THE ASSOCIATION BETWEEN THE IL-1 PATHWAY

Isaac C. Wun

5-2014

Follow this and additional works at: http://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Bioinformatics Commons, Biostatistics Commons, Cancer Biology Commons, Computational Biology Commons, Genetics Commons, Medicine and Health Sciences Commons, and the Survival Analysis Commons

Recommended Citation

http://digitalcommons.library.tmc.edu/utgsbs_dissertations/428

This Dissertation (PhD) is brought to you for free and open access by the Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in UT GSBS Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact laurel.sanders@library.tmc.edu.
THE ASSOCIATION BETWEEN THE IL-1 PATHWAY
AND MELANOMA OUTCOMES

by
Isaac Wun, B.A., M.A.

APPROVED:

Supervisory Professor: Christopher I. Amos, Ph.D.

Marsha Frazier (On-site advisor), Ph.D.

Jeffrey E. Lee, M.D.

Elizabeth Grimm, Ph.D.

Jeffrey Morris, Ph.D.

Dean, The University of Texas
Graduate School of Biomedical Sciences at Houston
THE ASSOCIATION BETWEEN THE IL-1 PATHWAY
AND MELANOMA OUTCOMES

A
DISSERTATION
Presented to the Faculty of
The University of Texas
Health Science Center at Houston
and
The University of Texas
MD Anderson Cancer Center
Graduate School of Biomedical Sciences
in Partial Fulfillment
of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY

by
Isaac Wun, B.A, M.A.
Houston, Texas
May, 2014
ACKNOWLEDGEMENTS

First and foremost, I wish to convey my utmost gratitude to my advisor, Dr. Christopher I. Amos, for all his advice, support, and time throughout my research process. I am glad for his guidance in helping me hone my knowledge and research skills. I also wish to convey my dearest thanks to my on-site advisor, Dr. Marsha Frazier, for all her counsel and patronage of me throughout this time. I owe the other members of my supervisory committee, Dr. Jeff Lee, Dr. Elizabeth Grimm, and Dr. Jeffrey Morris, my thanks as well, for their invaluable insights and suggestions for my project. I would also convey my thanks to my candidacy committee members: Dr. Marsha Frazier, Dr. Karen Basen-Engquist, Dr. Chongjuan Wei, Dr. Anthony Wright, and Dr. Subrata Sen, for taking the time to help me with my candidacy exam. I owe much to Ms. Wei Chen in the Genetics department. I would never have been able to obtain the necessary data for my project and properly coded for my analysis in such a smooth manner without her assistance. I would express my deep thanks to her. I would thank Dr. Florence Demenais, Pierre-Emmanuel Sugier, and their group in Paris for their validation analysis. I would also like to thank Dr. Victoria Knutson, Ms. Lourdes Perez, and the other GSBS staff members for all their support these past several years.
THE ASSOCIATION BETWEEN THE IL-1 PATHWAY AND MELANOMA OUTCOMES

Isaac Wun, B.A., M.A.
Advisory Professor: Christopher Amos, Ph.D.

Cutaneous malignant melanoma (CMM) is a potentially lethal malignancy that warrants attention and further research, as it is known to that there is an increasing rate of incidence in the United States, and it is also known that exposure to UV light is its most crucial risk factor, and family history of melanoma is also an important risk factor. Melanoma is an aggressive and lethal cancer in humans. There are an estimated new 132,000 melanoma cases annually worldwide, and the trend has doubled in the past 20 years. However, attempts to treat melanoma have encountered considerable resistance and remained ineffective. The 5-year survival rate for metastatic melanoma remains less than 5%. CMM patients may develop an immune response to their tumors, but innate anti-tumor immune responses are insufficient for controlling the development of the tumor. Melanoma is a very immunogenic tumor, sometimes exhibiting spontaneous remissions, making it one of the foremost targets for immunotherapy. Unfortunately, despite the attempts at making tumor-infiltrating lymphocyte treatments, the clinical response has been borderline. The immunosuppressive microenvironment of tumor cells becomes significant and intertwines with the resistance of tumor treatment. Furthermore, IL-1 can hinder the immune response to melanoma. The pathway of MAPK activation leads to the production interleukin(IL)-1α/β. IL-1 conducts immunomodulatory activity through tumor-associated fibroblasts and locks in the turnkey position of the immunosuppression pathway to resist the cytotoxic T lymphocyte function. Hence, IL-1 is a key target of interest in treating melanoma, along with the entire
pathway flowing from it. Polymorphisms in genes regulating the immune response could result in increased susceptibility to and/or poorer prognosis in certain individuals. For this study, one of the objectives was to examine if single nucleotide polymorphisms (SNPs) of certain pro- and anti-inflammatory cytokines and growth factors, namely IL-1, IL-6, IL-8, IFN-γ, and TNF-α are associated with melanoma outcome of death, recurrence, or composite, and thus susceptibility. Those genes are the upstream and downstream targets for the greater IL-1 pathway. The greater IL-1 pathway has multiple genes in between those upstream and downstream targets. Those genes are IL-1RI, IL-1RAcP, IL-1RA, MYD88, TOLLIP, IRAKs, MEKK1, MEK3, MEK6, JNK, P38, c-JUN, ECSIT, TRAF6, TAB1, TAK1, RKIP, NIK, IKKα, IKKβ, IκBα, and NF-κB.

The individual SNP analysis proved to be interesting though inconclusive. There were some borderline significant results, such as associations of the SNPs rs16944, rs1143627, rs1071676, and rs3136558 with the endpoint of death. The French validation verified a significant association of rs3136558 with death but none of the others.

The next objective was to perform a full pathway analysis, incorporating all available SNPs for each gene in the overall IL-1 pathway to determine if any components were significant and if so, to attempt further verification at the protein level if the data were available. By using the SKAT program for pathway analysis, several genes in the IL-1 pathway were found to be significant. They were IL-1, c-JUN, and ECSIT, with borderline significance for TAK1.

With the observation of associations of these four genes with melanoma outcomes at the DNA level, the next step was to determine if they were also significantly associated with melanoma outcomes at the expression level. The data for the DNA level studies did not
include protein expression studies, so we used data provided by The Cancer Genome Atlas (TCGA). TAK1 data was not available, but RNA expression data were gathered for IL-1, c-JUN, and ECSIT. At the protein level, only c-JUN data was available. At the RNA level, IL1 showed that survival was proportional to IL-1 level, ECSIT showed lower survival for higher level, while c-JUN showed higher survival for higher levels. At the protein level, c-JUN was significant at the protein level, both adjusted and unadjusted via logistic regression. It seems that for developing further therapy against melanoma, c-JUN may be a crucial target in the IL-1 pathway. IL-1 and ECSIT could also play important roles related to melanoma outcomes but require future studies where protein expression data is available to confirm the DNA- and RNA-based results.
Table of Contents

ACKNOWLEDGEMENTS .. iii
LIST OF FIGURES .. vii
LIST OF TABLES .. viii
1. Introduction ... 1
 1.1 Melanoma Lethality and Association with IL1 Pathway ... 1
 1.2 Therapeutic Difficulties and Potential ... 7
 1.3 Overview of Assessment Levels and Results ... 9
2. Materials and Methods .. 12
 2.1 Individual SNPs Analysis with External Validation ... 12
 2.2 Full Gene-Based Pathway Analysis ... 14
 2.3 RNA Expression and Protein Expression Analysis .. 19
3. Results ... 20
 3.1 Individual SNP Analysis for Candidate Gene with External Validation 20
 3.2 Pathway Analysis ... 23
 3.3 RNA Expression and Protein Expression Analysis .. 23
4. Discussion ... 68
Bibliography ... 73
Vita .. 77

LIST OF FIGURES

Figure 1 IL-1 Pathway ... 3
Figure 2 Analysis Flowchart and Summarized Results ... 11
Figure 3 Q-Q Plot of Adjusted Probabilities of Genes for Death Outcome 60
Figure 4 Q-Q Plot of Adjusted Probabilities of Genes for Death Outcome 61
LIST OF TABLES

Table 1 Summary Statistics of Demographics and Vital Status for All Subjects26

Table 2.1 Frequency Distribution of Subjects with or without Events and Time to Event or Censored for All Endpoints Among Cases ...27

Table 2.2 Baseline Demographics and Clinical Characteristics by Subjects with or without All Endpoints of Cases from MDACC data ...28

Table 3.1 Relationship between Age at First Diagnosis and Time to Event or Censored for All Endpoints among Cases ..29

Table 3.2 Relationship between Gender and Time to Event or Censored for All Endpoints among Cases ..30

Table 3.3 Relationship between Stage and Time to Event or Censored for All Endpoints among Cases ..31

Table 3.4 Relationship between Clark Level and Time to Event or Censored for All Endpoints among Cases ..32

Table 4.1 Comparison of Time from First Diagnosis to Endpoint of Death (Regardless of Recurrent Status) among the 3 Allele Types for Each Gene Among Cases - Unadjusted Analysis ...33

Table 4.2 Comparison of Time from First Diagnosis to Endpoint of Death (Regardless of Recurrent Status) among the 3 Allele Types for Each SNP Among Cases - Final Model Built by Stepwise Selection Process...36

Table 5.1 Comparison of Time from First Diagnosis to Endpoint of Recurrence (Regardless of Vital Status) among the 3 Allele Types for Each Gene Among Cases - Unadjusted Analysis ...40

Table 5.2 Comparison of Time from First Diagnosis to Endpoint of Recurrence (Regardless of Vital Status) among the 3 Allele Types for Each SNP Among Cases - Final Model Built by Stepwise Selection Process...42

Table 6.1 Comparison of Time from First Diagnosis to the Composite Endpoint of Death and/or Recurrence among the 3 Allele Types for Each Gene Among Cases - Unadjusted Analysis ...46

Table 6.2 Comparison of Time from First Diagnosis to the Composite Endpoint of Death and/or Recurrent among the 3 Allele Types for Each SNP Among Cases - Final Model Built by Stepwise Selection Process...48
Table 7.1 Interaction of IL1 SNPs rs1800587 and rs7561 for Outcome of Death……..53

Table 7.2 Interaction of IL1 SNPs rs1800587 and rs7561 for Composite Outcome……..54

Table 7.3 Interaction of TNFA SNPs rs1800360 and rs361525 for Outcome of Death......55

Table 8 French Validation - Dr. Florence Demenais Significant Findings.....................57

Table 9 Pathway Analysis – Genes of the IL1 Pathway Significant for Outcome of Recurrence...57

Table 10 Pathway Analysis – All Genes of the IL1 Pathway for Outcomes of Death and Recurrence, unadjusted and adjusted for Age of Diagnosis, Gender, Clark Level, Tumor Stage, and Breslow Thickness, including number of SNPs...58

Table 11a Baseline Demographics, Clinical Characteristics, and RNA Expression Level by Subjects with or without Endpoint of Death among All Melanoma Cases in TCGA dataset..62

Table 11b Relationship between RNA Expression Level (as Continuous Variable) and the Melanoma Endpoint of Death from TCGA Dataset via Unadjusted and Adjusted Logistic Regression Analysis..63

Table 11c Relationship between RNA Expression Level (as Binary Variable: > vs. <= Median) and the Melanoma Endpoint of Death from TCGA Dataset via Unadjusted and Adjusted Logistic Regression Analysis..64

Table 12a Baseline Demographics, Clinical Characteristics, and Protein Expression Level by Subjects with or without Endpoint of Death among All Melanoma Cases in TCGA dataset (Total N = 119a)..65

Table 12b Relationship between c-JUN Protein Expression Level (as Continuous Variable) and the Melanoma Endpoint of Death from TCGA Dataset via Unadjusted and Adjusted Logistic Regression Analysis..66

Table 12c Relationship between c-JUN Protein Expression Level (as Binary Variable: > vs. <= Median of -1.12 units) and the Melanoma Endpoint of Death from TCGA Dataset (Total N = 119a) via Unadjusted and Adjusted Logistic Regression Analysis..67
1.1 Melanoma Lethality and Association with IL1 Pathway

Melanoma is an aggressive and lethal cancer in humans. There are an estimated new 132,000 melanoma cases annually worldwide, and the incidence has doubled in the past 20 years (Gray-Schopfer et al., 2007). However, attempts to treat melanoma have remained largely ineffective. (Ivanov et al., 2003; Hersey et al., 2006; Gray-Schopfer et al., 2007; Segura et al. 2013). There are new concepts directed at enhancing the curability of melanoma (Gray-Schopfer et al., 2007; Finger et al. 2013; Segura et al. 2013), such as targeted therapy to control immunosuppression that typically develops in metastatic melanoma, inhibition of connective tissue growth factors, epigenetic approaches against core transcriptional activities. This study intends to use a bioinformatics approach to identify the critical elements for enhancing therapeutic effectiveness.

Melanoma, as one of the most immunogenic tumors for which spontaneous immune responses and remissions can rarely occur, is one of the foremost targets for immunotherapy (Zito, 2012). Such attempts can stimulate tumor antigen-specific T-cells, but they are only effective for a few percent of individuals with metastatic melanoma (Alexandrescu, 2010).

The IL-1 pathway plays a key role in controlling immune response and particularly upregulation of IL-1 is associated with immunosuppression. The immunosuppression microenvironment of tumor cells becomes significant and intertwines with the resistance of tumor treatment. Khalili et al. (2013) explains that the pathway of MAPK activation leads to the production interleukin(IL)-1α/β. IL-1 conducts immunomodulatory activity through tumor-associated fibroblasts and holds the turnkey position of the immunosuppression pathway to resist the cytotoxic T lymphocyte function. Qin et al. (2011) showed that
blocking the $IL-1$ receptor with antibodies or siRNAs halted growth in $IL-1$-positive melanoma cells. This disruption of the $IL-1$ pathway also boosted autophagy in the $IL-1$-positive melanoma cells. Hence, without such disruption, $IL-1$ dampens the immune response. These results suggest that $IL-1$ might play an important role in the etiology and treatment of melanoma, and thus $IL-1$ becomes the main variable in this bioinformatical study, along with the entire pathway flowing down from it.

Figure 1 presents the greater $IL-1$ pathway.
Figure 1. This figure displays the full IL-1 pathway from the IL-1 initiators to the final downstream targets of IL-6, IL-8, IFN-γ, and TNF-α.

Khalili et al. (2013) shows that melanoma can be exacerbated by IL-1 and other cytokines, critical components of the immune system. (Botella-Estrada, 2005) offers insights into the details of how these cytokines interrelate. Cytokines are small soluble glycoproteins generated by multiple types of cells in all human organs. Their primary purpose is to fulfill
communication among cells by binding to particular receptors. Cytokines regulate cell differentiation and growth in the immune system. Among T-helper cell (Th) subsets, Th1 and Th2 subsets originate from naïve T (Th0) cells. Th0 cells are T cells that have differentiated in bone marrow and undergone the thymal selection process. Each subtype is characterized by its own particular cytokine pattern. Several cytokines emerge from each type, but interferon-gamma (IFN-γ) is the most characteristic cytokine for Th1. Khalili et al. (2013) explains that Th1 and Th2 embody different sorts of immune responses. Th1 cells stimulate a delayed-type of hypersensitivity response. Th2 cells, on the other hand, incite humoral immunity. In order to maintain a well-regulated physiological state, there must be a balance between the two arms. That balance is maintained by IFN-γ which inhibits Th2 cells, while interleukin(IL)-4 and interleukin(IL)-10 inhibit Th1 cells. Dendritic cells also maintain a vital function in the formation of an effective immune response, since they are the most powerful antigen-presenting cells.

(Boyano, 2000) observed that cytokines are not only secreted by normal cells. Tumor cells also secrete cytokines, and one can expect the tumor versions to be deranged. Martinez-Escribano, 2002 observes that various cytokines can exhibit opposite effects upon the growth of tumor cells, with examples being IL-10, interleukin-6 (IL-6), and IFN-γ. Martinez-Escribano, 2002 goes on to explain that the outcome for melanoma can be difficult to predict, particularly when taking into account that the tumor cells interact in complicated ways with the immune system. IL-6 and IFN-γ can both either hinder proliferation of melanoma cell or accelerate the growth rate, depending on the melanoma stage. It is logical that analyzing IL-6 and IFN-γ gene polymorphisms could help researchers to better understand the function of those cytokines in the immune response against melanoma cells. The results for the study
indicated that *IL-6* might display opposite effects on melanoma cells, being an inhibitor for early stage melanomas and as a mitogen at more advanced stages of the cancer. It seems that *IL-6* serums levels are higher and correlated with major tumor burdens along with lower survival rates. Martinez-Escribano, 2002 could not demonstrate a correlation between *IFN-γ* medium and/or high expression genotypes and a worse prognosis.

All the previously mentioned cytokines are affected by *IL-1* as the initiator, since they are all downstream targets in the *IL-1* pathway. Thus, genetic variation in immune-regulating components such as cytokines, specifically of the *IL-1* pathway, may lead to differences among individuals in immunosuppression response and susceptibility to melanoma. Therefore, this study is warranted in order to better identify which components of the *IL-1* pathway are crucial target for improving treatment of melanoma. Due to the potential opposite functions of *IL-1*, genetic variation in immune-regulating components, and microenvironment variation, the study of melanoma tumorigenic mechanisms is a very complex matter. It may be due to these complicated mechanisms that the treatment of melanoma is ineffective. To further elucidate this complex mechanism, this study intends to examine the relationship between gene activity of upstream and downstream targets for *IL-1* pathway, (i.e. *IL-1*, *IL-6*, interleukin(*IL*)-8, *IFN-γ*, and tumor necrosis factor-alpha (*TNF-α*)), correlation with the progression of melanoma using the bioinformatical approach.

