 1MIXL, using a mouse IgG as a 

control then blotted it with a MZF1 antibody (Figure 16).  The expected MZF1 

band (~82 kDa) was present in the 1MIXL lysate and Flag-immunoprecipitation 

but not the IgG-immunoprecipitation, implicating that MIXL1 and MZF1 may form 

a complex. 

 To determine if MZF1 binds to the c-REL promoter in the expected region, 

I performed ChIP-qPCR analysis using the c-REL promoter and intron primersets 

to probe MZF1-immunoprecipitated genomic DNA from cell line 1MIXL (Figure 

17). The promoter region was enriched approximately 2.5-fold in the MZF1-

immunoprecipitated fraction, while the intronic control region was not enriched. 

 

7. MIXL1 is preferentially induced   by BMP4 in  human CD34+ cord blood 

hematopoietic stem progenitor cell 

MIXL1 has previously been described as a transcriptional target of SMAD 

proteins (53)  through the canonical TGF-β and BMP signaling pathways.   To 

identify whether the TGF-β or BMP is the relavant ligand in hematopoiesis, I 

treated CD34+ hematopoietic progenitor cells with either 2 ng/ml of TGF-β1 or 50 

ng/ml BMP4, and tested the relative mRNA levels of MIXL1 after 2 hours (Figure 

18). BMP4 was able to significantly activate MIXL1 expression relative to the un-

induced CD34+ samples by about 2-fold, while TGF-β had no effect on MIXL1 

expression.  This implicates BMP4 to be a preferred regulator of MIXL1 

expression in hematopoiesis. 
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Figure 16.  MZF1 is identified by co-immunoprecipitation of Flag-tagged 

MIXL1 in U937.  Co-immunoprecipitation assay against Flag-HA-MIXL1 using an 

anti-Flag antibody in 1MIXL, and using an anti-MZF1 antibody to probe the 

immunoblot, with preclear sample as the positive control and IgG-

immunoprecipitated sample as the negative control. MZF1 was detected in the 

preclear lysate and Flag-IP fraction, but not the IgG sample.   
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Figure 17.  MZF1 binds to the same locus as MIXL1 on c-REL promoter.  

Quantitative PCR analysis of the identified c-REL promoter region and c-REL 

intron control region, comparing the abundance of each genomic locus 

immunoprecipitated by either IgG or MZF1 antibodies, normalized to a standard 

curve.  Error bars represent standard deviation between triplicates. * denotes p 

value <0.05 
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Figure 18.  BMP4 induces MIXL1 in CD34+.  MIXL1 expression increased 2-

fold in CD34+ cells treated with BMP4, than untreated or cells treated with TGF-

β.  CD34+ HSPCs from three cord blood donors (47, 51, 60) were treated with 

either 50 ng/ml BMP4 or 2 ng/ml TGF-β1 for 2 hours.  MIXL1 transcript levels 

were quantified by RT-qPCR using 18srRNA as normalization control. Error bars 

represent standard deviation between triplicates and * denotes p value <0.05. 
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8. MIXL1 expressing cells are sensitive to the BMP inhibitor LDN-193189 

As MIXL1 is regulated by the BMP pathway, I postulated that MIXL1-

expressing lines may have increased sensitivity to BMP pathway inhibition.  To 

inhibit BMP pathway activation, I used the ALK2/3/6 (ACVR1, BMPR1A, and 

BMPR1B) inhibitor LDN-193189.  Four high MIXL1-expression cell lines (OCI-

AML2, KG1, ML3 and K562), and two low MIXL1-expression lines (U937 and 

HL60) were exposed to a single treatment of 3 µM LDN-193189 before a 4 day 

incubation, with the relative  survival assayed by the MTS analysis (Figure 19).  

By day 1, the high expression lines were no survival was detected in the LDN-

193189 treated aliquots, while the growth of the low-expression lines was 

diminished compared to the untreated aliquots. However, on the following days, 

HL60 and U937 cell cultures have begun to recover, while the high-expressing 

lines stay undetectable. 

 To further characterize the sensitivity to LDN-193189 in high MIXL1-

expression cell lines, I performed a dose response analysis on each of the 6 lines  

over a 0-700 nM  range of LDN-193189.  Due to the short half-life of LDN-

193189, the medium was changed every 24 hours, and relative survival was 

assayed them by MTS after four days (Figure 20).  The number of cells in the 

low-expression lines U937 and HL60 were constant across all concentrations of 

LDN-193189, suggesting no significant change in growth rate, whereas in the 

high-MIXL1 expression lines, there is a significant decrease between 100 nM and 

200 nM in culture viability. 
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Figure 19. High MIXL1 expression cell lines are sensitive to 3 µM LDN-

193189.  3 µM of LDN-193189 was cytotoxic to OCI-AML2, ML3, KG1 and K562 

in contrast to U937 and HL60cells.  Each cell line was treated with vehicle or 3 

µM LDN-193189 on Day 0, and viability measured every 24 hours by MTS assay, 

in triplicate.  Absorbance was normalized to that of a vehicle-only sample. 

  

67



 

 

 

 

 

  

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4

R
el

at
iv

e 
A

bs
or

ba
nc

e

Day

U937

HL60

OCI-AML2

ML3

KG1

K562

LDN-193189
0 µM 3 µM

68



 

 

 

 

 

Figure 20.  High MIXL1 expression cell lines are sensitive to consistent 

exposure of LDN-193189 for 4 days.  OCI-AML2, ML3, KG1 and K562 were 

sensitive to 200 nM LDN-193189, while low MIXL1 expression lines U937 and 

HL60 were unaffected.  Each cell line was treated with 0 nM to 700 nM LDN-

193189, replenished every 24 hours with fresh drug or control medium for 4 

days. Viability on day 4 was assayed then tested by MTS assay in triplicate.  

Absorbance was normalized to that of control vehicle-only treated samples. 
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9. Endogenous MIXL1 in AML Patients 

 To determine if MIXL1 is overexpressed in patient samples, I analyzed the 

TCGA AML patient sample dataset for at least 2-fold change of expression, 

chromosomal modification, or mutation of MIXL1 by the cBioPortal, AML-

associated homeobox transcription factors CDX2 (30), HLX(28), HOXA9 (27), 

and NF-κB pathway members c-REL, BCL2, BCL2A1, and BCL2L1 (Figure 21).  

MIXL1 was amplified or up-regulated in 13% of the total AML cases, while only 

12% of the patients had HOXA9 modifications and 6% had CDX2 modifications.  

HLX was down regulated in 10% of patients and amplified or upregulated in 17%.   

Only a few patient samples contained expression changes in two of these genes, 

implicating MIXL1 expression may be a marker of a subgroup of AML cases 

distinct from HOXA9 and CDX2 expressing AMLs.  

 To determine if MIXL1, HOXA9, and CDX2 characterize distinct 

subgroups, I analyzed the genes for mutual exclusivity between the patient 

samples (Figure 22). While MIXL1 and HOXA9 had a tendency for mutual 

exclusivity, CDX2 had no strong association with either of the two homeoboxes.  

HLX had a tendency to be mutually exclusive with HOXA9, but had a minor 

tendency to co-occur with MIXL1 or CDX2.  

I also performed the same mutual exclusivity analysis with NF-κB pathway 

members c-REL, BCL2, BCL2L1, and BCL2A1.  While both MIXL1 and CDX2 

had a tendency for co-occurrence with c-REL, MIXL1 had a stronger tendency to 

co-occur with BCL2L1, while CDX2 had a stronger tendency to co-occur with 

BCL2.  
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Figure 21. MIXL1 overexpression marks a set of AML cases distinct from 

those expressing CDX2, HLX or HOXA9.  The TCGA AML patient dataset was 

queried through the cBIOPortal database for >2 fold expression alterations as 

determined by RNA-Seq, amplifications, or homozygous deletions, across 166 

AML patient cases.   Each column represents a patient.  MIXL1 is amplified or 

up-regulated in 13% of the total AML cases. 
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Figure 22. MIXL1 expression co-occurs with REL and BCL2L1 expression, 

but not with HOXA9.  A mutual exclusivity analysis from cBioPortal using the 

TCGA AML database as depicted in Figure 21.  Expression of MIXL1 has a 

tendency to co-occur alongside expression of REL and BCL2L1, while 

expression and modification in HOXA9 tend to be excluded from cell lines 

expressing MIXL1 or BCL2L1.  
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I next analyzed TCGA AML patient sample dataset for genes with any of 

the commonly identified somatic mutations (NPM1, FLT3, DNMT3A, TET2 and 

TP53) to determine with which mutations MIXL1 co-occurred or co-operated with 

(Figure 23).  The most common alteration was mutations in TP53 seen in 8 

cases (38%) of MIXL1+ cases. Interestingly, this constitutes 66% of all the cases 

with TP53 mutations (n=12) in the TCGA population.  All of the other recurrent 

mutations were also seen, but less frequently.  Four patients had mutations in 

NPM1; there were three cases each for DNMT3A and TET2. Two patients had 

mutations in FLT3.  
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Figure 23. High MIXL1 expression patient samples contain previously 

identified somatic mutations of AML. 76% (16/21 cases) of high MIXL1 

patients in the TCGA AML patient dataset contained previously identified 

common somatic mutations for AML (NPM1, FLT3, DNMT3A, FLT, JAK3 and 

TP53).  The TCGA AML patient dataset was queried through the cBIOPortal 

database for >2 fold expression alterations, mutations, amplifications, or 

homozygous deletions, across 166 AML patient cases.   Each column represents 

a patient.    
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Chapter 4. Discussion 

In this study I have identified a BMP4-MIXL1-c-REL pathway which may 

have an important role in normal hematopoietic development (Figure 24).   

Mix.1 is induced in Xenopus embryos by BMP4 or Activin A in a SMAD5 

dependent manner (17) although MIXL1 can be induced by TGF-β  in human 

hepatocellular carcinoma (54) and TGF-β and activin mouse ES cells (55) .  

TGF-β from the glial cells within the bone marrow niche is thought to maintain 

HSC quiescence (56)   In humans, BMP2, BMP4 and BMP7 regulate 

maintenance, proliferation and repopulating activities of progenitors (57-59). Our 

studies demonstrate for the first time that MIXL1 induction in human HSPCs by 

BMP4.  At present the distinction between the growth inhibitory versus mitogenic 

response to TGF-β family ligands is dependent on biological assays.  MIXL1 

expression may be a new marker that correlates with a pro-growth/ survival 

response.  

