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PHAGE DISPLAY LIBRARY SCREENING FOR PSA-/lo PROSTATE CANCER 

CELL-BINDING PEPTIDES 

 

John Robert Moore, B.S.  

Supervisor: Dean G. Tang, Ph.D. 

 

 

Prostate cancer (PCa) is one of the leading malignancies affecting men worldwide. 

Our lab focuses on understanding the molecular mechanisms underlying prostate 

carcinogenesis and developing therapeutics that target the cells responsible for driving PCa 

and mediating therapy resistance. My master thesis research employs a phage display library 

screening technology aiming to identify peptides that preferentially home in to 

undifferentiated PCa cells, which our lab has previously demonstrated to be intrinsically 

resistant to castration.  

There is now evidence that a population of cells in PCa possesses characteristics 

associated with stem cells; these cells are referred to as cancer stem cells (CSCs). CSCs 

have been implicated in tumor propagation, progression and recurrence. In PCa, androgen 

deprivation therapy (ADT) is the mainstay treatment however, the majority of patients 

relapse after treatments, resulting in castration-resistant prostate cancer (CRPC). Our lab has 

provided evidence that the phenotypically undifferentiated PCa cell population expressing 

low levels or no prostate specific antigen (i.e., PSA-/lo) is enriched in prostate cancer stem 

cells (PCSCs) that can long-term propagate tumors and also resist ADT. The PSA-/lo PCa 

cell population represents the best characterized PCSCs and likely a cell-of-origin for 

CRPC. Consequently, it is important to find therapeutics that can preferentially target these 
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cells. To this end, we employed highly purified PSA-/lo LNCaP PCa cells to perform phage 

display library screening. Our preliminary efforts identified two peptides, JRM1 and JRM2 

that displayed preferential binding to PSA-/lo PCa cells.  

We first identified a potential peptide that may home in to the PSA-/lo LNCaP cells 

by conducting a phage display library screening of LNCaP PSA-GFP utilizing a competitive 

assay technique. This peptide, TEWDYLTV, referred to as JRM1, showed slight but not 

statistically significant, preferential binding to the PSA-/lo LNCaP cells. With this knowledge 

we carried out another phage display library screening using adherent LNCaP PSA-GFP 

cells and an indirect subtraction assay. The results led to the identification of peptide JRM2, 

GFYVGQR, which demonstrated preferential and statistically significant binding to the 

PSA-/lo LNCaP cells. With this peptide we would like to attach either anti-cancer drugs or 

pro-apoptotic peptides to it and measure their effectiveness at killing undifferentiated and 

castration-resistant PCa cells.    
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        A quarter of all deaths in the United States are due to cancer. In males, prostate cancer 

(PCa) is estimated to have ~233,000 new cases in 2014, and of those ~29,480 will result in 

death [1].  In the past decades, progress has been made in the treatment and detection of 

PCa. The underlying mechanisms of how PCa develops and why after treatment it can re-

lapse and metastasize remain incompletely understood [2].There is evidence involving a 

subset of cancer cells that can drive tumor formation and progression and facilitate 

metastasis and also recurrence; these cells are operationally referred to as cancer stem cells 

(CSCs) [3,4,5]. The CSC model has led to new understanding into cancer cell heterogeneity, 

and it also has the potential to lead to new therapeutics that target these cells.  

1.1 Human and mouse prostate 

        The prostate is located at the base of the bladder and surrounds the urethra. At birth, it 

weighs only a few grams but by 20 years of age it weighs approximately 20 grams [6]. Some 

examples of prostate functions include, first through its muscle mass,  helping control urine 

output and secretion of seminal fluid during ejaculation [7]. As an exocrine gland, it 

contributes to the seminal plasma, which contains a wide variety of molecules and enzymes 

that help in fertility and also assist in coagulation [7]. In addition, it produces prostatic fluid 

that reduces the acidity in the urethra, and protects the sperm [7]. Finally, as an endocrine 

gland, it influences both the hypothalamic and hypophyseal functions by rapidly 

metabolizing testosterone to dihydrotestosterone [7].   

The human prostate is divided into the following three zonal structures: peripheral, 

central, and transition zones [8,9,10]. The largest, making up approximately 70%, is the 

peripheral zone where it is thought most PCa originates from (Fig. 1-1). The mouse prostate, 

unlike the human counterpart, is comprised of four lobes: anterior (AP), dorsal (DP), lateral 
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(LP), and ventral (VP) lobes (Fig. 1-1). Gene expression profiling studies suggest that the 

dorsal/lateral lobes of the mouse prostate are similar to the peripheral zone of the human 

prostate [11]. 
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Figure 1-1. Illustrations of the anatomy of the human (A) and mouse (B) prostate.  
Taken from [C. Abate-Shen, M.M. Shen. (2000) Molecular genetics of prostate cancer. 
Genes Dev 14: 2410-2434.] with permission from Cold Spring Harbor Laboratory Press. 
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1.2 Histology of the normal prostate 

Three different cell types make up the human and the mouse prostate: neuroendocrine, 

basal, and luminal cells [2,12,13]. Of the three cell types, neuroendocrine cells are the rarest 

and are distributed throughout the basal layer. Neuroendocrine cells express chromogranin 

A and synaptophaysin, and the functions of these cells are not well understood [2,12,13]. 

Basal cells are located in the basal layer, which sits on top of the basement membrane. Basal 

cells express p63, CK5, CK14 [14], CD44 [15], CD133, BCL-2, GST-π, telomerase, and 

express low to no androgen receptor (AR) protein. Luminal cells are located in the luminal 

layer, which sits on top of the basal cell layer. Luminal cells produce the prostate secretions 

and express CD57 [15], CK8, CK18, CK19, prostatic acid phosphatase (PAP), prostate 

specific antigen (PSA), 15-lipoxygenase-2 (15-LOX2) [16] and high levels of AR protein.  

1.3 Prostate stem cells  

        In multicellular organisms, there is a continual turnover of cells, which requires new 

cells to be generated to maintain homeostasis. Old/senescent cells in organisms are 

eliminated through different pathways that include apoptosis and shedding from the 

epidermal and epithelial surfaces, and then are replaced by new cells. These new cells are 

provided by stem cells (SCs), which reside in specific niches in each organ. In humans, 

these stem cells give rise to over 200 different types of cells and possess certain 

characteristics such as residence in specific niches, quiescence, ability to self-renew, and the 

ability to generate multiple different cell types [17].  

        There are two different populations of cells that could harbor mouse prostatic stem cells 

(PSCs), basal cells or luminal cells. Upon castration/androgen deprivation, the prostate 
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regresses with ~90% of the luminal cells and a small number of basal cells undergoing 

apoptosis [18]. Upon androgen re-administration, the luminal cell layer is regenerated, 

presumably from, surviving basal cells [18]. This evidence suggests that PSCs may reside 

within the basal cell layer. Using the tissue recombination assay, multiple studies have 

provided evidence that basal cells are enriched in PSCs. When basal cells from the proximal 

prostatic glands are isolated and then sorted into Sca-1+/Sca-1- cell populations, the Sca-1+ 

cells exhibit the capacity to regenerate prostate like tissue when implanted under the renal 

capsules compared to the Sca-1- cells [19]. In addition, ~60% of the Sca-1+ cells are also 

positive for α6 integrin (CD49f) and Bcl-2 [19]. Further studies have shown that Lin-Sca-

1+CD49f+ (LSC) also reside in the basal layer of the proximal region, and these cells have a 

60 fold enrichment for colony and sphere formation compared to their negative counterparts. 

In vivo, these cells have tissue-regeneration capabilities, and within the regenerated tissues 

contain cells with both luminal and basal markers [20]. Later studies reveal that Trop2hi LSC 

cells are even further enriched with PSC [21]. In yet another study, a single Lin-Sca-

1+CD133+CD44+CD117+ murine prostatic cell localized in the basal layer is capable of 

regenerating prostatic-like tissue that contain cells positive for basal, luminal, and 

neuroendocrine markers [22].  

        There also exists evidence that PSCs are located in the luminal cell compartment. For 

example, the urogenital sinus (UGS) from p63-/-  (p63 is a basal cell marker) mouse 

embryos, when implanted  under the renal capsule, regenerated prostatic tissues containing 

luminal and neuroendocrine cells but not basal cells, suggesting that p63-/- UGS epithelial 

cells, i.e., luminal cells, possess bipotent differentiation capability [23]. A lineage tracing 

study in castrated mouse prostates revealed a small population of luminal cells that express 
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Nkx3.1, referred to as CARNs (castration resistant Nkx3-1 expressing) and possess long-

term self-renewal potential [24]. In tissue reconstitution assays, CARNs are capable, as 

single cells, of regenerating prostatic tissue [24]. Another lineage tracing study with mice 

subjected to prostatic regression-restoration showed that the basal cells only gave rise to 

CK5 positive basal cells whereas luminal cells only gave rise to CK8 positive luminal cells 

[25]. Interestingly, luminal cells seemed to be more sensitive to malignant transformation 

when crossed to a PTEN-/- mouse model, as compared to basal cells, which needed to 

differentiate into luminal cells before they could be oncogenically transformed by the loss of 

PTEN [25]. These results indicate that both basal and luminal compartments in the mouse 

prostate have a subset of PSCs that can maintain each cell linage independently.  

        To directly study human prostate stem cells, linage-tracing strategies cannot be applied. 

Therefore, most studies rely on FACS-based purification of candidate cell populations 

followed by tissue regeneration assays in mice. The majority of such studies indicate that 

human PSCs reside in the basal compartment. One such study shows that basal cells isolated 

from benign human prostatic tissue that express high levels of α2β1 integrin possess SC 

characteristics based on clonogenic and prostate duct-regeneration assays [26]. A follow-up 

study from the same group demonstrates that human PSCs in the basal layer express high 

levels of both α2β1 and CD133 and that such α2β1hiCD133+  cells have higher proliferative 

and prostate duct regenerating capacity than the α2β1hiCD133- cells [27]. These studies 

indicate that human PSCs may reside in the basal compartment but does not rule out the 

possibility that the luminal compartment may also harbor SCs 
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1.4 PCa development and treatment 

PCa generally develops very slowly, taking many years to go from a normal prostate 

to prostatic intraepithelial neoplasia (PIN), early and late stage carcinoma, and finally 

metastasis and castration resistant prostate cancer (CRPC) [2]. Adenocarcinomas are cancers 

of epithelial tissues that have glandular functions. In PCa, more than 95% of PCa are 

classified as adenocarcinomas. Adenocarcinomas in the prostate are marked by the increase 

in luminal like cells that express luminal markers such as CK18, AR, and PSA, and very few 

basal like cells that express basal marker such as p63, CK5, and CK14.  This correlates with 

the evidence that androgen and androgen receptor (AR) signaling play important functions 

in PCa development [2,28]. Another key aspect of PCa is the dysregulation of many key 

genes. In the early onset of PCa, it is common to have down-regulation of NKX3.1, 

overexpression of MYC, and oncogenic gene fusions between TMPRESS2 and ERG. As PCa 

progresses, PTEN is frequently inactivated and ERK/MAPK often activated. In advanced 

PCa and CRPC, EZH2 overexpression is frequently observed [2]. The oncogenic gene 

fusion between TMPRESS2 and ERG is the most common genomic rearrangement in PCa, 

occurring in ~50% of cases [29,30]. Many mechanisms have been proposed for the 

development of CRPC; however, most center on AR signaling [2,28]. 

        PCa treatment depends on when the cancer is first diagnosed. If it is detected at an early 

stage, the most common treatment is a radical prostatectomy, and with this treatment the 

prognosis is good. If PCa is diagnosed at a late stage, the main treatment is androgen-

deprivation therapy (ADT). Two new drugs used in ADT are abiraterone and MDV3100 

(Enzalutamide). Arbiraterone stops androgen synthesis whereas MDV3100 is an anti-

androgen that blocks androgen receptor (AR) functions. ADT is effective at de-bulking the 
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primary tumor but most of the treated patients re-lapse and develop CRPC [31,32]. CRPC is 

aggressive and metastasizes to bone, lung, and liver, which makes treatment less effective 

(Fig. 1-2). The cell-of-origin of CRPC is unclear and therapies that target this population 

need to be developed. 
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Figure 1-2. Progression of human PCa. The stages of PCa progression are shown, along 
with the molecular processes and genes that are likely involved at each stage. Taken from 
[M.M. Shen, C. Abate-Shen. (2010) Molecular genetics of prostate cancer: new prospects 
for old challenges. Genes Dev 24: 1967-2000.]with permission from Cold Spring Harbor 
Laboratory Press.  
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1.5 Cancer cell heterogeneity 

        Most cancers including PCa are heterogeneous, containing cells that are both 

phenotypically and functionally unique from one another [5]. Two models have been put 

forth to account for cancer cell heterogeneity: clonal evolution and the cancer stem cell 

(CSC) model. The clonal evolution model, first proposed in the 1970’s by Nowell, predicts 

that tumor initiation and progression are an evolutionary process driven by stepwise, 

somatic-cell mutations with sequential, sub-clonal selection [33]. The first evidence 

supporting this model was established in cytogenetic studies of chronic myelogeneous 

leukemia (CML), which revealed a translocation between chromosomes 9 and 22 

(Philadelphia chromosome), indicating that human tumors were derived from individual 

clones of cells with genetic abnormalities [34]. Blast phase CML is linked to additional 

cytogenetic alterations in leukemic cells [33].  

        In contrast to the clonal evolution model, the CSC model, also referred to as the 

hierarchical model, proposes that only a biologically distinct subset of cancer cells, i.e, 

CSCs, is responsible for and capable of maintaining tumor progression within the total 

tumor cell population, and thus establishing the heterogeneity of the tumor. CSCs possess 

characteristics that are associated with normal SC’s, including the ability to give rise to all 

cell types in a tumor and to self-renew. Recent evidence argues that the clonal evolution and 

CSC models are not mutually exclusive and may interweave to generate tumor cell 

heterogeneity [5,35] (Fig. 1-3).  
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Figure 1-3. Two models for tumor heterogeneity and how they could work together. A. 
normal cellular hierarchy comprising stem cells (at the apex), which progressively generate 
common and more restricted progenitor cells, ultimately yielding all the mature cell types 
that constitute a particular tissue. B. In the clonal evolution model all undifferentiated cells 
have similar tumorigenic capacity. C. In the cancer stem cell (CSC) model, only the CSC 
can generate a tumour, based on its self-renewal properties and enormous proliferative 
potential. D. Both models of tumour maintenance may underlie tumorigenesis. Initially, 
tumour growth will be driven by a specific CSC (CSC1). With tumour progression, another 
distinct CSC (CSC2) may arise due to clonal evolution of CSC1. This may result from the 
acquisition of an additional mutation or epigenetic modification. This more aggressive 
CSC2 becomes dominant and drives tumour formation.Taken with permission from [J.E. 
Visvader, G.J. Lindeman. (2008) Cancer stem cells in solid tumours: accumulating evidence 
and unresolved questions. Nat Rev Cancer 8: 755-768.] 
. 
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1.6 Evidence and identification of CSCs 

The first evidence that suggested a CSC model came in 1937 with a study that showed 

that a single murine leukemic cell had the ability to regenerate a tumor in a mouse [36]. The 

first definitive evidence of CSCs came from John Dick’s lab in the 1990s, when it was found 

that a small subset of AML (acute myeloid leukemia) cells bearing the normal HSC 

(hematopoietic stem cell) phenotypic markers (CD34+CD38-), when implanted into the 

immunodeficient (NOD/SCID) mice, could serially transplant human AML [37,38]. In 

2003, another critical report provided the first evidence for CSCs in a solid tumor. Breast 

cancer cells with the phenotypic markers CD44+CD24-/lo could generate tumors at as few as 

100 cells in NOD/SCID mice. The regenerated tumors were serially transplantable, with the 

corresponding CD44-CD24+ cell population being much less tumorigenic [39]. Since 2003, 

CSCs have been widely studied in leukemia [40,41,42,43] as well as in multiple solid 

tumors including those in the breast [44,45,46], colon [47,48], brain [49,50,51], bladder 

[52,53], lung [54,55], ovary [56,57] and prostate [12,58,59,60,61,62]. 