To further describe the downstream targets of the *IL-1* pathway and their association with melanoma outcomes, various cytokines can exhibit opposite effects upon the growth of tumor cells, with examples being interleukin-10 (*IL-10*), interleukin-6 (*IL-6*) and interferon-gamma (*IFN-γ*). Martinez-Escribano, 2002 notes that the outcome for melanoma can be difficult to predict, particularly when taking into account that the tumor cells interact in
complicated ways with the immune system. *IL-6* and *IFN-γ* can both either hinder proliferation of melanoma cell or accelerate the growth rate, depending on the melanoma stage. They may encourage proliferation for advanced melanoma while inhibiting progression at the early stages. It is logical that analyzing *IL-6* and *IFN-γ* gene polymorphisms could help researchers to better understand the function of those cytokines in the immune response against melanoma cells. The results for the Martinez-Escribano study indicated that *IL-6* might display opposite effects on melanoma cells, being an inhibitor for early stage melanomas and as a mitogen at more advanced stages of the cancer. *IL-6* serums levels are higher and correlated with major tumor burdens along with lower survival rates. The study could not demonstrate a correlation between medium and/or high expression genotypes for *IFN-γ* and a worse prognosis. (Martinez-Escribano, 2002) Another downstream target of the *IL-1* pathway is *IL-8*. *IL-8* could be associated with the potential for metastasis. It was noted by Singh (1995) that there were no detectable levels of mRNA transcripts in the majority of melanoma cases, only in the highly metastatic one. *IL-1* upregulates *IL-8* and thus induces its production.

Earlier studies did find elevated *IL-6* levels in melanoma patients. The paper noted that those studies had subjects with advanced-stage melanoma. As to why the levels of cytokines had been changed, some possibilities were cytokine production by the metastases, cytokine production by lymphocytes in response to the tumor, and perhaps there was a genetic factor regarding polymorphisms. (Porter, 2001)

TNF-α is a cytokine that is produced in several types of cells, though mostly in mononuclear phagocytes. Cytotoxicity and anti-tumor activity stand amongst its various functions. As such, it bears a critical role in immune responses, along with proliferation and
inflammation. However, if the level reaches excess, there can be toxic systemic effects. (Ocvirk, 2000)

1.2 Therapeutic Difficulties and Potential

Despite the immense potential of immunotherapies for cancer, a persistent barrier has been the obstruction posed by complexities in the tumor microenvironment, with agents and cells secreting immunosuppressive effects. The mechanisms for initiating and maintaining immunosuppression in neoplastic lesions to permit tumor growth is a matter that remains to be explained. The article by Khalili et al. (2013) noted that immunosuppression can be initiated by the upregulation of v-raf murine sarcoma viral oncogene homolog B (BRAF), mutated to the active form, BRAFV600E, in more than half of melanoma patients. They noted BRAFV600E-induced transactivation of genes coding for both interleukin-1α (IL-1α) and interleukin-1β (IL-1β) in melanocytes and wild-type BRAF-expressing melanoma cells.

However, the results did not display a clear correlation between the V600E mutation and the production of those cytokines.

As noted before, IL-1 is a pleiotropic cytokine that is expressed by many tumor types. With various models, IL-1 shows either protumor or antitumor functions. Khalili et al. (2013) discusses that the results seem to indicate that the oncogene driven activation of the MAPK pathway can induce tumor cells to secrete factors that modulate the immune response. MAPK include p38 and JNK, which stimulate c-JUN. Among those factors, IL-1 by itself can induce a sequence for the immunosuppressive activity of tumor-associated fibroblasts (TAFs). It is indicated that oncogene activation has a significant effect on the tumor microenvironment, and multiple factors are involved. Furthermore, the effect seems shifted more towards the
side of immunosuppression. Khalili et al. (2013) observes that Anakinra and other such clinical drugs that block $IL-1$ are already available, and there are already clinical trials in cancer patients currently being conducted to test the efficacy of this drug for standalone intervention. There are no results yet from those trials. It was also noted that $IL-1$ can directly encourage the growth and survival of melanoma cells, one of its pro-tumor functions. Therefore, there is both sound logic and strong incentive to focus on $IL-1$ in the melanoma tumor microenvironment as a clinical target.

Melanoma being so closely tied to the immune system means that there is considerable potential for immunotherapy, which is all the more reason to study the cytokine polymorphisms in order to better refine such potential treatments regimens. This possibility has been considerably explored for human malignant melanoma (Zito, 2012). One major reason for that is because melanoma overall seems rather resistant to chemotherapy and radiotherapy (Pak, 2001).

To further the idea, while one of this study's hopes is to clarify potential targets for chemotherapy, immunotherapy is a viable alternative method for treating late-stage melanoma. There is still much to be learned, such as why melanomas become resistant toward an immune system that has been sensitized towards it. There are some potential mechanisms regarding tumor resiliency even when facing tumor-reactive T cells. Specifically, the absence of tumor-associated antigens (TAA) or HLA molecule expression might allow some melanomas to develop a stealth field of sorts that masks tumor cells from immune system recognition. Garrido F, Algarra I. (2001) noted that 63% of melanoma display loss of HLA class I expression. Mocellin, 2001 speculates that there is a possibility that other mechanisms in the tumor micro-environment, such as secretion of immune-
suppressive cytokines from the tumor, might affect immune responsiveness. (Mocellin, 2001). As an example, Estrozie et al. (2014) reported the upregulation of \textit{BRAF} in vertical growth of cutaneous melanoma in young patients. For older patients, \textit{BRAF} mutation may not be the dominant factor for the tumor genesis of melanoma. Khalili et al. (2013) suggested that the \textit{BRAF} (mutated active form $BRAF^{V600E}$) activation of the mitogen-activated protein kinase (\textit{MAPK}) pathway enhances the production of a number of immunosuppression factors by tumor cells.

Thus far, there has been no statistically significant difference between subjects receiving tumor vaccines as compared with those receiving a placebo. Leong, 2002 discusses that Th1 cells secrete IL-2, and \textit{IFN-}γ and play a major role in generating cell-mediated immunity such as delayed hypersensitivity reaction and the generation of cytotoxic T cells, which are important for destroying cancer and virally infected cells. Despite the fact that Th1 and Th2 cells are defined by specific cytokines configurations, their interactions with one another are complex. Furthermore, it must be stressed that relationship between specific antigens and the associated cytokines produced is not completely understood, and when it comes to cancer immunology, that is doubly so.

The hypothesis for this study is that the SNPs and genes of the \textit{IL-1} pathway should show an association, protective or detrimental, with melanoma outcome. Identifying genes that are involved in melanoma formation and progression may suggest chemoprevention or immunotherapy targets or allow for identification of groups with high risks.

\textbf{1.3 Overview of Assessment Levels and Results}

Specifically, in order to better understand the genetic factors that might alter the disease risk level, the purpose of the study is to assess the association between potential gene
sequences with the progression of melanoma based on the following three major endpoints: death, recurrence, and the composite of death and/or recurrence.

This relationship was assessed at the following levels:

 a) Individual SNP level for a list of candidate genes with external validation

 b) Gene level analysis, including all available SNPs for all pathway genes

 c) Those genes found to be significant from the full pathway analysis were also verified at the

 - RNA expression level, and

 - Protein expression level

Figure 1 presents a flowchart summarizing these three levels of analysis and the corresponding results. It can be referred to the methods and results sections. Identifying genes that are involved in melanoma progression may suggest chemoprevention or immunotherapy targets or allow for identification of groups with high risks.

Figure 2. Figure 2 is an analysis flowchart that summarizes the results.
Analysis between genes of the \textit{IL-1} pathway and melanoma progression

3 Levels of Analysis

- **External French Validation**
 - \textit{IL-1} SNP for death endpoint (borderline significant): rs3136558
 - \textit{IL-6} SNPs for death endpoint (significant): rs1800797
 rs1800795

- **Gene-based Pathway Analysis - All Genes and SNPs in \textit{IL-1} pathway**
 - MDACC dataset: endpoint - recurrence and composite

- **RNA and Protein Expression Level**
 - TCGA dataset: endpoint - death

Results:
- \textit{IL-1} SNPs for recurrence (borderline significant) and composite endpoints (significant): rs1800587
 rs17561
- \textit{TNF-\alpha} SNPs, \textit{IL-1} SNPs for composite endpoint (borderline significant):
 rs361525
 rs1800630

Results:
- Significant genes for recurrence endpoint
 \textit{IL-1}
 \textit{ECSIT}
 \textit{c-JUN}

- Borderline significant gene for recurrence endpoint
 \textit{TAK1}

Results:
- \textit{c-JUN} alone had both RNA and protein data.
- \textit{c-JUN} RNA analysis: insignificant, but higher survival for higher \textit{cJUN} RNA level
- \textit{c-JUN} protein analysis: significant protective association, higher
 \textit{c-JUN} level associated with lower mortality rate
Chapter 2

Materials and Methods

The detailed methodologies are described below for each level of the analysis listed above in the introduction section. Figure 1 presents a flowchart of the process.

2.1 Individual SNPs Analysis with External Validation

The relationships between individual SNPs on the studied genes with melanoma outcomes of death, recurrence, and composite outcome of death and/or recurrence were assessed for the following upstream and downstream targets for the IL-1 pathway, i.e. IL-1, IL-6, IL-8, IFN-γ, and TNF-α. There were a total of 20 individual SNPs that were assessed. The specific SNPs analyzed for IL-1 were rs1800587, rs17561, rs2071374, rs16944, rs1143627, rs1071676, rs1143634, and rs3136558. For IL-6, the SNPs were rs1800795 and rs1800797. For IL-8, the analyzed SNPs were rs4073, rs2227307, and rs2227306. For IFN-γ, the SNPs were rs2430561, rs1861494, rs2069705. For TNF-α, the SNPs were rs361525, rs1799964, rs1800630, and rs1800629. The gene activity was assessed by 0, 1, and 2 copies of the ancestral allele types. The source data for this analysis includes cases (n=1804) that were drawn from a case-control study of malignant melanoma (n=931) and a case-series (n=873) all collected at the University of Texas MD Anderson Cancer Center (MDACC). All cases were required to have cutaneous malignant melanoma. Samples were genotyped by the Center for Inherited Disease Research using the Omni 1M Quad V1-0_B SNP chip. Quality control procedures were implemented at MDACC and at the University of Washington through GENEVA. During quality control processing, individuals were removed who had estimated identity by descent > 0.15 (2 or more alleles would be identical by descent if they originate from the same ancestral allele without recombination), or who failed standard QC.
using PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/) or Eigenstrat. DNA segments are identical by state (IBS) for 2 or more individuals if the nucleotide sequences are identical in that segment. An IBS segment is in turn identical by descent (IBD) for 2 or more individuals if it is inherited from a common ancestor without recombination. After filters for Hardy-Weinberg equilibrium (p>0.0001), minor allele frequency > 0.05, and missing genotypes <0.05, there were 818,237 SNPs available for analysis. The lambda value without principal component correction after excluding SNPs with minor allele frequency < 0.05 was 1.01, which decreased to 1.009 after correcting for the first two principal components. The lambda value represents the genomic control inflation factor. It is the ratio of the median of the observed distribution of the test statistic to the expected median, embodying the extent of bulk inflation and false positive rate. A lambda value above one would indicate population or genotyping errors.

Demographic and clinical data were also captured in the MD Anderson database, including ethnicity, age of diagnosis, gender, Clark level, tumor stage, and Breslow index (more information about the database can be found in the e-book **60 Years of Survival Outcomes at The University of Texas MD Anderson Cancer**, chapter 2 by Sarah H. Taylor). These variables were taken into account as covariates in the analysis. Ethnicity is not an issue, as all the subjects are white. Age of diagnosis and Breslow index were treated as continuous variables, while tumor stage and Clark level were categorized into the two following groups as binary variables respectively: tumor stage I II & IV vs. I & I/II; Clark level 4 & 5 vs. level 1, 2, & 3. For each of the three melanoma endpoints, time to event from first diagnosis date to the first occurrence of event date was calculated in months. The analysis data set was prepared in comma-separated values (CSV) format by combining
clinical data with genotype data for each test subject. The relationships between genotype and time to each of the three melanoma outcomes were assessed by Cox proportional hazard (PH) regression analysis (both unadjusted and adjusted). A final multivariate Cox PH model was established by stepwise regression analysis. The hazard ratios (HR) and 95% confidence intervals (CI) for per ancestral allele copy decrease were calculated to assess whether there was a protective or harmful association with the event rate for each of the three melanoma endpoints. These analyses were carried out by Statistical Analysis Software (SAS) Version 9.2.

Validation was also carried out for the individual SNP analysis in France lead by Dr. Florence Demenais, Directrice d'Unité : DR1 Inserm, of l'Université Paris Diderot - Paris 7, l'Institut Universitaire d'Hematologie. They analyzed the same 20 SNPs of the 5 genes focused upon for this study, or the closest available SNPs if the specified ones were not available. Using their own data collected from the French MELARISK cohort including 1179 melanoma cases, they also adjusted for the same set of covariates of ethnicity, age of diagnosis, gender, Clark level, tumor stage, and Breslow index. Ethnicity was not an issue, as all were of western European descent. Dr. Demenais' group also used a multivariate Cox PH model established by stepwise regression analysis. Recurrence data was not available for them, so they used the endpoint of death only.

2.2 Full Gene-Based Pathway Analysis

Given the limited power presented by single marker association studies, especially rare variants, a pathway analysis including available SNPs for all the genes in the $IL-1$ pathway was necessary. Besides the sole upstream target, $IL-1$, and the downstream target of
IL-6, IL-8, IFN-γ, and TNF-α, this pathway analysis also include the following genes in the middle of IL-1 pathway: IL-1RI, IL-1RAcP, IL-1RA, MYD88, TOLLIP, IRAKs, MEKK1, MEK3, MEK6, JNK, p38, c-JUN, ECSIT, TRAF6, TAB1, TAK1, RIKP, NIK, IKKα, IKKβ, IκBα, and NF-κB.

For the pathway analysis, the sequence kernel association test (SKAT) package for R was utilized. The variables of age of diagnosis, gender, Clark level, stage, and Breslow index were adjusted for as covariates. As per Wu et al. (2011) [11], SKAT is a supervised test meant for examining the joint effects of multiple variants upon a phenotype in a region. Regions are defined by using genes (in candidate gene or whole exome studies) or moving windows across the genome (in whole genome studies). For each such region, SKAT will calculate a p-value for association while adjusting for covariates. Adjustments for multiple comparisons are necessary for analyzing multiple regions, e.g. using the Bonferroni correction or false discovery rate (FDR) control. Genes were defined with specific windows per the GRCh37 build. They would be as follows:

IL-1α:

Chromosome 2; 113531492 to 113542971, complement

IL-1β:

Chromosome 2; 113587337 to 113594356, complement

IL-6:

Chromosome 7; 22766766 to 22771621

IL-8:

Chromosome 4; 74606223 to 74609433
\textit{IFN-\(\gamma\):}

Chromosome 12; 68548550 to 68553521, complement

\textit{TNF-\(\alpha\):}

Chromosome 6; 31543344 to 31546113

As for notation, as per the paper by Wu et al., one would assume \(n\) subjects are sequenced in a region with \(p\) variant sites observed. Covariates might include such factors as age and gender. For the \(i\)-th subject, \(y_i\) denotes the phenotype variable, \(X_i=(X_{i1}, X_{i2}, \ldots, X_{im})\) the covariates, and \(G_i=(G_{i1}, G_{i2}, \ldots, G_{ip})\) the genotypes for the \(p\) variants within the region. One would make the assumption of an additive genetic model and let \(G_{ij} = 0, 1, \text{ or } 2\) represent the number of copies of the minor allele. Regarding how SKAT operates, using the example in the paper, one would test for the relationship between genetic variants and phenotype with multiple linear and logistic regression. One would use the following linear model:

\[y_i = \alpha_0 + \alpha'X_i + \beta'G_i + \varepsilon_i\]

for phenotypes that are continuous traits. The following logistic model would be used for dichotomous traits such as outcome of case or control (\(y = 0/1\) for case/control):

\[\text{logit } P(y_i = 1) = \alpha_0 + \alpha'X_i + \beta'G_i\]

\(\alpha_0\) would be the intercept term, \(\alpha=[\alpha_1, \ldots, \alpha_m]'\) is the vector of regression coefficients for the \(m\) covariates, \(\beta=[\beta_1, \ldots, \beta_p]'\) is the vector of regression coefficients for the \(p\) observed gene variants in the region, and for continuous phenotypes \(\varepsilon_i\) stands for the error term with mean zero and variance \(\sigma^2\). With both the linear and logistic models, analyzing if the gene variants influence the phenotype, adjusting for covariates, corresponds to testing the null hypothesis \(H_0: \beta=0\), i.e. \(\beta_1=\beta_2=\ldots=\beta_p=0\). The typical p-DF likelihood ratio test would have little power, especially in regards to rare variants. Therefore, to increase the power, SKAT tests \(H_0\) by assuming each \(\beta_j\) follows an arbitrary distribution with mean zero and variance \(w_j\tau\), with \(\tau\)
being a variance component and \(w_j \) a pre-specified weight for variant \(j \). With the null hypothesis of \(H_0: \beta = 0 \), this test is equivalent to testing \(H_0: \tau = 0 \). A variance component score test can be constructed in the following mixed model, which is known to be a locally most powerful. One crucial advantage of this score test is that it only requires fitting the null model \(y_i = a_0 + a_1'X_i + \epsilon_i \) for continuous traits and \(\logit P(y_i = 1) = a_0 + a_1'X_i \) for dichotomous traits.

The variance component score statistic is:

\[
Q = (y - \hat{u})' K(y - \hat{u})
\]

where, \(K = GWG' \), \(\hat{u} \) is the predicted mean of \(y \) under \(H_0 \), i.e. \(\hat{u} = \hat{a}_0 + X\hat{a} \), for continuous traits and \(\hat{u} = \logit^{-1}(\hat{a}_0 + X\hat{a}) \) for dichotomous ones. \(\hat{a}_0 \) and \(\hat{a} \) are estimated under the null by regressing \(y \) on only the covariates \(X \). \(G \) is a \(n \times p \) matrix with the \((i,j)\)-th element being the genotype of variant \(j \) of subject \(i \), and \(W = \text{diag}(w_1, \ldots, w_p) \) contains the weights of the \(p \) variants. \(K \) is an \(n \times n \) matrix with \((i,i')\)-th element equal to \(K(G_i, G_{i'}) \) being the summation of \(j = 1 \) to \(p \) for \(w_j G_{ij} G_{i'j} \). \(K(\cdot, \cdot) \) is the linear kernel function and \(K(G_i, G_{i'}) \) measures the similarity between subjects \(i \) and \(i' \) in the region using the \(p \) markers. This form of \(K(\cdot, \cdot) \), as just demonstrated by \(K(G_i, G_{i'}) \), is called the weighted linear kernel function. Each weight \(w_j \) is specified beforehand by utilizing the genotypes, covariates, and external biological information, i.e. without using the outcome. It reflects the relative contribution of the \(j \)-th variant to the score statistic: if \(w_j \) is close to zero, the \(j \)-th variant makes only a small contribution to \(Q \).

