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Nitric Oxide (NO)-Independent Modulation of Soluble Guanylyl 

Cyclase (sGC) Activity and Function 

George L. Britton, M.S. 

Advisory Professor: Emil Martin, Ph.D. 

Soluble guanylyl cyclase (sGC) plays a key role in the nitric oxide (NO) 

signaling pathway, where it functions as an NO receptor and generator of a 

secondary intracellular messenger, cGMP. In addition to NO, investigators have 

identified a number of proteins that interact with sGC and modulate its function. 

For example, the interaction of sGC with ADP-ribosylation factor GTPase 

activating protein 1 (AGAP1) governs sGC’s intracellular distribution and 

therefore mediates localized production of cGMP. Interactions of sGC with heat-

shock protein 90 (HSP90) or HSP70 promote the extent of sGC activation upon 

NO stimulation, while interaction of sGC with the η subunit of chaperonin-

containing T-complex polypeptide 1 (CCTη) or with protein disulfide isomerase 

(PDI) decreases NO-stimulated cGMP production. Previous experiments 

demonstrated that the G-protein signaling modulator protein, activator of G-

protein signaling 3 (AGS3), attenuates the response of sGC to activators in cell 

lysates.  

In this report, we provide evidence that sGC activity and responsiveness 

are increased in AGS3-deficient mice. We found that AGS3-deficient mice not 

only have a lower resting blood pressure than their wild-type counterparts, but 

also are more sensitive to sGC agonists (DEA-NO and BAY41-2272). 

Hematoxylin and eosin staining of aorta sections did not show any significant no 
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morphological differences between AGS3-/- and wild type mice. However, sGC in 

aortic lysates from AGS3-/- mice generated a higher level of cGMP in response to 

the NO-donor, DEA-NO, than in wild type lysates. These data indicate that, in the 

absence of AGS3, sGC activity is increased within smooth muscle cells of aortic 

tissue. In summary, the data from the present study suggests that AGS3 is a 

negative regulator of sGC vascular function.  
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Figure 1. The NO/sGC/cGMP signaling pathway in blood vessels. eNOS catalyzes 
the production of NO by conversion of L-arginine to L-citrulline (L-Cit) and NO. NO 
diffuses into the smooth muscle cells where it binds to the heme moiety of sGC, 
activating the enzyme and increasing cGMP levels. cGMP subsequently binds to and 
activates PKG, PDEs, and CNG channels. PKG can promote smooth muscle cell 
relaxation by its interaction with many of its downstream effectors, such as 
phospholamban (PLB) and myosin light-chain phosphatase (MLCP).   
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INTRODUCTION 

1. NO-cGMP Signaling:  

In eukaryotic cells, nitric oxide (NO) is a critical diatomic signaling 

molecule influencing various physiological processes such as smooth muscle 

relaxation, neurotransmission, and platelet aggregation (1-3). Soluble guanylyl 

cyclase (sGC) is the primary intracellular receptor for NO-signaling. NO activates, 

by several hundred fold, the sGC-mediated conversion of guanine-5’-

triphosphate (GTP) into the intracellular secondary messenger cyclic guanosine 

monophosphate (cGMP) (Fig. 1). Once formed, the second messenger, cGMP, is 

responsible for targeting phosphodiesterases (PDE), cyclic-nucleotide gated 

(CNG) channels and cGMP-dependent protein kinases (PKG) (4).  
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    Table 1. Tissue specific expression of various NOS isoforms. 

Name Location Function 

Neuronal Nitric Oxide 
Synthase (nNOS) 

skeletal muscle 
nervous tissue 

cell communication 

Inducible Nitric Oxide 
Synthase (iNOS) 

immune system immune defense 

Endothelial Nitric Oxide 
Synthase (eNOS) 

vascular endothelium vasodilation 

 

This report is centered on understanding an alternative method in 

regulating sGC function, with primary focus on sGC function in vascular smooth 

muscle cells. Therefore, the function of the NO-sGC-cGMP signaling 

transduction pathway will be mainly discussed within the context of smooth 

muscle cells of the cardiovascular system.  