        CSCs are defined by their ability to self-renew and differentiate into many cell types in 

a tumor. Experimentally, putative CSCs can be studied by purification using fluorescence-

activated cell sorting (FACS) with cell surface markers [37,38,39]. Once purified, one in 

vitro study is to plate sorted cells and test their serial sphere-formation capabilities. In vivo, 

the FACS-sorted cell populations can be implanted into immunodeficient mice to compare 

the tumorigenic potential of different populations. In the mean time, experiments can be 

performed to determine whether the regenerated tumors can be serially transplanted, and 

whether the regenerated tumors resemble the parental tumor. These studies are insightful but 

have some inherent pitfalls. Many of these PCa studies utilize long-term cultured cell lines 
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such as LNCaP, VCaP, Du145, and PC-3, derived from advanced or metastatic tumors. PCa 

progresses slowly through different stages from PIN, early adenocarcinoma and advanced 

adenocarcinoma, and finally to metastasis and CRPC. Using these cell lines does not allow 

us to study these different stages of PCa development. Another issue in using cultured cell 

lines is that they lack cell-cell and cell-stroma interactions such as the interactions between 

basal, neuroendocrine, and stromal cells. If utilizing xenograft transplantation models with 

human cell lines, the regenerated tumors often do not resemble the histology of the patient 

tumors and such experiments require the use of immunodeficient mice that lack a fully 

functioning immune system, which is a critical component in cancer progression and 

metastasis. For these reasons, the development of genetically engineered mice are critical for 

understanding the progression, compartmental interactions, and developing effective 

therapeutics. 

1.7 Promoters used in genetically engineered mouse models of prostate cancer  

        The characterization of the transcriptional regulatory elements of genes, expressed in 

the prostate, allowed for the development of genetically engineered mouse (GEM) models. 

The promoter region of the rat C3(1) gene, which encodes for a subunit of prostatic binding 

protein secreted by the rat’s ventral prostate, could direct transgene expression to the 

prostatic epithelial cells of mice, although the transgene expression is also evident in the 

seminal vesicles, testes, salivary glands, and the thyroid [63,64,65,66,67] (Table. 1-1). The 

next advance came when a small (-426 bp to +28 bp) rat probasin DNA segment that contain 

two androgen receptor response elements (ARE) was utilized [68]. The level of expression 

of the transgene in the mouse prostate is relatively low and is not completely restricted to the 

prostate as some expression is seen in the seminal vesicles [68]. To overcome the low 
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prostate expression a larger (-11.5 kb to +28bp) rat probasin gene promoter is used. The 

transgene expression driven by this promoter in the mouse prostate is higher, but the 

transgene is still expressed in the seminal vesicles [69]. Finally, to bypass the need of this 

large construct a new probasin promoter was designed by fusing the small rat probasin 

promoter (-426 bp to +28bp) with a segment of its enhancer region that contains two ARE’s. 

This promoter, known as ARR2PB, has a high transgenic expression in the mouse prostatic 

epithelium. It is most highly expressed in DLP (dorsal and lateral prostate) followed by the 

anterior prostate, and it is also highly regulated by androgens [70,71] (Table. 1-1). When 

characterizing a genetically engineered mouse model, it is essential to understand the 

promoter being used. A few aspects of a promoter to be considered are the tissue or tissues it 

is expressed in and the level of transgene expression (Table 1-1). 
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   Table 1-1. Transcriptional regulatory elements used to drive transgene expression in the mouse 
prostate* 
 
 
Promoter Expression Ectopic expression 

  
 
 

Rat C3(1) VP > DP 
Seminal vesicles, testis, thyroid, salivary gland, 
cartilage 

   
426 bp to +28 bp rat 
probasin 

VP > DLP, AP (starts 
before puberty) Seminal vesicles 

   
11.5 kb to +28 bp 
rat probasin 

VP > LP > DP > AP (starts 
before puberty) Seminal vesicles 

   

ARR2PB 
VP, DLP > AP (starts in 
newborn mice) Prostate stroma, seminal vesicles, testis 

   

6 kb PSA 
LP > DP > VP, AP (starts 
at puberty) None reported 

 

  *Adapted and used with permission from [M. Parisotto, D. Metzger. (2013) Genetically 
engineered mouse models of prostate cancer. Mol Oncol 7: 190-205.] 
. 

 

 

 

 

 

 

 

 



17	
  
	
   	
  

1.8 Commonly utilized GEM models of prostate cancer 

        A few GEM models used in the research of PCa shall be discussed below. The TRAMP 

(transgenic adenocarcinoma mouse prostate) model utilizes the -426 bp to +28bp rat 

probasin promoter to drive the expression of the SV40 early region [68]. TRAMP mice 

express the T-antigen oncoprotein in the dorsal, lateral, and ventral prostates. When 

maintained in C57BL/6 background, 100% of male mice exhibit PINs between 2-3 months 

of age, which then progress to neuroendocrine carcinoma by 4-7 months [72,73]. By 4-9 

months metastases are present primarily in the lungs and lymph nodes but appear on 

occasion in the kidney, liver and adrenal glands (Table 1-1). One major disadvantage in 

these mice is that they develop neuroendocrine carcinoma, which is rare in human PCa.  

        The transcription factor c-Myc is known to be overexpressed or amplified in PCa, and 

it regulates cellular proliferation and apoptosis [74,75,76,77,78]. Three different probasin 

promoters were used to overexpress c-Myc: C3(1)-c-Myc, ARR2PB-Myc, and probasin-Myc 

[66,79]. First, overexpression utilizing the C3(1) promoter induced low grade prostatic 

intraepithelial neoplasia (LGPIN)s in the ventral prostate, which did not progress further. 

These mice lost reproductive function after five generations, which was most likely caused 

by transgene expression in the reproductive tissues [66]. When comparing Pb-Myc to the 

ARR2PB-Myc transgenic models, both expressed c-Myc in the prostate as early as 2 weeks, 

but the Pb-Myc mice had higher expression levels [79]. In both models, PIN lesions 

appeared at 2 weeks and then progressed to adenocarcinomas by 3-6 months of age, with all 

lesions occurring in the VP, DP, LP, and, to a lesser extent, in the AP [79]. Both Pb-Myc 

and ARR2PB-Myc PCa models develop adenocarcinomas without overt metastasis.  
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        The development of knock-out mice is useful because it mimics what happens in 

human cancers [80]. PTEN (phosphate and tensin homolog deleted on chromosome 10) 

gene, which encodes a lipid phosphatase that dampens Akt activity, is one of the most 

commonly deleted genes in PCa. Bi-allelic ablation of PTEN is embryonically lethal, but the 

heterozygous mutant (PTEN+/-) is viable and develops neoplasia in multiple tissues, which 

include lymphoid cells, adrenal glands, mammary glands, thyroid, intestines, and 

endometrium [81,82,83,84]. Most of the heterozygous mutants die of lymphomegaly and 

splenomegaly by 8 months, but the ones that do survive exhibit PINs by 8-10 months that do 

not progress to adenocarcinoma (Table 1-2).  

Crossing the PTEN +/- mice with other tumor suppressor mutant mice enhances 

tumorigenesis. The Ink4a/Arf locus encodes two different tumor suppressors p16INK4a and 

p19ARF, which regulate pRB and p53 pathways, respectively. The Pten+/-/Ink4a/Arf+/- mice 

develop PINs at a younger age compared to the Pten+/- mice alone [85] (Table 1-2). The 

Pandolfi group showed that Pten inactivation induces cell cycle arrest through p53 

dependent cellular senescence pathway. When Pten+/- mouse model is crossed with Trp53 

mouse model the Pten+/-/Trp53-/- mice exhibit invasive PCa as early as 2 weeks, which 

becomes lethal by 7 months [86].  

 Throughout my stay in the Tang lab as well as my Master’s thesis research, I have 

been involved in a GEMM project that investigates the potential tumor-suppressive 

functions of 15-Lipooxygenase 2 or 15-LOX2. 15-LOX2 is a human prostate specific lipid-

peroxidizing enzyme, which is down-regulated or completely lost in >70% of PCa cases. 

Our lab has provided evidence that 15-LOX2 functions as a tumor suppressor. In a recent 

study, we attempted to determine whether 15-LOX2 possesses in vivo anti-tumor properties 
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by crossing 15-LOX2 transgenic animals, generated in our lab [87] with PCa-prone Hi-Myc 

mouse model. Both mouse models utilize the ARR2Pb promoter to drive expression of their 

transgenes. Strikingly, the double transgenic mice showed a significant reduction in PIN and 

PCa prevalent in age-matched Hi-Myc prostates. The double transgenic prostates also 

showed an increase in cell senescence and expression of several senescence-associated 

molecules including p27, phosphorylated Rb, and Rb1cc1. This part of the work has recently 

been accepted for publication [Cell Cycle, 2014, in press]. Since the 15-LOX2 related work 

that I have been involved in [2010 Oncogene; 2014 Cell Cycle] is not part of my master 

thesis research project, I shall not present it herein. 
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Table 1-2. Examples of prostate cancer GEMM.* 

Mouse line 
HGPIN 
latency 

Invasive tumors 
(latency) 

Incidence 
of 
metastasis 

Site of 
metastasis 

Latency of 
metastasis 

      

TRAMP 3 months 

Neuroendocrine 
carcinoma        
(4-7 months)     ~100% 

Lymph node, 
lung, 
adrenal gland, 
bone 4-9 months 

      

ARR2PB-c-Myc <3 months 
Adenocarcinoma 
(3-6 months) 0% NA NA 

        

PTEN+/- 
8-10 
months None 0% NA NA 

        
PTEN+/-/ 
Nkx3.1-/- >6 months (> 6 months) 25% Lymph node >1 year 

        
PB-Cre4/ 
PTENL2/L2 6-9 weeks 

Adenocarcinoma 
(3 months) 50% 

Lymph node, 
lung 3 months 

      

PB-Cre4/Trp53L2/L2 

/RbL2/L2 
Not 
reported 

Adenocarcinoma; 
neuroendocrine 
differentiation. 
(< 6 months) 70% 

Lymph node, 
liver, lung, 
 adrenal gland <7 months 

      
PB-Cre4/PTENL2/L2 

/SMAD4L2/L2 >2 months 
Adenocarcinoma 
(< 3 months) 100% 

Lymph node 
and lung <8 months 

      
PB-Cre4/PTENL2/L2 

/Trp53L2/L2/SMAD4L2/L2 <4 months (< 4 months) > 10% 
Bone 
metastasis <4 months 

      
PSA-Cre-ERT2 
/PTENL2/L2 

8-10 
months 

Adenocarcinoma 
(14-16 months) 0% NA NA 

       
*Adapted and used with permission from [M. Parisotto, D. Metzger. (2013) Genetically 
engineered mouse models of prostate cancer. Mol Oncol 7: 190-205.] 
. 
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2.1 Basic phage display technique       

        Phage display, first described in 1985 by George P. Smith [88], is a technique that 

allows polypeptides with desired properties to be obtained from large libraries of variants. 

To construct these libraries, the main method used is site directed mutagenesis, which 

involves the replacing of unique codons with codons that are able to encode for all twenty 

natural amino acid, from the phage coat protein gene segment. Each phage will then possess 

a unique inserted DNA sequence in the phage coat protein gene and will display a unique 

polypeptide on the surface of the phage. This provides a link between phenotype and 

genotype [89] and allows additional rounds of selection to be carried out. Phage display 

screening utilizes the M13 filamentous phage, which possesses a circular single-stranded 

DNA enclosed in a long protein capsid cylinder (Fig. 2-1). This bacteriophage is specific for 

Escherichia coli (K91), and does not kill the bacteria but uses the K91 host for its 

replication.  

        The basic phage display cycle has seven steps (Fig. 2-2). The first step is to obtain a 

bacteriophage library that consists of 106-1011 different bacteriophages with each 

bacteriophage displaying a unique peptide on the selected phage coat protein. The most 

commonly used phage coat protein is the PIII coat protein. The second step is to incubate the 

target cells with the bacteriophage library. This allows the peptides displayed on the phage 

coat protein to attach to the cells. In the third step, excess bacteriophages that do not attach 

are washed off. In the fourth step, the bacteriophage that have attached to the cells are 

eluted. The fifth step is to amplify the eluted bacteriophages. The host K91 bacteria are 

kanamycin resistant, and when the bacteriophages infect the bacteria, it imparts tetracycline 

resistance. The tetracycline resistance allows for selection of only the bacteria that have 
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been infected to form colonies on plates that have kanamycin and tetracycline in them. The 

sixth step is to titrate the bacteriophages using serial dilutions on kanamycin and tetracycline 

plates and then stock the bacteriophage library for future rounds of purification. Then, 2-3 

more rounds of similar infection, elution, selection, and purification cycles will be carried 

out. Finally, single bacteria colonies from kanamycin and tetracycline plates are collected 

and genomic DNA sequenced using primers that are specific to either side of the unique 

DNA insert on the PIII (phage coat protein) gene [90]. This will provide the coding 

sequence of the peptide displayed on the bacteriophage (Fig. 2-1). One key aspect of phage 

display is that the initial library may contain 106-1010 different peptides displayed on 

bacteriophages, but as more rounds of purification are completed, each consecutive round 

will contain a less diverse library. The affinity of the peptides for the target cells in that 

library will increase but the phage diversity will decrease (Fig. 2-3). It is therefore important 

that the initial round should contain a wide range of peptides so that by the time of 

sequencing there are still some peptides to work with. 
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Figure 2-1. Diagram of the M13 phage and its genome. The M13 bacteriophage genome 
is composed of 5 coat protein genes (III, VI, VII, VIII, and IX), 3 genes associated with 
assembly/export (I, IV, and IX) and 3 genes for replication (II, V, and X) [w.w.N.a.C. Inc, 
Molecular Biology of Viruses, in: S. Foster (Ed.), Microbiology, 2010.]  
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Figure 2-2. The basic phage display cycle. The basic phage display cycle consists of 6 
iterative steps of several rounds, with the final step (7) of analyzing the phage bound with 
high affinity to the target cells. See text for detailed descriptions. 
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Figure 2-3. Relationship between phage diversity vs. phage affinity as a function of 
rounds of phage library screening. As the rounds of the phage display screening increase, 
the affinity of the bacteriophages/peptides to the target cells also increases, but the diversity 
of bacteriophages/peptides decreases. 
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2.2 Phage display applications 

 The peptides that are uncovered when using the phage display technique are, in 

general, specific to biologically relevant sites such as enzyme active or allosteric sites, 

therefore binding to these sites may interfere with their function [91].  Since phage display 

was first described it has influenced many scientific fields including but not limited to, drug 

discovery [92,93,94,95,96,97,98], drug target validation [99,100], identification of enzyme 

substrates and inhibitors [101,102], epitope mapping [103], selection of new antibodies and 

antibody surrogates as fragments on scaffold proteins[104,105], and finding new agents for 

delivery of gene therapy and gene therapy[106,107]. 

