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ABSTRACT 

 

Differential regulation of IRESs in the Aurora A mRNA by bFGF through the mTOR 

complex TORC2 modulates Aurora A kinase expression 

 

Roy L. Voice III, B.S. MLS(ASCP)CM 

Supervisory Professor: Leslie Krushel, Ph.D. 

 

 Identifying the mechanisms that contribute to tumorigenesis is a major area of focus in 

our fight against cancer. Epithelial malignant tumors, such as breast, colon, ovarian and pancreatic 

cancers have been shown to overexpress proteins that control cell mitosis, growth, and proliferation.  One 

of those proteins is the Aurora A kinase.  Aurora A kinase is a member of a small family of kinases that 

contribute to mitotic events such as centrosome duplication, separation, and maturation.  Aurora A 

overexpression leads to genomic instability, which can contribute to tumorigenesis, on the other hand, 

inhibiting Aurora A expression leads to apoptosis, making it a target for anti-cancer drugs.  

Recent studies have shown that protein synthesis can play a significant role in the regulation 

protein expression.  The major mechanism by which translation is regulated is at the step of initiation.  

The canonical pathway utilizes the m7G cap structure at the 5’ end of the mRNA to recruit the 

translational machinery including the 40S ribosome which scans the mRNA for the AUG start codon.  

Alternatively, the 40S robsome is recruited downstream of the cap to internal ribosomal entry site (IRES).  

IRESs are found in certain classes of viruses and a subset of eukaryotic mRNAs.  IRES dependent 
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translation is thought to occur during times when the cap is down regulated such as during stress or cell 

proliferation.   

Previously we found that the Aurora A mRNA contains an IRES and that IRES dependent 

translation appears to be a “major contributor” in the over-expression of Aurora A in cell lines that 

overexpress the protein.  The elevation of Aurora A is due mainly to increased IRES translation.  Further 

study demonstrates that the alternatively spliced aurora A 5’ UTR contains three independent IRESs 

localized in three different exons (exon 1b, exon 2, exon 2a).  I examined whether growth factors which 

stimulate Aurora A expression, differentially stimulate different Aurora A IRESs.  I found that addition of  

bFGF enhances Aurora A protein expression within 2 hours.  Moreover, bFGF led to an increase in exon 

1b and exon 2a but not exon 2 IRES activity.  Further study showed that the translational response was 

mediated through the mTOR pathway.  Cap-dependent translation is known to be mediated through one 

of the two mTOR complexes (mTORC1).  Surprisingly my data reveal that the second complex, 

mTORC2, mediates bFGF induced IRES activity.  This study is the first demonstration that growth 

factors differentially regulate IRESs in the same mRNA and that this is regulated through mTORC2.  

Importantly, this study identifies mTORC2 as a novel target for inhibition of Aurora A expression in 

cancer cells. 
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Causes 

One of the leading causes of death is cancer.  One out of four people will die by 

some form of cancer, placing it as the second highest cause of death in the U.S.  Our 

research is directed against understanding the mechanisms that contribute to cancer and 

identifying targets to specifically kill cancer cells.  Cancer occurs when cells lose the 

ability to inhibit their growth, proliferation, or cannot remain in senescence. Hyper-

proliferative cells or cells that continue to growth in size can form tissue masses called 

tumors.  Cancer originated from DNA mutations that result in numerous alteration in 

cellular processes, including intracellular signaling, protein synthesis and protein 

stability.  Protein over-expression is often seen in a variety of tumors such as, breast, 

colorectal, pancreatic, and gastric, ovarian, and esophageal cancers (Bischoff, Anderson 

et al. 1998, Tanner, Grenman et al. 2000, Li, Zhu et al. 2003, Tong, Zhong et al. 2004, 

Jiang, Katayama et al. 2010, Zabaleta 2012).  One protein that is often over-expressed in 

cancer is the Aurora A kinase and understanding the mechanisms underlying its over-

expression may yield novel insight to cellular immortalization and tumorigenesis 

(Marumoto, Zhang et al. 2005, Mehra, Serebriiskii et al. 2013) 

Aurora A kinase and Cancer 

Organismal growth or survival relies heavily on the process of cellular division.  

Mitosis is a cellular process whereby replicated chromosomes are equally segregated to 

two daughter cells. Several kinases have been implicated in the exquisite regulation 

required for mitotic fidelity.  The first Aurora kinase, dubbed Ip11, was discovered in 

Saccharomyces cerevisiae in a genetic screen for mutations causing abnormal 
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chromosomal segregation (Chan and Botstein 1993).  Shortly thereafter, mutations in 

Drosophila melanogaster Ip11 homolog were found to result in chromosome segregation 

failure and monopolar spindle formation (Glover, Leibowitz et al. 1995).  The name 

“Aurora” was given because these mutant monopolar spindles resembled the aurora 

borealis.  In humans, there are three Aurora homologs.  Aurora A, B, and C.  Together 

these make up a family of serine/threonine kinases that are essential for mitotic events.  

More explicitly, Aurora A (as known as AIK; ARK1; AURA; BTAK; STK6; STK7; 

STK15; AURORA2; PPP1R47) was found to regulate mitotic centrosome separation, 

spindle assembly, and the G2/M transition (Barr and Gergely 2007, Fu, Bian et al. 2007).  

Regulation of Aurora A kinase expression, localization, and activation is crucial to 

maintain genetic stability.  The cell cycle consists of four phases: G1, S, G2, and M.  The 

Aurora A protein is barely detectable in G1, but Aurora A mRNA and protein levels rise 

during S phase and peak during G2/M.  The APC/C (Anaphase Promoting 

Complex/Cyclosome)/Cdh1complex targets the Aurora A protein for degradation in late 

mitosis, just prior cytokinesis (Floyd, Pines et al. 2008).   

Beginning in G2, Aurora A localizes to the pericentriolar material (PCM) of the 

newly duplicated centrosomes.  Each centrosome is comprised of PCM and two 

centrioles, and function as the microtubule organizing centers of the mitotic spindle.  

Aurora A is recruited to the centrosomes upon the CDK11 (cyclin dependent kinase 11)-

dependent localization of Plk1 (polo-like kinase 1) to the centrosome (Sunkel and Glover 

1988, Lane and Nigg 1996).  Aurora A also plays a role in spindle assembly with TPX2 

(Xenopus kinesin-like protein 2) as a cofactor and activator.  After nuclear envelope 

breakdown, Aurora A is localized to the pole proximal minus ends of microtubules (Fu, 
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Bian et al. 2007).  TPX2 stimulates a conformational change to allow Aurora A auto 

phosphorylation, while at the same time preventing deactivation by protein phosphatase 

1.  In addition to enhancing the kinase activity of Aurora A, TPX2 localizes it to the 

spindle (figure 1.1).  Aurora A then phosphorylates and recruits TACC (Transforming 

Acid Coiled Coil) which functions to stabilize spindle microtubules (Lee, Gergely et al. 

2001, Kinoshita, Noetzel et al. 2005, Fu, Bian et al. 2007). 

Evidence suggests centrosome separation is also dependent upon Aurora A as 

well.   EXTAH is a complex that is required for bipolar assembly(Sauer, Korner et al. 

2005, Koffa, Casanova et al. 2006).  It consists of the microtubule MT crosslinking 

proteins (BimC-like kinesin Eg5, Aurora A, or TPX2), MT stabilizers (XMAP215), and 

MT bundling proteins (HURD) (Marumoto, Zhang et al. 2005, Dobson 2012).  Eg5 is 

phosphorylated by Aurora A (Giet, Uzbekov et al. 1999) which promotes formation of 

the EXTAH complex (Barr and Gergely 2007).  Consequently, inhibiting Aurora A or 

Eg5 leads to the formation of monopolar spindles and apoptosis.  

Concomitant with separation, centrosomes undergo maturation, which refers to 

the recruitment of -tubulin along with PCM and coiled-coil proteins that facilitate 

microtubule nucleation (Fu, Bian et al. 2007).  LATS2 (large tumor suppressor homolog 

2) is another substrate of Aurora A.  It is required for the -tubulin accumulation and 

spindle formation.  When LATS2 was depleted from mammalian cells, the centrosomes 

failed to mature (Toji, Yabuta et al. 2004). 

Aurora A kinase activity is required for entry into mitosis (figure 1.1).  Once 

localized, Aurora A is activated by the LIM protein Ajuba (Fu, Bian et al. 2007).   Ajuba 
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allows auto phosphorylation of Aurora A in late G2 promoting its progression into M 

phase.  When Ajuba was silenced in HeLa cells with siRNA, phosphorylation of Aurora 

A greatly decreased and the cells were unable to enter mitosis (Hirota, Kunitoku et al. 