NOS - In mammalian cells, NO is synthesized by a family of nitric oxide 

synthases (NOS). Three isoforms of NOS are known, with different tissue 

distribution (Table 1) (5). In the cardiovascular system, endothelial NOS (eNOS) 

is the main source of NO production and resides in the endothelial layer of the 

vasculature (6). Shear forces on the endothelial membrane and/or hormonal 

signals binding to endothelial surface receptors cause a surge in intracellular 

Ca2+ levels and induce the formation of the Ca2+/Calmodulin complex (7). This 

complex leads to subsequent calmodulin (CaM)-dependent activation of eNOS 

(8). Thereafter, eNOS catalyzes the oxidation of the amino acid L-arginine to 

produce both NO and L-citrulline (9). After its production, NO diffuses across the 

endothelial membrane into vascular smooth muscle cells, where it can bind with 
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sGC to transmit the NO signal to its various downstream cGMP-dependent 

effectors, PKG, PDE, CNG channels (9). 

PDE – cGMP is hydrolyzed to GMP by a family of phosphodiesterases, an 

enzyme that breaks the phosphodiester bonds of cyclic nucleotides (10). 

Collectively, eleven different PDE families and their various splice variants share 

common cellular functions: to regulate the duration, localization and magnitude of 

cyclic nucleotide signaling (11). The diversity in PDE functions stem from 

differences in their structures, cellular localization, expression profiles, kinetic 

properties, and inhibitor sensitivities (11). Each PDE isoform demonstrates 

distinctive substrate selectivity. For example, PDE5, 6 and 9 are cGMP-selective, 

while PDE4, 7 and 8 are cAMP-selective (12). Some PDEs are capable of 

hydrolyzing both cAMP and cGMP (PDE1, 2, 3, 10, and 11) (12). PDE inhibitors 

are commonly used to maintain intracellular level of cGMP. For example, 

sildenafil, a PDE5 inhibitor, is often used as a tool that allows investigators to 

quantitate sGC activity from the accumulation of cGMP in response to NO (13).  

PKG - The steady state levels of cGMP in the cells as determined by the 

relative rates of cGMP formation by guanylyl cyclases and its degradation by 

PDE ultimately controls the activation of PKG (4) (Fig. 2). Activated PKG 

promotes relaxation of smooth muscle cells. This is achieved through direct 

phosphorylation of myosin light-chain phosphatase (MLCP) (14), and the control 

of intracellular Ca2+ levels (15). PKG-dependent phosphorylation of MLCP 

activates its phosphatase function, which subsequently inhibits smooth muscle 

contraction by dephosphorylating myosin light-chain fibers that were 
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Figure 2. Possible molecular signaling pathways associated with PKG 
mediated smooth muscle cell relaxation. Upon elevated levels of intracellular 
Ca2+ derived from the sarcoplasmic reticulum (SR) or the extracellular space, 
Ca2+/calmodulin (CaM) complex is formed, which results in the activation of 
MLCK. MLCK phosphorylates the myosin light chain fibers signaling the cell to 
form cross bridges between actin and myosin. PKG reverses the contracted state 
of smooth muscle cells by: 1) activating MLCP; and 2) decreasing intracellular 
Ca2+ levels due to sequestration of Ca2+ through SERCA channels located in the 
SR, and inhibiting L-type Ca2+ channels, and preventing formation of IP3 by 
inhibiting phospholipase C. 
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phosphorylated by myosin light kinase (MLCK). In doing so, the phosphatase 

activity of MLCP disrupts the cross-bridge between actin and myosin in the 

contracted state, and thus promotes smooth muscle cell relaxation (14). Second, 

PKG acts to inhibit smooth muscle contraction by keeping intracellular Ca2+ 

below the levels that signal the cell to contract (16). This latter effect is 

accomplished by PKG through several possible mechanisms. These include 

phosphorylation of phospholipase C, resulting in reduced generation of inositol 

triphosphate (IP3), and phosphorylation of the negative regulatory 

phospholamban protein. Phospholamban is associated with the 
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sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), and phospholamban 

phosphorylation increases the activity of SERCA (15). The overall result of PKG 

activity is the decreased availability of intracellular Ca2+ levels in smooth muscle 

cells. This restricts the CaM-dependent activation of the myosin-actin cross 

bridging enzyme MLCK.  