 One major application for phage display is the screening against whole cells to reveal 

peptides that are specific to certain populations. The majority of these screenings has been 

performed using cancer cells with the goal of discovering novel peptides that specifically 

bind tumor-specific receptors and could eventually be used for the targeted delivery of 

therapeutics [108,109,110,111,112]. Phage display screening using whole cells comes with 

some caveats that must be understood. For example, the composition of the plasma 

membrane is very complex, containing many different protein and carbohydrate structures 

that could be acting as a decoy, thus concealing the cell surface molecule of interest. 

Consequently, only those peptides that bind receptors of relatively high cell surface density 

can be recovered after 3-4 rounds of purification. 

 A prime example of whole cell phage display screening and isolation of a peptide 

that is being developed for therapeutic use is described by the Arap’s lab in their efforts to 

isolate peptides that interact with VEGFR1 and neuropilin-1 [113]. They first incubated 

unstimulated human umbilical vein endothelial cells (HUVEC) with the phage display 
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library, thus depleting non-specific binders. They then incubated the VEGF-stimulated 

HUVEC cells. Three rounds of selection led to the isolation of peptide, CPQPRPLC, that 

interacted with both VEGFR1 and NRP1 [113]. A later follow-up study revealed that only a 

portion of that peptide, the tripeptide RPL, was required for binding to both of the receptors 

[114]. Due to its small size, this peptide is being developed into a new class of VEGFR 

inhibitors. 

 In contrast to in vitro phage screening in cultured cells, in vivo phage display is 

conducted in which the phage libraries are injected into laboratory animals followed by 

collection of tissues for elution of the bound phages after a certain period of systemic 

circulation. Obviously, the injected phages must be able to penetrate the vascular 

endothelium to gain access to the tissue of interest. Theoretically, by injecting the phage 

library into the animal, the organs should capture many of the bacteriophages that may be of 

interest. A variation of the in vivo method is ex vivo phage display, in which the tissue or the 

tumor is excised, dissociated into single cells, and then incubated with the phage library. 

This latter approach eliminates the vascular endothelial barrier and also prevents excess loss 

of phages due to direct capturing of the phage particles by different organs. 

 Dr. Kolonin’s lab has successfully adapted the in vivo phage display technique to 

identify peptides that specifically home in to the adipose stromal cells (ASCs), the 

mesenchymal progenitors in white adipose tissue [115]. After injecting the mouse with the 

phage display library, tissues were dissociated and then they purified out the ASCs. After 

four rounds of enrichment and purification, a peptide (CSWKYWFGEC) that specifically 

bound the ASCs was identified [115]. Using affinity chromatography, the authors found that 
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this peptide was binding to a previously unreported cleavage product of decorin and was 

mimicking resistin [115]. 

Developing therapeutics is one of the main applications of phage display technology.    

Two of the most studied therapeutic drugs that have been developed by screening phage 

display libraries are Hematide (also referred to as Affymax), which is the PEGylated 

erythropoietin receptor and Nplate (also referred to as Amgen), which is Fc-fused 

thrombopoietin receptor. Two other drugs in development are adalimumab, which is an anti-

TNF-α antibody [116] and ecallantide, which is an inhibitor of plasma protease kallikrein 

[117]. These drug discoveries, along with others, suggest that the phage display library 

screening is a relevant technique for discovering new therapeutics. 
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Chapter III 

 

Phage Display Library Screening to Identify Peptides that Home in to Undifferentiated 

(PSA-/lo) and Castration-Resistant Prostate Cancer Stem Cells 
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3.1 Introduction 

        Current therapies for advanced and metastatic PCa patients aim to stop androgen 

synthesis and/or androgen receptor (AR) signaling. These treatments, referred to as 

androgen deprivation therapy (ADT), reduce the primary tumor volume and serum PSA 

(prostate specific antigen) levels. Unfortunately, the vast majority of these patients 

eventually develop castration-resistant PCa (CRPC). This observation is critical because the 

initial treatment reduces PCa cells that express PSA. The fact that many of the tumors return 

may indicate that the cell-of-origin of the recurrent and CRPC resides in the population of 

PCa cells that do not express PSA or express it at a very low level (i.e., PSA-/lo cells). Our 

lab has provided evidence that some PSA-/lo PCa cells indeed exhibit many CSC 

characteristics. 

3.1.1 Prostate specific antigen (PSA) 

        PSA is largely regulated by androgens. It is a member of the tissue kallikrein family. 

PSA is normally produced by terminally differentiated, luminal epithelial cells and secreted 

into the prostatic lumen. PSA is a constituent of semen, and functions to cleave 

semenogelins in the seminal coagulum, which mediate gel formation of  semen [118]. One 

of the early events in PCa development is the disruption of the basal cell layer and the 

basement membrane. This causes loss of integrity of the normal prostatic architecture and 

may lead to the leakage of PSA into the peripheral circulation [118]. For this reason, PSA is 

used as a biomarker to detect PCa and to determine the patient’s response to treatments.  

        To separate and compare PCa cells that express high (PSA+) versus low/no (PSA-/lo) 

levels of PSA, we made use of a PSAP-GFP lentivector in which the PSA promoter (PSAP) 
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drives eGFP expression [119]. Using this vector, LNCaP and other PCa cells were infected 

at multiplicity of infection (MOI) of 25, at which essentially all cells are infected. Purified 

GFP+ PCa cells express high levels of PSA mRNA and protein whereas GFP- PCa cells 

express no or low levels of PSA mRNA [62]. Therefore, the PSAP-GFP lentiviral reporter 

system faithfully reports endogenous PSA expression and PSA+ correlates with GFP+ 

positivity and PSA-/lo correlates with GFP negativity.  

3.1.2 Characteristics of PSA-/lo cells 

        When assessing potential contributions of PSA-/lo cells to PCa, our lab first performed a 

semi-quantitative PSA imunohistochemical (IHC) analysis [62]. Different cohorts of patient 

PCa slides were collected and stained for PSA, which included untreated Gleason grade 

(GS7, n = 10), untreated Gleason grade 9 and 10 (GS9 and GS10, n = 10), and treatment 

failed and CRPC (n = 23) samples. In GS7 tumors, most areas  stained positive for PSA, but 

scattered areas of poorly differentiated tumors cells showed no PSA expression [62]. When 

we assessed GS9 and GS10 tumor samples, most tumor cells were undifferentiated and PSA-

/lo with only a few areas having PSA+ cells. In treatment failed and CRPC cohorts, some 

samples resembled the advanced grade GS9 and GS10 tumors, but the majority of samples 

completely lacked PSA expression [62]. 

         LNCaP cells that were infected with PSAP-GFP and cultured in androgen deprivation 

conditions, either with charcoal dextran-stripped serum (CDSS) or with an anti-androgen 

(bicalutamide), contained a PSA-/lo cell population that expanded whereas the PSA+ cell 

population decreased [62]. We also used whole-genome transcriptome profiling of purified 

PSA+ cells and PSA-/lo cells to uncover genes that were preferentially expressed in each 

population. The PSA-/lo cell population was enriched in anti-stress genes and also 
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overexpressed Bcl-2, an anti-apoptotic gene. Further experiments showed that the PSA-/lo 

cells were resistant to androgen deprivation, chemotherapeutic drugs, and also other stress 

treatments [62].  

        Comprehensive studies in 5 PCa xenograft models and a dozen of primary PCa derived 

cells demonstrate that the PSA-/lo PCa cells exhibit many characteristics of SCs. For 

example, they underexpress dozens of mitosis and cell-cycle genes, suggesting these cells 

may be more quiescent than the PSA+ cells [62]. Indeed, prospective label-retaining 

experiments and cell-cycle analysis reveal that PSA-/lo PCa cells have cell-cycle transit times 

several fold longer than that in corresponding PSA+ PCa cells [62]. In addition, PSA-/lo cells 

overexpress many stem cell and developmental markers, including ASCL1, CTED2, 

GATA6, IGF-1R, KLK5, LRIG1, and NKX3.1 [62]. Another SC characteristic these cells 

possess is their ability to self-renew. Purified single PSA+ and PSA-/lo cells were plated and 

their expansion was monitored for 4 weeks. The clones from the PSA+ cells remained 100% 

GFP positive, but the PSA-/lo cells developed into three distinct types of clones. The first 

type of clones consisted of all GFP+ cells, second type both GFP+ and GFP- cells, and third 

type only GFP-/lo cells [62]. Another way to examine self-renewal capacity was time lapse 

videomicroscopy, in which single cells from each population were tracked. The results 

showed that GFP+ cells only gave rise to other GFP+ cells, but GFP-/lo cells generated both 

GFP+ and GFP- PCa cells [62]. Conclusively, this data showed that PSA-/lo cells do have SC 

characteristics and the ability to undergo asymmetric cell division. 
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3.2 Material and Methods 

Cells 

        LNCaP cells were obtained from ATCC and cultured in RPMI containing 7% FBS, 100 

µg/ml streptomycin, and 200 U/ml penicillin (Life Technologies, Grand Island, NY).  

Phage Library Screening 

Competitive assay 

        Random peptide libraries in the bacteriophage vector fUSE5 that display inserts CX7C 

(i.e, a random 7 amino acid peptide between 2 cysteine residues) and CX8C (i.e, a random 8 

amino acid peptide between 2 cysteine residues) were obtained from Dr. Mikhail Kolonin 

[115]. These 2 phage libraries were mixed (1:1) and incubated in 1 ml RPMI + 1% BSA 

with LNCaP PSA-GFP cells in suspension at 1×1010 phage particles per 250K cells for 1 

hour at 37˚ C. At the end, LNCaP PSA-GFP cells were separated into GFP+ and GFP-/lo cell 

populations by FACS using a FACSAria/sorter (BD Biosciences, San Jose, CA). Purified 

cells were lysed in 20 µl of H2O, and both cell lysates were then incubated with 500 µl of 

competent K91 bacteria for 1 hour at RT. The bacteria were then incubated overnight on 

agar plates containing tetracycline (20 mg/ml) and kanamycin (100 mg/ml). Afterwards, the 

colonies were collected and amplified overnight in 250 ml of LB broth containing 

tetracycline (20 mg/ml) and kanamycin (100 mg/ml). The broth from both populations were 

centrifuged at 4,000 RPM for 30 min at 4˚C. Next, the supernatants were filtered through 

0.45 um filter. The supernatants were incubated with PEG/Nacl solution overnight at 4˚C. 

The bacteriophages were centrifuged at 13,000 RPM for 40 minutes and re-suspended in 1 

ml of PBS. After both stock bacteriophage libraries were titered using serial dilutions 
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followed by incubation with competent K91 bacteria for 1 hour at RT, they were incubated 

overnight on plates containing tetracycline and kanamycin [120].  In the next 3 rounds, both 

GFP+ and GFP-/lo bacteriophage libraries were mixed (1:1) and incubated in 1 ml RPMI + 

1% BSA with LNCaP PSA-GFP cells at a total concentration of 1×1010 per million cells for 

1 hour at RT. Finally, after a total of 4 rounds of purification, 287 bacterial colonies from 

each population were sequenced (Lone Star Labs, Houston, TX). 

Indirect subtraction assay    

        The indirect subtraction method is similar to the competitive assay but modified in a 

few key aspects. First, we used adherent LNCaP PSA-GFP cells instead of cells in 

suspension. Second, for the initial incubation with the CX7C and CX8C libraries, a total 

concentration of 1×1012 phage particles per million cells was utilized. Third, for the other 3 

rounds of purification we only utilized the bacteriophage library derived from the GFP-/lo 

cells and incubated each round with a total concentration of 1×1010 phage particles per 

million cells. Finally, we decided to sequence bacterial colonies from the third round instead 

of the fourth round of purification. 

Direct subtraction assay 

        The direct subtraction method is similar to the indirect subtraction assay but also 

modified in a few aspects. First, we incubated the LNCaP PSA-GFP cells AFTER they had 

been sorted into GFP-/lo and GFP+ populations. Second, for the initial incubation with the 

CX7C and CX8C libraries a total concentration of 2×109 phage particles per million cells 

was utilized. Also, we first incubated the GFP+ cells with the phage particles for 1 hour at 

37˚C and then we took the supernatant and incubated the GFP-/lo cells for 1 hour at 37˚C. 
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Third, for the next 3 rounds we only utilized the bacteriophage library derived from the 

GFP-/lo cells at a concentration of 2×109 phage particles per million cells, and incubated 

them with the GFP+ cell for 1 hour at 37˚C before collecting the supernatant and incubating 

the remaining library with the GFP-/lo cells. Finally, we sequenced 150 bacterial colonies 

from each population from the fourth round (Lone Star Labs).  

In vivo phage display assay 

 Male Nod/Scid mice were used. Mice were orthotopically implanted with LAPC9 

cells in the DP. Once the tumors became palpable, mice were injected via tail vein with the 

CX7C and CX8C libraries (1:1; the combined 1× 1010). The liver and lungs were collected as 

controls, and tumors were excised. Tumors were subjected to enzymatic digestion as 

described [121] dissociate tumor cells were separated into the GFP+ and GFP-/lo cell 

populations by FACS. Purified cells were lysed using dounce homogenizer or H2O. The 

subsequent steps were similar to those in the competitive assay except that we only utilized 

bacteriophage libraries derived from the GFP-/lo LAPC9 cells. In addition, we re-injected the 

libraries in the tail vein and let the injected libraries to circulate for 2 hours. Remaining steps 

were similar to those described in the competitive assays. 

Cell Analysis by Immunofluorescence 

        Regular and biotinylated peptides (JRM0, JRM1, JRM2) were chemically synthesized 

and purified to at least 95% purity (Genemed Synthesis Inc., San Antonio, TX). FACS-

purified GFP+ and GFP-/lo LNCaP cells were plated on glass coverslips and incubated with 

the peptides at a concentration of 200 nM/100K cells in RPMI+1% BSA for 1 hour at 37˚C, 

and then washed twice. Cells were incubated with Alexa fluor-594 for 30 minutes at RT, and 
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washed twice. At the end, cells were fixed with 4% PFA for 15 minutes at RT. Cells were 

counterstained with DAPI and slides mounted in Prolong Gold Anti-Fade (Invitrogen, Grand 

Island, NY). Finally, fluorescence images of the cells were acquired with an Olympus IX71 

microscope.  

Cell Analysis by Confocal Microscopy 

The JRM2 peptide was conjugated with Lassamine Rhodamine (JRM2-LR).  FACS-

purified GFP+ and GFP-/lo cells were plated on coverslips and incubated with JRM2-LR at a 

concentration of 200 nM/100K cells in RPMI+1% BSA for 1 hour at 37˚C and then washed 

twice. Cells were fixed with 4% PFA for 15 minutes at RT. After DAPI counterstain, 

coverslips were washed three times and mounted in Prolong Gold Anti-Fade on a 

microscope slide. Confocal microscopy was done on a Zeiss LSM510 META confocal 

microscope with 63X plan-apochromatic objective and oil immersion. Images were acquired 

in sequential mode. 