2003).  Additionally, Aurora A phosphorylates CDC25B (figure 1.1) which activates 

CDK1-clyclin B1 complex in late G2 (Cazales, Schmitt et al. 2005, Fu, Bian et al. 2007) 

stimulating entry into mitosis.  Knocking down Aurora A expression leads to cell cycle 

arrest in G2/M and eventually cell death (Du and Hannon 2004, Fu, Bian et al. 2007). 

     Aurora A over-expression is observed in various types of cancers, including 

breast, pancreatic, gastric, esophageal, and ovarian (Li, Zhu et al. 2003, Tong, Zhong et 

al. 2004, Zabaleta 2012).  Although Aurora A kinase contributes to multiple processes 

during G2/M as noted above, the most prominent result of Aurora A over-expression is  

centrosome amplification and cytokinesis failure, which can result in genetic instability.  

This observation was first seen in rat mammary models and cell cultures, centrosome 

amplification was demonstrated upon up-regulation of Aurora A (Goepfert, Adigun et al. 

2002, Meraldi, Honda et al. 2002).  Increased Aurora A expression also disrupts cell 

checkpoints.  Paclitaxel (Taxol) is a chemotherapeutic agent that activates the spindle 

assembly checkpoint (Murata-Hori and Wang 2002, Marumoto, Zhang et al. 2005).  

Over-expression of Aurora A allows the cell to bypass this checkpoint increasing 

resistance to the drug.  DNA damage has been reported to reduce Aurora A kinase 

activity, however Aurora A over-expression appears to impair the G2 DNA damage 

checkpoint (Marumoto, Zhang et al. 2005).   
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In vitro and in vivo studies confirmed that Aurora A expression induces tumors in 

a variety of different models.  For instance, transgenic mice formed tumors when Aurora 

A was over-expressed (Wang, Zhou et al. 2006, Mountzios, Terpos et al. 2008).  

Furthermore, elevated Aurora A kinase activity can transform NIH 3T3 cells in vitro and 

stimulate tumor formation when they are injected into nude mice (Tong, Zhong et al. 

2004, Wang, Zhou et al. 2006).  Alternatively, down regulation or inhibition of Aurora A 

kinase causes defects in centrosome separation that lead to the formation of monopolar 

mitotic spindles (Cowley, Rivera-Perez et al. 2009).  Aurora A depleted cells are arrested 

in mitosis by the spindle assembly checkpoint and ultimately succumb to apoptosis.  It is 

of great interest to understand the mechanisms that regulate Aurora A expression as it 

could identify how Aurora A expression is elevated and contributes to tumorigenesis.  

Ultimately, targeted inhibition of these mechanisms may lead to more effective ways of 

treating cancer. 

 

 

 

 

 



7 
 

 

Figure 1.1 Aurora A expression, localization and function during cell cycle.  Aurora A mRNA and protein 
(green) levels are detected during late S/ early G2 phase of the cell cycle and expression peaks during 
G2/M.  Aurora A is targeted for destruction by APC/C through its D-box and A-box and is reduced to 
trace amounts following cytokinesis.  During G2 phase, Aurora A (green) localizes to pericentriolar 
material and persists throughout mitosis.  Additionally, it spreads to the minus ends of the mitotic 
spindle microtubules during mitosis.  Aurora A is a key regulator of G2/M events, such as, centrosome 
duplication, mitotic entry, centrosome maturation, chromatin condensation, spindle assembly, and 
bipolar spindle formation, through activation of several substrates (Dobson 2012). 
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Regulation of Translation Initiation 

A protein can be over-expressed by many mechanisms.  The central dogma of 

gene expression is that DNA is transcribed to RNA which is translated into protein.  

Firstly, enhancing gene expression or gene duplication will lead to increased amounts of 

mRNA that potentially can be translated.  Second, increased translation or stability of the  

mRNA and finally, protein stability could be increased.  All three mechanisms could lead 

to steady state protein expression.  All of these mechanisms have been proposed to 

contribute to Aurora A over-expression (Tanner, Tirkkonen et al. 1994, Tanner, 

Tirkkonen et al. 1995, Bischoff, Anderson et al. 1998, Zhou, Kuang et al. 1998, Tanner, 

Grenman et al. 2000, Dobson 2012).  Little is known about differential protein stability 

between normal and Aurora A over-expressing cells.  Finally, we have found in a group 

of breast cell lines that over express Aurora A, enhanced protein expression was due to 

increased protein synthesis (Dobson, Chen et al. 2013).  Accordingly, my goal was to 

identify how Aurora A translation was regulated in these cells. 

Protein synthesis is a tightly regulated process, primarily at the step of initiation.  

It has to be strictly regulated because during translation the cell utilizes 40% of its total 

energy (Meisenberg and Simmons 1998).  The structure of the messenger RNA consists 

of: 1) a cap (m7GpppN, where N is any nucleotide) located at the 5’ end, 2) a 5’ 

untranslated region (UTR) or leader, 3) the open reading frame, 4) a 3’ UTR, and 5) a 

poly(A) tail at the 3’ end which plays a key role in mRNA stability and translational 

efficiency (Caponigro and Parker 1996, Gingras, Raught et al. 1999).  Proteins that 

function to initiate, stabilize, and enhance translation are referred to as eukaryotic 
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initiation factors (eIF).  The mechanism by which the general translation of eukaryotic 

mRNAs is initiated is referred to as cap-dependent translation.  The cap, which is situated 

at the 5’end of the mRNA, is bound by eIF-4E.  4E in turn binds the scaffolding protein 

4G which in turn recruits the remainder of the translational machinery including the 40S 

ribosome (Shatkin 1976).   

Eukaryotic Initiation Factor 4 is a complex consisting of three polypeptides: 

eIF4A, eIF4E, and eIF4G (Gingras, Raught et al. 1999).  eIF4E is the actual cap-binding 

factor and eIF4G is a scaffolding protein which has binding sites for 4E, PIC, PABP, and 

4A and recruits the eIF3-ribosome (Gingras, Raught et al. 1999).  eIF4A/4B binds to 4G 

and acts as a helicase to unwind the secondary structure of the mRNA allowing ribosomal 

scanning (Lorsch and Herschlag 1998, Gingras, Raught et al. 1999, Pestova and 

Kolupaeva 2002).  The PIC (pre-initiation complex) forms when eIF2, GTP, and Met-

tRNA bind to the 40S ribosome through a connection with eIF3.   The 43S preinitiation 

complex needs a set of factors to guide and stabilize its position on the mRNA.  Once the 

40S ribosome is recruited, it then scans the mRNA for the in frame AUG start codon 

(figure 1.2 A). 

There are several events that must occur for the canonical initiation factors to 

function properly.  Formation of the translational complex can be regulated in multiple 

ways and subsequently alters the rate of protein synthesis and function.  In addition, these 

events are affected by changes in the cellular environment, stress, oxidation, and mitosis 

(Pyronnet, Dostie et al. 2001).  For example, eIF2 before it becomes part of the 

preinitiation complex, exists in a binary complex with GDP (Hinnebusch 1994).  eIF2B is 
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a guanine nucleotide exchange factor that replaces GDP with GTP and the new pair 

(eIF2-GTP) becomes part of the preinitiation complex.  eIF2 has an alpha subunit and in 

response to cellular stress is phosphorylated at serine 51 impairing eIF2B (Hinnebusch 

1994, Veo 2003).    This negatively affects protein synthesis by inhibiting formation of 

the preinitiation complex.  Another example involves eukaryotic initiation factor 4E, 

whereby its activity is regulated by a family of proteins called 4E-BPs.  4E binding 

proteins compete for the site that eIF4G uses to bind 4E, thus preventing completion of 

the eIF4F complex (Pyronnet, Dostie et al. 2001).  Mammalian target of rapamycin 

(mTOR) phosphorylates 4E-BP1 releasing it from eIF4E allowing translation to proceed.  

During stress mTOR activity is decreased causing hypophosphorylation of 4E-BP1 

(Arsham, Howell et al. 2003).  4E-BP1 remains bound to eIF4E preventing formation of 

eIF4F (figure 1.3).  Finally, inhibition of cap-dependent translation does not always result 

in a total loss of protein synthesis.  For example, protein synthesis during G2/M occurs 

even though 4E-BP1 is hypophosphorylated (Pyronnet, Dostie et al. 2001).  This result 

indicates translation can be initiated in a cap-independent manner. 

