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Abstract 

Quantitative imaging biomarkers (QIBs) are increasingly being incorporated into early phase clinical 

trials as a means of non-invasively assessing the spatially heterogeneous treatment response to 

anticancer therapies, particularly as indicators for early response. MR QIBs are derived from the 

analysis of in vivo imaging data, such as that acquired via dynamic contrast enhanced (DCE), dynamic 

susceptibility enhanced (DSC), and diffusion tensor imaging (DTI). To date, preclinical and clinical 

applications of such QIBs have provided strong evidence for potential efficacy, but efforts to create 

meaningful estimates of localized treatment response using multiple QIBs have been stifled by the need 

for rigorous characterization of biases and variances inherent in MR equipment and analysis tools and a 

suitable means of associating QIB changes with treatment response. This research sought to develop 

such a framework, incorporating multiple MRI QIBs associated with the microvascular environment, 

e.g., permeability, flow, and volume, and the cellular environment, e.g., water diffusion, into a single 

classification model to generate maps of predicted locoregional response. To ensure treatment 

associated changes measured in vivo exceeded equipment related levels of bias and variance, two 

phantoms were developed. Weekly assessment of the MR imaging data from which the QIBs were 

derived resulted in coefficients of variation less than 15% for QIBs assessed, well below the expected 

treatment related changes (approximately 40%). Bias and variance associated with the software tools 

developed to facilitate longitudinal assessments of treatment response, QUATTRO, was also assessed 

using synthesized imaging data mimicking clinically relevant acquisitions schema, and found to 

introduce negligible levels of bias and variance. Finally, to develop an integrated approach to assessing 

response using multiple QIBs, two experienced radiation oncologists contoured regions of partial 

response (PR), stable disease (SD), and progressive disease (PD) on rigidly co-registered high grade 

brain tumor patient data sets, which included DCE, DSC, and DTI acquisitions. Response matched voxel-

by-voxel QIBs were trained using an ordinal regression classifier. Using leave-one-out cross-validation, 

the prediction accuracies of the best model (single DTI QIB) were found to be, mean (standard error), 

69.0 (11.1)% for SD, 35.2 (11.7)% for PD, and 52.3(9.7)% overall. In summary, this work resulted in the 

development of a comprehensive framework for predicting voxelwise radiological treatment response, 

including the development of phantoms and associated acquisitions for MR equipment quality control 

and establishment of system-related bias and variance, and a comprehensive software package for 

performing related image analyses and outcome prediction.  
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preserving smooth interpolant was used for visualization purposes. Error bars were omitted because 

the error markers were indistinguishable from the data markers ........................................................... 73 

Figure 3-13. 1.5T FA dependence as a function of distance from at isocenter in the I-S direction. Plots of 

FA measured at 1.5T normalized to the corresponding isocenter slice measurement as a function of 
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interpolant was used for visualization purposes. Error bars were omitted because limits were so small 

that the error markers were indistinguishable from the data markers. ................................................... 74 
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Figure 4-1. QUATTRO GUI screenshot. This is a view of the QUATTRO GUI, showing the main features 
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square being the lowest value of R1 and the bottom right corner the largest value of R1. To better 

illustrate the added noise, images simulated from two different TI values are displayed, hence the 
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Figure 4-3. Actual pharmacokinetic values of the DCE digital reference object. Actual values of Ktrans 
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Figure 4-4. R1 Bland-Altman plots for the VFA and VTI digital phantoms. Summary plots of the Bland-

Altman analysis performed (averaged over all DRO voxels) for the VFA (left) and VTI (right) test objects. 

The red “x” symbols, which appear as a solid line because of the high density, denote the DRO averaged 

bias, where the black lines above and below these symbols represent the limits of agreement. For 

comparison visual comparisons, a line of zero bias was also plotted. ...................................................... 94 

Figure 4-5. R1 percent error maps for the VFA and VTI digital phantoms. Percent error from the true 

value as a function of SNR and R1 averaged over all voxels of each respective relaxation rate for VFA 

(left) and VTI (right) simulations. The color bar shows the percent difference from the actual parameter 

used to simulate the MR signal. ................................................................................................................ 94 

Figure 4-6. R1 difference coefficient of variation maps for VFA and VTI digital phantoms. Maps showing 

the coefficient of variation of R1 bias for VFA (left) and VTI (right) simulations averaged over all voxels 

for a given R1 value. The color bar shows the COV in %. COV was chosen over other measures of spread 

because of the normalization, allowing quick comparison of different parameter values. ..................... 95 

Figure 4-7. ADC Bland-Altman plot for the diffusion digital reference object. Summary plot of the Bland-

Altman analysis performed (averaged over all DRO voxels) on the ADC test objects are shown. The red 

“x” symbols, which appear as a solid line because of the high density, denote the DRO averaged bias, 

where the black lines above and below these symbols represent the limits of agreement. For 

comparison visual comparisons, a line of zero bias was also plotted, although this line is not readily 
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Figure 4-8. ADC percentage bias and coefficient of variation maps for the diffusion DRO. Percentage 

error (left) and coefficient of variation (right) maps for ADC as a function of SNR. The color bars show 

the percent error (left) and the percent COV (right). ............................................................................... 97 

Figure 4-9. Bland-Altman plots of PK parameters as a function of SNR. Summary plots of the Bland-

Altman analysis performed (averaged over all DRO voxels) on the DCE test objects are shown. The red 

“x” symbols denote the DRO averaged bias, where the black lines above and below these symbols 

represent the limits of agreement. For comparison visual comparisons, a solid black line of zero bias 
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Figure 4-10. DCE DRO percent bias maps for estimated Ktrans at 1s temporal resolution. Color maps of 

the percent bias as a function of the actual value of vp (0.05-top left, 0.1-top right, 0.15-middle left, 0.2-

middle right), ve on the y-axis, Ktrans on the x-axis, and SNR on z-axis. The color bar represents the 

percentage difference between the estimated parameter and the actual parameter value. ................ 101 

Figure 4-11. DCE DRO percent bias maps for estimated Ktrans at 5s temporal resolution. Color maps of 

the percent bias as a function of increasing vp (0.05-top left, 0.1-top right, 0.15-middle left, 0.2-middle 

right), ve on the y-axis, Ktrans on the x-axis, and SNR on z-axis. The color bar represents the percentage 

difference between the estimated parameter and the actual parameter value. ................................... 102 

Figure 4-12. DCE DRO percent bias maps for estimated vp at 5s temporal resolution. Color maps of the 

percent bias as a function of increasing vp (0.51-top left, 0.1-top right, 0.15-middle left, 0.2-middle 

right), ve on the y-axis, Ktrans on the x-axis, and SNR on z-axis. The color bar represents the percentage 

difference between the estimated parameter and the actual parameter value. ................................... 103 

Figure 4-13. DCE DRO percent bias maps for estimated ve at 5s temporal resolution. Color maps of the 

percent bias as a function of increasing vp (0.05-top left, 0.1-top right, 0.15-middle left, 0.2-middle 

right), ve on the x-axis, Ktrans on the y-axis, and SNR on z-axis. The color bar represents the percentage 
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Figure 4-14. rCBV Bland-Altman plot and CCC plot as a function of SNR for the DSC DRO. Summary plots 

of the Bland-Altman analysis performed (averaged over all DRO voxels) on the DSC test objects are 

shown. The red “x” denotes the DRO averaged bias, where the black lines above and below these 

symbols represent the limits of agreement. For comparison visual comparisons, a solid black line of zero 

bias was also plotted. .............................................................................................................................. 105 

Figure 4-15. rCBV percentage bias and COV maps for the DSC DRO. Percentage error (left) and 

coefficients of variation (right) maps for rCBV as a function of SNR. The color bars show the percent 

error (left) and the percent COV (right). ................................................................................................. 106 

Figure 5-1. Example pre-contrast and recirculation cut-offs for DSC VIF. Two examples of a DSC VIF 

demonstrating the manually defined pre-enhancement (first dotted vertical line) frames and the bolus 

recirculation cut-off (second vertical line). The small squares are the measured data, converted from 

signal intensities to arbitrary units of [Gd], and the solid line is the fitted gamma-variate. Note that even 

though the pre-contrast frame is manually defined a value for the bolus arrival is actually one of the 

fitting parameters. ................................................................................................................................... 116 

Figure 5-2. DTI and DSC quantitative imaging biomarker difference histograms for patients receiving the 

placebo. Histograms displaying the distributions of QIB differences between baseline and the first mid-

treatment study (left) and between the first and second mid-treatment studies (right). For a given 

parameter (label shown under each plot), the x and y limits are held constant, but vary between 

parameters. ............................................................................................................................................. 124 

Figure 5-3. DCE quantitative imaging biomarker difference histograms for patients receiving the 

placebo. Histograms displaying the distributions of QIB differences between baseline and the first mid-

treatment study (left) and between the first and second mid-treatment studies (right). For a given 

parameter (label shown under each plot), the x and y limits are held constant, but vary between 

parameters. ............................................................................................................................................. 127 
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Figure 5-4. Selected DCE and DSC quantitative imaging biomarker difference histograms for patients 

treated with bevacizumab. Histograms displaying the distributions of QIB differences between baseline 

and the first mid-treatment study (left) and between the first and second mid-treatment studies (right). 

For a given parameter (label shown under each plot), the x and y limits are held constant, but vary 

between parameters. .............................................................................................................................. 130 

Figure 5-5. Probability histograms for patients receiving the placebo. Histograms displaying the 

probability of being a specific category, either SD or PD, are shown for DTI and DSC parameters (left) 

and DCE parameters (right). Each half of this figure (left/right) represents the data from baseline/first 

mid-treatment differences (left) and differences between the two mid-treatment data sets (right). .. 131 

Figure 5-6. DTI and DSC QIB probability histograms for voxels from patients receiving bevacizumab. 

Histograms displaying the distributions of DTI and DSC derived QIB differences between baseline and 

the first mid-treatment study (left) and between the first and second mid-treatment studies (right) . 132 

Figure 5-7. DCE QIB probability histograms for voxels from patients receiving bevacizumab. Histograms 

displaying the distributions of DTI and DSC derived QIB differences between baseline and the first mid-

treatment study (left) and between the first and second mid-treatment studies (right) ...................... 133 

Figure 5-8. Example ordinal regression response category scores. Response category scores for PR (top 

left), SD (top right), and PD (bottom) for the ordinal model incorporating ADC, FA, and rCBV. The left 

half of the region displayed in color was categorized as SD and the other half as PD. .......................... 140 

Figure 5-9. Example logistic regression response category scores. Response category scores for PR/SD 

(left) and PD (right) for the logistic model incorporating ADC, FA, and rCBV. The left half of the region 

displayed in color was categorized as SD and the other half as PD. ....................................................... 141 

Figure 5-10. Example ordinal regression response category scores. Response category scores for PR (top 

left), SD (top right), and PD (bottom) for the ordinal model incorporating FA and vp. The left half of the 

region displayed in color was categorized as SD and the other half as PD. ............................................ 142 
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Figure 5-11. Example logistic regression response category scores. Response category scores for PR/SD 

(left) and PD (right) for the logistic model incorporating FA and vp. The left half of the region displayed 

in color was categorized as SD and the other half as PD. ....................................................................... 143 

Figure 5-12. Example ordinal regression response category scores. Response category scores for PR/SD 

(left) and PD (right) for the logistic model incorporating ADC and vp. The left half of the region displayed 
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Figure 5-13. Example logistic regression response category scores. Response category scores for PR/SD 
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Chapter 1 Introduction 

 

1.1 The Role of Quantitative Imaging Biomarkers in Treatment Assessment 

Assessing treatment response in cancer patients offers a multitude of challenges. Traditional 

measures of response, such as the Response Evaluation Criteria in Solid Tumors (RECIST) [1] and the 

more recent Revised Assessment in Neuro-Oncology (RANO) [2], have found success in the simplicity of 

required measurements, namely evaluation of tumor size. However, structural assessment as defined by 

these evaluation criteria has many inherent limitations, such as image acquisition variability (especially 

for two-dimensional image slices), interpreter differences, involvement of lymph nodes, and tumor 

type/location to name a few, as Husband et al. [3] and Jaffe [4] point out. Resulting variability can 

deleteriously impact the applicability and efficacy of response assessment. Indeed, these inadequacies 

have inspired the development of specialized criteria such as the recently updated RANO [2] for 

assessing high-grade gliomas or the modified RECIST assessment for hepatocellular carcinoma [5]. 

However, assessment of structural information may be inadequate and/or delayed significantly, 

especially for novel targeted therapeutics. For example, therapies incorporating anti-angiogenic drugs 

may induce substantial changes in a lesion’s vascularity, resulting in a lack or altogether absence of 

enhancement patterns in the tumor (a common image feature used in the RANO assessment [2]) 

regardless of the actual underlying tumor response. However, the use of functional information derived 

from imaging-based biological markers, or imaging biomarkers for short, such as vascular permeability 

and flow, is a promising new avenue for treatment assessment. 

Biomarkers, especially those potentially suitable for use as surrogate endpoints, are playing an 

increasingly important role in clinical trials as a means of assessing response to novel and combined 

therapeutic interventions. As defined by the Biomarkers Definitions Working Group [6], these markers 

objectively characterize normal and pathological biological processes. Advancements in imaging 
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technology have resulted in the availability of many image acquisition techniques capable of quantifying, 

in a non- or minimally-invasive manner, various biological characteristics, a subset of markers referred 

to collectively as quantitative imaging biomarkers (QIBs). Quantifiable functional information, such as 

cellular proliferation, perfusion, vascular flow, volume, and permeability, cellularity, and metabolism, 

comprise a subset of the class of QIBs. Techniques to quantify this information have been developed for 

modalities as diverse as magnetic resonance imaging (MRI), computed tomography (CT), positron 

emission tomography (PET), nuclear medicine, and ultrasound [7]. However, the myriad image contrast 

mechanisms, use of non-ionizing radiation, and continual improvements in MR hardware have led to 

strengthening interest in applications of functional MR QIBs. Aside from providing functional 

information, some biomarkers have been shown to exhibit measureable changes predictive of tissue 

response within days following the initial treatment [7-8], substantially sooner than would be detectable 

by monitoring morphological changes alone. This need for rapid assessment of patient response to 

novel or combined cancer therapies has motivated the incorporation of many of these MR imaging 

techniques into early phase clinical trials. 

The remainder of this chapter will focus on the introduction and discussion of the functional 

MRI biomarkers specific to this work (i.e., diffusion, perfusion, and vascular permeability), their 

biological significance and use as a means of assessing cancer therapies, challenges associated with their 

incorporation into the clinical setting, and the motivation for developing multi-parametric response 

maps as a means of assessing treatment response.  Thorough development of the theory, acquisition, 

and analysis of these biomarkers is covered in Chapter 2. Extensive discussions of QIB applications are 

available from a number of authors. For example, oncologic applications of QIBs derived from contrast 

enhanced MR acquisitions are discussed in the text by Jackson [10], or a more generic discussion of 

diffusion-weighted imaging derived QIB applications can be found in the text by Koh and Thoeny [11]. 

For brain applications, the text by Tofts [12] serves as an excellent reference for commonly used MR 
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imaging biomarkers in the investigation of a number of pathological processes. The reader is referred to 

these texts, and other reviews [13]–[18], for a broader, more detailed perspective regarding specific 

applications of QIBs. 

 

1.2 Diffusion 

Perhaps one of the most commonly investigated physical processes in the assessment of 

treatment response is the molecular diffusion of water, a process of random thermal molecular motion. 

In tissue, this stochastic motion of water molecules is affected by a number of biophysical mechanisms, 

such as intracellular-extracellular water exchange, active transport, flow/perfusion, bulk movements, 

and tortuosity (a property describing the cellular density, volume, and extracellular space organization) 

[19]. Often the property of most interest in investigating observed differences in diffusion processes is 

the interaction of water molecules with structures that inhibit water mobility (e.g., hydrophilic cellular 

membranes and organelles within cells). In fact, differences in the microenvironments of the 

intracellular and extracellular spaces give rise to unique diffusion coefficients. However, in biological 

tissues, diffusion is often characterized by a single parameter describing the general mobility of water 

molecules, incorporating the several aforementioned physical processes, hence the name apparent 

diffusion coefficient (ADC). Diffusion-weighted imaging (DWI) is the MRI method used to quantify this 

scalar quantity. 

Most tissues in the human body are characterized by water diffusion rates that are equal in all 

directions (isotropic diffusion), although the existence of, for example, cell membranes restricts the 

ability of water molecules to freely diffuse, giving rise to the process called restricted diffusion. The 

degree of restricted water diffusion is generally thought to correspond to the cellular density of tissue, 

which has been confirmed by numerous researchers. A majority of studies comparing histology to ADC 

measurements have shown a statistically significant (negative) correlation between the histologically 
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derived cellularity and ADC values in tumors [20]–[31]. However, some investigators, for example 

Sadeghi et al.[32], have found a non-significant relationship between cellular density and the ADC.  

Consensus has yet to be reached regarding the exact mechanisms responsible for affecting 

change in longitudinal ADC measurements during treatment regimens [19]. This incomplete mechanistic 

understanding likely stems from the use of over-simplified mathematical models, confounding factors 

from data acquisition, and lack of sensitivity/specificity in the acquisition techniques to specific 

biophysical processes. Regardless, numerous processes corresponding to known pathological processes 

have been proposed for the observed changes in ADC values during and following treatment. As 

Patterson et al. [18] summarize, events such as cellular swelling, reduction in blood flow, and tissue 

compaction/fibrosis are proposed to result in lower ADC values, while processes such as apoptotic death 

and necrosis might result in increased ADC values as the result of decreased cellular density. Strong 

evidence exists to support increases in the ADC as an indicator of partial response to treatment [18], 

[33]–[36]. Intuitively, these observations suggest cell death/necrosis resulting from successful treatment 

will yield increased mobility of extracellular water (i.e., increased ADC). Cellular proliferation resulting 

from progressing disease processes is thought to cause reductions in observed ADC values. Higano et al. 

[37] observed a strong negative correlation between ADC and cellular proliferation, confirming that 

hypothesis in patients with glioblastomas and astrocytomas. Researchers have utilized this rationale and 

observed decreased ADC values [33], [37]–[39] in patients with progressive disease, and although some 

groups observed no change in the ADC values with disease progression [40], [41] this discrepancy is 

likely the result of small patient cohorts in these initial studies. 

Although the ADC has been extensively investigated in numerous tissues, under certain 

circumstances (e.g., in muscle or myelinated nerve fibers) diffusion becomes preferentially restricted in 

one direction, resulting in diffusion anisotropy and necessitating additional measures to provide a more 

complete description of water diffusion. Quantities such as the fractional anisotropy (FA) are often used 
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to summarize the strength of ADC’s dependence on direction, with values falling in the interval between 

0 (representing purely isotropic diffusion) and 1 (representing highly anisotropic diffusion) [42]. 

Quantification of anisotropy is performed using diffusion tensor imaging (DTI), which encodes this 

additional directional information in the acquired images. The investigation of such quantities outside of 

the central nervous system (CNS) is severely limited because most tissues lack the necessary 

microstructural properties capable of generating anisotropic diffusion. However, in the CNS changes in 

measured FA values might be indicative of the disease state. Comparison of histology and measured FA 

values exhibited a negative correlation with cellularity in brain tumors [43]. Furthermore, investigations 

of peritumoral FA values in brain tumors have revealed patterns of tumor infiltration [43]–[45]. 

Mechanistically, these observed differences in FA measures likely correspond to the increased cellular 

disorganization and/or extracellular water content of tumors [45]–[47]. 

Despite the lack of general consensus regarding the mechanisms of ADC and FA change, 

substantial evidence exists that suggests these QIBs are potentially important markers of treatment 

response or proliferative disease when observed longitudinally during the course of therapeutic 

intervention [18], [33]–[39]. ADC quantitation has been shown to track with changes in cellular density 

and cellular proliferation in tumors, and associated changes in the ADC can be indicative of response 

and proliferative disease. Moreover, some researchers have noted that diffusion QIBs provide early 

indications of response [33]–[39], which could afford the opportunity to adapt treatments to non-

responsive disease. These current findings suggest that quantitative diffusion imaging is a promising 

technique capable of assessing therapeutic response, even in shorter time frames than traditional 

measures of response. 

1.2.1 Perfusion and Vascular Permeability 

Perfusion is the biophysical process by which blood is delivered to tissue via the capillary bed, 

and is often summarized by a number of QIBs such as the relative cerebral blood flow (rCBF), relative 
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cerebral blood volume (rCBV), and Ktrans, a rate constant describing an amalgamation of vascular 

permeability and blood flow. These biophysical properties are investigated most commonly through the 

use of low molecular weight extracellular exogenous contrast agents (CA). An intravenous bolus 

injection and subsequent rapid imaging of the CA provides a means of assessing the distribution of the 

contrast agent within the vasculature and, following extravasation, extracellular extravascular space 

(EES). Pharmacokinetic models applied to these bolus tracking techniques provide a means of deriving 

the aforementioned QIBs in addition to estimates of the relative EES ve. T2*-weighted imaging methods 

are most commonly used to derive rCBF and rCBV (or more generally rBF and rBV in extracranial 

applications) and are referred to as dynamic susceptibility contrast MRI or DSC-MRI techniques, whereas 

Ktrans and ve are derived from T1-weighted methods collectively called dynamic contrast-enhanced (DCE) 

MRI. As with diffusion imaging, the pathophysiology of cancer provides a unique opportunity for the 

investigation of tumor perfusion and vascular permeability characteristics. 

Nutrients are delivered to avascular tumors by passive diffusion, which limits the size of the 

tumor to the approximate distance oxygen is capable of passively diffusing (1-2 millimeters). Further 

viable growth is accomplished only through the recruitment of neovasculature (i.e., angiogenesis), 

providing the necessary infrastructure to allow nutrients to reach the most interior regions of the tumor 

to support the uninhibited growth of new cancerous cells [48]. Factors of the tumor microenvironment 

such as pH, glucose concentration, and even certain oncogenes (e.g., p53) can result in the up-

regulation of vascular endothelial growth factor (VEGF), which, as the name suggests, promotes the 

growth of endothelial cells eventually culminating in a neovascular network [10]. Histologically, this 

neovascularization has been shown to correlate with increased microvascular density (MVD), which has 

been shown to be an important biomarker of tumor stage and prognosis [49], [50]. In addition to rapid 

growth of new blood vessels, vasculature recruited in this manner tends to be highly heterogeneous and 

often contains numerous morphological defects, such as coarse capillaries with irregularly shaped 
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vessels and tortuous paths [51]–[53]. These gross malformations, as Jackson et al. summarized [10], can 

result in increased spacing between inter-endothelial junctions and a basement membrane that is 

discontinuous or altogether absent, resulting in vascular hyperpermeabiltiy [54].  

Both DCE- and DSC-MRI have shown promise in assessing these microvascular properties. In well 

perfused tumors, histological measurements of MVD have been found to correlate with Ktrans in a 

number of extracranial lesion types [55]–[57], although similar results in brain tumors remain 

unestablished [58], [59]. However, Tynninen et al. [60] studied human gliomas and found a positive 

correlation between MRI enhancement and cellular proliferation/MVD, but quantitative biomarkers 

were uninvestigated. Since investigation of these parameters requires the extravasation of contrast 

agent into the EES, varying levels of blood brain barrier (BBB) disruption in pathological processes, 

especially in tumor boarders, of the CNS may result in a general lack of concordance between T1-

weighted quantities and histological markers.  However, infiltration of brain tumor cells and vasogenic 

edema can cause disruptions in the BBB, allowing passage of contrast agents into the extravascular 

extracellular space [61]. The reduced permeability caused by an intact or partially disrupted BBB 

provides an ideal scenario for DSC imaging. Specifically, several authors, using T2*-weighted imaging, 

have shown correlations between MVD and rCBV in brain tumors [32], [56], [62]–[64].   

These techniques have been employed in a number of studies to assesses response to radiation 

and/or chemotherapy treatments in cancers of the bladder [65], breast [66], [67], cervix [57], [68], 

rectum [69], and brain [70], where, similar to changes in the ADC, reductions in vascular permeability 

(Ktrans) and relative blood volume generally corresponding to responding disease and increase tend to be 

associated with disease progression. Despite these promising results, the assessment of antiangiogenic 

agents is of substantially more interest in the application of QIB describing perfusion and vascular 

permeability. Jackson et al. [71] and O’Connor et al. [72] have provided excellent reviews cataloging the 

most up-to-date efforts employing perfusion/permeability imaging to assess these novel antivascular 
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drugs. Initial results from a number of studies have shown Ktrans to be a predictor of both partial 

response and progression. However, substantial heterogeneity exists in the results, and is likely the 

result of small patient cohorts and a large variety in the treatment regimens and tumors sites. 

1.2.2 Challenges 

Standardization of data acquisition and analysis strategies is, perhaps, the most detrimental 

factor preventing the widespread incorporation of quantitative imaging techniques into the clinical 

setting [9], [19].This lack of standardization has resulted in a number issues, making the comparison of 

published results difficult, preventing large multi-center trials, and slowing the validation of the many 

proposed QIBS.  In fact, much of the variation in the cited results of the previous sections can likely be 

attributed to a combination of the lack of standard acquisitions/analyses and small patient cohorts. 

Recent consensus documents have been published in an effort to address, specifically, the use of DCE-

MRI [73] and DW-MRI [19], and more generally, quantitative imaging recommendations [74]–[77].  

Another common theme among these reports is the necessity for the development and 

implementation of quality assurance methods capable of assessing sources of bias and variance in the 

QIB acquisition and analysis pipelines [74]–[77]. As Leach et al. summarized [73], a number of 

international committees have been formed, such as the ad hoc committee on standards for 

quantitative MRI within the International Society for Magnetic Resonance in Medicine (ISMRM) and the 

perfusion, diffusion, and flow subcommittee of the Quantitative Imaging Biomarker Alliance (QIBA). 

Efforts by the perfusion, diffusion, and flow subcommittee have manifested in the development [78] 

and ongoing accrual of multi-center data to assess equipment related bias and variance of DCE-MRI in 

body applications, in addition to other independent efforts to quantify bias and variance in DWI and DTI 

applications [79], [80]. These efforts are important not only for assessing bias and variance, but also for 

the detection, evaluation, and mitigation of changes in scanner performance as the result of equipment 

failure or software/hardware upgrades. 
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As the development and implementation of standardized methodology and quality assurance 

programs continues, incorporation of these techniques into clinical trials will expand, particularly those 

encompassing multiple QIB acquisitions. Moreover, standardization will also facilitate the development 

of robust software tools for quantitative imaging analysis, another set of tools requiring thorough 

validation and characterization. Thorough understanding of the equipment and analysis related bias and 

variance will provide a means of determining detectable limits of change in, and ultimately, in 

conjunction with large patient cohorts, validation of quantitative imaging biomarkers. 

1.2.3 Mapping Response using Multiple QIBs 

Treatment-induced changes in normal tissue and tumors result in a multi-faceted, temporally 

varying, spatially heterogeneous, biological response, especially in highly conformal and combination 

therapies. Overwhelming motivation for the employment of quantitative imaging techniques for 

assessing treatment response has been discussed in the preceding sections. Even a handful of studies 

have simultaneously investigated multiple MRI QIBs to differentiate benign and malignant tumors [81], 

assess treatment response [82], and develop mathematical tumor models [83]. Extracting useful 

quantitative information from these techniques requires special consideration, and, moreover, instilling 

utility into such extracted QIBs remains an immense challenge. 

Research performed in much of the literature discussed previously is based on summary 

statistics calculated over some region or volume of interest. Potential for incorporating multiple tissues 

or missing nuance in tissue changes using this method is substantial. Appreciation for the spatial 

heterogeneity of disease related changes has led many researchers to consider voxel-by-voxel analysis 

methods such as histogram analyses [7], [82], [84], [85]. Although quantitative by nature, histogram 

analyses destroy important spatial information contained in QIB parameter maps. Detecting spatial 

heterogeneous information using such maps can be highly advantageous, but quantifying such 

heterogeneity is extremely challenging. Perhaps the most important attempt at quantifying such 



10 
 

information to date is the development of the functional diffusion map [34] and, more recently, the 

parametric response map [86]. These techniques utilize parameter map (ADC and rCBV, respectively) 

differences, defining thresholds for positive and negative change from which voxel volume fractions are 

calculated. By setting appropriate thresholds on the volume fractions of positive and negative change, 

the functional diffusion map analysis provided a means of differentiating partial responders from those 

patients with stable or progressive disease [34]. Similar findings were reported for the parametric 

response map [86]. Although these analyses represented significant contributions to the detection of 

disease states using parametric maps, spatial information relating QIBs directly to response was still 

disregarded. As increasingly complex therapies are performed, establishing local relationships between 

tissue QIBs and treatment response provides incredible promise to elucidate treatment associated 

changes, potentially guiding clinical decisions, especially if multiple complimentary quantitative imaging 

biomarkers are incorporated into such an analysis. To date, no reports of techniques capable of 

assessing locoregional response in this way have been published.  

 

1.3 Hypothesis and Specific Aims 

Quantitative imaging biomarkers have shown promise in assessing response to a variety of 

treatments in a number of anatomic sites. However, incorporating the complimentary information 

contained in the QIBs of diffusion, perfusion, and vascular permeability into locoregional assessment of 

treatment response remains as of unexplored. The objective of this research is to develop a 

comprehensive and self-contained methodology for incorporating multi-parametric quantitative imaging 

biomarkers into a statistical model capable of predicting locoregional radiological response. We 

hypothesize that the incorporation of multiple quantitative imaging biomarkers into ordinal 

regression models will better predict locoregional radiological response in post-surgical glioblastoma 
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patients treated with intensity-modulated radiation therapy and temozolomide with or without 

bevacizumab compared with the response predicted by a single quantitative imaging biomarker. 

Specific Aim 1: Assess MRI equipment bias and variance. Phantoms will be developed to assess 

equipment variance related to quantitative acquisitions, specifically dynamic contrast-enhanced and 

diffusion-weighted (and diffusion tensor) imaging techniques. Weekly data acquisitions will be 

performed to investigate longitudinal equipment level bias and variance. Additionally, these measured 

variance levels will be used to simulate associated variances pharmacokinetic models that are not able 

to be assessed through direct measurement of phantom properties. 

Specific Aim 2: Implement and characterize software for assessing treatment response. 

Comprehensive software tools for integrating quantitative modeling, image registration, and statistical 

analyses will be developed. All quantitative models will be characterized to assess the algorithm 

performance using digital reference objects. 

Specific Aim 3: Predict locoregional response in a cohort of glioblastoma patients. Using the 

software tools developed in specific aim 2, locoregional response will be defined by an experienced 

radiation oncologist and used to develop ordinal regression models incorporating individual QIBs and 

combined QIBs. These single parameter and multi-parametric statistical models will be used to predict 

locoregional response. 
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Chapter 2 Background and Theory 

 

2.1 Quantitative Imaging 

2.1.1 Diffusion 

Robert Brown first described, in 1828, the random motion of pollen particulates in suspension. 

Later, Alfred Fick derived an expression, commonly known as Fick’s First Law of diffusion [87], relating 

the molecular motion of a solvent to an existing concentration gradient, written succinctly as 

  ⃗     ⃗⃗⃗ , 2.1 

where  ⃗ is the particle flux,  ⃗⃗⃗  is the concentration gradient, and D is the diffusion coefficient. Albert 

Einstein showed in 1905 using kinetic theory that the random molecular motion first described by 

Brown (i.e., Brownian motion) was, in fact, a diffusive process dependent on temperature and molecular 

mobility [88]. In that seminal paper, Einstein showed, using Fick’s second law (in one dimension), 

   

  
  

   

   , 2.2 

that the general solution to equation 2.2 for an n particle system is, 

  (   )  
 

√    
 

   

   ⁄   2.3 

and that the diffusion coefficient can be expressed in terms of the mean square displacement <R2> and 

observation time t, given by 

   
〈  〉

  
 , 2.4 

From this zero mean Gaussian (equation 2.3), the famous Einstein result is easily extracted 



13 
 

 √〈  〉  √    , 2.5 

yielding the simple interpretation that the root-mean-square displacement is proportional to the square 

root of the time that has elapsed since the initial state of the system. In other words, the longer a 

system of particles is allowed to undergo random molecular motion, the greater the root-mean-square 

displacement of those particles. This result is easily extensible to three dimensions, noting that the 

integral used to generate equation 2.5 becomes a volume integral over all space, resulting in 

 √〈  〉  √   . 2.6 

Even in the absence of chemical gradients these general results still hold, in which case, D is referred to 

as the self-diffusion coefficient. In the context of imaging measurements, D is generally the value of 

interest and the term “apparent” is appended to draw a distinction between the measurement of self-

diffusion and the measurement of molecular motion in a complex biological system, yielding the term 

apparent diffusion coefficient or ADC. Biological systems, as will be discussed later in this section, can 

encompass numerous biophysical phenomena other than self-diffusion alone. Despite this distinction, 

ADC and D are used interchangeably in the following discussions, especially when mathematical 

expression can be simplified. 

When considering the measurement of diffusion, especially in biological tissues, directional 

dependence of diffusion may be encountered. Muscle and myelinated nerve fibers are examples of 

biological structures in which water diffusion becomes directionally restricted or, in other words, 

diffusion of molecules is oriented preferentially along the length of the fiber. In such cases, a single 

proportionality constant describing the ability of particles to disperse as a function of time becomes 

insufficient. For a homogenous medium, this process can be represented by a second-rank tensor, Dij for 

i and j=x, y, z or  
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), 2.7 

where Dij represents the ith component of diffusion along the jth axis. In practice, this can be interpreted 

as the ith component of diffusion process measured through observations along the jth direction. Fick’s 

second law can be extended to incorporate the directional dependence (i.e., the diffusion tensor). When 

considering self-diffusion in the absence of other forces influencing the process (e.g., active transport), 

the diffusion tensor becomes symmetric (i.e., Dij=Dji). This additional symmetry results in the diffusion 

tensor being uniquely determined by six terms, the terms along the diagonal and either the three 

elements above or below the diagonal. If the coordinate systems of the physical process and the 

observations were perfectly aligned, the off-diagonal components of the diffusion tensor would be 

identically zero, with the values along the diagonal known as the principle diffusion coefficients. In 

practice, the orientation of the diffusion processes is unknown and the unique components of the 

tensor must be observed. Diagonalization can then be performed to recover the principle diffusion 

components, which are invariant regardless of the orientation of the measurement or laboratory 

coordinate system. This reduces equation 2.7 to 

    (

     
     

     

)(

   

   

   

), 2.8 

where the three principle diffusion components or eigenvalues λi’ represent the diffusion coefficient in 

the new “prime” coordinate system specified by the basis of eigenvectors εi’ or diffusion directions, 

where the result of equation 2.5 can be shown to hold for each of the three eigenvalues (i.e., √      for 

i'=x’,y’,z’). Note that in an isotropic medium, this formalism reduces to that considered by Einstein, 

where the scalar 
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 2.9 

which is equivalent to the initial formulation by Einstein. Tensor formalism gives a complete description 

of the physical system, but generates an enormous amount of data, three eigenvalues and eigenvectors 

to be exact, although knowledge of certain systems might suggest that there are only two unique 

eigenvalues and eigenvectors. Especially when these values are computed on a voxel-by-voxel basis, 

rotationally invariant summary parameters (i.e., those that depend only on the underlying physical 

process, not the frame of observation) become increasingly important. Two of the most commonly 

employed parameters are the mean diffusivity (MD) 
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and fractional anisotropy (FA) 
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2.11 

both of which have been investigated frequently as QIBs [18], [19] . The latter, FA, was proposed by 

Basser and Pierpaoli [42], and achieves values ranging from 0, which represents a purely isotropic 

medium (equation 2.9), to 1, indicative of a cylindrical anisotropic medium  (i.e., λx’>> λy’= λz’,  or any 

other permutation of the directional indices). 