Cell Analysis by FACS 

Bulk LNCaP cells infected with the PSAP-GFP lentivector were incubated with 

biotinylated JRM0, JRM1 and JRM2 peptides at 200 nM/100K cells in RPMI+1% BSA for 

1 hour at 37˚C followed by washing twice. Subsequently, cells were incubated with 

Strepavidin-APC (BD Biosciences) (1:500) for 30 minutes at RT. Next, analysis was 

performed with BD LSR Fortessa-Cell Analyzer. Afterwards, JRM1 and JRM2 peptides 

were conjugated to aminocoumarin (AMC), and LNCaP PSA-GFP cells were incubated 

with JRM1-AMC or JRM2-AMC at 200 nM/100K cells in RPMI+1% BSA for 1 hour at 
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37˚C followed by washing  twice. Analysis was completed using BD LSR Fortessa-Cell 

Analyzer. 
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3.3 Results 

We hypothesize that PSA-/lo cells will express unique cell surface molecules and that 

these markers that can be identified by phage display mediated peptide binding. We utilized 

LNCaP cells that had been infected with PSAP-eGFP lentivector reporter, which allowed the 

purification of PSA-/lo and PSA+ cells [62]. We used the phage display technique to attempt 

to uncover peptides that could preferentially or selectively bind to the PSA-/lo cells. The 

identified peptides could theoretically be conjugated to (pro)drugs to treat CRPC. 

        Most advanced PCa, upon ADT treatment, show good clinical response initially but the 

majority of the cancers return. Thus, developing new therapeutics that target the cells 

responsible for this relapse is necessary. As a first step to achieve this goal, I applied phage 

display library screening technology to PSAP-GFP infected LNCaP cells (Fig. 3-1). We 

obtained two random peptide libraries CX7C and CX8C, from Dr. Mikhail Kolonin [115], 

which, when combined, could allow me to screen over 1011 combinatorial peptides 

displayed on the PIII protein of filamentous M13 bacteriophage. Herein I describe the assays 

we used to uncover two potential peptides that showed preferential binding to the PSA-/lo 

LNCaP cells.  

3.3.1 Competitive assay: Identification of JRM1 peptide 

        The first assay completed was a competitive assay. After the initial incubation with the 

two peptide libraries (CX7C and the CX8C), which were mixed together at a 1:1 ratio for the 

first round, each of the following rounds was started by incubating the LNCaP PSA-GFP 

cells with a 1:1 mixture of both the GFP-/lo and the GFP+ peptide libraries that were collected 

from the previous round (Fig. 3-2). The main advantage of utilizing this assay is its 



40	
  
	
   	
  

stringency. Since I mixed both GFP+ and GFP-/lo phage libraries at 1:1 ratio before each 

round, by the fourth round if a peptide sequence unique to the GFP-/lo population was found, 

then the chance of it being of true relevance was very high.  

        In the initial round, we combined both the CX7C and CX8C libraries [115], to a total 

phage concentration of 1× 1010 per 250K LNCaP PSA-GFP cells. After sorting the bottom 

5% GFP-/lo and the top 10% GFP+ cells, we obtained 500 bacterial colonies that equaled 

0.009 transforming units (TU) per cell from the GFP-/lo population and 1,200 bacterial 

colonies (0.007 TU/cell) from the GFP+ population. With this, we continued to the second 

round of purification. With these colonies, we then made each of the corresponding phage 

libraries and incubated LNCaP PSA-GFP cells in suspension with a 1:1 mixture of both 

libraries at a total phage concentration of 1 × 1010   per million cells. This round yielded 

12,000 colonies (0.21 TU/cell) from the GFP-/lo population and 140,000 colonies (1.01 

TU/cell) from the GFP+ population. This result indicate that the affinity of the selected 

peptides increased from round one to round two. In the next round, the GFP-/lo cells yielded 

21,800 colonies (0.39 TU/cell) and the GFP+ cells yielded 120,000 colonies (0.7 TU/cell). In 

the fourth round, the GFP-/lo population yielded only 58,800 colonies, but the TU per cell 

equaled 1.96. The GFP+ population yielded 440,000 colonies (6.29 TU/cell) (Fig. 3-2, 3-3). 

After four rounds of purification, we collected 287 bacterial colonies from each population, 

amplified the inserts by PCR, and had them sequenced.       
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Figure 3-1. Experimental scheme for my phage display screening. Diagram including all 
relevant steps in my experimental scheme, from the initial incubation of LNCaP PSAP-GFP 
cells with phage display libraries (CX7C and CX8C) (steps 1 and 2), to amplifying colonies 
in LB broth and titering the colonies by preforming serial dilutions on K/T plates (steps 5 
and 6). Finally, we selected bacterial colonies from each population for sequencing (step 7). 
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Figure 3-2. Competitive assays used to find unique peptides that bind the PSA-/lo 
LNCaP cells. 

 (A). Experimental design of competitive assay. 

 (B). Summary of the results from competitive assay, including phage concentrations, cells   
obtained from FACS, and colonies collected after each round of purification. 
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 Figure 3-3. Transforming units per cell obtained at each round of purification in the 
competitive assay. See text for more descriptions 
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        After all of the colonies were sequenced, we aligned the sequences using flanker 

regions, which are located on either side of the insert. Depending on which library the 

peptide was derived from, the insert can be composed of either 21 or 24 nucleotides (Fig. 3-

4, A). From the 576 colonies collected, we obtained 564 (~98%) readable sequences. The 

majority (~78%) of those sequences obtained were comprised of the following four 

predominant sequences: VEYDSWML, VEGDYLL, VWTEEGPL, and TEYDTMML, 

which were shared between the GFP+ and the GFP-/lo LNCaP cell populations (Fig. 3-4, B). 

Of the remaining sequences, only 15 were from the GFP-/lo population alone. One peptide, 

TEWDYLTV, had nine colonies and were unique to the GFP-/lo population, so we decided to 

further investigate if this peptide was binding specifically to the GFP-/lo cells. This peptide 

was referred to as JRM1 (Fig. 3-4, C). A BLAST (Basic Local Alignment Search Tool) 

reveals that the JRM1 peptide share sequence identity or similarity to several human 

proteins (Fig. 3-4, D), the biological significance of which remains to be determined. 
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  Figure 3-4. Competitive assay results  

(A). Example of sequences. Number 1 and 2 are examples of sequences shared between both 
the GFP+ and the GFP-/lo populations. Number 3 is an example of a sequence unique to 
the GFP+ cells whereas number 4 a sequence unique to the GFP-/lo population. The 
insert is 21 or 24 nucleotides long depending on which library it was derived from. A 
cystine and a flanker region on either side surround the insert. 

(B). List of all of the sequences collected and which group they belong and a list of the four 
most predominant sequences.  

(C). List of GFP-/lo only peptide sequences.   

(D). BLAST results for TEWDYLTV (JRM1) sorted by query coverage.  
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3.3.2 Characterizations of the JRM1 peptide 

          We first wanted to determine if JRM1 was truly specific to the GFP-/lo LNCaP cells. 

To this end, I first purified out the bacteriophage from one of the nine JRM1 bacterial 

colonies. Then, I incubated the bacteriophage with LNCaP PSA-GFP cells in suspension, 

and sorted the top 10% GFP+ and the bottom 5% GFP-/lo cells. This was repeated several 

times with cells in suspension. However, the bacteriophage displaying JRM1 did not show 

an apparent preference to either cell population (data not shown).  

Testing of JRM1 using synthetic biotinylated JRM1 peptide 

To further characterize JRM1, we had this peptide synthesized and biotinylated 

(Genemed), which allowed us to directly quantify its binding attributes by two different 

methods, IF and FACS analysis. we first sorted LNCaP PSA-GFP cells into the top 10% 

GFP+ and the bottom 5% GFP-/lo cells. We then plated each population on coverslips and 

incubated with 200 nM JRM1-biotin followed by Alexafluor 594 (Fig. 3-5). When 

quantifying this data I counted cells that stained positive for Alexaflour 594 (which 

corresponds to JRM1 binding) compared to live cells, comparing six experiments the results 

were inconsistent and showed no statistically significant trend toward JRM1 binding to 

either the GFP+ or GFP-/lo LNCaP cells (Fig. 3-5, C). This inconsistency could be caused by 

different variables such as different lots of JRM1-biotin or amount of time stored in solution, 

synthetic peptides will degrade relatively quickly once in solution. To further investigate if 

JRM1 had any preference for GFP-/lo cells, we utilized FACS analysis by incubating LNCaP 

PSA-GFP cells in suspension with JRM1-biotin at 200 nM per 100K cells or 50 nM per 

100K cells (1 hour, 37˚C) followed by staining with streptavidin-APC (Fig. 3-6). When 
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LNCaP PSA-GFP cells were incubated with 200 nM per 100K cells of JRM1-biotin, JRM1 

bound to 2.05% of the GFP+ cells and 3.05% of the GFP-/lo cells, respectively. When LNCaP 

PSA-GFP cells were incubated with 50 nM per 100K cells of JRM1-biotin, JRM1 bound to 

0.91% of the GFP+ cells and 1.21% of the GFP-/lo cells (Fig. 3-6). In conclusion, this data 

suggests only a slight preference for JRM1 to bind the PSA-/lo relative to PSA+ LNCaP cells.  
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Figure 3-5. IF analysis of JRM1 binding to GFP+ and GFP-/lo LNCaP cells. 

(A) GFP-/lo and GFP+ PSA-GFP LNCaP cells incubated with JRM1-biotin 200 nM       
(Exp #1) (10X) and (40X). 

(B) GFP-/lo and GFP+ PSA-GFP LNCaP cells incubated with JRM1-biotin 200 nM       
(Exp #5) (10X) and (40X). 

(C) GFP-/lo vs GFP+ PSA-GFP LNCaP cells incubated with JRM1-biotin 200 nM          
(bar graph of all experiments) 
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Figure 3-6. LNCaP PSA-GFP cells incubated with JRM1-biotin. 

(A). LNCaP PSA-GFP cells incubated with 50 nM of JRM1-biotin showing only slight 
preferential binding  to  the  GFP-/lo cells. 

(B). LNCaP PSA-GFP cells incubated with 200 nM of JRM1-biotin showing only slight 
preferential binding  to  the  GFP-/lo cells. 

(C). Bar graphs showing the average binding of JRM1-biotin to the GFP-/lo cells versus the 
GFP+ LNCaP cells (50 nM and 200 nM). 
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Testing of JRM1 using synthetic JRM1-Aminocoumarin  

        To further investigate the binding properties of JRM1, we had synthetic JRM1 directly 

conjugated to aminocoumarin (AMC). Using JRM1-AMC is a more direct method to 

evaluate the binding properties of JRM1. We incubated LNCaP PSA-GFP cells in 

suspension with 200 nM per 100K LNCaP PSA-GFP cells for one hour at 37˚C, washed 

twice, and then used the flow cytometry to sort out the bottom ~5% of GFP-/lo versus the 

GFP+ population. In the GFP+ population, JRM1-AMC bounds to ~0.085% of cells, and in 

the GFP-/lo population, JRM1-AMC bound to ~0.29% of the cells (Fig. 3-7). This data 

correlates with the data using JRM1-biotinylated peptide and suggests that the JRM1 peptide 

does have slight preferential binding to the PSA-/lo cell population relative to the PSA+ 

LNCaP cells. 
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Figure 3-7. LNCaP PSA-GFP cells incubated with JRM1-Aminocoumarin (AMC). 

(A). LNCaP PSA-GFP cells incubated with 200 nM of JRM1-AMC showing slight 
preferential binding  to  the  GFP-/lo cells. 
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3.3.3 Indirect subtraction assay: Identification of JRM2 peptide 

        Given the low preferential binding of JRM1 to the PSA-/lo LNCaP cells, we decided to 

re-screen these cells using adherent cells instead of cells in suspension. Also, after the initial 

round of incubation with the bacteriophage libraries, we only propagated the GFP-/lo cell 

derived phages in the subsequent three rounds (Fig. 3-8). LNCaP cells are normally adherent 

and may display different cell surface markers when attached versus when in suspension, 

hence the change in my experimental approach. We only used the bacteriophages collected 

from the GFP-/lo cells in sequential screening, thereby increasing the chances of a peptide 

unique to the GFP-/lo cells being amplified each additional round. Certainly we realize that 

even with this screening scheme, it does not eliminate peptides that can bind both GFP-/lo 

and GFP+ cells.  

        In the initial round, we mixed both libraries CX7C and the CX8C, to a total phage 

concentration of 1× 1012 per million LNCaP PSA-GFP cells. The higher phage concentration 

in the initial round was employed to obtain enough colonies to advance to the next round. It 

is important to note that FACS may act as stringent wash so that incubating the cells with 

the libraries before FACS may lead to many of the bacteriophages with lower binding 

affinity to be washed away during sorting. After sorting the bottom 5% GFP-/lo and top 10%  

GFP+ LNCaP cells, the initial round yielded 704 bacterial colonies (0.022 TU/cell) in the 

GFP-/lo population and 960 bacterial colonies (0.015 TU/cell) in the GFP+ population (Fig. 

3-9). The 704 colonies collected from the GFP-/lo cells were then prepared into a secondary 

bacteriophage library, which was incubated with LNCaP PSA-GFP adherent cells at a 

concentration of 1× 1010/million cells. This round yielded 2,400 colonies from the GFP-/lo 

population (0.16 TU/cell) and 4,000 colonies from GFP+ population (0.11 TU/cell). For the 
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third round, we again prepared the phage library collected from the GFP-/lo cells and 

incubated it with adherent LNCaP PSA-GFP cells at a concentration of 1× 1010 per million 

cells. This round yielded ~560,000 colonies (4.49 TU/cell) from the GFP-/lo cells and 

~440,000 colonies (3.1 TU/cell) from the GFP+ cells. Finally in the fourth round, with the 

colonies collected in the third round from the GFP-/lo cells, we prepared its corresponding 

phage library and incubated it with adherent LNCaP PSA-GFP cells at a concentration of 1× 

1010 per million cells. This round yielded ~489,600 colonies (6.12 TU/cell) from the GFP-/lo 

cells and ~866,400 colonies (6.04 TU/cell) from the GFP+ cells (Fig. 3-8, 3-9). When 

comparing GFP-/lo to GFP+ TU per cell, the third round showed a higher preference toward 

the GFP-/lo population when compared to the fourth round (Fig. 3-9). Consequently we 

collected 287 bacterial colonies from each population of the third round, amplified the 

inserts by PCR and subsequently sequenced the peptide-encoding inserts.  
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Figure 3-8. Indirect subtraction assay used to find unique peptides that attach to the 
PSA-/lo LNCaP cells. 

 (A). Experimental design of indirect subtraction assay. 

 (B). Results of the indirect subtraction assay, which include phage concentrations, cells 
collected after FACS, and clones collected after each round of purification. 
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 Figure 3-9. Transforming units per cell obtained at each round of purification in the 
indirect subtraction assay. See text for more descriptions 
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        From the 576 colonies collected, we obtained 566 readable sequences. Of those, the 

majority (~98%) of the sequences were comprised of the following three predominate 

sequences: YEWDYLFW, VEYDAMEL, and LEFDLMLV, which all were shared between 

the GFP+ and the GFP-/lo LNCaP cell populations (Fig. 3-10, A). Of the remaining 

sequences, 12 were unique to the GFP-/lo population (Fig. 3-10, B). One peptide, 

GFYVGQR, had two colonies that were only in the GFP-/lo population (Fig. 3-10, B).  We 

subsequently chose to further investigate whether this peptide, referred to as JRM2, was 

binding preferentially to the PSA-/lo LNCaP cells.  
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Figure 3-10. Indirect subtraction assay results  

(A). List of all of the sequences collected and which group they belong and a list of the four 
most predominant sequences.  