CNG Channels - cGMP is also known to bind to and activate CNG 

channels (15). Initially discovered as part of the phototransduction pathway for 

retinal photoreceptors, CNG channels also act as nonselective cation channels to 

mediate the entry of extracellular Ca2+ into vascular smooth muscle cells (17).  

2. Soluble Guanylyl Cyclase 

Because sGC lies at the nexus between the beneficial effects of NO-

signaling and cGMP-dependent downstream targets, it is an interesting 

therapeutic target. Before the function of sGC and its therapeutic potential were 

discovered, organic nitrates were commonly used by physicians to treat patients 

with angina and heart failure (18,19). It wasn’t until the 1980s that researchers 

determined the connection between sGC activation by endogenous NO and 

cardiovascular events. To better understand the processes that control and 

modulate sGC function, an understanding of sGC structure-function relationships 

is needed.  

2.1 sGC isoforms and structure   

Mammalian sGC consists of one α subunit (73 kDa, 690 aa) and one β 

subunit (70 kDa, 619 aa).  Two isoforms (α1/α2 and β1/β2) encoded by separate 

genes (GUCY1A2, GUCY1A3, GUCY1B2 and GUCY1B3) exist for each sGC 
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Figure 3. Structural organization of sGC functional domains. Schematic 
representation of sGC domain organization is shown on the left. Known x-ray 
structures are shown on the right. Crystal structures of H-NOX, PAS, coiled-coil and 
catalytic domains were adapted from Ref [9] with permission from Annual Review of 
Biochemistry. 

subunit (20). The α1/β1 heterodimer is the main and ubiquitously expressed sGC 

variant, while the α2/β1 heterodimer is expressed primarily in neurons (21). 

Pharmacological and biochemical kinetic studies conducted by Russwurm et al. 

(22) demonstrated that the naturally occurring sGC isoforms, α1/β1 and α2/β1, 

exhibit similar sensitivities to NO despite differences in the primary structure of 

the α1 and α2 subunits. Further studies (23) show that the differential biological 

effects of the isoforms are based on their localization: α2/β1 has a propensity to 

localize at the membrane, whereas the α1/β1 sGC is primarily localized in the 

cytosol.  

As demonstrated in Figure 3, each sGC subunit is composed of four 

domains: an N-terminal Heme-Nitric Oxide/Oxygen (H-NOX) domain, a (Per-

ARNT-Sim) PAS domain, a coiled-coil domain, and a C-terminal catalytic domain 

(9). 
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2.1.1 H-NOX domain  

The N-terminal region of sGC is a critical structure that harbors the heme 

prosthetic group and provides sGC the ability to sense NO, and to transduce the 

message to the catalytic domain. Using a series of α1 N-terminal truncation 

mutants of sGC, investigators determined that the NO-sensing heme prosthetic 

group resides in the β subunit of the protein (24). For example, spectral, 

biochemical, and pharmacological analyses showed that the first 259 amino 

acids of the H-NOX domain in α1 could be deleted and still preserve an NO-

sensitive sGC complex (24). Further spectral and kinetic studies characterized N-

terminal fractions of the β1 subunit (25). A fragment containing residues 1-385 of 

β1 was found to contain stoichiometric amounts of heme (25). This  β1(1-385) 

fragment had the same characteristic UV-spectrum and spectral shifts after NO 

addition as the full-length heterodimeric sGC (25), indicating that the N-terminus 

of β1 is the primary heme-containing domain of sGC. Site-directed mutagenesis 

demonstrated that His105 of the β1 subunit coordinates the heme moiety (26). 