Stejskal and Tanner [89] were the first researchers to describe a method for sensitizing the MRI 

signal to the diffusion properties of the object or patient being imaged. The proposed pulse sequence 

incorporated two rectangular pulsed gradient fields (PGF) of equal magnitude G and duration δ 

separated by a time interval of Δ, and followed by a standard spin-echo (SE) imaging sequence. During 

the interval Δ, a 180o RF pulse is applied, which, in combination with the second gradient pulse, causes a 
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reversal of the phase accumulated during the first gradient pulse. Stationary spins experience the same 

local magnetic susceptibilities throughout this pulse sequence and the resulting signal intensity is 

unaffected. However, diffusing spins will experience changing magnetic susceptibilities while traversing 

the molecular environment, resulting in a net signal loss following this pulse sequence. More specifically, 

solving the Bloch-Torrey equation [90] for the PGF sequence gives 

  ( ⃗         )     
     (  

 

 
 ) ⃗  ⃗  

       
 
, 2.12 

where γ is the gyromagnetic ratio,  ⃗ is the applied gradient vector, S0 is the thermal equilibrium signal 

intensity1, TE is the echo time, and R2* is the transverse relaxation rate; all other parameters are as 

defined previously. The direct product or dyadic of the magnetic gradient vector is defined as  

  ⃗  ⃗  | ⃗|
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)  2.13 

where αx, αy, and αz are the directional cosines of the applied diffusion encoding gradient. In most 

applications, a single user-adjustable imaging parameter b (or the b-value) is used in lieu of the 

timing/amplitude values, and is defined as 

  ( ⃗    )      (  
 

 
 )  ⃗ ⃗, 2.14 

which allows recasting of equation 2.12 into the canonical form 

  (      )     
           

 
. 2.15 

                                                           
1
 S0, more specifically, is a combination of the proton density, receiver gains, and, potentially, image reconstruction 

techniques.  
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Although this development has assumed an ideally rectangular pulsed gradient, analytical expressions 

can be derived for many other physically realizable gradient waveforms [91], including effects of the 

imaging gradients on the b-values [92]. 

The theoretical developments by Stejskal and Tanner made no assumptions regarding the 

underlying microstructural tissue properties or other physiological properties affecting DW signal 

intensities. Le Bihan et al. [93] posited that compartmentalization of water in perfused capillaries can 

generate diffusion-like (or pseudodiffusion) reductions in signal intensity that actually result from 

perfusion effects. A subsequent publication [94]by that same group resulted in the development of  a 

model to describe pseudodiffusion, yielding 

  (      )     
    [(   )          

]       
 
 2.16 

where D* is the pseudodiffusion coefficient describing water movement in capillaries that appears as a 

diffusion process (i.e. exponentially decaying), f is the perfusion fraction, and all other symbols are as 

defined previously.  Interestingly, accounting for the perfusion fraction (essentially the fractional volume 

of plasma space) in this way allows comparisons with T1-weighted pharmacokinetic models that 

explicitly account for fractional plasma volume, which recent results suggest agree well in prostate 

cancer and the corresponding contralateral normal tissue [95]. Many other models describing, for 

example, the non-Gaussian characteristics of restricted diffusion and compartmental models have been 

proposed and investigated [96], but the models described by equations 2.15 and 2.16 are, by far, the 

most commonly employed. 

In vivo quantitation of diffusion, especially for the purposes of assessing treatment response, is 

performed primarily under two paradigms, one for tissues in which isotropic diffusion is expected and 

the other for the case of anisotropic diffusion. In this discussion of diffusion modeling the effects of 

diffusion on the MRI signal, no assumptions regarding the diffusion isotropy have been made despite 
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continued appearance of the diffusion tensor in equations 2.12 through 2.16. Rather, a more general 

approach was taken, which results in greatly simplified models under circumstances when anisotropy 

can be or is purposely neglected, and will be the focus of section 2.1.1.1. 

2.1.1.1 Quantitative Diffusion – Acquisition Strategies 

As described earlier in section 2.1.1, most biological tissues exhibit restricted isotropic 

diffusion of water molecules and a single summary parameter, ADC, suffices to describe the system. 

Under these circumstances, the diffusion tensor reduces to a constant or zeroth-rank tensor, and by 

ignoring the directional component of b reduces the previous linear algebra operators of equation 2.15 

are reduced to the scalar products of b and D. By acquiring images using at least two unique b-values, 

keeping the TE and timing parameters of b constant, regression analysis (linear or non-linear) can be 

performed to derive the diffusion coefficient. Historically, two acquisitions were used to derive the ADC, 

and consisted of one image without diffusion weighting (i.e., b≈0) and a second image with a non-zero 

b-value. However, when modeling is performed with equation 2.15, mounting evidence, as reviewed in 

a recent consensus report of DWI by Padhani and Liu [19], suggests that multiple b-values (i.e., more 

than two) should be used and that both small and large b-values (<100 s/mm2 and >1000 s/mm2) should 

be carefully considered in the design of acquisition protocols to avoid perfusion effects and the bi-

exponential behavior exhibited by the DW signal at high b-values, respectively. More advanced 

modeling, such as the IVIM model, necessitates the acquisition of more than two b-values to uniquely 

determine the model parameters. 

 In addition to varying the b-values, acquisitions are commonly performed by utilizing the same 

set of b-values acquired in multiple directions, most commonly in three mutually orthogonal directions 

yielding ADCx, ADCy, and ADCz. A number of useful acquisition schemes have been proposed for the 

acquisition of these three ADC values. Perhaps the simplest and most commonly used schema acquires 

images with diffusion encoding parallel to the physical gradient axes (Gx, Gy, and Gz). So called 
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tetrahedron encoding can provide improvements in signal-to-noise ratio (SNR) (recall the TE 

dependence of equation 2.15) over this simple scheme. By combining pairs of gradients (Gx/Gy, Gx/Gz, 

and Gy/Gz), which effectively increases the maximum gradient strength by a factor of 1.4 and reduces 

the pulse duration Δ, the echo time can be reduced, resulting in less T2* dephasing and increased SNR.  

For isotropic tissues, the resulting ADC values should be equal, disregarding differences in gradient 

performance, but in tissues with anisotropic diffusion, these values are rotationally variant and can 

depend on external factors such as patient orientation. Despite the lack of rotational invariance, DWI 

acquisitions have found clinical utility in the neurological evaluation of strokes, infections, head trauma, 

tumors, and hemorrhages [97]. Furthermore, multi-directional DWI acquisitions can provide a rapid 

means of qualitatively assessing anisotropy (or confirming assumptions about isotropy). 

Anisotropic tissues are described only partially by DWI quantification methods, requiring 

computation of the diffusion tensor for a more adequate description. Recall that a minimum of six 

elements are required to uniquely determine the diffusion tensor. By solving equation 2.15 for the 

argument of the exponential term containing the tensor and absorbing the T2* decay term into S0, an 

expression relating the b-values and diffusion tensor elements is given by 

   (
 (    )

 (    )
)      . 2.17 

Expansion of the Frobenius inner product of the b-matrix and diffusion tensor gives rise to a six term 

linear equation for each applied direction of the diffusion gradient, assuming that Dij=Dji. If six non-zero, 

non-collinear, non-coplanar, b-values are acquired, in addition to an image without diffusion weighting, 

equation 2.17 represents a linear system of six equations that uniquely determine all elements of D. 

Therefore, a minimum of six diffusion weighted images and one non-diffusion weighted image, for a 

total of seven images, are required to determine the diffusion tensor. Basser et al. [98] first described a 

method of multiple linear regression for determining the elements of D when using this minimal 
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acquisition strategy. As the number of diffusion weighted images (N) increases beyond six, the method 

of singular value decomposition is usually employed to find a solution to the N linear equations of2.17. 

Acquisitions on commercially available clinical systems usually present the user with a choice only for 

the number of diffusion directions to acquire and a pre-computed set of gradient strengths and 

directions are used to perform serial imaging. 

Diffusion tensor imaging is wrought with trade-offs. In clinical settings, limited scanner time and 

issues such as patient motion (DTI and DWI are, after all, serial image acquisitions) place constraints on 

the number of quality images that are able to be acquired. Two primary acquisition parameters 

determine the image quality and acquisition time: the number of diffusion encoding directions and the 

number of signal averages to perform on each acquired image. A theoretical study of noise by Bastin et 

al. [99] showed that, below an SNR value of 20, components of the diffusion tensor rapidly diverged 

from ground truth. SNR can be controlled in the acquisition by averaging the signal, essentially acquiring 

the same data multiple times and averaging, or by increasing the number of diffusion encoding 

directions. For diffusion gradient schemes acquiring the absolute minimum number (or near that) of 

directions, signal averaging must be used to improve image SNR, especially as the magnitude of the b-

value increases. However, as the number of acquired encoding directions increases, the amount of time 

required to perform signal averaging becomes too expensive, but the acquisition of these additional 

images with, diffusion encoded in different directions, also improves image SNR. Additionally, Armitage 

and Bastin [100] and Jones et al. [101] have shown that too few encoding directions unnecessarily biases 

tensor estimates, while Poonawalla and Zhou [102] showed that the SNR improvements fall of 

drastically after the number of encoding directions exceeds approximately 25. 

2.1.2 T1 Relaxometry 

Quantitation of longitudinal relaxation rates, R1 (usually quoted in units of s-1), generally requires 

modeling of the signal intensity, averaged over an ROI or taken from an individual voxel, as a function of 
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one variable acquisition parameter. Two common techniques are based on the extension of common 

imaging techniques (e.g., FSPGR and IR-SE) to include multiple imaging parameter settings such as 

variable flip angles (VFA) and variable inversion times (VTI). Numerous other techniques, such as the 

Look-Locker sequence, saturation recovery, and stimulated echo acquisitions [103], have been 

developed and employed frequently for research purposes. However, these newer techniques remain 

unavailable on commercially-available clinical equipment, and since the goal of this work was to address 

quantitative imaging in a clinical setting, the following discussions are limited to those acquisition 

strategies currently available on clinical systems. 

Spoiled gradient echo sequences provide a time efficient method of estimating relaxation rates 

for 2- or 3-D image sets. This is accomplished by acquiring images using two or more unique RF 

excitation flip angles, hence the name variable flip angle, while keeping all other acquisition parameters 

constant. By solving the Bloch equations, assuming that steady state has been reached and that perfect 

RF spoiling is occurring, the signal intensity as a function of the RF excitation angle (α) can be written as 

  (       
          )        ( )

         

     ( )        
       

 
 2.18 

where S0 is the thermal equilibrium signal intensity, TR is the repetition time, TE is the echo time, R1 

(=1/T1) is the longitudinal relaxation rate, and R2* is the transverse relaxation rate. Equation 2.18 can be 

simplified by noting that TE is generally held constant as a function of flip angle in these types of 

acquisitions, and, moreover, that the scan parameter TE can, in many cases, be assumed to satisfy the 

relation T2*(=1/R2*)<<TE,  yielding the product TE∙R2* is approximately zero and an exponential term of 

nearly unity. This results in the following simplified expression for the MRI signal intensity: 

  (          )        ( )
         

     ( )        
 2.19 
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In certain instances, particularly when the specific absorption rate (SAR) limit is being approached, 

manufacturers will change the RF pulse structure causing slight changes in TE, but this assumption still 

holds to a first approximation, and these limits are rarely reached in brain applications. Generally 

speaking, all parameters (except for TR) of equation 2.19 are functions of spatial position. Although the 

acquisition and processing of serial images implicitly accounts for the spatial distribution of signal and 

relaxation rates, a more stringent assumption is often placed on the flip angle, namely that of spatial 

invariance. Therefore, any deviations in the flip angle, which can arise from transmit miscalibrations or 

spatial heterogeneity of the B1 field, can and are known to cause errors in R1 estimates [104]. 

Inversion recovery based relaxometry methods offer enhanced robustness with respect to 

systematic errors that plague other strategies (e.g., RF heterogeneity of VFA acquisitions), and superb 

signal-to-noise ratio (SNR) efficiency [103]. Specifically, a spin-echo inversion sequence consists of a 

single 180° RF pulse followed by a programmable delay and a standard spin-echo imaging sequence. 

Solving the Bloch equations for arbitrary inversion times, inversion flip angle, and relaxation rates 

provides the following result,  

 
 (                      )

   (     (       )            (      )       )        
2.20 

where TI is the inversion time, θ is the inversion pulse flip angle, and all other quantities are as defined 

previously. Assuming that TE<<T2, a reasonable assumption for most acquisitions, the R2 dependency is 

removed, as discussed for the FSPGR acquisition, resulting in 

  (                )    (     (       )            (      )       ) 2.21 

Further simplifications can be made if the echo time is assumed to be much less than TR, which is 

generally the case in T1 relaxometry techniques since TR is frequently chosen specifically to satisfy 

TR>5∙T1, which allows full or nearly full recovery of the longitudinal magnetization to thermal 
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equilibrium. In combination, these assumptions provide the following simplified form of the Bloch 

equations solution: 

  (          )    (  (      )       ) 2.22 

Rarely in practice is the nominal inversion flip angle of exactly 180° achieved, which is corrected here by 

the model parameter, θ. To appropriately satisfy all of the simplifying assumptions of this model, 

imaging times for this sequences can become prohibitively long (e.g., a single slice, 256x128 matrix 

requires a 10 minute acquisition with TR=5s), requiring more temporarily efficient imaging sequences 

such as fast spin-echoes, which can introduce additional errors in parameter estimation. When 

processing VTI data, another potential concern arises from the fact that images are generally computed 

and stored as magnitude data; the acquired complex raw data are not stored. Computation of the 

magnitude images changes the structure of noise in the image from a zero mean Gaussian distribution 

to a Rician distribution [105], particularly in the low SNR regions surrounding the null point –

TInull(=ln(2)/R1) [12]. This can create bias in the parameter fits, which is mitigated by using the raw 

images or, to a lesser extent, by inverting the signal intensity of voxels in the magnitude images 

satisfying the condition TI<TInull. 

2.1.3 Dynamic-Contrast Enhanced-MRI 

DCE-MRI refers to a collection of MR imaging techniques that utilize exogenous contrast agents, 

most frequently injected intravenously, to increase (i.e., enhance) the observed MRI signal intensity. 

Gadolinium(III)-based, or Gd for short, contrast agents exhibit favorable properties for preferentially 

increasing longitudinal relaxation rates, i.e., relatively large T1 relaxivity, while minimally disrupting 

magnetic susceptibility, i.e., relative small T2 relaxivity, and, although these properties are not unique to 

Gd (e.g., manganese exhibits similar paramagnetic properties), FDA and other regulatory organization 

approval and wide clinical availability of the low molecular weight (<1 kDa), extracellular agents, such as 
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gadopentetate dimeglumine (Gd-DTPA) delivered intravenously have provided the scaffold for 

innumerable quantitative clinical studies [106], [107]. Within several seconds following contrast agent 

(CA) injection, these agents pass through the vasculature and begin to distribute in the extracellular 

extravascular space (EES) of tissues exhibiting vascular permeability to such agents, which include most 

extracranial tissues and regions of the CNS with blood brain barrier (BBB) disruptions. This distribution 

of CA within the vascular system and, subsequently, in the EES of tissues forms the basis for the 

application of pharmacokinetic models. Although other approaches to quantification exist, such as CA 

time course shape analysis and semi-quantitative (or model-free) descriptors of tracer kinetics, the 

following development focuses on pharmacokinetic (PK) models with physiologically meaningful 

parameters [10]. 

2.1.3.1 Tracer Pharmacokinetic Models 

Kety first described the kinetics of a freely diffusible tracer in which the rate of equilibration 

between the arterial and extravascular tracer concentrations was modeled [108]. In this early model, 

two compartments were considered: a vascular compartment and a tissue compartment. If a diffusible 

contrast agent is well-mixed and distributed uniformly in these two compartments with direct access to 

the water population, then a simple rate equation can describe the system. Tofts and Kermode [109] 

showed that the model developed by Kety [108] could be recast in terms of an extracellular CA 

concentration in the EES, Ce(t), fractional volume of the EES, ve, and the CA concentration in the plasma 

space, Cp(t), giving 

   
   ( )

  
       (  ( )    ( )), 2.23 

where Ktrans is the initial CA transfer rate from the plasma to the EES using the proposed consensus 

notation of Tofts et al. [110]. This model and these parameters are represented schematically in Figure 

2-1. The quantity Cp(t) is known as the arterial input function, or more generally as the vascular input 
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function (VIF), and Ce(t) represents the CA concentration. Calculation of an integration factor turns this 

simple ordinary differential equation (2.23) into a separable differential equation, the solution of which 

is 

     ( )        ∫   ( )   
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or more compactly 

     ( )    ( )  ( ), 2.25 

where   is the convolution operator and H(t) is the impulse response function given by 

  ( )         
  

      

  
 
. 2.26 

Using this formulation, equation 2.25, in conjunction with 2.26, can be described intuitively as follows: 

extravasation of plasma tracer into the EES proceeds initially at a rate given by Ktrans and results in the 

immediate exponential decay of EES tracer concentration at a rate of kep (≡Ktrans/ve). 

In quantitative imaging studies, Ce(t) is measured from either a voxel or region of interest, which 

is relatively large when compared with the size of the EES and/or plasma space. If contributions from the 

latter can be ignored, then the tissue concentration is given by 

   ( )      ( ). 2.27 
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In normal brain, even when EES concentrations are estimated over relatively large volumes that might 

include plasma contributions, this relationship holds to a first order approximation as the vascular 

volume is on the order of 2-4% [109]. However, in highly vascular pathologies, such as glioblastomas, 

non-negligible vascular contributions may unduly bias the estimated tissue concentrations, resulting in 

overestimates of Ktrans (known as pseudopermeability) [111]. A simple model accounting for the 

additional plasma volume is given by assuming tissue concentrations of the form 

   ( )      ( )      ( ), 2.28 

where vp is the fractional plasma volume, and noting that, in general, vp+ve≠1. Substitution of equation 

 

Figure 2-1. Two compartment kinetic model schematic. The pharmacokinetic model most frequently 

used in the analysis of DCE-MRI data consists of two compartments separated by the endothelium: 

an extracellular extravascular space (left) and a vascular space (right). Ktrans describes the transfer 

rate constant of contrast agent from the vascular to EES space, ve describes the fractional EES 

volume, and vp describes the fractional plasma volume. The parameter kep is defined as Ktrans/ve. 

Arrows indicate blood flow through the vascular space. 
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2.28 into 2.25 yields the so called modified Tofts-Kermode or generalized kinetic model (GKM) [110], 

given by 

   ( )      ( )    ( )  ( ). 2.29 

At this point, the model parameters describing the fractional intravascular and EES volumes 

have been described, but Ktrans remains a simple initial rate constant without any other physical 

interpretation. Returning to equation 2.23 and considering the initial state of the system provides a 

means of interpreting Ktrans. Prior to and during the initial arrival of contrast in the tissue, the rate of 

change in the EES CA concentration will be proportional to the blood flow. Moreover, for some time 

following the injection of CA, the EES CA concentration is negligible and, and equation 2.23 can be 

written as 
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where F is the flow of whole blood per gram of tissue, ρ is the tissue density, and the parenthetical term 

accounts for the fact that the CA in this discussion is extracellular agents. Equating the right hand sides 

of equations 2.23 and 2.30, after some algebraic manipulation, gives the following results, 

         (     ) 
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where the fraction of tracer concentration initially extracted into the EES is known as the extraction 

fraction E [110]. Renkin, in a study of postassium-42 tracer, modeled capillaries as a permeable cylinder 

with permeability P and surface area S [112], and Tofts et al. [110] reformulated this result using the 

proposed standard notation, giving 
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The general form of Ktrans can thus be written as 
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where Ktrans is a combination of the permeability surface area PS and capillary flow. Two mathematically 

limiting cases of this model are often discussed: flow limited (F<<PS) and permeability limited (PS<<F) 

[10], [12], [110]. The former results in the original model proposed by Kety [108] (i.e., Ktrans is 

proportional to F) and the latter, with the help of a Taylor expansion, yields 
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While these limiting cases provide simple interpretations of Ktrans, in general, the underlying physiology 

frequently renders both limiting cases unreasonable approximations and Ktrans must be interpreted as an 

extraction-flow product dependent upon capillary flow and permeability surface area. 

Not surprisingly, a plethora of other pharmacokinetic models have been proposed. Li and 

Jackson [113] proposed a simplified method for extracting GKM parameters from only the first pass of 

tracer. St. Lawrence and Lee [114] proposed the adiabatic approximation to tissue homogeneity model, 

which exploits the early flow-limited (i.e., Ktrans is proportional to F) phases of contrast enhancement 

followed by a general mixture of flow and permeability (equation 2.33) to allow the computation of 

blood flow. Models of increasing complexity introduce additional challenges to acquisition and analysis 

strategies, which will be discussed in detail in the following sections, and have slowed the wide-spread 

adoption of more sophisticated models, leaving the GKM the most widely employed pharmacokinetic 

model in the analysis of low molecular weight Gd-based CA. 
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2.1.3.2 Quantitative DCE-MRI – Acquisition and Analysis Strategies 

Gadolinium based CAs, as discussed at the beginning of section 2.1.3, can be used to affect 

the longitudinal relaxation rates of biological systems, and in conjunction with a T1-weighted imaging 

strategy and PK model allow investigation of vascular permeability/flow effects. More specifically, the 

interaction of protons with this paramagnetic complex result in an increase in the native longitudinal 

relaxation rate R10, which can be described by a simple linear relationship 

              , 2.35 

where R1 is the resulting longitudinal relaxation rate of the sample, r1 is the T1 relaxivity of the Gd-based 

CA in units of mM-1s-1, and [Gd] is the concentration of the CA in mM. Dipole-dipole interactions (the 

dominant source of longitudinal relaxation mechanisms in liquids and soft tissues) are inherently short 

range, requiring direct access to a water population, and therefore require a substantive distribution of 

Gd throughout the observed compartment to affect changes in the MRI signal. Quantitative DCE-MRI 

modeling utilizes imaging protocols that minimize the effect of this R20 shortening (namely, short TE 

acquisitions) and exploit the changes in R10, manifested as changes in MRI signal intensity, to indirectly 

observe the distribution of Gd throughout the intravascular and EES compartments by rapidly acquiring 

T1-weighted images prior to and following injection of the CA. 

T1-weighted FSPGR sequences (discussed in some additional detail in section 2.1.2) have been 

used extensively for DCE-MRI acquisitions as these techniques are capable of acquiring relatively large 

volumes with reasonable spatial (sub-millimeter in plane) and temporal (~5s) resolution, allowing 

coverage of the anatomy being investigated while providing adequate temporal estimation of CA 

concentration used in the PK model. Prior to CA injection, a cinematic sequence of acquisitions is 

initialized capturing the pre-contrast signal intensities. After a number of pre-contrast frames have been 
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acquired, the CA is injected intravenously followed by several more minutes of image acquisition. Before 

PK modeling can occur, the signal intensity must ideally be converted into [Gd]. 

Assuming that the [Gd] remains low enough such that T2*<<TE and that the presence of CA has 

an inconsequential impact on the proton density (i.e., S0 is constant), then the signal intensity as a 

function of time is given by combining equations 2.19 and 2.35 

  (    ( )               )        ( )
      (          ( ))

     ( )    (          ( ))
, 2.36 

where α is the flip angle. For convenience, define the constant quantity  

   
          

     ( )         
 2.37 

and consider the ratio of pre-contrast signal intensities, say Spre, to the post-contrast time-varying signal 

intensity of equation 2.36. Through careful algebraic manipulation, [Gd] as a function of observed pre- 

and post-contrast signal intensities can be shown to be 
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At this point, the relationship between [Gd] and MRI signal intensity can be seen to depend only on the 

known acquisition parameters α and TR, the Gd relaxivity r1, and the native longitudinal relaxation rate 

R10. Generally, a single value is assumed for the relaxivity, which will depend on temperature, magnetic 

field strength, and the physiochemical environment (e.g., tissue type) [115], [116]. However, there are 

principally two approaches to providing a value for R10. In one approach, R10 is estimated using, for 

example, the FSPGR method of section 2.1.2. The resultant relaxation rate maps can then be used in 

conjunction with the dynamic series images to calculate [Gd] on a voxel-by-voxel basis, but additional 

uncertainties in the estimation of R10 will propagate through to the calculation of [Gd] and ultimately to 

the PK parameters. Another common approach is to assume that R10 varies minimally across various 
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tissues and pathologies (see, for example, the reviews of Bottomley et al. [117], [118]) and assume a 

single relaxation rate for tissue (usually 1000ms) and one for the intravascular compartment (usually 

1440ms). Haacke et al. [85] showed that assuming a constant value for the intrinsic longitudinal 

relaxation rate resulted in more reproducible results. Although biases may be present, there is a paucity 

of evidence suggesting that these biases would necessarily vary significantly over relatively short 

durations of chemotherapeutic or radiation therapies and would, there, have little impact on PK 

parameters changes [119]. 

A second, more parameter independent, approach is also used commonly in literature. Again, 

assuming that S0 and T20* are unaffected by the presence of [Gd], and that the TR<<1/R1, a Taylor series 

expansion of the exponential terms in equation 2.36 results in 

  (    ( )               )        ( )
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Furthermore, in the limit as the flip angle α approaches 90o this expression reduces to  

  (    ( )             )          . 2.40 

Applying these same approximations to the pre-contrast signal intensity and taking the difference in 

post- and pre-contrast signal intensities yields a simple result, 

                        , 2.41 

Therefore, for large flip angles, the change in signal intensity following administration of the CA is 

proportional to the [Gd] within a constant scaling factor (S0∙TR∙r1). However, as the [Gd] increases, the 

assumption that TR<<1/R1 rapidly degrades the validity of this approximation, and the resulting 

concentrations are underestimated. Regardless, these approximations provide a method of quantifying 

PK parameters without a priori knowledge of the inherent relaxation rates. 
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The last crucial component in the quantitative analysis of DCE-MRI data is the selection of an 

appropriate VIF. Early researchers, Tofts and Kermode [109], Weinmann et al. [120], and Brix et al. 

[121], for example, used empirically derived population averaged models to describe the VIF. However, 

the VIF time course is intimately dependent on exam specific factors such as CA injection rate and dose, 

and, more importantly, on patient specific factors such cardiac output, pharmacokinetic distribution of 

the CA, and kidney glomerular filtration rates, all of which can exhibit considerable variance. As 

hardware performance has improved, fast imaging techniques capable of capturing the rapid changes in 

signal intensity resulting from a CA bolus have become commonplace. Although some disagreement 

regarding the reproducibility of the respective methods exists [122], [123], measurement of individual 

patient VIFs is generally accepted to be more physiologically accurate [10], [12]. 

2.1.3.3 Quantitative DCE-MRI – Additional Considerations 

Throughout the preceding discussions of DCE-MRI modeling, the distribution of CA in the 

intravascular and tissue compartments was described appropriately as a continuous physical process. 

However, in practice, the image sampling rate is limited as a result of hardware limitations and 

application specific acquisition parameter choices. To date, several researchers have investigated the 

effects of temporal resolution on PK estimates. Early investigations by Karmonik and Jackson [124] 

found a temporal resolution of less than 4s was required to ensure that the 95% confidence interval of 

Ktrans estimates was within 10% of the true value. Henderson et al. [125] later corroborated these 

findings, showing that sampling intervals of once every 4s are required to ensure that Ktrans and ve are 

within 10% of the true values. For the adiabatic approximation to tissue homogeneity model, Kershaw 

and Cheng [126] showed unavoidable bias and variance were introduced unless images were sampled at 

least once every 3s. Notably, these sampling rates allow adequate measurement of the rapid VIF 

kinetics, with tissue kinetics requiring substantially lower temporal resolution [125]. To circumvent these 

stringent temporal resolution requirements, Kovar et al. [127] proposed a reference region that utilizes 
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a nearby enhancing region, such as muscle, in lieu of measuring a VIF, a method that was further refined 

by Yankeelov et al. [128]. Heisen et al. [129], using such tissue reference methods, showed significant 

reduction in the temporal resolution requirements, i.e., data acquisition only once every 20s, still 

provided accurate quantification. However, in brain applications, the lack of enhancing structures in the 

imaging volume is problematic for reference region models. Moreover, in applications assessing 

treatment response, identification of a suitable region that remains unaffected by the treatment 

regimen becomes increasingly problematic. 

Aside from the strict temporal requirements of DCE-MRI, the discussions of section 2.1.3.2 

assumed that the tissue and intravascular compartments contained a homogenous water population 

that interacted directly with the Gd complex. In biological tissues, water is further compartmentalized 

within tissues, with a majority contained inside the constituent cells. Inter-compartmental transit of 

these water molecules can render the simple linearity described by equation 2.35 invalid. If little 

difference exists between the relaxation rates of the compartments, then the observed compartments 

will exhibit a nearly single valued relaxation rate (an average of the compartments’ rates) and the linear 

relationship between [Gd] and R1 holds. Under these circumstances , the compartments are said to be in 

the fast exchange limit or fast exchange regime [115]. Conversely, the slow exchange regime results 

from large differences in compartment relaxation rates. Donahue et al. [115] showed that both regimes 

can be present in a given DCE-MRI study, with intravascular-EES compartments exhibiting slow exchange 

and intracellular-EES compartments giving rise to fast exchange. Implications of the former effect were 

studied by Larsson et al. [130], and concluded to have minimal impact on the quantification of PK 

parameters, specifically Ktrans, at clinical doses, a result corroborated by Buckley [131]. Evidence strongly 

suggests that the fast exchange limit reasonably approximates intracellular-EES water exchange for 

clinically relevant doses, usually 0.1 mmol/kg [115], [132]. Despite this evidence, researchers such as 

Landis et al. [133] and Yankeelov et al. [134] argued that this linearity holds for only a limited range of 
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tissue concentrations, which prompted the investigation of transcytolemmal water exchange and the 

development of the “shutter-speed” model to addresses the effect of compartmental water exchange 

rates. However, Buckley et al. [135] showed that the clinically relevant acquisitions were insensitive to 

this exchange, warranting the use of simpler models that assume the fast exchange limit, especially 

when coupled with short TR values and large flip angle FSPGR acquisitions [136]. 

Other notable sources of bias and, potentially, variance exist in the analysis of DCE-MRI data, 

such as differences in artery and capillary hematocrits, choice of the VIF, spatial R10 estimation, and 

environment dependent r1 values. For these factors, some remain uninvestigated in the literature, and, 

for others, consensus regarding appropriate analysis methods has yet to be reached. By maintaining 

consistency in the choice of analysis and acquisition techniques, the model associated variances will be 

minimized despite potential biases. Moreover, in the context of treatment assessment, reproducibly 

biased methods reign supreme over those exhibiting lower bias and higher variance, as ultimately the 

goal is to detect changes, not absolutely quantitate physiological parameters. 

2.1.4 Dynamic-Susceptibility Contrast-MRI 

In the scientific literature, the terms DCE and DSC are occasionally used interchangeably, but for 

the following discussions DSC-MRI refers specifically to the collection of MR imaging techniques that 

exploit the magnetic susceptibility of paramagnetic contrast agents, in a manner analogous to DCE-MRI, 

to modify the observed MRI signal intensity. Unlike DCE, T2- or T2*-weighted sequences are used to 

observe the associated changes in the bulk magnetic susceptibility, affecting a decrease in signal 

intensities, rather than the enhancement seen in the T1-weighted counterparts. When these 

extracellular contrast agents are confined to relatively small regions, such as the intravascular space, for 

example, large local magnetic fields resulting from the paramagnetic properties of Gd induce increases 

in the transverse relaxation rate. However, the compartmentalized CA is unable to directly interact with 

the large extravascular water population, minimizing the associated T1 changes, and resulting in a 
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disproportionately large change in R2 or R2*. Analogously to T1-weighted techniques, rapid T2- or T2*-

weighted imaging sequences provide a means of temporally estimating the CA distribution through the 

vasculature, allowing quantitation of physiological parameters and, if desired, semi-quantitative 

descriptors. 

2.1.4.1 Tracer Pharmacokinetic Models 

Early work by Meier and Zierler [137] culminated in the basic mathematical description used 

most frequently to describe the pharmacokinetics of non-diffusible tracers. These methods were later 

extended beyond initial applications utilizing injected dyes, ultimately providing a means of using 

extracellular contrast agents to imaging modalities such as MRI [138] to quantify cerebral blood flow 

and volume. While early researchers such as Østergaard et al. [138] and Sorensen et al. [139] quantified 

blood flow in brain tumors, Aronen and Perkiö [140] noted that the use of blood flow in evaluating high-

grade brain tumors (the subject of this work) may be less appropriate than the cerebral blood volume 

owing to the poorly formed highly heterogeneous (spatially and temporally) vasculature. With this 

consideration, the following discussions will focus primarily on the quantification of the relative cerebral 

blood volume (rCBV). 