Therefore, down-weighting non-causal variants and up-weighting causal variants could yield improved power. In practice, one does not know which variants are causal, so one would set \(\sqrt{w_j} = \text{Beta}(\text{MAF}_j; a_1, a_2) \), which would be the beta distribution density function with pre-specified parameters \(a_1 \) and \(a_2 \) evaluated at the sample minor-allele frequency (MAF) (across
cases and controls combined) for the j-th variant in the data. The Beta density has a distinct advantage in being flexible and able to accommodate a wide spectrum of scenarios.

SKAT is computationally very efficient. In simulation studies, the length of time to a convergent solution depends on the sample size and the number of markers. For 300kb, 3Mb, or 3 Gb (the entire genome) on 1000 individuals, the lengths of time were 2.5 seconds, 25 seconds, and 7 hours, respectively. For the purposes of this study, calculations take seconds or a several minutes at worst. Thus, one can see the advantage of this method.

SKAT performs a region based testing like burden tests. However, as mentioned above, SKAT is a supervised method, so it directly performs multiple regression of a phenotype on genotypes for all variants in a region while adjusting for covariates. Thus, as with conventional multiple regression models, neither directionality nor magnitudes of the associations are assumed beforehand. They are estimated from the data. SKAT has greater power than competing burden tests over a range of genetic models. SKAT performs a score-based variance component test, and the calculation only requires fitting the null model by regressing phenotypes on covariates alone and computing p-values analytically. This regression framework is rather flexible, and the kernel can be adjusted to allow for epistatic effects. SKAT can be applied to any SNP set. Possible phenotype would include outcomes such as longitudinal, multivariate, and survival data. The survival data for this study is fit through the linear model used for continuous outcomes, as the phenotypes are survival time to outcome. In other words, SKAT can be applied to a wide range of sequencing-based association studies. Also, because the p-value can be obtained directly without permutation, SKAT allows for rapid calculation of the p-values in exome and genome-wide sequencing studies.
2.3 RNA Expression and Protein Expression Analysis

Those genes found to be significant from the full pathway analysis were also verified at the RNA and protein expression levels, if such data was available. Among those four genes found to be significant from full gene-based pathway analysis (i.e. *IL-1*, jun proto-oncogene (*c-JUN*), evolutionarily conserved signaling intermediate in toll (*ECSIT*), and transforming growth factor beta-activated kinase 1 (*TAK1*) (please see the results section), the analysis at the RNA expression level only includes *IL-1*, *c-JUN*, and *ECSIT* since *TAK1* data was not available.

The association between the RNA and protein levels and the outcome of survival in melanoma was also analyzed via SAS V9.2. The data were drawn from the Cancer Genome Atlas (TCGA), which is publicly available at the following website: https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. The relevant files for clinical information and genotypes for the SNPs and genes were downloaded. The variables of age of diagnosis, gender, Clark level, stage, and Breslow index were adjusted for as covariates. The TCGA melanoma data was originally derived from M.D. Anderson. I used logistic regression analysis to assess relationships due to lack of time-to-event data in TCGA dataset. The odds ratio (OR) and the corresponding 95% CI were computed accordingly.

At the protein level, only c-JUN data was available. In these analyses, c-JUN was treated both as a binary variable in one instance (grouped as being above or below the median: -1.12 relative units) and a continuous variable in other instance. The results for both are provided in the results section.
Chapter 3

Results

The results are described below for each of the aforementioned three levels of analysis. The summary of the results can also be found in the Figure 1 flowchart displayed above.

3.1 Individual SNP Analysis for Candidate Gene with External Validation

Out of 1804 melanoma cases from MDACC dataset, there were only 1543 subjects with complete data for the time to event of the three melanoma outcomes and all studied covariates. Table 1 illustrates that out of 1543 subjects with complete phenotypic data who were included in the analysis, 182 subjects (11.8%) died, 269 subjects (17.4%) experienced recurrence, and 310 subjects had the composite event of either death and/or recurrence (20.1%). The summary statistics for each of the studied covariates (i.e. gender, age of diagnosis, Clark level, tumor stage, and Breslow index) are also presented in Table 1 for the subgroup of subjects with or without the event for each of the three studied endpoints. In general, for each of the studied endpoints, the percentage of males was higher than females for subjects with event of death and/or recurrence compared to those without the event. Subjects with events were also older with higher Clark level, more advanced tumor stage, and higher Breslow index than those without events.

It was found that none of the 20 studied candidate SNPs were significantly related to time to death. For the endpoint of recurrence, after adjusting for age at diagnosis, tumor stage (III & IV vs. I & I/II), and Clark level (4 & 5 vs. 1, 2, & 3) in the final model, Table 5.2 suggests borderline significant protective effect for per one ancestral allele copy decrease of IL-1 SNPs rs1800587 (HR [95% CI] = 0.836 [0.694, 1.008], p = 0.061) and rs17561 (HR
[95% CI] = 0.835 [0.693, 1.007], p = 0.0588) on the endpoint of recurrence. Adjusting for the same set of covariates in the final model, these two same IL-1 SNPs were significant for the composite endpoint of death and/or recurrence, as shown in Table 6.2 with rs1800587 (HR [95% CI] = 0.823 [0.691, 0.979], p = 0.0283) and rs17561 (HR [95% CI] = 0.821 [0.690, 0.978], p = 0.027).

Adjusting for the same set of covariates in the final model (i.e. age at diagnosis, tumor stage (III & IV vs. I & I/II), and Clark level (4 & 5 vs. 1, 2, & 3)), among the four studied SNPs from TNF-α, two had a borderline significant association with the composite endpoint at borderline (Table 6.2). They were rs361525 (HR [95% CI] = 0.707 [0.481, 1.040] per one ancestral allele copy decrease, p = 0.0784) and rs1800630 (HR [95% CI] = 1.206 [0.976, 1.491] per one ancestral allele copy decrease, p = 0.0825). However, per one ancestral allele copy decrease of rs361525 seems to provide a protective effect with HR < 1 and rs1800630 seems to provide harmful effect with HR > 1. Regarding the linkage disequilibrium between rs361525 and rs1800630, the percentage came to 0.62%, with a p-value of 0.0058. As for the minor allele frequencies, they were 0.0587 for rs361525 and 0.1598 for rs1800630. Table 7.3 for interaction analysis showed borderline significant interaction between rs361525 and rs1800630 with a p-value of 0.0652. The nature of the interaction of the major alleles for rs361525 and rs1800630 is directional and antagonistic.

These results were compared to the data from Dr. Florence Demenais' group. As mentioned in the methods section, only death outcome data was included in this validation analysis as recurrence data was unavailable. Out of 1179 melanoma cases from the French dataset, there were only 859 subjects with complete data for the time to death and all studied covariates. Out of 859 subjects, 91 subjects (10.6%) died. The mean (SD) of age at first
diagnosis was 46.1 (17.9) years of age. This age was lower than that for the MD Anderson dataset, and the genders were more evenly distributed with 55.4% for females. The Breslow index mean (SD) was 1.5 (2.07). For the Clark level, only 29.9% were in the high level category of 4 and 5. The Breslow index and percentage of high Clark level were much lower in the French dataset than in the MD Anderson dataset. The French data presented in Table 8 showed a borderline association of rs3136558 of \textit{IL-1} with time to death (HR [95% CI] = 0.685 [0.011, 42.803], per one ancestral allele copy decrease p = 0.072). Considering the wide variation of the hazard ratio, this result is similar to what we found for the insignificant association between these SNPs with the death outcome in the analysis of data from MDACC. In general, our results were matched with the findings obtained from Dr. Demenais’ French dataset. The only discrepancy between our findings and the French results are the two following studied SNPs for \textit{IL-6}: rs180797 and rs1800795. For these two \textit{IL-6} SNPs, the mortality rate was significantly increased by per one ancestral allele copy decrease of rs1800797 (HR [95% CI] = 1.495 [1.116, 2.002] p = 0.00683), and rs1800795 (HR [95% CI] = 1.501 [1.127, 1.998], p = 0.00545), while our results were not significant for these two \textit{IL-6} SNPs, being rs1800795 (HR [95% CI] = 0.984 [0.795, 1.218] p = 0.8823) and rs1800797 (HR [95% CI] = 1.017 [0.823, 1.256] p = 0.8779). While rs1800797 hazard ratios for the MDACC and French data were in the same direction, the hazard ratios of rs1800795 for the MDACC data were not. I will discuss possible explanations for these differences in the discussion section.
3.2 Pathway Analysis

Table 9 presents the significant results based on the pathway analysis. All the other genes described in the methods section that yielded non-significant results are reported in table 10, along with the total number of SNPs included in the SKAT analysis. Several genes in the *IL-1* pathway found to be significant via the SKAT pathway analysis. Overall, significant correlation was found between *IL-1* and recurrence $p = 0.035$. Significant correlations were also found between *ECSIT* and the outcome of recurrence ($p = 0.02$). Specifically, *c-JUN* was found to be highly correlated with recurrence ($p = 0.008$). Finally, there was borderline significant correlation between *TAK1* and recurrence ($p = 0.074$).

3.3 RNA Expression and Protein Expression Analysis

To further confirm the DNA results found to be significant from the pathway analysis described above, the RNA and protein level analysis was performed based on TCGA dataset.

RNA level data was available for *IL-1*, *ECSIT*, and *c-JUN*. For the RNA level analysis, out of 305 subjects from the TCGA dataset, 194 subjects with non-missing data for all studied variables were included in this analysis. The rest were missing expression outcome or information for age at diagnosis, Clark level, Breslow thickness, tumor stage, or gender. The summary statistics of demographics and baseline clinical characteristics are presented in Table 11a. The mortality rate was 43.8% (Out of 194 subjects, 85 subjects died). In general, subjects died vs. those survived were comparable for all demographics and clinical characteristics variables with the exception of Clark level, the percentage of subjects with high Clark level 4 & 5 was higher among deaths compared to survivors (69.4% vs. 52.3%).
The unadjusted and adjusted relationships between the mortality rate and each of the studied RNA expression levels as a continuous variable are shown in Table 11b and as a binary variable for RNA expression level > median vs. <= median in Table 11c respectively. Table 11b suggests no significant association between the mortality rate and each of the studied RNAs expression levels when treated as continuous variable in both unadjusted and adjusted logistic regression analysis. Similar insignificant results were found when including each RNA expression level as binary variable in Table 11c. It could just be that the RNA data was sub-optimal. The results in Table 11c illustrate that a higher survival rate was associated with a higher \textit{IL-1} RNA level above vs. below median of 35 units (Odds ratio (OR) [95% CI] = unadjusted: 0.746 [0.422, 1.317] p = 0.3116; adjusted: 0.782 (0.428, 1.430), p = 0.4250). The opposite result was found for the \textit{ECSIT} RNA. A lower survival rate was found for the higher \textit{ECSIT} RNA level above vs. below the median of 670 units (OR [95% CI] = unadjusted: 1.134 [0.643, 2.000] p = 0.6643; adjusted 1.083 [0.601, 1.952] p = 0.6643).

Table 11c shows a trend of higher survival for the higher \textit{c-JUN} RNA level group, above vs. below a median of 1470 units (OR [95% CI] = unadjusted: 0.915 [0.519, 1.614] p = 0.7587; adjusted: 0.892 [0.495, 1.607], p = 0.7038). However, all results for the analysis at the RNA expression level were insignificant.

For the protein level analysis, out of 206 subjects from the TCGA dataset, 119 subjects with non-missing data for all studied variables were included in this analysis. The summary statistics of demographics and baseline clinical characteristics are presented in Table 12a. Out of 119 subjects, 55 subjects died with a mortality rate of 46.2%. In general, subjects who died were older (mean= 60.9) compared to those who survived (mean = 53.4). For all other studied variables, the two groups were comparable.
The unadjusted and adjusted relationships between the mortality rate and c-JUN of protein expression level as a continuous variable are presented in Table 12b and as a binary variable for protein expression level > vs. <= median of -1.12 units in Table 12c respectively. As opposed to the insignificant results for the c-JUN RNA analysis, these two tables showed significant results for c-JUN with a trend of higher survival rate for the higher c-JUN protein level (above vs. below median of -1.12 units) with an OR [95% CI] = 0.412 [0.189, 0.900] and p = 0.0262 in the unadjusted analysis and an OR [95% CI] = 0.417 [0.182, 0.957] and p = 0.0390 in the adjusted analysis (Tables 12b).

The same conclusion was found in Table 12b when c-JUN protein expression level was treated as a continuous variable. With an increment of per one unit increase in c-JUN protein expression, the OR [95% CI] = 0.405 (0.204, 0.804) with p = 0.0098 for the unadjusted analysis, and OR [95% CI] = 0.407 (0.196, 0.844) with p = 0.0156 for the adjusted analysis. In these two tables, the odds ratios with the 95% CI for c-JUN protein expression level were well below 1. Unfortunately, protein-level data was not available for IL-1, ECSIT, and TAK1 so that future analyses will be needed to evaluate these genes that were significantly associated with melanoma outcomes in the pathway analysis.
Table 1. Summary Statistics of Demographics and Vital Status for All Subjects
(Total N = 2829)

<table>
<thead>
<tr>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Subjects (N)</td>
</tr>
<tr>
<td>Age of Diagnosis: Years</td>
</tr>
<tr>
<td>- n(^a)</td>
</tr>
<tr>
<td>- Mean ± SD</td>
</tr>
<tr>
<td>Months of follow-up(^b)</td>
</tr>
<tr>
<td>- n(^a)</td>
</tr>
<tr>
<td>- Mean ± SD</td>
</tr>
<tr>
<td>Vital Status</td>
</tr>
<tr>
<td>- Deaths: Number of Deaths / N (%)</td>
</tr>
</tbody>
</table>

\(^a\) n denotes Number of Subjects with non-missing data
\(^b\) Missing first diagnosis and last diagnosis dates for two subjects in the case group (Subject ID: MN0820 and MN0850)
Table 2.1 Frequency Distribution of Subjects with or without Events and Time to Event or Censored for Endpoints:
- Death,
- Recurrence,
- Death and/or Recurrence
Among Cases (Total N = 1786a)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Event Rate:</th>
<th>Months from First Diagnosis Date to Event or Censored Dateb:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Alive and without Recurrence</td>
<td>1324 (74.13%)</td>
<td>52.59 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46.39</td>
</tr>
<tr>
<td>1. Death only</td>
<td>48 (2.69%)</td>
<td>42.13 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.99</td>
</tr>
<tr>
<td>2. Recurrence only</td>
<td>202 (11.31%)</td>
<td>43.29 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.35</td>
</tr>
<tr>
<td>3. Death and Recurrence</td>
<td>212 (11.87%)</td>
<td>40.06 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76.89</td>
</tr>
<tr>
<td>4. Death regardless of recurrence status</td>
<td>260 (14.56%)</td>
<td>61.98 ±</td>
</tr>
<tr>
<td>(1 + 3)</td>
<td></td>
<td>80.35</td>
</tr>
<tr>
<td>5. Recurrence regardless of vital status</td>
<td>414 (23.18%)</td>
<td>41.64 ±</td>
</tr>
<tr>
<td>(2 + 3)</td>
<td></td>
<td>61.77</td>
</tr>
<tr>
<td>6. Death and/or Recurrence</td>
<td>462 (25.87%)</td>
<td>41.69 ±</td>
</tr>
<tr>
<td>(1+2+3)</td>
<td></td>
<td>60.28</td>
</tr>
</tbody>
</table>

a Among 1802 cases, only 1786 subjects were included:
- 2 Subjects were excluded due to missing first diagnosis and
- 14 subjects were excluded due to missing data for subsequent event assessment
b Months to Event or Censored were calculated by (the event or censored date – first diagnosis date) / 30.4375. Where censored date = maximum of last diagnosis date and vital status date
c IQR denotes Inter-Quartile Range (i.e. 3rd Quartile – 1st Quartile).
Table 2.2 Baseline Demographics and Clinical Characteristics by Subjects with or without Endpoint of Death, Recurrence, and the Composite Endpoint of Death and / or Recurrence among All Melanoma Cases from MDACC data (Total N = 1543a)