(B). List of GFP-/lo only peptide sequences.  

(C). BLAST results for GFYVGQR (JRM2) sorted by query coverage. 
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3.3.4 Characterizations of the JRM2 peptide 

        After identifying the JRM2 peptide, we first utilized BLAST (Basic Local Alignment 

Search Tool) to determine whether JRM2 is identical to or overlaps with certain known 

peptide sequences (Fig. 3-10, C). The results revealed that JRM2 may be mimicking 

epidermal growth factor receptor substrate 15-like 1 isoforms 1-4. Future work will 

determine what protein peptides JRM2 might be mimicking and what cell surface receptors 

it might be binding to. 

Testing of JRM2 using synthetic biotinylated JRM2 peptide 

        To determine if JRM2 is binding preferentially or specifically to the GFP-/lo LNCaP 

cells, we used the same experimental approach that we took with JRM1. Briefly, we had 

JRM2 synthesized and biotinylated and then, we sorted LNCaP PSA-GFP cells into the top 

10% GFP+ and the bottom 5% GFP-/lo LNCaP cells. Each cell population was plated on 

coverslips and incubated with 200 nM JRM2-biotin followed by incubating with streptavidin 

594 (Fig. 3-11). Strikingly, JRM2 showed preferential binding to the GFP-/lo LNCaP cells 

when compared to its binding to GFP+ LNCaP cells (Fig. 3-11). To further investigate the 

binding properties of JRM2, we utilized JRM2-biotin in conjunction with flow cytometry 

based quantification. To better control for this experiment, we obtained a biotinylated 

control peptide, called JRM0 (VEYDSWML) that showed no preference between GFP+ 

versus GFP-/lo cells. We incubated LNCaP PSA-GFP cells with JRM2-biotin or JRM0-biotin 

peptides at 200 nM per 100K cells for 1 hour at 37˚C. JRM0-biotin attached to 34.6% of 

GFP+ and 37.2% of the  GFP-/lo LNCaP cells, indicating that, as expected, JRM0 shows 

similar binding towards GFP+ and GFP-/lo cell populations (Fig. 3-12, A). In contrast, JRM2 

showed binding to 5.2% of GFP+ cells and 23.6% of the GFP-/lo cells, respectively (Fig. 3-
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12, B). This data provides the first piece of evidence that JRM2 preferentially binds to PSA-

/lo LNCaP cells and warrants further investigation. 
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Figure 3-11. See overleaf for legend to this figure 
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Figure 3-11. Characterization of JRM2 binding to PSA+ and PSA-/lo LNCaP cells by 
immunofluorescence.  

(A) GFP-/lo PSA-GFP LNCaP cells incubated with JRM2-biotin 200 nM (10X),(40X). 

(B) GFP+ PSA-GFP LNCaP cells incubated with JRM2-biotin 200 nM (10X),(40X). 

 (C) Bar graph showing preferential binding of JRM2-biotin to the GFP-/lo cells versus the 
GFP+ LNCaP cells. 
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Figure 3-12. LNCaP PSA-GFP cells incubated with JRM0-biotin and JRM2-biotin. 

(A). LNCaP PSA-GFP cells incubated with 200 nM of JRM0-biotin showing no preferential binding 
for either GFP-/lo cells or GFP+ cells. 

(B). LNCaP PSA-GFP cells incubated with 200 nM of JRM2-biotin showing preferential binding to 
the GFP-/lo cells. 
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Testing of JRM2 using synthesized JRM2-Aminocoumarin 

        To further investigate the binding properties of JRM2, we applied the same 

experimental strategy that we utilized with JRM1. First, JRM2 was synthesized and directly 

conjugated to AMC (Genemed). Subsequently, we incubated LNCaP PSA-GFP cells in 

suspension with the JRM2-AMC peptide (200 nM per 100K) cells and analyzed the peptide 

binding via FACS. We set the FACS gates utilizing LNCaP PSA-GFP cells and uninfected 

LNCaP cells not incubated with JRM2-AMC. JRM2-AMC bound to ~4.13% of the PSA+ 

and ~69.6% PSA-/lo LNCaP cells, respectively (Fig. 3-13). These results further indicate that 

JRM2 peptide shows preferential binding to the GFP-/lo cell population. 

Testing of JRM2 using synthetic JRM2-Lassamine Rhodamine 

Next, JRM2 was directly conjugated to Lassamine Rhodamine (LR) (Genemed). In 

this experiment we utilized confocal microscopy to assess the binding properties of JRM2. 

We again sorted LNCaP PSA-GFP cells into the top 10% GFP+ and the bottom 5%  GFP-/lo 

LNCaP cells. Each cell population was plated on coverslips, and GFP+, GFP-/lo, and unsorted 

bulk LNCaP PSA-GFP cells were incubated with 200 nM JRM2-LR for 1 hour at 37˚C (Fig. 

3-14). Strikingly, JRM2-LR bound to the majority of the GFP-/lo LNCaP cells when 

compared to the GFP+ LNCaP cells (Fig. 3-14 B and C). Even when unsorted bulk LNCaP 

PSA-GFP cells were incubated with JRM2-LR it showed preferential binding to the GFP-/lo 

cells. This data indicates that JRM2 has strong preferential binding to GFP-/lo cell population 

(Fig. 3-14). This result, together with the data using JRM2-biotin and JRM2-AMC, confirms 

that the JRM2 peptide preferentially binds to the GFP-/lo (PSA-/lo) LNCaP cells. 
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Figure 3-13. LNCaP PSA-GFP cells incubated with JRM2-Aminocoumarin (AMC). 

(A). LNCaP PSA-GFP cells incubated with 200 nM of JRM2-AMC showing strong 
preferential binding to the GFP-/lo cells. 

(B). Bar graph showing the average binding of JRM2-AMC to the GFP-/lo cells versus the 
GFP+ LNCaP cells. 
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Figure 3-14. Analysis of JRM2-lassamine rhodamine (LR) utilizing confocal microscopy. 

(A). LNCaP cells utilized as negative control. 

(B). Sorted GFP+ LNCaP PSA-GFP cells incubated with 200 nM of JRM2-LR. 

(C). Sorted GFP- LNCaP PSA-GFP cells incubated with 200 nM of JRM2-LR. 

(D). Unsorted LNCaP PSA-GFP cells incubated with 200 nM of JRM2-LR. 
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3.3.5 Direct subtraction assay 

In all preceding screening experiments, infected LNCaP cells were incubated, in 

suspension or adherence, with the mixed phage libraries followed by flow sorting of GFP+ 

and GFP-/lo cells. Since flow sorting is a very harsh process, some bacteriophages or peptides 

of interest might become detached during sorting. To circumvent this potential problem we 

employed the direct subtraction method by incubating the LNCaP PSA-GFP cells after 

FACS, instead of before FACS. We also let the GFP+ cells act as a sink, by incubating either 

the initial libraries (i.e, CX7C and CX8C libraries) or the bacteriophage libraries derived 

from the GFP-/lo LNCaP cells, with the GFP+ cells first. By doing so, the bacteriophages that 

bind to the GFP+ cells will be depleted. The supernatant with the GFP+-specific phages 

depleted is then incubated with the GFP-/lo LNCaP cells, thus increasing the likelihood of 

isolating bacteriophages unique to the PSA-/lo cell population (Fig. 3-15).  

        For the direct subtraction assay, in the initial round we mixed both the CX7C and CX8C 

libraries to a total concentration of 2×109 per million LNCaP PSA-GFP cells for 1 hour at 

37˚. After sorting the bottom 5% GFP-/lo and the top 10% GFP+ cells, the initial round 

yielded 26,000 bacterial colonies (0.32 TU/cell) from the GFP-/lo population and 23,750 

bacterial colonies (0.13 TU/cell) from the GFP+ population. The TU/cell is more than 10 

fold higher using the direct subtraction method compared to the other two methods, 

suggesting that this method is probably working better. For the second round of purification, 

the 26,000 bacterial colonies were collected from the GFP-/lo cells and prepared into the 

secondary bacteriophage library. We again sorted LNCaP PSA-GFP into the bottom 5% 

GFP-/lo cells and the top 10% GFP+ cells and then incubated the GFP+ cells with this 

bacteriophage library after this incubation. The supernatant was collected to incubate with 
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the GFP-/lo cells. This round yielded 12,500 bacterial colonies (0.12 TU/cell) from the    

GFP-/lo cells and 25,000 bacterial colonies (0.13 TU/cell) from the GFP+ cells. For the third 

round, we repeated the same process and obtained 17,900 bacterial colonies (0.19 TU/cell) 

from the GFP-/lo population and 18,200 bacterial colonies (0.11 TU/cell). In the fourth 

round, the GFP-/lo cells yielded ~1,400,000 bacterial colonies (12.88 TU/cell) and the GFP+ 

cells yielded ~1,200,000 bacterial colonies (6.48 TU/cell) (Fig. 3-15 and 3-16).  

We collected 150 bacterial colonies from each population of the fourth round, 

amplified the inserts by PCR and subsequently sequenced the peptide-encoding inserts. 

Strikingly, the direct subtraction assay yielded only 3 peptides that were repeated more than 

twice accounting for ~20% of the readable sequences (Fig. 3-10, A and 3-17, A), compared 

to the indirect subtraction assay in which the predominant 3 sequences accounted for ~98% 

of the total sequences. Also the direct subtraction assay generated 239 (~80%) unique 

peptides that were represented by only 1 or 2 colonies (Fig. 3-17, A). From the 118 GFP-/lo 

unique sequences, three were repeated twice (GGDSADT, RYAVGSK, and TARTGRG) 

(Fig. 3-17, B and C), and these three peptides will be further investigated, in the near future, 

to characterize their binding properties (Fig. 3-17). We will also review the GFP-/lo and 

GFP+ sequences in an effort to identify any motifs that are unique to the PSA-/lo sequences. 

One reason that could account for the increased number of unique peptides is that in contrast 

to the indirect subtraction and competitive assays, in the direct subtraction assay incubation 

of the cells with the phage libraries occurs after FACS, thus bypassing FACS effect of 

washing loosely bound peptides off.  
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Figure 3-15. Direct subtraction assays used to find unique peptides that bind the          
PSA-/lo LNCaP cells. 

 (A). Experimental design of direct subtraction assay. 

 (B). Summary of the results from direct subtraction assay, including phage concentrations, 
cells   obtained from FACS, and colonies collected after each round of purification. 
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Figure 3-16. Transforming units per cell obtained at each round of purification in the 
direct subtraction assay. See text for more descriptions 
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Figure 3-17. Direct subtraction assay results  

(A). List of all of the sequences collected and which group they belong and a list of the three 
most predominant sequences.  

(B). List of GFP-/lo repeated peptide sequences.  

(C). BLAST results for GGDSADT, RYAVGSK and TARTGRG sorted by query coverage. 

 

 

 

 

BLAST	
  results	
  for	
  direct	
  subtraction	
  
assay	
  

A 

B C 

Direct	
  Subtraction	
  Results	
  



72	
  
	
   	
  

3.3.6 Preliminary in vivo phage display assay 

        All preceding phage peptide library screenings were conducted in cultured LNCaP 

cells. One major deficiency with cultured cancer cells is the lack of supporting stromal cells 

and microenvironment, which are known to be important for tumor development and 

progression. As a first step towards overcoming this deficiency, we performed a pilot phage 

display experiment in the LAPC9 xenograft tumor model, which has both PSA+ and PSA-/lo 

cellular compartments [62]. We first injected infected LAPC9 PSA-GFP cells into the dorsal 

prostate of male NOD/SCID mice. Once tumors became palpable, we mixed the CX7C and 

CX8C bacteriophage libraries to a total concentration of 1 × 1011 and injected it (in 50 µl) 

through the tail vein of a NOD/SCID mouse. The bacteriophage injection was allowed to 

circulate in the animal for 1 hour, after which the tumor was dissected out, dissociated into 

single cells, and used in flow sorting of bottom 5% GFP-/lo cells and top 10% GFP+ cells. We 

isolated the recovered bacteriophages on each cell type and prepared the corresponding 

bacteriophage libraries. This process was repeated with the GFP-/lo bacteriophage library for 

multiple rounds (Fig. 3-18). 

The GFP-/lo cells only yielded 31 bacterial colonies, and the GFP+ cells yielded 27 

bacterial colonies in the initial round. Despite the low numbers, we proceeded to the second 

round of purification and amplification, to determine if any of these peptides possessed true 

affinity and specificity for the GFP-/lo cells. The library derived from the initial GFP-/lo cells 

was utilized and injected into the tail vain of another NOD/SCID mouse bearing a LAPC9 

PSA-GFP orthotopic tumor. In this round, both the GFP-/lo cells and the GFP+ cells only 

yielded 5 bacterial colonies. This round did not show any enrichment in peptides that 
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preferentially bound to the PSA-/lo LAPC9 cells. It is obvious that more work is needed to 

optimize the in vivo phage display screening in xenograft tumors. 
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Figure 3-18. Experimental scheme for my in vivo phage display screening. Diagram 
including all relevant steps in my experimental scheme, from the initial injection phage 
display libraries (CX7C and CX8C) (steps 1 and 2), to finally colonies in LB broth and 
titering the colonies by preforming serial dilutions on K/T plates (steps 5 and 6). Finally, we 
selected bacterial colonies from each population for sequencing (step 7). 
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3.4 Discussion 

Phage display has been shown to be a powerful tool that has contributed to many 

different scientific fields. One application of phage display that we are interested in is the 

design of novel therapeutics that target cancer. By combining rational drug design and 

peptides that can home into specific PCa cell populations, phage display could lead to the 

development of novel therapeutics to treat PCa. It could theoretically also be utilized as a 

diagnostic tool to help identify patients that may be at high risk of relapse. The following 

studies illustrate the progression from identification of unique peptides, to characterization 

of a candidate peptide, and finally to the development of drugs conjugated utilizing a 

peptide. 

 A key study utilizing phage display was conducted by Arap et al. [107], who 

identified peptides that bound to the human vascular endothelium. In their study, they 

injected the CX7C random peptide library into a patient with a B-cell malignancy and after 

15 minutes tissue biopsies from various organs (fat, skeletal muscle, bone marrow, skin and 

prostate) were obtained. Only one round of purification was completed due to ethical 

concerns. In their study, 47,160 bacteriophages were recovered and sequenced. Analysis of 

these peptides revealed several motifs and peptides unique to different organ vasculatures.  

One peptide identified, CGRRAGGSC, may be relevant to PCa. The characterization of this 

peptide was later shown to specifically bind the α subunit of the interleukin 11 receptor 

[122]. IL-11 was initially characterized as a cytokine in thrombopoietic activity but later 

shown to have many different functions in multiple tissues. The CGRRAGGSC peptide 

induced cell proliferation by activating STAT3, which was inhibited when soluble IL-11Rα 

was added [122]. These observations suggest that this peptide is a specific IL-11Rα agonist 
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and may be a good candidate for a pro-drug to prevent chemotherapy-induced 

thrombocytopenia. Furthermore, PCa cells and the endothelium in PCa have been shown to 

overexpress IL-11Rα during disease progression, and this peptide is being investigated as a 

potential drug conjugate to treat PCa [123].  

