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Figure 3-5 Rrp4 and Rrp40 have a structural role in the exosome A. Plasmid shuffle 

assay of the expression of Rrp4 in trans(Schaeffer et al., 2009). One of the truncations is on 

a plasmid bearing a LEU2 marker, and the other on a plasmid bearing a HIS3 marker. B. 

Plasmid shuffle assay of the expression of a truncation Rrp4/40 protein in an rrp4 strain. 

The numbers on the pictures indicate from which proteins (4=Rrp4, 40=Rrp40) does the 

indicated domain come (Schaeffer et al., 2009). C. Plasmid shuffle assay of the expression 

of a truncation Rrp4/40 protein in an rrp40 strain (Schaeffer et al., 2009). D Plasmid 

shuffle assay of the expression of Rrp4 and Rrp40 in which a domain has been switched. 

Indicated domains are noted on the left (NT=N terminal domain, S1 domain, or KH domain) 

in a double deletion strain rrp4rrp40 
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complement the double deletion of Rp4 and Rrp40. The inability to switch domains 

also suggests that there is a structural role for Rrp4 and Rrp40. 

 

A conserved phosphorylation is not important for the essential role of Rrp4 or 

for the nonstop mRNA surveilance by the exosome.  

   A conclusion that Rrp4 and Rrp40 have structural roles, does not rule out the 

possibility that they also have functional roles. Both proteins have RNA binding 

domains suggesting that they bind RNA that is to be degraded by the exosome. To 

further look into a possible functional role, a search of two phosphorylation 

databases (PhospoPep and PhosphoGRID) was performed for possible 

posttranslational modifications. There was no evidence that Rrp40 was 

posttranslationally modified, however Rrp4 did have several predicted 

phosphorylation sites, specifically S28, S46, S152, S256, and S268. Only one of 

these phosphorylation sites, S152, was also found to be conserved in human and 

murine Rrp4 homologues and is located in the S1 domain close to where RNA 

enters the central channel of the exosome (Synowsky et al., 2006). This suggested 

that this particular modification was important for function. In order to test if this 

modification was important for viability residue 152 was mutated to alanine to mimic 

the phosphor-free state and to glutamic acid to mimic the phosphorylated state. 

Both mutants grew at wild-type level indicating that neither mutation affected the 

essential role of Rrp4 (Figure 3-6 A). These mutations were also tested by a 

nonstop assay to determine if they affected the cytoplasmic surveillance role of the 
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exosome. Briefly, an rrp4 strain yAV1104 with the Rrp4 phosphorylation mutants 

on a plasmid was transformed with a plasmid with a HIS3 gene in which the stop 

codon is mutated (his3-nonstop) pAV188. The transformants were then grown with 

and without supplemented histidine in the medium. If the his3-nonstop mRNA is 

recognized as aberrant by the exosome, then it is quickly degraded. Thus, that 

strain will not grow on medium lacking histidine. If, however, there is a  problem with 

cytoplasmic nonstop mRNA degradation, then the his3-nonstop mRNA will not be 

degraded, and a protein will be translated which will then allow for growth on 

medium lacking histidine. Figure 3-6 B shows that there is no growth of either point 

mutant indicating that there is no effect on the cytoplasmic mRNA degradation of 

nonstop mRNA by the exosome. Taken together, these data indicate that this 

conserved site of Rrp4 is not important for the essential role of Rrp4 or for the 

nonstop mRNA surveilance of the exosome. 

 

Excess Rrp4 is stable  

   Some studies have suggested that exosome subunits localize to different sites in 

the cell. Specifically, by using indirect immunofluorescence with antibodies to 

endogenous exosome subunits, it was found that in Drosophila melanogaster S2 

cells, various exosome components localize differently (Graham et al., 2006). The 

authors concluded that there may be differently assembled exosome complexes. 

However, a careful analysis of their data shows that Rrp4 was enriched in foci that 

were markedly different from the foci seen for Rrp40 and Rrp42 (a PH ring subunit   
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Figure 3-6. The posttranslational phosphorylation of Rrp4 is not important for 

viability or nonstop mRNA degradation. A. Plasmid shuffle assay of point mutants of 

Rrp4 S152E and S152A. Two independently derived clones of each mutant were plated. 

The location of S152 along the Rrp4 protein sequence is indicated with an asterisk on the 

picture below. B. Non-stop assay (see material and methods) of the same mutants in an 

rrp4 strain.   
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of the exosome) suggesting that Rrp4 may have a role outside of the exosome, 

since it does not localize with a PH ring subunit. Presumably, if such a role exists, 

Rrp4 would be stable on its own, not as a part of the exosome complex. 