<table>
<thead>
<tr>
<th>Baseline Demographics & Clinical Characteristics</th>
<th>Endpoint = Death (Event Rate = 182 / 1543 (11.8%))</th>
<th>Endpoint = Recurrence: Event Rate = 269 / 1543 (17.4%)</th>
<th>Composite Endpoint: Death and / or Recurrence Event Rate = 310 / 1543 (20.1%)</th>
<th>All Melanoma Cases (N = 1543)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender: n (%)</td>
<td>Event (N = 182)</td>
<td>No Event (N = 1361)</td>
<td>Event (N = 269)</td>
<td>No Event (N = 1274)</td>
</tr>
<tr>
<td>- Male</td>
<td>129 (70.9%)</td>
<td>775 (56.9%)</td>
<td>175 (65.1%)</td>
<td>729 (57.2%)</td>
</tr>
<tr>
<td>- Female</td>
<td>53 (29.1%)</td>
<td>586 (43.1%)</td>
<td>94 (34.9%)</td>
<td>545 (42.8%)</td>
</tr>
<tr>
<td>Race: n (%)</td>
<td>Event (N = 182)</td>
<td>No Event (N = 1361)</td>
<td>Event (N = 269)</td>
<td>No Event (N = 1274)</td>
</tr>
<tr>
<td>- White</td>
<td>182 (100%)</td>
<td>1361 (100%)</td>
<td>269 (100%)</td>
<td>1274 (100%)</td>
</tr>
<tr>
<td>Age at First Diagnosis (Years): Mean ± SD</td>
<td>59.3 ± 14.6</td>
<td>51.4 ± 14.3</td>
<td>56.5 ± 14.2</td>
<td>51.4 ± 14.5</td>
</tr>
<tr>
<td>Stage: n(%)</td>
<td>Event (N = 182)</td>
<td>No Event (N = 1361)</td>
<td>Event (N = 269)</td>
<td>No Event (N = 1274)</td>
</tr>
<tr>
<td>- I & II</td>
<td>39 (21.4%)</td>
<td>913 (67.1%)</td>
<td>66 (24.5%)</td>
<td>886 (69.5%)</td>
</tr>
<tr>
<td>- III & IV</td>
<td>143 (78.6%)</td>
<td>448 (32.9%)</td>
<td>203 (75.5%)</td>
<td>388 (30.5%)</td>
</tr>
<tr>
<td>Clark level: n(%)</td>
<td>Event (N = 182)</td>
<td>No Event (N = 1361)</td>
<td>Event (N = 269)</td>
<td>No Event (N = 1274)</td>
</tr>
<tr>
<td>- 1, 2, & 3</td>
<td>51 (28.0%)</td>
<td>769 (56.5%)</td>
<td>67 (24.9%)</td>
<td>753 (59.1%)</td>
</tr>
<tr>
<td>- 4 & 5</td>
<td>131 (72.0%)</td>
<td>592 (43.5%)</td>
<td>202 (75.1%)</td>
<td>521 (40.9%)</td>
</tr>
<tr>
<td>Breslow Index: Mean ± SD</td>
<td>Event (N = 182)</td>
<td>No Event (N = 1361)</td>
<td>Event (N = 269)</td>
<td>No Event (N = 1274)</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>4.03 ± 3.82</td>
<td>1.63 ± 2.15</td>
<td>3.55 ± 3.37</td>
<td>1.57 ± 2.16</td>
</tr>
</tbody>
</table>

a Among 1804 cases, only 1543 subjects with complete data were included.
Table 3.1 Relationship between Age at First Diagnosis and Time to Event or Censored for Endpoints:
- Death,
- Recurrence,
- Death and/or Recurrence
Among Cases (Total N = 1786a)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Age at First Diagnosis:</th>
<th>Per one Year increase of Age at First Diagnosis:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subjects with Event:</td>
<td>Subjects without Event:</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>1. Death regardless of recurrence status</td>
<td>260</td>
<td>57.13 ± 14.71</td>
</tr>
<tr>
<td>2. Recurrence regardless of vital status</td>
<td>414</td>
<td>54.23 ± 14.68</td>
</tr>
<tr>
<td>3. Death and/or Recurrence</td>
<td>462</td>
<td>55.04 ± 14.76</td>
</tr>
</tbody>
</table>

a Among 1802 cases, only 1786 subjects were included:
- 2 Subjects were excluded due to missing first diagnosis and
- 14 subjects were excluded due to missing data for subsequent event assessment

b Hazard ratios, 95\% confidence interval (CI) of hazard ratio, and p-values for were based on Wald test from the Cox proportional hazard analysis including age at first diagnosis (continuous) as the only variable in the model
Table 3.2 Relationship between Gender and Time to Event or Censored for Endpoints:
- Death,
- Recurrence,
- Death and/or Recurrence
Among Cases (Total N = 1786a)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Event Rate: n / N (%)</th>
<th>Gender: Male vs. Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gender:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>1. Death regardless of recurrence status</td>
<td>178 / 1050 (16.95%)</td>
<td>82 / 736 (11.14%)</td>
</tr>
<tr>
<td>2. Recurrence regardless of vital status</td>
<td>265 / 1050 (25.24%)</td>
<td>149 / 736 (20.24%)</td>
</tr>
<tr>
<td>3. Death and/or Recurrence</td>
<td>298 / 1050 (28.38%)</td>
<td>164 / 736 (22.28%)</td>
</tr>
</tbody>
</table>

a Among 1802 cases, only 1786 subjects were included:
- 2 Subjects were excluded due to missing first diagnosis and
- 14 subjects were excluded due to missing data for subsequent event assessment

b Hazard ratios, 95\% confidence interval (CI) of hazard ratio, and p-values for were based on Wald test from the Cox proportional hazard analysis including age at first diagnosis (continuous) as the only variable in the model
Table 3.3 Relationship between Stage and Time to Event or Censored for Endpoints:
- Death,
- Recurrence,
- Death and/or Recurrence
Among Cases (Total N = 1785a)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Event Rate: n / N (%)</th>
<th>Stage II, III & IV vs. I & I/II</th>
<th>Hazard Ratio (95% CI)b</th>
<th>p-Valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Death regardless of</td>
<td>84 / 1095 (7.67%)</td>
<td>176 / 690 (25.51%)</td>
<td>4.404 (3.380, 5.739)</td>
<td><.0001*</td>
</tr>
<tr>
<td>recurrent status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Recurrence regardless of</td>
<td>155 / 1095 (14.16%)</td>
<td>259 / 690 (37.54%)</td>
<td>3.572 (2.921, 4.368)</td>
<td><.0001*</td>
</tr>
<tr>
<td>vital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Death and/ or</td>
<td>174 / 1095 (15.89%)</td>
<td>288 / 690 (41.74%)</td>
<td>3.555 (2.939, 4.299)</td>
<td><.0001*</td>
</tr>
<tr>
<td>Recurrence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Among 1802 cases, only 1785 subjects were included:
- 2 Subjects were excluded due to missing first diagnosis and
- 14 subjects were excluded due to missing data for subsequent event assessment
- 1 subject with missing data for stage

b Hazard ratios, 95\% confidence interval (CI) of hazard ratio, and p-values for were based on Wald test from the Cox proportional hazard analysis including age at first diagnosis (continuous) as the only variable in the model
Table 3.4 Relationship between Clark Level and Time to Event or Censored for Endpoints:
- Death,
- Recurrence,
- Death and/or Recurrence
Among Cases (Total N = 1543a)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Event Rate: n / N (%)</th>
<th>Clark Level:</th>
<th></th>
<th>Clark Level:</th>
<th>Hazard Ratio (95% CI)b</th>
<th>p-Value b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1, 2, &3</td>
<td>4 & 5</td>
<td>4 & 5 vs. 1, 2, &3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Death regardless of</td>
<td>51 / 820 (6.22%)</td>
<td>131 / 723 (18.12%)</td>
<td>3.104 (2.245, 4.291)</td>
<td><.0001*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>recurrence status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Recurrence regardless of</td>
<td>67 / 820 (8.17%)</td>
<td>202 / 723 (27.94%)</td>
<td>3.971 (3.012, 5.237)</td>
<td><.0001*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Death and/ or Recurrence</td>
<td>88 / 820 (10.73%)</td>
<td>222 / 723 (30.71%)</td>
<td>3.330 (2.601, 4.264)</td>
<td><.0001*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Among 1802 cases, only 1543 subjects were included:
- 2 Subjects were excluded due to missing first diagnosis and
- 14 subjects were excluded due to missing data for subsequent event assessment
- 243 subjects with missing data for Clark level

b Hazard ratios, 95% confidence interval (CI) of hazard ratio, and p-values for were based on Wald test from the Cox proportional hazard analysis including age at first diagnosis (continuous) as the only variable in the model
Table 4.1 Comparison of Time from First Diagnosis to Endpoint of Death (Regardless of Recurrent Status) among the 3 Allele Types for Each Gene Among Cases (Total N = 1543)- Unadjusted Analysis

Endpoint = Death regardless of Recurrent Status
Total Mortality Rate = 182 / 1543 (11.80%)

Unadjusted Analysis

Event Rate: n / N (%) Ancestral Allele: Per 1 copy decrease

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copy</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1800587</td>
<td>85 / 733</td>
<td>78 / 665</td>
<td>19 / 145</td>
<td>1.038 (0.834, 1.291)</td>
<td>0.7406</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11.60%)</td>
<td>(11.73%)</td>
<td>(13.10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs17561</td>
<td>85 / 733</td>
<td>78 / 665</td>
<td>19 / 145</td>
<td>1.040 (0.836, 1.293)</td>
<td>0.7273</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11.60%)</td>
<td>(11.73%)</td>
<td>(13.10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs2071374</td>
<td>88 / 776</td>
<td>84 / 663</td>
<td>10 / 104</td>
<td>1.042 (0.826, 1.315)</td>
<td>0.7287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11.34%)</td>
<td>(12.67%)</td>
<td>(9.62%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs16944</td>
<td>20 / 155</td>
<td>89 / 701</td>
<td>73 / 687</td>
<td>0.891 (0.714, 1.113)</td>
<td>0.3103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.90%)</td>
<td>(12.70%)</td>
<td>(10.63%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1143627</td>
<td>20 / 155</td>
<td>89 / 701</td>
<td>73 / 687</td>
<td>0.891 (0.714, 1.113)</td>
<td>0.3103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.90%)</td>
<td>(12.70%)</td>
<td>(10.63%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1071676</td>
<td>107 / 877</td>
<td>66 / 564</td>
<td>9 / 102</td>
<td>0.943 (0.742, 1.200)</td>
<td>0.6351</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.20%)</td>
<td>(11.70%)</td>
<td>(8.82%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1143634</td>
<td>107 / 880</td>
<td>66 / 564</td>
<td>9 / 99</td>
<td>0.959 (0.753, 1.221)</td>
<td>0.7338</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.16%)</td>
<td>(11.70%)</td>
<td>(9.09%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs3136558</td>
<td>119 / 955</td>
<td>55 / 504</td>
<td>8 / 84</td>
<td>0.892 (0.690, 1.152)</td>
<td>0.3807</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.46%)</td>
<td>(10.91%)</td>
<td>(9.52%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1800795</td>
<td>62 / 509</td>
<td>84 / 753</td>
<td>36 / 281</td>
<td>1.005 (0.814, 1.240)</td>
<td>0.9659</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.18%)</td>
<td>(11.16%)</td>
<td>(12.81%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1800797</td>
<td>63 / 530</td>
<td>83 / 743</td>
<td>36 / 270</td>
<td>1.031 (0.836, 1.271)</td>
<td>0.7765</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11.89%)</td>
<td>(11.17%)</td>
<td>(13.33%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1 Comparison of Time from First Diagnosis to Endpoint of Death (Regardess of Recurrent Status) among the 3 Allele Types for Each Gene Among Cases (Total N = 1543) - Unadjusted Analysis

Endpoint = Death regardless of Recurrent Status
Total Mortality Rate = 182 / 1543 (11.80%)

Unadjusted Analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copy</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-8</td>
<td>rs4073</td>
<td>29 / 315</td>
<td>100 / 758</td>
<td>53 / 470</td>
<td>1.090 (0.886, 1.341)</td>
<td>0.4150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.21%)</td>
<td>(13.19%)</td>
<td>(11.28%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs2227307</td>
<td>53 / 483</td>
<td>102 / 754</td>
<td>27 / 306</td>
<td>0.923 (0.750, 1.136)</td>
<td>0.4503</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10.97%)</td>
<td>(13.53%)</td>
<td>(8.82%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs2227306</td>
<td>61 / 531</td>
<td>95 / 738</td>
<td>26 / 274</td>
<td>0.921 (0.748, 1.134)</td>
<td>0.4371</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11.49%)</td>
<td>(12.87%)</td>
<td>(9.49%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFN-G</td>
<td>rs2430561</td>
<td>31 / 321</td>
<td>83 / 752</td>
<td>68 / 470</td>
<td>1.227 (0.995, 1.514)</td>
<td>0.0559</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9.66%)</td>
<td>(11.04%)</td>
<td>(14.47%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1861494</td>
<td>19 / 140</td>
<td>79 / 640</td>
<td>84 / 763</td>
<td>0.903 (0.725, 1.125)</td>
<td>0.3626</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13.57%)</td>
<td>(12.34%)</td>
<td>(11.01%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs2069705</td>
<td>22 / 172</td>
<td>86 / 698</td>
<td>74 / 673</td>
<td>0.914 (0.737, 1.133)</td>
<td>0.4125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.79%)</td>
<td>(12.32%)</td>
<td>(11.00%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-A</td>
<td>rs361525</td>
<td>169 / 1367</td>
<td>13 / 171</td>
<td>0 / 5</td>
<td>0.593 (0.340, 1.036)</td>
<td>0.0666</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.36%)</td>
<td>(7.60%)</td>
<td>(0.00%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1800629</td>
<td>135 / 1092</td>
<td>42 / 408</td>
<td>5 / 43</td>
<td>0.901 (0.673, 1.205)</td>
<td>0.4805</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.36%)</td>
<td>(10.29%)</td>
<td>(11.63%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1799964</td>
<td>5 / 82</td>
<td>61 / 510</td>
<td>116 / 951</td>
<td>1.137 (0.882, 1.467)</td>
<td>0.3221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6.10%)</td>
<td>(11.96%)</td>
<td>(12.20%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800630</td>
<td>127 / 1090</td>
<td>52 / 413</td>
<td>3 / 40</td>
<td>1.005</td>
<td>0.9716</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11.65%)</td>
<td>(12.59%)</td>
<td>(7.50%)</td>
<td></td>
<td>(0.758, 1.332)</td>
<td></td>
</tr>
</tbody>
</table>

* Among 1802 cases, only 1543 subjects were included:
 - 2 Subjects were excluded due to missing first diagnosis and
 - 14 subjects were excluded due to missing data for subsequent event assessment
 - 1 subject had missing data for both stage and Clark level; 242 subjects had missing data for Clark level

b Hazard ratios, 95% confidence interval (CI) of hazard ratio, and p-values were based on Wald test from Cox proportional hazard analysis including copies of ancestral allele as the major predictor (continuous scale).

hazard analysis including number of copies as the major predictor (continuous scale).
Table 4.2 Comparison of Time from First Diagnosis to Endpoint of Death (Regardless of Recurrent Status) among the 3 Allele Types for Each SNP Among Cases (Total N = 1543) - Final Model Built by Stepwise Selection Process

Endpoint = Death regardless of Recurrent Status
Total Mortality Rate = 182 / 1543 (11.80%)
Final Model: by Stepwise Selection process

Covariates: Entered into the final model by step-wise selection process:

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>Event Rate: n / N (%)</th>
<th>Ancestral Allele: Copies of Ancestral Allele</th>
<th>Age at First DX: Per 1 year increase</th>
<th>Gender: Male vs. Female</th>
<th>Stage III & IV vs. I & II</th>
<th>Clark Level 4 & 5 vs. 1, 2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs17561</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2071374</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs16944</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1143627</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1071676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1143634</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs3136558</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.2 Comparison of Time from First Diagnosis to Endpoint of Death (Regardless of Recurrent Status) among the 3 Allele Types for Each SNP Among Cases (Total N = 1543)—Final Model Built by Stepwise Selection Process

Endpoint = Death regardless of Recurrent Status
Total Mortality Rate = 182 / 1543 (11.80%)
Final Model: by Stepwise Selection process

Covariates: Entered into the final model by step-wise selection process:

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copy</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td></td>
</tr>
<tr>
<td>rs1800795</td>
<td>62 / 509</td>
<td>84 / 753</td>
<td>36 / 281</td>
<td>0.984 (0.795, 1.218)</td>
<td>0.8823</td>
<td>1.031 (1.019, 1.042)</td>
<td><.0001*</td>
<td>4.952 (3.361, 7.295)</td>
<td><.0001*</td>
<td>1.380 (0.970, 1.963)</td>
<td>0.0737</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800797</td>
<td>63 / 530</td>
<td>83 / 743</td>
<td>36 / 270</td>
<td>1.017 (0.823, 1.256)</td>
<td>0.8779</td>
<td>1.031 (1.019, 1.042)</td>
<td><.0001*</td>
<td>4.943 (3.355, 7.282)</td>
<td><.0001*</td>
<td>1.381 (0.971, 1.965)</td>
<td>0.0729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-8</td>
<td></td>
</tr>
<tr>
<td>rs4073</td>
<td>29 / 315</td>
<td>100 / 758</td>
<td>53 / 470</td>
<td>1.048 (0.852, 1.289)</td>
<td>0.6584</td>
<td>1.031 (1.019, 1.042)</td>
<td><.0001*</td>
<td>4.927 (3.344, 7.259)</td>
<td><.0001*</td>
<td>1.386 (0.974, 1.973)</td>
<td>0.0698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2227307</td>
<td>53 / 483</td>
<td>102 / 754</td>
<td>27 / 306</td>
<td>0.959 (0.779, 1.180)</td>
<td>0.6933</td>
<td>1.031 (1.019, 1.042)</td>
<td><.0001*</td>
<td>4.930 (3.346, 7.263)</td>
<td><.0001*</td>
<td>1.385 (0.973, 1.971)</td>
<td>0.0704</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2227306</td>
<td>61 / 531</td>
<td>95 / 738</td>
<td>26 / 274</td>
<td>0.942 (0.765, 1.160)</td>
<td>0.5746</td>
<td>1.031 (1.019, 1.042)</td>
<td><.0001*</td>
<td>4.929 (3.346, 7.261)</td>
<td><.0001*</td>
<td>1.386 (0.974, 1.972)</td>
<td>0.0697</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Endpoint = Death regardless of Recurrent Status
Total Mortality Rate = 182 / 1543 (11.80%)
Final Model: by Stepwise Selection process

Covariates: Entered into the final model by step-wise selection process:

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>Event Rate: n / N (%)</th>
<th>Ancestral Allele: Per 1 copy decrease</th>
<th>Age at First DX. Per 1 Year Increase</th>
<th>Gender: Male vs. Female</th>
<th>Stage III & IV vs. I & I/II</th>
<th>Clark Level 4 & 5 vs. 1, 2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2430561</td>
<td>31 / 321 (9.66%)</td>
<td>83 / 752 (11.04%)</td>
<td>68 / 470 (14.47%)</td>
<td>1.184</td>
<td>1.031 (1.020, 1.043)</td>
<td>4.897 (3.328, 7.206)</td>
</tr>
<tr>
<td></td>
<td>1 copy</td>
<td>68 / 470 (14.47%)</td>
<td>0.958, 1.463</td>
<td>0.1175</td>
<td><.0001*</td>
<td><.0001*</td>
</tr>
<tr>
<td></td>
<td>0 copy</td>
<td>0.1175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1861494</td>
<td>19 / 140 (13.57%)</td>
<td>79 / 640 (12.34%)</td>
<td>84 / 763 (11.01%)</td>
<td>0.890</td>
<td>1.031 (1.019, 1.042)</td>
<td>4.929 (3.347, 7.259)</td>
</tr>
<tr>
<td></td>
<td>1 copy</td>
<td>84 / 763 (11.01%)</td>
<td>0.712, 1.113</td>
<td>0.3066</td>
<td><.0001*</td>
<td><.0001*</td>
</tr>
<tr>
<td></td>
<td>0 copy</td>
<td>0.3066</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2069705</td>
<td>22 / 172 (12.79%)</td>
<td>86 / 698 (12.32%)</td>
<td>74 / 673 (11.00%)</td>
<td>0.906</td>
<td>1.031 (1.019, 1.042)</td>
<td>4.931 (3.348, 7.263)</td>
</tr>
<tr>
<td></td>
<td>1 copy</td>
<td>74 / 673 (11.00%)</td>
<td>0.730, 1.124</td>
<td>0.3694</td>
<td><.0001*</td>
<td><.0001*</td>
</tr>
<tr>
<td></td>
<td>0 copy</td>
<td>0.3694</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.2 Comparison of Time from First Diagnosis to Endpoint of Death (Regardless of Recurrent Status) among the 3 Allele Types for Each SNP Among Cases (Total N = 1543a)- Final Model Built by Stepwise Selection Process