  

1. MIXL1 is over-expressed in a subset of AML  

 Analysis of the TCGA AML patient sample set identified a potentially 

unique subset of high MIXL1 expressing cancers making up 13% of the cancer 

set, a group both distinct and larger than the CDX2 and HOXA9 subtype.  A 

distinct aspect of the MIXL1 expressing cancer set is the prevalence of patients 

with mutated p53: 38% of high-MIXL1 patients had p53 mutations and 67% of 

patients with p53 mutations had high expression of MIXL1.  p53 mutations are 

associated with a strong resistance to chemotherapy (60); if MIXL1 expression is 
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Figure 24.  Proposed BMP/MIXL1/REL pathway.  BMP4 binds to the complex 

between BMP type 2 receptor (BMPR2 or AVCR2A) and BMP type 1 receptor 

kinase (ALK2, ALK3, or ALK6).  In response to activation, the kinase 

phosphorylates SMAD1 or SMAD5 which complexes with SMAD4 to activate the 

transcription of MIXL1.  MIXL1 complexes with MZF1 and activates the 

transcription of c-REL.  C-REL in turn activates the transcription of BCL2 family 

members. 
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prevalent in the p53 mutant subset of AML, then it may identify a new potential 

avenue to treat these untreatable patients. 

While this implicates MIXL1 expression as a potentially strong diagnostic 

marker in leukemia, it will be important to show that this can be replicated in a 

much larger set of patients.  The TCGA dataset contains complete patient data 

for 166 patients of diverse types of AML; however this may not be an accurate 

representation of the distribution of total AML cases.  In addition, the more 

patient information gathered for further analysis, the more reliable and 

statistically significant any correlations determined will be. 

  A number of technical reasons preclude MIXL1 detection in array based 

global expression profiling studies.  In addition to weak probes, the long 3’ UTR 

includes Alu elements which can result in quenched signals.  Thus availability of 

the RNA-Seq data for the TCGA patients provided a valuable resource to 

establish the importance of MIXL1.   

  

2. MIXL1-positive AML lines are sensitive to LDN-193189 

Expression of MIXL1 appears to identify a distinct subset of AML, which is 

of interest if MIXL1 expression also identified a potential therapeutic target.  It 

would be quite relevant, then if the difference in sensitivity to kinase inhibitor 

LDN-193189 seen between MIXL1-expressing lines and non-expressing lines is 

also identified in patient samples. The differential cytotoxicity to 3 µM LDN-

193189, and growth suppression specific to those lines in lower expression 
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levels, implies that this defined subtype of AML may be responsive to Type 1 

BMP receptor kinase suppression.   

 In the experiments presented, I treated a variety of leukemic lines with 

LDN-193189 at concentrations up to 3 μM.  While there was a distinct difference 

between how MIXL1-expressing and non-expressing lines responded below this 

concentration, any concentration at or above 4 μM was lethal to all cell lines 

tested.   One possible explanation for this is that activation of the BMP pathway 

may still be critical to the survival of U937 and HL60, yet this pathway does not 

include MIXL1 activation in these cell lines.  Indeed, the BMP intermediate 

SMAD1 has a different set of targets between U937 and K562 when induced by 

BMP4 (61).  In particular, my survey of their datasets identified that SMAD1 binds 

to a unique peak in the MIXL1 locus in K562 but not U937. 

Another likely explanation above 4 μM for LDN-193189 are lethal to U937 

and HL60 despite the lack of MIXL1 activation is that LDN-193189 may be 

inhibiting other kinases critical to the survival of these lines.  LDN-193189 

functions in BMP signaling suppression by acting as an ATP-antagonist in the 

BMP/Activin-regulated kinases ALK2/3/6 (ACVR1, BMPR1A, and BMPR1B)(62), 

but it can function as an ATP-antagonist in other kinases, including ABL, VEG-

FR, YES1, and CAMKK2 (63), many of which have nearly as high sensitivity to 

the inhibitor as the BMP pathway kinases.  It would therefore be likely that even 

cells not reliant on BMP pathway for survival would have some level of sensitivity 

to the inhibitor. 

83



Since LDN-193189 can inhibit a large number of kinases beyond the 

BMP-regulated kinases, it is possible that the sensitivity seen in cell lines with 

high MIXL1 expression is either due to a combination of BMP-regulated kinase 

inhibition and off-target, or off-target effects entirely.  While I have shown that in 

CD34+ hematopoietic precursor cells, MIXL1 can be activated by BMP4, I have 

yet to show that blocking this pathway is critical to the survival of the MIXL1-

expressing cell lines.  Additionally, even within the BMP-regulated kinases 

ALK2/3/6 (ACVR1, BMPR1A, and BMPR1B), I have yet to distinguish what role 

each has and which is most important as a target of LDN-193189 in each cell 

line.   To better identify what role each potential target of LDN-193189 is playing 

in the overall survival of these cell lines, I propose inhibiting each relevant kinase 

through another means, specifically shRNA knockdown, and testing for both 

expression changes in the downstream pathways and changes in growth and 

survival of the cells. 

While LDN-193189 targets a large number of kinases beyond the BMP-

regulated kinases, this may not preclude its use in therapeutics.  Indeed, many of 

the other kinase targets, including ABL1 and VEG-FR, are implicated in cancer 

and are either currently targeted by therapeutics or considered likely targets for 

therapeutics in the future.  LDN-193189 has been already used in rodent models 

of hepcidin induced chronic anemia (64) and fibrodysplasia ossificans 

progressiva with constitutive activation of ACVR1 (65), and the side effects 

exhibited from drug treatment were minimal.  LDN-193189 may have significant 

potential as a generally safe and therapeutic treatment for AML. 
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3. Transcriptional regulation by MIXL1 in hematopoietic cells 

I identified several important transcriptional targets of MIXL1 in this study.  

While I have focused on c-REL, other critical genes identified by the ChIP-Seq 

study may play a significant role in the leukemogenic activities of MIXL1.  Future 

research will better characterize other downstream targets and elucidate which 

ones are responsible for the function of MIXL1. 

 The expected motif for MIXL1 binding is two TAATTGAATTA. This motif 

was originally identified Gsc (goosecoid) promoter and was confirmed by SELEX 

and reporter assays in ES cells and fibroblasts in vitro SELEX screens (66). The 

expected motif, however, was less abundant in the targeted sequences identified 

by ChIP-Seq than in randomized sequences.  Indeed, while the homeobox 

binding motif is prevalent in AT-rich regions, CG-rich were very abundant in our 

sequences identified by ChIP-Seq.  This is of stark contrast to an analysis of 

Mixl1 targets in mouse embryonic stem cells which had found the homeobox 

binding motif to be considerably enriched (10). 

Several possible reasons underlie the lack of this established DNA binding 

motif in our target peaks.   One possibility is that the MIXL1 is binding directly to 

DNA in a way never previously characterized, which could be tested by purifying 

the MIXL1 protein and testing the binding affinity with different DNA sequences.  

A more likely explanation is that MIXL1 requires interactions with other proteins 

to bind to DNA in this sequence.  This is supported by the abundance of other 

characterized transcription factor binding motifs in the peak regions and the 
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length of the c-REL promoter segment required for MIXL1 regulation, which 

implies a larger multiprotein complex is necessary.  While MIXL1 has been 

shown previously to interact with other homeobox-containing proteins, it has also 

been shown to interact with NEUROD1 (12), which does not contain a homeobox 

domain, in a high throughput two-hybrid screen.  As the most prevalent binding 

motifs identified in the ChIP-Seq were zinc finger motifs, and MZF1 motifs were 

prevalent in the c-REL promoter peak, MZF1 was a potential putative binding 

partner. 

MZF1 (myeloid zinc finger 1) is a zinc finger transcription factor associated 

with the myeloid lineage (67, 68)   Expression of MZF1 inhibits apoptosis and 

differentiation in myeloid leukemia cells (51, 52) and induces proliferation, 

migration, invasion, and metastasis in colorectal cancer, cervical cancer, and 

breast cancer (69-71).  

 Interactions between zinc fingers and homeobox proteins have been 

identified previously.  In breast cancer, an isoform of distal-less homeobox DLX4 

binds to the zinc finger BRCA1 (72).  In hematopoietic cells, zinc finger PML 

binds to the homeobox HHEX (73).  Additionally, a multitude of other potential 

interactions between homeoboxes and zinc fingers have been identified through 

two-hybrid assays (12). 

 Recent studies suggest that Mixl1 can interact with T box factors T, 

Eomes, Tbx6 and Tbx20 directly to form protein complexes which function as 

transcriptional repressors (74) .  Additionally, in a high throughput mammalian 

two hybrid screen, an interaction between TBX20 and MZF1 was identified (12).  
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MIXL1, TBX20, and MZF1 may bind to targets as a multiprotein complex during 

hematopoiesis, similar to the multiprotein complex between paired-type 

homeobox protein NKX2-5, T box protein TBX3, and zinc finger protein GATA4 in 

cardiac development (75). 

 To better identify how MIXL1 is interacting with these gene loci, we would 

need to determine what the subunit composition of the MIXL1-containing 

complexes are.  I would need to repeat co-immunoprecipitation and luciferase 

assay on each combination of potential complex members.   Next, I would want 

to over-express each potential member in every combination to see which 

combinations best activate the transcriptional targets.  Finally, I would knock out 

each member from an expressing AML line to determine the minimal complex 

necessary for transcriptional activation. 

  

4. c-REL is a transcriptional target of MIXL1 

 c-REL is a promising target for MIXL1 transcriptional activation due to its 

strong sequence similarity to the established viral oncogene v-REL and 

established role in the activation of anti-apoptotic genes BCL2L1 and BCL2A1 

(76). Amplification and overexpression of c-REL is implicated in diffuse large B 

cell lymphoma (38). c-REL overexpression is seen in a wide array of other 

cancer types, including colorectal cancer (77), breast cancer (78), lung 

carcinoma (79), squamous cell carcinoma (80, 81), retinoblastoma (82),  

endometrial carcinoma (83), and pancreatic cancers (84).   
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Activity of the NF-κB DNA binding factors comprising of 5 proteins which 

heterodimerize to bind DNA, is regulated both at the transcriptional and post- 

transcriptional level.  Cytoplasmic sequestration of the five proteins by inhibitors 

NFKBIA, B and E regulates their activity post-transcriptionally (85). Expression 

profiling suggests down regulation of all the NFKBI members and preferential 

upregulation of c-REL, RELB and NFKB2.  Furthermore, recent evidence 

suggests potential functional differences in the activity depending upon the 

subunit composition. Thus c-REL homodimers or heterodimer with NFKB2 or 

RELB may have varied responses (37, 86).  Notably, there is an absolute 

requirement for c-REL in B lymphoid development (87), though the factors 

surrounding both the regulation of c-REL and the downstream effects distinct 

from the other family members is currently unknown.  Overall, this would 

implicate that MIXL1 and c-REL may activate preferentially a “non-canonical” NF-

κB pathway distinct from the one regulated by the RELA/NFKB1 complex. 