 

IRES Mediated Translation 

Many viral mRNA translate their mRNA even though viruses shut down host cell 

cap-dependent translation.  Moreover, they recruit the translational machinery 

downstream of any cap structure.  The sites to which the translational complex bind are 

termed internal ribosomal entry sitse or IRESs (figure 1.2 B).  Many viruses are 

translated via an IRES and include: picornavirus, encephalomyocarditis virus (EMCV), 
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and the poliovirus  (Pelletier and Sonenberg 1985, Jang, Krausslich et al. 1988, Pelletier 

and Sonenberg 1988).  One of the initial assays to identify IRES activity was the creation 

of a dicistronic construct (Pelletier and Sonenberg 1988).  Messenger RNA was 

generated that consisted of two reporter genes with the poliovirus leader inserted in 

between.  The first reporter gene measured cap-dependent translation while the second 

could only be translated if the inserted poliovirus lead could recruit the ribosome 

independent of a cap structure (Pelletier and Sonenberg 1988, Komar and Hatzoglou 

2005).  What we learned from this work is that most viral IRESs thrive during times 

when cap-dependent translation is impaired and they have a “reduced requirement for 

canonical translation initiation factors” (Gradi, Imataka et al. 1998, Komar and Hatzoglou 

2005). 

After viral IRESs were discovered, research focused on whether eukaryotic 

mRNA contain IRESs as well.  In 1991, by making a circular mRNA with no cap, an 

IRES was discovered in the immunoglobulin heavy-chain binding protein (BiP) gene 

(Macejak and Sarnow 1991, Komar and Hatzoglou 2005).  To identify a population of 

IRES contained in eukaryotic mRNA, cells were transfected with poliovirus.  

Polioviruses express a protease (2A) that cleaves the N-terminus of the scaffolding 

protein 4G.  The N-terminus contains the 4E binding site.  Consequently, expression of 

the 2A protease shuts down cap-dependent translation, however since, IRESs do not 

require 4E, translation of eukaryotic IRES should not be inhibited.  A screen for 

eukaryotic IRESs was developed by measuring the number of ribosomes bound to the 

mRNA.  What was found was that 3-5% of eukaryotic mRNA in fact have IRES elements 

(Johannes and Sarnow 1998, Qin and Sarnow 2004, Stoneley and Willis 2004).  For 
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example, mRNAs encoding cysteine-rich angiogenic inducer 61 (Cyr61) and Proto-

oncogene serine/threonine-protein kinase (Pim-1) were found to contain IRES elements 

(Johannes, Carter et al. 1999, Komar and Hatzoglou 2005).  Cyr61 is a secreted factor 

that involved in cellular proliferation, differentiation, angiogenesis and tumor growth 

(Johannes, Carter et al. 1999).  While Pim-1 is over-expressed in cancers such as prostate 

and bladder cancer (Dhanasekaran, Barrette et al. 2001, Valdman, Fang et al. 2004, 

Cibull, Jones et al. 2006, He, Bi et al. 2009, Guo, Mao et al. 2010, Merkel, Meggers et al. 

2012)    

Viral IRESs have been thoroughly characterized and key factors required for their 

proper functioning have been identified.  However, between secondary structural 

differences, length of the 5’ leader, and differential selection of cellular IRESs, general 

characterizations are difficult.  For instance, platelet-derived growth factor-2 (PDGF2) 

and vascular endothelial growth factor mRNA can translate efficiently under conditions 

where eIF2-alpha is phosphorylated (Gerlitz, Jagus et al. 2002, Komar and Hatzoglou 

2005).  As mentioned earlier, phosphorylation of the alpha subunit of eIF2 inhibits cap-

dependent translation.  Cationic amino acid transporter (cat-1) mRNA has an IRES 

element that seems to require eIF2-alpha phosphorylation before it can activate 

translation (Fernandez, Yaman et al. 2002, Komar and Hatzoglou 2005).  Some cellular 

mRNA can properly recruit the 40s small ribosomal subunit with or without different 

canonical initiation factors.  Characteristics such as high G-C content, the length, and 

secondary structure of the 5’ leader are hallmarks of some viral IRESs. Cellular mRNAs 

such as Apaf-1 (apoptotic protease activating factor) and XIAP-1 (x-linked inhibitor of 

apoptosis) are similar to viral IRESs with respect to their defined secondary structure and 
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length of the UTR (Veo 2003).  However, eukaryotic IRESs are not always like viral 

IRESs.  For example, the FMR2 5’ UTR does not have IRES activity but is 480 bp long 

and 82% G-C rich (unpublished data).  Additionally, the APP (amyloid precursor protein) 

IRES is relatively short (50 nucleotides) and exhibits full IRES activity (Veo 2003, 

Beaudoin, Poirel et al. 2008).  Every mRNA has different characteristics and thus, for 

now, we must study them individually.  The IRES elements of the Aurora A kinase and 

its regulation is what I focused on in this study. 
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A. 

 

 

B. 

 

 

 

Figure 1.2 (A): Primary mechanism of translation initiation: Cap-dependent 

 eIF4E binding to the m7G cap structure of the 5’ UTR of a eukaryotic mRNA is the main regulatory step 

of cap-dependent translation initiation. eIF4E along with eIF4G and eIF4A form the eIF4F complex.  

eIF4B, eIF3, the 40S ribosomal subunit and the ternary complex (eIF2, the initiator tRNA and GTP -

orange triangle)  completes the formation of the preinitiation complex (Dobson 2012).  According to the 

scanning hypothesis (Kozak and Shatkin 1978, Kozak 2001), this complex scans the 5’ leader until it reaches 

the initiation codon where the 40S subunit  joins the 60S ribosomal subunit to form the 80S ribosome.  

(B): Alternative cap-independent mode of translation initiation:  Messenger RNA possesses a unique 

sequence in their  5’ UTRs which allows recruitment of the 40S ribosome completely independent and 

downstream of its cap structure.   IRES transacting factors (ITAFs) are suggested to enhancing translation 

through facilitating a bridge between the mRNA and some canonical initiation factors.  Each IRES 

structure varies in length and structure and scanning is thought to not be possible (Hellen and Sarnow 

2001, Stoneley and Willis 2004, Komar and Hatzoglou 2005). 
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Figure 1.3: 4E binding protein mechanism of cap-dependent translation regulation  4E-BP1 

competes for the same binding site eIF4G uses to associate with eIF4E, thereby  inhibiting successful 

recruitment of 4E to the cap structure.  In response to activated PI3K/Akt/mTOR signaling, 4E-BP1 is 

hyperphosphorylated, formation of eIF4F complex occurs ( 4E, 4G, 4A), and cap-dependent translation is 

initiated.  Drugs such as rapamycin can block mTOR phosphorylation of 4E-BP1 resulting in inhibition of 

cap-dependent translation. 
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Translation of the Aurora A kinase mRNA 

In order to examine the mechanisms behind Aurora A over expression, we chose 

to study several different mammary epithelial cell lines (MCF10A, MCF12A, MCF-7, 

and HMECs).  These cells were put in to two groups based on Aurora A protein 

expression.  10A and 12A over-expressed Aurora A while HMECs and MCF-7 had 

normal levels when compared to primary HMECs and WI38 (a primary fibroblast line) 

(Dobson, Chen et al. 2013).  To find the cause of over expression, we considered three 

possibilities: increased transcription, increased translation, or protein stability.  A 

measurement of Aurora A mRNA levels showed that all the cell lines transcribed this 

locus at about the same rate, except MCF-7 which was slightly more (Dobson, Chen et al. 

2013).  When protein levels were compared to transcript levels, we could see that 

MCF10A and MCF12A had increased protein to mRNA levels which suggested an 

increase in translation or protein stability.  MCF-7 and HMECs did not demonstrate an 

increase in protein to mRNA (Dobson, Chen et al. 2013).  Aurora A protein half-life was 

measured and revealed that protein stability is not the cause of increased levels of Aurora 

A that we observed (Dobson, Chen et al. 2013).  Thus we hypothesized that increased 

protein synthesis contributed to Aurora A over-expression.  However, there was no 

evidence that cap-dependent translation was differentially regulated.  Instead we found an 

IRES and it was upregulated in Aurora A over-expressing cells.  Moreover, it appeared to 

be the primary mechanism utilized to initiate translation this mRNA(Dobson, Chen et al. 

2013). This analysis utilized an Aurora A 5’ leader which was the longest reported in 

GenBank.  Subsequently once the gene structure was defined and confirmed by PCR 
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(figure 1.4), multiple Aurora A 5’ leaders were found.  Essentially, IRESs were found in 

three distinct exons.  
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Figure 1.4 Schematic diagram of the 5’ UTR of the Aurora A gene and the IRES 

activity of each exon.  The 5’ untranslated region of the Aurora A gene contains 5 exons (I, Ia, 

Ib, II, and IIA).   IRES activity of each exon was measured in cells that  express normal levels  of 

Aurora A (HMEC and MCF7)  and cells that over-express Aurora A (MCF12A and MCF10A).  