Endpoint = Death regardless of Recurrent Status
Total Mortality Rate = 182 / 1543 (11.80%)
Final Model: by Stepwise Selection process

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copy</th>
<th>Hazard Ratio (95% CI)b</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-A</td>
<td></td>
</tr>
<tr>
<td>rs361525</td>
<td>169 / 1367</td>
<td>13 / 171</td>
<td>0 / 5</td>
<td>0.614 (0.353, 1.066)</td>
<td>0.0832</td>
<td>1.030 (1.019, 1.042)</td>
<td><.0001*</td>
<td>4.964 (3.370, 7.310)</td>
<td><.0001*</td>
<td>1.373 (0.965, 1.955)</td>
<td>0.0782</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800629</td>
<td>135 / 1092</td>
<td>42 / 408</td>
<td>5 / 43</td>
<td>0.954 (0.715, 1.274)</td>
<td>0.7510</td>
<td>1.031 (1.019, 1.042)</td>
<td><.0001*</td>
<td>4.934 (3.348, 7.270)</td>
<td><.0001*</td>
<td>1.382 (0.971, 1.966)</td>
<td>0.0723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1799964</td>
<td>5 / 82</td>
<td>61 / 510</td>
<td>116 / 951</td>
<td>0.997 (0.775, 1.281)</td>
<td>0.9786</td>
<td>1.031 (1.019, 1.042)</td>
<td><.0001*</td>
<td>4.948 (3.357, 7.294)</td>
<td><.0001*</td>
<td>1.381 (0.970, 1.964)</td>
<td>0.0731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800630</td>
<td>127 / 1090</td>
<td>52 / 413</td>
<td>3 / 40</td>
<td>1.190 (0.898, 1.577)</td>
<td>0.2248</td>
<td>1.031 (1.020, 1.042)</td>
<td><.0001*</td>
<td>5.046 (3.423, 7.439)</td>
<td><.0001*</td>
<td>1.372 (0.965, 1.952)</td>
<td>0.0782</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Among 1802 cases, only 1543 subjects were included:
 2 Subjects were excluded due to missing first diagnosis, 14 subjects were excluded due to missing data for subsequent event assessment, and 243 subjects were excluded due to missing data of age, gender, stage, and Clark level.
* Hazard ratios, 95% confidence interval (CI) of hazard ratio, and p-values were based on the Wald test from a Cox proportional hazard model built by stepwise selection process by forcing the copies of ancestral allele as the major predictor (continuous scale) and the remaining covariates (age at diagnosis, gender, stage, and Clark level) were selected by stepwise process using significant level of 0.10 to be entered and kept in the final model.
Table 5.1 Comparison of Time from First Diagnosis to Endpoint of Recurrence (Regardless of Vital Status) among the 3 Allele Types for Each Gene Among Cases (Total N = 1543\(^a\))- Unadjusted Analysis

Endpoint = Recurrence regardless of Vital Status
Total Event Rate = 269 / 1543 (17.43%)

Unadjusted Analysis

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>Copies of Ancestral Allele:</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copy</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-value(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800587:</td>
<td></td>
<td>135 / 733</td>
<td>111 / 665</td>
<td>23 / 145</td>
<td>0.919 (0.763, 1.105)</td>
<td>0.3685</td>
</tr>
<tr>
<td></td>
<td>(18.42%)</td>
<td>(16.69%)</td>
<td>(15.86%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs17561:</td>
<td></td>
<td>135 / 733</td>
<td>111 / 665</td>
<td>23 / 145</td>
<td>0.920 (0.764, 1.107)</td>
<td>0.3766</td>
</tr>
<tr>
<td></td>
<td>(18.42%)</td>
<td>(16.69%)</td>
<td>(15.86%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2071374:</td>
<td></td>
<td>135 / 776</td>
<td>122 / 663</td>
<td>12 / 104</td>
<td>0.958 (0.789, 1.163)</td>
<td>0.6620</td>
</tr>
<tr>
<td></td>
<td>(17.40%)</td>
<td>(18.40%)</td>
<td>(11.54%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs16944:</td>
<td></td>
<td>26 / 155</td>
<td>136 / 701</td>
<td>107 / 687</td>
<td>0.910 (0.759, 1.091)</td>
<td>0.3084</td>
</tr>
<tr>
<td></td>
<td>(16.77%)</td>
<td>(19.40%)</td>
<td>(15.57%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1143627:</td>
<td></td>
<td>26 / 155</td>
<td>136 / 701</td>
<td>107 / 687</td>
<td>0.910 (0.759, 1.091)</td>
<td>0.3084</td>
</tr>
<tr>
<td></td>
<td>(16.77%)</td>
<td>(19.40%)</td>
<td>(15.57%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1071676:</td>
<td></td>
<td>152 / 877</td>
<td>102 / 564</td>
<td>15 / 102</td>
<td>1.018 (0.840, 1.234)</td>
<td>0.8565</td>
</tr>
<tr>
<td></td>
<td>(17.33%)</td>
<td>(18.09%)</td>
<td>(14.71%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1143634:</td>
<td></td>
<td>152 / 880</td>
<td>102 / 564</td>
<td>15 / 99</td>
<td>1.036 (0.853, 1.257)</td>
<td>0.7213</td>
</tr>
<tr>
<td></td>
<td>(17.27%)</td>
<td>(18.09%)</td>
<td>(15.15%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs3136558:</td>
<td></td>
<td>174 / 955</td>
<td>81 / 504</td>
<td>14 / 84</td>
<td>0.928 (0.755, 1.140)</td>
<td>0.4756</td>
</tr>
<tr>
<td></td>
<td>(18.22%)</td>
<td>(16.07%)</td>
<td>(16.67%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800795</td>
<td></td>
<td>89 / 509</td>
<td>136 / 753</td>
<td>44 / 281</td>
<td>0.958 (0.807, 1.138)</td>
<td>0.6280</td>
</tr>
<tr>
<td></td>
<td>(17.49%)</td>
<td>(18.06%)</td>
<td>(15.66%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800797</td>
<td></td>
<td>95 / 530</td>
<td>131 / 743</td>
<td>43 / 270</td>
<td>0.945 (0.796, 1.123)</td>
<td>0.5233</td>
</tr>
<tr>
<td></td>
<td>(17.92%)</td>
<td>(17.63%)</td>
<td>(15.93%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.1 Comparison of Time from First Diagnosis to Endpoint of Recurrence (Regardless of Vital Status) among the 3 Allele Types for Each Gene Among Cases (Total N = 1543a)- Unadjusted Analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copy</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-8</td>
<td>rs4073</td>
<td>48 / 315 (15.24%)</td>
<td>142 / 758 (18.73%)</td>
<td>79 / 470 (16.81%)</td>
<td>1.040 (0.879, 1.231)</td>
<td>0.6439</td>
</tr>
<tr>
<td></td>
<td>rs2227307</td>
<td>80 / 483 (16.56%)</td>
<td>143 / 754 (18.97%)</td>
<td>46 / 306 (15.03%)</td>
<td>0.969 (0.819, 1.146)</td>
<td>0.7113</td>
</tr>
<tr>
<td></td>
<td>rs2227306</td>
<td>88 / 531 (16.57%)</td>
<td>141 / 738 (19.11%)</td>
<td>40 / 274 (14.60%)</td>
<td>0.962 (0.813, 1.140)</td>
<td>0.6571</td>
</tr>
<tr>
<td>IFN-G</td>
<td>rs2430561</td>
<td>49 / 321 (15.26%)</td>
<td>126 / 752 (16.76%)</td>
<td>94 / 470 (20.00%)</td>
<td>1.142 (0.962, 1.356)</td>
<td>0.1280</td>
</tr>
<tr>
<td></td>
<td>rs1861494</td>
<td>27 / 140 (19.29%)</td>
<td>112 / 640 (17.50%)</td>
<td>130 / 763 (17.04%)</td>
<td>0.970 (0.808, 1.164)</td>
<td>0.7399</td>
</tr>
<tr>
<td></td>
<td>rs2069705</td>
<td>33 / 172 (19.19%)</td>
<td>122 / 698 (17.48%)</td>
<td>114 / 673 (16.94%)</td>
<td>0.966 (0.809, 1.154)</td>
<td>0.7045</td>
</tr>
<tr>
<td>TFN-A</td>
<td>rs361525</td>
<td>246 / 1367 (18.00%)</td>
<td>22 / 171 (12.87%)</td>
<td>1 / 5 (20.00%)</td>
<td>0.727 (0.482, 1.096)</td>
<td>0.1282</td>
</tr>
<tr>
<td></td>
<td>rs1800629</td>
<td>191 / 1092 (17.49%)</td>
<td>69 / 408 (16.91%)</td>
<td>9 / 43 (20.93%)</td>
<td>1.017 (0.810, 1.277)</td>
<td>0.8862</td>
</tr>
<tr>
<td></td>
<td>rs1799964</td>
<td>13 / 82 (15.85%)</td>
<td>90 / 510 (17.65%)</td>
<td>166 / 951 (17.46%)</td>
<td>1.025 (0.837, 1.255)</td>
<td>0.8111</td>
</tr>
<tr>
<td></td>
<td>rs1800630</td>
<td>186 / 1090 (17.06%)</td>
<td>74 / 413 (17.92%)</td>
<td>9 / 40 (22.50%)</td>
<td>1.085 (0.866, 1.360)</td>
<td>0.4756</td>
</tr>
</tbody>
</table>

a Among 1802 cases, only 1543 subjects were included:
- 2 Subjects were excluded due to missing first diagnosis and
- 14 subjects were excluded due to missing data for subsequent event assessment
- 1 subject had missing data for both stage and Clark level; 242 subjects had missing data for Clark level

b Hazard ratios, 95% confidence interval (CI) of hazard ratio, and p-values were based on Wald test from Cox proportional hazard analysis including copies of ancestral allele as the major predictor (continuous scale).
Table 5.2 Comparison of Time from First Diagnosis to Endpoint of Recurrence (Regardless of Vital Status) among the 3 Allele Types for Each SNP Among Cases (Total N = 1543*-) Final Model Built by Stepwise Selection Process

Endpoint = Recurrence regardless of Vital Status
Total Event Rate = 269 / 1543 (17.43%)
Final Model: by Stepwise Selection process

Covariates: Entered into the final model by step-wise selection process:

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copy</th>
<th>Ancestral Allele: Per 1 copy decrease</th>
<th>Age at First DX. Per 1 Year Increase</th>
<th>Gender: Male vs. Female</th>
<th>Stage III & IV vs. I & II</th>
<th>Clark Level 4 & 5 vs. 1, 2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1800587</td>
<td>135 / 733 (18.42%)</td>
<td>111 / 665 (16.69%)</td>
<td>23 / 145 (15.86%)</td>
<td>0.836 (0.694, 1.008)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0020*</td>
<td>4.160 (3.062, 5.652)</td>
<td><.0001*</td>
</tr>
<tr>
<td>rs17561</td>
<td>135 / 733 (18.42%)</td>
<td>111 / 665 (16.69%)</td>
<td>23 / 145 (15.86%)</td>
<td>0.835 (0.693, 1.007)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0020*</td>
<td>4.165 (3.065, 5.658)</td>
<td><.0001*</td>
</tr>
<tr>
<td>rs2071374</td>
<td>135 / 776 (17.40%)</td>
<td>122 / 663 (18.40%)</td>
<td>12 / 104 (11.54%)</td>
<td>1.061 (0.871, 1.291)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0020*</td>
<td>4.131 (3.038, 5.617)</td>
<td><.0001*</td>
</tr>
<tr>
<td>rs16944</td>
<td>26 / 155 (16.77%)</td>
<td>136 / 701 (19.40%)</td>
<td>107 / 687 (15.57%)</td>
<td>0.907 (0.760, 1.082)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0022*</td>
<td>4.120 (3.031, 5.600)</td>
<td><.0001*</td>
</tr>
<tr>
<td>rs1143627</td>
<td>26 / 155 (16.77%)</td>
<td>136 / 701 (19.40%)</td>
<td>107 / 687 (15.57%)</td>
<td>0.907 (0.760, 1.082)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0022*</td>
<td>4.120 (3.031, 5.600)</td>
<td><.0001*</td>
</tr>
<tr>
<td>rs1071676</td>
<td>152 / 877 (17.33%)</td>
<td>102 / 564 (18.09%)</td>
<td>15 / 102 (14.71%)</td>
<td>0.959 (0.784, 1.171)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0019*</td>
<td>4.119 (3.030, 5.599)</td>
<td><.0001*</td>
</tr>
<tr>
<td>rs1143634</td>
<td>152 / 880</td>
<td>102 / 564</td>
<td>15 / 99</td>
<td>0.966</td>
<td>0.7341</td>
<td>1.014</td>
<td>0.0020*</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>(17.27%)</td>
<td>(18.09%)</td>
<td>(15.15%)</td>
<td>(0.790, 1.181)</td>
<td>(1.005, 1.023)</td>
<td>(1.005, 1.023)</td>
<td>(3.031, 5.601)</td>
<td>(1.465, 2.694)</td>
</tr>
<tr>
<td>rs3136558</td>
<td>174 / 955</td>
<td>81 / 504</td>
<td>14 / 84</td>
<td>0.863</td>
<td>0.1686</td>
<td>1.014</td>
<td>0.0018*</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>(18.22%)</td>
<td>(16.07%)</td>
<td>(16.67%)</td>
<td>(0.699, 1.065)</td>
<td>(1.005, 1.023)</td>
<td>(1.005, 1.023)</td>
<td>(3.047, 5.631)</td>
<td>(1.465, 2.693)</td>
</tr>
</tbody>
</table>
Table 5.2 (cont’d)
Comparison of Time from First Diagnosis to Endpoint of Recurrence (Regardless of Vital Status) among the 3 Allele Types for Each SNP Among Cases (Total N = 1543*)- Final Model Built by Stepwise Selection Process

Endpoint = Recurrence regardless of Vital Status
Total Event Rate = 269 / 1543 (17.43%)
Final Model: by Stepwise Selection process

Covariates: Entered into the final model by step-wise selection process:

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Event Rate: n / N (%)</th>
<th>Ancestral Allele: Per 1 copy decrease</th>
<th>Age at First DX. Per 1 Year Increase</th>
<th>Gender: Male vs. Female</th>
<th>Stage III & IV vs. I & I/II</th>
<th>Clark Level 4 & 5 vs. 1, 2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hazard Ratio (95% CI) b</td>
<td>P-value b</td>
<td>Hazard Ratio (95% CI) b</td>
<td>P-value b</td>
<td>Hazard Ratio (95% CI) b</td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1800795</td>
<td>89 / 509 (17.49%)</td>
<td>0.938 (0.790, 1.113)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0019*</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>rs1800797</td>
<td>95 / 530 (17.92%)</td>
<td>0.931 (0.785, 1.105)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0019*</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>IL-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs4073</td>
<td>48 / 315 (15.24%)</td>
<td>1.021 (0.863, 1.207)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0021*</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>rs2227307</td>
<td>80 / 483 (16.56%)</td>
<td>0.984 (0.832, 1.165)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0021*</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>rs2227306</td>
<td>88 / 531 (16.57%)</td>
<td>0.963 (0.813, 1.141)</td>
<td>1.014 (1.005, 1.023)</td>
<td>0.0021*</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>
Table 5.2 (cont’d) Comparison of Time from First Diagnosis to Endpoint of Recurrence (Regardless of Vital Status) among the 3 Allele Types for Each SNP Among Cases (Total N = 1543) - Final Model Built by Stepwise Selection Process

Endpoint = Recurrence regardless of Vital Status
Total Event Rate = 269 / 1543 (17.43%)
Final Model: by Stepwise Selection process

Covariates: Entered into the final model by step-wise selection process:

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copy</th>
<th>Event Rate: n / N (%)</th>
<th>Ancestral Allele:</th>
<th>Age at First DX. Per 1 Year Increase</th>
<th>Gender: Male vs. Female</th>
<th>Stage III & IV vs. I & II</th>
<th>Clark Level 4 & 5 vs. 1, 2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2430561</td>
<td>49 / 321</td>
<td>126 / 752</td>
<td>94 / 470</td>
<td>1.116</td>
<td>0.0019*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1861494</td>
<td>27 / 140</td>
<td>112 / 640</td>
<td>130 / 763</td>
<td>0.943</td>
<td>0.0020*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2069705</td>
<td>33 / 172</td>
<td>122 / 698</td>
<td>114 / 673</td>
<td>0.944</td>
<td>0.0021*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs361525</td>
<td>246 / 1367</td>
<td>22 / 171</td>
<td>1 / 5</td>
<td>0.721</td>
<td>0.0025*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800629</td>
<td>191 / 1092</td>
<td>69 / 408</td>
<td>9 / 43</td>
<td>1.098</td>
<td>0.0022*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1799964</td>
<td>13 / 82</td>
<td>90 / 510</td>
<td>166 / 951</td>
<td>0.944</td>
<td>0.0018*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800630</td>
<td>186 / 1090</td>
<td>74 / 413</td>
<td>9 / 40</td>
<td>1.220</td>
<td>0.0014*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a Same as table 4.2
b Same as table 4.2
Table 6.1 Comparison of Time from First Diagnosis to the Composite Endpoint of Death and/ or Recurrence among the 3 Allele Types for Each Gene Among Cases (Total N = 1543a)- Unadjusted Analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copy</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>copies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1800587:</td>
<td>158 / 733</td>
<td>126 / 665</td>
<td>26 / 145</td>
<td>0.893 (0.751, 1.062)</td>
<td>0.1996</td>
</tr>
<tr>
<td></td>
<td>rs17561:</td>
<td>158 / 733</td>
<td>126 / 665</td>
<td>26 / 145</td>
<td>0.894 (0.752, 1.063)</td>
<td>0.2060</td>
</tr>
<tr>
<td></td>
<td>rs2071374:</td>
<td>149 / 776</td>
<td>145 / 663</td>
<td>16 / 104</td>
<td>1.035 (0.866, 1.237)</td>
<td>0.7039</td>
</tr>
<tr>
<td></td>
<td>rs16944:</td>
<td>28 / 155</td>
<td>157 / 701</td>
<td>125 / 687</td>
<td>0.934 (0.788, 1.107)</td>
<td>0.4309</td>
</tr>
<tr>
<td></td>
<td>rs1143627:</td>
<td>28 / 155</td>
<td>157 / 701</td>
<td>125 / 687</td>
<td>0.934 (0.788, 1.107)</td>
<td>0.4309</td>
</tr>
<tr>
<td></td>
<td>rs1071676:</td>
<td>179 / 877</td>
<td>115 / 564</td>
<td>16 / 102</td>
<td>0.969 (0.809, 1.162)</td>
<td>0.7376</td>
</tr>
<tr>
<td></td>
<td>rs1143634:</td>
<td>179 / 880</td>
<td>115 / 564</td>
<td>16 / 99</td>
<td>0.985 (0.821, 1.183)</td>
<td>0.8747</td>
</tr>
<tr>
<td></td>
<td>rs3136558:</td>
<td>199 / 955</td>
<td>96 / 504</td>
<td>15 / 84</td>
<td>0.928 (0.766, 1.124)</td>
<td>0.4442</td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs1800795:</td>
<td>103 / 509</td>
<td>154 / 753</td>
<td>53 / 281</td>
<td>0.972 (0.828, 1.141)</td>
<td>0.7263</td>
</tr>
<tr>
<td></td>
<td>rs1800797:</td>
<td>109 / 530</td>
<td>149 / 743</td>
<td>52 / 270</td>
<td>0.965 (0.822, 1.133)</td>
<td>0.6657</td>
</tr>
</tbody>
</table>