Consider a closed vascular system (i.e., the CA remains intravascular) in which a CA is 

delivered through a single inlet, subsequently exiting the system through a single outlet. If CA 

recirculation is prevented, the amount of CA that passes through some volume of interest, C(t), 

normalized by the total amount contrast injected into the system measured from a AIF, Ca(t),  can be 

represented as [10], [12] 
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where Hf is the hematocrit factor, ρ is the tissue density, and t0 is the time at which the CA 

concentration becomes different from zero. The hematocrit factor, Hf, accounts for the difference in the 

hematocrits of small and large blood vessels, and is given by 

    (        ) (        )⁄ . 2.43 

Clearly, in clinical practice, preventing CA recirculation is impossible, resulting in concentration time 

curve that include contributions from the first-pass kinetics and subsequent CA recirculation. An 

example [Gd] recirculation as seen in a VIF is given in Figure 2-2. To avoid overestimating the rCBV by 

including recirculation effects, the upper limit of the integrals can be modified to include only first-pass 

CA contributions, or 
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where tfp is the time at which reperfusion of the CA begins. However, performing the integration of 

equation 2.44 will systematically underestimate the rCBV, as the result of neglecting the first-pass 

concentration that is superimposed with CA recirculation shortly following tfp. Thompson et al. [141] 

showed that a gamma-variate, 

  ( )   (    )
   (    )  , 2.45 

provided an excellent empirical description of the first-pass kinetics, where α, β, and κ are free model 

parameters, and t0 is the bolus arrival time, which can be assumed or, more often, fitted as another 

model parameter. This approach is illustrated in Figure 2-2, in which a gamma-variate was fitted to the 

first-pass peak of a VIF. Integrating the resultant fitted gamma-variate in this way provides a means of 

extracting first-pass kinetics without unnecessarily biasing the resultant measurement by purposely 

neglecting or including concentration contributions that violate the assumptions of the system model. 
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While this approach is used frequently to calculate the rCBV independent of rCBF, the requirement of a 

non-linear fitting algorithm, especially with four free parameters, requires substantial computational 

resources, and still requires the determination of a reperfusion cut-off, neglecting all data following the 

cut-off when performing fits to equation 2.45. 

2.1.4.2 Quantitative DSC-MRI – Acquisition and Analysis Strategies 

When confined to intravascular spaces, the gadolinium based CAs, as discussed at the 

beginning of section 2.1.4, can be used to affect the transverse relaxation rates of biological systems, 

and in conjunction with a T2- or T2*-weighted imaging strategy and PK model allow investigation of the 

relative vascular volume. As with the longitudinal relaxation rate, the presence of Gd affects the local 

 

Figure 2-2. Contrast agent recirculation example. This plot shows a VIF contrast uptake curve with 

the solid line representing a fitted gamma-variate and the black arrow specifying the characteristic 

recirculation peak.  
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transverse relaxation rate based on the T2 relaxivity, r2, of the CA, and can be, to a first order 

approximation described by 

              , 2.46 

where R2 is the resulting transverse relaxation rate of the sample and [Gd] is the CA concentration. In 

addition to the increase in R2, Gd also alters the local bulk magnetic susceptibility resulting in relatively 

large inhomogeneous local magnetic fields that interact with intra- and extravascular water protons, 

inducing further dephasing beyond that of the R2 mechanisms. When using pulse sequences that fail to 

refocus dephasing arising from local field inhomogeneities, the transverse relaxation rate is described 

more completely by a superposition of relaxation mechanisms accounting for the thermal signal decay 

(R2) and inhomogeneous field induced decay (R2’), represented mathematically as 

   
       

  , 2.47 

from which an expression analogous to equation 2.46 can be written to describe the resultant relaxation 

rate, namely  

   
     

    
      . 2.48 

Intravascular accumulation of the CA modifies both the R2 and R2* relaxation rates, but, for compactness 

and because the acquisitions of this work were T2*-weighted, R2* will be used exclusively in the 

discussion to follow. 

In the same manner as DCE acquisitions (section 2.1.3.2), a fast imaging sequence capable of 

acquiring a volume of images every 1-2s is required to adequately estimate the temporal and spatial 

distribution of the CA. Generally, SE or gradient recalled echo (GRE) echo planar imaging (EPI) sequence 

is used to rapidly acquire T2- or T2*-weighted images, respectively, although other sequences have been 

used [12]. Several pre-contrast phases are acquired to establish the steady-state baseline signal 



39 
 

intensity, followed by another few minutes of cinematic image acquisitions. The resulting serial images 

can then be used to estimate [Gd], which is, in turn, used to estimate rCBV. 

Assuming that the introduction of CA negligibly impacts the proton density (i.e., S0 is constant) 

and longitudinal relaxation rates (i.e., R10 is constant), then for simple GRE (or SE by removing the * 

superscript) imaging sequence, the solution to Bloch’s equations can be written compactly as 
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where Ω is a constant, pulse sequence specific function incorporating constant imaging parameters such 

as TE, TR, and the flip angle α. A similar expression can be easily written for the pre-contrast signal 

intensity, Spre, resulting in an expression for [Gd] after performing some algebraic manipulations on the 

ratio of pre- and post-contrast signal intensities and is given by 
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Unlike the DCE acquisition strategies discussed previously (section 2.1.3.2), access to the CA 

concentration is independent of the pre-contrast transverse relaxation rate, greatly simplifying 

quantitative analysis. However, quantitation still requires the determination of a VIF or, using the 

notation of section 2.1.4.1, Ca(t). Common measurement locations for the VIF include the cerebral 

arteries (or some peripheral branch) and the internal carotid arteries [12]. 

2.1.4.3 Quantitative DSC-MRI – Additional Considerations 

Perhaps the most important consideration in modeling DSC-MRI as described in this section 

is the validity of assuming that the CA remains compartmentalized in the intravascular space. In fact, use 

of the DCE-MRI pharmacokinetic models described in the previous section (2.1.3) relies heavily on the 

assumption that the CA will extravasate, an assumption that is likely invalid in high-grade brain tumors. 

Two unique issues face PK modeling under these conditions: R1 increases resulting from extravascular 
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CA distribution will, at least partially, mask the associated R2* effects [142] and the extravasation of CA 

will reduce intravascular [Gd] resulting in an underestimations of the rCBV. Kassner et al. [142] showed 

that pre-loading the system with Gd effectively minimized the R1 shine-through, a viable solution to the 

former issue. However, compensating for the rCBV underestimation requires the use of more 

sophisticated PK models such as the first-pass pharmacokinetic model proposed by Johnson et al. [143]. 

 

2.2 Statistics 

2.2.1 Measuring Agreement and Repeatability 

One method used frequently to detect agreement between known values and measurements is 

Bland-Altman analysis, which provides the limits of agreement (LOA), calculated by  

 〈 〉       (  
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where <d> is the average of differences between, in this case, the estimated and actual PK parameters, 

σ is the standard deviation of differences, and n is the number of samples [144]. This formulation 

essentially provides the 95% confidence interval for normally distributed differences, where agreement 

occurs when an application specific acceptable difference encompasses these limits. Another frequently 

used method is the concordance correlation coefficient [145], or CCC for short, which estimates the 

expected deviation from a perfect correlation line (i.e., slope of one and intercept of zero) and is given 

by 
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where σA and σE are the variance of the actual and estimated values, respectively, µA and µE are the 

means of the actual and estimated values, respectively, and ρ is the Pearson correlation coefficient. 

2.2.2 Logistic and Ordinal Regression 

Logistic regression is a type of statistical classification technique that provides a means of 

modeling a binary response, and can be considered a special case of ordered logistic regression or, 

stated more succinctly, ordinal regression. These flexible models provide a means of modeling 

categorical (ordinal) data, such as radiological response (partial response, stable disease, progressive 

disease, etc.). In particular, ordinal regression allows multiple categories to be modeled simultaneously 

through the assignment of categorical probabilities. Discussions herein were adapted from the text by 

Johnson and Albert [146]. 

Let pi denote the probability of success for the ith observation, Xij denote the vector of 

explanatory variables for the ith observation, and βj is the regression coefficient for the jth explanatory 

variable. In the context of modeling ordinal data, failure and success can be restated as classification 

into categories, say, C1 and C2, respectively. Using this nomenclature, the probability that the ith 

observation falls in category C2 (success) can be written as 

     (   ∑      
 
   ), 2.53 

or more compactly, by indexing j such that j assumes all integer values between 0 and n, and Xi0 is one 

for all values of i, 

     (    )   (  ), 2.54 

where F is known as the link function and Z is referred to as latent variable or latent trait. Link functions, 

usually chosen from the class of cumulative density functions (CDF), map the latent variable’s range, 

described in the argument of equation 2.54, to the interval (0, 1), providing a means of probabilistic 
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interpretation. Common link functions include CDFs of the normal, logistic, and log-logistic distributions, 

and although the choice is somewhat arbitrary, the logistic distribution will provide the foundation for 

this work. The CDF for the logistic distribution is given by 

  ( )  
 

      . 2.55 

After a link function has been selected and covariates are chosen, values of pi can be estimated from the 

response of a training data set, and maximum likelihood estimation can be used to calculate the 

regression coefficients. Predictions can then be performed on new data sets using the newly estimated 

logistic model. 

Latent variables, as introduced in equation 2.54, can be used to model unobservable traits, and, 

moreover, provide a framework for intuitively extending the categorical response modeled by logistic 

regression to more than two categories (i.e., ordinal regression). These traits provide a means of 

determining the categorical response. Given some observation, the latent trait for that observation can 

be modeled as 

            , 2.56 

where the error terms, ϵi, are assumed to be identically distributed according to the distribution of the 

link function and are also assumed to be independent. Then for two categories, say C1 and C2 (failure or 

success, respectively, as discussed previously for logistic models), the response can be written as 
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 . 2.57 

This notion can be extended easily to accommodate k ordered categories by introducing category cut-

offs, γc, resulting in the following response definition, 
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where γ0 is defined to be negative infinity, a mere notational convenience. Defining the response in this 

manner allows for the development of ordinal regression models. 

To formulate ordinal regression in an analogous manner to logistic regression (equation 2.54), 

the individual category probabilities must be computed. Since the response probabilities are 

parameterized by the CDF F and the latent trait Z, the probability of attaining a particular category, say 

category c, is simply the integral of the probability density function (the first derivative of the CDF) 

between the cut-offs γc and γc-1, or, using the first fundamental theorem of calculus, 

      (       )   (         ). 2.59 

By defining the cumulative probability of the cth category as 

                   , 2.60 

one can easily show, using equations 2.59 and 2.60, that a system of k-1 equations following the 

operational form of the logistic regression described previously (i.e., equation 2.54) is given by 

      (       ). 2.61 

To avoid overparameterization of the model, the cut-off γ1 is fixed to zero, and all remaining cut-offs and 

regression parameters are calculated using maximum likelihood estimation. If the observations are 

assumed to be independent, then responses, yi, will follow a multinomial distribution, a generalization 

of the binomial distribution (the distribution describing the response of logistic models). 

In standard linear regression, the coefficient of determination or R2 is of considerable utility in 

assessing the explanatory nature of the independent variable when defined as the fraction of explained 



44 
 

model variance, and is often used a goodness-of-fit indicator. Nagelkerke [147], recognizing the utility of 

R2, generalized the notion to encompass models such as ordinal regression. Let L(0) define the likelihood 

of the null model (i.e., only model constants such as the category cut-offs and β0 are determined) and 

L(β) be the likelihood of the full regression model (i.e., all cut-offs and regression coefficients are 

calculated), then the coefficient of determination proposed by Nagelkerke [147] is given by 

  ̅  
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where n is the number of observations, and can be interpreted analogously to the classical R2. In fact, 

when applied to linear regression and the maximum likelihood estimate approach is equivalent to 

ordinary least squares, the classical definition and that proposed by Nagelkerke give the same results. 

Statistical classification techniques utilize a simple construction for performing predictions. Let 

pi be the vector of probabilities for a k category ordinal regression model for which the category cut-offs 

and regression coefficients have been determined, written mathematically as  

    (              ), 2.63 

then the predicted category given by 

   ̂             . 2.64 

This succinct notation simply states that the predicted response for some new observation yields a 

vector of probabilities pi for which the predicted classification is given by the category with the 

maximum probability. 

2.2.3 Cross-Validation 

Cross-validation is a technique for assessing the generalizability of classification models, a 

thorough discussion of which can be found in the text by Hastie et al. [148], for example. Given some set 
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of training data, {Xij, Yi}, the goal of cross-validation is to determine the misclassification (or classification 

error) rate on some larger set of data. If predictions are performed on some set of observations 

different from the training set, the error rate for logistic/ordinal models discussed previously is given by 

the ratio of misclassified predictions to the total number of observations, or written succinctly as 
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where I(…) is the indicator variable for prediction misclassification. When a specific observation is 

correctly classified, the indicator assumes a value of zero and one otherwise. Prediction accuracy can be 

defined in a similar manner, or simply computed simply as 1-Err. In the context of this work, the goal of 

cross-validation is two-fold: identify an appropriate model and assess that model’s performance. 

K-fold cross-validation attempts to estimate the model prediction error rate by partitioning the 

data into K subsets. By training the classifier on K-1 sets and performing predictions on the Kth test set 

that was removed from the training set, an estimate of the classification error rate can be obtained. If K 

is chosen to be the number of observations in the training data, then the so called leave-one-out (LOO) 

cross-validation technique is attained, the focus of this work. 
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Chapter 3 Assessing MR Equipment Bias and Variance 

 

3.1 Introduction 

Longitudinal assessment of quantitative imaging biomarkers for the purpose of treatment 

response requires scrupulous assessment of measurement bias and variance attributable to the 

equipment to ensure that the measured biological changes of interest are distinguishable from such 

errors. The necessity of characterizing sources of equipment bias and variance, particularly those related 

to quantitation, is of significant interest and importance as evidenced by numerous associated initiatives 

from major organizations such as the American Association of Physicists in Medicine, Radiological 

Society of North America, International Society of Magnetic Resonance in Medicine, and the National 

Cancer Institute [73]–[76]. Within each of these organizations, several committees focusing on different 

modalities and different aspects of image quantitation have been formed and are beginning to amass 

data that consistently elucidate the need for longitudinal system assessment [78]–[80], [149]. 

To assess relaxometry, an important property intrinsic to biological tissues that is exploited in 

contrast enhanced exams, and diffusion acquisition properties using physical phantoms, researchers 

have proposed numerous approaches of varying complexity [150]–[153], including solutions and gels, in 

addition to more complicated phantoms that attempt to mimic the actual physiological properties being 

measured, such as the dynamic lesion phantom developed by Freed et al. [154] to assess DCE 

acquisitions or the fiber phantom developed by Laun et al. [155] to assess DTI quantitation. To achieve 

an optimal assessment of equipment bias and variance, sources of error, such as those introduced by 

the manufacturing materials and manufacture processes, solution stabilities, and experimental 

conditions (e.g., temperature), must also be mitigated where possible. With this goal in mind, the 

primary design considerations for the phantoms proposed for these studies included: easily 

reproducible manufacturing procedures, non-volatile chemicals, measurement values representative of 
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those found in vivo, long-term solution stability, well characterized temperature dependences, and 

reproducible acquisition strategies. Phantoms matching these criteria were designed and manufactured 

with the primary purpose of assessing equipment related variances using clinically relevant diffusion and 

contrast-enhanced acquisitions. 

 

3.2 Phantom Design 

3.2.1 DCE Phantom 

DCE acquisitions are designed to capture dynamic processes and, through modeling, estimate 

physiological parameters. Currently, no viable dynamic phantom capable of mimicking these processes 

   

Figure 3-1. DCE and ADC phantom schematics. Axial cross-sectional schematic representation of the 

DCE (left) and ADC (right) phantom (units: cm). The DCE phantom inner ring (red) contains 8 

solutions representative of VIF response (R1: 1.05-41.86 s-1) while the outer ring (blue) contains 8 

solutions representative of tissue response (R1: 0.97-7.84 s-1). The ADC phantom contained vials with 

various sucrose concentrations (10 to 45 %w/w); the lowest sucrose concentration was placed at the 

center. 
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is available despite a recent proof-of-concept dynamic phantom [154]. Therefore, the approach taken in 

this work focused on quantifying variances in the measurement of R1 relaxation rates and propagating 

those measured variances to the estimation of PK parameters through simulated data using a static 

phantom consisting of a large compartment filled with a homogeneous fill solution and several smaller 

compartments with solutions having a range of R1 values. To adjust the R1 values, NiCl2 was used as a 

paramagnetic doping material. As an R1 altering dopant, NiCl2 is approximately independent of magnetic 

field strength for common clinical magnets (i.e., 0.2-4.0T) and temperature, ideal properties for 

solutions used to estimate equipment bias and variance. 

A schematic of the DCE phantom is shown Figure 3-1. The cylindrical phantom was constructed 

from a polycarbonate cylinder measuring 20 cm in diameter with a depth of 12 cm and featured a 

removable lid for installing various vials and a threaded plug providing access to the fill solution for 

temperature measurements. Using an NiCl2 relaxivity of 0.62 mM-1s-1 [156], [157], theoretical [NiCl2] 

values were calculated for a range of relaxivities representative of expected in vivo gadolinium 

concentrations occurring during the course of a DCE study in a tissue compartment (R1: 0.67-7.54 s-1) 

and a vascular compartment (R1: 0.75-41.53 s-1). Two batch solutions, one for each of the highest tissue 

and vascular R1 values, were prepared using degased, deionized water. Serial dilutions of these batch 

solutions were performed to achieve the theoretical [NiCl2] listed in Table 3-1. These solutions were 

poured into 30 mL sealing, polypropylene copolymer, centrifuge tubes (Sigma-Aldrich, USA), placing the 

tissue [NiCl2] solutions at the outer radius with R1 values increasing in the clockwise direction and the 

representative vascular vials at the inner radius with R1 values decreasing in the clockwise direction. The 

remaining volume of the phantom was filled with a 30 mM [NaCl] solution to simulate coil loading by a 

patient and to minimize static, magnetic field inhomogeneities [158]. 

3.2.2 ADC Phantom 
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The ADC phantom is represented schematically in Figure 3-1. Similar to the DCE phantom, this 

phantom was constructed from polycarbonate with an exterior diameter of 20 cm and depth of 12 cm, 

featuring the same removable lid and threaded plug design. Seven sucrose solutions, 10, 20, 25, 30, 35, 

40 and 45 %(w/w), were used to achieve ADC values ranging from approximately 0.5 to 1.7x10-3 mm2/s, 

which encompass reported ADCs in normal and tumor tissues [159]–[161]. These values were 

determined by estimating a linear fit to data reported by Laubach et al. [153]. Solutions were prepared 

by stirring the appropriate weight of sucrose (≥99.5%, Sigma-Aldrich, USA) with degased, deionized 

water, adding sodium azide (3 mg/mL of H20) to all vials to prevent alteration of the desired ADC values 

by microbial growth. These solutions were then poured into 50 mL polypropylene centrifuge tubes 

(Corning®, USA), and the caps were glued shut to minimize exchange of sucrose between the fill solution 

and centrifuge tubes. The 10 %(w/w) vial was placed in the center with all other vials distributed in 

increasing concentration in a counter-clockwise arrangement. In addition to the 30 mM NaCl fill 

solution, a low concentration (165 mg/L) of MnCl2 was added to reduce the T2 of the fill solution to 

approximately 30 ms, bringing the measured signal intensity close to that of background and thus 

minimizing image artifacts resulting from the fill solution signal. 

 Tissue Compartment Vascular Compartment 

Vial Number R1 (s
-1) [NiCl2] (mg/L) R1 (s

-1) [NiCl2] (mg/L) 

1 0.97 139.4 1.05 156.8 

2 1.24 197.1 2.93 548.7 

3 1.63 278.7 6.86 1371.8 

4 2.19 394.2 11.86 2416.9 

5 2.97 557.4 17.86 3671.1 

6 4.07 788.3 24.86 5134.3 

7 5.63 1114.8 32.86 6806.6 

8 7.84 1576.6 41.86 8687.8 

Table 3-1. DCE phantom [NiCl2] and theoretical R1 values. R1 ranges and corresponding [NiCl2] 

theoretical calculations assuming r1 = 0.62 mM-1s-1 and R10 = 0.3s-1. Note that neither r1 nor R10 were 

quantified prior to phantom manufacture. 
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3.3 Methods 

3.3.1 MR Acquisition Protocols 

Assessing the equipment longitudinal variance was accomplished by performing a single set of 

same day repeatability measurements in combination with ongoing weekly quantitative acquisitions 

using the ADC and DCE phantoms on a 1.5T GE HDxt scanner and 3.0T GE MR750 scanner. Where 

possible, acquisition parameters for these phantom studies were matched to corresponding clinical 

protocols. To minimize variances due to variations in temperature, the phantoms were stored in the 

scanner room overnight, allowing equilibration between the fill solution and scanner room temperature. 

Additionally, the temperature of the phantom fill solution was measured prior to each imaging session. 

Following the temperature measurements, the DCE phantom was scanned first, followed by the ADC 

phantom. 

The imaging protocol for the DCE phantom included, on a weekly basis, VFA R1 measurements 

and a full DCE acquisition. The VTI R1 measurements were performed once a month. Each phantom was 

set up on edge in the RF coil, aligning the vertical alignment laser to the center of the set screw between 

the tissue vials with R1 values of 0.67 and 0.94s-1 and ensuring that the phantom was level. At each 

scanner, one set of three short-term measurements was acquired to establish same day variance, which 

included an initial acquisition per protocol with VTI R1 measurements followed by two more full 

acquisitions without the VTI acquisition. Performing these measurements was accomplished by setting 

the scanner to research mode, which allowed varying the user control variables opflip and opti for VFA 

and VTI acquisitions, respectively. To ensure machine settings, such as center frequency, RF gains, and 

gradient shims remained constant for serial relaxometry measurements, a manual pre-scan was 
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performed after downloading each new scan flip angle or TI value and before acquiring any images. Scan 

parameters are summarized in Table 3-2. 

Multi-slice diffusion weighted imaging and diffusion tensor imaging data were acquired weekly 

from the ADC phantom. Phantom set up consisted of situating the phantom in the RF coil such that the 

cylinder’s edge rested on the support pad of the coil, rotating the 20 %(w/w) sucrose vial such that the 

compartment was roughly aligned midway between 12 and 3 o’clock, and ensuring that the phantom 

was level. Diffusion-weighted images were then acquired in three orthogonal planes aligned with the 

 VFA DCE VTI DWI DTI 

Coil: 
8CH Brain 

(32 CH Brain) 
8CH Brain 

(32 CH Brain) 
8CH Brain 

(32 CH Brain) 
8CH Brain 

(32 CH Brain) 
8CH Brain 

(32 CH Brain) 

Sequence: 3D FSPGR 3D FSPGR FSE-XL EPI EPI 

User CVs: Turbo=0 Turbo=2 --- ASSET=2, DSE ASSET=2, DSE 

TE (ms): 1.4 (1.5) 1.2 (1.3) 8.8 82.7 (81.7) 82.7 (81.7) 

TI (ms): --- --- 

50, 75, 100, 
125, 150, 250, 

500, 1000, 
1500, 2000, 

3000 

--- --- 

TR (ms): 5.8 (5.4) 5.7 (4.2) 6000 10000 10000 

ETL: N/A N/A 4 N/A N/A 

BW (kHz): +/-62.5 +/-62.5 +/-31.25 +/-250 +/-250 

NEX: 4 1 1 4 1 

Flip Angle (deg.): 
2, 5, 10, 15, 
20, 25, 30 

30 90 90 90 

b-value (s/mm2): --- --- --- 
0, 250, 500, 
750, 1000, 

1250 
0, 1200 

FOV (cm): 24 24 24 24 24 

Phase FOV (%): 1 0.8 1 1 1 

Sl. Th. (mm): 5 3 8 (7) 5 (3.5) 5 (3.0) 

Gap Th. (mm): --- --- --- 1.5 (0.0) 1.5 (0.0) 

Num. of Slices: 16 16 1 16 16 

Matrix: 256x160 256x160 256x160 96x128 96x128 

Table 3-2. DCE and ADC phantom protocol acquisition parameters. Parenthetical values represent the 

acquisition parameters at 3.0T. For the DWI and DTI acquisitions, the number of diffusion encoding 

directions was 3 and 27, respectively. Abbreviations: Sl. = Slice, Th. = Thickness, DSE = dual spin echo. 
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major axes of the encoding gradients (i.e., R-L, A-P, and S-I). The diffusion tensor acquisitions used a 27 

direction-encoding schema. Neither pulse sequence required user input to acquire multiple b-values as 

was the case with R1 measurements. Protocol parameters for the acquisition of ADC phantom diffusion 

data are summarized in Table 3-2.  

Laubach et al. [153] noted a rapid decrease in T2 values with increasing concentration of 

sucrose, making T2 characterization of the ADC phantom desirable. In an effort to confirm this result, T2 

measurements were performed on the 3.0T system described previously using a multiple echo time 

(n=4) acquisition. In addition to these measurements, T2 was also quantified using a 4.7T Bruker 

BioSpec® scanner with S057 gradients and a 35 mm inner diameter birdcage coil with a 32 echo Carr-

Purcell Meiboom-Gill (CPMG) SE acquisition. 

3.3.2 Equipment Variance Quantitation 

Following image acquisition as described in section 3.3.1, all images were transferred via file 

transfer protocol, in DICOM format, to a Linux workstation with an 8 core Intel® Xeon® E5640 CPU 

operating at 2.67GHz. Images from the individual series (e.g., VFA or DWI) were then imported into the 

QUATTRO environment, which automatically detected the series type (e.g., VFA or DWI), sorted the 

images by slice location into stacks containing each of the varied imaging parameters (e.g., flip angle or 

b-value), and extracted, from the DICOM headers, pertinent acquisition parameters necessary for 

modeling the data and computing the image biomarker results. Uniquely named, elliptical ROIs were 

then manually defined within the individual phantom compartments and voxel signal intensities were 

averaged for each ROI at each series point (e.g., at each flip angle). For 3D or multi-slice acquisitions, 

these ROIs were propagated to all slices, ensuring that the ROIs remained centered within the 

compartment of interest by manually adjusting the ROI placement as needed to account for minor 

rotations that inevitably occurred during setup. Care was also taken to ensure image artifacts, such as 

partial volume averaging, Gibb’s ringing, and N/2 ghosting, were avoided. The resulting mean signal 
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intensities for each acquisition in the series were fitted to an appropriate model using a QUATTRO script 

to estimate and track model parameters and a goodness of fit parameter, the coefficient of 

determination. For the models discussed in the following subsections, the LOA and CCC values, as 

discussed in section 2.2.1, were computed to assess agreement between estimated and theoretical 

values where possible. 

3.3.2.1 R1 Variance 

VFA estimation of R1 was performed by fitting the averaged signal intensities from each ROI 

as a function of flip angle to the well-known analytical Bloch equation solution, as discussed in section 

2.1.1, for a spoiled gradient echo sequence given by equation 2.19. Bland-Altman [144] and correlation 

plots were produced to compare R1 estimates with the theoretical calculations. Since these 

measurements were acquired with a volume acquisition, variation of R1 was also characterized as a 

function of distance from the magnet isocenter in the slice direction by averaging longitudinal 

measurements and normalizing those measurements to the corresponding R1 estimate at isocenter. 

VTI estimation of R1 was accomplished by a two-step procedure. First, to avoid introducing bias 

in the modeling caused by artificially increased signal intensities near the null point [12], polarity 

restoration was performed on the magnitude image signal intensities averaged from each ROI using a 

simple algorithm described in section 4.2.1. The resulting polarity corrected signal intensities were then 

fitted to the three-parameter signal intensity relationship given by equation 2.22, and Bland-Altman and 

correlation plots were produced for comparison with theory. 

3.3.2.2 DCE Variance 

Estimating PK parameter variance from the static DCE phantom data was accomplished by 

fitting simulated tissue uptake curves using a VIF derived from patient brain data [162]. One-hundred 

fifty unique combinations of Ktrans, ve, and vp were chosen to generate the tissue uptake curves from the 
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three parameter general kinetic model [110]. The values for those three parameters were selected from 

the sets {0.02, 0.05, 0.1, 0.2, 0.35} min-1, {0.05, 0.1, 0.2, 0.5}, and {0.05, 0.1, 0.2, 0.5}, respectively. To 

map meaningful estimates of variance in T1 measurements to the respective PK parameter, the means 

and standard deviations of T1 measurements for each compartment were provided to a random number 

generator to produce random fluctuations in the synthetic VIF and tissue uptake curve. Because the 

simulated curves represent discrete samples from a continuous distribution of ΔR1 values, and because 

the number of ΔR1 samples from the phantom is limited, a binning of ΔR1 was performed to provide a 

distribution for all values of ΔR1. In other words, for synthesized [Gd] values, x, on a given tissue uptake 

curve, the values falling between the ith and ith+1 tissue vials’ ΔR1 values were randomly sampled from a 

normal distribution of mean x and standard deviation σi, where σi is the estimated standard deviation 

from the T1 measurement distribution of the ith vial and i = {1, 2, 3,…, 7}. This process was repeated for 

the VIF to produce noisy VIF values for simulations. To ensure that the random number generator was 

appropriately configured, longitudinal T1 measurement distributions for every compartment were tested 

for normality using a single sample Kolmogorov-Smirnov goodness-of-fit hypothesis test [163] with 

significance level of 5%. All tests failed to reject the null hypothesis, suggesting that the data were, to a 

good approximation, normally distributed. 

For each combination of PK parameters, 10,000 unique random tissue uptake curves and VIFs 

were simulated. Finally, these noisy synthetic tissue and VIF [Gd] concentration measurements were 

fitted using a three-parameter generalized kinetic model to estimate the PK parameters. To avoid 

introducing known effects, namely additional bias and variance of temporally undersampled dynamic 

curves [164], [165], allowing isolation of equipment related variance, high temporal resolution (50 ms 

sampling) versions of the tissue uptake and VIF concentration curves were used. LOA and CCC values 

were computed for the estimated pharmacokinetic parameters to assess the agreement between 

estimated and actual values. 
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3.3.2.3 ADC Variance 

Estimation of the ADC values was performed by fitting the averaged signal intensities from 

each ROI to the intravoxel incoherent motion model equation 2.16 as described in section 2.1.1. This 

simplified version of the IVIM model ignores the pseudo-diffusion coefficient, perfusion fraction, and 

diffusion kurtosis terms of the full model since the physical processes represented by these terms are 

not captured in the simple sucrose solution ADC phantom. The exponential term containing the 

transverse relaxation constant was absorbed into the    parameter since    was held constant for all b-

value acquisitions. This model was used to perform parameter estimation from the DWI images, where 

the images were first averaged over all three orthogonal acquisitions before modeling. DTI images 

transferred to a GE Advantage Windows Workstation running FuncTool (GE Healthcare, Waukesha, WI, 

version 4.5), which was used to compute ADC and FA maps. Both acquisition strategies were used to 

analyze the effect of off-isocenter parameter estimates as described previously for the VFA acquisitions. 

 

3.4 Results 

3.4.1 Equipment Variance 

The ADC and DCE phantoms were manufactured as described in Section 3.2 and the acquisition 

protocols were created and stored on the respective 1.5T or 3.0T scanner as described in Section 3.3.1. 

MATLAB scripts were created to sort and assemble images into directories by date, phantom name, and 

series number, which allowed the import utility of QUATTRO to easily assemble exams for quantitation. 

3.4.1.1 R1 Variance 

Longitudinal R1 results estimated from a single central slice are summarized in Table 3-3, 

showing substantially better repeatability for R1 measurements at 1.5T compared with the 

corresponding measurements at 3.0T, with coefficients of variation ranging from 2 to 3.2% and from 6.4 
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to 10.2% at 1.5 and 3.0T, respectively. VFA-estimated R1 values measured from a single slice in the 

center of the phantom exhibited minimal bias compared with the theoretical values for measurements 

made at 1.5T as shown in Figure 3-2, while those same measurements at 3.0T were consistently over-

estimated, particularly in the VIF compartments. 

 

 1.5T VFA 3.0T VFA 1.5T VTI 3.0T VTI 

 R1 (s
-1) COV (%) R1 (s

-1) COV (%) R1 (s
-1) COV (%) R1 (s

-1) COV (%) 

VIF-1 1.0 2.4 0.7 7.2 1.0 0.6 1.1 1.6 
VIF-2 2.7 2.4 2.1 8.3 2.9 0.6 3.0 2.3 
VIF-3 6.4 2.3 5.3 7.2 6.8 0.8 7.2 1.5 
VIF-4 11.5 2.2 9.4 6.4 10.5 2.4 11.8 3.4 
VIF-5 17.4 2.0 14.0 6.7 17.5 0.8 18.8 1.0 
VIF-6 24.7 2.0 18.9 7.4 24.6 1.0 27.1 2.7 
VIF-7 32.1 2.5 24.4 7.6 32.8 1.3 36.5 4.0 
VIF-8 40.3 3.2 30.8 7.6 41.7 1.8 48.5 8.2 

Tissue-1 0.9 2.7 0.8 10.2 1.0 1.0 1.0 1.4 
Tissue-2 1.2 2.6 1.0 9.4 1.2 0.6 1.3 3.0 
Tissue-3 1.6 2.8 1.3 8.1 1.6 0.5 1.7 1.2 
Tissue-4 2.0 2.6 1.7 8.0 2.1 0.6 2.3 0.5 
Tissue-5 2.8 2.3 2.3 8.2 2.9 0.8 3.0 0.7 
Tissue-6 3.8 2.5 3.4 7.8 3.9 0.9 4.2 1.1 
Tissue-7 5.2 2.7 4.9 7.0 5.5 1.1 5.8 0.9 
Tissue-8 7.6 2.3 7.5 7.5 7.6 0.7 8.2 1.3 

Table 3-3. Summary of the DCE phantom longitudinal R1 measurements. Measured R1 values in s-1 

averaged over all repeatability measurements using a VFA technique (left) and VTI technique (right). 

Values for the centrifuge tubes containing the VIF sequence are in the top half of the table, while the 

representative tissue values are in the bottom half of the table. 
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Figure 3-2. Comparison of VFA R1 estimation with theory. Bland-Altman plots (top) of the 

longitudinally averaged VFA R1 measurements vs. theoretical R1 values at 1.5T (left) and 3.0T (right). 

The 8 VIF (squares) and tissue (diamonds) compartments were given different markers for clarity and 

the dashed lines are the limits of agreement. Correlation plots (bottom) are shown for comparison 

with the linear regression and corresponding coefficient of determination for 1.5T (left) displayed 

above the data and that for 3.0T (right) displayed below the data. 
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VFA R1 relaxometry techniques are known to suffer inaccuracies in parameter estimation as a 

result of flip angle calibration errors and/or spatial heterogeneity in the transmitted B1 field [104], [166], 

[167]. At higher field strengths, spatial heterogeneity of the B1 fields, in particular, increasingly biases R1 

measurements as a function of position due to reduced RF penetrability and dielectric resonance 

effects. In brain applications, dielectric resonance is especially pronounced in objects roughly the size of 

a human head (i.e., the DCE phantom) [12]. This would imply larger biases in R1 estimates at the center 

of the phantom, where the VIF centrifuge vials are positioned, as is clearly demonstrated in Figure 3-2. 