A ratio of luciferase to mRNA was made for each sample and compared to -globin.  n=3+ 

standard deviation (SD). 
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Regulating the Aurora A IRES 

Little is known about the intracellular pathways that regulate IRESs.  Through a 

kinase/phosphatase siRNA screen and a phospho-kinase array screen we were able to 

look at the sensitivity of Aurora A expression and IRES activity to different kinases.  We 

found that the MAPK and PI3/Akt/mTOR pathways regulated IRES activity of the 

original Aurora A leader tested (exon 1-1a-1b-2).  Differential mTOR phosphorylation 

between  high Aurora A expressing and  low expressing cells were demonstrated 

(Dobson 2012).  mTOR is thought to play a role in IRES mediated translation in addition 

to cap-dependent translation (Ramirez-Valle, Badura et al. 2010).  Mammalian target of 

rapamycin (mTOR), is a regulator of cellular growth and proliferation (Weber and 

Gutmann 2012).  In yeast (Saccharomyces cerevisiae), deletion of the Tor1 gene led to a 

decrease in proliferation, and in Drosophila melanogaster, dTOR knockdowns showed a 

decrease in cell size and proliferative capability (Oldham, Montagne et al. 2000, Zhang, 

Stallock et al. 2000, Weber and Gutmann 2012).   mTOR consists of two functional 

complexes: mTORC1 and mTORC2 (figure 1.5).  The fundamental difference between 

the two complexes is the presence of raptor (complex 1) or rictor (complex 2) (Weber 

and Gutmann 2012).  Downstream targets of mTORC1 include 4EBP and S6K-1, 

illuminating the regulation of protein synthesis as an important function.  mTORC2, on 

the other hand, targets PKC and Akt (S473) for phosphorylation (Weber and Gutmann 

2012).  EGF, which stimulates these pathways, was shown to increase Aurora A IRES 

activity but only through exon 2 (Lai, Tseng et al. 2010, Dobson, Chen et al. 2013).  The 

IRES in exon 1b and 2a were not affected even though they were present.  However, the 

question remained as to how the exon 1b and 2a IRESs are regulated.   
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Figure 1.5 Schematic of bFGF signaling pathway through mTOR.  

Growth factors (e.g. insulin, insulin-like growth factor 1, epidermal growth factor, and basic fibroblast 

growth factor) promote mRNA translation along with other cellular functions, primarily through two 

pathways: PI3K/Akt and MEK/MAPK. Mammalian target of rapamycin (mTOR) is the primary 

component of two functionally distinct complexes, mTORC1 and mTORC2. PTEN: Phosphatase and 

tensin homolog deleted from chromosome 10; TSC: Tuberous sclerosis complex; Raptor: Regulatory- 

associated protein of mTOR; Rictor: Rapamycin-insensitive companion of mTOR; MEK: Mitogen-

activated protein kinase kinase; RSK: Ribosomal s6 kinase; PKCα: Protein kinase C α; SGK1: 

Serine/threonine-protein kinase 1; MAPK: Mitogen-activated protein kinase; PI3K: Phosphatidylinositol 

3,4,5-kinase; P: Phosphate (modified from (Itamochi 2010). 

 



21 
 

 

 

 

 

 

 

 

 

CHAPTER II: 

MATERIALS AND METHODS 

 

 

 

 

 

 

 

 

 

 



22 
 

Constructs and Cloning 

The Aurora A 5’ leaders (GenBank accession numbers: Aurora A, XM_114165) were PCR 

amplified from a human brain cDNA library (Clontech) and inserted into the mono 

luciferase vector - pRF (Stoneley, Paulin . 1998; Stoneley, Subkhankulova . 

2000) (a generous gift from Dr. Anne Willis, University of Leicester) with EcoRI and 

NcoI restriction endonuclease sites.  The monocistronic construct for in vitro transcription was 

created by digesting the Photinus Vector (I refer to the construct as Photinus instead of 

Firefly Luciferase) with EcoRV and BamHI releasing the Photinus gene and the SV40 

3’untranslated region (3’-UTR). The single luciferase gene was inserted into the multiple 

cloning site of the SK+ Bluescript vector (Stratagene) downstream of the T7 promoter. 

 

The Aurora A 5’ UTR splice variants, containing exons 1b, 2, 2a, were identified by PCR 

amplification (with the 5’ end primer targeting the downstream transcription start site and the 3’ 

primer targeting the ORF just downstream of the start codon) from cDNA libraries created from 

WI-38, HMEC, MCF10A, MCF12A ,MCF-7, and HeLa S3 cell lines. PCR products were cloned 

into sequencing vectors using TOPO® TA Cloning® Kit (Invitrogen). These vectors 

were transformed in competent cells created with Z-Competent TM E. coli Transformation Kit & 

Buffer Set (Zymo Research) for amplification. Plasmid DNA was isolated using PureLink® 

Quick Plasmid Miniprep Kit (Invitrogen) or Nucleospin miniprep kit (Clontech) and submitted 

for sequencing. Verified leaders were PCR amplified from the Topo TA vectors with 5’ and 3’ 

primers containing EcoRI and NcoI endonuclease restriction sites and ligated into the 

monocistronic construct for in vitro transcription. 
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In Vitro Transcription 

The monocistronic SK+ Bluescript vector was linearized with BamHI and used as templates for 

in vitro transcription. The linearized plasmid was purified by running digests on a 1% agarose 

gel, gel excising the linearized plasmid, and gel extracting using Zymoclean™ Gel DNA 

Recovery Kit (Zymo Research). Linearized plasmid DNA (1μg) was transcribed at 37C for 

3hrs. For the in vitro translation assay, monocistronic templates were transcribed using 

mMessage mMachine® T7 Ultra (Ambion) producing capped mRNA. For the RNA transfection 

assays, dicistronic and monocistronic templates were transcribed using MEGAScript® T7 

(Ambion) producing either ApppG capped (New England Biolabs) or uncapped RNA. Cap 

priming of messages with an ApppG cap was done by the addition of 3μL 40mM G(5')ppp(5')A 

RNA cap structure analog and 2μL 15mM GTP to transcriptions. Transcriptions were then 

treated with 1μL DNase (2U/μL) for 15 mins at 37C. mRNA was phenol/chloroform purified, 

isopropanol precipitated, and resuspended in nuclease free water. M7GpppG caps were added 

using Script Cap™ m7G capping system (Cellscript Inc.) and transcripts were poly (A) tailed 

using Poly (A) Polymerase tailing kit (Epicentre) per manufacturer’s instructions. mRNA was 

phenol/chloroform purified, isopropanol precipitated, and resuspended in nuclease free water.  

mRNA quality was verified by running 1μg of mRNA on a Reliant® Precast RNA gel (LONZA) 

for 1.5hrs and stained with SYBR® gold (Invitrogen). RNA was stored at -80C. 

 

Cell Culture Maintenance 

MCF10A cells were generously provided by Heide Ford (University of Colorado Anschutz 

Medical Center) and cultured as previously described (Ford 1998).  Cells were cultured in 
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DMEM F-12 50/50 plus 10% FBS, 5% Pen/Strep, 50l of Cholera Toxin, 250l of 

Hydrocortisone, 500l of insulin, and 300l of EGF at 37°C, 5% CO2. 

 

RNA Luciferase Assays 

Cells were transfected with 0.5g of mRNA using the TransMessenger RNA transfection reagent 

(Qiagen) according to the manufacturer’s directions. After 2 hours (RNA transfections), the cells 

were lysed with 250μl of lysis buffer (Promega).  Forty microliters of the supernatant were used 

for the luciferase assays using the Single-Luciferase Reporter Assay (SLA) System and analyzed 

in a Luminoskan luminometer. 

 

RNA Extraction/qRT-PCR 

Total RNA was extracted using TRIzol® Reagent (Sigma) followed by PureLink™ RNA Mini 

Kit (Invitrogen). cDNA libraries were synthesized using iScript™ cDNA Synthesis Kit (Bio-

Rad), including a (-)RT control. For primer pairs see table 3.  qRT-PCR was performed using a 

Roche Lightcycler® 480 with either LightCycler® 480 SYBR Green I Master (Roche) or 

soAdvanced™ SYBR® Green Supermix (Bio-Rad) per manufacturer’s instructions. 