   To test if Rrp4 is stable when not associated with the exosome, several 

experiments were completed. First, a wild-type strain was transformed with a 

plasmid encoding full-length, TAP- tagged Rrp4 with a URA3 marker 

(Rrp4_TAP,URA) and a high copy plasmid with GAL regulated full-length Rrp4-

ProteinA with an LEU2 marker( GAL_Rrp4-PtnA, LEU2). The purpose of the 

experiment was to overexpress Rrp4 via the plasmid with the GAL promoter, and to 

verify the level of the total Rrp4 by a Western blot with an anti-Protein A antibody 

that detects the Protein A in the high copy vector and the TAP tag. If Rrp4 is not 

stable when not associated with exosome, it would be expected that the levels of 

the antibody detectable (i.e. TAP-tagged + Protein A tagged) Rrp4 would be the 

same compared to a strain in which there is no GAL_Rrp4-PtnA. However, the 

levels of Rrp4 increased (Figure 3-7 A). The increase seen in the Western blot is 

due to a Protein A moiety that is cloned in frame with the Gal_RRP4 gene, resulting 

in the expression of a Protein A-tagged Rrp4. These data suggest that Rrp4 is 

stable out of the exosome. 

   A second experiment to address the stability of Rrp4 when not in the exosome 

complex was completed. A vector with a Tap-tagged Rrp4 with a LEU2 marker 

(Rrp4_TAP, LEU2), was introduced either in wild-type S. cerevisiae strain or in an 

rrp4 strain, complemented with a wild-type RRP4 allele on a vector with a URA3 

marker (Rrp4, URA3). The strains were then grown on 5FOA to select for the loss of 
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the URA3 vector in the rrp4 strain. Therefore after plasmid shuffle both strains 

have the Rrp4_TAP vector, but the wild-type strain has a chromosomally originating 

wild-type Rrp4 while the rrp4 strain doesn’t. As seen in Figure 3-7 B, both strains 

have the same amount of Rrp4_TAP even though the wild-type strain has the wild-

type Rrp4 on the chromosome. These data also suggest that Rrp4 is stable out of 

the exosome complex.  

   A third experiment was completed for an additional confirmation of the stability of 

Rrp4 out of the exosome complex. This experiment utilizes temperature sensitive 

mutants of components of the cap, the PH ring, and the catalytic subunit.  The 

mutants were a temperature-sensitive mutant of Mtr3, mtr3-1, a temperature-

sensitive mutant of Rrp40, mtr14-1, and a temperature sensitive mutant of Rrp44, 

mtr17-1. These mutations were discovered as a part of a screen for mutants 

defective in nuclear mRNA export (Kadowaki et al., 1994). Each one of these 

strains and a wild-type strain were transformed with a vector with Rrp4_TAP and 

incubated at permissive (23oC) and non-permissive (37oC) temperature and then 

the amount of Rrp4_TAP was determined and compared. As seen from the results 

in Figure 3-7 C, there was no change in the amount of Rrp4_TAP in any of the 

strains at both temperatures. The results of this assay taken together with the first 

two experiments suggest that when Rrp4 is in excess, it is stable.  
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Figure 3-7 Rrp4 is stable out of the exosome complex. Western blots probed with either 

anti-ProteinA antibody (PtnA) or anti-Pgk1 for loading control. A. Wild-type S. cerevisiae 

strain, transformed with a plasmid with Rrp4_TAP and either GAL_Rrp4-PtnA or empty 

vector. B. Rrp4_TAP was introduced to either WT (ln1) or rrp (ln2) strain. Ln3 is a 

negative control WT+ vector. C. Temperature sensitive strains (listed below the Western 

blots) were transformed with an Rrp4_TAP and grown at the indicated temperatures. – 

(very right lane) is WT strain transformed with an empty vector control, grown at 23oC. 
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DISCUSSION 

   The data presented in this chapter begin to uncover the possible roles of the two 

RNA binding proteins Rrp4 and Rrp40. I have determined that the essential function 

of Rrp4 and Rrp40 does not lie only in one domain, but rather expression of the 

entire proteins is necessary for life. Additionally, Rrp4 and Rrp40 have unique roles 

that cannot be substituted by the other one, despite having such a similar domain 

organization. However, the data about the unique domain roles may not be valid 

because after this study was concluded, a new crystal structure of the exosome was 

published where the domain organization of Rrp4 and Rrp40 was changed (Makino 

et al., 2013). In particular there is a large difference of the boundaries of the S1 

domain of Rrp40 which may have affected the results of the S1 domain switch 

(Figure 3-8).  

   One line of evidence presented here points to a structural role for both Rrp4 and 

Rrp40. First, both the RPL27-like and the KH domains of Rrp4 and Rrp40 are 

essential. Second, the RPL27-like domain of Rrp4, which interacts with Rrp41, and 

the RPL27-like domain of Rrp40, which interacts with Rrp46 are not 

interchangeable. The KH domains of both proteins are also not interchangeable. 