Composite Endpoint = Death and/or Recurrent
Total Event Rate = 310 / 1543 (20.09%)

Unadjusted Analysis
Table 6.1 Comparison of Time from First Diagnosis to the Composite Endpoint of Death and/or Recurrence among the 3 Allele Types for Each Gene Among Cases (Total N = 1543)- Unadjusted Analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Copies of Ancestral Allele</th>
<th>Event Rate: n / N (%)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 copies</td>
<td>1 copy</td>
<td>0 copy</td>
<td></td>
</tr>
<tr>
<td>IL-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs4073</td>
<td>51 / 315</td>
<td>167 / 758</td>
<td>92 / 470</td>
<td>1.075 (0.919, 1.258)</td>
</tr>
<tr>
<td></td>
<td>rs2227307</td>
<td>93 / 483</td>
<td>168 / 754</td>
<td>49 / 306</td>
<td>0.940 (0.803, 1.100)</td>
</tr>
<tr>
<td></td>
<td>rs2227306</td>
<td>106 / 531</td>
<td>161 / 738</td>
<td>43 / 274</td>
<td>0.915 (0.781, 1.072)</td>
</tr>
<tr>
<td>IFN-G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs2430561</td>
<td>55 / 321</td>
<td>147 / 752</td>
<td>108 / 470</td>
<td>1.152 (0.981, 1.352)</td>
</tr>
<tr>
<td></td>
<td>rs1861494</td>
<td>29 / 140</td>
<td>130 / 640</td>
<td>151 / 763</td>
<td>0.996 (0.840, 1.182)</td>
</tr>
<tr>
<td></td>
<td>rs2069705</td>
<td>35 / 172</td>
<td>143 / 698</td>
<td>132 / 673</td>
<td>0.992 (0.840, 1.172)</td>
</tr>
<tr>
<td>TNF-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs361525</td>
<td>284 / 1367</td>
<td>25 / 171</td>
<td>1 / 5</td>
<td>0.703 (0.477, 1.036)</td>
</tr>
<tr>
<td></td>
<td>rs1800629</td>
<td>224 / 1092</td>
<td>77 / 408</td>
<td>9 / 43</td>
<td>0.953 (0.767, 1.184)</td>
</tr>
<tr>
<td></td>
<td>rs1799964</td>
<td>13 / 82</td>
<td>105 / 510</td>
<td>192 / 951</td>
<td>1.054 (0.872, 1.274)</td>
</tr>
<tr>
<td></td>
<td>rs1800630</td>
<td>215 / 1090</td>
<td>86 / 413</td>
<td>9 / 40</td>
<td>1.059 (0.857, 1.309)</td>
</tr>
</tbody>
</table>

- 2 Subjects were excluded due to missing first diagnosis and
- 14 subjects were excluded due to missing data for subsequent event assessment
- 1 subject had missing data for both stage and Clark level; 242 subjects had missing data for Clark level
b Hazard ratios, 95% confidence interval (CI) of hazard ratio, and p-values were based on Wald test from Cox proportional hazard analysis including copies of ancestral allele as the major predictor (continuous scale).

Composite Endpoint = Death and/or Recurrent
Total Event Rate = 310 / 1543 (20.09%)
Unadjusted Analysis
Table 6.2
Comparison of Time from First Diagnosis to the Composite Endpoint of Death and/or Recurrent among the 3 Allele Types for Each SNP Among Cases (Total N = 1543a) - Final Model Built by Stepwise Selection Process

Endpoint = Death and/or Recurrent
Total Event Rate = 310 / 1543 (20.09\%)
Final Model: by Stepwise Selection Process

Covariates: Entered into the final model by step-wise selection process:

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>Event Rate: n / N (%)</th>
<th>Ancestral Allele: Per 1 copy decrease</th>
<th>Age at First DX. Per 1 Year Increase</th>
<th>Gender: Male vs. Female</th>
<th>Stage III & IV vs. I & I/II</th>
<th>Clark Level 4 & 5 vs. 1, 2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 copies</td>
<td>1 copy</td>
<td>0 copy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1800587</td>
<td>158 / 733 (21.56%)</td>
<td>126 / 665 (18.95%)</td>
<td>26 / 145 (17.93%)</td>
<td>1.020</td>
<td><.0001</td>
<td>3.934</td>
</tr>
<tr>
<td></td>
<td>0.823 (0.691, 0.979)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.973, 5.206)</td>
</tr>
<tr>
<td>rs17561</td>
<td>158 / 733 (21.56%)</td>
<td>126 / 665 (18.95%)</td>
<td>26 / 145 (17.93%)</td>
<td>1.020</td>
<td><.0001</td>
<td>3.939</td>
</tr>
<tr>
<td></td>
<td>0.821 (0.690, 0.978)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.977, 5.213)</td>
</tr>
<tr>
<td>rs2071374</td>
<td>149 / 776 (19.20%)</td>
<td>145 / 663 (21.87%)</td>
<td>16 / 104 (15.38%)</td>
<td>1.020</td>
<td><.001</td>
<td>3.927</td>
</tr>
<tr>
<td></td>
<td>1.139 (0.951, 1.364)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.964, 5.202)</td>
</tr>
<tr>
<td>rs16944</td>
<td>28 / 155 (18.06%)</td>
<td>157 / 701 (22.40%)</td>
<td>125 / 687 (18.20%)</td>
<td>1.020</td>
<td><.0001</td>
<td>3.893</td>
</tr>
<tr>
<td></td>
<td>0.934 (0.792, 1.103)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.940, 5.155)</td>
</tr>
<tr>
<td>rs1143627</td>
<td>28 / 155 (18.06%)</td>
<td>157 / 701 (22.40%)</td>
<td>125 / 687 (18.20%)</td>
<td>1.020</td>
<td><.0001</td>
<td>3.893</td>
</tr>
<tr>
<td></td>
<td>0.934 (0.792, 1.103)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.940, 5.155)</td>
</tr>
</tbody>
</table>

a Final Model Built by Stepwise Selection Process
<table>
<thead>
<tr>
<th>rs1071676</th>
<th>179 / 877</th>
<th>115 / 564</th>
<th>16 / 102</th>
<th>0.914</th>
<th>0.3505</th>
<th>1.020</th>
<th><.0001</th>
<th>--------</th>
<th>-----</th>
<th>3.898</th>
<th><.0001</th>
<th>1.665</th>
<th>0.0003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(20.41%)</td>
<td>(20.39%)</td>
<td>(15.69%)</td>
<td>(0.757, 1.104)</td>
<td>(1.012, 1.029)</td>
<td>*</td>
<td><.0001</td>
<td>2.944</td>
<td>1.104</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.161</td>
<td></td>
<td>*</td>
<td></td>
<td>1.266</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td>2.189</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rs1143634</th>
<th>179 / 880</th>
<th>115 / 564</th>
<th>16 / 99</th>
<th>0.921</th>
<th>0.3930</th>
<th>1.020</th>
<th><.0001</th>
<th>--------</th>
<th>-----</th>
<th>3.901</th>
<th><.0001</th>
<th>1.664</th>
<th>0.0003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(20.34%)</td>
<td>(20.39%)</td>
<td>(16.16%)</td>
<td>(0.762, 1.113)</td>
<td>(1.012, 1.029)</td>
<td>*</td>
<td><.0001</td>
<td>2.946</td>
<td>1.113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.165</td>
<td></td>
<td>*</td>
<td></td>
<td>1.266</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td>2.188</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rs3136558</th>
<th>199 / 955</th>
<th>96 / 504</th>
<th>15 / 84</th>
<th>0.868</th>
<th>0.1533</th>
<th>1.020</th>
<th><.0001</th>
<th>--------</th>
<th>-----</th>
<th>3.912</th>
<th><.0001</th>
<th>1.662</th>
<th>0.0003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(20.84%)</td>
<td>(19.05%)</td>
<td>(17.86%)</td>
<td>(0.714, 1.054)</td>
<td>(1.012, 1.029)</td>
<td>*</td>
<td><.0001</td>
<td>2.955</td>
<td>1.054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.180</td>
<td></td>
<td>*</td>
<td></td>
<td>1.264</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td>2.185</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.2 (cont’d) Comparison of Time from First Diagnosis to the Composite Endpoint of Death and/or Recurrent among the 3 Allele Types for Each SNP Among Cases (Total N = 1543) - Final Model Built by Stepwise Selection Process

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>Event Rate: n / N (%)</th>
<th>Copies of Ancestral Allele: Per 1 copy decrease</th>
<th>Ancestral Allele:</th>
<th>Age at First DX.</th>
<th>Gender: Male vs. Female</th>
<th>Stage III & IV vs. I & I/II</th>
<th>Clark Level 4 & 5 vs. 1, 2, 3</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td></td>
</tr>
<tr>
<td>rs1800795</td>
<td>103 / 509 (20.24%)</td>
<td>154 / 753 (20.45%)</td>
<td>53 / 281 (18.86%)</td>
<td>0.949 (0.808,</td>
<td>1.020 (1.012,</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.114)</td>
<td>1.029)</td>
<td></td>
</tr>
<tr>
<td>rs1800797</td>
<td>109 / 530 (20.57%)</td>
<td>149 / 743 (20.05%)</td>
<td>52 / 270 (19.26%)</td>
<td>0.948 (0.807,</td>
<td>1.020 (1.012,</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.112)</td>
<td>1.029)</td>
<td></td>
</tr>
<tr>
<td>IL-8</td>
<td></td>
</tr>
<tr>
<td>rs4073</td>
<td>51 / 315 (16.19%)</td>
<td>167 / 758 (22.03%)</td>
<td>92 / 470 (19.57%)</td>
<td>1.051 (0.898,</td>
<td>1.020 (1.012,</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.229)</td>
<td>1.028)</td>
<td></td>
</tr>
<tr>
<td>rs2227307</td>
<td>93 / 483 (19.25%)</td>
<td>168 / 754 (22.28%)</td>
<td>49 / 306 (16.01%)</td>
<td>0.958 (0.819,</td>
<td>1.020 (1.012,</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.121)</td>
<td>1.028)</td>
<td></td>
</tr>
<tr>
<td>rs2227306</td>
<td>106 / 531 (19.96%)</td>
<td>161 / 738 (21.82%)</td>
<td>43 / 274 (15.69%)</td>
<td>0.920 (0.785,</td>
<td>1.020 (1.011,</td>
<td><.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.079)</td>
<td>1.028)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IFN-G</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>rs2430561</td>
<td>55 / 321 (17.13%)</td>
<td>147 / 752 (19.55%)</td>
<td>108 / 470 (22.98%)</td>
<td>0.1428</td>
<td>1.020</td>
<td><.0001</td>
<td>3.882</td>
<td><.0001</td>
<td>1.666</td>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>rs1861494</td>
<td>29 / 140 (20.71%)</td>
<td>130 / 640 (20.31%)</td>
<td>151 / 763 (19.79%)</td>
<td>0.970</td>
<td>0.7280</td>
<td><.0001</td>
<td>3.890</td>
<td><.0001</td>
<td>1.664</td>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>rs2069705</td>
<td>35 / 172 (20.35%)</td>
<td>143 / 698 (20.49%)</td>
<td>132 / 673 (19.61%)</td>
<td>0.969</td>
<td>0.7163</td>
<td><.0001</td>
<td>3.890</td>
<td><.0001</td>
<td>1.664</td>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Denotes statistical significance.
Table 6.2 (cont’d) Comparison of Time from First Diagnosis to the Composite Endpoint of Death and/or Recurrent among the 3 Allele Types for Each SNP Among Cases (Total N = 1543^a) - Final Model Built by Stepwise Selection Process

Endpoint = Death and/or Recurrent

Total Event Rate = 310 / 1543 (20.09%)

Final Model: by Stepwise Selection process

<table>
<thead>
<tr>
<th>Gene SNP</th>
<th>Event Rate: n / N (%)</th>
<th>Ancestral Allele: Copies of Ancestral Allele</th>
<th>Hazard Ratio (95% CI)<sup>b</sup></th>
<th>P-value<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>rs361525</td>
<td>284 / 1367 (20.78%)</td>
<td>0.707 (0.481, 1.040)</td>
<td>0.0784</td>
<td>1.020 (1.011, 1.028)</td>
<td><.0001</td>
<td>--------</td>
<td>-----</td>
<td>3.898 (2.944, 5.162)</td>
<td><.0001</td>
<td>1.661</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>rs1800629</td>
<td>224 / 1092 (20.51%)</td>
<td>1.023 (0.827, 1.265)</td>
<td>0.8354</td>
<td>1.020 (1.012, 1.028)</td>
<td><.0001</td>
<td>--------</td>
<td>-----</td>
<td>3.896 (2.941, 5.161)</td>
<td><.0001</td>
<td>1.661</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>rs1799964</td>
<td>13 / 82 (15.85%)</td>
<td>0.958 (0.795, 1.156)</td>
<td>0.6560</td>
<td>1.020 (1.012, 1.029)</td>
<td><.0001</td>
<td>--------</td>
<td>-----</td>
<td>3.905 (2.948, 5.174)</td>
<td><.0001</td>
<td>1.659</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>rs1800630</td>
<td>215 / 1090 (19.72%)</td>
<td>1.206 (0.976, 1.491)</td>
<td>0.0825</td>
<td>1.020 (1.012, 1.029)</td>
<td><.0001</td>
<td>--------</td>
<td>-----</td>
<td>3.969 (2.996, 5.259)</td>
<td><.0001</td>
<td>1.650</td>
<td>0.0003</td>
<td></td>
</tr>
</tbody>
</table>

^aAmong 1802 cases, only 1543 subjects were included:

2 Subjects were excluded due to missing first diagnosis, 14 subjects were excluded due to missing data for subsequent event assessment, and 243 subjects were excluded due to missing data of age, gender, stage, and Clark level

^bHazard ratios, 95% confidence interval (CI) of hazard ratio, and p-values were based on the Wald test from a Cox proportional hazard model built by stepwise selection process by forcing the copies of ancestral allele as the major predictor (continuous scale) and the remaining covariates (age at diagnosis, gender, stage, and Clark level) were selected by stepwise process using significant level of 0.10 to be entered and kept in the final model.
Table 7.1 Interaction of IL-1 SNPs rs1800587 and rs7561 for Outcome of Death

Endpoint = Recurrence regardless of Vital Status
Total Event Rate = 269 / 1543 (17.43%)

<table>
<thead>
<tr>
<th>Individual SNP:</th>
<th>Copies of Ancestral Allele:</th>
<th>Event Rate: n / N (%)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-value<sup>b</sup></th>
<th>P-value<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 copies</td>
<td>1 copy</td>
<td>0 copies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1 rs1800587</td>
<td>135 / 733 (18.42%)</td>
<td>111 / 665 (16.69%)</td>
<td>23 / 145 (15.86%)</td>
<td>0.836 (0.694, 1.008)</td>
<td>0.0610</td>
</tr>
<tr>
<td>IL-1 rs17561</td>
<td>135 / 733 (18.42%)</td>
<td>111 / 665 (16.69%)</td>
<td>23 / 145 (15.86%)</td>
<td>0.835 (0.693, 1.007)</td>
<td>0.0588</td>
</tr>
</tbody>
</table>

Combination of 2 SNPs:

<table>
<thead>
<tr>
<th>Individual SNP:</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1 rs1800587</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1 rs7561</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard Ratio (95% CI)</th>
<th>P-value<sup>b</sup></th>
<th>P-value<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.836 (0.694, 1.008)</td>
<td>0.0610</td>
<td></td>
</tr>
<tr>
<td>(0.835 (0.693, 1.007)</td>
<td>0.0588</td>
<td></td>
</tr>
</tbody>
</table>

^a Among 1802 cases, only 1543 subjects were included:
2 Subjects were excluded due to missing first diagnosis, 14 subjects were excluded due to missing data for subsequent event assessment, and 243 subjects were excluded due to missing data of age, gender, stage, and Clark level

^bHazard ratios, 95% confidence interval (CI) of hazard ratio, and p-values were based on the Wald test from a Cox proportional hazard model built by stepwise selection process forcing the copies of ancestral allele as the major predictor (continuous scale) and the remaining covariates (age at diagnosis, gender, stage, and Clark level) were selected by stepwise process using significant level of 0.10 to be entered and kept in the final model.