 

Western Blot Analysis 

Cells were harvested in cell lysis buffer (Promega) with protease (Roche) and 

phosphatase inhibitors (Pierce). Cells were centrifuged for 20 minutes at maximum speed 

4C to remove cell debris. The lysate was removed to a fresh tube and stored at -  

5X SDS loading dye (100% glycerol, 20% SDS, 1M Tris pH 6.8, DTT, bromophenolblue) were 

added to aliquoted lysate samples. Samples are boiled for 5-10mins.   Samples were loaded onto 



25 
 

a 10% SDS-PAGE gel, and run in 1X SDS Running Buffer (Tris Glycine) at 200 Volts for 35-45 

mins.  The transfer apparatus was assembled as follows: black side of sandwich, sponge, 3 filter 

paper squares, gel, nitrocellulose, 3 filter paper squares, sponge, clear side of sandwich. The 

transfer sandwich was placed in the apparatus with the black to black. 1X transfer buffer (Tris 

Glycine and 100% MeOH) was added up to the top of the apparatus. The gel was transferred for 

35 mins at 400 mAMPS.  The blot was blocked with 5% milk in 1X TBST (blocking solution) 

for 1hr at room temperature.  The blot was washed 2 times with ddH20.  The blot was exposed to 

1antibody diluted in TBST (of PBS containing 0.1% Tween 20) for 1hr at RT or overnight at 

4C. The blot was washed with 1X TBST for 5 minutes and repeated 4X. The blot was exposed 

to 2antibody diluted in or TBST for 1hr (anti-mouse) at RT. The blot was washed 4 times for 5 

minutes in 1X TBST. The blot was rinsed in 2X ddH20  for 3mins. Immunoreactive bands were 

detected using Amersham® ECL-plus chemiluminescent detection reagent (Promega- 

Aurora A study).  The blot was detected with either x-ray film or STORM imager and 

quantified using Image Quant software.   

 

Table 2.1 Primary and secondary antibodies. 

Antibodies Dilution Source 

Rictor 1:2000 (53A2)Cell Signaling 

phosphorylated p70 S6 

kinase 

1:1000 (49D7) Cell Signaling 

Gapdh anti-mouse 1:2500 (ab9485) Abcam-FMR1 

study Raptor anti-rabbit 1:2000 Milliepore 

Aurora A anti-mouse 1µ g/ml (35C1) Calbiochem 

HRP-conjugated anti-mouse 1:2500 – 1:10,000 Promega 
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Table 2.2 RNA transfection with TransMessenger 

 

Transfection Agent 6.0µL of TransMessenger/1ug of RNA 

Additional Reagent 3.2 µL of enhancer/1ug of RNA 

RNA 0.5ug of RNA* 

Transfection Buffer 100µL 

Volume of medium w/o serum on 

cells 

300µL 

Final Volume per well 400µL 

 

Table 2.3 qRT-PCR Primer Sets 

 

 

Growth Factor Induction 

On the first day 2.0 x105 cells/per well were plated in 12 well dish and incubated 

O/N in normal growth conditions.  On day two, the growth medium was replaced with 

serum free media.  Cells +/- 10 ng/ml TGF-, 5ng/ml basic FGF, 50ng/ml of IGF-I and cells 

were incubated for two hours.  At this time the cells were lysed with appropriate buffer (see 

western blotting). When performing RNA transfections the whole media was replaced with 

serum free media for 4hrs then RNA was transfected at the same time of bFGF induction.   RNA 

transfection with cells harvested, luciferase activity, and transcript level were measured after two 

hours.   

 

Gapdh target FORWARD: 5′-ACA GTC AGC CGC ATC TTC TT-3′ 

REVERSE: 5′ GTT AAA AGC AGCCC TGG TGA-3 

Photinus target FORWARD: 5′-AAA GCT CCC AAT CAT CCA AA-3′ 

REVERSE: 5′-GAG ATG TGA CGA ACG TGT-3′ 
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Drug Inhibition 

On the first day 2.0 x105 cells/per well were plated in 12 well dish and incubated 

O/N in normal growth conditions.  On day two, the growth medium was replaced with 

serum free media for 2 hours then incubated with rapamycin (0.01M) or pp242 (0.1M).  After 

2 hours, cells +/- bFGF (5ng/ml) were incubated for two hours.  At this time the cells were lysed 

with appropriate buffer (see western blotting). When performing RNA transfections the whole 

media was replaced with serum free media for 4hrs then RNA was transfected at the same time 

of bFGF induction.   RNA transfection with cells harvested, luciferase activity, and transcript 

level were measured after two hours.  P-values were calculated using students t-test.  

 

 

siRNA Transfection 

Day one: 1.0 x105 cells/per well were plated in 12 well dishes and incubated O/N in whole 

media.  Day two: whole media was replaced with 500l of fresh, pre-warmed whole media; 

20nM of siRNA (Invitrogen) was added to 100l of serum free media.  After which, 5ul of 

Transfection Reagent (Invitrogen) was added and the mixture was incubated at room temperature 

for 10-15 minutes.  siRNA reagent mixture was added to each well and the cells were incubated 

for 24hrs.  The next day, the growth factor induction experiment was performed as previously 

described. 
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Overview 

 In cells that over-express the Aurora A kinase, the Aurora A mRNA is primarily 

translated via an IRES. (Dobson 2012).  Recently we found that the Aurora A 5’ leader contains 

three independent IRES located in exons 1b, 2, and 2a (figure 1.4).  We also found that EGF 

induces IRES activity via exon 2 but not exons 1b or 2a (Dobson, Chen, and Krushel 

unpublished observations).   Thus, I examined the effect of other growth factors that may 

regulate the use of the exon 1b and exon 2a Aurora A IRESs.   

bFGF Increases Endogenous Aurora A Protein Expression 

To identify growth factors regulating high Aurora A expression, I first examined the 

effect of bFGF, TGF-, and IGF-I, since their receptors are expressed by MCF10A cells.  

MCF10A cells were serum starved for 4 hours then bFGF (5ng/ml), TGF-, (10ng/ml) or IGF-I 

(50ng/ml) was added for two hours.   Addition of basic FGF led to a 210% increase in Aurora A 

expression, whereas IGF-I increased Aurora A by 30% and TGF- had no effect on protein 

levels (figure 2.1).  The increase observed after the addition of bFGF was similar to that 

stimulated by EGF (Dobson 2012).    Since the greatest increase in Aurora A protein was elicited 

by bFGF, I examined the effect of bFGF on Aurora A IRES activity.  
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Figure 3.1 Growth Factor induced Aurora A protein expression.  bFGF, IGF-I, and TGF-were 

added to serum starved MCF10A cells.  After 2hrs the cells were harvested.  Aurora A protein expression 

was analyzed via western blot.  Aurora A protein levels were determined using Image J and Gapdh was 

used as a loading control. The Aurora A to Gapdh ratio in serum starved cells were set to one and used to 

normalize Aurora A expression in the presence of individual growth factors. n=3+ SD. 
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bFGF Increases IRES Activity of Aurora A  

 EGF and bFGF employ very similar signaling pathways (Schlessinger 2004, Hebert, Wu 

et al. 2009), suggesting the two growth factors possibly stimulate IRES activity through the same 

pathway.  To determine if bFGF stimulated Aurora A IRES activity, exons 1b, 2, and 2a were 

inserted into a monocistronic construct containing the Photinus luciferase reporter gene.  The 

DNA constructs were in-vitro transcribed, capped with ApppG (preventing cap-dependent 

translation and maintaining RNA stability) and poly (A) tailed for RNA stability.  The MCF10A 

cells were serum starved for 4 hours followed by simultaneous addition of (5ng/ml) bFGF and 

A- cap luciferase mRNA containing the different exons (ex 1b, ex 2, and ex 2a).  Two hours later 

the cells were harvested and RNA was reverse transcribed.  Using real-time PCR the exon 

containing transcripts were measured.  The Photinus luciferase to mRNA ratio was calculated 

and normalized to serum starved samples.  The luciferase protein/RNA ratio from the mRNA 

containing exon 1b increased 60%, whereas exon 2a containing mRNA increased approximately 

110%.  Interestingly, exon 2 IRES activity only managed a 20% increase (figure 2.2).  I conclude 

that the bFGF induced increase in Aurora A protein levels is mediated by the IRESs contained in 

exon 1b and 2a.  Interestingly, addition of bFGF only exerted a minimal effect on exon 2 IRES 

activity, whereas it was the only IRES to be stimulated by EGF (Dobson, Chen, and Krushel 

unpublished observations).   
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Figure 3.2 bFGF induced Aurora A IRES activity.  ApppG capped monocistronic Photinus luciferase 

mRNA containing an exon from the 5’ leader of Aurora A was transfected into serum starved MCF10A 

cells in the presence and absence of bFGF.  Photinus luciferase protein/mRNA ratios were determined.  