 Another study testing the effects of a drug conjugated to a peptide was conducted by 

Chen et al., who tested a peptide, RGD, which selectively binds to MDA-MB-435 cells 

derived from a metastatic breast cancer patient [124]. They conjugated this peptide to 

paclitaxel (PTX), an antimicrotubule agent commonly used to treat advanced metastatic 

breast cancer. In their study, the peptide-PTX conjugate increased the percentage of cells in 

G0/G1 when compared to cells treated with RGD and PTX (separately) or PTX alone, and it 

produced more early apoptotic cells than PTX alone [124]. Furthermore, utilizing this pro-

drug may reduce the toxicity of PTX and the systemic dose required to obtain antitumor 

efficacy. 

 In our phage display studies, we have identified two peptides, JRM1 and JRM2 that 

demonstrate different levels of preferential binding to the PSA-/lo LNCaP cells, which 

exhibit many SC characteristics and may represent a cellular source of CRPC. We have also 

uncovered three new peptides to be characterized using the direct subtraction assay. Finally, 

we have begun the efforts to identify peptides that show preferential binding to the PSA-/lo 

cells in LAPC9 tumors using in vivo phage display. Our ultimate goal is to identify and 

further characterize these peptides that can preferentially home in to PSA-/lo PCa cells that 

show intrinsic resistance to castration.   

The first peptide, JRM1, was identified using competitive assays (Fig. 3-2). We 

characterized this peptide by using multiple methods including synthetic biotinylated JRM1 
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peptide and having JRM1 directly conjugated to aminocoumarin, and then we quantified its 

binding properties to PSA-/lo LNCaP cells by using IF and FACS analysis. These methods 

showed relatively consistent results, i.e., a slight preferential binding to the PSA-/lo LNCaP 

cells. With these results, we rescreened LNCaP cells using indirect subtraction assays, which 

led to the discovery of the peptide JRM2. Then we characterized JRM2 using the same 

methods as JRM1 except we additionally conjugated JRM2 to lassamine rhodamine. 

Strikingly, JRM2 shows strong preferential binding to the PSA-/lo LNCaP cells utilizing all 

methods. As laid out in the ‘Future Plan’, further characterizing the binding properties and 

the utilities of JRM2 represents a top priority for my continued studies. We hope that 

ultimately JRM2 can be developed into a PSA-/lo PCa cell specific ‘therapeutic’ peptide.  

 We have also identified other peptides using the direct subtraction assays, in which 

after FACS, we use the GFP+ cells as a sink to eliminate peptides specific to that population 

and then use this GFP+ peptide depleted library to incubate the GFP-/lo cells. This effort has 

resulted in three peptides that are currently being characterized to determine if any of them 

truly shows preferential binding to the PSA-/lo PCa cells. Finally, a critical ongoing 

experiment is the in vivo phage display screening. In this assay, we are utilizing the LAPC9 

xenograft model with phage display libraries (Fig. 3-18). We have yet to uncover any 

peptides that show increased specificity to the PSA-/lo cells in the LAPC9 tumors. My future 

studies will focus on optimizing the protocol.  
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3.5 Future plan 

        The use of peptides for targeted delivery of anti-cancer therapeutics has many 

advantages compared to some other approaches such as monoclonal antibodies. Although 

monoclonal antibodies may possess high affinity for specific cell surface target molecules, 

their applications in drug delivery could be limited due to their high molecular weight (150 

kDa) and the potential immunogenicity. Peptides, on the other hand, may be more effective 

due to their relatively lower molecular weight, higher cellular permeability, lower 

immunogenicity, ease of synthesis, and flexibility in chemical conjugation [125]. For these 

reasons, further investigation is needed to characterize the already identified peptides and 

uncover new peptides that show specificity for PSA-/lo PCa cells, which is critical for 

development of novel therapeutics that target CRPC. 

1. More thorough studies of JRM2 peptide binding to PSA-/lo LNCaP cells  

 A. We will first conduct a dose study by incubating live LNCaP PSA-GFP cells with 

increasing amounts (i.e, 0, 10, 100, and 200 nM) of JRM2-AMC or JRM2-LR and use 

FACS analysis and confocal microscopy to determine the percent JRM2 binding to the  

PSA-/lo LNCaP cells. If the JRM2 peptide specifically binds to the PSA-/lo cells, we expect to 

observe a dose dependent increase in the percent JRM2 bound PSA-/lo cells. 

B. We will determine specificity of JRM2 binding by performing a competition assay. 

To this end, the LNCaP PSA-GFP cells will be incubated with 200 nM of JRM2-AMC or 

JRM2-LR, in the presence of increasing unconjugated JRM2. FACS analysis and confocal 

microscopy will then be performed to evaluate the percent JRM2 binding to the PSA-/lo 

LNCaP cells. If JRM2 is truly specific, as we increase the amount of unconjugated JRM2, 
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we will see a gradual decrease in the binding of JRM2-AMC or JRM2-LR to PSA-/lo LNCaP 

cells.  

C. We will complete a similar dose study as stated in 1-A except LNCaP PSA-GFP 

cells are fixed in 4% PFA. By using fixed cells, it will eliminate many variables that live 

cells inherently have because the cell surface molecule that JRM2 is binding to is 

immobilized, which should give us a more accurate base line of the percent of cells that 

express JRM2 binding partner. Also, it will give us a pseudo binding affinity profile. 

D. We will determine whether JRM2 also binds to PSA-/lo LNCaP cells in vivo, utilizing 

LNCaP xenograft models in Nod/Scid mice. We will inject 200 nM of JRM2-AMC or 

JRM2-LR into tail vein of the mouse, let circulate for 1-2 hours, and then dissociate the 

tumors into single cells and employ FACS and confocal microscopy to analyze JRM2 

binding to the PSA-/lo LNCaP cells. This experiment is critical in determining if JRM2 can 

penetrate the vasculature endothelium and not be degraded in circulation. Also we will 

collect other organs such as liver and lungs to determine if JRM2 binding is specific to the 

tumor cells or if JRM2 non-specifically binds to other organs. As an alternative and a 

backup plan, we may also perform intratumoral injection of the JRM2 peptide. 

2. To determine whether JRM2 binds to other PSA-/lo PCa cells utilizing JRM2 AMC 

and JRM2-LR 

First, we will utilize the VCaP cell line, which was developed from a patient with 

hormone refractory prostate cancer and remains androgen sensitive. We will incubate these 

cells with JRM2-AMC and JRM2-LR and quantify JRM2’s binding properties. We will also 

utilize LAPC9 cells, which were originally derived from a bone metastasis and have been 
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maintained as xenograft tumors in Nod/Scid mice. We will inject Nod/Scid mice with 

JRM2-AMC or JRM2-LR into the tail vein and dissociate the tumors to uncover if JRM2 

can bind to the PSA-/lo LAPC9 cells. The prediction is that if the molecule(s) that JRM2 is 

binding to is shared between LNCaP PSA-/lo and these two cell lines then when we analyze 

the binding properties of JRM2 we will also see an increase in the binding of JRM2 to the 

PSA-/lo cells in these two cell lines. 

3. To test the utilities of JRM2 by conjugating with cytotoxic peptides or drugs 

A. We will first test if it can be internalized, because it is crucial for the peptide to be 

internalized when JRM2 is conjugated to a drug or peptide for that drug/peptide to have an 

effect. To determine if JRM2 peptide can be internalized, I shall plate LNCaP PSA-/lo cells, 

incubate the cells with JRM2-LR for varying amounts of time, fix the cells, and finally the 

cells can be permeablized if needed and mounted. If the peptide is internalized then using 

the confocal microscope we will visualize it inside the cell. 

B. JRM2 will be conjugated with a pro-apoptotic sequence (KLAKLAK)2 

[126,127,128]. LNCaP PSA-GFP cells will be sorted into the GFP-/lo and the GFP+ 

populations and a dose study will be conducted to determine the effect on both populations 

at increasing doses from 5 nM to 100 nM. Also we will use unsorted LNCaP PSA-GFP cell 

and perform the same experiment as above to investigate what will happen to the PSA-/lo 

cells when left with PSA+ cells. We predict that if JRM2 is specific to the PSA-/lo cells then 

we will see an increase in dead and dying cells in the GFP-/lo wells compared to the GFP+ 

cells, in the bulk cells we will see a decrease in the GFP-/lo cells. Dr. Kolonin’s lab along 

with others have shown the effectiveness of adding a pro-apoptotic sequence to a peptide to 

induce cell death. 
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C. JRM2 will also be conjugated to a drug to test the cell killing effects. The commonly 

used drugs for such purposes include methotrexate, 5-fluorouracil, doxorubicin, 

cyclosporine and paclitaxel [129]. The effects of this JRM2-conjugate can be measured by 

using LNCaP PSA-GFP cells sorted into the GFP-/lo and the GFP+ populations, and a dose 

study will be conducted to determine the effect on both populations at increasing doses from 

5 nM to 100 nM. If JRM2 is specific to the PSA-/lo cells then we will see an increase in dead 

and dying cells in the GFP-/lo wells compared to the GFP+ cells. 

4. To characterize the three new peptides recently identified in the direct subtraction 

assays 

We will utilize the same methods as those adopted when characterizing JRM1 and 

JRM2 peptides. 

5. To optimize the protocol for in vivo phage display screening utilizing LAPC9 

xenograft tumors  

Theoretically, the in vivo display approach should uncover peptides that will not only be 

specific to the PSA-/lo LAPC9 cells but will also be able to infiltrate the vasculature. The 

peptides uncovered in these studies will have the highest likelihood of being therapeutically 

relevant. So far, we have not been successful at isolating peptides that show preferential 

binding to the PSA-/lo LAPC9 cells. We shall continue to investigate various parameters 

based on our experience from multiple in vitro assays. As a backup plan, we shall explore 

the ex vivo approach, in which the tumor is excised, dissociated into single cells, and 

incubated with the phage display library. This method should allow the phages to bypass the 

vascular barrier and also not be trapped in other organs such as the liver and lung [130]. 
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6. Finally, we will make efforts to determine the potential binding partner(s) of JRM2   

 One way to acquire indirect evidence for the potential binding partner(s) of JRM2 is 

to review the BLAST data and to narrow its potential binding partners to a few candidates to 

see if the PSA-/lo cells overexpress any of the candidates. A direct method of finding JRM2’s 

binding partner is by employing affinity chromatography. Briefly we will extract the 

membrane proteins from purified PSA-/lo LNCaP cells and apply them to synthetic JRM2 

covalently coupled to resin through its C terminus. After the membrane proteins of LNCaP 

cells are filtered across this resin, specifically bound proteins will then be eluted and 

subjected to mass spectrometry analysis. The outcome may implicate a pathway that is 

critical for PCSCs and by uncovering this it could lead to the development of more effective 

therapeutics against CRPC.   

 

 

 

 

 

 

 

 

 



83	
  
	
   	
  

Bibliography 

 

[1] R. Siegel, J. Ma, Z. Zou, A. Jemal. (2014) Cancer statistics, 2014. CA Cancer J Clin 64: 

9-29. 

[2] M.M. Shen, C. Abate-Shen. (2010) Molecular genetics of prostate cancer: new prospects 

for old challenges. Genes Dev 24: 1967-2000. 

[3] M.F. Clarke, J.E. Dick, P.B. Dirks, C.J. Eaves, C.H. Jamieson, D.L. Jones, J. Visvader, 

I.L. Weissman, G.M. Wahl. (2006) Cancer stem cells--perspectives on current status 

and future directions: AACR Workshop on cancer stem cells. Cancer Res 66: 9339-

9344. 

[4] H. Clevers. (2011) The cancer stem cell: premises, promises and challenges. Nat Med 

17: 313-319. 

[5] D.G. Tang. (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 

22: 457-472. 

[6] V.L. Kumar, P.K. Majumder. (1995) Prostate gland: structure, functions and regulation. 

Int Urol Nephrol 27: 231-243. 

[7] P.C. Walsh, Retik, A.B., Stamey, T.A., Vaughan, E.D. (1992) Cambell's Urology. W.B. 

Saunders Co., Philadelphia. 

[8] J.E. McNeal. (1969) Origin and development of carcinoma in the prostate. Cancer 23: 

24-34. 

[9] J.E. McNeal. (1981) The zonal anatomy of the prostate. Prostate 2: 35-49. 

[10] J.E. McNeal. (1988) Normal histology of the prostate. Am J Surg Pathol 12: 619-633. 



84	
  
	
   	
  

[11] I.M. Berquin, Y. Min, R. Wu, H. Wu, Y.Q. Chen. (2005) Expression signature of the 

mouse prostate. J Biol Chem 280: 36442-36451. 

[12] D.G. Tang, L. Patrawala, T. Calhoun, B. Bhatia, G. Choy, R. Schneider-Broussard, C. 

Jeter. (2007) Prostate cancer stem/progenitor cells: identification, characterization, and 

implications. Mol Carcinog 46: 1-14. 

[13] H. Li, D.G. Tang. (2011) Prostate cancer stem cells and their potential roles in 

metastasis. J Surg Oncol 103: 558-562. 

[14] S. Signoretti, D. Waltregny, J. Dilks, B. Isaac, D. Lin, L. Garraway, A. Yang, R. 

Montironi, F. McKeon, M. Loda. (2000) p63 is a prostate basal cell marker and is 

required for prostate development. Am J Pathol 157: 1769-1775. 

[15] A.Y. Liu, L.D. True, L. LaTray, P.S. Nelson, W.J. Ellis, R.L. Vessella, P.H. Lange, L. 

Hood, G. van den Engh. (1997) Cell-cell interaction in prostate gene regulation and 

cytodifferentiation. Proc Natl Acad Sci U S A 94: 10705-10710. 

[16] B. Bhatia, S. Tang, P. Yang, A. Doll, G. Aumueller, R.A. Newman, D.G. Tang. (2005) 

Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-

LOX2) contributes to replicative senescence of human prostate progenitor cells. 

Oncogene 24: 3583-3595. 

[17] I.L. Weissman. (2000) Stem cells: units of development, units of regeneration, and 

units in evolution. Cell 100: 157-168. 

[18] H.F. English, R.J. Santen, J.T. Isaacs. (1987) Response of glandular versus basal rat 

ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11: 

229-242. 



85	
  
	
   	
  

[19] P.E. Burger, X. Xiong, S. Coetzee, S.N. Salm, D. Moscatelli, K. Goto, E.L. Wilson. 

(2005) Sca-1 expression identifies stem cells in the proximal region of prostatic ducts 

with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci U S A 102: 7180-

7185. 

[20] D.A. Lawson, L. Xin, R.U. Lukacs, D. Cheng, O.N. Witte. (2007) Isolation and 

functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A 

104: 181-186. 

[21] A.S. Goldstein, D.A. Lawson, D. Cheng, W. Sun, I.P. Garraway, O.N. Witte. (2008) 

Trop2 identifies a subpopulation of murine and human prostate basal cells with stem 

cell characteristics. Proc Natl Acad Sci U S A 105: 20882-20887. 

[22] K.G. Leong, B.E. Wang, L. Johnson, W.Q. Gao. (2008) Generation of a prostate from a 

single adult stem cell. Nature 456: 804-808. 

[23] T. Kurita, R.T. Medina, A.A. Mills, G.R. Cunha. (2004) Role of p63 and basal cells in 

the prostate. Development 131: 4955-4964. 

[24] X. Wang, M. Kruithof-de Julio, K.D. Economides, D. Walker, H. Yu, M.V. Halili, Y.P. 

Hu, S.M. Price, C. Abate-Shen, M.M. Shen. (2009) A luminal epithelial stem cell that is 

a cell of origin for prostate cancer. Nature 461: 495-500. 