The KH domain of Rrp4 interacts with Rrp42, and the KH domain of Rrp40 interacts 

with Rrp43. Third, at least for Rrp4 I have established that the RPL27-like and the 

KH domains need to be in the same polypeptide. These data, taken together with 

data from other studies, specifically that the cap proteins were needed for the 

assembly of the exosome complex (Liu et al., 2006), indicate that Rrp4 and Rrp40 

are needed to provide bridging contacts for the underlying PH ring proteins. After  
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Figure 3-8. Revised domain organization of Rrp4 and Rrp40. A. Domain organization of 

Rrp4 and Rrp40 according to the crystal structure published by (Makino et al., 2013).         

B. Domain organization of Rrp4 and Rrp40 used to create the truncations used in this 

study. 
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this study was concluded, a study was published of  reconstitution of the exosome, 

where the authors show that in vitro only Rrp40 was needed for the assembly of the 

PH ring of the exosome (Malet et al., 2010). While these data support my 

conclusion about the structural role of Rrp40, it does not support a model for a 

structural role for Rrp4. However, since this study was carried out in vitro, it is still 

possible that Rrp4 has a structural role, but that the exosome exists in vivo in two or 

more conformations. Another possible explanation is that Rrp4 may be added late 

during exosome assembly or it may be transiently associated with the exosome. 

Such unstable association may also explain the stability of Rrp4 out of the exosome 

complex, which is discussed below.  

   The presence of multiple RNA binding domains at the site of RNA entry into the 

exosome, points to a functional role for Rrp4 and Rrp40, specifically, binding of 

exosome’s substrates. Point mutations of three basic residues in a loop in the S1 

domain of Rrp4  were lethal suggesting that the essential role of Rrp4 is as a part of 

the exosome because the S1 domain binds RNA destined for degradation (Malet et 

al., 2010). 

   Additionally, Rrp4 seems also to have a functional role outside of the exosome 

complex. This conclusion is based on two separate pieces of data. First, Rrp4 has 

been shown to localize to distinct foci in D. melanogaster (Graham et al., 2006). 

Second, my data show that Rrp4 it not degraded when in excess. What this 

functional role is, is currently unknown. However, other exosome components have 

also been found to have a role outside of the complex. For example, Rrp46 was 

found to assemble in dimers, in addition to its assembly in the exosome (Yang et 



 
 
 

68 
 

al., 2010). Therefore it is possible that Rrp4 also has exosome independent roles. 

Future studies may address this possibility. The phosphorylation of Rrp4 suggest 

that there may be an additional regulation needed, for some other role of Rrp4, but 

that this possible role is non-essential given the fact that the phosphorylation itself 

was not essential. The phosphorylation site however was next to the essential basic 

residues that were found to be essential. It would be interesting to determine what if 

any regulation the phosphorylation of Rrp4 exerts on the proteins and what is the 

role of Rrp4 outside of the exosome.   
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INTRODUCTION 

   Csl4 is one of the cap proteins of the exosome, together with Rrp4 and Rrp40. 

Csl4 was first identified in a screen for Cep1 synthetic lethality (Baker et al., 1998). 

Prior to that, a separate screen for viral super killer mutants identified eight so-

called Ski proteins (Toh et al., 1978). It was later discovered that Csl4 is 

homologous to one of the genes identified in the superkiller screen, Ski4, and that it 

is a component of the exosome (Allmang et al., 1999b; van Hoof et al., 2000b). 

   The exosome associates with different proteins in the nucleus and in the 

cytoplasm and it is believed that these associations determine the specificity of 

substrate degradation or processing. However, the mechanism of these cofactor 

associations remains unknown. Csl4 is the only protein of the exosome complex 

which is currently known to have a mutation specifically disturbing cytoplasmic 

mRNA degradation, both for normal and nonstop transcripts. Therefore, Csl4 is a 

likely candidate to mediate the different roles of the exosome in the nucleus and in 

the cytoplasm. 