The ratio for the serum starved untreated cells was normalized to 100.  bFGF ratios were normalized to 

serum starved samples.  Performed in triplicate, n=3 + SD.   
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bFGF Stimulates an Increase in Aurora A IRES Activity Through the mTOR Pathway    

 bFGF is known to increase protein synthesis through mTOR.  Moreover, preliminary 

evidence indicates EGF increases exon 2 IRES activity through mTOR.  Therefore, I hypothesize 

that bFGF regulates IRES activity by a similar mechanism.  To determine if mTOR is involved 

in IRES-dependent translation, I selected two mTOR inhibitors: rapamycin (mTORC1) and 

pp242 (mTORC1 and mTORC2).  Rapamycin blocks 4EBP-1 and S6K phosphorylation.  

MCF10A cells were serum starved for 2 hours before mTOR inhibitors rapamycin (0.01nM) and 

pp242 (0.1nM) were added.  Serum starvation continued for 2 more hours, bFGF was added, and 

(A) capped mRNA (containing the three exons) was transfected.  The cells were harvested 2 

hours later as noted above.  bFGF increased exon 1b and exon 2a translation and was not blocked 

by rapamycin.  Rapamycin did however reduce bFGF induced exon 2 IRES use by an average of 

30%.  pp242 exerted a minimal effect on bFGF induced exon 1b activity.  On the other hand, 

pp242 blocked the bFGF increase in exon 2a IRES activity (figure 2.3A).  To determine if 

Aurora A protein expression was regulated in a manner similar to what was observed from the 

IRES activity, a western assay was performed.  bFGF induced a 70% increase in Aurora A 

expression which was only modestly inhibited by rapamycin but was completely blocked by 

pp242 (figure 2.3C).  I conclude that the bFGF increase of exon 1b and particularly exon 2a 

IRES activity contributes to the increase in Aurora A expression through the mTOR pathway.  

Since pp242 was more effective than rapamycin in blocking IRES activity and protein 

expression, it suggests that either mTORC1 and mTORC2 together or mTORC2 alone is 

mediating this translational response. 
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A. 

 

B.                                                                                                 C.                                                                                             

 

 
Figure 3.3 (A) Aurora A protein expression and IRES activity after mTOR inhibition.  ApppG 

capped and poly A tailed monocistronic mRNA containing each exon was transfected into serum starved 

MCF10A cells.  bFGF was added in the presence of rapamycin or pp242.  Photinus to mRNA ratios of 

serum starved samples were set to one and each condition was normalized to serum starved.  Performed in 

triplicate, n=3+ standard deviation (SD).  (B) Western blot analysis displays reduction of p70 S6K (a 

downstream target of mTORC1) with rapamycin and pp242.  Represents effectiveness of the drug and the 

same dose was used for all inhibitor experiments. (C) Quantified Aurora A protein expression during 

treatment with Rapamycin (mTORC1) or pp242 (mTORC1 and mTORC2) in the presence of bFGF.  N=3 

+ SD.  Western blots were quantified using image J software.  
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mTORC2 is a Major Regulator of IRES Activity 

To determine the mTOR complex(s) mediating IRES activity and Aurora A protein 

expression, they were inhibited individually.  I prevented the formation of both mTORC1 and 

mTORC2 using siRNA directed against raptor and rictor respectively.  These proteins are 

required for stabilization of the mTOR complex (Zinzalla, Stracka et al. 2011, Weber and 

Gutmann 2012).  Scrambled siRNA was used as a negative control.  MCF10A cells were treated 

with siRNA directed against raptor and rictor for 24 hours,  after which the cells were serum 

starved for 4 hours and then bFGF was added along with the exon containing monocistronic 

(coding Photinus luciferase) A-capped RNA.  The cells were then incubated for 2 hours in the 

presence of the bFGF and harvested.  Luciferase and RNA levels were quantified.  A ratio of 

protein to mRNA was determined for each sample and normalized to the serum starved samples.  

A western assay confirmed that expression of raptor and rictor were successfully reduced using 

siRNA (figure 2.4A).  Knocking down raptor led to a reduction in bFGF induced IRES activity 

of exon 2a by 40% and completely blocked the increase in exon 1b and exon 2 activity. 

Knocking down rictor greatly diminishes Aurora A IRES activity of exon 1b and exon 2 to 15% 

of basal levels and exon 2a to 30 % of basal levels. The western assay revealed a correlation with 

Aurora A endogenous protein expression.  Taken together these results indicate bFGF increases 

Aurora A protein via mTOR2 which in turn increase exon 1b and exon 2A mediated IRES-

dependent translation of Aurora A.   
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A. 

 
 

B. 

                      

 

Figure 3.4 Aurora A IRES activity after TORC1 and TORC2 inhibition.  (A) mTOR complex 1 and 2 

were inhibited with siRNA against proteins raptor and rictor respectfully.  Scrambled siRNA was used as 

a negative control.  A capped monocistronic mRNA containing each exon was transfected into MCF10A 

cells in the presence of bFGF and siRNA.  Performed in triplicate, n=3 + SD  (B)Western assay shows 

siRNA knock down of raptor and rictor along with effects on Aurora A protein expression +/- bFGF 

induction. 
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Overview 

In my study, I show that growth factors can regulate protein expression by enhancing 

translation of mRNAs that contain specific IRESs.  Specifically, I demonstrate that the bFGF 

induced increase in Aurora A expression was mediated by IRESs situated in exon 1b and exon 2a 

of the Aurora A 5’ leader. Furthermore, my study indicates that the ERK and PI3K/Akt pathways 

converge on the two mTOR complexes, TORC1 and TORC2.  Further experimentation indicates 

that of the two mTOR complexes, mTORC2 more so than mTORC1 mediates this translation 

mechanism.  In summary, my results identify a novel pathway and translational mechanism 

contributing to over-expression of an oncoprotein.  In turn this over-expression may contribute to 

tumorigenesis. 

Intracellular pathways regulating IRES dependent translation are not well understood.  

Many cellular processes/stimuli are known to affect IRES activity, yet, the pathways mediating 

this affect have yet to be analyzed.  For example, increasing intracellular Fe
++ 

increases APP 

IRES activity and this effect is dependent on de novo transcription (Beaudoin, Poirel et al. 2008). 

However, it does not affect IRES dependent translation of the Tau mRNA (Krushel unpublished 

observations).  Oxidative stress stimulates an increase in the translation of the HIV-1 IRES 

(Gendron, Ferbeyre et al. 2011).  On the other hand, the nucleolar protein dyskerin, exhibits a 

negative effect on the IRES activity of VEGF (Rocchi, Pacilli et al. 2013).  In addition some 

growth factors are positive stimuli for IRES activity. 

Basic FGF can increase cap dependent translation (Pardo, Arcaro et al. 2002), however, 

little is known about its involvement in IRES dependent translation.  bFGF promotes cellular 

proliferation and differentiation in a variety of cell types.  Its major signaling pathways are 
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PI3K/Akt and MAPK.  bFGF is often increased in cancers such as bladder and breast cancer 

(Hebert, Wu et al. 2009, Li, Gao et al. 2012).  The protein has been detected in urine and nipple 

fluid in patients with bladder cancer at a level significantly higher than control patients and 

patients who were successfully treated (Li, Gao et al. 2012).  I found that inducing epithelial 

breast cells with bFGF stimulates an increase in Aurora A kinase protein synthesis.  Similar 

IRES studies have shown platelet derived growth factor to increase IRES dependent translation 

of Laminin (Petz, Them et al. 2012) and EGF to increase cap and IRES dependent translation of 

Aurora A (Lai, Tseng et al. 2010, Chen, Torcia et al. 2013).   

bFGF is intimately linked to breast cancer (Li, Gao et al. 2012, Tiong, Mah et al. 2013) 

and therefore, the phenomena observed in my ex-vivo study may be a representation of what 

occurs in vivo.  Aurora A protein expression is increased with bFGF signals through mTORC2 to 

increase IRES dependent translation.  This regulation of Aurora A may be a major contributing 

factor as to why over-expression of bFGF is involved in cancer.  We know inhibition of bFGF 

reduces the proliferative abilities of various cell types (Pratsinis and Kletsas 2007, Hebert, Wu et 

al. 2009), however, it has not been determined if bFGF is required for Aurora A over expression.  