[25] N. Choi, B. Zhang, L. Zhang, M. Ittmann, L. Xin. (2012) Adult murine prostate basal 

and luminal cells are self-sustained lineages that can both serve as targets for prostate 

cancer initiation. Cancer Cell 21: 253-265. 

[26] A.T. Collins, F.K. Habib, N.J. Maitland, D.E. Neal. (2001) Identification and isolation 

of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J 

Cell Sci 114: 3865-3872. 



86	
  
	
   	
  

[27] G.D. Richardson, C.N. Robson, S.H. Lang, D.E. Neal, N.J. Maitland, A.T. Collins. 

(2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117: 

3539-3545. 

[28] Q. Wang, W. Li, Y. Zhang, X. Yuan, K. Xu, J. Yu, Z. Chen, R. Beroukhim, H. Wang, 

M. Lupien, T. Wu, M.M. Regan, C.A. Meyer, J.S. Carroll, A.K. Manrai, O.A. Janne, 

S.P. Balk, R. Mehra, B. Han, A.M. Chinnaiyan, M.A. Rubin, L. True, M. Fiorentino, C. 

Fiore, M. Loda, P.W. Kantoff, X.S. Liu, M. Brown. (2009) Androgen receptor regulates 

a distinct transcription program in androgen-independent prostate cancer. Cell 138: 245-

256. 

[29] S.A. Tomlins, D.R. Rhodes, S. Perner, S.M. Dhanasekaran, R. Mehra, X.W. Sun, S. 

Varambally, X. Cao, J. Tchinda, R. Kuefer, C. Lee, J.E. Montie, R.B. Shah, K.J. Pienta, 

M.A. Rubin, A.M. Chinnaiyan. (2005) Recurrent fusion of TMPRSS2 and ETS 

transcription factor genes in prostate cancer. Science 310: 644-648. 

[30] C. Kumar-Sinha, S.A. Tomlins, A.M. Chinnaiyan. (2008) Recurrent gene fusions in 

prostate cancer. Nat Rev Cancer 8: 497-511. 

[31] B.J. Feldman, D. Feldman. (2001) The development of androgen-independent prostate 

cancer. Nat Rev Cancer 1: 34-45. 

[32] M.R. Cooperberg, J.W. Moul, P.R. Carroll. (2005) The changing face of prostate 

cancer. J Clin Oncol 23: 8146-8151. 

[33] P.C. Nowell. (1976) The clonal evolution of tumor cell populations. Science 194: 23-

28. 

[34] P.C. Nowell, D.A. Hungerford. (1960) Chromosome studies on normal and leukemic 

human leukocytes. J Natl Cancer Inst 25: 85-109. 



87	
  
	
   	
  

[35] J.E. Visvader, G.J. Lindeman. (2008) Cancer stem cells in solid tumours: accumulating 

evidence and unresolved questions. Nat Rev Cancer 8: 755-768. 

[36] J.a.K. Furth, M. (1937) The transmission of leukemia of mice with a single cell. AM J  

Cancer 31: 276-282. 

[37] T. Lapidot, C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Caceres-Cortes, M. 

Minden, B. Paterson, M.A. Caligiuri, J.E. Dick. (1994) A cell initiating human acute 

myeloid leukaemia after transplantation into SCID mice. Nature 367: 645-648. 

[38] D. Bonnet, J.E. Dick. (1997) Human acute myeloid leukemia is organized as a 

hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730-737. 

[39] M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke. (2003) 

Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 

100: 3983-3988. 

[40] R. Majeti, M.P. Chao, A.A. Alizadeh, W.W. Pang, S. Jaiswal, K.D. Gibbs, Jr., N. van 

Rooijen, I.L. Weissman. (2009) CD47 is an adverse prognostic factor and therapeutic 

antibody target on human acute myeloid leukemia stem cells. Cell 138: 286-299. 

[41] K. Naka, T. Hoshii, T. Muraguchi, Y. Tadokoro, T. Ooshio, Y. Kondo, S. Nakao, N. 

Motoyama, A. Hirao. (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating 

cells in chronic myeloid leukaemia. Nature 463: 676-680. 

[42] Y. Wang, A.V. Krivtsov, A.U. Sinha, T.E. North, W. Goessling, Z. Feng, L.I. Zon, S.A. 

Armstrong. (2010) The Wnt/beta-catenin pathway is required for the development of 

leukemia stem cells in AML. Science 327: 1650-1653. 



88	
  
	
   	
  

[43] F. Notta, C.G. Mullighan, J.C. Wang, A. Poeppl, S. Doulatov, L.A. Phillips, J. Ma, 

M.D. Minden, J.R. Downing, J.E. Dick. (2011) Evolution of human BCR-ABL1 

lymphoblastic leukaemia-initiating cells. Nature 469: 362-367. 

[44] F. Yu, H. Yao, P. Zhu, X. Zhang, Q. Pan, C. Gong, Y. Huang, X. Hu, F. Su, J. 

Lieberman, E. Song. (2007) let-7 regulates self renewal and tumorigenicity of breast 

cancer cells. Cell 131: 1109-1123. 

[45] C. Ginestier, M.H. Hur, E. Charafe-Jauffret, F. Monville, J. Dutcher, M. Brown, J. 

Jacquemier, P. Viens, C.G. Kleer, S. Liu, A. Schott, D. Hayes, D. Birnbaum, M.S. 

Wicha, G. Dontu. (2007) ALDH1 is a marker of normal and malignant human 

mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555-

567. 

[46] S. Pece, D. Tosoni, S. Confalonieri, G. Mazzarol, M. Vecchi, S. Ronzoni, L. Bernard, 

G. Viale, P.G. Pelicci, P.P. Di Fiore. (2010) Biological and molecular heterogeneity of 

breast cancers correlates with their cancer stem cell content. Cell 140: 62-73. 

[47] C.A. O'Brien, A. Pollett, S. Gallinger, J.E. Dick. (2007) A human colon cancer cell 

capable of initiating tumour growth in immunodeficient mice. Nature 445: 106-110. 

[48] L. Ricci-Vitiani, D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. De 

Maria. (2007) Identification and expansion of human colon-cancer-initiating cells. 

Nature 445: 111-115. 

[49] S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, 

M.D. Cusimano, P.B. Dirks. (2004) Identification of human brain tumour initiating 

cells. Nature 432: 396-401. 



89	
  
	
   	
  

[50] S. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M.W. Dewhirst, 

D.D. Bigner, J.N. Rich. (2006) Glioma stem cells promote radioresistance by 

preferential activation of the DNA damage response. Nature 444: 756-760. 

[51] C.E. Eyler, Q. Wu, K. Yan, J.M. MacSwords, D. Chandler-Militello, K.L. Misuraca, 

J.D. Lathia, M.T. Forrester, J. Lee, J.S. Stamler, S.A. Goldman, M. Bredel, R.E. 

McLendon, A.E. Sloan, A.B. Hjelmeland, J.N. Rich. (2011) Glioma stem cell 

proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 146: 53-

66. 

[52] K.S. Chan, I. Espinosa, M. Chao, D. Wong, L. Ailles, M. Diehn, H. Gill, J. Presti, Jr., 

H.Y. Chang, M. van de Rijn, L. Shortliffe, I.L. Weissman. (2009) Identification, 

molecular characterization, clinical prognosis, and therapeutic targeting of human 

bladder tumor-initiating cells. Proc Natl Acad Sci U S A 106: 14016-14021. 

[53] P.L. Ho, E.J. Lay, W. Jian, D. Parra, K.S. Chan. (2012) Stat3 activation in urothelial 

stem cells leads to direct progression to invasive bladder cancer. Cancer Res 72: 3135-

3142. 

[54] A. Eramo, F. Lotti, G. Sette, E. Pilozzi, M. Biffoni, A. Di Virgilio, C. Conticello, L. 

Ruco, C. Peschle, R. De Maria. (2008) Identification and expansion of the tumorigenic 

lung cancer stem cell population. Cell Death Differ 15: 504-514. 

[55] S.J. Curtis, K.W. Sinkevicius, D. Li, A.N. Lau, R.R. Roach, R. Zamponi, A.E. 

Woolfenden, D.G. Kirsch, K.K. Wong, C.F. Kim. (2010) Primary tumor genotype is an 

important determinant in identification of lung cancer propagating cells. Cell Stem Cell 

7: 127-133. 



90	
  
	
   	
  

[56] I.A. Silva, S. Bai, K. McLean, K. Yang, K. Griffith, D. Thomas, C. Ginestier, C. 

Johnston, A. Kueck, R.K. Reynolds, M.S. Wicha, R.J. Buckanovich. (2011) Aldehyde 

dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem 

cells that portend poor patient survival. Cancer Res 71: 3991-4001. 

[57] K. Meirelles, L.A. Benedict, D. Dombkowski, D. Pepin, F.I. Preffer, J. Teixeira, P.S. 

Tanwar, R.H. Young, D.T. MacLaughlin, P.K. Donahoe, X. Wei. (2012) Human 

ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by 

Mullerian inhibiting substance. Proc Natl Acad Sci U S A 109: 2358-2363. 

[58] H. Li, X. Chen, T. Calhoun-Davis, K. Claypool, D.G. Tang. (2008) PC3 human prostate 

carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 68: 

1820-1825. 

[59] H. Li, M. Jiang, S. Honorio, L. Patrawala, C.R. Jeter, T. Calhoun-Davis, S.W. 

Hayward, D.G. Tang. (2009) Methodologies in assaying prostate cancer stem cells. 

Methods Mol Biol 568: 85-138. 

[60] C.R. Jeter, M. Badeaux, G. Choy, D. Chandra, L. Patrawala, C. Liu, T. Calhoun-Davis, 

H. Zaehres, G.Q. Daley, D.G. Tang. (2009) Functional evidence that the self-renewal 

gene NANOG regulates human tumor development. Stem Cells 27: 993-1005. 

[61] C.R. Jeter, B. Liu, X. Liu, X. Chen, C. Liu, T. Calhoun-Davis, J. Repass, H. Zaehres, 

J.J. Shen, D.G. Tang. (2011) NANOG promotes cancer stem cell characteristics and 

prostate cancer resistance to androgen deprivation. Oncogene 30: 3833-3845. 

[62] J. Qin, X. Liu, B. Laffin, X. Chen, G. Choy, C.R. Jeter, T. Calhoun-Davis, H. Li, G.S. 

Palapattu, S. Pang, K. Lin, J. Huang, I. Ivanov, W. Li, M.V. Suraneni, D.G. Tang. 



91	
  
	
   	
  

(2012) The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term 

tumor-propagating cells that resist castration. Cell Stem Cell 10: 556-569. 

[63] J. Allison, Y.L. Zhang, M.G. Parker. (1989) Tissue-specific and hormonal regulation of 

the gene for rat prostatic steroid-binding protein in transgenic mice. Mol Cell Biol 9: 

2254-2257. 

[64] I.G. Maroulakou, M. Anver, L. Garrett, J.E. Green. (1994) Prostate and mammary 

adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor 

antigen fusion gene. Proc Natl Acad Sci U S A 91: 11236-11240. 

[65] X. Zhang, M.W. Chen, A. Ng, P.Y. Ng, C. Lee, M. Rubin, C.A. Olsson, R. Buttyan. 

(1997) Abnormal prostate development in C3(1)-bcl-2 transgenic mice. Prostate 32: 16-

26. 

[66] X. Zhang, C. Lee, P.Y. Ng, M. Rubin, A. Shabsigh, R. Buttyan. (2000) Prostatic 

neoplasia in transgenic mice with prostate-directed overexpression of the c-myc 

oncoprotein. Prostate 43: 278-285. 

[67] M. Parisotto, D. Metzger. (2013) Genetically engineered mouse models of prostate 

cancer. Mol Oncol 7: 190-205. 

[68] N.M. Greenberg, F. DeMayo, M.J. Finegold, D. Medina, W.D. Tilley, J.O. Aspinall, 

G.R. Cunha, A.A. Donjacour, R.J. Matusik, J.M. Rosen. (1995) Prostate cancer in a 

transgenic mouse. Proc Natl Acad Sci U S A 92: 3439-3443. 

[69] Y. Yan, P.C. Sheppard, S. Kasper, L. Lin, S. Hoare, A. Kapoor, J.G. Dodd, M.L. 

Duckworth, R.J. Matusik. (1997) Large fragment of the probasin promoter targets high 

levels of transgene expression to the prostate of transgenic mice. Prostate 32: 129-139. 



92	
  
	
   	
  

[70] X. Wu, J. Wu, J. Huang, W.C. Powell, J. Zhang, R.J. Matusik, F.O. Sangiorgi, R.E. 

Maxson, H.M. Sucov, P. Roy-Burman. (2001) Generation of a prostate epithelial cell-

specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101: 

61-69. 

[71] J. Zhang, T.Z. Thomas, S. Kasper, R.J. Matusik. (2000) A small composite probasin 

promoter confers high levels of prostate-specific gene expression through regulation by 

androgens and glucocorticoids in vitro and in vivo. Endocrinology 141: 4698-4710. 

[72] J.R. Gingrich, R.J. Barrios, R.A. Morton, B.F. Boyce, F.J. DeMayo, M.J. Finegold, R. 

Angelopoulou, J.M. Rosen, N.M. Greenberg. (1996) Metastatic prostate cancer in a 

transgenic mouse. Cancer Res 56: 4096-4102. 

[73] P.J. Kaplan-Lefko, T.M. Chen, M.M. Ittmann, R.J. Barrios, G.E. Ayala, W.J. Huss, 

L.A. Maddison, B.A. Foster, N.M. Greenberg. (2003) Pathobiology of autochthonous 

prostate cancer in a pre-clinical transgenic mouse model. Prostate 55: 219-237. 

[74] K. Sato, J. Qian, J.M. Slezak, M.M. Lieber, D.G. Bostwick, E.J. Bergstralh, R.B. 

Jenkins. (1999) Clinical significance of alterations of chromosome 8 in high-grade, 

advanced, nonmetastatic prostate carcinoma. J Natl Cancer Inst 91: 1574-1580. 

[75] J. Qian, R.B. Jenkins, D.G. Bostwick. (1997) Detection of chromosomal anomalies and 

c-myc gene amplification in the cribriform pattern of prostatic intraepithelial neoplasia 

and carcinoma by fluorescence in situ hybridization. Mod Pathol 10: 1113-1119. 

[76] C.E. Nesbit, J.M. Tersak, E.V. Prochownik. (1999) MYC oncogenes and human 

neoplastic disease. Oncogene 18: 3004-3016. 



93	
  
	
   	
  

[77] R.B. Jenkins, J. Qian, M.M. Lieber, D.G. Bostwick. (1997) Detection of c-myc 

oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma 

by fluorescence in situ hybridization. Cancer Res 57: 524-531. 

[78] W.H. Fleming, A. Hamel, R. MacDonald, E. Ramsey, N.M. Pettigrew, B. Johnston, 

J.G. Dodd, R.J. Matusik. (1986) Expression of the c-myc protooncogene in human 

prostatic carcinoma and benign prostatic hyperplasia. Cancer Res 46: 1535-1538. 

[79] K. Ellwood-Yen, T.G. Graeber, J. Wongvipat, M.L. Iruela-Arispe, J. Zhang, R. 

Matusik, G.V. Thomas, C.L. Sawyers. (2003) Myc-driven murine prostate cancer shares 

molecular features with human prostate tumors. Cancer Cell 4: 223-238. 

[80] M.R. Capecchi. (1994) Targeted gene replacement. Sci Am 270: 52-59. 