     

5. Summary 

 In summation, we have identified MIXL1 to mark a new subset of AML and 

c-REL as a direct transcriptional target of MIXL1. Targeting the BMP receptor 

upstream of MIXL1 may be a novel therapeutic avenue to explore in AML. 
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Appendix: Peaks identified by all analyses of the MIXL-overexpression 

ChIP-Seq dataset.  The following set of peaks was generated by normalizing to 

the two control samples in three combinations and then finding the overlapping 

set (as visualized in Figure 5): Flag-1MIXL to IgG-Control and Flag-Control, Flag-

2MIXL to IgG-Control and Flag-Control, and Flag-1MIXL and Flag-2MIXL 

combined to IgG-Control and Flag-Control. A total of 179 peaks were identified in 

this stringent set. This table was generated as part of the analysis performed by 

Dr. Yue Lu and Dr. Shoudan Liang for ChIP-seq.  Columns are as followed:  

Site position:  The location of the peak on Human genome assembly 

Hg18/NCBI36.   

Gene name: Gene loci within 25 kb of the peak. 

Location: Relative location of the peak to the nearest gene loci.  Designations 

are:  Upstream – 5 to 25 kb upstream of the transcription start site (TSS), 

Promoter – 0 kb to 5 kb upstream of the TSS, Body – Between the TSS and 

transcription sequence end (TSE), TSE – 0 to 5 kb downstream of the 

transcription sequence end, Downstream – 5 to 25 kb downstream of the TSE.  

Unlabelled have no nearby loci. 

Fold enrichment: Fold enrichment of the peak region in experimental sets over 

control sets. 

Number of Tags: The number of sequence tags that contributed to this peak. 

-10Log (pvalue): Negative Log base ten of the p-value for each peak. 

89



si
te

_p
os

iti
on

 
ge

ne
_n

am
e 

Lo
ca

tio
n 

Fo
ld

 
en

ric
hm

en
t 

N
um

be
r 

of
 ta

gs
 

-1
0L

O
G

 
(p

va
lu

e)
 

ch
r1

:1
00

37
04

63
-1

00
37

16
55

 
SA

SS
6,

C
C

D
C

76
 

pr
om

ot
er

 
5.

45
 

70
 

67
.9

4 
ch

r1
:1

08
27

11
-1

08
43

87
 

 
 

6.
72

 
13

2 
13

9.
37

 
ch

r1
:1

53
41

16
92

-1
53

41
26

94
 

KR
TC

AP
2,

TR
IM

46
 

pr
om

ot
er

 
7.

65
 

63
 

85
.3

 
ch

r1
:1

53
48

04
74

-1
53

48
17

40
 

G
BA

 
pr

om
ot

er
 

4.
55

 
88

 
62

.4
9 

ch
r1

:1
54

45
25

28
-1

54
45

33
84

 
SL

C
25

A4
4 

do
w

ns
tre

am
 

3.
99

 
29

6 
15

1.
79

 
ch

r1
:1

54
98

65
31

-1
54

98
90

82
 

H
D

G
F 

pr
om

ot
er

 
6.

32
 

12
4 

66
.2

8 
ch

r1
:1

67
34

15
93

-1
67

34
24

41
 

AT
P1

B1
 

pr
om

ot
er

 
7.

31
 

48
 

12
4.

79
 

ch
r1

:1
78

11
75

82
-1

78
11

95
03

 
TO

R
1A

IP
1 

pr
om

ot
er

 
6.

01
 

14
7 

13
0.

37
 

ch
r1

:2
21

05
46

70
-2

21
05

53
13

 
 

 
8.

93
 

27
 

10
7.

73
 

ch
r1

:2
30

83
21

49
-2

30
83

34
45

 
 

 
7.

72
 

62
 

14
6.

53
 

ch
r1

:2
34

75
39

05
-2

34
75

47
46

 
LG

AL
S8

 
pr

om
ot

er
 

6.
83

 
35

 
86

.2
8 

ch
r1

:3
92

28
76

1-
39

23
01

81
 

AK
IR

IN
1 

pr
om

ot
er

 
7.

52
 

72
 

69
.0

2 
ch

r1
:8

79
95

85
-8

80
08

33
 

R
ER

E
 

pr
om

ot
er

 
7.

29
 

66
 

11
9.

64
 

ch
r1

:9
47

31
55

-9
47

39
98

 
 

 
8.

65
 

56
 

12
1.

24
 

ch
r1

:9
60

95
26

-9
61

06
02

 
 

 
10

.5
5 

79
 

14
2.

8 
ch

r1
:9

63
39

42
-9

63
48

66
 

PI
K3

C
D

 
pr

om
ot

er
 

5.
73

 
60

 
78

.0
6 

ch
r1

0:
12

12
91

41
4-

12
12

93
24

7 
R

G
S1

0 
pr

om
ot

er
 

5.
2 

85
 

10
1.

97
 

ch
r1

0:
12

47
57

75
3-

12
47

59
21

0 
IK

ZF
5,

AC
AD

SB
 

pr
om

ot
er

 
7.

4 
82

 
10

5.
68

 
ch

r1
0:

38
73

15
45

-3
87

32
46

7 
C

D
C

10
L 

pr
om

ot
er

 
9.

58
 

29
 

92
.3

1 
ch

r1
0:

43
16

39
60

-4
31

64
52

1 
 

 
10

.2
5 

38
 

10
8.

47
 

ch
r1

0:
70

93
73

83
-7

09
38

05
3 

TS
PA

N
15

 
TS

E 
7.

21
 

47
 

95
.7

2 
ch

r1
0:

76
63

94
60

-7
66

41
46

9 
VD

AC
2 

pr
om

ot
er

 
4.

83
 

98
 

11
4.

52
 

ch
r1

0:
88

12
67

05
-8

81
27

52
9 

 
 

12
.1

1 
39

 
10

6.
9 

ch
r1

0:
93

54
76

95
-9

35
48

90
6 

TN
KS

2 
pr

om
ot

er
 

10
.4

2 
60

 
14

8.
58

 
ch

r1
0:

98
46

93
50

-9
84

71
26

3 
PI

K3
AP

1 
pr

om
ot

er
 

6.
66

 
94

 
10

1.
59

 
ch

r1
1:

11
98

86
93

5-
11

98
87

38
5 

 
 

7.
25

 
25

 
69

.2
9 

ch
r1

1:
12

75
47

48
9-

12
75

47
69

6 
 

 
16

.5
8 

14
 

13
4.

56
 

ch
r1

1:
18

75
37

71
-1

87
54

24
0 

PT
PN

5 
bo

dy
 

16
.0

1 
17

 
90

.9
8 

ch
r1

1:
24

05
80

8-
24

06
39

2 
TR

PM
5 

up
st

re
am

 
10

.6
4 

25
 

96
.6

4 
ch

r1
1:

34
02

92
56

-3
40

31
80

6 
C

AP
R

IN
1 

pr
om

ot
er

 
5.

15
 

95
 

66
.1

 
ch

r1
1:

47
38

58
14

-4
73

87
19

3 
SL

C
39

A1
3 

pr
om

ot
er

 
6.

87
 

62
 

73
.2

3 

90



ch
r1

1:
50

83
67

-5
09

33
4 

 
 

9.
8 

36
 

10
5.

14
 

ch
r1

1:
61

20
38

93
-6

12
04

53
3 

D
AG

LA
 

pr
om

ot
er

 
11

.6
8 

29
 

98
.5

6 
ch

r1
1:

68
27

52
15

-6
82

75
96

1 
M

TL
5 

pr
om

ot
er

 
10

.4
 

46
 

14
0.

55
 

ch
r1

1:
72

03
14

87
-7

20
32

46
8 

PD
E2

A
 

pr
om

ot
er

 
7.

23
 

43
 

86
.0

1 
ch

r1
1:

93
42

00
2-

93
43

00
5 

 
 

5.
43

 
45

 
50

.4
7 

ch
r1

2:
11

85
89

61
9-

11
85

90
56

2 
PR

KA
B1

 
pr

om
ot

er
 

10
.2

6 
73

 
22

7.
01

 
ch

r1
2:

12
01

31
52

9-
12

01
33

30
3 

P2
R

X
4 

pr
om

ot
er

 
8.

93
 

10
4 

16
7.

49
 

ch
r1

2:
16

41
10

8-
16

41
70

0 
 

 
13

.5
3 

26
 

91
.5

6 
ch

r1
2:

47
03

01
02

-4
70

31
63

2 
ZN

F6
41

 
pr

om
ot

er
 

6.
02

 
70

 
11

6.
6 

ch
r1

2:
95

82
48

95
-9

58
26

03
9 

N
ED

D
1 

pr
om

ot
er

 
9.

95
 

56
 

12
9.

28
 

ch
r1

3:
10

59
85

73
5-

10
59

87
13

3 
EF

N
B2

 
pr

om
ot

er
 

9.
57

 
77

 
13

9.
2 

ch
r1

3:
11

03
64

32
6-

11
03

66
47

3 
AN

KR
D

10
 

pr
om

ot
er

 
5.

43
 

16
0 

15
3.

79
 

ch
r1

3:
43

35
10

97
-4

33
52

59
5 

C
C

D
C

12
2,

C
13

or
f3

1 
pr

om
ot

er
 

10
.7

1 
57

 
12

2.
33

 
ch

r1
4:

10
61

45
54

5-
10

61
45

90
9 

 
 

21
.1

 
15

 
10

7.
01

 
ch

r1
4:

73
02

69
48

-7
30

28
27

7 
C

14
or

f1
69

 
pr

om
ot

er
 

7.
75

 
52

 
77

.8
6 

ch
r1

4:
99

82
11

15
-9

98
22

23
5 

SL
C

25
A2

9 
do

w
ns

tre
am

 
8.