It would be of interest to determine the dependency, of Aurora A expression in vivo, on bFGF.  

bFGF also has an IRES (Le and Maizel 1997) and whether it contributes to bFGF over-

expression in certain breast cancers is not known.  It would be of interest to determine whether 

bFGF and Aurora A IRESs and protein are regulated in a similar manner during cellular 

immortalization.  For example, hnRNP A1 and possibly hnRNP E2 are ITAFs that regulate 

bFGF and Aurora A IRES respectively (Bonnal, Pileur et al. 2005).  It is likely Aurora A IRESs 

in ‘non-breast’ cells are regulated in the same manner.  HeLa cells, which are from the cervix, 
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also show increased Aurora A IRES activity (Dobson 2012), however, the effects of growth 

factors has not been investigated.   

Another candidate pathway regulating IRES activity is though the MNK kinases.   

Reducing MNK activity blocks IRES dependent translation stimulated by rapamycin (Shi, Frost 

et al. 2013).  It has been suggested that cellular stress is stimulating this pathway (Ueda, 

Watanabe-Fukunaga et al. 2004, Shi, Frost et al. 2013).   My results indicated that rapamycin did 

not affect IRES activity, but inhibiting mTORC1, by knocking down raptor, did partially block 

bFGF increased IRES activity.  In this paper, the authors did not examine any potential role of 

mTORC2.  It is possible that MNK does contribute to IRES activity by interacting with IRES-

transacting factor (ITAFs).  For example, MNK kinases phosphorylate hnRNP A1 (Buxade, 

Parra et al. 2005, Shi, Frost et al. 2013), which is an ITAF, enhancing translation of myc and 

cyclin IRES (Shi, Frost et al. 2013).   

Cap-dependent translation is regulated by intracellular pathways that converge on mTOR.  

Mammalian target of rapamycin is localized to two complexes TORC1 and TORC2.  Of the two 

complexes, TORC1 was shown to be critical for this mode of translation.  To regulate cap 

dependent translation through mTOR, growth factors signal through PI3K/Akt and MAPK 

pathways.  Phosphorylation of Akt (T308 and S473) inhibits TSC 2 which is an inhibitor of 

mTOR (Weber and Gutmann 2012).  TSC2 is also inhibited by ERK 1/2.    One report from the 

Schneider lab indicated that mTORC1 also mediate IRES dependent translation of EMCV 

(Ramirez-Valle, Badura et al. 2010).  I also found similar results in which knockdown of raptor, 

thus abolishing TORC1 activity, blocked the bFGF induced increase in EMCV IRES activity.  

Indeed IRES activity was below control levels (Figure 3.1).  Originally, IRESs were proposed to 

occur or be up-regulated when cap dependent translation was inhibited (Pyronnet, Dostie et al. 
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2001), yet our evidence suggests that both cap and IRES modes of translation are regulated 

through mTOR. Preliminary data show silencing raptor (a unique mTORC1 stabilizer) reduces 

Tau IRES by 80% (Leslie Krushel, Niza Nemkul unpublished observations).  Therefore, it was 

interesting that these same pathways also mediate IRES dependent translation.  This observation 

is even more remarkable since it was initially proposed that IRES translation was up-regulated 

when cap-dependent translation was reduced.   

My studies show that mTORC2 not mTORC1 regulates Aurora A IRES activity.  This 

result is the first demonstration of the role of mTORC2 in IRES dependent translation.  The drug 

pp242, which inhibits TORC1 and TORC2, dramatically reduced IRES activity, whereas 

rapamycin, which affects TORC1, had no effect.  Moreover, abolishing the TORC2 complex by 

knocking down rictor dramatically reduced Aurora A IRES activity and also blocked the bFGF 

induced increase of the EMCV IRES (Figure 3.1). 
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Figure 4.1 EMCV IRES activity after TORC1 and TORC2 inhibition.  ApppG capped 

monocistronic Photinus luciferase mRNA containing EMCV 5’ leader transfected into serum starved 

MCF10A cells in the presence and absence of bFGF and TORC inhibitors raptor and rictor.  A serum 

starved condition served as both a control for transfection efficiency and representation of basal IRES 

activity.  Photinus to mRNA ratios, from the serum starved sample, was normalized and set to 100.  

Performed in triplicate n=2 + SD. 
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The rate limiting step in IRES translation is proposed to be the non-canonical RNA 

binding proteins termed IRES transacting factors (ITAFs).  For example, the cellular 

concentration of the La protein regulates IRES activity mediated by the amyloid precursor 

protein (APP) 5’ UTR (e.g., reducing or over-expressing La decreases and increases APP IRES 

activity respectively) (Beaudoin, Krushel unpublished observations).  This result indicates that 

the concentration of La regulated APP IRES activity and in turn the levels of APP in the cell.   

The mechanism by which TORC2 mediates Aurora A IRES activity is unknown.  TORC2 has 

been associated with ribosomes (Oh, Wu et al. 2010) both large and small subunits.  TORC2 

leads to transcription via certain transcription factors.  For example, the APP IRES up-regulated 

by Fe
++

 requires de novo transcription, however, bFGF increases IRES activity as early as two 

hours.  We do not know if this is enough time to transcribe and translate.  It is possible the 

TORC2 regulates 80S ribosome formation at the initiation start site or if it forms a unique 

complex with the IRES.  For example, recent data (Juan Chen and Leslie Krushel unpublished 

observation) have indicated that PCBP2 (hnRNP E1) may be an Aurora A ITAF.  It has been 

found that PCBP2 binds TORC2 (Ghosh, Srivastava et al. 2008).  On the other hand, TORC2 

could phosphorylate substrates that act as ITAFs.  We have evidence that polypyrimidine tract 

binding protein, a RNA binding protein, is phosphorylated by different kinases influencing 

various regulatory functions of mRNA processing (Xie, Lee et al. 2003, Vavassori and Covey 

2008).  It is possible that post translational modifications other than phosphorylation of ITAFs 

could be the rate limiting step.  For example, kinase pathways could regulate other ‘protein 

modifiers’ such as acetylases and methylases which could enhance or impair the affinity of RNA 

binding proteins for transcripts (Liu and Dreyfuss 1995, Rho, Choi et al. 2007, Blackwell and 

Ceman 2012).   
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Substrates that mediate IRES activity downstream of mTORC2 are not known.  mTOR, 

as part of mTORC2, is known to phosphorylate Serum and glucocorticoid induced protein kinase 

1 (SGK1),PKC, and is best known for phosphorylating Akt (S473) (Garcia-Martinez and Alessi 

2008, Zinzalla, Stracka et al. 2011, Weber and Gutmann 2012).  SGK1 is activated by mTORC2 

leading to potassium, sodium, and chloride channel activation.  It also stimulates proteolysis and 

glycogenolysis.  There are no reports of SGK1s involvement in IRES dependent translation.  

Protein Kinase C alpha (PKC, when increased, has been shown to increase Hif-1 IRES 

activity via AMPK (Mizrachy-Schwartz, Cohen et al. 2011).  Thus, it would be useful to 

determine if inhibition of PKCreduces Aurora A basal or bFGF induced IRES activity.  Akt 

(protein kinase B) has two phosphorylation sites, S473 and T308 (Yung, Charnock-Jones et al. 

2011, Dobson 2012) .  IRES activity may be affected by this differential phosphorylation.  

Downstream of growth factors and other cellular stimuli, Akt is a key player in various cellular 

processes such as translation, apoptosis and cell proliferation.  Phosphoinositol-dependent kinase 

1 (PDK1) phosphorylates Akt at T308, mTORC2 and PDK2 phosphorylate Akt S473 (Dobson 

2012).  Both are required for full activation of the kinase.  Interestingly, evidence shows 

differential regulation of T308 and S473 results in a variation in Akt substrate phosphorylation 

(Jacinto, Facchinetti et al. 2006, Yung, Charnock-Jones et al. 2011, Dobson 2012).  This 

differential phosphorylation could affect the Akt substrate TSC2 which would then have positive 

or negative effects on the mTOR pathway.  We have demonstrated in MCF7 cells, that translate 

Aurora A primarily in a cap-dependent manner, phosphorylation of S473 was not detectable, 

however, T308 phosphorylation was (Dobson 2012).  Moreover, in MCF10A cells, that primarily 

translate Aurora A by utilizing the IRES, S473 phosphorylation is elevated while T308 

phosphorylation was lower than MCF7.  We found a correlation between increased exon 2 IRES 
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activity and elevated Aurora A protein expression.  Analyzing S473 and T308 levels of 

phosphorylation in bFGF induced cells may reveal possible differences which lead to selective 

increases of Aurora A IRESs. 