Subsequent experiments determined that the His105 mutation does not directly 

affect heterodimerization of sGC subunits or the function of the catalytic domain 

(26). Any substitution of β1His105 abolished heme binding and the capacity of 

sGC to respond to NO stimulation (26). 

2.1.2 PAS domain 

The PAS domain is named after the three proteins in which it was initially 

discovered: 1) Per-period circadian protein; 2) Arnt-aryl hydrocarbon receptor 

nuclear translocator protein; and 3) Sim-single-minded protein (27). Despite 
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differences in their amino acid sequences, PAS domains share a conserved 

three-dimensional architecture that functions as a signal sensor (27). In sGC, the 

PAS domain appears to perform similarly. Results from a recent study using 

hydrogen/deuterium exchange mass spectrometry (HDX-MS) suggested that the 

PAS domain of sGC communicates the proximate NO-induced conformational 

changes in the H-NOX domain to the catalytic domain (28). HDX-MS analysis 

identified NO-dependent perturbations not only within the PAS domain, but also 

at the intersection between the PAS and coiled-coil domains (28). Importantly, 

these perturbations extend through to the highly flexible coiled-domain domain 

and ultimately influence the catalytic domain to reconfigure into an active state 

(28).   

2.1.3 Coiled-coil Domain 

 The coiled-coil domain in sGC appears to be unique in that it forms an S-

helical structure and, to date, shares little homology with other proteins deposited 

in the National Center for Biotechnology Information protein database (29). The 

crystal structure of the coiled-coil domain was characterized for the β1 subunit 

(residues 348-409) and discovered to form tetrameric arrangements of coiled-coil 

dimers. The coiled-coils are likely arranged in parallel, which allows the flanking 

sGC domains to align correctly (29). In comparison, anti-parallel coiled-coil 

arrangements were shown to form stable, but non-functional, β1 homodimeric 

sGC (29). This is likely the result of the improper alignment of the flanking 

domains, which prevents the formation of a catalytically active enzyme. 

Additional studies have suggested that amino acids Leu394 and Pro399 play 
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significant roles in the dimerization and activation of sGC (29).  

 2.1.4 Catalytic Domain 

The catalytic domains of sGC isoforms are not only highly homologous to 

one another, but also share a high degree of homology with particulate guanylyl 

cyclase and adenylyl cyclase (AC) (15). Therefore, a considerable amount of 

knowledge in the function of the catalytic domain of sGC first emerged through 

homology modeling with the crystal structure of AC. Investigators found that the 

residues used in substrate recognition and catalysis for AC were located on the 

cytoplasmic C1 and C2 domains (30). The corresponding domains were 

attributed to α1 and β1 of sGC (31). The use of heterologous expression systems 

has allowed investigators to confirm these assignments in vitro. For instance, 

transient expression of either α1 or β1 subunits alone in COS-7 cells yielded no 

sGC activity, whereas co-expression of both subunits produced fully functional 

sGC that was responsive to sodium nitroprusside (SNP), an NO-releasing 

compound (32). These data indicate that although each subunit contains a 

catalytic domain, both α1 and β1 are required to form an active catalytic site.  

2.1.5 sGC Architecture  

To date, full-length heterodimeric sGC has proven to be resistant to 

crystallization, which hampers our understanding of its mechanism of action. 

Studies aimed at elucidating the detailed molecular structure of full-length sGC 

have had to resort to crystallizing homologous proteins from bacteria, algae, or 

work with separate isolated domains. None of these approaches allow 

investigators to gain understanding of the structure-function relationship between 



-10- 

sGC domains. Recent developments in the use of high-throughput single-particle 

electron microscopy (EM) has, however, provided a three-dimensional model of a 

heterodimeric sGC holoenzyme architecture (33). This approach has provided 

some understanding of the higher-order domain architecture of sGC and its 

various configurations (33) (Fig. 4A,B). Additionally, it has allowed Campbell et 

al. (33) to characterize the function of the highly-flexible coiled-coil domain of 

sGC. The results showed that the coiled-coil domain is configured in a dimeric 

parallel coiled-coil that flexibly bridges two modular ends of sGC. One end 

includes the catalytic domain, while the second half consists of a complex formed 

between the PAS and H-NOX domains. It appears, that the coiled-coil allows the 

two modular ends to freely swing over a continuous range of conformations (Fig. 