In combination, these effects explain the larger observed bias and variance in longitudinal 

measurements at 3.0T when considering uncertainties such as phantom setup and flip angle 

calibrations. 

Single slice, VTI-estimated R1 values exhibited excellent longitudinal repeatability, with 

coefficients of variation ranging from 0.5 to 2.4% at 1.5T and from 0.5 to 6.9% at 3.0T as summarized in 

Table 3-3. Note that by neglecting a single set of outlier data acquired at 3.0T on February 24, 2013, COV 

ranges between different field strengths become equivalent. The cause of this deviation was most likely 

an incorrect acquisition setting; a BW of +/-62.5 kHz was used as opposed to +/-31.25 kHz as prescribed 

in the protocol. In addition to improved repeatability over VFA parameter estimation, the VTI R1 

estimates agreed with theory for the VIF [NiCl2] sequence at both field strengths (see Figure 3-3), 

although a trend is still discernible in the VIF [NiCl2] sequence at 3.0T. This trend, which is consistent in 

the VIF and tissue vials, might suggest a slight field strength dependence of the [NiCl2] relaxivity, r1. 

Additionally, these results further corroborate the notion that the less repeatable and more biased R1 

estimates using a VFA acquisition at 3.0T were the result of transmit RF inhomogeneities. While these 

issues would still be present in VTI acquisitions, the resulting bias and variance in R1 measurements are 

effectively decoupled from the flip angle because long TR values were used, which allows near full 

recovery of the longitudinal magnetization. 
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In addition to single slice measurements, estimates of R1 were tracked on each slice of the 

volume acquisition. Figure 3-4 through Figure 3-7 displays the relationship between R1 and the slice 

distance from isocenter in the superior-inferior direction, omitting the first and last slices of the volume. 

In this range of slices, R1 values deviated from the corresponding measurements on the slice at isocenter 

from -11.5 to 7.2% at 1.5T and -15.4 to 26.6% at 3.0T for all vials. Including all slices, however, creates 

substantially larger deviations: -76.8% at 1.5T and -74.6% at 3.0T. The additional deviation introduced by 

including the end slices is the result of non-ideal RF excitation of the imaging volume in the slice 

encoding direction and off-resonance effects.
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Figure 3-3. Comparison of VTI R1 estimation with theory. Bland-Altman plots (top) of the 

longitudinally averaged VTI R1 measurements vs. theoretical R1 values at 1.5T (left) and 3.0T (right). 

The 8 VIF (squares) and tissue (diamonds) compartments were given different markers for clarity and 

the dashed lines are the limits of agreement. Correlation plots (bottom) are shown for comparison 

with the linear regression and corresponding coefficient of determination for 1.5T (left) displayed 

above the data and that for 3.0T (right) displayed below the data. 
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Figure 3-4. 1.5T VIF R1 dependence as a function of distance from isocenter in the I-S direction. 

Plots of the VIF [NiCl2] sequence R1 estimates normalized to the corresponding measurements on 

the slice at isocenter vs. distance from isocenter in the I-S (negative-positive) direction averaged 

over all longitudinal acquisitions at 1.5T. Data from the two most superior and two most inferior 

slices were omitted to ensure the imaging volume was matched to the corresponding 3T data. For 

visualization purposes, a shape-preserving smooth interpolant was used. Error bars were omitted 

because limits were so small that the error markers were indistinguishable from the data markers. 
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Figure 3-5. 3.0T VIF R1 dependence as a function of distance from isocenter in the I-S direction. 

Plots of the VIF [NiCl2] sequence R1 estimates normalized to the corresponding measurements on 

the slice at isocenter vs. distance from isocenter in the I-S (negative-positive) direction averaged over 

all longitudinal acquisitions at 3.0T. For visualization purposes, a shape-preserving smooth 

interpolant was used. Error bars were omitted because limits were so small that the error markers 

were indistinguishable from the data markers. 
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Figure 3-6. 1.5T tissue R1 dependence as a function of distance from isocenter in the I-S direction. 

Plots of the tissue [NiCl2] sequence R1 estimates normalized to the corresponding measurements on 

the slice at isocenter vs. distance from isocenter in the I-S (negative-positive) direction averaged over 

all longitudinal acquisitions at 1.5T. Data from the two most superior and two most inferior slices 

were omitted to ensure the imaging volume was matched to the corresponding 3T data. For 

visualization purposes, a shape-preserving smooth interpolant was used. Error bars were omitted 

because limits were so small that the error markers were indistinguishable from the data markers. 
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3.4.1.2 DCE Variance 

LOA and CCC values calculated from the simulations performed using the R1 variance 

estimated from the VFA and VTI data are summarized in Table 3-4. In all cases, the CCC was, for all 

intents and purposes, unity, suggesting excellent agreement between the estimated parameters and the 

actual values. Moreover, the limits of agreement, essentially two standard deviations, for the estimated 

 

Figure 3-7. 3.0T tissue R1 dependence as a function of distance from isocenter in the I-S direction. 

Plots of the tissue [NiCl2] sequence R1 estimates normalized to the corresponding measurements on 

the slice at isocenter vs. distance from isocenter in the I-S (negative-positive) direction averaged over 

all longitudinal acquisitions at 3.0T. For visualization purposes, a shape-preserving smooth 

interpolant was used. Error bars were omitted because limits were so small that the error markers 

were indistinguishable from the data markers. 
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values of Ktrans, ve, and vp, were essentially zero. With respect to expected changes in tissue resulting 

from treatment, the parameter noise introduced by the reproducibility of relaxometry measurements 

represents insignificant variation in T1-weighted DCE biomarkers. For example, Hawighorst et al [70], in a 

study of intracranial meningiomas treated with conformal radiation therapy, found a significant 

decrease in kep (K
trans/ve) on the order of 50% in patients responding to the treatment (n=13) and a 

median increase greater than 500% in non-responders (n=4). Gutin et al. [168] found a significant 

decrease in Ktrans (approximately 31%) following the administration of a single cycle of bevacizumab in 

patients exhibiting some radiographic response. The symmetry observed in all LOA values suggests 

negligible bias introduced by noise, which is confirmed by mean percentage error of approximately 

7.6x10-3 % for all pharmacokinetic parameters using the variance estimated from VFA repeatability and 

6.06x10-3 % for the VTI simulations. Overall, the results of these simulations suggest that the level of 

error introduced by variation in R1 measurements is insignificant with respect to expected changes 

resulting from treatment.

 

  
VFA Simulations VTI Simulations 

  

Ktrans 
(min-1) 

ve 

 
vp 

 
Ktrans 

(min-1) 
ve 

 
vp 

 

1.5T 

Lower LOA -8.77x10-4
 -3.17x10-3 -2.14x10-4 -9.61 x10-4 -3.48 x10-3 -2.36 x10-4 

Upper LOA 8.06x10-4 3.21x10-3 2.31x10-4 8.72 x10-4 3.53 x10-3 2.56 x10-4 

CCC 1.000 1.000 1.000 1.000 1.000 1.000 

3.0T 

Lower LOA -8.65 x10-4 -3.20 x10-3 -2.14 x10-4 -9.66 x10-4 -3.47 x10-3 -2.37 x10-4 

Upper LOA 7.95 x10-4 3.24 x10-3 2.30 x10-4 8.78 x10-4 3.53 x10-3 2.58 x10-4 

CCC 1.000 1.000 1.000 1.000 1.000 1.000 

Table 3-4. Analysis of PK parameters simulated from R1 variance. Lower/upper limits of agreement 

and concordance correlation coefficient as calculated from the simulated PK parameter estimates for 

levels of ΔR1 variance at 1.5T (top) and 3.0T (bottom). 
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3.4.1.3 ADC Variance 

When measured at a single slice at the center of the imaging volume, DWI-based ADC 

estimates exhibited good longitudinal reproducibility at both 1.5 and 3.0T, with coefficients of variation 

ranging from 3.4 to 6.8% and 1.5 to 19.4%, respectively (see Table 3-5). Again, neglecting the lone 

outlier datum of the longitudinal ADC estimates at 3.0T brings the maximum range of coefficients of 

variation to 4.8%, comparable with corresponding measurements at 1.5T. This discrepancy in 

reproducibility most likely stems from the differences in the signal-to-noise ratio of the two data sets. 

More specifically, the observed lower signal-to-noise ratio of data acquired at 3.0T. In addition to 

acquisition differences, sucrose concentration dependent T2 values also created SNR dependencies of 

the repeatability as seen in the trend of increasing coefficients of variation with increasing sucrose 

concentration, although not as pronounced in the measurements made at 1.5T because of the higher 

overall SNR in those data. Laubach et al. [153] reported a rapid decrease in the solution T2 value with 

increasing concentration of sucrose, with T2 values as low as 50ms for a 30%(w/w) sucrose solution. T2 

values of the ADC phantom sucrose solutions were quantified with a multiple-echo spin echo acquisition 

at 3.0T and 4.7T to extend the results of that previous work, and to confirm the rapid signal loss as a 

function increasing sucrose concentration; results are summarized in Figure 3-8. With large effective    

values (~80ms), the dramatic decrease in T2 can clearly be considered a dominate factor in the 

decreased repeatability of higher concentration vials. 
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Phantom temperatures were measured prior to each set of image acquisitions. At 1.5T, the 

average temperature was 20.5°C, ranging from 16.0°C to 23.9°C with a COV of 7.5%, whereas the 

average temperature at 3.0T was 20.9°C with a minimum of 20.1°C and maximum of 22.6°C with a COV 

of 2.4%. This larger difference in the phantom temperature variability prior to measurements at 1.5T 

explains the less repeatable measurements, as clearly shown in the COVs, for vials containing low 

concentrations of sucrose (≤35%) compared with the corresponding 3.0T measurements. 

Reproducibility of ADC estimates acquired with DTI in a single central slice exhibited similar 

trends as those estimates made with a DWI technique and the results are summarized in the right half of 

Table 3-5. The range of coefficients of variation at 1.5T was 3.0 to 6.6% and at 3.0T was 1.2% to 18.3%, 

where the trend of increasing coefficients of variation with increasing sucrose concentration is again 

apparent. Fractional anisotropy estimates in a single central slice were less reproducible compared with 

ADC values, with coefficients of variation ranging from 6.4 to 25.5% at 1.5T and 18.2 to 26.3% at 3.0T. 

These results, while suggestive of poor fractional anisotropy reproducibility, more likely represent the 

fact that there were miniscule fluctuations in a material with isotropic diffusion (i.e., FA=0), which 

results in disproportionately large apparent variance. In addition to comparable reproducibility, the two 

 1.5T DWI 3.0T DWI 1.5T DTI 3.0T DTI 

Sucrose 
(%w/w) 

ADC 
(x10-3 mm2/s) 

COV 
 (%) 

ADC 
(x10-3 mm2/s) 

COV 
(%) 

ADC 
(x10-3 mm2/s) 

COV 
(%) 

ADC 
(x10-3 mm2/s) 

COV 
(%) 

10 1.71 3.4 1.69 1.5 1.75 3.6 1.68 1.2 

20 1.39 4.1 1.38 1.6 1.40 3.0 1.38 1.6 

25 1.17 3.7 1.12 2.0 1.17 3.3 1.11 3.5 

30 0.96 3.7 0.85 3.0 0.97 3.6 0.83 5.3 

35 0.79 4.1 0.61 3.7 0.78 4.0 0.59 7.1 

40 0.64 4.7 0.46 4.8 0.64 4.8 0.47 11.2 

45 0.49 6.8 0.29 19.4 0.51 6.6 0.33 18.3 

Table 3-5. Summary of the diffusion phantom longitudinal ADC measurements. Measured ADC 

(x10-3 mm2/s) values averaged over all repeatability measurements using a DWI technique (left) and 

DTI technique (right) for sucrose concentrations ranging from 10% to 45% (top to bottom). 
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methods provided good agreement according to a Bland-Altman analysis of data measured at a single 

central slice where no regression coefficients of lines fitted to the difference between DWI and DTI 

measurements deviated significantly from 0 (p>0.20 for coefficients at 1.5 and 3.0T). 

Analysis of axial ADC measurements as a function of slice location relative to isocenter showed 

deviations in magnitude from 7.9% at 1.5T and 35.2% at 3.0T, as illustrated in Figure 3-9 and Figure 

3-10. For volumes acquired at 1.5T, only the portion that overlapped with the 3.0T acquisitions were 

considered in this analysis since, in a clinical environment, this region would contain the pertinent 

imaging biomarker information. DTI estimates of ADC, summarized in Figure 3-11 and Figure 3-12, 

deviated from the isocenter slice normalized value by 4.5% at 1.5T and 26.8% at 3.0T, respectively. 

Fractional anisotropy deviated substantially more compared with ADC estimates (as easily seen in Figure 

3-13 and Figure 3-14) as the distance from isocenter increased, with deviations as large as 66.2% at 1.5T 

and 93.3% at 3.0T. 

Bland-Altman analysis was also performed to compare the ADC and FA estimates between the 

two scanners, which yielded significant non-zero regression coefficients (P<0.01) for ADC estimates, 

both DWI and DTI, and non-zero regression coefficients approaching significance (P<0.04) for FA 

estimates. As stated previously, the differences in signal-to-noise ratios resulting from thinner slices at 

3.0T and the already low signal, particularly in vials with high sucrose concentrations (i.e., >25%), results 

in noise-dominated signal, which is known to underestimate ADC values [169]–[171]. When considering 

the lower concentration compartments (i.e., ≤25%), the percent difference between 1.5T and 3.0T data 

was approximately 5% or less for all ADC estimates. 
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Figure 3-8. Sucrose solution T2 values. Measured T2 values at 3.0T (diamonds) and 4.7T (squares). 

The large difference in values between the two field strengths stems for the acquisition details, 

namely, only 4 echoes were used to acquire measurements at 3.0T compared to the 24 echoes used 

at 4.7T. The number of echoes was limited by the acquisition pulse sequence at 3.0T. Also, the T2 

value at 4.7T for the 45% vial was extrapolated since no data were acquired for that vial. 
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Figure 3-9. 1.5T DWI ADC dependence as a function of distance from isocenter in the I-S direction. 

Plots of ADC measured at 1.5T using DWI normalized to the corresponding measurements on the 

slice at isocenter vs. distance from isocenter in the I-S (negative-positive) direction averaged over all 

longitudinal acquisitions. Data volumes were matched to 3.0T acquisition coverage and a shape-

preserving smooth interpolant was used for visualization purposes. Error bars were omitted because 

the error markers were indistinguishable from the data markers. 
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Figure 3-10. 3.0T DWI ADC dependence as a function of distance from isocenter in the I-S 

direction. Plots of ADC measured at 3.0T using DWI normalized to the corresponding measurements 

on the slice at isocenter vs. distance from isocenter in the I-S (negative-positive) direction averaged 

over all longitudinal acquisitions. Data volumes were matched to 3.0T acquisition coverage and a 

shape-preserving smooth interpolant was used for visualization purposes. Error bars were omitted 

because the error markers were indistinguishable from the data markers. 
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Figure 3-11. 1.5T DTI ADC dependence as a function of distance from isocenter in the I-S direction. 

Plots of ADC measured at 1.5T using DTI normalized to the corresponding measurements on the 

slice at isocenter vs. distance from isocenter in the I-S (negative-positive) direction averaged over all 

longitudinal acquisitions. Data volumes were matched to 3.0T acquisition coverage and a shape-

preserving smooth interpolant was used for visualization purposes. Error bars were omitted because 

the error markers were indistinguishable from the data markers 
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Figure 3-12. 3.0T DTI ADC dependence as a function of distance from isocenter in the I-S direction. 

Plots of ADC measured at 3.0T using DTI normalized to the corresponding measurements on the 

slice at isocenter vs. distance from isocenter in the I-S (negative-positive) direction averaged over all 

longitudinal acquisitions. Data volumes were matched to 3.0T acquisition coverage and a shape-

preserving smooth interpolant was used for visualization purposes. Error bars were omitted because 

the error markers were indistinguishable from the data markers 
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Figure 3-13. 1.5T FA dependence as a function of distance from at isocenter in the I-S direction. 

Plots of FA measured at 1.5T normalized to the corresponding isocenter slice measurement as a 

function of distance from isocenter in the I-S (negative-positive) direction averaged over all 

longitudinal acquisitions. Data volumes were matched to 3.0T acquisition coverage and a shape-

preserving smooth interpolant was used for visualization purposes. Error bars were omitted because 

limits were so small that the error markers were indistinguishable from the data markers. 
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3.5 Discussion 

Quality assurance, particularly on machines used for the assessment of treatment response, 

remains a crucial component of any study employing quantitative imaging data. Documenting 

quantitative stability, especially following hardware/software upgrades, provides confirmation that 

longitudinal patient measurements are minimally impacted by scanner bias and variance. Additionally, 

performing such measurements at multiple sites provides the framework for designing and executing 

 

Figure 3-14. 3.0T FA dependence as a function of distance from at isocenter in the I-S direction. 

Plots of FA measured at 3.0T normalized to the corresponding isocenter slice measurement as a 

function of distance from isocenter in the I-S (negative-positive) direction averaged over all 

longitudinal acquisitions. Data volumes were matched to 3.0T acquisition coverage and a shape-

preserving smooth interpolant was used for visualization purposes. Error bars were omitted because 

limits were so small that the error markers were indistinguishable from the data markers. 
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data harmonization from multi-center trials. This study aimed to quantify the longitudinal reproducibility 

of quantities derived from diffusion and DCE imaging acquisitions at scanner field strengths commonly 

used, namely 1.5 and 3.0T, and under normal operating conditions. 

Two scanners, one used for routine clinical imaging (1.5T) and one used for research purposes 

only (3.0T), were monitored over the course of 10 months, during which weekly acquisitions of 

relaxometry and diffusion data were performed and the resulting quantitative imaging biomarkers were 

tracked. Axial slice position dependences were also tracked for these quantities. In general, T1 

measurements agreed well with theoretical calculations based on published relaxivities [156], [157] and 

ADC estimates were consistent with previously published results [153]. In addition to providing 

longitudinal stability, these phantoms were easily manufactured requiring only a scale with milligram 

accuracy, a stirrer, and a source of degased, deionized water, making these phantoms ideal candidates 

for assessing equipment variance for head applications. 

DCE phantom longitudinal analysis resulted in reproducible R1 estimates at 1.5T and 3.0T with 

maximum coefficients of variation 3.0% and 9.4%, respectively. Results of the pharmacokinetic 

simulations suggest that the equipment contributed bias and variance is negligible for these levels of R1. 

To this point, Hawighorst et al. [70] found significant changes in kep (Ktrans/ve) on the order of 50-142% 

compared with pre-treatment measurements, which is comparable with the results of Hayes et al. [84]. 

Reviews of work investigating DCE-MRI as a means of assessing antiangiogenic and vascular disruption 

treatments by Jackson et al. [71] and O’Connor et al. [72] suggest treatment effect changes of 40% or 

greater. These results, in combination with the work in this aim, suggest that treatment changes are 

easily distinguishable from equipment variance for the equipment monitored in this study. Even 

including additional error for setup, as the volume analyses might suggest a level of at most 15%, the 

expected treatment changes still exceed these deviations. 
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Longitudinal analysis of the diffusion data showed that equipment variances for the ADC estimates 

were well below thresholds of change that have been observed in previous work. For example the 

University of Michigan group [36] uses a threshold of approximately 30% change in the ADC while 

others, such as Mardor et al. [33], have noted changes on the order of 30-70% in responding tissues. A 

recent validation of the functional diffusion map [36] by Ellingson et al. [22] found minimum thresholds 

of change required, based on significant changes in cellularity, for the ADC values of normal appearing 

white matter (0.25x10-3 mm2/s) and gray matter (0.31 x10-3 mm2/s). These thresholds are smaller by a 

factor of approximately two compared to those employed in the analysis by Hamstra et al. [36]. Even for 

changes of this magnitude (~15%), the equipment variance is still smaller by a factor of approximately 

three. The substantial deviations in ADC values as a function of position from isocenter, particularly at 

the edges of the volume, reinforce the necessity of reproducible patient setup. Moreover, the drastic 

differences observed between field strengths strongly encourage the use of a single field strength when 

acquiring longitudinal data. Recent work by Malyarenko et al. [172] suggested that  evaluation and 

correction of the gradient non-linearities can reduce bias in ADC estimates. However, for the purposes 

of this work, not only were images acquired at 1.5T for which the bias in DTI ADC estimates was within 

5% across the field of view, but patient setup consistently placed the tumor within approximately 10 

mm of the slice at isocenter, suggesting that the treatment-induced changes will far exceed the 

deviations in ADC estimates. 

This study has provided, over an extended period of time, characterization of bias and variance 

associated with quantitative imaging biomarkers for diffusion and DCE applications, elucidating several 

areas where bias can be and is introduced as a result of acquisition and/or analysis techniques. 

However, several limitations of this work exist, specifically assessment of bias and assessment of 

machine variance with regard to DSC exams. Future studies (addressed in detail in Chapter 6), should 
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involve careful characterization of temperature and chemical concentration dependencies, allowing a 

more thorough assessment of bias and acquisition. 
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Chapter 4 A Unified Framework for Assessing Treatment Response 

 

4.1 Introduction 

Quantitative imaging biomarkers offer significant promise as indicators for diagnosing, monitoring, 

and assessing tissue response for a plethora of treatment modalities, for which the latter appears to 

provide much needed improvements to current techniques such as RECIST [4], [7], [9], [14], [75], [76], 

[173]–[175]. One significant obstacle to utilizing quantitative imaging biomarkers is the labor and time 

intensive image analysis pipeline, requiring image registration between and within multiple data sets for 

each patient, identification and selection of image regions (including VIFs for DCE- and DSC-MRI studies), 

extraction of pixel or region information, and incorporation of this information into an appropriate 

statistical framework. These tasks are performed on multiple series within an imaging exam and across 

multiple imaging exams for a single patient, often including in excess of 10,000 images. While numerous 

large scale collaborative efforts have manifested in solutions to the various aforementioned 

components, such as the Insight Toolkit [176]–[178] and the Medical Image Processing, Analysis, and 

Visualization (MIPAV) [179] application, a unified analysis infrastructure for performing these 

computations remains unavailable. Other available software packages such as AFNI [180] or ImageJ 

[181], again, incorporate major components of treatment response analysis as plug-ins, including the 

DCE quantification utility TOPPCAT [182] or the AFNI image registration utility 3dvolreg, but creating a 

platform from these software packages that links the necessary built-in tools into a broad multi-

parametric analysis tool capable of performing longitudinal  analyses is infeasible. Additionally, several 

groups have produced in-house software packages to accomplish similar analyses [183]–[185], but rarely 

are such efforts made available to researchers outside of those groups. An additional constraint 

imposed by available software is the lack of transparency in algorithms, which frequently necessitates a 
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plethora of validation steps and, in cases of failed validation, software updates by the developer are 

required (a potentially time consuming and sometimes altogether impossible task). 

To address this need, the MATLAB® programming environment was used to develop open source 

code based on object oriented programming (OOP) principles, resulting in an advanced programming 

interface (API) and graphical user interface (GUI) – Quantitative Utility for Assessing TreaTment 

RespOnse or QUATTRO for short. This code implements a flexible modeling API (linked to the widely 

developed statistical libraries of R [186]) and links the highly developed image registration libraries of 

ITK [178] to a corresponding API for performing modeling and image registration, respectively, in a 

unified workspace. 

 

4.2 Software Implementation, Validation, and Optimization 

MATLAB was chosen as the development environment for the programming and graphical 

interfaces because of the need for quick development and linking of the ITK libraries. A special class 

within MATLAB, known as the handle class, was used as the basis for the API. Handle classes reference 

objects (similar to pointers in C/C++) and allow simple operations, such as setting a property, to be 

modified into complex computations, eradicating a substantial portion of the data bookkeeping required 

by the user. Properties and methods that control data operations are fully accessible to the user, but the 

debugged classes remove nearly all of the programming overhead when designing advanced features 

(e.g., image registration, computation of parameter maps, or visualization tools). Moreover, OOP 

principles, modeled after the ITK [176] class template design, were used to allow rapid prototyping of 

additional tools, such as the registration API, other visualizations, and development of new quantitative 

modeling framework. A full list of the necessary design components and corresponding descriptions of 

the respective functionality can be found in Table 4-1. 
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Classes were developed to represent common data types for quantitative imaging exams, which 

include an image representation, ROI (or point) representation, and a common workspace for 

interaction of those data. Using these classes a programmatic GUI was developed with tools for ROI- and 

voxel-based analysis, visualization of images, map overlays, and histograms, and standard input/output 

such as reporting analysis results or writing newly calculated maps as DICOM images. Additionally, 

development of an efficient scripting interface was added to assist in performing analysis of large 

quantities of data. 

Essential to quantitative imaging, in particularly longitudinal quantitation, two other important 

analysis components required development: quantitative modeling and image registration. Additional 

details of these tools are addressed in detail in the following subsections. Briefly, a modeling class was 

needed to provide an engine for performing quantitative analysis with many of the standard models and 

additional flexibility for adding user-defined models. Image registration is a necessary component of 

 Description 

qt_image Image storage class, providing functionality for reading/writing images and meta 

data, displaying images, and applying image transformations and filters 

qt_roi Region of interest storage class, providing functionality for reading/writing, creating 

and displaying, extracting voxels from, and transforming regions 

qt_exam Exams storage class, providing tools for creating interactions between qt_image, 

qt_roi, qt_models, qt_options, and qt_reg classes 

qt_options Options storage class (used only with graphical user interface) 

qt_models Modeling class that performs quantitative modeling with available model and fitting 

customization. Subclasses for specific model types (e.g., DCE or VFA) were also 

developed 

qt_response Modeling class that performs statistical analysis of longitudinal quantitative imaging 

data 

qt_reg Image registration class that bridges an ITK-developed executable with MATLAB 

Table 4-1. Description of QUATTRO classes. These classes, with the exception of qt_options were 

designed to perform as stand-alone command prompt software, meaning that users can utilize those 

classes even beyond the scope of the QUATTRO GUI (e.g., in scripts or as an API). 
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serial imaging, whether from the same series or different days. The image registration needed to link the 

highly developed, widely supported, open source ITK registration libraries [177] with MATLAB, providing 

substantial flexibility in image registration options, offering support for 3D rigid transformations. 

4.2.1 Models and Model Validation 

Standard models matched to common quantitative imaging strategies were incorporated into 

the QUATTRO modeling API (qt_models), including relaxometry, DCE, DSC, and diffusion models, 

manifested as individual qt_models sub-classes (multiflip, multiti, dce, dsc, and dwi, respectively). A 

 

Figure 4-1. QUATTRO GUI screenshot. This is a view of the QUATTRO GUI, showing the main features 

and primary use as an image analysis tool. The common exam workspace can be seen in the 

expanded dropdown box at the lower left. 
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standard non-linear least squares fitting routine (lsqcurvefit) in MATLAB (MathWorks, Natick, MA) based 

on trust-region-reflective method [187], [188] or Levenberg-Marquardt [189], [190] numerical 

optimization algorithms was incorporated into the modeling API. Experience showed that both 

algorithms produced nearly identical results for relaxometry and diffusion data, but DCE and DSC 

applications often required the ability to bound specific parameters, limiting the search space to 

physically interpretable results. Therefore, unless stated explicitly, the reader should assume that the 

trust-region-reflective method was used for all fitting procedures. An additional feature of the modeling 

API is the cleaning procedure in which, after initial parameter estimates are estimated, voxels with 

suspect fits are refitted using, as an initial guess, parameter estimates from the surrounding good fits 

(defined by R2>0.5, an adjustable parameter). In noisy data sets, this additional processing step 

mitigated the occurrence of single voxels or small patches of voxels for which unreasonable parameter 

estimates were made. Specific details of individual model implementations and validations are 

described in the following subsections, with discussions of the physical model and associated 

parameters contained in the respective subsection of Chapter 2. 

All model validation was performed using digital reference objects (DRO) – essentially synthetic 

image acquisitions – to simulate a typical voxel-by-voxel image analysis setting. Because magnitude MR 

images were used in this work, stated SNR values were calculated using 

 
     

  

√  
 
       

 
4.1 

where σnoise  is the standard deviation of ROI voxels either in air or in  a difference image (i.e., noise 

voxels), S0 is the phantom estimated proton density (used for VFA and VTI test objects) or ROI-based 

signal estimate (used for DWI, DCE, and DSC test objects), and the numerical factor in the denominator 

accounts for the Rician distribution of the noise [105]. For each model type, the standard deviation of 
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noise voxels was used to estimate the standard deviation of the Gaussian distribution from which 

random numbers were drawn. To synthesize MR signal, two random numbers were generated from the 

same distribution and added to each synthetic signal datum in the following way: 

    √(    )
    

  4.2 

In equation 4.2, SN is the noisy MR signal generated from the model signal S and two random numbers 

(n1 and n2) drawn from the same Gaussian distribution and the subscript N simply denotes a noisy signal. 

4.2.1.1 Relaxometry Models 

All implemented relaxometry models fitted for the parameter T1 instead of R1, as might be 

suggested by equations 2.19 and 2.22, to provide a better scaled parameter search space; recall, 

T1=1/R1. FSPGR data were fitted directly according to equation 2.19, whereas the VTI data processing 

required an additional step, i.e., signal intensity polarity restoration, which was performed prior to 

performing any modeling. 

A simple algorithm was developed to perform the polarity restoration. The minimum signal 

intensity and corresponding TI, say SImin and TImin, were found in addition to the signal intensity 

corresponding to the next smallest TI value (SImin-1) and the next largest TI value (SImin+1). These three 

signal intensity values were used to calculate the equation of  secant lines based on for four unique 

cases of inverting or retaining the signal polarity: (1) none of the SI values required inversion, (2) only 

the SImin-1 point required inversion, (3) the SImin-1 and SImin points needed to be inverted, and (4) all three 

points needed inversion. For each of these four cases, the Euclidean distances between the SImin point 

and the line were calculated, with the line producing the smallest distance determining the best 

estimation of the TInull. For each TI value smaller than TInull, the signal intensities were inverted. Noisy 

data occasionally caused algorithm failures, in which case the values were manually inverted. Since VTI 

data were only used in estimation of phantom parameters using ROI-based analysis, which are easily 
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verified manually, performance quantification of the signal conversion algorithm was not considered in 

this work. 

To quantify the performance of these relaxometry models, two DROs were created, one for 

each acquisition strategy.  Each DRO was synthesized using a single S0 and a range of R1 values, 

summarized in Table 4-2, distributed in rectangular patches measuring 10 pixels in height and 20 pixels 

in width. Unique R1 values were distributed across eight rows and six columns of patches with the first 

row containing the first eight values, the second row containing the next 8, and so in order of increasing 

R1. An example image of the VTI DRO is shown in Figure 4-2 for visual reference. Parameter values were 

chosen to cover the range of R1 values in the DCE phantom in addition to numerous intermediate values. 

 
S0 SNR Range Model Parameters Simulation Parameters 

VFA 5000 500-6000* R1: 0.5, 0.75, 1, 2, …, 45, 46 s-1 TR=5ms 

VTI 800 250-2500* R1: 0.5, 0.75, 1, 2, …, 45, 46 s-1 θ=180o 

DWI 1300 10-2000 ADC: 0.3, 0.35, …, 2.60, 2.65x10-3mm2/s TE=85ms 

DCE 5000 500-3500* 

Ktrans:0.05, 0.1, 0.15, 0.25, 0.35 min-1 
ve: 0.05, 0.1, 0.15, 0.25, 0.5 
vp: 0.01, 0.05, 0.1, 0.15, 0.2 
Temporal resolution: 1 and 5s 

TR=5ms  
FA=30o 
T10,blood=1440ms 
T10,tissue=1000ms 
r1=4.9 (s∙mM)-1 
HCT=0.45 

DSC 1000 5-150 

α: 1, 1.2, 1.4,…, 2.8 
β: 1, 1.2, 1.4,…, 2.8 
rCBV: 0.002-0.48 
Temporal resolution: 1s 

TE=35ms 

Table 4-2. Digital reference objects construction parameters. Parameters used to construct the 

DROs used for software performance evaluation. Where possible, values were estimated (as 

described in the text) from phantom and/or patient data. The last column, “simulation parameters”, 

contains all other necessary model parameters used to perform the simulations. *denotes proton 

density estimated SNR (not image SNR). For example, the lowest SNR value used for VFA simulations 

corresponds to an FSPGR proton density image SNR of approximately 15. 
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The value of S0 was also matched to phantom measurements by fitting the VFA or VTI model and 

averaging the proton density estimate over all vials and acquisitions of the respective image sets. From 

these DROs, new unique noisy reference objects were generated over a range of SNR values. Image SNR 

is a function of acquisition parameters (e.g., a function of inversion time or flip angle) because of the 

signal dependence on the respective parameter, while noise is invariant. To circumvent this SNR 

dependency, image noise was calculated using the standard deviation of an ROI (approximately 600 

voxels) placed in air, while carefully avoiding imaging artifacts, and calculated as the ratio of S0 to this 

value. SNR minimum and maximum values were calculated for each image on the central slice of the 

VFA and VTI series, and used to determine the synthesized SNR range. Similarly, noise and S0 were 

estimated in patient VFA data sets, extending the lower range of SNRs accordingly (see Table 4-2). 

Gaussian noise was then added to the simulated images as per the discussion in the introduction of this 

section. For each SNR level, parameter maps were generated, and limits of agreement and concordance 

correlation coefficients were calculated for the voxel-by-voxel estimated values (see section 3.3.2.2 for a 

detailed discussion of these metrics) in addition to bias and variance maps. 
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4.2.1.2 Diffusion Model 

QUATTRO’s modeling API only includes the IVIM model as DTI2 modeling is currently 

available in an efficient, widely used implementation on available GE Advantage Windows workstations 

that provide utilities to export the resulting maps as DICOM images, and cross-validated with QUATTRO 

parameter estimates from DWI images (section 3.4.1.3). The IVIM model, in the simplest form (equation 

2.15), was validated using a DRO with forty-eight unique, evenly spaced ADC values using the same 

image dimensions as the VFA and VTI DROs. ADC values were chosen to encompass the range of values 

in the ADC phantom and extended to include the self-diffusion coefficient of pure water reported in 

literature [93], [191]. For each ADC value, a corresponding T2 value was estimated using a fitted cubic 

                                                           
2
 DTI modeling is, in fact, the only component of this work, including that of specific aim 1 and 3, which was 

analyzed outside of QUATTRO’s framework. 