^cInteraction between two SNPs was based on the Wald test of the interaction term between two SNPs from a Cox proportional hazard model built by stepwise selection process forcing the copies of ancestral allele on two alleles as two major predictor (continuous scale) along with the corresponding interaction term and the remaining covariates (age at diagnosis, gender, stage, and Clark level) were selected by stepwise process using significant level of 0.10 to be entered and kept in the final model.
Table 7.2 Interaction of IL-1 SNPs rs1800587 and rs7561 for Composite Outcome

<table>
<thead>
<tr>
<th>Individual SNP:</th>
<th>Event Rate: n / N (%)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-value<sup>b</sup></th>
<th>P-value<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 copies</td>
<td>1 copy</td>
<td>0 copies</td>
<td>Per 1 copy decrease</td>
</tr>
<tr>
<td>IL-1 rs1800587</td>
<td>158 / 733 (21.56%)</td>
<td>126 / 665 (18.95%)</td>
<td>26 / 145 (17.93%)</td>
<td>0.823 (0.691, 0.979)</td>
</tr>
<tr>
<td>IL-1 rs17561</td>
<td>158 / 733 (21.56%)</td>
<td>126 / 665 (18.95%)</td>
<td>26 / 145 (17.93%)</td>
<td>0.821 (0.690, 0.978)</td>
</tr>
</tbody>
</table>

Combination of 2 SNPs:

<table>
<thead>
<tr>
<th>IL-1 rs1800587 and IL-1 rs7561</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copies</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copies</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>158/732 (21.58%)</td>
<td>0 / 1 (0%)</td>
<td>0 / 0 (0%)</td>
<td>126 / 664 (18.98%)</td>
<td>0 / 0 (17.93%)</td>
<td>0 / 0 (17.93%)</td>
<td>26 / 145 (17.93%)</td>
<td>0.9089</td>
<td></td>
</tr>
</tbody>
</table>

*Among 1802 cases, only 1543 subjects were included:
1. Subjects were excluded due to missing first diagnosis, 14 subjects were excluded due to missing data for subsequent event assessment, and 243 subjects were excluded due to missing data of age, gender, stage, and Clark level.
2. Hazard ratios, 95% confidence interval (CI) of hazard ratio, and p-values were based on the Wald test from a Cox proportional hazard model built by stepwise selection process forcing the copies of ancestral allele as the major predictor (continuous scale) and the remaining covariates (age at diagnosis, gender, stage, and Clark level) were selected by stepwise process using significant level of 0.10 to be entered and kept in the final model.
3. Interaction between two SNPs was based on the Wald test of the interaction term between two SNPs from a Cox proportional hazard model built by stepwise selection process forcing the copies of ancestral allele on two alleles as two major predictors (continuous scale) along with the corresponding interaction term and the remaining covariates (age at diagnosis, gender, stage, and Clark level) were selected by stepwise process using significant level of 0.10 to be entered and kept in the final model.
Table 7.3 Interaction of TNF-A SNPs rs1800360 and rs361525 for Outcome of Death

<table>
<thead>
<tr>
<th>Individual SNP:</th>
<th>2 copies</th>
<th>1 copy</th>
<th>0 copies</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-value<sup>b</sup></th>
<th>P-value<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-A rs361525</td>
<td>284 / 1367</td>
<td>25 / 171</td>
<td>1 / 5</td>
<td>0.707 (0.481, 1.040)</td>
<td>0.0784</td>
<td></td>
</tr>
<tr>
<td>TNF-A rs1800360</td>
<td>215 / 1090</td>
<td>86 / 413</td>
<td>9 / 40</td>
<td>1.206 (0.976, 1.491)</td>
<td>0.0825</td>
<td></td>
</tr>
</tbody>
</table>

Combination of 2 SNPs:

<table>
<thead>
<tr>
<th>Individual SNP:</th>
<th>2 copies</th>
<th>1 copies</th>
<th>0 copies</th>
<th>Hazard Ratio (95% CI)</th>
<th>P-value<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-A rs361525</td>
<td>2 copies</td>
<td>1 copy</td>
<td>0 copies</td>
<td>0.0652</td>
<td></td>
</tr>
</tbody>
</table>

^a Among 1802 cases, only 1543 subjects were included: 2 Subjects were excluded due to missing first diagnosis, 14 subjects were excluded due to missing data for subsequent event assessment, and 243 subjects were excluded due to missing data of age, gender, stage, and Clark level.

^b Hazard ratios, 95% confidence interval (CI) of hazard ratio, and p-values were based on the Wald test from a Cox proportional hazard model built by stepwise selection process forcing the copies of ancestral allele as the major predictor (continuous scale) and the remaining covariates (age at diagnosis, gender, stage, and Clark level) were selected by stepwise process using significant level of 0.10 to be entered and kept in the final model.

^c Interaction between two SNPs was based on the Wald test of the interaction term between two SNPs from a Cox proportional hazard model built by stepwise selection process forcing the copies of ancestral allele on two alleles as two major predictor (continuous scale) along with the corresponding interaction term and the remaining covariates (age at diagnosis, gender, stage, and Clark level) were selected by stepwise process using significant level of 0.10 to be entered and kept in the final model.
French Validation Results
Table 8 French Validation - Dr. Florence Demenais\(^a\)
- Significant Findings

<table>
<thead>
<tr>
<th>gene</th>
<th>SNP</th>
<th>Hazard ratio [95% CI](^b)</th>
<th>p-value (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1B</td>
<td>rs3136558</td>
<td>0.685 [0.011, 42.803]</td>
<td>0.0719</td>
</tr>
<tr>
<td>IL-6</td>
<td>rs1800797</td>
<td>1.495 [1.116, 2.002]</td>
<td>0.007*</td>
</tr>
<tr>
<td>IL-6</td>
<td>rs1800795</td>
<td>1.501 [1.127, 1.998],</td>
<td>0.005*</td>
</tr>
</tbody>
</table>

\(^a\)This validation was performed by the group of Dr. Florence Demenais, Directrice d'Unité : DR1 Inserm, of l'Université Paris Diderot - Paris 7, l'Institut Universitaire d'Hematologie. They used independent French data.

\(^b\)Hazard ratios and p-values were calculated for per one ancestral allele copy decrease for individual SNPs based on a multivariate final model selected via stepwise Cox proportional hazard analysis from a set of covariates: age, gender, ethnicity, tumor stage, Clark level, and Breslow index.

Table 9 Pathway Analysis – Genes of the IL1 Pathway Significant for Outcome of Recurrence, adjusted for Age of Diagnosis, Gender, Clark Level, Tumor Stage, and Breslow Thickness

<table>
<thead>
<tr>
<th>Gene</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1</td>
<td>0.035*</td>
</tr>
<tr>
<td>ECSIT</td>
<td>0.02*</td>
</tr>
<tr>
<td>c-JUN</td>
<td>0.008*</td>
</tr>
<tr>
<td>TAK1</td>
<td>0.074*</td>
</tr>
</tbody>
</table>
Table 10 Pathway Analysis – All Genes of the IL1 Pathway for Outcomes of Death and Recurrence, unadjusted and adjusted for Age of Diagnosis, Gender, Clark Level, Tumor Stage, and Breslow Thickness, including number of SNPs

<table>
<thead>
<tr>
<th>Gene</th>
<th>Endpoint = Death Unadjusted</th>
<th>Endpoint = Death Adjusted</th>
<th>Endpoint = Recurrence Unadjusted</th>
<th>Endpoint = Recurrence Adjusted</th>
<th>Number of SNPs included for each Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P-value</td>
<td>P-value</td>
<td>P-value</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>IL-1</td>
<td>0.315</td>
<td>0.122</td>
<td>0.115</td>
<td>0.035*</td>
<td>539</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.122</td>
<td>0.507</td>
<td>0.176</td>
<td>0.467</td>
<td>719</td>
</tr>
<tr>
<td>IL-8</td>
<td>0.202</td>
<td>0.386</td>
<td>0.338</td>
<td>0.522</td>
<td>377</td>
</tr>
<tr>
<td>IFN-G</td>
<td>0.619</td>
<td>0.972</td>
<td>0.425</td>
<td>0.893</td>
<td>657</td>
</tr>
<tr>
<td>TNF-A</td>
<td>0.785</td>
<td>0.608</td>
<td>0.933</td>
<td>0.824</td>
<td>499</td>
</tr>
<tr>
<td>c-JUN</td>
<td>0.35</td>
<td>0.18</td>
<td>0.279</td>
<td>0.008*</td>
<td>193</td>
</tr>
<tr>
<td>ECSIT</td>
<td>0.632</td>
<td>0.188</td>
<td>0.158</td>
<td>0.02*</td>
<td>193</td>
</tr>
<tr>
<td>IkBa</td>
<td>0.448</td>
<td>0.263</td>
<td>0.76</td>
<td>0.536</td>
<td>193</td>
</tr>
<tr>
<td>IKKa</td>
<td>0.448</td>
<td>0.263</td>
<td>0.76</td>
<td>0.536</td>
<td>193</td>
</tr>
<tr>
<td>IKKb</td>
<td>0.042</td>
<td>0.475</td>
<td>0.072</td>
<td>0.611</td>
<td>193</td>
</tr>
<tr>
<td>IL1R1</td>
<td>0.962</td>
<td>0.889</td>
<td>0.35</td>
<td>0.803</td>
<td>193</td>
</tr>
<tr>
<td>IL1RA</td>
<td>0.63</td>
<td>0.848</td>
<td>0.68</td>
<td>0.784</td>
<td>193</td>
</tr>
<tr>
<td>IL1RAcP</td>
<td>0.854</td>
<td>0.644</td>
<td>0.947</td>
<td>0.737</td>
<td>193</td>
</tr>
<tr>
<td>IRAK4</td>
<td>0.533</td>
<td>0.357</td>
<td>0.385</td>
<td>0.145</td>
<td>193</td>
</tr>
<tr>
<td>JNK</td>
<td>0.337</td>
<td>0.918</td>
<td>0.231</td>
<td>0.955</td>
<td>193</td>
</tr>
<tr>
<td>MEK3</td>
<td>0.396</td>
<td>0.73</td>
<td>0.639</td>
<td>0.865</td>
<td>193</td>
</tr>
<tr>
<td>MEK6</td>
<td>0.617</td>
<td>0.47</td>
<td>0.727</td>
<td>0.579</td>
<td>193</td>
</tr>
<tr>
<td>MEKK1</td>
<td>0.693</td>
<td>0.862</td>
<td>0.719</td>
<td>0.889</td>
<td>193</td>
</tr>
<tr>
<td>MYD88</td>
<td>0.906</td>
<td>0.424</td>
<td>0.701</td>
<td>0.584</td>
<td>193</td>
</tr>
<tr>
<td>Gene</td>
<td>Endpoint = Death Unadjusted P-value</td>
<td>Endpoint = Death Adjusted P-value</td>
<td>Endpoint = Recurrence Unadjusted P-value</td>
<td>Endpoint = Recurrence P-value</td>
<td>Number of SNPs included for each Gene</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>NF-kB</td>
<td>0.246</td>
<td>0.548</td>
<td>0.272</td>
<td>0.489</td>
<td>193</td>
</tr>
<tr>
<td>NIK</td>
<td>0.644</td>
<td>0.687</td>
<td>0.639</td>
<td>0.218</td>
<td>193</td>
</tr>
<tr>
<td>P38</td>
<td>0.643</td>
<td>0.621</td>
<td>0.803</td>
<td>0.909</td>
<td>193</td>
</tr>
<tr>
<td>RKIP</td>
<td>0.753</td>
<td>0.87</td>
<td>0.968</td>
<td>0.973</td>
<td>193</td>
</tr>
<tr>
<td>TAB1</td>
<td>0.367</td>
<td>0.633</td>
<td>0.263</td>
<td>0.526</td>
<td>193</td>
</tr>
<tr>
<td>TAK1</td>
<td>0.281</td>
<td>0.123</td>
<td>0.459</td>
<td>0.074*</td>
<td>193</td>
</tr>
<tr>
<td>TOLLIP</td>
<td>0.404</td>
<td>0.635</td>
<td>0.534</td>
<td>0.7</td>
<td>193</td>
</tr>
<tr>
<td>TRAF6</td>
<td>0.187</td>
<td>0.553</td>
<td>0.275</td>
<td>0.632</td>
<td>193</td>
</tr>
</tbody>
</table>
Figure 3. Q-Q Plot of Adjusted Probabilities of Genes for Death Outcome
Figure 4. Q-Q Plot of Adjusted Probabilities of Genes for Recurrence Outcome
Table 11a. Baseline Demographics, Clinical Characteristics, and RNA Expression Level by Subjects with or without Endpoint of Death among All Melanoma Cases in TCGA dataset (Total N = 194*).

Endpoint = Death
Event Rate = 85 / 194 (43.8%)

<table>
<thead>
<tr>
<th>Baseline Demographics & Clinical Characteristics</th>
<th>Event (N =85)</th>
<th>No Event (N =109)</th>
<th>All Melanoma Cases (N =194)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender: n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Male</td>
<td>54 (63.5%)</td>
<td>66 (60.5%)</td>
<td>120 (61.9%)</td>
</tr>
<tr>
<td>- Female</td>
<td>31 (36.5%)</td>
<td>43 (39.5%)</td>
<td>74 (38.1%)</td>
</tr>
<tr>
<td>Age at First Diagnosis (Years): Mean ± SD</td>
<td>58.7 ± 15.9</td>
<td>55.1 ± 16.2</td>
<td>56.7 ± 16.2</td>
</tr>
<tr>
<td>Stage: n(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- I & I/II</td>
<td>27 (31.8%)</td>
<td>31 (28.4%)</td>
<td>58 (29.9%)</td>
</tr>
<tr>
<td>- III & IV</td>
<td>58 (68.2%)</td>
<td>78 (71.6%)</td>
<td>136 (70.1%)</td>
</tr>
<tr>
<td>Clark Level: n(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1, 2, 3</td>
<td>26 (30.6%)</td>
<td>52 (47.7%)</td>
<td>78 (40.2%)</td>
</tr>
<tr>
<td>- 4 & 5</td>
<td>59 (69.4%)</td>
<td>57 (52.3%)</td>
<td>116 (59.8%)</td>
</tr>
<tr>
<td>Breslow Index: Mean ± SD</td>
<td>4.77 ± 6.89</td>
<td>4.87 ± 8.78</td>
<td>4.82 ± 7.99</td>
</tr>
</tbody>
</table>

RNA Expression Level

<table>
<thead>
<tr>
<th>RNA Expression Level</th>
<th>Continuous (units): Mean ± SD</th>
<th>Binary: n (%)</th>
<th>Continuous (units): Mean ± SD</th>
<th>Binary: n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1 RNA Level</td>
<td>85.0 ± 178.4</td>
<td>124.3 ± 354.0</td>
<td>107.1 ± 290.5</td>
<td></td>
</tr>
<tr>
<td>- <= 35 units</td>
<td>46 (54.1%)</td>
<td>51 (46.8%)</td>
<td>97 (50.0%)</td>
<td></td>
</tr>
<tr>
<td>- > 35 units</td>
<td>39 (45.9%)</td>
<td>58 (53.2%)</td>
<td>97 (50.0%)</td>
<td></td>
</tr>
<tr>
<td>ECSIT RNA Level</td>
<td>758.8 ± 350.6</td>
<td>724.5 ± 408.6</td>
<td>739.5 ± 383.7</td>
<td></td>
</tr>
<tr>
<td>- <= 670 units</td>
<td>41 (48.2%)</td>
<td>56 (51.4%)</td>
<td>97 (50.0%)</td>
<td></td>
</tr>
<tr>
<td>- > 670 units</td>
<td>44 (51.8%)</td>
<td>53 (48.6%)</td>
<td>97 (50.0%)</td>
<td></td>
</tr>
<tr>
<td>c-JUN RNA Level</td>
<td>2134.5 ± 2180</td>
<td>2001.4 ± 1554</td>
<td>2059.7 ± 1850.4</td>
<td></td>
</tr>
<tr>
<td>- <= 1470 units</td>
<td>44 (51.8%)</td>
<td>54 (49.5%)</td>
<td>98 (50.5%)</td>
<td></td>
</tr>
<tr>
<td>- > 1470 units</td>
<td>41 (48.2%)</td>
<td>55 (50.5%)</td>
<td>96 (49.5%)</td>
<td></td>
</tr>
</tbody>
</table>

*TCGA dataset was downloaded from the website: https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. Among 305 melanoma cases, only 194 subjects with complete data were included.
Table 11b: Relationship between RNA Expression Level (as Continuous Variable) and the Melanoma Endpoint of Death from TCGA Dataset (Total N = 194*) via Unadjusted and Adjusted Logistic Regression Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IL-1 RNA Level</th>
<th>ECSI-T RNA Level</th>
<th>c-JUN RNA Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds Ratio</td>
<td>p-value</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td></td>
<td>(95% CI)</td>
<td></td>
<td>(95% CI)</td>
</tr>
<tr>
<td>RNA Level (Continuous):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✔ Summary Statistics: Mean ±SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Deaths (N = 85)</td>
<td>85.0 ± 178.4</td>
<td>0.999 (0.998, 1.001)</td>
<td>758.8 ± 350.6</td>
</tr>
<tr>
<td>- Survivors (N = 109)</td>
<td>124.3 ± 354.0</td>
<td>0.999 (0.998, 1.001)</td>
<td>72453 ± 408.6</td>
</tr>
<tr>
<td>✔ Odds ratio for per one unit increase:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Unadjusted</td>
<td>0.999</td>
<td>0.3704</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>(0.998, 1.001)</td>
<td></td>
<td>(0.999, 1.001)</td>
</tr>
<tr>
<td>o Adjusted</td>
<td>1.000</td>
<td>0.5409</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>(0.998, 1.001)</td>
<td></td>
<td>(0.999, 1.001)</td>
</tr>
<tr>
<td>Covariates:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Age at first diagnosis: per one year increase</td>
<td>1.015</td>
<td>0.1345</td>
<td>1.015</td>
</tr>
<tr>
<td></td>
<td>(0.996, 1.034)</td>
<td></td>
<td>(0.996, 1.034)</td>
</tr>
<tr>
<td>- Gender: Male vs. Female</td>
<td>1.215</td>
<td>0.5306</td>
<td>1.211</td>
</tr>
<tr>
<td></td>
<td>(0.661, 2.232)</td>
<td></td>
<td>(0.650, 2.228)</td>
</tr>
<tr>
<td>- Tumor Stage: III & IV vs. I & I/II</td>
<td>0.546</td>
<td>0.1019</td>
<td>0.553</td>
</tr>
<tr>
<td></td>
<td>(0.264, 1.127)</td>
<td></td>
<td>(0.268, 1.142)</td>
</tr>
<tr>
<td>- Clark Level: 4 & 5 vs. 1, 2, & 3</td>
<td>2.513</td>
<td>0.0070*</td>
<td>2.545</td>
</tr>
<tr>
<td></td>
<td>(1.287, 4.907)</td>
<td></td>
<td>(1.304, 4.966)</td>
</tr>
<tr>
<td>- Breslow Index: Per one unit increase</td>
<td>0.993</td>
<td>0.7342</td>
<td>0.991</td>
</tr>
<tr>
<td></td>
<td>(0.956, 1.032)</td>
<td></td>
<td>(0.954, 1.030)</td>
</tr>
</tbody>
</table>