4B). The degree of flexibility in sGC is demonstrated by the ability of the H-NOX 

domain at the N-terminus to contact the C-terminal catalytic domain (33). This 

 
Figure 4. The flexible coiled-coil domain lends to a unique structure and 
function of sGC. (A) The higher-order domain architecture of sGC organized into 2 
modular domains with the coiled-coil linking the two halves together. (B) Range of 
conformations observed in sGC holoenzyme. 3-dimensional reconstructions are 
shown in green, while 2-dimensional images are down below. Model of sGC and its 
conformational snapshots were reprinted with permission from Proceedings of the 
National Academy of Sciences, Single-Particle EM Reveals the Higher-Order 
Domain Architecture of Soluble Guanylate Cyclase, Campbell et al., 2014. Vol. 111 
no. 8: 2960-5.   
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Figure 5. Hypothetical mechanism of 
sGC activation. Binding of NO to sGC 
heme produces a transient 6-coordinate 
complex, followed by disruption of the 
coordinating bond between β1 His105 
and the heme iron. This results in 
formation of the 5-coordinate nitrosyl-
heme and activation of sGC. 
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characteristic flexibility may play an important role in allowing sGC to rapidly and 

accurately respond to various cellular signals that modulate its activity.  

2.2 sGC Activation 

In the basal state, sGC has a relatively low turnover rate of 15-20 min-1(9). 

However, upon NO binding to the heme moiety, the enzymatic activity is 

increased by ~100-fold to a turnover rate of more than 1800 min-1 (9). Details of 

the activation mechanism are currently under investigation. It is well accepted 

that NO binds to the heme of sGC to form an unstable 6-coordinate complex, 

which rapidly converts into a 5-coordinate complex due to the disruption of the 

coordinating bond between His105 and the heme iron (9) (Fig. 5). sGC 

containing this 5-coordinate NO-heme complex has a high cGMP-forming 

activity. Once NO dissociates from sGC, the production of cGMP falls back to the 

basal rate (9). This indicates that sGC activity can be quickly up- and down-

regulated to ensure proper functioning of NO-dependent signaling processes (9). 

It also suggests that the NO-sGC interaction or the subsequent conformational 

changes leading to sGC activation may be the subject of regulation by various 

exogenous factors. 
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3. Exogenous factors affect sGC function:  

While NO is the well-established ligand and activator of sGC, a growing 

body of evidence suggests that other cellular factors also influence the extent or 

the duration of sGC activation. For example, sGC activation by NO is stronger in 

the native cellular environment than in vitro, and exhibits a difference in activity 

depending on the cells in which sGC is expressed (34). In other studies, it was 

demonstrated that the rate of cGMP synthesis is significantly increased in 

response to NO stimulus only for a brief period of time. This stimulated state of 

intracellular sGC is followed by a quick desensitization, which is not explained by 

enhanced PDE activity or decomposition of NO (35). The authors suggested that 

intact cells may contain factors that lead to rapid desensitization of sGC.  

Investigators have begun to identify several proteins that bind sGC and 

modulate its function. Binding of sGC with (1) ADP-ribosylation factor GTPase 

activating protein 1 (AGAP1) governs sGC intracellular distribution and therefore 

localizes production of cGMP (36); (2) heat-shock protein 90 (HSP90) and 

HSP70 increase NO-stimulated sGC activation (37,38); and (3) chaperonin-

containing T-complex polypeptide 1, η subunit  (CCTη) and protein disulfide 

isomerase (PDI) each impede NO-stimulated cGMP production (39,40).  