 
Figure 4-2. Example variable inversion time digital reference images. An example image of the 

noiseless (left) and noisy (right) VTI DRO. The patches for most values of R1 can be easily seen with 

the top left square being the lowest value of R1 and the bottom right corner the largest value of R1. 

To better illustrate the added noise, images simulated from two different TI values are displayed, 

hence the seemingly different test objects. 
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polynomial to interpolate the ADC phantom relaxometry data acquired at 4.7T (see Figure 3-8), 

effectively reducing the value S0. T2 estimates at 4.7T were chosen over the corresponding 3.0T 

estimates because of the more robust acquisition method and the fact that T2 values are relatively 

insensitive to field strength. SNR ranges were estimated from the ADC phantom by calculating the 

standard deviation an ROI placed in air (approximately 600 voxels) and average of individual vial ROIs, 

substituting these values into σnoise and S0 of equation 4.1, respectively. SNR estimated from phantom 

measurements was remained above approximately 150, however, the lower range was extended to 

include a generally accepted lower bound on image SNR for DTI acquisitions [99]. A unique DRO was 

created for each level of noise while all other model parameters were held constant. Simulation 

parameters are summarized in Table 4-2. Voxel-by-voxel parameter estimates were used to generate 

ADC maps, from which the LOA and CCC values were calculated to assess the performance of this fitting 

algorithm. 
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4.2.1.3 DCE Model 

DROs were created to assess the three-parameter generalized kinetic model (equation 2.29) 

using the parameters summarized in Table 4-2. Each DRO contained five unique values of Ktrans, ve, and 

vp, resulting in 125 unique combinations of those parameters. The five unique Ktrans values, increasing 

from left to right, were distributed in vertical strips of twenty pixels, while unique values of vp were 

placed in descending horizontal stripes (fifty pixels in height) starting at the bottom of the phantom. 

Values for ve were also placed in descending horizontal stripes. However, the height of these stripes was 

on ten pixels and the group of five stripes recurred for each section of vp values. Figure 4-3 illustrates 

the distribution of parameters. For each combination of PK parameters, the concentration of Gd was 

calculated for these “tissue” uptake curves using the VIF described previously (section 3.3.2.2) using a 

temporal resolution of 1 and 5s. To simulate noisy images, the tissue uptake curves, expressed in mM of 

Gd generated from the PK parameter combinations, were converted to signal intensity assuming a 

perfectly spoiled FSPGR sequence with an S0 of 5000, FA of 30o, and TR of 5ms (i.e., equation 2.19). 

 
Figure 4-3. Actual pharmacokinetic values of the DCE digital reference object. Actual values of Ktrans 

(left), ve (middle), and vp (right) used to generate synthetic tissue uptake curves. The DRO is 250 

pixels in height and 100 pixels in width. 
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Noise was then added as discussed previously to these signal intensity values at each time point. Since 

the VIF was generated separately from the rectangular DRO, noise was simulated as described 

previously for 50 unique VIF signal intensity curves (all derived from the noiseless VIF) and the average 

of these curves was used as the “measured” VIF when estimating PK parameters from the noisy DRO, 

simulating averaging over a user-defined VIF ROI. As with the previous models, noise levels were 

estimated from patient and phantom data, image SNR in this case. For phantom data, subtraction 

images were created between the subsequent images in the serial DCE acquisition and ROIs for each of 

the sixteen vials were used to compute the SNR from the subtraction images using equation 4.1. Noise 

estimation from patient data utilized this same procedure for pre-contrast images in the DCE series, 

extracting noise from the physician-defined tumor ROIs (i.e., tumor contours). S0 was not estimated for 

these data, but rather assumed arbitrarily to be 5,000 (noise was scaled appropriately). Once maps were 

generated from each of these synthetic data sets, LOA and CCC values were calculated to assess the 

algorithm performance. 

4.2.1.4 DSC Model 

Modeling of the rCBV relies on estimation of a gamma-variate fit (equation 2.45) for each 

voxel, since only the first-pass of the CA bolus was considered in this work. To determine the range of 

simulated fit parameters, estimates of the VIF ΔR2* integral and tissue rCBV (equation 2.44) values were 

generated from the patient data sets. The ΔR2* integral (~340), averaged over all VIFs and patients, was 

approximated well by a gamma-variate with shape parameters of α=2.85 and β=3; the scaling constant κ 

was set to 1. Various combinations of shape parameters were mapped to find those values of α and β 

that satisfied the patient-estimated rCBV value ranges, as summarized in Table 4-2. Similarly to the DCE 

DRO, all nineteen unique α values were distributed in vertical stripes with a ten pixel width and unique β 

values were distributed in horizontal stripes ten pixels in height, resulting in a DRO of 190-by-190 pixels. 

Image SNR values were computed from patient data sets as described in previous section (4.2.1.3) using 
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a large ROI placed in the centrum semiovale of the frontal lobe. An arbitrarily chosen value of S0 was 

used (though the value was close to the patient-averaged VIF S0, 876), scaling the noise appropriately. 

Using this set of parameters, arbitrary [Gd], derived from the gamma-variate fit, was generated and 

converted to signal intensity curves by the inverse of equation 2.50on a patch-by-patch basis. Noise was 

then added to these simulated tissue signal intensity curves to create unique DROs each with a different 

level of noise, where the VIF simulation approach of the previous section was used, averaged over ten 

simulated time courses (similar to in vivo VIF ROI sizes). Voxel-by-voxel gamma-variate fitting and rCBV 

estimation was then performed, and LOA and CCC values were calculated to assess the algorithm 

performance. 

4.2.2 Image Registration and Registration Validation 

Routines for performing image registration were developed from the ITK libraries (version 4.3.2) 

and linked to the qt_reg API through an executable. 3D rigid image registration was performed using 

Mattes mutual information [192] as the similarity metric and an implementation of a regular step 

gradient descent optimizer [193]. In addition to Mattes mutual information, the more common Viola-

Wells implementation of mutual information [194] and normalized correlation [195] were incorporated, 

but were otherwise unused in this work. In addition, other basic registration options such as the 

smallest/largest gradient step size, initial transformation guess, number of image pyramid levels, 

minimum signal intensity, and number of spatial samples to use in computation of the similarity metric 

were incorporated into the interface, which allowed fine-tuning of the algorithm’s performance. 

One of the major advantages of using ITK, although there are many, is the extensive validation 

and continued development, which provides the expansive user base the most up-to-date image 

analysis technologies [178], [196]. Therefore, the need for exhaustive validation of the individual 

software components is unnecessary, leaving only the need to select appropriate registration settings to 

optimize the task specific accuracy of the implemented algorithms. To accomplish this, 100 randomly 
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generated transformations were applied to a digital phantom matching the imaging volumes of the data 

analyzed in chapter 5 (see Table 5-1) as closely as possible based on a digital FSPGR simulation of the 

human head from the Montreal Neurological Institute [197]. Specifically, twelve slices with a thickness 

of 5mm were used with a FOV of 20cm. Image registration was then performed using the same 

generated transformations for several combinations of settings where the emphasis was placed on 

registration accuracy and not speed, although the latter was quantified. Once registered, displacement 

vectors were computed for each voxel within the non-zero voxels of the head and the average, median, 

and displacement ranges were computed for this vector field. Exclusion of zero-valued voxels avoided 

biasing the error estimate with voxels that would not be considered in the image analysis. These 

seemingly larger displacements occur as the result of being far from the center of rotation, not 

necessarily from misregistration. Finally, the set of registration options that offered the most accurate 

results were used to register an additional 10,000 random transformations to better estimate the 

accuracy of the algorithm for the synthetic data. 

4.2.3 Code Optimization 

Quantitative imaging produces immense data sets, the analyses of which can, in some cases, 

require several hundred to thousands of hours of total CPU time. Although the processing of these data 

is generally not time sensitive, substantial improvements can be easily gained through utilization of now 

ubiquitous multiple core processors. MathWorks offers, within the Parallel Computing Toolbox, tools for 

the distribution of computations across multicore processors, graphics processing units, and computer 

clusters. In particular, the computation of parameter maps had substantial potential for improvements 

in computational efficiency by distributing the workload, resulting in the development of parallel 

computation infrastructure. To evaluate the performance improvements, parameter maps for a single 

DCE image were computed using between one and four cores. Note that ITK utilizes multi-threaded 

computations whenever applicable. In addition to parallelization, special computationally efficient 
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functions were implemented for use with curve-fitting routines and other processing pipelines within 

the various APIs. 

 

4.3 Results 

4.3.1 Relaxometry Validation 

R1 maps were generated for the synthesized VFA and VTI digital phantoms for all levels of SNR. Bland-

Altman plots calculated from all voxels of the resulting parameter maps, shown in Figure 4-4, clearly 

illustrate the dependence of bias and variance associated with noisy parameter estimations as a 

function of SNR. Because these values were computed from every voxel, encompassing the entire range 

of R1 values, the results are not illustrative of the relationship between the bias/variance and R1. To 

investigate this relationship, maps of percentage error were computed (see Figure 4-5) by averaging the 

percent error over each R1 patch, equivalent to averaging over a 100 voxel ROI. Bias was relatively small, 

even for the highest noise levels, not exceeding, in magnitude, 2.9% or 2.1% error for the VFA or VTI 

simulations, respectively. Comparing Figure 4-4 and Figure 4-5 elucidates the cause of bias in the low 

SNR regime of the VTI model. Essentially, the large, positively biased R1 estimates outweigh the 

computation of the average bias, when taken across all DRO pixels. Similarly, variance investigations 

were performed to explore the R1 dependence by computing maps of the COV of relaxation rate 

differences for each R1 patch at all SNR levels, showing (Figure 4-6), as expected, increasing variance 

with decreasing SNR. The COVs for VFA estimation were roughly 0.75% on average, reaching a maximum 

of 12.6%. For the VTI simulations, the average COV was 0.29% and maximum COVs of 3.0% were seen. 

Finally, the CCC was greater than 0.998 for both DROs evaluated at all noise levels, suggesting excellent 

agreement between the actual and estimated parameters. 
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Figure 4-4. R1 Bland-Altman plots for the VFA and VTI digital phantoms. Summary plots of the 

Bland-Altman analysis performed (averaged over all DRO voxels) for the VFA (left) and VTI (right) test 

objects. The red “x” symbols, which appear as a solid line because of the high density, denote the 

DRO averaged bias, where the black lines above and below these symbols represent the limits of 

agreement. For comparison visual comparisons, a line of zero bias was also plotted. 

 
Figure 4-5. R1 percent error maps for the VFA and VTI digital phantoms. Percent error from the true 

value as a function of SNR and R1 averaged over all voxels of each respective relaxation rate for VFA 

(left) and VTI (right) simulations. The color bar shows the percent difference from the actual 

parameter used to simulate the MR signal. 
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Both DROs exhibited similar trends in the bias and variance associated with fitting noisy data. 

Namely, decreases in SNR were associated with increases in the level of bias and variance. This trend 

was especially pronounced at higher R1 values in the VTI DRO and low R1 in the VFA DRO, illustrating the 

parameter space region where the respective acquisition method becomes most sensitive to noise. This 

sensitivity, for VFA acquisitions, is the result of substantially reduced signal (a byproduct of the short TR) 

for low relaxation rates, resulting in noise dominated signal. VTI acquisitions exhibit increased bias for 

high relaxation rates as a result of the rapid signal recovery from –S0. In practice, lower bounds often 

exist on the values of TI (50ms for the scanners used in this study), resulting in inadequate sampling of 

the dependence of the signal intensity on TI. In this study, for R1 values greater than approximately 14s-

1, the signal remains above the null point, yielding a poor data representation of the physical model 

(equation 2.22). 

 
Figure 4-6. R1 difference coefficient of variation maps for VFA and VTI digital phantoms. Maps 

showing the coefficient of variation of R1 bias for VFA (left) and VTI (right) simulations averaged over 

all voxels for a given R1 value. The color bar shows the COV in %. COV was chosen over other 

measures of spread because of the normalization, allowing quick comparison of different parameter 

values. 
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4.3.2 Diffusion Validation 

ADC maps were generated for the simulated DWI acquisition for the range of SNR values listed 

in Table 4-2. Figure 4-7 illustrates the SNR dependence of bias/variance (Bland-Altman plot) for 

differences between the estimated and true ADC values averaged all DRO voxels at each SNR level. 

These results suggest excellent agreement between ADC estimates and the true values, corroborated by 

a CCC of greater than 0.88 for all SNR levels (1.00 for SNR levels found in phantom data). To illustrate the 

parameter value dependence of bias and variance, maps for the percentage error and COV were 

computed and are shown in Figure 4-8. A maximum absolute bias of 13.0% was found when considering 

all SNR levels, limiting these levels to those measured in the phantom yielded a maximum bias of 0.87%. 

The COVs, on average, were approximately 0.55%, reaching a maximum of 29%. Again, when 

 

Figure 4-7. ADC Bland-Altman plot for the diffusion digital reference object. Summary plot of the 

Bland-Altman analysis performed (averaged over all DRO voxels) on the ADC test objects are shown. 

The red “x” symbols, which appear as a solid line because of the high density, denote the DRO 

averaged bias, where the black lines above and below these symbols represent the limits of 

agreement. For comparison visual comparisons, a line of zero bias was also plotted, although this 

line is not readily visible. 



97 
 

considering only those SNR levels measured in the ADC phantom, the average and maximum COVs were 

0.33% and 5.26%, respectively. Bias and variance results for the diffusion model suggest minimal 

influence of the model fitting routine, even when considering SNR levels substantially (by an order of 

magnitude) below that of a standard acquisition. 

 

 

Figure 4-8. ADC percentage bias and coefficient of variation maps for the diffusion DRO. Percentage 

error (left) and coefficient of variation (right) maps for ADC as a function of SNR. The color bars show 

the percent error (left) and the percent COV (right). 
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Figure 4-9. Bland-Altman plots of PK parameters as a function of SNR. Summary plots of the Bland-

Altman analysis performed (averaged over all DRO voxels) on the DCE test objects are shown. The 

red “x” symbols denote the DRO averaged bias, where the black lines above and below these 

symbols represent the limits of agreement. For comparison visual comparisons, a solid black line of 

zero bias was also plotted. 
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4.3.3 DCE Validation 

Ktrans, ve, and vp maps were generated for the simulated DCE acquisition using the range of SNR 

values listed in Table 4-2. Figure 4-9 illustrates the Bland-Altman analysis as a function of SNR for 

parameters estimated from one and five second temporal resolutions. Consistent underestimate of Ktrans 

and ve are seen at both temporal resolutions on average, with substantial differences in the variance 

between the two resolutions (increasing with temporal resolution). The vp results exhibited the same 

trend in variance, though notable differences were seen in the bias. Namely, vp was consistently over-

estimated with increasing temporal resolution. These results are consistent with the observation of 

increasing bias with temporal resolution of Aerts et al. [164] and Cao et al. [165]. Again, these results 

indicate, on the whole, performance of the algorithm averaged over all parameter values, neglecting the 

influence of SNR, temporal resolution, and the actual parameter values. Similarly to the relaxometry and 

diffusion model analysis, maps of bias and COV were generated as a function of SNR and model 

parameters. Additional model parameters (more than 2) inhibit straightforward visualization of these 

metrics as a function of model parameters and SNR, resulting in five unique Ktrans percent difference 3D 

scatter plots, one for each value of vp, at the high sampling rate (Figure 4-10), and five Ktrans percent 

difference plots for the lower temporal resolution (Figure 4-11). Comparison of these bias figures 

confirms the general trend of increasing parameter estimates as temporal resolution decreases, and for 

all parameters, increasing bias with decreasing SNR. In addition to the trend of deceasing Ktrans bias with 

increasing vp, another trend of decreasing Ktrans bias with decreasing ve is clearly visible at both temporal 

resolutions, particularly for higher values of vp. Ktrans bias exhibited a slight increasing trend with 

decreasing Ktrans, although slightly less apparent at the higher temporal resolution. Overall, the 

maximum absolute Ktrans bias was 10.4% and 13.9% and averaged absolute bias was 1.4% and 1.8% for 

the 1s and 5s temporal resolutions, respectively. Absolute maximum and average percent errors for ve 

were similar to those of Ktrans, 23.1% and 1.1%, respectively, at the high temporal sampling rate and for 
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those at the lower sampling rate, 23.2% and 1.1 %, respectively. The ve percent bias plots are shown in 

Figure 4-13, and increased bias can be easily seen at the edges of the parameter space (i.e., low/high ve, 

vp, and Ktrans). However, vp exhibited substantially higher bias (Figure 4-12) in magnitude and on average 

at the lower sampling rate, 100% and 17.8%, respectively, while the values at the 1s resolution, 3.7% 

and 29.0%, respectively, were comparable with other PK parameters. 

Parameter variance was minimal for Ktrans with COVs less than 4% in magnitude and on average 

less than 0.75% at both temporal resolutions. The ve results varied substantially more in magnitude at 

the lower sampling rate (9.6% max COV), but, on average, COVs were less than 1%. However, variance in 

the estimate of vascular plasma volume was substantially more. The COVs for the 1s sampling interval 

were found to be less than 1%, on average, and nearly 10% in magnitude, with those values for the 5s 

interval reaching 27% and greater than 1400%. Most of this additional variance, not surprisingly, can be 

attributed to the lowest value of vp, as removal of these data yields COVs of approximately 0.6% on 

average and 5.9% in magnitude for the lower temporal resolution. These results clearly indicate the 

need for careful assessment of parameter estimates, particularly in regions of low vp. 
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Figure 4-10. DCE DRO percent bias maps for estimated Ktrans at 1s temporal resolution. Color maps 

of the percent bias as a function of the actual value of vp (0.05-top left, 0.1-top right, 0.15-middle left, 

0.2-middle right), ve on the y-axis, Ktrans on the x-axis, and SNR on z-axis. The color bar represents the 

percentage difference between the estimated parameter and the actual parameter value. 
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Figure 4-11. DCE DRO percent bias maps for estimated Ktrans at 5s temporal resolution. Color maps 

of the percent bias as a function of increasing vp (0.05-top left, 0.1-top right, 0.15-middle left, and 

0.2-middle right), ve on the y-axis, Ktrans on the x-axis, and SNR on z-axis. The color bar represents the 

percentage difference between the estimated parameter and the actual parameter value. 
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Figure 4-12. DCE DRO percent bias maps for estimated vp at 5s temporal resolution. Color maps of 

the percent bias as a function of increasing vp (0.51-top left, 0.1-top right, 0.15-middle left, and 0.2-

middle right), ve on the y-axis, Ktrans on the x-axis, and SNR on z-axis. The color bar represents the 

percentage difference between the estimated parameter and the actual parameter value. 



104 
 

 

4.3.4 DSC Validation 

rCBV maps were generated for the simulated DSC acquisition for each SNR level used to 

simulate the MR acquisition, as listed in Table 4-2. Results of a Bland-Altman analysis and CCC 

computations for all voxels as a function of SNR are summarized in Figure 4-14. These results suggest, as 

expected, increased bias and variance as the noise levels increase (i.e., SNR decreases), albeit slight 

 

Figure 4-13. DCE DRO percent bias maps for estimated ve at 5s temporal resolution. Color maps of 

the percent bias as a function of increasing vp (0.05-top left, 0.1-top right, 0.15-middle left, and 0.2-

middle right), ve on the x-axis, Ktrans on the y-axis, and SNR on z-axis. The color bar represents the 

percentage difference between the estimated parameter and the actual parameter value. 
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trends. The CCC results as a function of SNR suggests a drastic departure in the estimated values from 

the true values. However, this trend is likely the result of a small number of highly biased rCBV values. 

To further investigate the cause, the SNR dependence of bias, specifically percent bias, was mapped and 

is shown in Figure 4-15, in addition to a map of the COV. A maximum absolute bias of approximately 

1000% was found, however, comparison with the bias map suggests that these large deviations from the 

true rCBV occur at very low SNR/rCBV values and are few in number. In fact, more than 80% of the 

SNR/rCBV combinations shown in Figure 4-15 are within 5% of the true rCBV. Similarly, the average and 

maximum COV values were meaninglessly large (greater than 1000%). This again occurs in an isolated 

region of the parameter space and is most likely the result of small variations in values close to zero. 

 

 

Figure 4-14. rCBV Bland-Altman plot and CCC plot as a function of SNR for the DSC DRO. Summary 

plots of the Bland-Altman analysis performed (averaged over all DRO voxels) on the DSC test objects 

are shown. The red “x” denotes the DRO averaged bias, where the black lines above and below these 

symbols represent the limits of agreement. For comparison visual comparisons, a solid black line of 

zero bias was also plotted. 
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4.3.5 Image Registration 

Numerous combinations of the minimum signal intensity, minimum gradient step size, and 

number of pyramid levels were tested using the same 100 randomly generated transformations. For the 

expected magnitude of transformations required in this work, a single level (the original image 

resolution) was found to provide the most accurate results when signal intensities greater than or equal 

to zero were used. No additional improvements in accuracy were found by decreasing the minimum 

step size below a value of 1x10-4. This set of registration settings provided sub-voxel accuracy when 

registering noiseless simulated FSPGR images, and was used in all subsequent work. Using the fine-

tuned settings, 10,000 random transformations were applied to the same image set and the images 

were re-registered. The average voxel displacement from the original position, averaged over all random 

transformations, was approximately 0.73mm with a standard deviation of 0.074mm. These results 

suggest excellent rigid alignment accuracy. 

 
Figure 4-15. rCBV percentage bias and COV maps for the DSC DRO. Percentage error (left) and 

coefficients of variation (right) maps for rCBV as a function of SNR. The color bars show the percent 

error (left) and the percent COV (right). 
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4.3.6 Code Optimization 

Parallel computations were implemented for parameter map calculations. The computations 

were benchmarked using a single 250x100 voxel DCE image data set. Total computation time for a single 

processor was measured at 866s (approximately 14min). Using two and four processors resulted in 

improvements (reductions in processing time) of 16% and 27%, respectively. Much of the computation 

time contributing to this relatively small gain in computational efficiency was the result of the parameter 

re-estimation algorithm, which accounted for 633s of the total computation time stated for a single 

processor. Removing this value from the total processing time resulted in gains of 203% and 484% for 

two and four cores, respectively, results comparable to the expected improvements in processing time. 

Unfortunately, the post-processing re-estimation algorithm depends on neighboring parameter 

estimates during each iteration, rendering multi-threaded processing incompatible with the task. 

 

4.4 Discussion 

Quantitative analysis of multi-parametric MR imaging data is a multifaceted, time-intensive 

process requiring a plethora of tools for quantitation and meaningful representation of imaging 

information. These tools, along with the equipment used to acquire data, require rigorous assessment 

to ensure that bias and variance are quantified, and, where possible, mitigated in an effort to avoid 

propagating unnecessary errors through the image analysis and, ultimately, the response assessment 

framework. This study aimed to develop the tools necessary for providing a unified environment, in 

addition to assessing/mitigating bias and variance through the use of synthesized digital reference 

objects representing values commonly measured in vivo and analyzed in the same manner as patient 

data sets. 
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QUATTRO was developed in the MATLAB environment using object oriented programming 

principles, linking other commonly used and highly developed programmatic tools, specifically ITK and R. 

The flexibility afforded by MATLAB allows further customization and development of tools associated 

and/or derived from any of the developed classes summarized in Table 4-1, in addition to providing a 

unified workspace for performing analysis of quantitative images. While these basic tools provide a 

relatively comprehensive image analysis framework, the linkage of QUATTRO with the libraries of ITK 

and R provides innumerable possibilities for more advanced image registration procedures (e.g., 

deformable image registration) and statistical analysis, respectively. Parallelization tools were also 

incorporated to improve performance of parametric map computations using a framework that can be 

extended easily to incorporate other amenable computational tasks. Although these tools were 

benchmarked using a single multi-core CPU, the increasing availability of machines supporting GPU 

computations and high performance computing clusters (e.g., cloud computing) affords opportunities 

for further expansions of parallelization capabilities. 

Each of the pre-programmed modeling modes and the image registration algorithm was 

validated using QUATTRO’s tools to quantify inherent bias and variance of the algorithms’ performance. 

Model validation showed no substantial bias and variance introduced for the relaxometry and diffusion 

models. For temporal resolutions comparable to clinical acquisition schema, DCE validation results 

suggested increased bias, when compared with faster sampling rates (e.g., 1 frame/s). In addition to 

increased bias, substantial variance was observed in the lower range of tested vp (<0.02). All other PK 

parameters were relatively robust with respect to bias and variance. Similarly, validation of the gamma-

variate fitting for DSC models resulted in substantially increased bias and variance for small values of 

rCBV (<0.02 and <0.05, respectively). 

QUATTRO was the manifestation of considerable efforts focused on developing a unified 

workspace for performing quantitative image analysis in the context of treatment response, the goal of 
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this specific aim. The performance of the various built-in models was validated and characterized using 

simulated data sets. Future work should involve development and incorporation of advanced modeling 

and image registration techniques (see Chapter 6 for additional details). 
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Chapter 5 Radiological Response Maps 

 

5.1 Introduction 

Evaluation of novel targeted or combined therapeutics using traditional measures of response, 

such as RECIST [1] and RANO [2], has faced a number of challenges. Increasingly, functional MR QIBs, 

many of which are potentially suitable for use as surrogate endpoints, are being incorporated into 

clinical trials, as evidence supporting the ability of these markers to assess treatment response is 

growing [7]–[18]. Myriad studies have demonstrated correlations between QIBs and histological 

samples [20]–[32], [37], [43], [56], [62]–[64], and, moreover have established a relationship between 

patterns of QIB changes and treatment response [18], [33]–[39], [70]–[72]. As increasingly complex 

therapies are performed, establishing methods for elucidating locoregional tissue response offers 

promise as a means of assessing the heterogeneity associated with treatment induced changes. 

In an effort to capture these biological changes associated with treatment, a multi-parametric 

statistical framework was developed that provided a means of producing voxel-by-voxel predictions of 

treatment response. A small cohort of patients having undergone advanced imaging studies was 

retrospectively evaluated, including acquisition of DTI, DCE, and DSC imaging data sets, in an effort to 

preliminarily identify an appropriate model and evaluate the generalizability of that model. 

 

5.2 Patient Acquisitions 

Retrospective analysis was performed on a cohort of patients (n=13) with surgically resected 

recurrent glioblastomas. All 13 patients received concurrent radiation therapy and temozolomide plus 

or minus bevacizumab. Of these 13 patients, 6 were treated without bevacizumab, 6 were treated with 

bevacizumab, and the treatment status, with regard to bevacizumab, 1 patient is unconfirmed. This last 
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patient, in the professional opinion of our expert radiation oncologists, is thought to have been treated 

without bevacizumab. Patients underwent advanced MRI imaging four times during this study. The first 

study was performed approximately one week prior to chemoradiation (and/or bevacizumab) therapy (4 

weeks post-surgery), two studies were performed 3-4 weeks mid-treatment, and one post-treatment 

study was performed 3-5 weeks after treatment was complete. Pre-treatment scans, which occurred 

5.6±0.8 (mean ± SEM) days pre-treatment (24.6±1.8 days post-surgery), and both mid-treatment scans, 

occurring at 21.5±0.3 days and 24.8±1.1 days after treatment was initiated. Table 5-1 summarizes the 

quantitative acquisition protocol. 

 

5.3 Methods and Materials 

All work described in the following sections was performed using QUATTRO. A combination of 

 DCE DSC DTI 

Coil: 8CH Brain 8CH Brain 8CH Brain 

Sequence: 3D FSPGR GRE-EPI SE-EPI 

User CVs: Turbo=2 --- ASSET=2 

TE (ms): 1.3 35 91.8 

TR (ms): 6.4 1500 10000 

BW (kHz): +/-62.5 +/-250 +/-250 

NEX: 1 1 1 

Flip Angle (deg.): 30 90 90 

b-value (s/mm2): --- --- 0, 1200 

FOV (cm): 24 24 24 

Phase FOV (%): 0.75 1 1 

Sl. Th. (mm): 5 5 5 

Gap Th. (mm): --- --- 1 

Num. of Slices: 12 12 25 

Num. of Frames: 56 120 27* 

Matrix: 256x160 128x128 128x128 

Table 5-1. Patient DCE, DSC, and DTI phantom protocol acquisition parameters. The temporal 

resolution of the DCE scan was approximately 6.3s. *Denotes the number of diffusion encoding 

directions (one b0 image was acquired). Abbreviations: Num. = Number, Sl. = Slice, Th. = Thickness 
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GUI and command prompt functionality was used in addition to numerous QUATTRO and MATLAB 

scripts. The only portion of the following analyses to be performed outside of QUATTRO was the 

computation of the DTI quantities (ADC and FA). Images were transferred and analyzed on the Linux 

workstation described in section 3.3.2. 

5.3.1 Image Registrations 

Rigid image registrations executed with the qt_reg class were used to align all imaging volumes. 

As discussed in section 4.2.2, the image registration parameters were fine-tuned for the DCE, DSC, and 

DTI data sets. Briefly, a single pyramid level (native image resolution), tri-linear interpolation, and a 

minimum step size of 1x10-4 were used to perform all alignments. In circumstances where the voxel sizes 

between the template and moving imaging volumes were disparate, the larger voxel size was resampled 

to match the higher resolution volume. Intra-series (same day serial acquisitions), inter-series (same 

day, different series), and longitudinal (different dates, same series) were performed independently. 

Intra-series alignment was performed for DCE, DSC, and DTI data sets prior to generating any 

parametric maps. For a given serial DCE acquisition, all serial images were registered to the first frame in 

the series. A similar methodology was used for the DSC series, but the third frame in the series was used 

in lieu of the first frame to avoid non-steady state signal intensities. All non-zero b-value images in the 

DTI series were registered to the b0 image. Following estimating of the image registration 

transformations, voxel displacements averaged across the volume were calculated and transformations 

were only applied to images for which the average displacement was greater than the minimum voxel 

dimension. Intra-series registrations were only used to adjust for slight patient motion during the serial 

acquisitions prior to performing acquisition appropriate quantitative analysis; these transformations 

were otherwise unused. 

Voxel-by-voxel analysis of radiographic response required co-registration of all parametric maps 

for a given patient, a two part procedure. For a given patient and imaging study date, any inter-series 
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patient motion was corrected for by aligning the DSC and DTI imaging volumes to that of the DCE series. 

Although the DCE and DSC volumes were identical, the acquired imaging matrices were different by a 

factor of four, which was corrected by first resampling the DSC images to 256x256 (original matrix: 

128x128) prior to aligning the volumes. As with the series registrations, the first DCE series was chosen 

as the template volume and the third frame of the DSC time series selected as the moving volume. 

Differences between the DCE and DTI volume extent and slice spacing, required additional 

considerations. Prior to co-registering the DCE and DTI data sets, DTI slice spacing was resampled to that 

of the DCE image set (i.e. 5mm thickness and no gaps) and the DCE image volumes was padded with 

zeroes so as to be commensurate with the diffusion image volumes. Following alignment of the b0 DTI 

volume to the first DCE series volume, the DTI imaging volume extending beyond that of the DCE 

volume was removed, resulting in equivalent voxel dimensions and volume extent. All volume 

transformations were stored as ITK iteration files, a qt_reg specific text-based file format storing 

algorithm setup details, the transformation and similarity value at each iteration, and the algorithm stop 

criteria. Similarly, longitudinal imaging data were co-registered. DCE, DSC, and DTI longitudinal volumes 

were registered to the corresponding volume of the pre-treatment date using the native resolution. As 

described previously, the first series volume of the DCE acquisitions, the third serial DSC imaging 

volume, and the b0 image of the DTI data sets were used for co-registration, and all resulting 

transformations were stored as ITK iteration files. 

Image transformations were calculated and stored, but the application of those transformations 

was performed simultaneously to avoid introducing image interpolation artifacts. The qt_reg class 

provides a method for generating a single transformation from serial rigid transformations. To generate 

the new imaging volumes used for radiographic assessment and subsequently extraction values from all 

parametric maps, the inter-series transformations were imported from the ITK iteration files into qt_reg 

followed by the longitudinal transformations. A single transformation matrix was automatically 
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calculated and applied to each of the DCE, DSC, and DTI imaging volumes and parametric maps. By 

generating the registered volumes in this way, as opposed to creating intermediate transformed imaging 

volumes, propagation of interpolation artifacts was avoided. These transformed images were used for 

visual assessment of registration success and the images of the transformed DCE series provided a 

volume on which the oncologist drew all response ROIs. 

5.3.2 Quantitative Image Analysis 

As discussed in section 2.1.3, DCE modeling was performed using the three parameter general 

kinetic model (equation 2.29) on a voxel-by-voxel basis. VIFs were manually defined on a central slice of 

the imaging volume using a polygon ROI by an iterative selection process. All three longitudinal DCE 

exams were visualized simultaneously. Candidate blood vessels were delineated and the time courses 

for the manually defined VIFs of each study date were compared qualitatively. Blood vessels for which 

in-flow enhancement was minimal and for which qualitative features such as peak enhancement, bolus 

shape, and washout were most similar were used to define the VIF for that respective DCE study. During 

the VIF selection process, the number of pre-contrast images was determined by visually inspecting the 

baseline signal, identifying the last time point before substantial trending increases in signal intensity 

were observed which denoted the number of baseline images. After defining the VIFs and determining 

the number of pre-contrast imaging phases, the DCE settings of QUATTRO were updated and parametric 

maps for Ktrans, ve, vp, and R2 were calculated using the change in signal intensity (equation 2.41) and the 

intra-series registered images as discussed in section 5.3.1, noting the discrimination criteria for 

application of the image transformations. DCE modeling performed in QUATTRO averages the signal 

intensity of all pre-contrast images before calculating the change in signal intensity with no additional 

image processing. 