   Csl4 consists of three domains. The N-terminal domain is structurally related to 

ribosomal protein L27. In the middle of the protein there is an S1 domain which is 

an RNA-binding domain. The C-terminal domain is a Zn ribbon-like domain, which is 

structurally similar to Zn ribbons, but it lacks the cysteine residues characteristic of 

Zn ribbons. Therefore it does not bind Zn (Figure 4-1). For more detailed 

information on the RPL27-like and S1 domains in general, please refer to Chapter 

3. In the Zn-ribbon domain of the archaeal homolog of Csl4 the cysteine residues 



 
 
 

74 
 

RESULTS 

Csl4 does not stabilize the exosome by bridging contacts 

   To determine which domain of Csl4 is essential, C-terminal truncations of Csl4 

were created and used in a plasmid-shuffle assay (for details of the assay see 

materials and methods). Briefly, a csl4 strain was transformed with plasmids with 

either wild-type Csl4 or truncated Csl4. The truncations used were Csl4 1-120 

(RPL27-like+linker), Csl4 1-250(RPL27-like +linker+ S1 domains), Csl4 65-

292(linker + S1+Zn ribbon-like domains), and 120-292(S1 + Zn ribbon-like 

domains). Transformants were selected on SC-Leu-Ura. Next, a plasmid shuffle 

assay was performed on 5FOA to determine if any of the truncations could 

substitute for the essential role of Csl4.  It was found that the RPL27-like+linker 

domain was sufficient for viability even after removing the Zn ribbon-like domain and 

the S1+ the Zn ribbon-like domains (Figure 4-2A).  However, based on Csl4’s 

buried surface from the crystal structure of the human exosome, the RPL27-like 

domain should only interact with one of the PH ring subunits, Mtr3 (Liu et al., 2006). 

Therefore a truncation that only interacts with one subunit cannot bridge the 

underlying proteins. These data suggested that the essential role of Csl4 was not in 

stabilizing the exosome by bridging contacts between the PH subunits. In 

confirmation of these results, a paper published in 2007 also indicated that the 

yeast exosome can be assembled without Csl4 in vitro (Wang et al., 2007).  
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The RPL27-like domain and the S1+ Zn ribbon-like domains are redundant for 

the essential function of Csl4 

   To further confirm which domains were essential for the role of Csl4, N-terminal 

truncations of Csl4 were also created and used in a plasmid shuffle assay. 

Surprisingly, the RPL27-like domain was not essential and viability was conferred 

as long as the S1+ Zn ribbon-like domains were expressed in cis (Figure 4-2 A). 

The Zn ribbon-like truncation did not grow (not shown). To clarify whether the S1 or 

the Zn ribbon -like domain contributed to the essential role in the Csl4-S1+Zn-

ribbon-like truncation, the S1 domain was expressed by itself and was found not to 

be sufficient for life (Figure 4-2 B ). Therefore, the S1+Zn ribbon-like domains were 

also sufficient for viability. 

   Expression of the truncations was checked by Western blot using TAP-tagged 

truncations and all but the Zn ribbon-like domains were found to be expressed 

(Figure 4-2 C). Because the Western blot was done using TAP-tagged truncations 

of Csl4, but the initial growth assay was done using untagged truncations, it was 

also verified by a growth assay that the addition of the TAP tag did not alter the 

phenotype of the viable mutants (Figure 4-2 D). The above data indicate that the 

RPL27-like domain and the S1+ Zn ribbon-like domains are redundant for the 

essential function of Csl4. This is consistent with a view that if an exosome- 

interacting domain of Csl4 is expressed the essential function of Csl4 can be carried 

out.  
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Figure 4-2.  The RPL27-like domain and the S1+ Zn ribbon-like domains are 

redundant for the essential function of Csl4. A and B Plasmid shuffle assay. csl4 strain 

was transformed with plasmids with the indicated truncations and LEU2 markers. C. A 

Western blot of the depicted TAP-tagged truncations of Csl4. PGK1- loading control. D. 

Plasmid shuffle assay. csl4 strain was transformed with plasmids with the indicated 

truncations with a C-terminal TAP tag and LEU2 markers. 
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Because it was determined that Csl4 does not stabilize the exosome by bridging 

interactions, to further characterize its role (both essential and non-essential), 

several possibilities were addressed using the viable truncations of Csl4. First, the 

nuclear function of the exosome was tested; second, the cytoplasmic function of the 

exosome was tested; third, posttranslational modifications were tested; fourth, 

conserved surface residues were mutated. 

 

   The ZN ribbon-like domain is required for the known functions of the 

cytoplasmic exosome. 

   To correlate the growth data with known biological roles of the exosome, the 

domains of Csl4 that were found to sustain viability, were tested for the known 

nuclear roles of the exosome. Specifically, I tested the 7S pre-rRNA processing and 

5’ ETS degradation, which are known to be affected in exosome depletions 

(Allmang et al., 1999a). The processing of the 7S pre-rRNA was slightly affected in 

the truncation bearing only the RPL27-like domain, but unaffected in other viable 

truncations. There was no effect on the final 5.8S rRNA processing and on the 

degradation of the 5’ ETS (Figure 4-3). This indicated that viable Csl4 truncations 

behaved almost as wild type in rRNA degradation and processing.  