4. LGN and AGS3: 

This list of possible sGC interactors and modulators has recently been 

updated to include LGN, a protein identified for its 10 leucine-glycine-asparagine 

repeats, and its close homolog activator of G-protein signaling 3 (AGS3) (41). 

LGN and AGS3 are members of a family of proteins known as receptor-
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Figure 6. Similar organization of AGS3 and LGN proteins. Both LGN and 
AGS3 have 7 tetratricopeptide repeats (TPR) at their N-terminal domain, and 4 G-
protein regulatory (GPR) motifs at their C-terminal GoLoco domain.  

independent activators of G-protein signaling (AGS) (42). Initially discovered in a 

yeast-based functional screen as a factor involved in promoting G-protein 

signaling independent of a G-protein coupled receptor, AGS proteins are now 

known to influence the processing of cellular signals by acting as alternative 

binding partners for G-protein subunits (42). Over the past decade, a confluence 

of biochemical data has put various AGS proteins into three groups, based upon 

the mechanism of interaction with G-proteins (43). Group 1 AGS proteins 

function as guanine nucleotide exchange factors (GEF) and therefore increase 

G-protein signaling turnover rates (43). Group 2 AGS proteins act as guanine 

nucleotide dissociation inhibitors (GDI) and impede Gαi-protein signaling (43). 

Group 3 AGS proteins interact with Gβγ, but their functions are not yet well 

understood (43). Both LGN and AGS3 belong to group 2 of AGS proteins (43). 

These proteins have a 3-module domain organization and share 59% amino acid 

sequence homology. As shown in Figure 6, the N-terminal domain containing 

seven tetratricopeptide repeats (TPR) is separated by a linker region from a C-

terminal GoLoco domain that contains four G-protein regulatory (GPR) motifs 

(41,44). Recent evidence indicates that each GPR motif binds and stabilizes one 

Gαi in the GDP-bound conformation. It has been suggested that AGS3 and LGN 
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may serve as scaffolding proteins within a larger signaling complex (42,45). 

These discoveries have broadened the perspectives on the role of G-protein 

signaling.   

It is now understood that LGN directly interacts with sGC (46). Yeast two-

hybrid screens against α1 or β1 sGC as baits identified LGN as a possible sGC 

interactor (46). The sGC-LGN complex was co-precipitated from cultured cells 

and tissue homogenates. A series of co-immunoprecipitation studies using 

purified full-length and truncated isoforms of LGN and sGC indicate that the TPR 

domain of LGN and the catalytic domain of sGC are required for the interaction 

(46). The effects of this interaction were later examined in experiments 

monitoring the activity of sGC when LGN is either overexpressed or knocked-

down. The results showed that LGN overexpression resulted in lower sGC 

activity in cellular lysates, whereas knockdown of LGN transcription mediated 

higher sGC activity (46). Collectively, these in vitro data suggest that LGN is a 

negative modulator of both the basal and activated states of sGC (46).  The 

homologous AGS3 protein was also shown to inhibit sGC, but with more effect 

on activated sGC. In other studies performed by Blumer et al (47), mice lacking 

AGS3 had a NO-dependent drop in mean arterial blood pressure that was 

considerably longer than in wild-type counterparts. These studies suggest that 

AGS3 may function as a possible component in the molecular processes that 

alter sGC activity in the NO/cGMP signaling pathway 
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AIMS 

The main goal of my study was to investigate how AGS3 affects sGC 

function. I hypothesized that, similar to LGN, AGS3 acts as a negative modulator 

of sGC, and that AGS3 deficiency should result in increased sGC activity in vivo. 

To test this hypothesis, I pursued the following specific aims: 

 1) Determine the effect of AGS3-deficiency on sGC-mediated regulation 

of blood pressure; and 

 (2) Determine the effect of AGS3-deficiency on sGC activity in tissue 

extracts. 
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METHODS: 

Mice: 

All animal manipulations were approved by the Animal Welfare Committee 

at the University of Texas Health Science Center at Houston. C57BL/6 wild type 

mice were purchased from Harlan Laboratories, Inc. AGS3 null mice were 

obtained from the laboratory of Dr. Stephen Lanier at the Medical University of 

South Carolina. Wild type and AGS3-null mice were housed in separate cages at 

the University of Texas Health Science Center’s Animal Core Facility in a 

controlled environment: 12-h light/12-h dark cycle; 22°C; and free access to 

water and food. Body weight (25-28 grams) for each mouse was assessed prior 

to blood pressure measurements.  