DSC data were analyzed in a similar fashion to the DCE data. Since only first pass kinetics were 

considered, a manually defined recirculation cut-off was determined during the VIF selection process in 



115 
 

addition to the number of pre-contrast images. Determination of the number of pre-contrast images 

was identical to that of the DCE analysis and the recirculation cut-off was chosen to be the frame after 

the peak [Gd] concentration in the VIF time course for which a visually perceptible change in the 

negative slope was present. Figure 5-1 illustrates two examples of pre-enhancement and recirculation 

cut-off selections. QUATTRO settings for the DSC exam were updated with these parameters, and 

computation of a voxel-by-voxel gamma-variate fit was performed.  Prior to fitting each voxel CA time 

course, a gamma-variate is fit to the VIF and the estimated bolus arrival time (BAT) is used, in 

conjunction with the recirculation cut-off, to provide bounds for the individual voxel BAT estimation. In 

practice, this was found to prevent, at least in part, a vast majority of gamma-variate fits with 

unreasonably large integrals (on the order of 108). Following these initial processing steps, gamma-

variate parameter maps and corresponding R2 maps were computed. A Gaussian-Kronrod method, 



116 
 

implemented in the MATLAB function quadgk [198], was used to numerically integrate the individual 

voxel gamma-variate and the VIF fits, taking the ratio of the two integrals yielding the rCBV map. Again, 

the intra-series DSC registrations were used where appropriate. 

DTI data sets, following application of intra-series registration, were transferred to a GE 

Advantage Windows Workstation running FuncTool (GE Healthcare, Waukesha, WI, version 4.5) using 

FTP. Images were initialized in FuncTool and signal thresholds were set to the smallest allowable 

minimum and largest allowable maximum values to ensure diffusion parameter computations were 

performed in all voxels. ADC and FA maps were computed and stored in DICOM format, after which the 

data sets were transferred back to the Linux workstation for further analysis. QUATTRO scripts were 

developed to import the ADC and FA maps into the corresponding DTI QUATTRO save files. 

 
Figure 5-1. Example pre-contrast and recirculation cut-offs for DSC VIF. Two examples of a DSC VIF 

demonstrating the manually defined pre-enhancement (first dotted vertical line) frames and the 

bolus recirculation cut-off (second vertical line). The small squares are the measured data, 

converted from signal intensities to arbitrary units of [Gd], and the solid line is the fitted gamma-

variate. Note that even though the pre-contrast frame is manually defined a value for the bolus 

arrival is actually one of the fitting parameters. 



117 
 

5.3.3 Radiological Assessment 

Two experienced radiation oncologists provided consensus radiological assessment of each 

patient. Both oncologists were instructed to contour areas surrounding the surgical cavity, using all 

clinical data available at the conclusion of the quantitative imaging study, with labels of partial response 

(PR), stable disease (SD), and progressive disease (PD). Initial imaging studies were reviewed, tracking 

changes throughout subsequent quantitative imaging studies. In addition to imaging information, 

consideration was given to the radiation therapy treatment plan to potentially discriminate treatment 

effects from progressive disease. All ROIs were drawn on the co-registered (between series and imaging 

study dates), during which time the oncologists verified the success of the individual rigid registrations.  

5.3.4 Statistical Classification and Response Maps 

Ordinal regression was performed on a voxel-by-voxel basis using the individually and consensus 

defined radiographic assessments (PR, SD, and PD) as the response variable. Thresholds were defined 

for each of the quantitative parameters, except ADC, to prevent modeling physically unrealizable model 

parameters, excluding voxels that exceeded those bounds. Bounds on the ADC performed the additional 

task of discriminating between tissue and fluid filled cavities remaining from the surgical resection. 

Table 5-2 summarizes those physical thresholds. Scripts were created in MATLAB to perform the 

longitudinal regression analysis, importing co-registered parameter maps, response ROIs, and extracting 

all pertinent data using the qt_exam class. ROIs defined by the radiation oncologists representing the 

final patient outcome were loaded through the qt_roi class, and masks were created and applied to all 

registered parametric maps, from which voxels were extracted. After applying the parameter 

thresholds, resultant voxels extracted in this manner were imported and stored in a qt_response object 

as the predictor variable, from which point, generation of visualizations such as histograms and 

probability histograms was easily performed. 
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A basic model was created to perform initial investigation of subsequent differences (i.e. first 

mid-treatment minus baseline and second mid-treatment minus first mid-treatment) of the form 
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       )
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       )

 

 

                          

5.1 

where the subscripts 1 and 2 refer to the baseline/first mid-treatment parameter changes and 

differences in the mid-treatment parameters, respectively, and I[…] is an indicator variable defined as, 

                            {
                     
                         

 . 5.2 

The necessity of this indicator variable arose because the two treatments (placebo and bevacizumab) 

were expected to affect different changes in functional QIB, and the incorporation of this additional 

term provided a means of specifying a single model for all patients in this cohort. Expansion of the 

parenthetical statements included interaction terms between QIBs. Additional models were also 

investigated after qualitative analysis of the data was performed, and are discussed in further detail in 

the following section (5.4). For each of these covariates (including the treatment indicator), the sample 

mean and standard deviation was calculated and used to standardize the covariate, creating covariates 

with a mean of zero and standard deviation of one. Regressions were performed as discussed in section 

 ADC (x10-3mm2/s) FA Ktrans (min-1) ve vp rCBV 

Minimum 0 0 0 0 0 0 

Maximum 2 1 3 1 1 1 

Table 5-2. QIB modeling thresholds. Voxels exceeding the thresholds defined in this table were 

excluded from the regression analyses, as these thresholds nominally represent physically realizable 

parameter quantities of biological tissue. 
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2.2.2 using the ordinal package (version 2013.9-30) developed in R [199], estimating unique regression 

coefficients for each model term, including a regression intercept and category cut-offs. 

Leave-one-out (LOO) cross-validation, as discussed in section 2.2.3, was incorporated to provide 

an exploratory assessment of the generalizability of the developed regression classifiers. When 

performing cross-validation with adequate data sets, the data can more easily be partitioned to form 

training, validation, and testing data sets. By separating the data in this manner, both components of 

cross-validation – model selection and model validation – can be optimally performed. However, the 

limited size of the data set in this work was limiting, despite the number of observations (i.e., voxels) 

was large. Voxel measurements from the same patient are expected to be highly correlated, requiring 

that the cross-validation be performed at the patient level to avoid substantially overestimating the 

prediction accuracies. To this end, patients were excluded one at a time, leaving the remaining patient 

data sets to train the regression models. For each LOO patient, every combination of the six unique 

QIBs, ADC, FA, Ktrans, ve, vp, and rCBV, was fitted to a unique ordinal regression model. For example, one 

model might include only the ADC and rCBV parameters, by dropping all other terms from the model 

defined in equation 5.1. Of these models, with the accuracies averaged across all LOO cases, the multi-

parameter model with the highest average accuracy (average of the individual categories’ accuracies) 

was compared to the accuracies of the corresponding single parameter models to determine whether 

the multi-parameter model was a better predictor of response compared with the single parameter 

counterpart. 

In addition to the LOO cross-validation, the generalized coefficient of determination was 

calculated according to the formulation in section 2.2.2 (equation 2.62) for each model trained during 

this process. “Response” maps representing the predicted category on a voxel-by-voxel basis were 

generated for individual category probabilities. To avoid confusion in the interpretation of these maps, 

each map was masked by the original consensus ROIs. 
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Initial results of the ordinal regression (from both qualitative and quantitative analysis) 

suggested that the use of three categories (PR, SD, and PD) overextended the capabilities of this 

particular data set. Training data from the consensus ROIs exhibited similar behavior, except for the 

poor accuracies were present in prediction of the partial response category. As a result, the PR and SD 

categories were combined, and a logistic model was also considered with the two categories PR/SD and 

PD, similar to the approach taken in the development of the functional diffusion map by Moffat et al. 

[34]. Analyses were performed in the same manner as described for the ordinal regression, except there 

was no need to estimate category cut-offs since logistic models contain only a single fixed cut-off that is 

estimated as the regression intercept. In addition to poor prediction capabilities, initial qualitative 

investigations also revealed a non-negligible portion of some ROIs overlapped with the fluid-filled 

surgical category. A maximum ADC threshold was determined, as defined in Table 5-2, to provide a 

means of rejecting these cavities from the regression model. 

 

5.4 Results 

5.4.1 Data Preparation 

All image series were successfully co-registered, as verified by the radiation oncologists, 

according to the prescription described in section 5.3.1. Inter-series and inter-study image 

transformations were applied to a single series of the DCE, DSC, and DTI images sets, in addition to 

transforming the respective parametric maps, and were subsequently stored in a separate QUATTRO 

ROI save file. The single series images extracted from each of the DCE, DSC, and DTI series were used 

only for quick reference when preparing the ordinal regression script. Response ROIs were then drawn 

by the two experience radiation oncologists, including the set of consensus ROIs. Finally, calculated 

intra-series image transformations were applied to the individual imaging series prior to modeling and 
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stored in an appropriate format for modeling (QUATTRO save for DCE and DSC data and DICOM format 

for DTI data). 

  

Patient # DCE VIF DSC VIF 

1 Superior Sagittal Sinus Middle Cerebral Artery 

2 Superior Sagittal Sinus Middle Cerebral Artery 

3 Superior Sagittal Sinus Posterior Cerebral Artery* 

4 Superior Sagittal Sinus Middle Cerebral Artery* 

5 Superior Sagittal Sinus Posterior Cerebral Artery* 

6 Inferior Sagittal Sinus Middle Cerebral Artery 

7 Superior Sagittal Sinus Posterior Cerebral Artery* 

8 Superior Sagittal Sinus Posterior Cerebral Artery 

9 Inferior Sagittal Sinus Internal Carotid Artery 

10 Middle Cerebral Artery Posterior Cerebral Artery 

11 Superior Sagittal Sinus Middle Cerebral Artery 

Table 5-3. DCE and DSC VIF locations. Artery/vein used in defining the vascular input functions used 

for quantitation of the DCE and DSC studies. 
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VIFs and the corresponding number of pre-enhancement frames were determined for the DCE 

studies; the former are summarized in Table 5-3. Following VIF definition, all DCE parameter maps (Ktrans, 

ve, and vp) and the associated coefficient of determination map were calculated and transformed using 

the inter-series registration results. Resultant QUATTRO workspace data were then saved in a separate 

file for ease of access. Results of the DSC analysis, namely VIF locations are also summarized in Table 

5-3. VIF gamma-variate fits were verified visually and corresponding R2 values (>0.919, except one VIF 

with R2=0.82) were computed and inspected to ensure reasonable VIF fits. Calculated rCBV and R2 maps 

were successfully transformed and saved as QUATTRO files, in the same manner as the DCE data. 

 Number of Voxels 

Patient # PR SD PD Totals 

1 - 606 51 657 

2 - 325 - 325 

5* - - 2435 2435 

6 - 2202 - 2202 

7 - 148 352 500 

8 - 5336 1695 7031 

11 - 357 - 357 

Placebo - 8974 4533 13507 

3 - 1229 3134 4363 

4 1297 - 167 1464 

9 - 21 1465 1486 

10 - 821 569 1390 

Bevacizumab 1297 2071 5335 8703 

Table 5-4. Voxel counts for the consensus ROI definitions of both radiation oncologists. This table 

summarizes the voxel counts of all ROI data defined in consensus between the oncologists gathered 

from all patients and separated by patient, response category, and treatment type. QIB thresholds 

were applied prior to calculating these voxel counts. *indicates that the true treatment was 

unknown. 
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Similarly, DTI maps (ADC and FA) were computed successfully on a GE workstation, imported into the 

corresponding DTI QUATTRO exam file, transformed, and stored.  

5.4.2 Qualitative Inspection 

Using the oncologist defined ROI data, voxels were extracted from each of the parametric map, 

in addition to tracking the response category and treatment type (placebo or bevacizumab). During this 

process, a non-negligible number of R2 values, the criteria used for assessing GKM fits, were found to be 

below zero. Further investigation into the source of these erroneous values revealed voxels exhibiting 

minimal, if any, enhancement during the course of the DCE acquisition. Nominally, R2 lies in the closed 

interval from zero to one, but the use of non-linear fitting in these particular voxels consisting of 

primarily noise resulted in the total sum of squares (SStot) falling below one (but greater than zero) and 

the residual sum of squares (SSres) attaining a non-negligible value. Since the coefficient of determination 

is defined as one minus the ratio of SSres to SStot, the value fell below zero. These voxels were excluded 

from further analysis. Resultant voxel counts after applying the parameter and R2 thresholds for these 

consensus ROI definitions are summarized in Table 5-4. Immediately obvious from these tabulated data 

is the large variation in the number of voxels for each patient and the overall underrepresentation of the 

partial response category. In fact, the single collection of PR voxels renders prediction accuracy 

assessment using LOO cross-validation impossible, and provides a strong argument for performing 

logistic regression by combining the PR/SD into a single category. Another glaringly apparent 

characteristic is the large variability in the number of voxels between individual patients. This high 

degree of variation and skewedness in the voxel counts is a likely source of bias and variance in the 

regression models. 
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  SD            PD   SD              PD 

 

 

 

Figure 5-2. DTI and DSC quantitative imaging biomarker difference histograms for patients 

receiving the placebo. Histograms displaying the distributions of QIB differences between baseline 

and the first mid-treatment study (left) and between the first and second mid-treatment studies 

(right). For a given parameter (label shown under each plot), the x and y limits are held constant, 

but vary between parameters. 

Difference histograms were also generated based on data grouped by voxel response for the 

patients treated with the placebo. DSC and DTI QIB histograms for the placebo group are shown in 

Figure 5-2, while the parameter histograms for the DCE analysis are displayed in Figure 5-3. The 
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corresponding summary statistics (means and standard deviations) for each histogram were compiled 

and are displayed in Table 5-5. Visual inspection of the histograms in Figure 5-2 and Figure 5-3 provides 

some potential insight into longitudinal changes in these QIB. For example, between the first and second 

mid-treatment imaging studies, the distribution of rCBV in the SD category became skewed towards 

decreasing values, suggesting a net decrease in the rCBV, despite the lack of corroboration in the 

corresponding summary statistics, which conforms to the expected patterns of tissues response [86].  

Similarly, expected response patters are seen in the PD histograms, which in this case are in agreement 

with the summary statistics, as FA values appear to increase, consistent with the response pattern of 

progressing disease [43]. Despite these reassuring changes, other counter-intuitive trends were also 

present. For example, although ADC values initially increased after the initiation of treatment in SD 

voxels, a negative overall shift in ADC was observed between the two mid-treatment time points, 

suggesting potential cellular proliferation associated with progressive disease. Despite some potentially 

interesting visual trends, in general, the large spread of the distributions obscured any large scale trends 

in QIB changes, likely resulting from the varying magnitude of responses in the patient population. 
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  ΔADC ΔFA ΔKtrans Δve Δvp ΔrCBV 

P
la

ce
b

o
 PR - - - - - - 

SD 0.15(0.31) 0.003(0.081) 0.027(0.160) 0.023(0.339) -0.001(0.024) -0.008(0.22) 

PD 0.13(0.33) -0.018(0.096) 0.009(0.051) -0.096 (0.42) -0.002(0.013) -0.081(0.19) 

B
ev

ac
iz

u
m

ab
 

PR -0.048(0.20) 0.014(0.079) -0.006(0.030) -0.085(0.36) -0.004(0.014) 0.017(0.15) 

SD -0.008(0.27) 0.017(0.065) 0.014(0.11) -0.013(0.42) 0.004(0.018) 0.004(0.17) 

PD 0.023(0.19) 0.010(0.079) 0.033(0.17) -0.055(0.40) -0.002(0.013) 0.001(0.062) 

  ΔADC ΔFA ΔKtrans Δve Δvp ΔrCBV 

P
la

ce
b

o
 PR - - - - - - 

SD -0.12(0.25) 0.008(0.062) -0.014(0.10) 0.043(0.32) -0.003(0.015) -0.10(0.20) 

PD -0.11(0.22) 0.038(0.081) -0.005(0.043) 0.009(0.31) -0.002(0.011) -0.051(0.18) 

B
ev

ac
iz

u
m

ab
 

PR 0.001(0.074) 0.007(0.045) -0.013(0.022) 0.39(0.31) -0.008(0.006) -0.12(0.089) 

SD -0.009(0.19) 0.003(0.054) -0.015(0.11) 0.002(0.31) -0.003(0.015) -0.031(0.14) 

PD -0.013(0.13) -0.008(0.063) 0.017(0.11) -0.033(0.26) 0.000(0.006) 0.02(0.072) 

Table 5-5. Voxel summary statistics grouped by response category and treatment type. This table 

shows summary statistics, mean (standard deviation), for differences in QIBs between at the 

baseline/first mid-treatment (top) and the second/first mid-treatment (bottom) time points for 

voxels from all patients separated by response category and treatment type. All mean values have 

physical units corresponding to the parameter of interest. 
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Surprisingly, the EES parameter, ve, exhibited a large degree of dispersion and an apparent 

bimodal distribution for difference histograms created with baseline and the first mid-treatment voxel 

  SD            PD   SD              PD 

 

 

 

Figure 5-3. DCE quantitative imaging biomarker difference histograms for patients receiving the 

placebo. Histograms displaying the distributions of QIB differences between baseline and the first 

mid-treatment study (left) and between the first and second mid-treatment studies (right). For a 

given parameter (label shown under each plot), the x and y limits are held constant, but vary 

between parameters. 
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data. Nominally, the fractional EES volume can assume values between zero and one, but little, if any, 

physical significance can be attributed to voxels attaining ve values near one. Further investigation into 

the collection of voxels values near one revealed, not surprisingly, fitting errors. More specifically, in 

noisy voxels with relatively low enhancement, the term describing the plasma fraction (first term of 

equation 2.29) is sufficient to explain the majority of the tissue signal enhancement, resulting in an over-

parameterized, unidentifiable model, arising from the correlation between the two fractional space 

terms [200]. These abnormalities are likely the result of poor permeability caused by only partial BBB 

disruption. In this regime, Ktrans is usually forced to a relatively small value and ve becomes arbitrarily 

large within the parameter bounds [0, 1]. More interesting than the poor fit is the dominance of this 

phenomenon in the baseline scan. Although similarly large ve values were found in the two mid-

treatment scans, the number of voxels found in these later scans was substantially smaller than the 

voxel counts of the baseline maps. Approximately 3,300 voxels (of over 22,000) were found to have ve 

values greater than 0.9, with only 292 and 579 found in the first and second mid-treatment data sets, 

respectively. One possible cause is increased permeability in the BBB resulting from treatment effects. 

In addition to creating difference histograms for patients treated with the placebo, an analogous 

similar set of histograms was also generated for patients treated with bevacizumab. Selected QIBs 

(rCBV, ve, and vp) were chosen to qualitatively illustrate trends as seen in Figure 5-4, though the other 

quantities were investigated. As with the previous voxel data, summary statistics can be found in Table 

5-5. The rCBV exhibited trends consistent with expected biological change, especially in describing 

differences in the first and second difference histogram. Specifically, between the two mid-treatment 

studies, the rCBV distribution in PR and SD categories changed from a widely spread set of values to a 

more compact, negative mean distribution, while voxels in the PD category exhibited a generally 

positive shift, which might be understood intuitively as increasing vascularization. These observations 

were corroborated by corresponding changes in vp. For ve, large changes were observed from a well-
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defined collection of values distributed primarily around zero to a widely spread distribution, suggesting 

an increase in the EES space associated with positive treatment response. Little change was observed in 

the ve values for voxels categorized as SD and PD. Other parameters such as ADC and FA exhibited 

qualitative changes similar to those described for the voxels extracted from the QIB maps of patients 

treated without bevacizumab. 
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Figure 5-4. Selected DCE and DSC quantitative imaging biomarker difference histograms for 

patients treated with bevacizumab. Histograms displaying the distributions of QIB differences 

between baseline and the first mid-treatment study (left) and between the first and second mid-

treatment studies (right). For a given parameter (label shown under each plot), the x and y limits are 

held constant, but vary between parameters. 
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  SD      PD  SD     PD  SD       PD  SD      PD  

 

 

 

Figure 5-5. Probability histograms for patients receiving the placebo. Histograms displaying the 

probability of being a specific category, either SD or PD, are shown for DTI and DSC parameters (left) 

and DCE parameters (right). Each half of this figure (left/right) represents the data from 

baseline/first mid-treatment differences (left) and differences between the two mid-treatment data 

sets (right). 
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Figure 5-6. DTI and DSC QIB probability histograms for voxels from patients receiving 

bevacizumab. Histograms displaying the distributions of DTI and DSC derived QIB differences 

between baseline and the first mid-treatment study (left) and between the first and second mid-

treatment studies (right)  
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Figure 5-7. DCE QIB probability histograms for voxels from patients receiving bevacizumab. 

Histograms displaying the distributions of DTI and DSC derived QIB differences between baseline 

and the first mid-treatment study (left) and between the first and second mid-treatment studies 

(right)  
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Probability histograms are another visualization that are perhaps more instructive for assessing 

data patterns in the context of ordinal regression, and consist of the probability of an observation 

plotted as a function of the individual covariates. Because of the manner in which ordinal regression is 

performed, namely that the probability is the dependent variable, these plots can assist in elucidating 

the functional form of the covariates (e.g., linear or quadratic), if any exists. Visualization of these 

histograms for voxel data from patients receiving the placebo is provided in Figure 5-5. The FA 

baseline/mid-treatment difference histograms show an example of data that would be modeled 

appropriately with a linear covariate. In this case, increasing differences in FA are associated with an 

increased probability of exhibiting SD, and, conversely, decreasing FA values appear to be an indicator of 

increasing chances of a voxel belonging to the PD category. Ktrans and vp both exhibit interesting trends in 

that the probability for a voxel to be in the PD category increase as the differences in the magnitude of 

those parameters becomes different from zero. A second order term would be a likely candidate for 

modeling trends of this nature. Similar plots are provided for voxels extracted from patients undergoing 

bevacizumab treatment, and are shown in Figure 5-6 and Figure 5-7. Although these data are 

substantially noisier compared with patients on the other treatment arm, some potential trends still 

exist. For example, changes in rCBV between the baseline and first mid-treatment scan seem to be a 

good discriminator between the PR and SD categories, which would likely be most optimal if modeled 

with an indicator variable such as  

               {
            
            

 , 5.3 

as opposed to a continuous variable. The rCBV difference between the two mid-treatment data sets 

might be modeled well as the absolute value of the rCBV. Another potential linear trend can be seen in 

ve differences from baseline, but such a relationship would provide little information about the SD. 
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This qualitative investigation of the data provided substantial incentive to reduce the proposed 

ordinal classifier (categories: PR, SD, and PD) to a simple logistic regression model by combining the PR 

and SD classes. With this limited data set, a full range of responses was not exhibited, especially 

apparent in the lack of patients exhibiting a partial response. In fact, using an ordinal model with all 

voxels in the PR category extracted from a single patient precludes accuracy assessment of that 

particular category using LOO cross-validation. In addition, there was little evidence in the probability 

histograms that voxels categorized as SD were distinguishable from PR categories. In the clinical setting, 

prediction of progressive disease carries substantially more importance than either stable disease or 

partial response, as knowledge of progression could potentially inform adaptation treatment regimens. 

For these reasons, logistic models were also used to build a classifier for this cohort of patients. 

5.4.3 Statistical Classification and Response Maps 

Initially, the model proposed in equation 5.1, and all unique combinations of the QIB 

Model Parameters Stable Disease Progressive Disease Overall R2 

ADC 72.9(13.0) 25.3(14.4) 46.8(11.1) 0.040(0.010) 

FA 67.3(13.3) 40.0(15.4) 51.3(10.7) 0.060(0.012) 

Ktrans 69.7(12.7) 30.9(16.2) 48.8(10.6) 0.046(0.009) 

ve 61.9(8.7) 34.3(13.0) 48.2(8.4) 0.12(0.007) 

vp 70.6(11.4) 25.5(12.8) 50.8(10.1) 0.054(0.008) 

rCBV 52.2(10.2) 43.2(13.8) 45.7(8.5) 0.090(0.010) 

ve/rCBV 46.4(6.7) 50.2(13.2) 41.0(5.9) 0.17(0.009) 

FA/vp 69.0(11.1) 35.2(11.7) 52.3(9.7) 0.08(0.010) 

Table 5-6. Ordinal classifier leave-one-out accuracies for linear, first-order interaction, and 

squared terms. This table summarizes the prediction accuracies for the multi-parameter models 

exhibiting the highest categorical and overall accuracies. Table cells with a black background and 

white text represent the highest accuracy for the respective category, identifying both single and 

multi-parameter maximum accuracies. 
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parameters, was fitted to the ordinal regression model. Accuracies for these models for all combinations 

of QIBs and LOO patient data sets were computed, noting that patient 4 was excluded from the ordinal 

LOO cross-validation because creation of a training data set incorporating the PR category required the 

inclusion of voxel data from this patient. Results from multi-parameter ordinal models with the highest 

categorical and overall prediction accuracies, including model accuracies for the corresponding single 

parameter models, are summarized in Table 5-6. For the single parameter models, overall accuracies 

were approximately 50%, with SD accuracies approaching 70% (except for rCBV) and PD accuracies on 

the order of 30% (rCBV is again an exception). Single parameter models incorporating ADC, FA, Ktrans, and 

vp were comparable in SD accuracies, but the corresponding PD accuracies were abysmal. Conversely, 

rCBV seemed to perform best as a predictor for the PD category with accuracies near 50%.  R2 values 

(<0.116) suggest that fitted single parameter models were inadequate in improving the fitted models 

compared with the null model. Moreover, incorporating multiple QIB parameters did little to improve 

either the fits or prediction accuracies with the slight increases in R2 values likely attributed to increasing 

the number of model parameters. Although omitted from these tables, the highest R2 value (0.250) was 

found to correspond to the model including all QIBs, an unsurprising result consistent with R2 inflation. 

Corresponding logistic models were also fit in the same manner as these ordinal models by 

combining the PR and SD categories (i.e., no progression, abbreviated as NP) as was motivated by the 

observations discussed in the preceding subsection (5.4.3). Accuracies for all single parameter models 

and multiple parameter models exhibiting the highest classification prediction accuracies in each of the 

two response categories and overall accuracies are tabulated in Table 5-7. Similarly to the ordinal 

classifier, minimal variation was observed across the categories of the single parameter models, with 

prediction accuracies for NP hovering around 60%, PD approximately 45%, and overall accuracies also 

around 60%. In all cases, R2 seemed to indicate that by combining the PR and SD categories the resultant 

models better explained the data. Inflation of R2 resulting from over-fitting the data was also observed 
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for the logistic regression models where, again, the six QIB model produced the highest R2 (0.314) 

averaged over all LOO cases. 

While the average cross-validation accuracies for the SD or, in the case of the logistic models, NP 

categories seemed promising using a relatively straightforward regression model, those same accuracies 

for the PD category appeared disproportionately low. Investigation of individual LOO cases revealed that 

accuracies for patient 5, who exhibited only PD, were on the order of 1-2% for logistic and ordinal, and, 

interestingly, this is also the patient for whom the exact treatment details were unknown. Incorrect 

treatment assignment is one potential cause for these low prediction accuracies. Investigation of the 

training accuracies, the accuracy with which the model predicts the correct category for the data used to 

generate the model, showed some of the highest overall accuracies, suggesting that patient 5 QIBs were 

potentially deleteriously impacting the fitted model. As a quick test, the cross-validation was re-run for 

the same model, excluding patient 5 from consideration. The results (not shown here) for the ordinal 

Model Parameters No Progression Progressive Disease Overall R2 

ADC 60.7(15.2) 49.3(17.4) 65.2(10.9) 0.11(0.18) 

FA 65.8(13.3) 44.3(14.8) 61.2(10.5) 0.13(0.020) 

Ktrans 69.3(12.3) 34.9(14.2) 56.4(10.1) 0.12(0.016) 

ve 61.5(11.3) 47.3(15.7) 59.2(9.1) 0.15(0.014) 

vp 66.2(12.3) 46.8(16.2) 62.7(10.3) 0.13(0.016) 

rCBV 57.8(12.2) 47.4(16.3) 57.4(9.5) 0.17(0.018) 

ADC/vp 64.0(12.1) 46.4(16.2) 60.8(10.0) 0.14(0.016) 

ADC/Ktrans 68.7(11.7) 35.4(14.1) 55.5(9.9) 0.12(0.017) 

FA/ve/vp/rCBV 58.8(8.4) 53.8(12.7) 53.9(7.9) 0.28(0.016) 

Table 5-7. Logistic classifier leave-one-out accuracies and R2 values for linear, first-order 

interaction, and squared terms. This table summarizes the prediction accuracies (standard error) 

for the multi-parameter models exhibiting the highest categorical and overall accuracies. Table cells 

with a black background and white text represent the highest accuracy for the respective category, 

identifying both single and multi-parameter maximum accuracies. 
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model showed negligible (a few percent) improvements in the overall and SD prediction accuracies, but 

decreases in PD accuracies by a factor of two in most cases. Curiously, the R2 values, on average, 

increased by a factor of nearly 2 for the models listed in Table 5-6. Similar observations were noted in 

the logistic model when performing LOO cross-validation without using patient 5 data. A similar 

occurrence of highly skewed accuracies occurs when patient 10 is the LOO case. However, under these 

circumstances, the SD (or logistic equivalent, NP) accuracies exhibit abnormally low prediction 

accuracies (<30%) that depend heavily on the QIBs used in the model. Other patient data sets (patients 8 

and 9), when removed as an LOO case, exhibited low PD prediction accuracies on the order of 10% for 

the logistic models, but not the ordinal models. For each of the overall accuracies listed in these tables, 

there was a wide range of accuracies for the associated categories. 

As discussed in section 5.4.2, the probability of classifying a given voxel in a specific category as 

a function of the rCBV differences between baseline and the first mid-treatment imaging study exhibited 

behavior more suggestive of a binary response as opposed to a continuous variable. To investigate this 

potential improvement in both the ordinal and logistic regression models, LOO was re-run replacing all 

instances of rCBV1 in equation 5.1 with an indicator variable; the squared term was excluded from the 

model. Resultant ordinal and logistic prediction accuracies exhibited negligible change over the original 

model. 

Although the prediction accuracies of the models developed in this specific aim were less than 

ideal, illustration of the resultant maps for certain combinations of parameters suggests that these 

models can potentially detect heterogeneous response. To that end, several axial slices from the 

imaging data of patient 8, which included categorization of SD and PD voxels on the same slice, provided 

an excellent qualitative example of response heterogeneity. Individual maps were generated for each of 

the categories with the values of these color maps representing the probability of a model specific 

vector of covariates belonging to the category specified by the map. Figure 5-8 and Figure 5-9 show an 
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example slice exhibiting SD (left half of the colored region) and PD (right half of the colored region) as 

defined by the oncologist for the ordinal and logistic models, respectively, containing the QIBs ADC, FA, 

and rCBV. For the ordinal model, a large “hotspot” was seen on the PR probability map within the area 

categorized as SD by the oncologists, indicating, according to the model, an area that will likely exhibit 

PR. Similar hotspots were seen in areas of PD on the PD probability map, suggesting correct 

categorization. Of the three maps, the SD probability map exhibits a more uniform pattern, categorizing 

voxels from both the SD/PD regions as SD. For the logistic model, the combined PR/SD map shows a 

relatively large region of high probability extending well into the PD region defined by the oncologists, 

consistent with the combined probability maps of the ordinal model. Hotspots similar to those exhibited 

by the ordinal models are also seen in the PD probabilities of the logistic PD map. For comparison, the 

models producing the best multi-parameter overall accuracies are shown in Figure 5-10 and Figure 5-11 

(best ordinal model) and Figure 5-12 and Figure 5-13 (best logistic model). These maps exhibit more 

uniform probabilities compared with the maps of Figure 5-8 and Figure 5-9. 
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Figure 5-8. Example ordinal regression response category scores. Response category scores for PR 

(top left), SD (top right), and PD (bottom) for the ordinal model incorporating ADC, FA, and rCBV. 

The left half of the region displayed in color was categorized as SD and the other half as PD. 
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Figure 5-9. Example logistic regression response category scores. Response category scores for 

PR/SD (left) and PD (right) for the logistic model incorporating ADC, FA, and rCBV. The left half of the 

region displayed in color was categorized as SD and the other half as PD. 
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Figure 5-10. Example ordinal regression response category scores. Response category scores for PR 

(top left), SD (top right), and PD (bottom) for the ordinal model incorporating FA and vp. The left half 

of the region displayed in color was categorized as SD and the other half as PD. 
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Figure 5-11. Example logistic regression response category scores. Response category scores for 

PR/SD (left) and PD (right) for the logistic model incorporating FA and vp. The left half of the region 

displayed in color was categorized as SD and the other half as PD. 
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Figure 5-12. Example ordinal regression response category scores. Response category scores for 

PR/SD (left) and PD (right) for the logistic model incorporating ADC and vp. The left half of the region 

displayed in color was categorized as SD and the other half as PD. 
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5.5 Discussion 

Incorporating multiple quantitative imaging biomarkers into a framework that allows 

predictions of treatment response based on radiological response is a promising avenue for the early 

detection of treatment response. More importantly, the development and validation of methods for 

developing multi-parametric analysis techniques which provide means of preserving the inherent spatial 

heterogeneity of underlying disease processes is paramount. The work performed in this specific aim 

utilized the software developed in specific aim 2, with confidence that variance introduced by the 

analysis tools was below that expected in the QIB treatment related changes, to show that ordinal 

regression models could be used to incorporate multiple parameters resulting in maps that provided 

predictions of treatment response based on radiological response. Although the accuracy of these 

 

  

Figure 5-13. Example logistic regression response category scores. Response category scores for 

PR/SD (left) and PD (right) for the logistic model incorporating ADC and vp. The left half of the region 

displayed in color was categorized as SD and the other half as PD. 
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techniques, estimated in a severely limited data set, was relatively low, the framework has been shown 

to generate spatial maps encoding treatment response information. 

Perhaps the biggest limitation of this current study, although there are several, is in the very 

limited nature of the data sets. Despite the large numbers of voxels that were available for training the 

classification models, only 9 patient data sets were suitable for use in generating these ordinal 

regression models (10 for the logistic models). This limited number of patients likely resulted in a highly 

imprecise and inaccurate estimate of the generalization accuracy. In addition to the limited number of 

patients, the limited number of voxels surrounding the surgical cavity that represented original disease 

was also very limited. Voxels beyond this region are more difficult to model with DCE PK models because 

of the intact, or partially so, BBB, effectively introducing noise into the models (as was shown in the 

model validation of specific aim 2). A problem that was further compounded by the low resolution and 

poor fits exhibited in the analysis of the DSC data. 

Perhaps another limitation of the current study can be found in the definition of response. 