   The same domains were also tested for known cytoplasmic exosome roles, 

specifically cytoplasmic mRNA degradation and nonstop mRNA degradation.  
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Figure 4-3 Viable truncation of Csl4 behave as wild type for rRNA processing and 

degradation.  Northern blot analysis of csl4 strain transformed with the indicated 

truncations. The RNA for which it was probed are listed on the left of the pictures. SRP (the 

RNA moiety of the signal recognition particle) is used as a loading control.
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also known that at least in archaea, the exosome exists in different confirmations, 

specifically of the cap proteins including homotrimers of either Rrp4 or Csl4, and 

heterotrimer composed of both Rrp4 and Csl4  (Lorentzen et al., 2007; Roppelt et 

al., 2010; Witharana et al., 2012). Therefore it is possible that a confirmation of the 

exosome, driven by some other, unknown conditions, does in fact require Rrp4 for 

its structural integrity. 

   In addition, at least for Rrp4, my data imply that it has a functional role outside of 

the exosome complex. This role is currently unknown and I have suggested 

experiments (see below) to address this proposed role. It is also possible that Rrp4 

has a non-essential role, given the fact that it is post-translationally modified by 

phosphorylation, but this phosphorylation is not required for viability. The most likely 

possibility is that this phosphorylation has a regulatory role. To determine a possible 

role for the phosphorylation, I have suggested a series of experiments designed to 

comprehensively look at the effects of the potential regulation by the 

phosphorylation. 

 

Csl4 does not stabilize the exosome by bridging PH ring proteins 

   Unlike Rrp4 and Rrp40, I have determined that the third cap protein Csl4 does not 

have role in bridging subunits of the PH ring of the exosome, thus it follows that it 

has only a functional role. Therefore the essential role of Csl4 may be to bind RNA 

or protein cofactors. At this time either of these possibilities is likely.   
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   Whether the proposed RNA or protein binding takes place initially at the entrance 

site of the exosome central channel is debatable. Based on the research I have 

presented in this work, I cannot currently rule out that RNA or proteins are bound by 

Csl4 away from the exosome complex. The fact that viable Csl4 truncations lose 

most of their interactions with the exosome suggests that stable interactions are not 

required for viability. Further experiments need to address this possibility by 

repeating the experiment in a strain in which CSL4 is deleted and the truncations 

are the only Csl4 available in these cells, as described in the conclusion section of 

Chapter 4.  

   Following are several experimental approaches that will help answer important 

questions regarding the cap proteins of the exosome. First, what are the roles of the 

individual domains of the cap proteins? Second, what are the functions of the cap 

proteins? Third, what, if any, are the roles of the cap proteins exclusive of the 

exosome complex?  And finally, what are the roles of the phosphorylation of Rrp4 

and Csl4? 

 

Future directions: Determining the roles of individual domains of the cap 

proteins 

   To determine the role of specific domain interactions, the TAP tagged truncations 

of the individual Rrp4, Rrp40, and Csl4 protein can be used. Briefly, plasmids with 

truncations and full length Rrp4, Rrp40, and Csl4 sequences would be transformed 

individually into a wild-type S. cerevisiae strain. After growth to log phase cells will 
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be harvested, and total protein will be isolated. The total proteins will be run through 

a IgG sepharose column to pull-down the TAP-tagged protein along with any protein 

binding partners. The bound fraction will then be analyzed by mass spectroscopy to 

identify all the binding partners.  Comparing of the mass spectroscopy data of the 

binding partners of the full-length protein and the truncation will indicate which 

proteins (if any) are missing from the fractions bound to truncations.  To determine if 

a domain does in fact interact with a given protein, the individual domain and its 

proposed protein binding partner should be expressed and purified from E. coli and 

in vitro binding assay should be carried out to confirm that the proposed interaction 

is only with that domain and it is direct. In addition to the technical challenges, one 

caveat of this experiment is that if the role of a domain is to bind RNA, this will be 

missed because this approach only tests for protein-protein interaction. If no change 

in protein-protein interaction is discovered, a possibility that this particular domain 

binds RNA should be considered. However, a role of a domain may be to both 

interact with proteins and RNA at different surfaces, therefore the interpretation of 

the results should be carefully done, to avoid overreaching conclusions should a 

binding partner for a domain is discovered. To avoid such errors, an assay for RNA 

binding can also be done. Since the cap proteins are believed to bind RNA non-

specifically, the use of complicated assays such as RIP-seq (RNA 

immunoprecipitation followed by high-throughput sequencing) may not be warranted 

as the amount of data from these high throughput assays may be overwhelming to 

allow for straightforward interpretation. In-vitro assays for exosome activity have 

been done with generic RNA substrates, thus such substrates can be used in gel-
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shift assays together with the various Rrp4, Rrp40, and Csl4 truncations.  Thus, 

both of these experiments, the truncation pull-down and the RNA binding assay 

should add to the characterization of the roles of the individual domains of the cap 

proteins. One exception will be the RPL27-like domain and the S1 domains of 

Rrp40. For these two domains individual distinction will not be possible using this 

method as they are not expressed individually, but a point mutagenesis approach 

may be more suitable.  