It has yet to be determined if the bFGF increase in Aurora A IRES activity occurs in all 

cells or only those that over express Aurora A.  We had shown that primary cells like HMECs 

translate Aurora A mRNA via the cap but still retain the ability to utilize the IRES.  On the other 

hand, a transformed breast cell line (MCF7), appears to have lost the ability to utilize the Aurora 

A IRES and is solely dependent on cap dependent translation (Dobson 2012).  Thus, it would be 

useful to determine the cells that express the bFGF receptor and examine how they respond.   

I have shown that bFGF increases exon 1b and exon 2a IRES activity (predominantly 

exon 2a), but, EGF increases exon 2 IRES activity.  Although the intracellular pathways from 

EGF and bFGF overlap, at some point there must be a divergence.  It is highly likely that 

downstream pathways unique to bFGF and EGF receptors are critical for controlling the different 

IRESs, possibly by differential post translational modifications, translations of ITAF mRNA, 

and/or transcription of RNA binding proteins which could act as ITAFs.  Proteins such as Crk 

and SHP2 are in the FGF signaling pathway and not in the EGF pathway (Schlessinger 2004, 

Tiong, Mah et al. 2013). Crk, also known as proto-oncogene c-Crk or p38, is an adaptor protein 

and mediator of signal transduction (Tiong, Mah et al. 2013) SHP2 is a protein tyrosine 

phosphatase that regulates growth factor induced cell growth and proliferation through the 

RAS/MAPK pathway (Chen, Sung et al. 2006).  Additionally FGF receptor interacts with 

docking protein fibroblast growth receptor 2 (FRS2) forming a complex with Grb2 and SHP2 

(Schlessinger 2004).  This complex is not found in the EGF pathway and is one of many unique 

complexes between bFGF and EGF.   
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The differential use of IRES and cap dependent translation in the different cell types 

could be exploited to target cancer cells.  We have shown that cap dependent translation is 

dominant in primary cells, at least one tumorigenic cell line, and the Aurora A over-expressing 

cells utilize IRES.  Thus, targeting IRES mediated translation may spare normal cells and kill a 

subset of cancer cells.  Creating small molecules that interfere with the binding of the putative 

ITAF or 40S ribosome to the Aurora A mRNA would be a useful approach.  Indeed, small 

molecules have been created to bind to the 5’ UTR of the theophylline mRNA preventing 80S 

ribosome assembly and consequently inhibit its translation (Pelletier and Sonenberg 1985, 

Harvey, Garneau et al. 2002).   

Determining if increased IRES activity is responsible for the increase in Aurora A 

expression in vivo is difficult.  It is critical to identify the ITAF(s) and determine if its level or 

post translational modifications change in breast cancer.  If this is the rate limiting step, knocking 

down the ITAF or inhibiting its post translational modification in mouse models of breast cancer 

could be very enlightening. I have shown basic fibroblast growth factor (bFGF) increases IRES 

activity of specific exons in the Aurora A 5’ leader primarily through the mTORC2 pathway.  

This novel finding is a step in the direction of identifying a method of selectively reducing 

Aurora A expression specifically in cancer cells and not in normal expressing cells.  There is still 

much to learn about cellular regulation of Aurora A’s IRES, more work need to be done to unveil 

mTORC2s mechanism of regulating IRES dependent translation. 

Future Direction 

My research has shown that bFGF stimulation through MAPK and Akt which in turn 

targets TORC2 leading to enhanced translation of Aurora A protein via the IRES located on exon 
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2a and to a lesser degree exon 1b.  The next objective is to learn more about mTORC2, but our 

understanding of this process is incomplete.  There are four questions/objectives I want to 

address 1: How dependent is Aurora A on bFGF?  2: What are roles of TORC2 substrates in 

IRES mediated translation? 3: What ITAFs associate with Aurora A mRNA?  4: Is Aurora A 

IRES activity sensitive to their expression levels or post translational modifications?   

EGF and bFGF both exhibit and increase in Aurora A protein synthesis by stimulating 

IRES activity.  Using siRNA to knock down bFGF, in cells that over-express Aurora A, we can 

then observe the effects on Aurora A synthesis.  Furthermore, we could look at IRES activity and 

changes in phosphorylation of PI3K/Akt and ERK pathways.  On the other hand, using FGFR 

inhibitors may prove more beneficial.  There are four active FGF receptors (FGFRs) (Daniele, 

Corral et al. 2012) and bFGF binds all of them.  Reports have shown FGF 1, 2, and 3 to be 

amplified in breast cancers as well as ovarian, bladder, and gastric cancers (Ishizuka, Tanabe et 

al. 2002, Kunii, Davis et al. 2008, Nord, Segersten et al. 2010, Weiss, Sos et al. 2010, Daniele, 

Corral et al. 2012, Tiong, Mah et al. 2013).   We could identify which receptors are responsible 

for the increase in Aurora A by using small molecule receptor tyrosine kinase inhibitors to 

individually inhibit each receptor.  If one or a combination of the FGFRs is responsible for the 

increase in Aurora A this information would allow us to use mouse models of breast cancer.  

Utilizing tumorigenic mice, we knockout those FGFRs to examine if Aurora A is reduced in vivo 

and if the tumors are reduced.  

Downstream targets of mTORC2 include: PKC, Akt(S473), and SGK1.  To further 

explore the pathway leading to IRES usage, we can individually silence these proteins using 

siRNA and measure IRES activity with or without bFGF or EGF induction.  All growth factors 

signal through the same pathways Hebert, Wu et al. (2009), however our studies suggests bFGF 
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and EGF regulate different IRESs.  It would be beneficial to uncover the IRES dependent 

functional differences between these two growth factors.  We have previously observed 

differential phosphorylation of Akt between cell lines that primarily use cap dependent 

translation and those that use IRES.  Thus, to identifying Akt phosphorylation patterns in EGF 

and bFGF induced cells, we would use Aurora A over-expressing cells induced with bFGF and 

EGF and observe Akt phosphorylation at S473 and T308.  This may illuminate the key 

differences between the growth factors which are responsible for specific IRES up- regulation.   

 Identifying ITAFs should be a priority.  ITAFs have been identified such as hnRNPs, 

PTB, DAP5, and Unr (Komar and Hatzoglou 2005). Multiple techniques including, Mass 

spectrophotometry, IP pull down assays, and/or RNA-seq may provide a better understanding of 

which ITAFs bind to Aurora A mRNA.  We could then use siRNA to manipulate those proteins 

and determine if they really are essential for IRES dependent translation.  Maybe there are 

different ITAFs for different IRESs.  Post transcriptional modification may play a role in ITAF 

association to the Aurora A mRNA as well.  For example PTB is phosphorylated by protein 

kinase A leading to its localization to the CD40L mRNA resulting in increased stability (Xie, 

Lee et al. 2003, Vavassori and Covey 2008).  Some ITAFs have been shown to double as 

splicing factors which may explain how they initially associate with the mRNA (Blaustein, 

Pelisch et al. 2007).    Regulation of splicing may very well directly affect how IRES elements 

are regulated.  This process shares similarity with pathways that increase expression of Aurora 

A.  Well-known splicing regulatory factors are members of two protein families serine/arginine-

rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) which include 

PCBP1 and PCBP2 (Blaustein, Pelisch et al. 2007).  PCBP2 could regulate splicing of Aurora A 

and remain associated to the mRNA.  PCBP2 also associates with mSIN1 (Ghosh, Srivastava et 
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al. 2008) which is a major component of the mTOR2 complex.  This link between PCBP2 and 

mTORC2 could be the mechanism that leads to increased translation of the Aurora A mRNA.   It 

would be of interest to knock this protein down and observe the effects on Aurora A IRES 

activity.  

 We classified the cells base on the level of Aurora A protein expression.  Over-

expressing cells tend to predominantly use IRES dependent translation, while normal Aurora A 

expressing cells utilize the cap.  bFGF stimulates an increase in protein and IRES activity 

although this is only in vitro.  I have shown mTORC2 to be critical for IRES mediated 

translation of Aurora A.  The goal is to selectively target cancer cells and not normal cells.  Thus, 

we may have gained insight into how we can achieve this by discovering mTORC2s role.  

Further investigation is needed to better understand the mechanism behind TORC2s 

involvement.  Targeting IRES activity whether through mTORC2 or by selectively mutating 

exon 2 or exon 2a, as those IRESs were increased by bFGF and EGF, may very well lead to the 

reduction of IRES activity that is vital for cancerous cells.  Moreover basal cap dependent 

translation of Aurora A will remain active sparing normal cells.   Future studies that identify the 

fundamental mechanisms by which Aurora A protein is synthesized will lead to more efficient 

methods of targeting the protein for anti-cancer drug therapy. 
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