Despite the vast experience of the two expert radiation oncologists, misclassifications of voxels at this 

level would introduce large variances and potential biases in the trained models. Ideally, validation of 

the framework developed herein would require biological correlates such as histopathology samples, 

which could potentially be guided by these response maps. For example, patient 5 exhibited prediction 

accuracies on the order of 1-2% for a large number of voxels (~2500) if these voxels were assumed to 

correspond to PD. If in fact, these voxels represented should have been classified as SD, the model might 

be heavily biased toward classifying SD voxels as PD.  Thus, the lack of “ground truth” data makes the 

clinical interpretation of these response maps difficult, if not impossible, but this framework, with 

further validation of QIBs and the models used to amalgamate those parameters may potentially 

introduce meaningful clinical information, possibly to the extent of informing the adaptation of 

ineffective treatments. 
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Chapter 6 Conclusions and Future Directions 

 

As discussed at length in Chapter 1, quantitative MR imaging biomarkers are becoming 

increasingly incorporated into early phase clinical trials as a means of non-invasively assessing treatment 

response and the associated heterogeneity inherent in those responses. Substantial evidence exists to 

support the investigation of numerous promising applications for utilizing these QIBs as a means of 

assessing treatment response. Moreover, the increasing complexity of anticancer therapies and 

associated heterogeneity in tissue responses necessitates tools capable of detecting locoregional 

treatment associated changes. Incorporation of multiple complimentary QIBs can potentially elucidate 

these spatially heterogeneous treatment associated changes, potentially guiding clinical decisions, if 

incorporated into a classification model. The goal of this work was to address investigate ordinal 

regression as a classification method for incorporating multiple QIBs on a voxel-by-voxel basis. 

 

6.1 Evaluation of the Hypothesis 

The hypothesis of this work was that by incorporating multiple quantitative imaging biomarkers 

into an ordinal regression model, better prediction of locoregional radiological response in post-surgical 

glioblastoma patients treated with intensity-modulated radiation therapy and/or bevacizumab would 

result compared with the response predicted by a single quantitative imaging biomarker. Three specific 

aims were developed and completed to provide an assessment of the individual framework components 

(i.e., equipment and analysis methods) and to generate response maps allowing evaluation of the 

central hypothesis. 

Development of quality control phantoms and ongoing acquisitions to assess and mitigate 

equipment bias and variance was the focus of specific aim 1. Two phantoms were developed: a multiple 
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compartment phantom with a range of R1 values for assessing DCE acquisitions and a multiple 

compartment phantom with multiple ADC values for assessing diffusion acquisitions (DWI and DTI). As 

discussed in Chapter 3, longitudinal variance, and even biases associated with measurements made 

away from isocenter, equipment level variance is well below the level of expected changes associated 

with in vivo QIB measurements. These results suggest that equipment related sources of bias and 

variance will minimally impact models developed to account for longitudinal changes in vivo. 

Specific aim 2 focused on the development and validation of a comprehensive software package 

for both modeling quantitative MR acquisitions and incorporating the resultant QIBs into an ordinal 

regression analysis. The Quantitative Utility for Assessment of TreaTment RespOnse (QUATTRO) was 

developed, featuring advanced programming and graphical user interfaces. Object oriented 

programming principles were employed to handle the numerous bookkeeping tasks such as importing, 

storing, and manipulating images, ROIs, and treatment planning information with support for a number 

of common data storage formats (e.g., DICOM 3.0, Pinnacle, and Analyze). Included in this software 

package are a collection of classes for performing modeling of common quantitative MR imaging 

acquisition strategies and specific interfaces for modeling longitudinal data in the context of treatment 

response. Furthermore, these quantitative modeling tools were validated with digital reference objects 

encompassing a range of model parameter space matched to expected in vivo values and over a range 

of acquisition parameters and noise levels. As with the results of specific aim 1, the software validation 

steps suggested levels of variance well below the anticipated changes resulting from treatment. 

Work performed in specific aim 2 provided a means of programmatically calculating QIBs, co-

registering resultant QIB maps, extracting QIB parameters from patient data sets on which response was 

defined, and generating ordinal regression models used for classification. These tasks (or more 

succinctly, the generation of response maps) were the goal of specific aim 3. By performing leave-one-

out cross-validation, an estimate, albeit a very preliminary estimate, of the generalization error for the 
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trained ordinal (and logistic) classifiers was attained. Little, if any, distinction was found between those 

multi-parametric models with the highest accuracies and the corresponding single parameter models, 

let alone statistically significant differences. 

Unfortunately, the proposed hypothesis was not supported by the data collected and analyzed 

in this work. In large part, this lack of support likely stems from the very limited data set that was 

retrospectively analyzed, with only 9 (10 for logistic models) patient data sets for developing and 

assessing the ordinal regression models. Of these data sets, an insufficient number of partial response 

data prevented assessing the classification accuracies for the PR category, and concentrated data 

distributions (e.g., patient 8) as discussed in chapter 5 may have deleteriously impacted the training of 

regression models during the LOO process, resulting in an underestimation of the generalization 

prediction accuracies. Another potential confounding factor is the absence of ground truth data. Some 

of the voxels categorized as SD may, in actuality, be exhibiting partial response or progressive disease, 

and similarly for other categories. Limitations of the routine clinical imaging used to assess treatment 

response are likely central to these initial misclassifications, which would effectively obscure detectable 

trends in QIBs across the response categories. 

Although the hypothesis was not confirmed, the work performed to address this hypothesis 

resulted in a number of substantiative and novel contributions. Phantoms and associated acquisition 

protocols were developed for brain applications, demonstrating the ability to longitudinally monitor 

equipment related sources of bias and variance in relation to diffusion and DCE QIBs. A comprehensive 

software package, QUATTRO, was designed and implemented in the MATLAB programming 

environment providing all necessary tools for perform voxel-by-voxel assessments of response to 

anticancer therapies using multiple QIB. More generally, a methodology for incorporating multiple QIBs, 

not limited to quantitative MRI acquisitions, into an ordinal regression classifier was developed. 
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6.2 Future Directions 

Although self-evident, the acquisition of quality control data that provides a means of assessing 

equipment related bias and variance should be ongoing. One notably flaw in the work performed in 

specific aim 1 is the lack of DSC acquisition assessments. Future studies should incorporate, in addition 

to the diffusion and DCE acquisitions, an additional assessment of DSC parameter reproducibility. Like 

the DCE QIBs, those derived from DSC data are incapable of being measured using a static phantom. 

However, by measuring the signal stability with the DCE phantom designed in this study using a T2- or 

T2*-weighted dynamic scan, simulations similar to the PK simulations could be performed to assess rCBV 

reproducibility. In addition to incorporating an assessment of DSC derived QIBs, a more thorough 

assessment of external stimuli such as temperature could potentially provide a means of correcting 

quantitative measurements for experimental conditions to better assess equipment bias and variance. 

To that end, assessments of bias and variance might be potentially improved by better characterizing 

design parameters, allowing better estimates of expected measurement quantities. This is particularly 

true for the ADC phantom, as the ADC values used to design the phantom were crudely estimated from 

previously published data. 

With regard to the phantom studies, another interesting avenue of investigation is to determine 

the frequency with which these acquisitions should be performed, as weekly phantom studies can 

become quite time consuming. Moreover, at institutions with other ongoing quality control procedures 

in place that occur with some frequency, for example the daily quality control that is performed M.D. 

Anderson Cancer Center,  complimentary or surrogate information derived from these acquisitions 

might provide a means of reducing the frequency of quantitative acquisitions. 

Because of the developmental nature of this project and the limited patient cohort used for 

testing, many of the tools developed herein represent relatively rudimentary techniques. For example, 

the image registration implemented in QUATTRO as a link through the ITK libraries performs 
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straightforward rigid registration. Under normal circumstances, the rigidity of the brain with respect to 

head movements (or in the case of longitudinal studies, patient setup inaccuracies) allows very 

reasonable registration of images using only rigid transformations. However, the cohort used in this 

consisted of post-surgical patients, in which small tissue deformations were easily observed. Moving 

forward, these small deformations might be accounted for through the implementation of a deformable 

image registration tool. For studies investigating extracranial applications, such deformable techniques 

become an absolute necessity. 

Other tools, such as the quantitative image modeling, might benefit from more advanced 

developments. For example, the DCE module of QUATTRO, which uses a standard least squares fitting 

routine, performed well when applied to the pharmacokinetic DRO. However, as was observed in the 

analysis of patient data sets, a number of suspiciously large values for the parameter ve were found. 

Several techniques that have shown promise in improving the fitting of DCE-MRI data are the Bayesian 

methods proposed by Schmid et al. [201], the use of Gaussian Process inference as proposed by Wang et 

al. [202], or the incorporation of a spatial model [203]. Interestingly, the work performed by Kelm and 

Menze [203] provided an example fit in which the model was also unidentifiable, the same issue that 

plagued the analysis of patient data. Although DCE data sets were used as an example in this discussion, 

these methods could presumably be used for any of the other supported quantitative image models. 

Potential model improvements also extend to the classifier developed in the last specific aim of 

this work. Specifically, a prominent source of bias and variance exists in the uncertainties associated 

with expert readers. Initial development of the models presented in this work relied solely on consensus 

data defined between two expert observers. The responses defined in this manner were taken as the 

“true” response, but the introduction of a second observer, or multiple observers, for that matter, 

would very likely produce different results. In the context of ordinal models, a multi-rater model can be 

developed to estimate the variance associated with a group expert readers. While this is useful for 
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investigating variance associated with individual raters, perhaps more useful is the coupling of such an 

analysis with the ordinal regression model. By constructing the regression model in this manner, a 

comparison between the variance associated with individual raters and the fitted regression models can 

be made. In addition to this more appropriate model, the expected spatial correlations might also be 

modeled using a spatial model. 

Validation of the framework and models developed herein would ideally involve acquisition of 

image guided multi-site biopsies and corresponding histology to confirm the predictions made by these 

models. By performing validation in this manner, a large source (expert reader) of variance, and possibly 

bias, may be avoided, potentially providing improved model SNR characteristics. In addition to biological 

correlates, further performance assessment of these response maps might involve prediction of overall 

patient survival (the gold standard for clinical trials). 



153 
 

References 

[1] P. Therasse, S. G. Arbuck, E. A. Eisenhauer, J. Wanders, R. S. Kaplan, L. Rubinstein, J. Verweij, M. 

Van Glabbeke, T. Van Oosterom, M. C. Christian, and S. G. Gwyther, “New Guidelines to Evaluate 

the Response to Treatment,” J. Natl. Cancer Inst., vol. 92, no. 3, pp. 205–216, 2000. 

[2] P. Y. Wen, D. R. Macdonald, D. a Reardon, T. F. Cloughesy, a G. Sorensen, E. Galanis, J. Degroot, 

W. Wick, M. R. Gilbert, A. B. Lassman, C. Tsien, T. Mikkelsen, E. T. Wong, M. C. Chamberlain, R. 

Stupp, K. R. Lamborn, M. a Vogelbaum, M. J. van den Bent, and S. M. Chang, “Updated response 

assessment criteria for high-grade gliomas: response assessment in neuro-oncology working 

group.,” J. Clin. Oncol., vol. 28, no. 11, pp. 1963–72, Apr. 2010. 

[3] J. E. Husband, L. H. Schwartz, J. Spencer, L. Ollivier, D. M. King, R. Johnson, and R. Reznek, 

“Evaluation of the response to treatment of solid tumours - a consensus statement of the 

International Cancer Imaging Society.,” Br. J. Cancer, vol. 90, no. 12, pp. 2256–60, Jun. 2004. 

[4] C. C. Jaffe, “Measures of response: RECIST, WHO, and new alternatives.,” J. Clin. Oncol., vol. 24, 

no. 20, pp. 3245–51, Jul. 2006. 

[5] R. Lencioni and J. M. Llovet, “Modified RECIST (mRECIST) assessment for hepatocellular 

carcinoma.,” Semin. Liver Dis., vol. 30, no. 1, pp. 52–60, Feb. 2010. 

[6] B. Definitions and W. Group, “Biomarkers and surrogate endpoints: preferred definitions and 

conceptual framework.,” Clin. Pharmacol. Ther., vol. 69, no. 3, pp. 89–95, Mar. 2001. 

[7] A. Waldman, A. Jackson, and S. Price, “Quantitative imaging biomarkers in neuro-oncology,” Nat. 

Rev., vol. 6, no. 8, pp. 445–54, Aug. 2009. 

[8] S. Galbraith, “MR in oncology drug development,” NMR Biomed., vol. 19, no. 6, pp. 681–689, 

2006. 



154 
 

[9] A. R. Padhani and A. A. Khan, “Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) 

magnetic resonance imaging (MRI) for monitoring anticancer therapy.,” Target. Oncol., vol. 5, no. 

1, pp. 39–52, Mar. 2010. 

[10] A. Jackson, D. Buckley, and G. Parker, Dynamic Contrast-Enhanced Magnetic Resonance Imaging 

in Oncology. Berlin/Heidelberg: Springer-Verlag, 2005. 

[11] D. M. Koh and H. C. Thoeny, Eds., Diffusion-Weighted MR Imaging. Berlin, Heidelberg: Springer 

Berlin Heidelberg, 2010. 

[12] P. Tofts, Quantitative MRI of the Brain. Chichester, UK: John Wiley & Sons, Ltd, 2003. 

[13] J. M. Provenzale, S. Mukundan, and D. P. Barboriak, “Diffusion-weighted and perfusion MR 

imaging for brain tumor characterization and assessment of treatment response.,” Radiology, 

vol. 239, no. 3, pp. 632–49, Jun. 2006. 

[14] E. R. Gerstner and a G. Sorensen, “Diffusion and diffusion tensor imaging in brain cancer.,” Semin. 

Radiat. Oncol., vol. 21, no. 2, pp. 141–6, Apr. 2011. 

[15] S. Walker-Samuel, M. O. Leach, and D. J. Collins, “Evaluation of response to treatment using DCE-

MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative 

pharmacokinetic analysis.,” Phys. Med. Biol., vol. 51, no. 14, pp. 3593–602, Jul. 2006. 

[16] D. Collins and A. Padhani, “Dynamic magnetic resonance imaging of tumor perfusion,” Eng. Med. 

Biol., vol. 23, no. 5, pp. 65–83, 2004. 

[17] R. M. Stephen and R. J. Gillies, “Promise and progress for functional and molecular imaging of 

response to targeted therapies.,” Pharm. Res., vol. 24, no. 6, pp. 1172–85, Jun. 2007. 

[18] D. M. Patterson, A. R. Padhani, and D. J. Collins, “Technology insight: water diffusion MRI--a 

potential new biomarker of response to cancer therapy.,” Nat. Clin. Pract. Oncol., vol. 5, no. 4, 

pp. 220–33, Apr. 2008. 



155 
 

[19] A. Padhani and G. Liu, “Diffusion-weighted magnetic resonance imaging as a cancer biomarker: 

consensus and recommendations,” Neoplasia, vol. 11, no. 2, pp. 102–125, 2009. 

[20] T. Sugahara, Y. Korogi, M. Kochi, I. Ikushima, Y. Shigematu, T. Hirai, T. Okuda, L. Liang, Y. Ge, Y. 

Komohara, Y. Ushio, and M. Takahashi, “Usefulness of diffusion-weighted MRI with echo-planar 

technique in the evaluation of cellularity in gliomas.,” J. Magn. Reson. imaging, vol. 9, no. 1, pp. 

53–60, Jan. 1999. 

[21] E. R. Gerstner, M. P. Frosch, and T. T. Batchelor, “Diffusion magnetic resonance imaging detects 

pathologically confirmed, nonenhancing tumor progression in a patient with recurrent 

glioblastoma receiving bevacizumab.,” J. Clin. Oncol., vol. 28, no. 6, pp. e91–3, Mar. 2010. 

[22] B. M. Ellingson, M. G. Malkin, S. D. Rand, J. M. Connelly, C. Quinsey, P. S. LaViolette, D. P. 

Bedekar, and K. M. Schmainda, “Validation of functional diffusion maps (fDMs) as a biomarker for 

human glioma cellularity.,” J. Magn. Reson. imaging, vol. 31, no. 3, pp. 538–48, Mar. 2010. 

[23] Y. Hayashida, T. Hirai, S. Morishita, M. Kitajima, R. Murakami, Y. Korogi, K. Makino, H. Nakamura, 

I. Ikushima, M. Yamura, M. Kochi, J. Kuratsu, and Y. Yamashita, “Diffusion-weighted imaging of 

metastatic brain tumors: comparison with histologic type and tumor cellularity.,” Am. J. 

Neuroradiol., vol. 27, no. 7, pp. 1419–25, Aug. 2006. 

[24] G. Manenti, M. Di Roma, S. Mancino, D. a Bartolucci, G. Palmieri, R. Mastrangeli, R. Miano, E. 

Squillaci, and G. Simonetti, “Malignant renal neoplasms: correlation between ADC values and 

cellularity in diffusion weighted magnetic resonance imaging at 3 T.,” Radiol. Med., vol. 113, no. 

2, pp. 199–213, Mar. 2008. 

[25] B. Zelhof, M. Pickles, G. Liney, P. Gibbs, G. Rodrigues, S. Kraus, and L. Turnbull, “Correlation of 

diffusion-weighted magnetic resonance data with cellularity in prostate cancer.,” BJU Int., vol. 

103, no. 7, pp. 883–8, Apr. 2009. 



156 
 

[26] M. I. Yoshikawa, S. Ohsumi, S. Sugata, M. Kataoka, S. Takashima, T. Mochizuki, H. Ikura, and Y. 

Imai, “Relation between cancer cellularity and apparent diffusion coefficient values using 

diffusion-weighted magnetic resonance imaging in breast cancer.,” Radiat. Med., vol. 26, no. 4, 

pp. 222–6, May 2008. 

[27] A. Goyal, R. Sharma, A. S. Bhalla, S. Gamanagatti, A. Seth, V. K. Iyer, and P. Das, “Diffusion-

weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and 

histological subtype.,” Acta radiol., vol. 53, no. 3, pp. 349–58, Apr. 2012. 

[28] M. E. Loveless, D. Lawson, M. Collins, M. V. P. Nadella, C. Reimer, D. Huszar, J. Halliday, J. C. 

Waterton, J. C. Gore, and T. E. Yankeelov, “Comparisons of the efficacy of a Jak1/2 inhibitor 

(AZD1480) with a VEGF signaling inhibitor (cediranib) and sham treatments in mouse tumors 

using DCE-MRI, DW-MRI, and histology.,” Neoplasia, vol. 14, no. 1, pp. 54–64, Jan. 2012. 

[29] T. M. Zaw, W. B. Pope, T. F. Cloughesy, A. Lai, P. L. Nghiemphu, and B. M. Ellingson, “Short-

interval estimation of proliferation rate using serial diffusion MRI predicts progression-free 

survival in newly diagnosed glioblastoma treated with radiochemotherapy.,” J. Neurooncol., vol. 

116, no. 3, pp. 601–8, Feb. 2014. 

[30] N. Gahr, K. Darge, G. Hahn, B. W. Kreher, M. von Buiren, and M. Uhl, “Diffusion-weighted MRI for 

differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma.,” Eur. J. Radiol., 

vol. 79, no. 3, pp. 443–6, Sep. 2011. 

[31] M. P. Aryal, T. N. Nagaraja, K. a Keenan, H. Bagher-Ebadian, S. Panda, S. L. Brown, G. Cabral, J. D. 

Fenstermacher, and J. R. Ewing, “Dynamic contrast enhanced MRI parameters and tumor 

cellularity in a rat model of cerebral glioma at 7 T.,” Magn. Reson. Med., vol. 00, pp. 1–9, Jul. 

2013. 

[32] N. Sadeghi, N. D’Haene, C. Decaestecker, M. Levivier, T. Metens, C. Maris, D. Wikler, D. Baleriaux, 

I. Salmon, and S. Goldman, “Apparent diffusion coefficient and cerebral blood volume in brain 



157 
 

gliomas: relation to tumor cell density and tumor microvessel density based on stereotactic 

biopsies.,” Am. J. Neuroradiol., vol. 29, no. 3, pp. 476–82, Mar. 2008. 

[33] Y. Mardor, “Early Detection of Response to Radiation Therapy in Patients With Brain 

Malignancies Using Conventional and High b-Value Diffusion-Weighted Magnetic Resonance 

Imaging,” J. Clin. Oncol., vol. 21, no. 6, pp. 1094–1100, Mar. 2003. 

[34] B. a Moffat, T. L. Chenevert, T. S. Lawrence, C. R. Meyer, T. D. Johnson, Q. Dong, C. Tsien, S. 

Mukherji, D. J. Quint, S. S. Gebarski, P. L. Robertson, L. R. Junck, A. Rehemtulla, and B. D. Ross, 

“Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain 

tumor response.,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 15, pp. 5524–9, Apr. 2005. 

[35] T. Chenevert, P. McKeever, and B. Ross, “Monitoring early response of experimental brain 

tumors to therapy using diffusion magnetic resonance imaging.,” Clin. Cancer Res., vol. 3, no. 9, 

pp. 1457–1466, 1997. 

[36] D. a Hamstra, C. J. Galbán, C. R. Meyer, T. D. Johnson, P. C. Sundgren, C. Tsien, T. S. Lawrence, L. 

Junck, D. J. Ross, A. Rehemtulla, B. D. Ross, and T. L. Chenevert, “Functional diffusion map as an 

early imaging biomarker for high-grade glioma: correlation with conventional radiologic response 

and overall survival.,” J. Clin. Oncol., vol. 26, no. 20, pp. 3387–94, Jul. 2008. 

[37] S. Higano, X. Yun, T. Kumabe, M. Watanabe, S. Mugikura, A. Umetsu, A. Sato, T. Yamada, and S. 

Takahashi, “Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in 

prediction of grade and prognosis.,” Radiology, vol. 241, no. 3, pp. 839–46, Dec. 2006. 

[38] M. I. Schubert, M. Wilke, S. Müller-Weihrich, and D. P. Auer, “Diffusion-weighted magnetic 

resonance imaging of treatment-associated changes in recurrent and residual medulloblastoma: 

preliminary observations in three children.,” Acta radiol., vol. 47, no. 10, pp. 1100–4, Dec. 2006. 



158 
 

[39] H. C. Thoeny, F. De Keyzer, F. Chen, Y. Ni, W. Landuyt, E. K. Verbeken, H. Bosmans, G. Marchal, 

and R. Hermans, “Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting 

agent on rhabdomyosarcoma in rats.,” Radiology, vol. 234, no. 3, pp. 756–64, Mar. 2005. 

[40] B. D. B. Ross, B. B. A. Moffat, T. S. T. Lawrence, S. K. Mukherji, S. S. Gebarski, D. J. Quint, T. D. 

Johnson, L. Junck, P. L. Robertson, K. M. Muraszko, Q. Dong, C. R. Meyer, P. H. Bland, P. 

McConville, H. Geng, A. Rehemtulla, and T. L. Chenevert, “Evaluation of Cancer Therapy Using 

Diffusion Magnetic Resonance Imaging,” Mol. Cancer Ther., vol. 2, no. June, pp. 581–587, Jun. 

2003. 

[41] R. J. Theilmann, R. Borders, T. P. Trouard, G. Xia, E. Outwater, J. Ranger-Moore, R. J. Gillies, and A. 

Stopeck, “Changes in Water Mobility Measured by Diffusion MRI Predict Response of Metastatic 

Breast Cancer to Chemotherapy,” Neoplasia, vol. 6, no. 6, pp. 831–837, Nov. 2004. 

[42] P. J. Basser and C. Pierpaoli, “Microstructural and physiological features of tissues elucidated by 

quantitative-diffusion-tensor MRI.,” J. Magn. Reson. Ser. B, vol. 111, pp. 209–219, Dec. 1996. 

[43] A. Stadlbauer, O. Ganslandt, R. Buslei, T. Hammen, S. Gruber, E. Moser, M. Buchfelder, E. 

Salomonowitz, and C. Nimsky, “Gliomas: histopathologic evaluation of changes in directionality 

and magnitude of water diffusion at diffusion-tensor MR imaging.,” Radiology, vol. 240, no. 3, pp. 

803–10, Sep. 2006. 

[44] E. Goebell, S. Paustenbach, O. Vaeterlein, X.-Q. Ding, O. Heese, J. Fiehler, T. Kucinski, C. Hagel, M. 

Westphal, and H. Zeumer, “Low-grade and anaplastic gliomas: differences in architecture 

evaluated with diffusion-tensor MR imaging.,” Radiology, vol. 239, no. 1, pp. 217–22, Apr. 2006. 

[45] S. Lu, D. Ahn, G. Johnson, and S. Cha, “Peritumoral diffusion tensor imaging of high-grade gliomas 

and metastatic brain tumors.,” Am. J. Neuroradiol., vol. 24, no. 5, pp. 937–41, May 2003. 



159 
 

[46] T. Beppu, T. Inoue, Y. Shibata, A. Kurose, H. Arai, K. Ogasawara, A. Ogawa, S. Nakamura, and H. 

Kabasawa, “Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial 

astrocytic tumors.,” J. Neurooncol., vol. 63, no. 2, pp. 109–16, Jun. 2003. 

[47] S. Mori, K. Frederiksen, P. C. M. van Zijl, B. Stieltjes, M. A. Kraut, M. Solaiyappan, and M. G. 

Pomper, “Brain white matter anatomy of tumor patients evaluated with diffusion tensor 

imaging.,” Ann. Neurol., vol. 51, no. 3, pp. 377–80, Mar. 2002. 

[48] J. Folkman, “New perspectives in clinical oncology from angiogenesis research.,” Eur. J. Cancer, 

vol. 32A, no. 14, pp. 2534–9, Dec. 1996. 

[49] H. J. Aronen, F. S. Pardo, D. N. Kennedy, J. W. Belliveau, S. D. Packard, D. W. Hsu, F. H. Hochberg, 

a J. Fischman, and B. R. Rosen, “High microvascular blood volume is associated with high glucose 

uptake and tumor angiogenesis in human gliomas.,” Clin. Cancer Res., vol. 6, no. 6, pp. 2189–200, 

Jun. 2000. 

[50] N. Weidner, “Intratumoral vascularity as a prognostic factor in cancers of the urogenital tract.,” 

Eur. J. Cancer, vol. 32A, no. 14, pp. 2506–12, Dec. 1996. 

[51] R. K. Jain, “Transport of molecules across tumor vasculature,” Cancer Metastasis Rev., vol. 6, no. 

4, pp. 559–593, Dec. 1987. 

[52] R. K. Jain, “Determinants of tumor blood flow: a review.,” Cancer Res., vol. 48, no. 10, pp. 2641–

58, May 1988. 

[53] M. V Knopp, F. L. Giesel, H. Marcos, H. von Tengg-Kobligk, and P. Choyke, “Dynamic contrast-

enhanced magnetic resonance imaging in oncology.,” Top. Magn. Reson. imaging, vol. 12, no. 4, 

pp. 301–8, Aug. 2001. 

[54] P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases.,” Nature, vol. 407, no. 

6801, pp. 249–57, Sep. 2000. 



160 
 

[55] L. D. Buadu, J. Murakami, S. Murayama, N. Hashiguchi, S. Sakai, K. Masuda, S. Toyoshima, S. 

Kuroki, and S. Ohno, “Breast lesions: correlation of contrast medium enhancement patterns on 

MR images with histopathologic findings and tumor angiogenesis.,” Radiology, vol. 200, no. 3, pp. 

639–49, Sep. 1996. 

[56] H. J. Aronen, I. E. Gazit, D. N. Louis, B. R. Buchbinder, F. S. Pardo, R. M. Weisskoff, G. R. Harsh, G. 

R. Cosgrove, E. F. Halpern, and F. H. Hochberg, “Cerebral blood volume maps of gliomas: 

comparison with tumor grade and histologic findings.,” Radiology, vol. 191, no. 1, pp. 41–51, Apr. 

1994. 

[57] H. Hawighorst, P. G. Knapstein, W. Weikel, M. V Knopp, I. Zuna, a Knof, G. Brix, U. Schaeffer, C. 

Wilkens, S. O. Schoenberg, M. Essig, P. Vaupel, and G. van Kaick, “Angiogenesis of uterine cervical 

carcinoma: characterization by pharmacokinetic magnetic resonance parameters and histological 

microvessel density with correlation,” Cancer Res., vol. 57, no. 21, pp. 4777–86, Nov. 1997. 

[58] M. Haris, R. K. Gupta, A. Singh, N. Husain, M. Husain, C. M. Pandey, C. Srivastava, S. Behari, and R. 

K. S. Rathore, “Differentiation of infective from neoplastic brain lesions by dynamic contrast-

enhanced MRI.,” Neuroradiology, vol. 50, no. 6, pp. 531–40, Jun. 2008. 

[59] M. Haris, N. Husain, A. Singh, R. Awasthi, R. K. Singh Rathore, M. Husain, and R. K. Gupta, 

“Dynamic contrast-enhanced (DCE) derived transfer coefficient (ktrans) is a surrogate marker of 

matrix metalloproteinase 9 (MMP-9) expression in brain tuberculomas.,” J. Magn. Reson. 

imaging, vol. 28, no. 3, pp. 588–97, Sep. 2008. 

[60] O. Tynninen, H. J. Aronen, M. Ruhala, A. Paetau, K. Von Boguslawski, O. Salonen, J. Jääskeläinen, 

and T. Paavonen, “MRI enhancement and microvascular density in gliomas. Correlation with 

tumor cell proliferation.,” Invest. Radiol., vol. 34, no. 6, pp. 427–34, Jun. 1999. 



161 
 

[61] J. Strugar, D. Rothbart, W. Harrington, and G. R. Criscuolo, “Vascular permeability factor in brain 

metastases: correlation with vasogenic brain edema and tumor angiogenesis.,” J. Neurosurg., vol. 

81, no. 4, pp. 560–6, Oct. 1994. 

[62] M. Maeda, S. Itoh, H. Kimura, T. Iwasaki, N. Hayashi, K. Yamamoto, Y. Ishii, and T. Kubota, “Tumor 

vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging.,” Radiology, 

vol. 189, no. 1, pp. 233–8, Oct. 1993. 

[63] E. A. Knopp, S. Cha, G. Johnson, A. Mazumdar, J. G. Golfinos, D. Zagzag, D. C. Miller, P. J. Kelly, 

and I. I. Kricheff, “Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging.,” 

Radiology, vol. 211, no. 3, pp. 791–8, Jun. 1999. 

[64] T. Sugahara, Y. Korogi, M. Kochi, I. Ikushima, T. Hirai, T. Okuda, Y. Shigematsu, L. Liang, Y. Ge, Y. 

Ushio, and M. Takahashi, “Correlation of MR imaging-determined cerebral blood volume maps 

with histologic and angiographic determination of vascularity of gliomas.,” Am. J. Roentgenol., 

vol. 171, no. 6, pp. 1479–86, Dec. 1998. 

[65] J. O. Barentsz, O. Berger-Hartog, J. A. Witjes, C. Hulsbergen-van der Kaa, G. O. Oosterhof, J. A. 

VanderLaak, H. Kondacki, and S. H. Ruijs, “Evaluation of chemotherapy in advanced urinary 

bladder cancer with fast dynamic contrast-enhanced MR imaging.,” Radiology, vol. 207, no. 3, pp. 

791–7, Jun. 1998. 

[66] M.-L. W. Ah-See, A. Makris, N. J. Taylor, M. Harrison, P. I. Richman, R. J. Burcombe, J. J. Stirling, J. 

A. D’Arcy, D. J. Collins, M. R. Pittam, D. Ravichandran, and A. R. Padhani, “Early changes in 

functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant 

chemotherapy in primary breast cancer.,” Clin. Cancer Res., vol. 14, no. 20, pp. 6580–9, Oct. 

2008. 

[67] A. R. Padhani, C. Hayes, L. Assersohn, T. Powles, A. Makris, J. Suckling, M. O. Leach, and J. E. 

Husband, “Prediction of clinicopathologic response of breast cancer to primary chemotherapy at 



162 
 

contrast-enhanced MR imaging: initial clinical results.,” Radiology, vol. 239, no. 2, pp. 361–74, 

May 2006. 

[68] J. A. Loncaster, B. M. Carrington, J. R. Sykes, A. P. Jones, S. M. Todd, R. Cooper, D. L. Buckley, S. E. 

Davidson, J. P. Logue, R. D. Hunter, and C. M. L. West, “Prediction of radiotherapy outcome using 

dynamic contrast enhanced MRI of carcinoma of the cervix.,” Int. J. Radiat. Oncol. Biol. Phys., vol. 

54, no. 3, pp. 759–67, Nov. 2002. 

[69] M. L. George, A. S. Dzik-Jurasz, A. R. Padhani, G. Brown, D. M. Tait, S. A. Eccles, and R. I. Swift, 

“Non-invasive methods of assessing angiogenesis and their value in predicting response to 

treatment in colorectal cancer.,” Br. J. Surg., vol. 88, no. 12, pp. 1628–36, Dec. 2001. 

[70] H. Hawighorst, R. Engenhart, M. V Knopp, G. Brix, M. Grandy, M. Essig, P. Miltner, I. Zuna, M. 

Fuss, and G. van Kaick, “Intracranial meningeomas: time- and dose-dependent effects of 

irradiation on tumor microcirculation monitored by dynamic MR imaging.,” Magn. Reson. 

Imaging, vol. 15, no. 4, pp. 423–32, Jan. 1997. 

[71] A. Jackson, J. P. B. O’Connor, G. J. M. Parker, and G. C. Jayson, “Imaging tumor vascular 

heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance 

imaging.,” Clin. cancer Res., vol. 13, no. 12, pp. 3449–59, Jun. 2007. 

[72] J. P. B. O’Connor, A. Jackson, G. J. M. Parker, and G. C. Jayson, “DCE-MRI biomarkers in the 

clinical evaluation of antiangiogenic and vascular disrupting agents.,” Br. J. Cancer, vol. 96, no. 2, 

pp. 189–95, Jan. 2007. 

[73] M. O. Leach, B. Morgan, P. S. Tofts, D. L. Buckley, W. Huang, M. a Horsfield, T. L. Chenevert, D. J. 

Collins, A. Jackson, D. Lomas, B. Whitcher, L. Clarke, R. Plummer, I. Judson, R. Jones, R. Alonzi, T. 

Brunner, D. M. Koh, P. Murphy, J. C. Waterton, G. Parker, M. J. Graves, T. W. J. Scheenen, T. W. 

Redpath, M. Orton, G. Karczmar, H. Huisman, J. Barentsz, and A. Padhani, “Imaging vascular 



163 
 

function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance 

imaging.,” Eur. Radiol., vol. 22, no. 7, pp. 1451–64, Jul. 2012. 