 

Future directions: Determining the functions of the cap proteins 

   I have shown that the cap proteins have a functional role. However what that 

functional role is not clear. It is possible that the functional role is the same as for 

the exosome complex, or there is a possibility that individual proteins contribute to 

different functional roles. To determine the functional role of the cap proteins, 

microarray analyses with poly(A) RNA can be completed. Because each of these 

proteins is an essential protein, they cannot be deleted. However they can be at 

least temporary depleted. One widely used method, and one that has also been 

used with the exosome proteins  is depletion by the use of the GAL promoter 

(Allmang et al., 1999a). However, in Chapter 6 of this dissertation I have shown that 

glucose metabolism is affected in the exosome mutant. I have not specifically 

examined growth on galactose, but given the aberrancies seen when glucose is 

used as a carbon source, it is my opinion that a sugar regulated promoter should be 

avoided when completing experiments involving the exosome. The best option 
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would be to use a promoter, such as tetracycline regulatable promoters that are 

independent of sugar type and availability and are also commercially available (Gari 

et al., 1997).  

   To look at the role of the cap proteins the Tet-off system can be used with the 

wild-type TAP-tagged sequence of Rrp4, Rrp40, or Csl4 and transformed into the 

corresponding deletion strain. The depletion, after tetracycline addition, will be 

monitored by a Western blot with antibody against the TAP tag and simultaneously 

cells would be harvested, and total RNA will be extracted to be used for microarray 

analysis.  

   Several conclusions can be drawn for such data, depending on the final results. 

First, the microarray results of cap protein depletion may show completely 

overlapping results with the microarray results of the rrp44-exo- presented in this 

dissertation. Such results, even though unlikely, would suggest that both the cap 

protein and Rrp44’s functional roles are as a part of the exosome complex. Second, 

the microarray results of cap protein depletion may have some, but not all 

overlapping results with the microarray results from the rrp44-exo- and not have 

additional RNA changes. Such results will also suggest that the cap protein’s 

functional role is as a part of the exosome complex, because a role outside of the 

exosome complex would involve different, not overlapping substrates. Third, in 

addition to overlapping results, the cap protein depletion microarray may present 

additional changes in RNA not detected in the rrp44-exo- microarray, which would 

suggest that the particular cap protein has a role outside of the exosome complex. 

Fourth, because the exosome proteins are essential, depletion of one of them may 
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lead to changes not directly associated with the exosome, but provoked by other 

mechanisms related to the cell dying and this should be kept in mind while 

investigating the results from the microarray. 

 

Future directions: Determining the cap proteins roles outside of the exosome 

complex 

   Several lines of evidence suggest that the cap proteins may have roles outside of 

the exosome. First, cap proteins have been visualized in distinct cellular foci 

(Graham et al., 2006). Second, I have shown in this dissertation that at least Rrp4 is 

stable out of the exosome complex. This stability assay can be extended to Rrp40 

as well. To examine possible roles outside of the exosome complex, point mutations 

leading to dissociation with the exosome can be created by analyzing the interacting 

surfaces between the cap protein and the exosome subunits of the PH ring. A 

coimmunoprecipitation assay if the mutant proteins with the exosome should be 

done to confirm that the mutants do not bind the exosome. To determine if the 

essential role of the cap protein is outside of the exosome complex, plasmid shuffle 

assay with the mutated cap protein can be used with a strain which has tetracycline-

regulatable wild-type cap protein.  This experiment will be suitable specifically for 

Csl4, since Rrp40 is known to have a structural role, and my data suggest that Rrp4 

also may have a structural role. If the essential role of Csl4 is out of the exosome 

complex, upon depletion with tetracycline, there will be no effect on growth of this 

mutant compared to a mutant in which wild-type Csl4 has been introduced. 
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Alternatively, if the essential role of Csl4 is as a part of the exosome complex, then 

upon depletion of the wild-type Csl4, the growth will slow down and the strain will 

ultimately stop growing.  

   To look for non-essential roles of the cap proteins that are not as a part of the 

exosome complex, TAP-tagged mutants that do not interact with the exosome, as 

described above, can be introduced into wild-type strain of S. cerevisiae and pull-

down assays can be completed followed by mass spectrometry analyses to look for 

interacting proteins. The protein binding profile of these mutants can then be 

compared to mass spectrometry profile of wild-type cap protein to determine which, 

if any, protein interactions are specific to the mutant proteins.   