16
 

49
 

11
3.

68
 

ch
r1

5:
29

07
03

66
-2

90
72

00
7 

M
TM

R
10

 
pr

om
ot

er
 

4.
86

 
75

 
82

.6
9 

ch
r1

5:
43

66
63

09
-4

36
67

70
0 

PL
D

N
 

pr
om

ot
er

 
8.

14
 

67
 

14
5.

19
 

ch
r1

5:
49

70
14

09
-4

97
02

96
7 

D
M

X
L2

 
pr

om
ot

er
 

5.
54

 
77

 
12

5.
52

 
ch

r1
5:

54
96

63
33

-5
49

67
44

2 
LO

C
14

57
83

 
bo

dy
 

7.
65

 
69

 
15

7.
56

 
ch

r1
5:

62
46

67
63

-6
24

67
49

8 
TR

IP
4 

pr
om

ot
er

 
9.

47
 

69
 

20
2.

42
 

ch
r1

5:
65

96
37

11
-6

59
64

61
0 

 
 

6.
09

 
47

 
77

.7
1 

ch
r1

5:
68

52
70

00
-6

85
28

40
4 

 
 

7.
28

 
78

 
12

0.
21

 
ch

r1
6:

31
09

81
23

-3
10

99
85

6 
FU

S 
pr

om
ot

er
 

5.
65

 
14

4 
15

4.
83

 
ch

r1
6:

46
83

55
33

-4
68

35
97

6 
LO

N
P2

 
pr

om
ot

er
 

8.
69

 
35

 
91

.6
6 

ch
r1

6:
51

72
13

77
-5

17
22

74
1 

C
H

D
9 

bo
dy

 
6.

03
 

63
 

11
6.

02
 

ch
r1

6:
65

77
58

-6
58

37
3 

R
H

O
T2

 
pr

om
ot

er
 

10
.0

6 
32

 
95

.4
5 

ch
r1

6:
66

46
32

57
-6

64
65

29
9 

ED
C

4 
pr

om
ot

er
 

6.
83

 
83

 
51

.4
2 

ch
r1

6:
84

63
52

53
-8

46
35

86
4 

 
 

7.
14

 
27

 
83

.1
7 

ch
r1

6:
87

76
09

02
-8

77
61

90
6 

C
D

H
15

 
up

st
re

am
 

9.
04

 
47

 
90

.4
1 

ch
r1

6:
88

52
00

16
-8

85
20

67
4 

TU
BB

3 
bo

dy
 

7.
27

 
27

 
64

.7
1 

ch
r1

7:
12

86
14

50
-1

28
62

50
3 

EL
AC

2 
pr

om
ot

er
 

11
.2

4 
48

 
15

2.
38

 
ch

r1
7:

30
50

20
35

-3
05

02
78

5 
U

N
C

45
B

 
bo

dy
 

5.
44

 
16

4 
98

.2
3 

91



ch
r1

7:
37

09
78

49
-3

70
99

49
0 

EI
F1

 
pr

om
ot

er
 

7.
55

 
92

 
15

6.
7 

ch
r1

7:
39

54
36

40
-3

95
44

65
9 

H
D

AC
5 

bo
dy

 
5.

29
 

61
 

75
.9

2 
ch

r1
7:

41
62

63
53

-4
16

27
60

9 
 

 
5.

79
 

90
 

14
8.

39
 

ch
r1

7:
53

28
21

23
-5

32
83

06
9 

M
R

PS
23

 
pr

om
ot

er
 

10
.4

9 
66

 
15

9.
6 

ch
r1

7:
71

24
49

3-
71

25
01

3 
SL

C
2A

4 
pr

om
ot

er
 

8.
31

 
36

 
82

 
ch

r1
8:

14
80

98
-1

49
26

9 
U

SP
14

 
pr

om
ot

er
 

5.
85

 
70

 
98

.4
2 

ch
r1

8:
58

34
10

20
-5

83
41

48
3 

ZC
C

H
C

2 
pr

om
ot

er
 

11
.9

 
22

 
10

4.
59

 
ch

r1
8:

90
92

28
3-

90
93

33
7 

N
D

U
FV

2 
pr

om
ot

er
 

7.
67

 
82

 
12

4.
29

 
ch

r1
9:

10
66

69
75

-1
06

67
83

3 
IL

F3
 

do
w

ns
tre

am
 

7.
26

 
53

 
10

0.
56

 
ch

r1
9:

14
37

74
76

-1
43

78
55

1 
D

D
X

39
 

do
w

ns
tre

am
 

5.
47

 
57

 
10

5.
59

 
ch

r1
9:

27
70

17
9-

27
71

33
1 

ZN
F5

54
 

pr
om

ot
er

 
10

.6
6 

56
 

98
.4

6 
ch

r1
9:

43
20

06
1-

43
21

94
8 

SH
3G

L1
 

bo
dy

 
6.

73
 

91
 

81
.8

2 
ch

r1
9:

55
18

20
96

-5
51

82
78

5 
VR

K3
 

bo
dy

 
8.

54
 

56
 

11
2.

82
 

ch
r1

9:
60

36
31

17
-6

03
64

40
7 

TN
N

I3
 

up
st

re
am

 
10

.6
6 

47
 

94
.9

2 
ch

r1
9:

63
42

20
82

-6
34

22
56

9 
 

 
15

.3
1 

18
 

99
.2

8 
ch

r1
9:

85
51

40
5-

85
52

17
1 

M
YO

1F
 

up
st

re
am

 
12

.3
4 

59
 

15
5 

ch
r2

:1
09

02
96

91
-1

09
03

04
22

 
 

 
6.

93
 

27
 

52
.1

9 
ch

r2
:1

44
80

57
19

-1
44

80
71

66
 

G
TD

C
1 

pr
om

ot
er

 
6.

17
 

61
 

62
.7

6 
ch

r2
:1

83
28

87
16

-1
83

28
98

19
 

D
N

AJ
C

10
 

pr
om

ot
er

 
11

.7
3 

56
 

15
4.

25
 

ch
r2

:2
08

19
74

46
-2

08
19

96
95

 
FA

M
11

9A
 

pr
om

ot
er

 
4.

52
 

13
8 

10
4.

45
 

ch
r2

:2
18

32
89

82
-2

18
32

99
26

 
D

IR
C

3 
pr

om
ot

er
 

11
.0

5 
30

 
91

.9
3 

ch
r2

:2
31

28
49

04
-2

31
28

64
12

 
C

AB
39

 
pr

om
ot

er
 

6.
16

 
81

 
58

.8
9 

ch
r2

:2
40

61
33

19
-2

40
61

41
57

 
N

D
U

FA
10

 
pr

om
ot

er
 

12
.6

5 
35

 
11

7.
06

 
ch

r2
:3

95
17

17
9-

39
51

84
54

 
M

AP
4K

3 
pr

om
ot

er
 

6.
32

 
73

 
83

.8
7 

ch
r2

:6
09

61
44

1-
60

96
26

52
 

R
EL

 
pr

om
ot

er
 

9.
79

 
73

 
14

2.
2 

ch
r2

:6
45

68
72

1-
64

56
91

93
 

 
 

11
.9

 
22

 
87

.0
9 

ch
r2

:8
56

96
45

1-
85

69
73

04
 

U
SP

39
 

pr
om

ot
er

 
9.

09
 

58
 

13
6.

51
 

ch
r2

:8
64

95
59

7-
86

49
59

02
 

 
 

14
.8

8 
23

 
12

8.
97

 
ch

r2
:9

62
94

36
3-

96
29

63
76

 
TM

E
M

12
7,

C
IA

O
1 

pr
om

ot
er

 
5.

78
 

10
4 

77
.6

 
ch

r2
0:

10
46

90
3-

10
47

65
6 

PS
M

F1
 

pr
om

ot
er

 
11

.1
5 

39
 

97
.4

3 
ch

r2
0:

18
06

60
17

-1
80

66
96

2 
C

SR
P2

BP
 

pr
om

ot
er

 
5.

92
 

49
 

10
0.

85
 

ch
r2

0:
26

13
66

41
-2

61
37

57
6 

 
 

4.
51

 
17

1 
16

3.
46

 
ch

r2
0:

29
66

35
39

-2
96

64
93

1 
 

 
8.

15
 

17
7 

10
0.

29
 

92



ch
r2

0:
30

01
97

91
-3

00
20

96
0 

X
KR

7 
pr

om
ot

er
 

12
.9

6 
15

6 
17

3.
76

 
ch

r2
0:

34
00

52
47

-3
40

06
57

9 
SC

AN
D

1 
pr

om
ot

er
 

7.
11

 
86

 
14

5.
41

 
ch

r2
0:

43
42

47
90

-4
34

25
89

3 
SY

S1
 

pr
om

ot
er

 
5.

37
 

65
 

11
1.

67
 

ch
r2

0:
43

99
57

18
-4

39
97

88
0 

PC
IF

1 
pr

om
ot

er
 

6.
94

 
10

1 
11

0.
54

 
ch

r2
0:

60
51

06
4-

60
51

91
0 

FE
R

M
T1

 
pr

om
ot

er
 

7.
11

 
26

 
73

.6
 

ch
r2

1:
45

18
38

17
-4

51
85

01
8 

C
21

or
f6

7 
pr

om
ot

er
 

9.
57

 
75

 
94

.9
7 

ch
r2

1:
46

16
69

57
-4

61
68

07
3 

PC
BP

3 
bo

dy
 

12
.3

4 
40

 
10

0.
56

 
ch

r2
2:

30
21

56
74

-3
02

16
94

1 
EI

F4
EN

IF
1 

pr
om

ot
er

 
5.

83
 

66
 

11
2.

48
 

ch
r2

2:
44

89
09

51
-4

48
91

64
8 

LO
C

40
09

31
 

do
w

ns
tre

am
 

10
.9

9 
36

 
11

5.
41

 
ch

r3
:1

29
88

18
82

-1
29

88
30

49
 

 
 

6.
69

 
76

 
12

3.
03

 
ch

r3
:1

32
70

41
39

-1
32

70
47

13
 

M
R

PL
3 

pr
om

ot
er

 
9.

47
 

27
 

10
1.

08
 

ch
r3

:1
43

77
99

16
-1

43
78

08
09

 
AT

R
 

pr
om

ot
er

 
6.

92
 

53
 

12
5.