[74] L. Clarke, B. Croft, and R. Nordstrom, “Quantitative imaging for evaluation of response to cancer 

therapy,” Transl. Oncol., vol. 2, no. 4, pp. 195–197, 2009. 

[75] E. Jackson and D. Barboriak, “Magnetic resonance assessment of response to therapy: tumor 

change measurement, truth data and error sources,” Transl. Oncol., vol. 2, no. 4, pp. 211–215, 

2009. 

[76] C. R. Meyer, S. G. A. Iii, C. P. Fenimore, G. Mclennan, M. F. Mcnitt-gray, and P. E. Kinahan, 

“Quantitative Imaging to Assess Tumor Response to Therapy: Common Themes of Measurement, 

Truth Data, and Error Sources,” Transl. Oncol., vol. 2, no. 4, pp. 198–210, 2009. 

[77] M. F. McNitt-Gray, L. M. Bidaut, S. G. Armato, C. R. Meyer, M. A. Gavrielides, C. Fenimore, G. 

McLennan, N. Petrick, B. Zhao, A. P. Reeves, R. Beichel, H.-J. G. Kim, and L. Kinnard, “Computed 

tomography assessment of response to therapy: tumor volume change measurement, truth data, 

and error.,” Transl. Oncol., vol. 2, no. 4, pp. 216–22, Dec. 2009. 

[78] R. Bosca, E. Ashton, G. Zahlmann, and E. F. Jackson, “RSNA Quantitative Imaging Biomarker 

Alliance (QIBA) DCE-MRI Phantom: Goal Design, and Initial Results,” 2012. 

[79] D. Malyarenko, C. J. Galbán, F. J. Londy, C. R. Meyer, T. D. Johnson, A. Rehemtulla, B. D. Ross, and 

T. L. Chenevert, “Multi-system repeatability and reproducibility of apparent diffusion coefficient 

measurement using an ice-water phantom.,” J. Magn. Reson. imaging, vol. 37, no. 5, pp. 1238–

46, May 2013. 

[80] T. Zhu, R. Hu, X. Qiu, M. Taylor, Y. Tso, C. Yiannoutsos, B. Navia, S. Mori, S. Ekholm, G. Schifitto, 

and J. Zhong, “Quantification of accuracy and precision of multi-center DTI measurements: a 

diffusion phantom and human brain study.,” Neuroimage, vol. 56, no. 3, pp. 1398–411, Jun. 

2011. 



164 
 

[81] S. Eida, M. Sumi, and T. Nakamura, “Multiparametric magnetic resonance imaging for the 

differentiation between benign and malignant salivary gland tumors.,” J. Magn. Reson. imaging, 

vol. 31, no. 3, pp. 673–9, Mar. 2010. 

[82] B. F. Jordan and B. Gallez, “Surrogate MR markers of response to chemo- or radiotherapy in 

association with co-treatments: a retrospective analysis of multi-modal studies.,” Contrast Media 

Mol. Imaging, vol. 5, no. 6, pp. 323–32, 2010. 

[83] N. C. Atuegwu, J. C. Gore, and T. E. Yankeelov, “The integration of quantitative multi-modality 

imaging data into mathematical models of tumors.,” Phys. Med. Biol., vol. 55, no. 9, pp. 2429–49, 

May 2010. 

[84] C. Hayes, A. Padhani, and M. Leach, “Assessing changes in tumour vascular function using 

dynamic contrast enhanced magnetic resonance imaging,” NMR Biomed., vol. 15, pp. 154–163, 

2002. 

[85] E. M. Haacke, C. L. Filleti, R. Gattu, C. Ciulla, A. Al-Bashir, K. Suryanarayanan, M. Li, Z. Latif, Z. 

DelProposto, V. Sehgal, T. Li, V. Torquato, R. Kanaparti, J. Jiang, and J. Neelavalli, “New algorithm 

for quantifying vascular changes in dynamic contrast-enhanced MRI independent of absolute T1 

values.,” Magn. Reson. Med., vol. 58, no. 3, pp. 463–72, Sep. 2007. 

[86] C. J. Galbán, T. L. Chenevert, C. R. Meyer, C. Tsien, T. S. Lawrence, D. a Hamstra, L. Junck, P. C. 

Sundgren, T. D. Johnson, D. J. Ross, A. Rehemtulla, and B. D. Ross, “The parametric response map 

is an imaging biomarker for early cancer treatment outcome.,” Nat. Med., vol. 15, no. 5, pp. 572–

6, May 2009. 

[87] A. Fick, “Ueber Diffusion,” Ann. der Phys. und Chemie, vol. 170, no. 1, pp. 59–86, 1855. 

[88] A. Einstein, Investigations on the Theory of the Brownian Movement. 1956. 

[89] E. O. Stejskal and J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a 

Time-Dependent Field Gradient,” J. Chem. Phys., vol. 42, no. 1, p. 288, 1965. 



165 
 

[90] H. Torrey, “Bloch Equations with Diffusion Terms,” Phys. Rev., vol. 104, no. 3, pp. 563–565, Nov. 

1956. 

[91] J. Mattiello, P. J. Basser, and D. Lebihan, “Analytical Expressions for the b Matrix in NMR Diffusion 

Imaging and Spectroscopy,” J. Magn. Reson. Ser. A, vol. 108, no. 2, pp. 131–141, Jun. 1994. 

[92] J. Mattiello, P. J. Basser, and D. Le Bihan, “The b matrix in diffusion tensor echo-planar imaging,” 

Magn. Reson. Med., vol. 37, no. 2, pp. 292–300, Feb. 1997. 

[93] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, “MR imaging of 

intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.,” 

Radiology, vol. 161, no. 2, pp. 401–7, Nov. 1986. 

[94] D. Le Bihan, E. Breton, D. Lallemand, M. L. Aubin, J. Vignaud, and M. Laval-Jeantet, “Separation of 

diffusion and perfusion in intravoxel incoherent motion MR imaging.,” Radiology, vol. 168, no. 2, 

pp. 497–505, Aug. 1988. 

[95] Y. Pang, B. Turkbey, M. Bernardo, J. Kruecker, S. Kadoury, M. J. Merino, B. J. Wood, P. a Pinto, 

and P. L. Choyke, “Intravoxel incoherent motion MR imaging for prostate cancer: An evaluation 

of perfusion fraction and diffusion coefficient derived from different b-value combinations.,” 

Magn. Reson. Med., vol. 000, Apr. 2012. 

[96] D. a Yablonskiy and A. L. Sukstanskii, “Theoretical models of the diffusion weighted MR signal.,” 

NMR Biomed., vol. 23, no. 7, pp. 661–81, Aug. 2010. 

[97] P. W. Schaefer, “Applications of DWI in clinical neurology.,” J. Neurol. Sci., vol. 186 Suppl , pp. 

S25–35, May 2001. 

[98] P. J. Basser, J. Mattiello, and D. LeBihan, “Estimation of the effective self-diffusion tensor from 

the NMR spin echo.,” J. Magn. Reson. B, vol. 103, no. 3, pp. 247–54, Mar. 1994. 



166 
 

[99] M. E. Bastin, P. A. Armitage, and I. Marshall, “A theoretical study of the effect of experimental 

noise on the measurement of anisotropy in diffusion imaging,” Magn. Reson. Imaging, vol. 16, 

no. 7, pp. 773–785, Sep. 1998. 

[100] P. A. Armitage and M. E. Bastin, “Utilizing the diffusion-to-noise ratio to optimize magnetic 

resonance diffusion tensor acquisition strategies for improving measurements of diffusion 

anisotropy.,” Magn. Reson. Med., vol. 45, no. 6, pp. 1056–65, Jun. 2001. 

[101] D. K. Jones, M. A. Horsfield, and A. Simmons, “Optimal strategies for measuring diffusion in 

anisotropic systems by magnetic resonance imaging.,” Magn. Reson. Med., vol. 42, no. 3, pp. 

515–25, Sep. 1999. 

[102] A. H. Poonawalla and X. J. Zhou, “Analytical error propagation in diffusion anisotropy 

calculations.,” J. Magn. Reson. imaging, vol. 19, no. 4, pp. 489–98, Apr. 2004. 

[103] a P. Crawley and R. M. Henkelman, “A comparison of one-shot and recovery methods in T1 

imaging.,” Magn. Reson. Med., vol. 7, no. 1, pp. 23–34, May 1988. 

[104] G. J. Parker, G. J. Barker, and P. S. Tofts, “Accurate multislice gradient echo T(1) measurement in 

the presence of non-ideal RF pulse shape and RF field nonuniformity.,” Magn. Reson. Med., vol. 

45, no. 5, pp. 838–45, May 2001. 

[105] H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI data,” Magn. Reson. Med., vol. 

34, no. 6, pp. 910–914, Dec. 1995. 

[106] P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, “Gadolinium(III) Chelates as MRI Contrast 

Agents: Structure, Dynamics, and Applications.,” Chem. Rev., vol. 99, no. 9, pp. 2293–352, Sep. 

1999. 

[107] D. G. Mitchell, “MR imaging contrast agents — what’s in a name?,” J. Magn. Reson. Imaging, vol. 

7, no. 1, pp. 1–4, Jan. 1997. 



167 
 

[108] S. S. Kety, “The theory and applications of the exchange of inert gas at the lungs and tissues.,” 

Pharmacol. Rev., vol. 3, no. 1, pp. 1–41, Mar. 1951. 

[109] P. S. Tofts and a G. Kermode, “Measurement of the blood-brain barrier permeability and leakage 

space using dynamic MR imaging. 1. Fundamental concepts.,” Magn. Reson. Med., vol. 17, no. 2, 

pp. 357–67, Feb. 1991. 

[110] P. Tofts and G. Brix, “Estimating kinetic parameters from dynamic contrast-enhanced T 1-

weighted MRI of a diffusable tracer: standardized quantities and symbols,” J. Magn. Reson. 

imaging, vol. 10, pp. 223–232, 1999. 

[111] J. U. Harrer, G. J. M. Parker, H. a Haroon, D. L. Buckley, K. Embelton, C. Roberts, D. Balériaux, and 

A. Jackson, “Comparative study of methods for determining vascular permeability and blood 

volume in human gliomas.,” J. Magn. Reson. imaging, vol. 20, no. 5, pp. 748–57, Nov. 2004. 

[112] E. M. Renkin, “Transport of potassium-42 from blood to tissue in isolated mammalian skeletal 

muscles.,” Am. J. Physiol., vol. 197, pp. 1205–10, Dec. 1959. 

[113] K.-L. Li and A. Jackson, “New hybrid technique for accurate and reproducible quantitation of 

dynamic contrast-enhanced MRI data.,” Magn. Reson. Med., vol. 50, no. 6, pp. 1286–95, Dec. 

2003. 

[114] K. S. St Lawrence and T.-Y. Lee, “An Adiabatic Approximation to the Tissue Homogeneity Model 

for water exchange in the brain,” J. Cereb. Blood Flow Metab., vol. 18, no. 12, pp. 1365–1377, 

1998. 

[115] K. M. Donahue, D. Burstein, W. J. Manning, and M. L. Gray, “Studies of Gd-DTPA relaxivity and 

proton exchange rates in tissue.,” Magn. Reson. Med., vol. 32, no. 1, pp. 66–76, Jul. 1994. 

[116] G. J. Stanisz and R. M. Henkelman, “Gd-DTPA relaxivity depends on macromolecular content.,” 

Magn. Reson. Med., vol. 44, no. 5, pp. 665–7, Nov. 2000. 



168 
 

[117] P. A. Bottomley, T. H. Foster, R. E. Argersinger, and L. M. Pfeifer, “A review of normal tissue 

hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on 

tissue type, NMR frequency, temperature, species, excision, and age.,” Med. Phys., vol. 11, no. 4, 

pp. 425–48, 1984. 

[118] P. A. Bottomley, C. J. Hardy, R. E. Argersinger, and G. Allen-Moore, “A review of 1H nuclear 

magnetic resonance relaxation in pathology: are T1 and T2 diagnostic?,” Med. Phys., vol. 14, no. 

1, pp. 1–37, 1987. 

[119] S. Naruse, Y. Horikawa, C. Tanaka, K. Hirakawa, H. Nishikawa, and K. Yoshizaki, “Significance of 

proton relaxation time measurement in brain edema, cerebral infarction and brain tumors,” 

Magn. Reson. Imaging, vol. 4, no. 4, pp. 293–304, Jan. 1986. 

[120] H. J. Weinmann, M. Laniado, and W. Mützel, “Pharmacokinetics of GdDTPA/dimeglumine after 

intravenous injection into healthy volunteers.,” Physiol. Chem. Phys. Med. NMR, vol. 16, no. 2, 

pp. 167–72, Jan. 1984. 

[121] G. Brix, W. Semmler, R. Port, L. R. Schad, G. Layer, and W. J. Lorenz, “Pharmacokinetic 

parameters in CNS Gd-DTPA enhanced MR imaging.,” J. Comput. Assist. Tomogr., vol. 15, no. 4, 

pp. 621–8, 1991. 

[122] E. Ashton, D. Raunig, C. Ng, F. Kelcz, T. McShane, and J. Evelhoch, “Scan-rescan variability in 

perfusion assessment of tumors in MRI using both model and data-derived arterial input 

functions.,” J. Magn. Reson. imaging, vol. 28, no. 3, pp. 791–6, Sep. 2008. 

[123] G. J. M. Parker, C. Roberts, A. Macdonald, G. a Buonaccorsi, S. Cheung, D. L. Buckley, A. Jackson, 

Y. Watson, K. Davies, and G. C. Jayson, “Experimentally-derived functional form for a population-

averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI.,” 

Magn. Reson. Med., vol. 56, no. 5, pp. 993–1000, Nov. 2006. 



169 
 

[124] C. Karmonik and E. F. Jackson, “Monte-Carlo simulation study to determine the confidence limits 

for the plasma and tissue concentration time curves in dynamic Gd-DTPA enhanced MRI,” 1999, 

p. 4. 

[125] E. Henderson, B. K. Rutt, and T.-Y. Lee, “Temporal sampling requirements for the tracer kinetics 

modeling of breast disease,” Magn. Reson. Imaging, vol. 16, no. 9, pp. 1057–1073, Nov. 1998. 

[126] L. E. Kershaw and H.-L. M. Cheng, “Temporal resolution and SNR requirements for accurate DCE-

MRI data analysis using the AATH model.,” Magn. Reson. Med., vol. 64, no. 6, pp. 1772–1780, 

Dec. 2010. 

[127] D. a Kovar, M. Lewis, and G. S. Karczmar, “A new method for imaging perfusion and contrast 

extraction fraction: Input functions derived from reference tissues,” J. Magn. Reson. Imaging, vol. 

8, no. 5, pp. 1126–1134, Sep. 1998. 

[128] T. E. Yankeelov, J. J. Luci, M. Lepage, R. Li, L. Debusk, P. C. Lin, R. R. Price, and J. C. Gore, 

“Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a 

reference region model.,” Magn. Reson. Imaging, vol. 23, no. 4, pp. 519–29, May 2005. 

[129] M. Heisen, X. Fan, J. Buurman, N. a W. van Riel, G. S. Karczmar, and B. M. ter Haar Romeny, “The 

influence of temporal resolution in determining pharmacokinetic parameters from DCE-MRI 

data.,” Magn. Reson. Med., vol. 63, no. 3, pp. 811–816, Mar. 2010. 

[130] H. B. Larsson, S. Rosenbaum, and T. Fritz-Hansen, “Quantification of the effect of water exchange 

in dynamic contrast MRI perfusion measurements in the brain and heart.,” Magn. Reson. Med., 

vol. 46, no. 2, pp. 272–81, Aug. 2001. 

[131] D. Buckley, “Uncertainty in the analysis of tracer kinetics using dynamic contrast-•enhanced T1-

•weighted MRI,” Magn. Reson. Med., vol. 606, pp. 601–606, 2002. 



170 
 

[132] P. Wedeking, C. H. Sotak, J. Telser, K. Kumar, C. a Chang, and M. F. Tweedle, “Quantitative 

dependence of MR signal intensity on tissue concentration of Gd(HP-DO3A) in the 

nephrectomized rat.,” Magn. Reson. Imaging, vol. 10, no. 1, pp. 97–108, Jan. 1992. 

[133] C. S. Landis, X. Li, F. W. Telang, J. a Coderre, P. L. Micca, W. D. Rooney, L. L. Latour, G. Vétek, I. 

Pályka, and C. S. Springer, “Determination of the MRI contrast agent concentration time course in 

vivo following bolus injection: effect of equilibrium transcytolemmal water exchange.,” Magn. 

Reson. Med., vol. 44, no. 4, pp. 563–74, Oct. 2000. 

[134] T. E. Yankeelov, W. D. Rooney, X. Li, and C. S. Springer, “Variation of the relaxographic ‘shutter-

speed’ for transcytolemmal water exchange affects the CR bolus-tracking curve shape.,” Magn. 

Reson. Med., vol. 50, no. 6, pp. 1151–69, Dec. 2003. 

[135] D. L. Buckley, L. E. Kershaw, and G. J. Stanisz, “Cellular-interstitial water exchange and its effect 

on the determination of contrast agent concentration in vivo: dynamic contrast-enhanced MRI of 

human internal obturator muscle.,” Magn. Reson. Med., vol. 60, no. 5, pp. 1011–9, Nov. 2008. 

[136] K. M. Donahue, R. M. Weisskoff, D. A. Chesler, K. K. Kwong, A. A. Bogdanov, J. B. Mandeville, and 

B. R. Rosen, “Improving MR quantification of regional blood volume with intravascularT1 contrast 

agents: Accuracy, precision, and water exchange,” Magn. Reson. Med., vol. 36, no. 6, pp. 858–

867, Dec. 1996. 

[137] P. Meier and K. L. Zierler, “On the theory of the indicator-dilution method for measurement of 

blood now and volume,” J. Appl. Physiol., vol. 6, no. 293, pp. 731–744, 1954. 

[138] L. Østergaard, A. G. Sorensen, K. K. Kwong, R. M. Weisskoff, C. Gyldensted, and B. R. Rosen, “High 

resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: 

Experimental comparison and preliminary results,” Magn. Reson. Med., vol. 36, no. 5, pp. 726–

736, Nov. 1996. 



171 
 

[139] a G. Sorensen, A. L. Tievsky, L. Ostergaard, R. M. Weisskoff, and B. R. Rosen, “Contrast agents in 

functional MR imaging,” J. Magn. Reson. Imaging, vol. 7, no. 1, pp. 47–55, Jan. 1997. 

[140] H. J. Aronen and J. Perkiö, “Dynamic susceptibility contrast MRI of gliomas,” Neuroimaging Clin. 

N. Am., vol. 12, no. 4, pp. 501–523, Nov. 2002. 

[141] H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. Mcintosh, “Indicator Transit Time 

Considered As a Gamma Variate.,” Circ. Res., vol. 14, pp. 502–15, Jun. 1964. 

[142] A. Kassner, D. J. Annesley, X. P. Zhu, K. L. Li, I. D. Kamaly-Asl, Y. Watson, and A. Jackson, 

“Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using 

dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity.,” J. 

Magn. Reson. imaging, vol. 11, no. 2, pp. 103–13, Feb. 2000. 

[143] G. Johnson, S. G. Wetzel, S. Cha, J. Babb, and P. S. Tofts, “Measuring blood volume and vascular 

transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI.,” Magn. Reson. Med., 

vol. 51, no. 5, pp. 961–8, May 2004. 

[144] J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies.,” Stat. 

Methods Med. Res., vol. 8, no. 2, pp. 135–60, Jun. 1999. 

[145] L. I. Lin, “A concordance correlation coefficient to evaluate reproducibility.,” Biometrics, vol. 45, 

no. 1, pp. 255–68, Mar. 1989. 

[146] V. E. Johnson and J. H. Albert, Ordinal Data Modeling. New York, NY: Springer-Verlag New York, 

Inc, 1999. 

[147] N. J. D. Nagelkerke, “A note on a general definition of the coefficient of determination,” 

Biometrika, vol. 78, no. 3, pp. 691–692, 1991. 

[148] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York, NY: 

Springer New York, 2009. 



172 
 

[149] R. Bosca and E. Jackson, “Stability of T1 Relaxation Time and DCE-MRI Measures,” Med. Phys., 

vol. 36, no. 6, p. 2705, 2009. 

[150] P. S. Tofts, D. Lloyd, C. a Clark, G. J. Barker, G. J. Parker, P. McConville, C. Baldock, and J. M. Pope, 

“Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo.,” Magn. 

Reson. Med., vol. 43, no. 3, pp. 368–74, Mar. 2000. 

[151] I. Delakis, E. M. Moore, M. O. Leach, and J. P. De Wilde, “Developing a quality control protocol for 

diffusion imaging on a clinical MRI system,” Phys. Med. Biol., vol. 49, no. 8, pp. 1409–1422, Apr. 

2004. 

[152] T. Ihalainen, O. Sipilä, and S. Savolainen, “MRI quality control: six imagers studied using eleven 

unified image quality parameters.,” Eur. Radiol., vol. 14, no. 10, pp. 1859–65, Oct. 2004. 

[153] H. J. Laubach, P. M. Jakob, K. O. Loevblad, a E. Baird, M. P. Bovo, R. R. Edelman, and S. Warach, “A 

phantom for diffusion-weighted imaging of acute stroke.,” J. Magn. Reson. imaging, vol. 8, no. 6, 

pp. 1349–54, 1998. 

[154] M. Freed, J. a de Zwart, P. Hariharan, M. R. Myers, and A. Badano, “Development and 

characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic 

contrast-enhanced MRI.,” Med. Phys., vol. 38, no. 10, pp. 5601–11, Oct. 2011. 

[155] F. B. Laun, S. Huff, and B. Stieltjes, “On the effects of dephasing due to local gradients in diffusion 

tensor imaging experiments: relevance for diffusion tensor imaging fiber phantoms.,” Magn. 

Reson. Imaging, vol. 27, no. 4, pp. 541–8, May 2009. 

[156] W. D. Rooney, G. Johnson, X. Li, E. R. Cohen, S.-G. Kim, K. Ugurbil, and C. S. Springer, “Magnetic 

field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo.,” Magn. 

Reson. Med., vol. 57, no. 2, pp. 308–18, Feb. 2007. 

[157] K. a Kraft, P. P. Fatouros, G. D. Clarke, and P. R. Kishore, “An MRI phantom material for 

quantitative relaxometry.,” Magn. Reson. Med., vol. 5, no. 6, pp. 555–62, Dec. 1987. 



173 
 

[158] R. A. Lerski and J. D. de Certaines, “II. Performance assessment and quality control in MRI by 

Eurospin test objects and protocols,” Magn. Reson. Imaging, vol. 11, no. 6, pp. 817–833, Jan. 

1993. 

[159] S. T. Engelter, J. M. Provenzale, J. R. Petrella, D. M. DeLong, and J. R. MacFall, “The effect of aging 

on the apparent diffusion coefficient of normal-appearing white matter.,” Am. J. Roentgenol., vol. 

175, no. 2, pp. 425–30, Aug. 2000. 

[160] T. L. Chenevert, “Diffusion Magnetic Resonance Imaging: an Early Surrogate Marker of 

Therapeutic Efficacy in Brain Tumors,” J. Natl. Cancer Inst., vol. 92, no. 24, pp. 2029–2036, Dec. 

2000. 

[161] C. Pierpaoli, P. Jezzard, P. J. Basser, a Barnett, and G. Di Chiro, “Diffusion tensor MR imaging of 

the human brain.,” Radiology, vol. 201, no. 3, pp. 637–48, Dec. 1996. 

[162] D. P. Barboriak, J. R. MacFall, B. L. Viglianti, and M. W. Dewhirst Dvm, “Comparison of three 

physiologically-based pharmacokinetic models for the prediction of contrast agent distribution 

measured by dynamic MR imaging.,” J. Magn. Reson. imaging, vol. 27, no. 6, pp. 1388–98, Jun. 

2008. 

[163] F. J. Massey, “The Kolmogorov-Smirnov Test for Goodness of Fit,” J. Am. Stat. Assoc., vol. 46, no. 

253, pp. 68–78, Mar. 1951. 

[164] H. J. W. L. Aerts, K. Jaspers, and W. H. Backes, “The precision of pharmacokinetic parameters in 

dynamic contrast-enhanced magnetic resonance imaging: the effect of sampling frequency and 

duration.,” Phys. Med. Biol., vol. 56, no. 17, pp. 5665–78, Sep. 2011. 

[165] Y. Cao, D. Li, Z. Shen, and D. Normolle, “Sensitivity of quantitative metrics derived from DCE MRI 

and a pharmacokinetic model to image quality and acquisition parameters.,” Acad. Radiol., vol. 

17, no. 4, pp. 468–78, Apr. 2010. 



174 
 

[166] J. a Brookes, T. W. Redpath, F. J. Gilbert, a D. Murray, and R. T. Staff, “Accuracy of T1 

measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional 

variable flip angle fast low-angle shot.,” J. Magn. Reson. imaging, vol. 9, no. 2, pp. 163–71, Feb. 

1999. 

[167] R. Venkatesan, W. Lin, and E. M. Haacke, “Accurate determination of spin-density and T1 in the 

presence of RF-field inhomogeneities and flip-angle miscalibration.,” Magn. Reson. Med., vol. 40, 

no. 4, pp. 592–602, Oct. 1998. 

[168] P. H. Gutin, F. M. Iwamoto, K. Beal, N. a Mohile, S. Karimi, B. L. Hou, S. Lymberis, Y. Yamada, J. 

Chang, and L. E. Abrey, “Safety and efficacy of bevacizumab with hypofractionated stereotactic 

irradiation for recurrent malignant gliomas.,” Int. J. Radiat. Oncol. Biol. Phys., vol. 75, no. 1, pp. 

156–63, Sep. 2009. 

[169] C. Pierpaoli and P. J. Basser, “Toward a quantitative assessment of diffusion anisotropy.,” Magn. 

Reson. Med., vol. 36, no. 6, pp. 893–906, Dec. 1996. 

[170] P. J. Basser and S. Pajevic, “Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by 

background noise.,” Magn. Reson. Med., vol. 44, no. 1, pp. 41–50, Jul. 2000. 

[171] A. Anderson, “Theoretical analysis of the effects of noise on diffusion tensor imaging,” Magn. 

Reson. Med., vol. 45, no. 6, pp. 1174–1188, 2001. 

[172] D. I. Malyarenko, B. D. Ross, and T. L. Chenevert, “Analysis and correction of gradient nonlinearity 

bias in apparent diffusion coefficient measurements,” Magn. Reson. Med., vol. 000, p. 0n/a–

0n/a, May 2013. 

[173] C. D. Marcus, V. Ladam-Marcus, C. Cucu, O. Bouché, L. Lucas, and C. Hoeffel, “Imaging techniques 

to evaluate the response to treatment in oncology: current standards and perspectives.,” Crit. 

Rev. Oncol. Hematol., vol. 72, no. 3, pp. 217–38, Dec. 2009. 



175 
 

[174] G. McLennan, L. Clarke, and R. J. Hohl, “Imaging as a biomarker for therapy response: cancer as a 

prototype for the creation of research resources.,” Clin. Pharmacol. Ther., vol. 84, no. 4, pp. 433–

6, Oct. 2008. 

[175] N. Hylton, “Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker.,” 

J. Clin. Oncol., vol. 24, no. 20, pp. 3293–8, Jul. 2006. 

[176] T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and 

R. Whitaker, “Engineering and algorithm design for an image processing Api: a technical report 

on ITK--the Insight Toolkit.,” Stud. Health Technol. Inform., vol. 85, pp. 586–92, Jan. 2002. 

[177] T. S. Yoo and D. N. Metaxas, “Open science--combining open data and open source software: 

medical image analysis with the Insight Toolkit.,” Med. Image Anal., vol. 9, no. 6, pp. 503–6, Dec. 

2005. 

[178] L. Ibanez, L. Ng, J. Gee, and S. Aylward, “Registration patterns: the generic framework for image 

registration of the insight toolkit,” in Proceedings IEEE International Symposium on Biomedical 

Imaging, 2002, pp. 345–348. 

[179] M. J. McAuliffe, F. M. Lalonde, D. McGarry, W. Gandler, K. Csaky, and B. L. Trus, “Medical Image 

Processing, Analysis and Visualization in clinical research,” in Proceedings 14th IEEE Symposium 

on Computer-Based Medical Systems. CBMS 2001, pp. 381–386. 

[180] R. W. Cox, “AFNI: software for analysis and visualization of functional magnetic resonance 

neuroimages.,” Comput. Biomed. Res., vol. 29, no. 3, pp. 162–73, Jun. 1996. 

[181] W. Rasband and T. Ferreira, ImageJ User Guide. . 

[182] D. P. Barboriak, J. R. MacFall, A. O. Padua, G. E. York, B. L. Viglianti, and M. W. Dewhirst, 

“Standardized software for calculation of Ktrans and vp from dynamic T1-weighted MR images,” 

in International Society for Magnetic Resonance in Medicine Workshop on MR in Drug 

Development: From Discovery to Clinical Therapeutic Trials, 2004. 



176 
 

[183] Y. Cao, “Development of Image Software Tools for Radiation Therapy Assessment,” Med. Phys., 

vol. 32, no. 6, p. 2136, 2005. 

[184] T. Neff, F. Kiessling, G. Brix, K. Baudendistel, C. Zechmann, F. L. Giesel, and R. Bendl, “An 

optimized workflow for the integration of biological information into radiotherapy planning: 

experiences with T1w DCE-MRI.,” Phys. Med. Biol., vol. 50, no. 17, pp. 4209–23, Sep. 2005. 

[185] K. Covington, E. S. McCreedy, M. Chen, A. Carass, N. Aucoin, and B. A. Landman, “Interfaces and 

Integration of Medical Image Analysis Frameworks: Challenges and Opportunities.,” ORNL 

Biomed. Sci. Eng. Cent. Conf., vol. 2010, pp. 1–4, May 2010. 

[186] T. R Core, “A language and environment for statistical computing.,” in R Foundation for Statistical 

Computing, 2013. 

[187] T. Coleman and Y. Li, “On the convergence of interior-reflective Newton methods for nonlinear 

minimization subject to bounds,” Math. Program., vol. 67, pp. 189–224, 1994. 

[188] T. F. Coleman and Y. Li, “An Interior Trust Region Approach for Nonlinear Minimization Subject to 

Bounds,” SIAM J. Optim., vol. 6, no. 2, pp. 418–445, May 1996. 

[189] K. Levenberg, “A Method for the Solution of Certain Problems in Least-Squares,” Q. Appl. Math, 

vol. 2, pp. 164–168, 1944. 

[190] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. 

Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, Jun. 1963. 

[191] T. L. James and G. G. McDonald, “Measurement of the self-diffusion coefficient of each 

component in a complex system using pulsed-gradient fourier transform NMR,” J. Magn. Reson., 

vol. 11, no. 1, pp. 58–61, Jul. 1973. 

[192] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank, “PET-CT image registration in 

the chest using free-form deformations.,” IEEE Trans. Med. Imaging, vol. 22, no. 1, pp. 120–8, 

Jan. 2003. 



177 
 

[193] F. Maes, D. Vandermeulen, and P. Suetens, “Comparative evaluation of multiresolution 

optimization strategies for multimodality image registration by maximization of mutual 

information,” Med. Image Anal., vol. 3, no. 4, pp. 373–86, Dec. 1999. 

[194] P. Viola and W. W. III, “Alignment by maximization of mutual information,” Int. J. Comput. Vis., 

vol. 24, no. 2, pp. 137–154, 1997. 

[195] A. Roche, G. Malandain, X. Pennec, and N. Ayache, “The correlation ratio as a new similarity 

measure for multimodal image registration,” Med. Image Comput. Comput. Interv., vol. 1496, pp. 

1115–1124, 1998. 

[196] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK software guide, Second. 2003. 

[197] B. Aubert-Broche, M. Griffin, G. B. Pike, A. C. Evans, and D. L. Collins, “Twenty new digital brain 

phantoms for creation of validation image data bases.,” IEEE Trans. Med. Imaging, vol. 25, no. 11, 

pp. 1410–6, Nov. 2006. 

[198] L. F. Shampine, “Vectorized adaptive quadrature in MATLAB,” J. Comput. Appl. Math., vol. 211, 

no. 2, pp. 131–140, Feb. 2008. 

[199] R. H. B. Christensen, “ordinal - Regression Models for Ordinal Data R Package.” 2013. 

[200] R. G. P. Lopata, W. H. Backes, P. P. J. van den Bosch, and N. a W. van Riel, “On the identifiability 

of pharmacokinetic parameters in dynamic contrast-enhanced imaging.,” Magn. Reson. Med., 

vol. 58, no. 2, pp. 425–9, Aug. 2007. 

[201] V. J. Schmid, B. Whitcher, A. R. Padhani, N. J. Taylor, and G.-Z. Yang, “Bayesian Methods for 

Pharmacokinetic Models in Dynamic Contrast-Enhanced Magnetic Resonance Imaging,” IEEE 

Trans. Med. Imaging, vol. 25, no. 12, pp. 1627–1636, Dec. 2006. 

[202] S. Wang, P. Liu, B. Turkbey, P. Choyke, P. Pinto, and R. M. Summers, “Gaussian process inference 

for estimating pharmacokinetic parameters of dynamic contrast-enhanced MR images.,” Med. 

Image Comput. Comput. Interv., vol. 15, no. Pt 3, pp. 582–9, Jan. 2012. 



178 
 

[203] B. Kelm and B. Menze, “Estimating kinetic parameter maps from dynamic contrast-enhanced MRI 

using spatial prior knowledge,” Med. Imaging, vol. 28, no. 10, pp. 1534–1547, 2009.  

  



179 
 

Vita 

 

Ryan Joseph Bosca was born in Arlington, Texas on November 2nd, 1982, the son of Donald and Tonya 

Bosca. After graduating from Mansfield High School in Mansfield, Texas, he earned a Bachelor of Science 

degree in physics, graduating with Honors from the University of North Texas – Denton, Texas – in May 

of 2006. He later went on to complete a Bachelor of Science in Mathematics (2007) and Master of 

Science in Physics (2008) before matriculating to The University of Texas Health Science Center at 

Houston Graduate School of Biomedical Sciences in August of 2008. 

 

 

 

 

 

 

 

 

 

 

Permanent address: 

2514 Woodbridge Trail 
Mansfield, Texas 76063 


	Methodological Development Of A Multi-Parametric Quantitative Imaging Biomarker Framework For Assessing Treatment Response With Mri
	Recommended Citation

	tmp.1398705541.pdf.2fPBh