[81] A. Di Cristofano, B. Pesce, C. Cordon-Cardo, P.P. Pandolfi. (1998) Pten is essential for 

embryonic development and tumour suppression. Nat Genet 19: 348-355. 

[82] K. Podsypanina, L.H. Ellenson, A. Nemes, J. Gu, M. Tamura, K.M. Yamada, C. 

Cordon-Cardo, G. Catoretti, P.E. Fisher, R. Parsons. (1999) Mutation of Pten/Mmac1 in 

mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96: 1563-

1568. 

[83] V. Stambolic, M.S. Tsao, D. Macpherson, A. Suzuki, W.B. Chapman, T.W. Mak. 

(2000) High incidence of breast and endometrial neoplasia resembling human Cowden 

syndrome in pten+/- mice. Cancer Res 60: 3605-3611. 

[84] A. Suzuki, J.L. de la Pompa, V. Stambolic, A.J. Elia, T. Sasaki, I. del Barco Barrantes, 

A. Ho, A. Wakeham, A. Itie, W. Khoo, M. Fukumoto, T.W. Mak. (1998) High cancer 

susceptibility and embryonic lethality associated with mutation of the PTEN tumor 

suppressor gene in mice. Curr Biol 8: 1169-1178. 



94	
  
	
   	
  

[85] M.J. You, D.H. Castrillon, B.C. Bastian, R.C. O'Hagan, M.W. Bosenberg, R. Parsons, 

L. Chin, R.A. DePinho. (2002) Genetic analysis of Pten and Ink4a/Arf interactions in 

the suppression of tumorigenesis in mice. Proc Natl Acad Sci U S A 99: 1455-1460. 

[86] Z. Chen, L.C. Trotman, D. Shaffer, H.K. Lin, Z.A. Dotan, M. Niki, J.A. Koutcher, H.I. 

Scher, T. Ludwig, W. Gerald, C. Cordon-Cardo, P.P. Pandolfi. (2005) Crucial role of 

p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. 

Nature 436: 725-730. 

[87] M.V. Suraneni, R. Schneider-Broussard, J.R. Moore, T.C. Davis, C.J. Maldonado, H. 

Li, R.A. Newman, D. Kusewitt, J. Hu, P. Yang, D.G. Tang. (2010) Transgenic 

expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and 

cell senescence. Oncogene 29: 4261-4275. 

[88] G.P. Smith. (1985) Filamentous fusion phage: novel expression vectors that display 

cloned antigens on the virion surface. Science 228: 1315-1317. 

[89] R. Schier, A. McCall, G.P. Adams, K.W. Marshall, H. Merritt, M. Yim, R.S. Crawford, 

L.M. Weiner, C. Marks, J.D. Marks. (1996) Isolation of picomolar affinity anti-c-erbB-

2 single-chain Fv by molecular evolution of the complementarity determining regions in 

the center of the antibody binding site. J Mol Biol 263: 551-567. 

[90] w.w.N.a.C. Inc, Molecular Biology of Viruses, in: S. Foster (Ed.), Microbiology, 2010. 

[91] W.W. Ja, R.W. Roberts. (2005) G-protein-directed ligand discovery with peptide 

combinatorial libraries. Trends Biochem Sci 30: 318-324. 

[92] N.C. Wrighton, F.X. Farrell, R. Chang, A.K. Kashyap, F.P. Barbone, L.S. Mulcahy, 

D.L. Johnson, R.W. Barrett, L.K. Jolliffe, W.J. Dower. (1996) Small peptides as potent 

mimetics of the protein hormone erythropoietin. Science 273: 458-464. 



95	
  
	
   	
  

[93] S.E. Cwirla, P. Balasubramanian, D.J. Duffin, C.R. Wagstrom, C.M. Gates, S.C. 

Singer, A.M. Davis, R.L. Tansik, L.C. Mattheakis, C.M. Boytos, P.J. Schatz, D.P. 

Baccanari, N.C. Wrighton, R.W. Barrett, W.J. Dower. (1997) Peptide agonist of the 

thrombopoietin receptor as potent as the natural cytokine. Science 276: 1696-1699. 

[94] J.L. Su, K.P. Lai, C.A. Chen, C.Y. Yang, P.S. Chen, C.C. Chang, C.H. Chou, C.L. Hu, 

M.L. Kuo, C.Y. Hsieh, L.H. Wei. (2005) A novel peptide specifically binding to 

interleukin-6 receptor (gp80) inhibits angiogenesis and tumor growth. Cancer Res 65: 

4827-4835. 

[95] L. Hetian, A. Ping, S. Shumei, L. Xiaoying, H. Luowen, W. Jian, M. Lin, L. Meisheng, 

Y. Junshan, S. Chengchao. (2002) A novel peptide isolated from a phage display library 

inhibits tumor growth and metastasis by blocking the binding of vascular endothelial 

growth factor to its kinase domain receptor. J Biol Chem 277: 43137-43142. 

[96] H. Schooltink, S. Rose-John. (2005) Designing cytokine variants by phage-display. 

Comb Chem High Throughput Screen 8: 173-179. 

[97] S.J. McConnell, T. Dinh, M.H. Le, S.J. Brown, K. Becherer, K. Blumeyer, C. Kautzer, 

F. Axelrod, D.G. Spinella. (1998) Isolation of erythropoietin receptor agonist peptides 

using evolved phage libraries. Biol Chem 379: 1279-1286. 

[98] M.E. Tipps, J.E. Lawshe, A.D. Ellington, S.J. Mihic. (2010) Identification of novel 

specific allosteric modulators of the glycine receptor using phage display. J Biol Chem 

285: 22840-22845. 

[99] J. Tao, P. Wendler, G. Connelly, A. Lim, J. Zhang, M. King, T. Li, J.A. Silverman, P.R. 

Schimmel, F.P. Tally. (2000) Drug target validation: lethal infection blocked by 

inducible peptide. Proc Natl Acad Sci U S A 97: 783-786. 



96	
  
	
   	
  

[100] H.Y. Hong, H.Y. Lee, W. Kwak, J. Yoo, M.H. Na, I.S. So, T.H. Kwon, H.S. Park, S. 

Huh, G.T. Oh, I.C. Kwon, I.S. Kim, B.H. Lee. (2008) Phage display selection of 

peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in 

atherosclerosis. J Cell Mol Med 12: 2003-2014. 

[101] R. Sedlacek, E. Chen. (2005) Screening for protease substrate by polyvalent phage 

display. Comb Chem High Throughput Screen 8: 197-203. 

[102] B.K. Kay, P.T. Hamilton. (2001) Identification of enzyme inhibitors from phage-

displayed combinatorial peptide libraries. Comb Chem High Throughput Screen 4: 535-

543. 

[103] M.J. Rowley, K. O'Connor, L. Wijeyewickrema. (2004) Phage display for epitope 

determination: a paradigm for identifying receptor-ligand interactions. Biotechnol Annu 

Rev 10: 151-188. 

[104] A. Skerra. (2007) Alternative non-antibody scaffolds for molecular recognition. Curr 

Opin Biotechnol 18: 295-304. 

[105] C. Gronwall, S. Stahl. (2009) Engineered affinity proteins--generation and 

applications. J Biotechnol 140: 254-269. 

[106] A. Sergeeva, M.G. Kolonin, J.J. Molldrem, R. Pasqualini, W. Arap. (2006) Display 

technologies: application for the discovery of drug and gene delivery agents. Adv Drug 

Deliv Rev 58: 1622-1654. 

[107] W. Arap, M.G. Kolonin, M. Trepel, J. Lahdenranta, M. Cardo-Vila, R.J. Giordano, 

P.J. Mintz, P.U. Ardelt, V.J. Yao, C.I. Vidal, L. Chen, A. Flamm, H. Valtanen, L.M. 

Weavind, M.E. Hicks, R.E. Pollock, G.H. Botz, C.D. Bucana, E. Koivunen, D. Cahill, 

P. Troncoso, K.A. Baggerly, R.D. Pentz, K.A. Do, C.J. Logothetis, R. Pasqualini. 



97	
  
	
   	
  

(2002) Steps toward mapping the human vasculature by phage display. Nat Med 8: 121-

127. 

[108] S.M. Lee, E.J. Lee, H.Y. Hong, M.K. Kwon, T.H. Kwon, J.Y. Choi, R.W. Park, T.G. 

Kwon, E.S. Yoo, G.S. Yoon, I.S. Kim, E. Ruoslahti, B.H. Lee. (2007) Targeting bladder 

tumor cells in vivo and in the urine with a peptide identified by phage display. Mol 

Cancer Res 5: 11-19. 

[109] X. Zhu, H. Wu, S. Luo, Z. Xianyu, D. Zhu. (2008) Screening and identification of a 

novel hepatocellular carcinoma cell binding peptide by using a phage display library. J 

Huazhong Univ Sci Technolog Med Sci 28: 299-303. 

[110] P. Laakkonen, K. Porkka, J.A. Hoffman, E. Ruoslahti. (2002) A tumor-homing 

peptide with a targeting specificity related to lymphatic vessels. Nat Med 8: 751-755. 

[111] H. Witt, K. Hajdin, K. Iljin, O. Greiner, F.K. Niggli, B.W. Schafer, M. Bernasconi. 

(2009) Identification of a rhabdomyosarcoma targeting peptide by phage display with 

sequence similarities to the tumour lymphatic-homing peptide LyP-1. Int J Cancer 124: 

2026-2032. 

[112] B. Zhang, Y. Zhang, J. Wang, Y. Zhang, J. Chen, Y. Pan, L. Ren, Z. Hu, J. Zhao, M. 

Liao, S. Wang. (2007) Screening and identification of a targeting peptide to 

hepatocarcinoma from a phage display peptide library. Mol Med 13: 246-254. 

[113] R.J. Giordano, M. Cardo-Vila, J. Lahdenranta, R. Pasqualini, W. Arap. (2001) 

Biopanning and rapid analysis of selective interactive ligands. Nat Med 7: 1249-1253. 

[114] R.J. Giordano, C.D. Anobom, M. Cardo-Vila, J. Kalil, A.P. Valente, R. Pasqualini, 

F.C. Almeida, W. Arap. (2005) Structural basis for the interaction of a vascular 



98	
  
	
   	
  

endothelial growth factor mimic peptide motif and its corresponding receptors. Chem 

Biol 12: 1075-1083. 

[115] A.C. Daquinag, Y. Zhang, F. Amaya-Manzanares, P.J. Simmons, M.G. Kolonin. 

(2011) An isoform of decorin is a resistin receptor on the surface of adipose progenitor 

cells. Cell Stem Cell 9: 74-86. 

[116] L.S. Jespers, A. Roberts, S.M. Mahler, G. Winter, H.R. Hoogenboom. (1994) Guiding 

the selection of human antibodies from phage display repertoires to a single epitope of 

an antigen. Biotechnology (N Y) 12: 899-903. 

[117] J.H. Levy, P.S. O'Donnell. (2006) The therapeutic potential of a kallikrein inhibitor 

for treating hereditary angioedema. Expert Opin Investig Drugs 15: 1077-1090. 

[118] S.P. Balk, Y.J. Ko, G.J. Bubley. (2003) Biology of prostate-specific antigen. J Clin 

Oncol 21: 383-391. 

[119] D. Yu, D. Chen, C. Chiu, B. Razmazma, Y.H. Chow, S. Pang. (2001) Prostate-specific 

targeting using PSA promoter-based lentiviral vectors. Cancer Gene Ther 8: 628-635. 

[120] M.G. Kolonin, J. Sun, K.A. Do, C.I. Vidal, Y. Ji, K.A. Baggerly, R. Pasqualini, W. 

Arap. (2006) Synchronous selection of homing peptides for multiple tissues by in vivo 

phage display. FASEB J 20: 979-981. 

[121] Y. Zhang, A. Daquinag, D.O. Traktuev, F. Amaya-Manzanares, P.J. Simmons, K.L. 

March, R. Pasqualini, W. Arap, M.G. Kolonin. (2009) White adipose tissue cells are 

recruited by experimental tumors and promote cancer progression in mouse models. 

Cancer Res 69: 5259-5266. 

[122] M. Cardo-Vila, A.J. Zurita, R.J. Giordano, J. Sun, R. Rangel, L. Guzman-Rojas, C.D. 

Anobom, A.P. Valente, F.C. Almeida, J. Lahdenranta, M.G. Kolonin, W. Arap, R. 



99	
  
	
   	
  

Pasqualini. (2008) A ligand peptide motif selected from a cancer patient is a receptor-

interacting site within human interleukin-11. PLoS One 3: e3452. 

[123] A.J. Zurita, P. Troncoso, M. Cardo-Vila, C.J. Logothetis, R. Pasqualini, W. Arap. 

(2004) Combinatorial screenings in patients: the interleukin-11 receptor alpha as a 

candidate target in the progression of human prostate cancer. Cancer Res 64: 435-439. 

[124] X. Chen, C. Plasencia, Y. Hou, N. Neamati. (2005) Synthesis and biological 

evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted 

drug delivery. Journal of medicinal chemistry 48: 1098-1106. 

[125] W. Tai, R. Mahato, K. Cheng. (2010) The role of HER2 in cancer therapy and targeted 

drug delivery. J Control Release 146: 264-275. 

[126] M.M. Javadpour, M.M. Juban, W.C. Lo, S.M. Bishop, J.B. Alberty, S.M. Cowell, C.L. 

Becker, M.L. McLaughlin. (1996) De novo antimicrobial peptides with low mammalian 

cell toxicity. Journal of medicinal chemistry 39: 3107-3113. 

[127] H.M. Ellerby, W. Arap, L.M. Ellerby, R. Kain, R. Andrusiak, G.D. Rio, S. Krajewski, 

C.R. Lombardo, R. Rao, E. Ruoslahti, D.E. Bredesen, R. Pasqualini. (1999) Anti-cancer 

activity of targeted pro-apoptotic peptides. Nat Med 5: 1032-1038. 

[128] M.G. Kolonin, P.K. Saha, L. Chan, R. Pasqualini, W. Arap. (2004) Reversal of obesity 

by targeted ablation of adipose tissue. Nat Med 10: 625-632. 

[129] K.M. Stewart, K.L. Horton, S.O. Kelley. (2008) Cell-penetrating peptides as delivery 

vehicles for biology and medicine. Organic & biomolecular chemistry 6: 2242-2255. 

[130] J.A.L. Hoffman, P.; Porkka, K.; Bernasconi, M.; Ruoslahti, E. (2004) In vivo and ex 

vivo selections using phage-displayed libraries. In Phage Display: A Practical 

Approach. Oxford University Press, New York, NY, USA. 



100	
  
	
   	
  

VITA 

 

        John Robert Moore was born in Fort Worth Texas on July, 16 1981, the son of Dwaine 

and Lou Ann Moore. After graduating from Midland Christian High School in 2000, he 

entered Texas A&M University. John earned the degree of Bachelor of Science in December 

of 2005. In 2008, he began working in Dr. Dean G. Tang’s lab as a research assistant. In the 

Fall of 2011, John entered The University of Texas Health Science Center at Houston 

Graduate School of Biomedical Sciences (GSBS) to pursue his Master’s degree under the 

mentorship of Dr. Dean G. Tang.  

 

Permanent address: 

321 Cottle Town Rd 

Smithville, TX 78957 

	
  


	Phage Display Library Screening For Psa-/Lo Prostate Cancer Cell-Binding Peptides
	Recommended Citation

	John Robert Moore's Final Thesis