46
 

ch
r3

:1
57

87
42

92
-1

57
87

59
69

 
TI

PA
R

P 
pr

om
ot

er
 

6.
04

 
10

9 
15

2.
82

 
ch

r3
:1

58
28

89
67

-1
58

29
02

41
 

 
 

8.
12

 
77

 
15

0.
42

 
ch

r3
:1

58
43

95
81

-1
58

43
99

57
 

 
 

16
.5

8 
15

 
85

.5
4 

ch
r3

:1
59

84
48

20
-1

59
84

54
55

 
G

FM
1 

pr
om

ot
er

 
11

.0
3 

46
 

18
2.

96
 

ch
r3

:1
80

27
18

15
-1

80
27

31
39

 
ZM

AT
3 

pr
om

ot
er

 
6.

46
 

61
 

11
6.

69
 

ch
r3

:4
03

25
25

7-
40

32
67

47
 

EI
F1

B 
pr

om
ot

er
 

7.
23

 
89

 
93

.8
4 

ch
r3

:4
99

51
97

2-
49

95
32

75
 

R
B

M
6 

pr
om

ot
er

 
5.

67
 

88
 

19
5.

31
 

ch
r3

:5
30

81
40

1-
53

08
24

39
 

 
 

11
.9

 
64

 
14

3.
45

 
ch

r3
:8

81
89

85
7-

88
19

18
95

 
C

G
G

BP
1 

pr
om

ot
er

 
7.

58
 

10
9 

14
9.

87
 

ch
r3

:9
41

26
42

-9
41

45
29

 
SE

TD
5 

pr
om

ot
er

 
4.

53
 

16
1 

16
4.

66
 

ch
r4

:1
40

43
60

20
-1

40
43

66
64

 
N

D
U

FC
1 

pr
om

ot
er

 
14

.1
 

51
 

20
5.

52
 

ch
r4

:1
44

65
36

27
-1

44
65

50
34

 
S

M
AR

C
A5

 
pr

om
ot

er
 

4.
74

 
83

 
79

.2
7 

ch
r4

:1
52

65
18

7-
15

26
70

09
 

FB
X

L5
 

pr
om

ot
er

 
7.

4 
94

 
12

6.
9 

ch
r4

:1
72

01
12

74
-1

72
01

15
68

 
 

 
27

.7
8 

15
 

13
3.

58
 

ch
r4

:1
85

18
62

91
-1

85
18

71
53

 
 

 
9.

53
 

41
 

14
8.

02
 

ch
r4

:1
86

62
93

73
-1

86
62

99
28

 
C

C
D

C
11

0 
pr

om
ot

er
 

9.
65

 
19

 
78

.0
6 

ch
r4

:2
50

64
33

-2
50

83
20

 
 

 
4.

89
 

13
3 

14
0.

79
 

ch
r4

:4
09

10
10

0-
40

91
19

27
 

AP
BB

2 
pr

om
ot

er
 

5.
15

 
76

 
74

.2
4 

ch
r4

:4
16

31
63

7-
41

63
25

02
 

TM
E

M
33

 
pr

om
ot

er
 

6.
3 

53
 

99
.0

3 
ch

r4
:6

62
71

06
-6

62
90

04
 

M
AN

2B
2 

pr
om

ot
er

 
6.

01
 

86
 

83
.3

6 
ch

r4
:6

99
04

16
-6

99
18

86
 

TB
C

1D
14

 
bo

dy
 

6.
04

 
86

 
11

0.
19

 

93



ch
r4

:7
72

87
96

4-
77

28
90

97
 

N
U

P5
4 

pr
om

ot
er

 
10

.3
9 

98
 

28
4.

03
 

ch
r4

:8
45

95
42

7-
84

59
64

55
 

H
EL

Q
,M

R
PS

18
C

 
pr

om
ot

er
 

9.
17

 
76

 
15

6.
45

 
ch

r5
:1

26
14

01
53

-1
26

14
24

56
 

LM
N

B1
 

pr
om

ot
er

 
5.

04
 

16
2 

14
5.

67
 

ch
r5

:1
31

85
32

80
-1

31
85

50
24

 
IR

F1
 

pr
om

ot
er

 
5.

69
 

99
 

10
3.

51
 

ch
r5

:1
34

26
80

21
-1

34
26

93
11

 
PC

BD
2 

pr
om

ot
er

 
11

.9
 

98
 

21
9.

06
 

ch
r5

:1
39

90
69

21
-1

39
90

83
26

 
EI

F4
EB

P3
 

pr
om

ot
er

 
5.

49
 

89
 

13
1.

77
 

ch
r5

:1
50

80
70

80
-1

50
80

81
83

 
SL

C
36

A1
 

pr
om

ot
er

 
9.

41
 

62
 

11
1.

54
 

ch
r5

:1
71

54
64

48
-1

71
54

86
31

 
ST

K1
0 

pr
om

ot
er

 
5.

81
 

14
5 

13
3.

58
 

ch
r5

:3
63

41
63

7-
36

34
18

90
 

R
AN

BP
3L

 
up

st
re

am
 

20
.1

3 
17

 
13

4.
56

 
ch

r5
:3

69
11

65
0-

36
91

36
06

 
N

IP
BL

 
pr

om
ot

er
 

4.
74

 
10

3 
10

6.
91

 
ch

r5
:4

30
27

71
0-

43
02

93
52

 
 

 
4.

36
 

10
5 

90
.4

5 
ch

r5
:7

48
42

88
5-

74
84

38
26

 
C

O
L4

A3
BP

,P
O

LK
 

pr
om

ot
er

 
6.

19
 

51
 

99
.0

8 
ch

r6
:1

09
09

53
6-

10
90

97
57

 
M

AK
 

bo
dy

 
20

.8
3 

14
 

14
0.

47
 

ch
r6

:1
09

91
01

29
-1

09
91

12
49

 
ZB

TB
24

 
pr

om
ot

er
 

5.
6 

41
 

56
.7

8 
ch

r6
:1

14
39

77
54

-1
14

39
95

42
 

H
D

AC
2 

pr
om

ot
er

 
6.

49
 

95
 

13
7.

56
 

ch
r6

:1
37

15
51

29
-1

37
15

62
22

 
M

AP
3K

5 
pr

om
ot

er
 

7.
09

 
84

 
17

8.
43

 
ch

r6
:1

42
50

97
68

-1
42

51
04

78
 

VT
A1

 
pr

om
ot

er
 

11
.5

8 
49

 
13

6.
13

 
ch

r6
:1

63
75

44
08

-1
63

75
55

13
 

Q
KI

 
pr

om
ot

er
 

6.
14

 
37

 
69

.4
7 

ch
r6

:4
18

61
65

8-
41

86
38

65
 

TO
M

M
6 

pr
om

ot
er

 
6.

46
 

13
2 

96
.4

 

ch
r6

:8
64

44
54

5-
86

44
59

94
 

SN
H

G
5,

SN
O

R
D

50
A,

SN
O

R
D

50
B 

pr
om

ot
er

 
7.

66
 

10
9 

19
7.

73
 

ch
r6

:8
84

67
63

6-
88

46
90

03
 

AK
IR

IN
2,

N
C

R
N

A0
01

20
 

pr
om

ot
er

 
7.

83
 

90
 

17
5.

61
 

ch
r7

:1
05

58
14

41
-1

05
58

18
41

 
 

 
12

 
20

 
78

.0
9 

ch
r7

:1
16

28
94

81
-1

16
29

07
48

 
C

AP
ZA

2 
pr

om
ot

er
 

6.
3 

66
 

82
.8

9 
ch

r7
:1

48
00

97
-1

48
08

15
 

IN
TS

1 
bo

dy
 

12
.8

3 
39

 
13

2.
6 

ch
r7

:4
88

94
32

-4
89

02
79

 
R

AD
IL

 
pr

om
ot

er
 

10
.4

4 
36

 
92

.2
6 

ch
r7

:5
40

25
06

-5
40

42
26

 
TN

R
C

18
 

bo
dy

 
6.

13
 

11
9 

13
0.

6 
ch

r7
:5

54
00

45
6-

55
40

19
23

 
LA

N
C

L2
 

pr
om

ot
er

 
5.

96
 

74
 

10
3.

72
 

ch
r7

:6
27

85
88

-6
27

93
43

 
C

YT
H

3 
pr

om
ot

er
 

6.
94

 
47

 
98

.0
7 

ch
r7

:6
57

83
90

9-
65

78
51

22
 

LO
C

10
02

89
13

5 
TS

E 
6.

92
 

65
 

12
0.

47
 

ch
r7

:7
54

61
35

1-
75

46
24

13
 

TM
E

M
12

0A
 

pr
om

ot
er

 
7.

31
 

44
 

74
.4

7 
ch

r7
:7

59
05

12
0-

75
90

54
86

 
ZP

3 
bo

dy
 

20
.7

4 
21

 
14

1.
62

 

94



ch
r7

:8
73

42
93

0-
87

34
44

60
 

SL
C

25
A4

0,
D

BF
4 

pr
om

ot
er

 
8.

38
 

79
 

13
0.

92
 

ch
r7

:9
95

16
74

5-
99

51
77

41
 

ZN
F3

 
pr

om
ot

er
 

10
.3

1 
87

 
20

8.
49

 
ch

r7
:9

99
04

61
4-

99
90

56
02

 
LO

C
40

25
73

 
up

st
re

am
 

9.
97

 
51

 
11

1.
46

 
ch

r8
:1

42
79

51
17

-1
42

79
58

46
 

 
 

15
.3

1 
30

 
10

4.
36

 
ch

r8
:1

44
98

32
69

-1
44

98
42

86
 

PU
F6

0 
pr

om
ot

er
 

7.
08

 
78

 
17

0.
73

 
ch

r8
:1

46
58

9-
14

73
30

 
R

PL
23

AP
53

 
do

w
ns

tre
am

 
7.

02
 

39
 

97
.4

3 
ch

r8
:2

71
87

76
3-

27
18

85
26

 
 

 
8.

67
 

44
 

94
.3

 
ch

r8
:2

85
35

54
7-

28
53

65
66

 
 

 
8.

05
 

57
 

13
1.

34
 

ch
r8

:9
09

83
09

0-
90

98
46

25
 

O
SG

IN
2 

pr
om

ot
er

 
7.

27
 

68
 

11
5.