*TCGA dataset was downloaded from the website: https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. Among 305 melanoma cases, only 194 subjects with complete data were included.
Table 11c. Relationship between RNA Expression Level (as Binary Variable: > vs. <= Median) and the Melanoma Endpoint of Death from TCGA Dataset (N = 194) via Unadjusted and Adjusted Logistic Regression Analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA Level (Continuous):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Summary Statistics: n / N (%) of > Median</td>
<td>Odds Ratio (95% CI)</td>
<td>p-value</td>
<td>Odds Ratio (95% CI)</td>
</tr>
<tr>
<td>- Deaths (N = 85)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 / 85 (45.9%)</td>
<td>0.746</td>
<td>0.3116</td>
<td>1.134</td>
</tr>
<tr>
<td>53 / 109 (48.6%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Survivors (N = 109)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 / 109 (53.2%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odds ratio for per one unit increase:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Unadjusted</td>
<td>0.782</td>
<td>0.4250</td>
<td>1.083</td>
</tr>
<tr>
<td></td>
<td>(0.428, 1.430)</td>
<td></td>
<td>(0.601, 1.952)</td>
</tr>
<tr>
<td>- Adjusted</td>
<td>1.013</td>
<td>0.1773</td>
<td>1.015</td>
</tr>
<tr>
<td></td>
<td>(0.994, 1.033)</td>
<td></td>
<td>(0.996, 1.035)</td>
</tr>
<tr>
<td>Covariates:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Age at first diagnosis: per one year increase</td>
<td>1.223</td>
<td>0.5178</td>
<td>1.199</td>
</tr>
<tr>
<td></td>
<td>(0.664, 2.252)</td>
<td></td>
<td>(0.654, 2.201)</td>
</tr>
<tr>
<td>- Gender: Male vs. Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.544</td>
<td>0.0999</td>
<td>0.553</td>
<td>0.1104</td>
</tr>
<tr>
<td>(0.263, 1.123)</td>
<td></td>
<td>(0.267, 1.144)</td>
<td></td>
</tr>
<tr>
<td>- Tumor Stage: III & IV vs. I & I/II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.581</td>
<td>0.0054*</td>
<td>2.547</td>
<td>0.0061*</td>
</tr>
<tr>
<td>(1.323, 5.036)</td>
<td></td>
<td>(1.305, 4.970)</td>
<td></td>
</tr>
<tr>
<td>- Clark Level: 4 & 5 vs. 1, 2, & 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.992</td>
<td>0.6958</td>
<td>0.993</td>
<td>0.7090</td>
</tr>
<tr>
<td>(0.955, 1.031)</td>
<td></td>
<td>(0.956, 1.031)</td>
<td></td>
</tr>
</tbody>
</table>

*TCGA dataset was downloaded from the website: https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. Among 305 melanoma cases, only 194 subjects with complete data were included.
Table 12a. Baseline Demographics, Clinical Characteristics, and Protein Expression Level by Subjects with or without Endpoint of Death among All Melanoma Cases in TCGA dataset (Total N = 119a)

<table>
<thead>
<tr>
<th>Baseline Demographics & Clinical Characteristics</th>
<th>Event (N =55)</th>
<th>No Event (N =64)</th>
<th>All Melanoma Cases (N =119)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender: n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Male</td>
<td>34 (61.8%)</td>
<td>40 (62.5%)</td>
<td>74 (62.2%)</td>
</tr>
<tr>
<td>- Female</td>
<td>21 (38.2%)</td>
<td>24 (37.5%)</td>
<td>45 (37.8%)</td>
</tr>
<tr>
<td>Age at First Diagnosis (Years): Mean ± SD</td>
<td>60.9 ± 15.1</td>
<td>53.4 ± 15.9</td>
<td>56.9 ± 15.9</td>
</tr>
<tr>
<td>Stage: n(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- I & I/II</td>
<td>18 (32.7%)</td>
<td>22 (34.4%)</td>
<td>40 (33.6%)</td>
</tr>
<tr>
<td>- III & IV</td>
<td>37 (67.3%)</td>
<td>42 (65.6%)</td>
<td>79 (66.4%)</td>
</tr>
<tr>
<td>Clark Level: n(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1, 2, 3</td>
<td>17 (30.9%)</td>
<td>29 (45.3%)</td>
<td>46 (38.7%)</td>
</tr>
<tr>
<td>- 4 & 5</td>
<td>38 (69.1%)</td>
<td>35 (54.7%)</td>
<td>73 (61.3%)</td>
</tr>
<tr>
<td>Breslow Index: Mean ± SD</td>
<td>4.80 ± 7.19</td>
<td>3.70 ± 5.19</td>
<td>4.21 ± 6.20</td>
</tr>
<tr>
<td>Protein Expression Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-JUN Protein Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Continuous (units): Mean ± SD</td>
<td>-1.211 ± 0.424</td>
<td>-0.918 ± 0.689</td>
<td>-1.053± 0.598</td>
</tr>
<tr>
<td>- Binary: n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= -1.12 units</td>
<td>41 (74.5%)</td>
<td>35 (54.7%)</td>
<td>76 (63.9%)</td>
</tr>
<tr>
<td>> -1.12 units</td>
<td>14 (25.5%)</td>
<td>29 (45.3%)</td>
<td>43 (36.1%)</td>
</tr>
</tbody>
</table>

aTCGA dataset was downloaded from the website: https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. Among 206 cases, only 119 subjects with complete data were included.
Table 12b. Relationship between c-JUN Protein Expression Level (as Continuous Variable) and the Melanoma Endpoint of Death from TCGA Dataset (Total N = 119\(^a\)) via Unadjusted and Adjusted Logistic Regression Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>c-JUN Protein Expression Level</th>
<th>Odds Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-JUN Protein Level (Continuous):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>▶ Summary Statistics: Mean ±SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Deaths (N = 55)</td>
<td>-1.211 ± 0.424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Survivors (N = 64)</td>
<td>-0.918 ± 0.689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▶ Odds ratio for per one unit increase:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Unadjusted</td>
<td>0.405 (0.204, 0.804)</td>
<td>0.0098*</td>
<td></td>
</tr>
<tr>
<td>- Adjusted</td>
<td>0.407 (0.196, 0.844)</td>
<td>0.0156*</td>
<td></td>
</tr>
</tbody>
</table>

Covariates:
- Age at first diagnosis: per one year increase 1.031 (1.005, 1.058) 0.0213*
- Gender: Male vs. Female 0.882 (0.390, 1.994) 0.7631
- Tumor Stage: III & IV vs. I & I/II 0.706 (0.257, 1.937) 0.4992
- Clark Level: 4 & 5 vs. 1, 2, & 3 2.140 (0.848, 5.406) 0.1074
- Breslow Index: Per one unit increase 1.017 (0.952, 1.086) 0.6262

\(^a\)TCGA dataset was downloaded from the website: https://tcgadata.nci.nih.gov/tcga/tcgaHome2.jsp. Among 206 cases, only 119 subjects with complete data were included.
Table 12c. Relationship between c-JUN Protein Expression Level (as Binary Variable: > vs. <= Median of -1.12 units) and the Melanoma Endpoint of Death from TCGA Dataset (Total N = 119^a) via Unadjusted and Adjusted Logistic Regression Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>c-JUN Proein Expression Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds Ratio (95% CI)</td>
</tr>
<tr>
<td>c-JUN Protein Level (Binary):</td>
<td></td>
</tr>
<tr>
<td>➢ Summary Statistics: n / N (%) of > Median</td>
<td></td>
</tr>
<tr>
<td>- Deaths (N = 55)</td>
<td>14 / 55 (25.5%)</td>
</tr>
<tr>
<td>- Survivors (N = 64)</td>
<td>29 / 64 (45.3%)</td>
</tr>
<tr>
<td>➢ Odds ratio for > vs. <= median of -1.12 units:</td>
<td></td>
</tr>
<tr>
<td>o Unadjusted</td>
<td>0.412 (0.189, 0.900)</td>
</tr>
<tr>
<td>o Adjusted</td>
<td>0.417 (0.182, 0.957)</td>
</tr>
<tr>
<td>Covariates:</td>
<td></td>
</tr>
<tr>
<td>- Age at first diagnosis: per one year increase</td>
<td>1.031 (1.005, 1.058)</td>
</tr>
<tr>
<td>- Gender: Male vs. Female</td>
<td>0.823 (0.367, 1.843)</td>
</tr>
<tr>
<td>- Tumor Stage: III & IV vs. I & I/II</td>
<td>0.631 (0.234, 1.702)</td>
</tr>
<tr>
<td>- Clark Level: 4 & 5 vs. 1, 2, & 3</td>
<td>2.238 (0.891, 5.622)</td>
</tr>
<tr>
<td>- Breslow Index: Per one unit increase</td>
<td>1.021 (0.954, 1.093)</td>
</tr>
</tbody>
</table>

^a TCGA dataset was downloaded from the website: https://tcgadata.nci.nih.gov/tcga/tcgaHome2.jsp. Among 206 cases, only 119 subjects with complete data were included.
Chapter 4

Discussion

All the specific SNPs for the upstream and downstream genes in the IL-1 pathway were specifically selected because they had been selected before in previous studies for showing prior indication of association with human disease, including cancer and its genesis. These studies would include Lee, K.M. et al. (2007), Van Dyke, A.L. et al. (2009), Erdei, E et al. (2010), and Karakus, N. et al. (2011). Regarding the discrepancy in the results for the individual SNP analysis between this study and the French validation, the most likely explanation would be differences in genetic composition between the subjects from the States and those from France, along with certain differences in lifestyle and environmental factors such as exposure to the sun. It is interesting to note that for the composite outcome, r1800587 and rs17561 had hazard ratios with significant p-values and were less than 1, along with the 95% CI. There seems to be an indication that the non-ancestral alleles for these two SNPs might have a protective effect for melanoma outcome and would merit future investigation. Ultimately, more fruitful results were found from the pathway analysis. The results of the individual SNP analysis proved to be intriguing, if inconclusive. One drawback that should be noted is that using the composite outcome of death and/or recurrence would be deemed slightly odd, and that melanoma-specific survival would be more typical.

Regarding the potential protective role c-JUN may play in melanoma outcome, Kappelmann et al. (2013) reported that the production of c-JUN protein is regulated at the post-transcription level. There are microRNAs directing the regulation of c-JUN protein expression. This report could explain the lack of significance for c-JUN at the RNA level. Kunz (2013) observed that melanoma-associated microRNAs are frequently located in
genomic regions, often showing gains and losses in tumors. However, using logistic regression, c-JUN was found to be significant at the protein level for both unadjusted and adjusted for the key covariates, whether c-JUN was treated as categorical or continuous, with p-values well under 0.05. The same phenomenon might hold true for IL-1 showing significance at the protein level, despite the lack of significance at the RNA level. Due to the lack and limitation of available human data, it will have to wait for a future study.

The pathway analysis showed borderline significance for the TAK1 gene, but there was no RNA or protein expression data available, but for a future study, it would be useful to consider the reason for these results. Regarding why such results were seen, transforming growth factor-β activated kinase-1 (TAK1) is crucial for the cellular response cascade caused by changes in the environment. It is controlled by cytokines including specifically interleukin-1 (IL-1) and transforming growth factor-β (TGF-β). TAK1 is also critical for in turn activating key intra-cellular kinases, such p38 MAPK and c-jun N-terminal kinase (JNK). Landström (2010) has indicated that TAK1 is implicated in the activation of tumor suppressor protein, LKB1 kinase. The LKB1 kinase in turn can go on to activate 14 kinases. What is important to note about TAK1 is that it is acting upstream in all these pathways, further highlighting its key function of TAK1 in modulating the cellular response to cytokines and stress.

As was mentioned in the introduction, this study did not simply use individual SNP or candidate gene analysis; it implemented a full pathway analysis of all the genes in the IL-1 pathway, incorporating all available SNPs. The reasons for such are that previous candidate gene studies reported variants in genes related to immunosuppressive mechanisms. The studies focused on some sets of SNPs, but the sample sizes were relatively small, and the
results were at times inconsistent. Analysis of the SNPs of individual genes from this GWAS will thus serve to further elucidate and build upon the results from the previous studies. After the analysis of the individual SNPs, it is intended that a pathway analysis be performed.

Such previous studies can be underpowered in detecting weak associations with susceptibility to disease at the genome-wide significance level. The idea for a pathway analysis is that SNPs in a group of genes with a common biological function might show significant association at the overall pathway level, even if no individual SNP shows association at a proper level of statistical significance. From there, if any genes are found to be significant, statistical analysis of RNA and protein expression levels for those genes will proceed as the final stage of verification, hopefully finding a novel target for therapy.

IL-10, *IL-6*, and *IFN-γ* (Martínez-Escribano, 2002) all have reports involving tumor growth or shrinkage. In this study, these cytokines did not show significant correlation with the melanoma outcomes of death and recurrence (data not shown). The bioinformatical analysis suggests that these cytokines may not be major impact factors for melanoma.

To go further into *c-JUN*, it combines with *c-FOS* to form the AP-1 transcription factor. AP-1 is responsible for regulating the expression of genes depending on stimuli, which include cytokines and other things like growth factors and bacterial or viral infections. AP-1 is also responsible for overseeing, among other things, apoptosis and proliferation. *c-JUN* is activated via double phosphorylation of the *JNK* pathway. It is interesting to note that knocking out *c-JUN* causes lethality, but transgenic animal models with a mutated *c-JUN* form that is unable to be phosphorylated are actually viable.

Some other interesting details about *c-JUN* are that it is the transforming gene of avian sarcoma virus 17. *c-JUN* is a gene without introns, located on 1p31-1p32. That
chromosomal region happens to be distinct for its role regarding translocations and deletions influencing diseases. *c-JUN* is positively self-regulated by its own product, which binds to the promoter region to further induce transcription. As for *c-JUN*’s links to other pathways, *c-JUN* activity can be affected by the *ERK* pathway. *ERK* increases transcription of *c-JUN*.

c-JUN is crucial and necessary for the flow of the cell cycle, specifically the G1 phase. Without *c-JUN*, cells show arrest of the G1 phase. Specifically, *c-JUN* is required for cyclin D1 kinase function, which allows the cell cycle to continue flowing.

c-JUN is known for anti-apoptotic activity. Specifically, it can be activated by UV irradiation. *c-JUN* shields cells from apoptosis induced by UV irradiation. It can also work with *NF-κβ* to prevent apoptosis triggered by *TNF-α*.

c-JUN is mainly considered an oncogenic factor in malignant melanoma and many other cancer types (Kappelman et al., 2013). It is surprising to observe that *c-JUN* shows a protective role in melanoma mortality and recurrence. The reason for this discrepancy is not clear. Yamanishi et al. (1991) reported metastatic melanoma cells expressing low *c-JUN* RNA transcript activity. The results of this study correspond with those of Yamanishi et al. (1991). It is possible that the discrepancy could be similar to the observations that *IL-1* shows either pro- or anti-tumor functions depending upon the circumstances. It awaits further clarification.

As to how this discovery might help explain lack of results for drug treatments for melanoma, one example would be *B-RAF* inhibitors such as vemurafenib. *B-RAF* with the V600 mutation activates the *MAPK* pathway, affecting *MEKK1*, which is part of the *IL-1* pathway. However, while *MEKK1* leads down to the activation of *c-JUN*, it is responsible for the other branch of the *IL-1* pathway leading down to the other component of *NF-κβ*. *NF-κβ*
could be connected to other pathways that help it maintain activation despite the disruption of **MEKK1**. That could help explain tumor mechanisms for adapting against the **BRAF** inhibitors. Furthermore, as previously noted, **c-JUN** is positively self-regulating, so once there is already some protein product, **c-JUN** can presumably continue maintaining activation and production even with the upper part of the pathway flowing from **MEKK1** being inhibited.

As far as is known, this study is the first full pathway design correlating **c-JUN** activity with melanoma outcome. The pathway/mechanism for this protective/anti-proliferation effect is unclear. However, using breast cancer as a model, Xu et al. (2013) showed that inhibition of the Tamoxifen-stimulated cells was positively regulated by overexpression of **c-JUN** and vice versa for underexpression of **c-JUN**. The exact mechanism for the anti-proliferation is unknown, though it does occur through the protein kinase C (PKC) pathway. It could be the same for melanoma or perhaps a similar pathway. Based on this bioinformatics analysis, the results suggest that therapeutically targeting **c-JUN** activity may be an effective way to enhance the rate of curing malignant melanoma.

In conclusion, the bioinformatic analyses did not show significant correlation of studied **IL-1, IL-6, IL-8, IFN-γ, and TNF-α** SNPs with melanoma mortality, recurrence or composite outcome of both. Full pathway analysis of all SNPs from every gene in the **IL-1** pathway showed that c-JUN protein expression is significantly negatively correlated with mortality and recurrence. The expression and function of **c-JUN** may serve as a therapeutic target for metastatic melanoma.

Vita

Isaac Wun, son of Wan-Song Wun and Chuan-Chuan Wun, was born on January 12th, 1985 in New Orleans, Louisiana. He graduated from Kinkaid High School in 2003. He then attended Johns Hopkins University in Baltimore, Maryland and received his Bachelor Degree of Arts in Public Health Studies in 2007. Going on to attend Boston University Division of Graduate Medical Sciences, Boston, Massachusetts, he received his Master Degree of Arts in Medical Sciences with a focus on Clinical Investigation in 2009. His Master’s thesis was submitted then, titled Cholinergic Receptor Candidate Gene Risk Factor for Lung Cancer. In August 2009, he entered the Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston and The University of Texas M.D. Anderson Cancer Center. He expects to get his Doctor of Philosophy Degree in Patient-Based Biological Research in May 2014.