 

Future directions: Determining the role of posttranslational modifications of 

Rrp4 and Csl4  

   The presence of posttranslational modifications in Rrp4 and Csl4 suggest that 

these two proteins are regulated. I have shown that such regulation is not related to 

the essential function of these proteins, but nevertheless it would be interesting to 

know why these proteins are posttranslationally modified. Posttranslational 

modifications could be used by the cell to regulate protein localization, abundance, 

or interactions with other proteins. To determine what is the role of the 

phosphorylation of Rrp4 and Csl4, the phosphomutants of Rrp4 and Csl4 that I 

created for this work (see Chapters 3 and 4) can be used in variety of assays. First, 

to look for protein binding partners on a global scale, pull-down assays followed by 
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mass spectrometry can be done with these mutants and compared to wild-type. 

Second, to look for changes in gene expression, microarrays can be completed with 

these mutants and compared to wild-type strains. Third, to look for changes in 

abundance, the phosphomutant protein levels can be compared to wild-type 

corresponding protein by Western blots. Forth, to look for localization changes, the 

mutants can be tagged with GFP and their cellular localization can be observed by 

florescent microscopy. Altogether, completing this set of experiments should 

generate data which will determine the role of the posttranslational phosphorylation 

of these two proteins.  

  

 

CONCLUSIONS AND FUTURE DIRECTIONS IN THE STUDY OF THE 

EXONUCLEASE FUNCTIONAL IMPORTANCE 

The exonuclease is the primary activity of the exosome  

   The catalytic subunit of the Rrp44 has two RNase activities. First, it has an 

exonuclease activity and second it has an endonuclease activity. Interestingly, using 

a microarray analysis and an analysis of internally cut RNAs I have not been able to 

identify any substrates for the endonuclease. Yet the endonuclease is able to 

substitute for the essential role of Rrp44, even though a strain having only 

endonuclease activity grows slower. In contrast, a strain having only exonuclease 

activity does not have any apparent growth defect. Together with the data that 

known substrates of the exosome are only affected in exonuclease mutant, this 
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indicates that the exonuclease is the main activity of Rrp44. One explanation of the 

lack of specific substrates coupled with the ability to provide viability would be that 

the endonuclease’s role may be to provide supporting function to the exonuclease. 

For example if the endonuclease cleaves substrates that have stronger secondary 

structures to speed up their degradation, it may not have specific substrates unique 

to it. Rather, in the absence of the exonuclease, the endonuclease would cleave all 

essential substrates and if that slows down the process, may result in the slower 

growth phenotype. Another possibility is that just for the essential substrates the 

exosome has developed a second degradation site, to ensure that they are 

processed and/or degraded.  

 

Future directions: Determining the essential substrates of the exosome 

   The modest effect in gene expression was surprising given the wide range of 

substrates of the exosome. One possibility is that many substrates are affected by 

both activities and knocking only one out does not result in appreciable mRNA 

changes. An experiment that can be carried out in order to determine the effect on 

gene expression of Rrp44 is to attempt to complete a microarray analysis or high-

throughput sequencing using a double mutant rrp44-exo- rrp44-endo-. Briefly, a 

rrp44-exo- rrp44-endo-  strain carrying a Tet-regulatable rrp44-exo- on a plasmid, 

could be grown in liquid YPD medium at OD600=0.6 and then the expression from 

the Tet Promoter will be shut off by addition of Tetracycline to the medium. This will 

result in a complete knock-out of the ribonucleic activities of Rrp44. Such mutant is 
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inviable and will stop growing eventually, however depletion will be possible. The 

duration of the depletion will have to be empirically determined. Cells can then be 

collected, RNA extracted and sent either for microarray hybridization or high-

throughput sequencing. For a control a knockout of only the exonuclease can be 

used. Any RNA the level of which is changed in the double mutant will be 

considered to be resulting from overlapping functions of the exonuclease and the 

endonuclease and will further be investigated. A possible difficulty of this 

experiment is that the time during which both activities will be knocked-out may not 

be sufficient to determine any appreciable changes especially in non-coding stable 

RNAs. mRNAs half-life in S. cerevisiae vary greatly with 91% of the transcripts have 

a half-life between 12 and 29  minutes (Munchel et al., 2011) but stable RNAs 

persist throughout the life of the cell and appreciable depletion could be seen upon 

cell division.  Exosome mutants start accumulating defects in 7S rRNA and 5’ETS 

8hrs after a Tetracycline shut off of the Tet-off promoter, and the experiment was 

carried out for 22 hours (Dziembowski et al., 2007).  

   The results from the experiment with this double mutant will point to why the 

exosome is essential because they will give the changes in gene expression. The 

results from a deep sequencing experiment with this mutant will be more 

complicated to interpret because the exosome affects may different RNAs. 