28
 

ch
r8

:9
17

26
57

0-
91

72
81

58
 

TM
E

M
64

 
pr

om
ot

er
 

5.
76

 
78

 
12

9.
92

 
ch

r9
:1

14
13

48
80

-1
14

13
61

59
 

R
O

D
1 

pr
om

ot
er

 
5.

79
 

48
 

89
.5

 
ch

r9
:1

33
36

78
51

-1
33

36
88

44
 

PO
M

T1
 

pr
om

ot
er

 
6.

34
 

38
 

89
.7

5 
ch

r9
:1

38
80

49
59

-1
38

80
68

04
 

TM
E

M
14

1 
pr

om
ot

er
 

6.
13

 
88

 
13

1.
77

 
ch

r9
:1

39
63

20
21

-1
39

63
33

88
 

C
9o

rf3
7,

EH
M

T1
 

pr
om

ot
er

 
5.

73
 

56
 

85
.1

5 
ch

r9
:3

61
25

70
3-

36
12

74
20

 
G

LI
PR

2 
pr

om
ot

er
 

4.
73

 
65

 
84

.8
6 

ch
rX

:1
53

37
13

03
-1

53
37

28
03

 
SL

C
10

A3
 

pr
om

ot
er

 
7.

63
 

74
 

10
4.

54
 

ch
rX

:6
94

26
16

3-
69

42
71

81
 

PD
ZD

11
,K

IF
4A

 
pr

om
ot

er
 

9.
34

 
53

 
16

4.
21

 
 

95



 

 

References 

1. Peale, F. V., Jr., L. Sugden, and M. Bothwell. 1998. Characterization of 

CMIX, a chicken homeobox gene related to the Xenopus gene mix.1. 

Mech Dev 75:167-170. 

2. Guo, W., A. P. Chan, H. Liang, E. D. Wieder, J. J. Molldrem, L. D. Etkin, 

and L. Nagarajan. 2002. A human Mix-like homeobox gene MIXL shows 

functional similarity to Xenopus Mix.1. Blood 100:89-95. 

3. Pearce, J. J., and M. J. Evans. 1999. Mml, a mouse Mix-like gene 

expressed in the primitive streak. Mech Dev 87:189-192. 

4. Robb, L., L. Hartley, C. G. Begley, T. C. Brodnicki, N. G. Copeland, D. J. 

Gilbert, N. A. Jenkins, and A. G. Elefanty. 2000. Cloning, expression 

analysis, and chromosomal localization of murine and human homologues 

of a Xenopus mix gene. Dev Dyn 219:497-504. 

5. Mohn, D., S. W. Chen, D. C. Dias, D. C. Weinstein, M. A. Dyer, K. Sahr, 

C. E. Ducker, E. Zahradka, G. Keller, K. S. Zaret, L. J. Gudas, and M. H. 

Baron. 2003. Mouse Mix gene is activated early during differentiation of 

ES and F9 stem cells and induces endoderm in frog embryos. Dev Dyn 

226:446-459. 

6. Hart, A. H., L. Hartley, K. Sourris, E. S. Stadler, R. Li, E. G. Stanley, P. P. 

Tam, A. G. Elefanty, and L. Robb. 2002. Mixl1 is required for axial 

96



mesendoderm morphogenesis and patterning in the murine embryo. 

Development 129:3597-3608. 

7. Willey, S., A. Ayuso-Sacido, H. Zhang, S. T. Fraser, K. E. Sahr, M. J. 

Adlam, M. Kyba, G. Q. Daley, G. Keller, and M. H. Baron. 2006. 

Acceleration of mesoderm development and expansion of hematopoietic 

progenitors in differentiating ES cells by the mouse Mix-like homeodomain 

transcription factor. Blood 107:3122-3130. 

8. Wilson, D., G. Sheng, T. Lecuit, N. Dostatni, and C. Desplan. 1993. 

Cooperative dimerization of paired class homeo domains on DNA. Genes 

Dev 7:2120-2134. 

9. Galliot, B., C. de Vargas, and D. Miller. 1999. Evolution of homeobox 

genes: Q50 Paired-like genes founded the Paired class. Dev Genes Evol 

209:186-197. 

10. Zhang, H., S. T. Fraser, C. Papazoglu, M. E. Hoatlin, and M. H. Baron. 

2009. Transcriptional activation by the Mixl1 homeodomain protein in 

differentiating mouse embryonic stem cells. Stem Cells 27:2884-2895. 

11. Luu, O., M. Nagel, S. Wacker, P. Lemaire, and R. Winklbauer. 2008. 

Control of gastrula cell motility by the Goosecoid/Mix.1/ Siamois network: 

basic patterns and paradoxical effects. Dev Dyn 237:1307-1320. 

12. Ravasi, T., H. Suzuki, C. V. Cannistraci, S. Katayama, V. B. Bajic, K. Tan, 

A. Akalin, S. Schmeier, M. Kanamori-Katayama, N. Bertin, P. Carninci, C. 

O. Daub, A. R. Forrest, J. Gough, S. Grimmond, J. H. Han, T. Hashimoto, 

W. Hide, O. Hofmann, A. Kamburov, M. Kaur, H. Kawaji, A. Kubosaki, T. 

97



Lassmann, E. van Nimwegen, C. R. MacPherson, C. Ogawa, A. 

Radovanovic, A. Schwartz, R. D. Teasdale, J. Tegner, B. Lenhard, S. A. 

Teichmann, T. Arakawa, N. Ninomiya, K. Murakami, M. Tagami, S. 

Fukuda, K. Imamura, C. Kai, R. Ishihara, Y. Kitazume, J. Kawai, D. A. 

Hume, T. Ideker, and Y. Hayashizaki. 2010. An atlas of combinatorial 

transcriptional regulation in mouse and man. Cell 140:744-752. 

13. Zhang, P., J. Li, Z. Tan, C. Wang, T. Liu, L. Chen, J. Yong, W. Jiang, X. 

Sun, L. Du, M. Ding, and H. Deng. 2008. Short-term BMP-4 treatment 

initiates mesoderm induction in human embryonic stem cells. Blood 

111:1933-1941. 

14. Xu, X., V. L. Browning, and J. S. Odorico. 2011. Activin, BMP and FGF 

pathways cooperate to promote endoderm and pancreatic lineage cell 

differentiation from human embryonic stem cells. Mech Dev 128:412-427. 

15. Pick, M., L. Azzola, A. Mossman, E. G. Stanley, and A. G. Elefanty. 2007. 

Differentiation of human embryonic stem cells in serum-free medium 

reveals distinct roles for bone morphogenetic protein 4, vascular 

endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in 

hematopoiesis. Stem Cells 25:2206-2214. 

16. Jackson, S. A., J. Schiesser, E. G. Stanley, and A. G. Elefanty. 2010. 

Differentiating embryonic stem cells pass through 'temporal windows' that 

mark responsiveness to exogenous and paracrine mesendoderm inducing 

signals. PLoS One 5:e10706. 

98



17. Mead, P. E., I. H. Brivanlou, C. M. Kelley, and L. I. Zon. 1996. BMP-4-

responsive regulation of dorsal-ventral patterning by the homeobox protein 

Mix.1. Nature 382:357-360. 

18. Hart, A. H., T. A. Willson, M. Wong, K. Parker, and L. Robb. 2005. 

Transcriptional regulation of the homeobox gene Mixl1 by TGF-beta and 

FoxH1. Biochem Biophys Res Commun 333:1361-1369. 

19. Izzi, L., C. Silvestri, I. von Both, E. Labbe, L. Zakin, J. L. Wrana, and L. 

Attisano. 2007. Foxh1 recruits Gsc to negatively regulate Mixl1 expression 

during early mouse development. EMBO J 26:3132-3143. 

20. Ng, E. S., L. Azzola, K. Sourris, L. Robb, E. G. Stanley, and A. G. 

Elefanty. 2005. The primitive streak gene Mixl1 is required for efficient 

haematopoiesis and BMP4-induced ventral mesoderm patterning in 

differentiating ES cells. Development 132:873-884. 

21. Drakos, E., G. Z. Rassidakis, V. Leventaki, W. Guo, L. J. Medeiros, and L. 

Nagarajan. 2007. Differential expression of the human MIXL1 gene 

product in non-Hodgkin and Hodgkin lymphomas. Hum Pathol 38:500-

507. 

22. Glaser, S., D. Metcalf, L. Wu, A. H. Hart, L. DiRago, S. Mifsud, A. 

D'Amico, S. Dagger, C. Campo, A. C. Chan, D. J. Izon, and L. Robb. 

2006. Enforced expression of the homeobox gene Mixl1 impairs 

hematopoietic differentiation and results in acute myeloid leukemia. Proc 

Natl Acad Sci U S A 103:16460-16465. 

99



23. Metcalf, D., S. Glaser, S. Mifsud, L. Di Rago, and L. Robb. 2007. The 

preleukemic state of mice reconstituted with Mixl1-transduced marrow 

cells. Proc Natl Acad Sci U S A 104:20013-20018. 

24. Hwang, H. C., C. P. Martins, Y. Bronkhorst, E. Randel, A. Berns, M. Fero, 

and B. E. Clurman. 2002. Identification of oncogenes collaborating with 

p27Kip1 loss by insertional mutagenesis and high-throughput insertion site 

analysis. Proc Natl Acad Sci U S A 99:11293-11298. 

25. Lawrence, H. J., C. D. Helgason, G. Sauvageau, S. Fong, D. J. Izon, R. K. 

Humphries, and C. Largman. 1997. Mice bearing a targeted interruption of 

the homeobox gene HOXA9 have defects in myeloid, erythroid, and 

lymphoid hematopoiesis. Blood 89:1922-1930. 

26. Andreeff, M., V. Ruvolo, S. Gadgil, C. Zeng, K. Coombes, W. Chen, S. 

Kornblau, A. E. Barón, and H. A. Drabkin. 2008. HOX expression patterns 

identify a common signature for favorable AML. Leukemia 22:2041-2047. 

27. Drabkin, H. A., C. Parsy, K. Ferguson, F. Guilhot, L. Lacotte, L. Roy, C. 

Zeng, A. Baron, S. P. Hunger, M. Varella-Garcia, R. Gemmill, F. Brizard, 

A. Brizard, and J. Roche. 2002. Quantitative HOX expression in 

chromosomally defined subsets of acute myelogenous leukemia. 

Leukemia 16:186-195. 

28. Pandolfi, A., and U. Steidi. 2012. HLX in AML: novel prognostic and 

therapeutic target. Oncotarget. 

29. Kawahara, M., A. Pandolfi, B. Bartholdy, L. Barreyro, B. Will, M. Roth, U. 

C. Okoye-Okafor, T. I. Todorova, M. E. Figueroa, A. Melnick, C. S. 

100



Mitsiades, and U. Steidl. 2012. H2.0-like homeobox regulates early 

hematopoiesis and promotes acute myeloid leukemia. Cancer Cell 

22:194-208. 

30. Scholl, C., D. Bansal, K. Döhner, K. Eiwen, B. J. Huntly, B. H. Lee, F. G. 

Rücker, R. F. Schlenk, L. Bullinger, H. Döhner, D. G. Gilliland, and S. 

Fröhling. 2007. The homeobox gene CDX2 is aberrantly expressed in 

most cases of acute myeloid leukemia and promotes leukemogenesis. J 

Clin Invest 117:1037-1048. 

31. Rawat, V. P., S. Thoene, V. M. Naidu, N. Arseni, B. Heilmeier, K. 

Metzeler, K. Petropoulos, A. Deshpande, L. Quintanilla-Martinez, S. K. 

Bohlander, K. Spiekermann, W. Hiddemann, M. Feuring-Buske, and C. 

Buske. 2008. Overexpression of CDX2 perturbs HOX gene expression in 

murine progenitors depending on its N-terminal domain and is closely 

correlated with deregulated HOX gene expression in human acute myeloid 

leukemia. Blood 111:309-319. 

32. Riedt, T., M. Ebinger, H. R. Salih, J. Tomiuk, R. Handgretinger, L. Kanz, F. 

Grunebach, and C. Lengerke. 2009. Aberrant expression of the homeobox 

gene CDX2 in pediatric acute lymphoblastic leukemia. Blood 113:4049-

4051. 

33. Choi, C. W., Y. J. Chung, C. Slape, and P. D. Aplan. 2009. A NUP98-

HOXD13 fusion gene impairs differentiation of B and T lymphocytes and 

leads to expansion of thymocytes with partial TCRB gene rearrangement. 

J Immunol 183:6227-6235. 

101



34. Chung, K. Y., G. Morrone, J. J. Schuringa, M. Plasilova, J. H. Shieh, Y. 

Zhang, P. Zhou, and M. A. Moore. 2006. Enforced expression of NUP98-

HOXA9 in human CD34(+) cells enhances stem cell proliferation. Cancer 

Res 66:11781-11791. 

35. Argiropoulos, B., and R. K. Humphries. 2007. Hox genes in hematopoiesis 

and leukemogenesis. Oncogene 26:6766-6776. 

36. Gilmore, T. D., D. Kalaitzidis, M. C. Liang, and D. T. Starczynowski. 2004. 

The c-Rel transcription factor and B-cell proliferation: a deal with the devil. 

Oncogene 23:2275-2286. 

37. Zhao, C., Y. Xiu, J. Ashton, L. Xing, Y. Morita, C. T. Jordan, and B. F. 

Boyce. 2012. Noncanonical NF-κB signaling regulates hematopoietic stem 

cell self-renewal and microenvironment interactions. Stem Cells 30:709-

718. 

38. Curry, C. V., A. A. Ewton, R. J. Olsen, B. R. Logan, H. A. Preti, Y. C. Liu, 

S. L. Perkins, and C. C. Chang. 2009. Prognostic impact of C-REL 

expression in diffuse large B-cell lymphoma. J Hematop 2:20-26. 

39. Birkenkamp, K. U., M. Geugien, H. Schepers, J. Westra, H. H. Lemmink, 

and E. Vellenga. 2004. Constitutive NF-kappaB DNA-binding activity in 

AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. 

Leukemia 18:103-112. 

40. Iqbal, J., W. G. Sanger, D. E. Horsman, A. Rosenwald, D. L. Pickering, B. 

Dave, S. Dave, L. Xiao, K. Cao, Q. Zhu, S. Sherman, C. P. Hans, D. D. 

Weisenburger, T. C. Greiner, R. D. Gascoyne, G. Ott, H. K. Müller-

102



Hermelink, J. Delabie, R. M. Braziel, E. S. Jaffe, E. Campo, J. C. Lynch, J. 

M. Connors, J. M. Vose, J. O. Armitage, T. M. Grogan, L. M. Staudt, and 

W. C. Chan. 2004. BCL2 translocation defines a unique tumor subset 

within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J 

Pathol 165:159-166. 

41. Liang, H., S. Samanta, and L. Nagarajan. 2005. SSBP2, a candidate 

tumor suppressor gene, induces growth arrest and differentiation of 

myeloid leukemia cells. Oncogene 24:2625-2634. 

42. Chadee, D. N., M. J. Hendzel, C. P. Tylipski, C. D. Allis, D. P. Bazett-

Jones, J. A. Wright, and J. R. Davie. 1999. Increased Ser-10 

phosphorylation of histone H3 in mitogen-stimulated and oncogene-

transformed mouse fibroblasts. J Biol Chem 274:24914-24920. 

43. Zhang, Y., T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. 

Bernstein, C. Nusbaum, R. M. Myers, M. Brown, W. Li, and X. S. Liu. 

2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. 

44. Bailey, T. L., and M. Gribskov. 1998. Methods and statistics for combining 

motif match scores. J Comput Biol 5:211-221. 

45. Bailey, T. L., and C. Elkan. 1994. Fitting a mixture model by expectation 

maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst 

Mol Biol 2:28-36. 

46. Li, C., and W. H. Wong. 2001. Model-based analysis of oligonucleotide 

arrays: expression index computation and outlier detection. Proc Natl 

Acad Sci U S A 98:31-36. 

103



47. Network, C. G. A. R. 2013. Genomic and epigenomic landscapes of adult 

de novo acute myeloid leukemia. N Engl J Med 368:2059-2074. 

48. Cerami, E., J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer, B. A. Aksoy, 

A. Jacobsen, C. J. Byrne, M. L. Heuer, E. Larsson, Y. Antipin, B. Reva, A. 

P. Goldberg, C. Sander, and N. Schultz. 2012. The cBio cancer genomics 

portal: an open platform for exploring multidimensional cancer genomics 

data. Cancer Discov 2:401-404. 

49. Gao, J., B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S. O. Sumer, 

Y. Sun, A. Jacobsen, R. Sinha, E. Larsson, E. Cerami, C. Sander, and N. 

Schultz. 2013. Integrative analysis of complex cancer genomics and 

clinical profiles using the cBioPortal. Sci Signal 6:pl1. 

50. Akiyama, Y. 1995. TFSEARCH: Searching Transcription Factor Binding 

Sites. 

51. Hromas, R., S. Boswell, R. N. Shen, G. Burgess, A. Davidson, K. 

Cornetta, J. Sutton, and K. Robertson. 1996. Forced over-expression of 

the myeloid zinc finger gene MZF-1 inhibits apoptosis and promotes 

oncogenesis in interleukin-3-dependent FDCP.1 cells. Leukemia 10:1049-

1050. 

52. Robertson, K. A., D. P. Hill, M. R. Kelley, R. Tritt, B. Crum, S. Van Epps, 

E. Srour, S. Rice, and R. Hromas. 1998. The myeloid zinc finger gene 

(MZF-1) delays retinoic acid-induced apoptosis and differentiation in 

myeloid leukemia cells. Leukemia 12:690-698. 

104



53. Sahr, K., D. C. Dias, R. Sanchez, D. Chen, S. W. Chen, L. J. Gudas, and 

M. H. Baron. 2002. Structure, upstream promoter region, and functional 

domains of a mouse and human Mix paired-like homeobox gene. Gene 

291:135-147. 

54. Mizutani, A., D. Koinuma, S. Tsutsumi, N. Kamimura, M. Morikawa, H. I. 

Suzuki, T. Imamura, K. Miyazono, and H. Aburatani. 2011. Cell type-

specific target selection by combinatorial binding of Smad2/3 proteins and 

hepatocyte nuclear factor 4alpha in HepG2 cells. J Biol Chem 286:29848-

29860. 

55. Xi, Q., Z. Wang, A. I. Zaromytidou, X. H. Zhang, L. F. Chow-Tsang, J. X. 

Liu, H. Kim, A. Barlas, K. Manova-Todorova, V. Kaartinen, L. Studer, W. 

Mark, D. J. Patel, and J. Massague. 2011. A poised chromatin platform for 

TGF-beta access to master regulators. Cell 147:1511-1524. 

56. Xu, X., V. L. Browning, and J. S. Odorico. 2011. Activin, BMP and FGF 

pathways cooperate to promote endoderm and pancreatic lineage cell 

differentiation from human embryonic stem cells. Mechanisms of 

development 128:412-427. 

57. Bhatia, M., D. Bonnet, D. Wu, B. Murdoch, J. Wrana, L. Gallacher, and J. 

E. Dick. 1999. Bone morphogenetic proteins regulate the developmental 

program of human hematopoietic stem cells. J Exp Med 189:1139-1148. 

58. Hutton, J. F., V. Rozenkov, F. S. Khor, R. J. D'Andrea, and I. D. Lewis. 

2006. Bone morphogenetic protein 4 contributes to the maintenance of 

105



primitive cord blood hematopoietic progenitors in an ex vivo stroma-

noncontact co-culture system. Stem Cells Dev 15:805-813. 

59. Khurana, S., S. Buckley, S. Schouteden, S. Ekker, A. Petryk, M. Delforge, 

A. Zwijsen, and C. M. Verfaillie. 2013. A novel role of BMP4 in adult 

hematopoietic stem and progenitor cell homing via Smad independent 

regulation of integrin-alpha4 expression. Blood 121:781-790. 

60. Wattel, E., C. Preudhomme, B. Hecquet, M. Vanrumbeke, B. Quesnel, I. 

Dervite, P. Morel, and P. Fenaux. 1994. p53 mutations are associated with 

resistance to chemotherapy and short survival in hematologic 

malignancies. Blood 84:3148-3157. 

61. Trompouki, E., T. V. Bowman, L. N. Lawton, Z. P. Fan, D. C. Wu, A. 

DiBiase, C. S. Martin, J. N. Cech, A. K. Sessa, J. L. Leblanc, P. Li, E. M. 

Durand, C. Mosimann, G. C. Heffner, G. Q. Daley, R. F. Paulson, R. A. 

Young, and L. I. Zon. 2011. Lineage regulators direct BMP and Wnt 

pathways to cell-specific programs during differentiation and regeneration. 