However, the deep sequencing approach is more useful if the specific substrates of 

the exosome are to be identified.  

   Another approach that can be taken to identify essential roles of the exosome is to 

carry out a genetic complementation screen. A library of S. cerevisiae ORFs can be 
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transformed into an rpp44-exo- rrp44-endo- mutant to screen for loss of synthetic 

lethality. However this approach may only be effective if the synthetic lethality is due 

to one or a few genes. If the synthetic lethality results from a global effect on gene 

expression then this genetic test will not be useful.   

 

Model of how rrp44-exo- affect physiological responses of the cell 

   In chapter 6 I showed that the rrp44-exo- mutant affects glucose metabolism and 

that during glucose growth, rrp44-exo- outputs less ethanol than wild-type strain 

while simultaneously acidifying the medium more than the wild-type strain. The slow 

growth on glucose correlated with higher ROS production. Additionally I showed 

that iron response was activated during oxidative stress and that addition of iron 

improved the growth of an oxidatively stressed rrp44-exo- mutant. Based on 

comprehensive analysis of the above data, I have developed a model of how rrp44-

exo- affects iron response in YPD medium (Figure 7-1). Knowing that lactic acid 

causes oxidative stress, I postulate that the rrp44-exo- mutant produces more  acid 

(either lactic or acetic acid) during glucose metabolism, which in turn leads to the 

production of increased amount of ROS and therefore to activation of iron response 

(Figure 7-1).  Both acetic and lactic acid induce oxidative stress in S. cerevisiae 

(Abbott et al., 2009; Semchyshyn et al., 2011), therefore either one will be capable 

of inducing such physiological response. Additionally, both acetic and lactic acid 

induce iron response genes similarly to the ones induced in the rrp44-exo- mutant 

(Kawahata et al., 2006).  
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Future directions: Testing the model of how the rrp44-exo- mutant affects 

physiological responses of the cell 

   There are several experiments that could be carried out in order to test my model. 

First, there are two possibilities for the lower pH in the medium of rrp44-exo- : one is 

increase in lactic acid; the other is increase in acetic acid. To be able to further 

narrow down what element of glucose metabolism is affected in rrp44-exo- it is 

necessary to determine which one of these acids causes the increased acidity of 

the medium. Kits able to measure either one of these acids are commercially 

available and can be used for that purpose.   To test the possibility that acidification 

causes the slow growth of rrp44-exo- an experiment to neutralize the acid in the 

medium could be carried out. Buffering the medium has been shown to reverse the 

growth impairments caused by lactic acid and acetic acid toxicity in S. cerevisiae 

(Thomas et al., 2002). Wild-type and rrp44-exo- strains could be grown in YPD 

medium which is monitored for pH change and the pH adjusted by KOH and HCl 

addition as needed. Improvement in growth rate as compared to wild-type will 

indicate that the slower growth phenotype is caused by the addition of acid. 

Conversely, no change in growth phenotype will indicate that slower growth is 

independent of acid production.  
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Figure 7-1 A model of how rrp44-exo- affect physiological responses of the cell. Left - 

Wild-type cells during growth with glucose as a carbon source grow preferentially by 

ethanol fermentation, putting out in the medium mostly ethanol and some lactic and acetic 

acid. Right – rrp44-exo- mutant during growth on glucose as a carbon source have lowered 

output of ethanol and increased output of either lactic or acetic acid which leads to increase 

ROS production which in turn leads to activation of the iron response.  
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   Lactic and acetic acid are known to cause an increase in oxidative stress. To test 

if they are the specific cause for the oxidative stress production in rrp44-exo- ,wild-

type and rrp44-exo-  strains could be grown as their `medium is regularly exchanged 

coupled with ROS measurement and northern blots to probe for iron response 

mRNAs. In addition, medium form wild-type and rrp44-exo- mutant can be taken 

and used to supplement a wild-type strain and to measure changes in growth rate, 

ROS production and iron response mRNAs. In addition, an experiment in which 

increasing amounts of lactic acid and/or acetic acid are added to the media could be 

carried out to confirm increase of ROS and iron response activation. Results from 

these experiments will identify if the source of the physiological responses seen in 

rrp44-exo- is an excreted product in the medium from aberrant fermentation. 

 

Final remarks 

   The RNA exosome in a major exoribonuclease involved in numerous cellular 

processes. This dissertation contributes to the understanding of the importance of 

this RNA degrading machinery by first characterizing the roles of the three cap 

proteins in the exosome and second by beginning to elucidate the physiological 

importance of the exonuclease of the exosome. Lastly, this work provides a testable 

model to serve as a foundation for future experiments to elucidate the physiological 

importance of the main catalytic activity of the RNA exosome. 
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