Cell 147:577-589. 

62. Cuny, G. D., P. B. Yu, J. K. Laha, X. Xing, J. F. Liu, C. S. Lai, D. Y. Deng, 

C. Sachidanandan, K. D. Bloch, and R. T. Peterson. 2008. Structure-

activity relationship study of bone morphogenetic protein (BMP) signaling 

inhibitors. Bioorg Med Chem Lett 18:4388-4392. 

63. Vogt, J., R. Traynor, and G. P. Sapkota. 2011. The specificities of small 

molecule inhibitors of the TGFss and BMP pathways. Cell Signal 23:1831-

1842. 

106



64. Steinbicker, A. U., C. Sachidanandan, A. J. Vonner, R. Z. Yusuf, D. Y. 

Deng, C. S. Lai, K. M. Rauwerdink, J. C. Winn, B. Saez, C. M. Cook, B. A. 

Szekely, C. N. Roy, J. S. Seehra, G. D. Cuny, D. T. Scadden, R. T. 

Peterson, K. D. Bloch, and P. B. Yu. 2011. Inhibition of bone 

morphogenetic protein signaling attenuates anemia associated with 

inflammation. Blood 117:4915-4923. 

65. Yu, P. B., D. Y. Deng, C. S. Lai, C. C. Hong, G. D. Cuny, M. L. Bouxsein, 

D. W. Hong, P. M. McManus, T. Katagiri, C. Sachidanandan, N. Kamiya, 

T. Fukuda, Y. Mishina, R. T. Peterson, and K. D. Bloch. 2008. BMP type I 

receptor inhibition reduces heterotopic [corrected] ossification. Nat Med 

14:1363-1369. 

66. Jolma, A., J. Yan, T. Whitington, J. Toivonen, K. R. Nitta, P. Rastas, E. 

Morgunova, M. Enge, M. Taipale, G. Wei, K. Palin, J. M. Vaquerizas, R. 

Vincentelli, N. M. Luscombe, T. R. Hughes, P. Lemaire, E. Ukkonen, T. 

Kivioja, and J. Taipale. 2013. DNA-binding specificities of human 

transcription factors. Cell 152:327-339. 

67. Hromas, R., B. Davis, F. J. Rauscher, M. Klemsz, D. Tenen, S. Hoffman, 

D. Xu, and J. F. Morris. 1996. Hematopoietic transcriptional regulation by 

the myeloid zinc finger gene, MZF-1. Curr Top Microbiol Immunol 

211:159-164. 

68. Hui, P., X. Guo, and P. G. Bradford. 1995. Isolation and functional 

characterization of the human gene encoding the myeloid zinc finger 

protein MZF-1. Biochemistry 34:16493-16502. 

107



69. Mudduluru, G., P. Vajkoczy, and H. Allgayer. 2010. Myeloid zinc finger 1 

induces migration, invasion, and in vivo metastasis through Axl gene 

expression in solid cancer. Mol Cancer Res 8:159-169. 

70. Rafn, B., C. F. Nielsen, S. H. Andersen, P. Szyniarowski, E. Corcelle-

Termeau, E. Valo, N. Fehrenbacher, C. J. Olsen, M. Daugaard, C. 

Egebjerg, T. Bøttzauw, P. Kohonen, J. Nylandsted, S. Hautaniemi, J. 

Moreira, M. Jäättelä, and T. Kallunki. 2012. ErbB2-driven breast cancer 

cell invasion depends on a complex signaling network activating myeloid 

zinc finger-1-dependent cathepsin B expression. Mol Cell 45:764-776. 

71. Yue, C. H., Y. W. Chiu, J. N. Tung, B. S. Tzang, J. J. Shiu, W. H. Huang, 

J. Y. Liu, and J. M. Hwang. 2012. Expression of protein kinase C α and 

the MZF-1 and Elk-1 transcription factors in human breast cancer cells. 

Chin J Physiol 55:31-36. 

72. Kluk, B. J., Y. Fu, T. A. Formolo, L. Zhang, A. K. Hindle, Y. G. Man, R. S. 

Siegel, P. E. Berg, C. Deng, T. A. McCaffrey, and S. W. Fu. 2010. BP1, an 

isoform of DLX4 homeoprotein, negatively regulates BRCA1 in sporadic 

breast cancer. Int J Biol Sci 6:513-524. 

73. Topcu, Z., D. L. Mack, R. A. Hromas, and K. L. Borden. 1999. The 

promyelocytic leukemia protein PML interacts with the proline-rich 

homeodomain protein PRH: a RING may link hematopoiesis and growth 

control. Oncogene 18:7091-7100. 

74. Pereira, L. A., M. S. Wong, S. M. Lim, A. Sides, E. G. Stanley, and A. G. 

Elefanty. 2011. Brachyury and related Tbx proteins interact with the Mixl1 

108



homeodomain protein and negatively regulate Mixl1 transcriptional 

activity. PLoS One 6:e28394. 

75. Garg, V., I. S. Kathiriya, R. Barnes, M. K. Schluterman, I. N. King, C. A. 

Butler, C. R. Rothrock, R. S. Eapen, K. Hirayama-Yamada, K. Joo, R. 

Matsuoka, J. C. Cohen, and D. Srivastava. 2003. GATA4 mutations cause 

human congenital heart defects and reveal an interaction with TBX5. 

Nature 424:443-447. 

76. Banerjee, A., R. Grumont, R. Gugasyan, C. White, A. Strasser, and S. 

Gerondakis. 2008. NF-kappaB1 and c-Rel cooperate to promote the 

survival of TLR4-activated B cells by neutralizing Bim via distinct 

mechanisms. Blood 112:5063-5073. 

77. Fu, T., P. Li, H. Wang, Y. He, D. Luo, A. Zhang, W. Tong, L. Zhang, B. 

Liu, and C. Hu. 2009. c-Rel is a transcriptional repressor of EPHB2 in 

colorectal cancer. J Pathol 219:103-113. 

78. Sovak, M. A., R. E. Bellas, D. W. Kim, G. J. Zanieski, A. E. Rogers, A. M. 

Traish, and G. E. Sonenshein. 1997. Aberrant nuclear factor-kappaB/Rel 

expression and the pathogenesis of breast cancer. J Clin Invest 100:2952-

2960. 

79. Mukhopadhyay, T., J. A. Roth, and S. A. Maxwell. 1995. Altered 

expression of the p50 subunit of the NF-kappa B transcription factor 

complex in non-small cell lung carcinoma. Oncogene 11:999-1003. 

80. Liu, C. J., S. C. Lin, Y. J. Chen, K. M. Chang, and K. W. Chang. 2006. 

Array-comparative genomic hybridization to detect genomewide changes 

109



in microdissected primary and metastatic oral squamous cell carcinomas. 

Mol Carcinog 45:721-731. 

81. Yang, X., H. Lu, B. Yan, R. A. Romano, Y. Bian, J. Friedman, P. Duggal, 

C. Allen, R. Chuang, R. Ehsanian, H. Si, S. Sinha, C. Van Waes, and Z. 

Chen. 2011. ΔNp63 versatilely regulates a Broad NF-κB gene program 

and promotes squamous epithelial proliferation, migration, and 

inflammation. Cancer Res 71:3688-3700. 

82. Qu, Y., F. Zhou, X. Dai, H. Wang, J. Shi, X. Zhang, Y. Wang, and W. Wei. 

2011. Clinicopathologic significances of nuclear expression of nuclear 

factor-κB transcription factors in retinoblastoma. J Clin Pathol 64:695-700. 

83. Pallares, J., J. L. Martínez-Guitarte, X. Dolcet, D. Llobet, M. Rue, J. 

Palacios, J. Prat, and X. Matias-Guiu. 2004. Abnormalities in the NF-

kappaB family and related proteins in endometrial carcinoma. J Pathol 

204:569-577. 

84. Kallifatidis, G., S. Labsch, V. Rausch, J. Mattern, J. Gladkich, G. 

Moldenhauer, M. W. Büchler, A. V. Salnikov, and I. Herr. 2011. 

Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-

like cells of pancreas and prostate. Mol Ther 19:188-195. 

85. Le Beau, M. M., C. Ito, P. Cogswell, R. Espinosa, A. A. Fernald, and A. S. 

Baldwin. 1992. Chromosomal localization of the genes encoding the 

p50/p105 subunits of NF-kappa B (NFKB2) and the I kappa B/MAD-3 

(NFKBI) inhibitor of NF-kappa B to 4q24 and 14q13, respectively. 

Genomics 14:529-531. 

110



86. Stankovic, S., R. Gugasyan, K. Kyparissoudis, R. Grumont, A. Banerjee, 

P. Tsichlis, S. Gerondakis, and D. I. Godfrey. 2011. Distinct roles in NKT 

cell maturation and function for the different transcription factors in the 

classical NF-κB pathway. Immunol Cell Biol 89:294-303. 

87. Gilmore, T. D. 1992. Role of rel family genes in normal and malignant 

lymphoid cell growth. Cancer Surv 15:69-87. 

 

 

111



Aaron Craig Raymond was born to of Nancy E. Witto Raymond and Craig R. 

Raymond in Winston-Salem, North Carolina on November 18, 1983.  Aaron 

graduated high school at Simsbury High School in Simsbury Connecticut in 2002, 

and began his undergraduate education at Rensselaer Polytechnic Institute in 

Troy, NY later that year.  He received a Bachelor of Science with a major in 

“Bioinformatics and Molecular Biology” and a minor in Music in May 2006.   That 

August he entered the UT Graduate School of Biomedical Sciences at Houston.  

December 2009, Aaron received his Masters of Science from the GSBS Genes 

and Development program, with a thesis entitled “FZD6 AND MRS2: TWO 

PUTATIVE MIXL1 TRANSCRIPTIONAL TARGETS”, as a member of the Dr. 

Lalitha Nagarajan lab in the department of Genetics of UT MD Anderson Cancer 

Center. 

 

Permanent address:  

1711 Old Spanish Trail, Unit 413 

Houston, Texas 77054 

 

112


	Texas Medical Center Library
	DigitalCommons@TMC
	12-2013

	c-REL is a Transcriptional Target of Mesoderm Inducer in Xenopus Like 1 (MIXL1)
	Aaron C. Raymond
	Recommended Citation


	FZD6 AND MRS2: TWO PUTATIVE MIXL1 TRANSCRIPTIONAL TARGETS