Genomic DNA Isolation: 

Genomic DNA was extracted and isolated from ear samples of AGS3-/- 

and wild type mice using a DNeasy kit (Qiagen). Tissue samples were 

transferred quickly to a microcentrifuge tube containing a premixed solution of 

180 µl of “ATL” Buffer (proprietary) and 20 µl of proteinase K provided by Qiagen, 

mixed thoroughly by vortexing for 20 seconds, and subsequently incubated at 

56°C overnight to ensure complete tissue lysis. The next day, each tube was 

vortexed for 15 seconds and 200 µl of “AL” buffer added. Again, samples were 

vortexed for 15 seconds, before adding 200 µl of ethanol to each tube. Genomic 

DNA was isolated using Qiagen filter columns following the company protocol. 

Each wash was removed by centrifugation at 6000 x g for 1 minute. DNA was 

then eluted with 50 µl of sterile water.  
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Amplification of Genomic DNA by PCR: 

Genomic PCR was used to detect the deletion of exon 3 in the AGS3 

gene of AGS3-/- mice. The following primers were used for this purpose: forward 

(5’-TCA GAG CCA TCC TGA CTG CAT AGA-3’) and reverse (5’-TGA TTG CAG 

GAG CTG TGT TCT AGT-3’). 250 ng of genomic DNA was mixed with a master 

mix containing: 2.5 µl of 10x Taq Buffer (Fisher), 2 µl of 2.5 mM dNTP mix, 2 µl of 

10 µM forward primer, 2 µl of 10 µM reverse primer, 0.25 µl of Taq polymerase 

(5000 units/ mL) (Fisher), 12.75 µl of water, and 1.5 µl of 2 mM MgCl2. PCR was 

performed using the following cycling conditions: 94ºC, 120 seconds; followed by 

35 cycles of 94ºC for 30 seconds, 60ºC for 60 seconds and 72ºC for 45 seconds. 

Following PCR, samples were analyzed by electrophoresis in a 3% agarose gel.  

Mean Arterial Blood Pressure Measurements:  

The CODA tail-cuff system (Kent Scientific, Boston MA) was used in all 

blood pressure recordings. This system uses Volume Pressure Recording (VPR) 

to non-invasively measure changes in blood pressure. Wild type and AGS3 -/- 

mice were acclimated to the experimental conditions and equipment for 3 days 

prior to recording data.  Each mouse was comfortably restrained in the provided 

animal holder, and safely positioned on a warming plate for at least 15 minutes to 

maintain a body temperature of 32- 35°C. During this time, the occlusion cuff 

(OC) and VPR cuffs were threaded together at the base of the tail and secured in 

a comfortable position to minimize discomfort for the mouse. Mean arterial blood 

pressure (MABP) was determined from the CODA-designed VPR and occlusion 

cuff by measuring the total blood volume in each tail from conscience mice. At 



-18- 

the conclusion of each experiment, mice were immediately removed from the 

holder and returned to their cages. Blood pressure recordings were acquired by a 

central CODA controller and data collector for further analysis.  

Resting Mean Arterial Blood Pressure Measurements: 

Resting MABP was evaluated in AGS3 -/- and wild type (n=8) 

preconditioned mice using the CODA tail-cuff system as described above. Both 

animal groups experienced 10 acclimation cycles prior to recording the MABP. 

Blood pressure measurements were recorded at 36-second intervals over 36 

minutes.  

Effects of sGC Activator Administration on MABP: 

To evaluate the effects sGC agonist have on vasomotor control in AGS3 -

/- (n=16) and wild type (n=10) animals, mice were randomly divided into two 

treatment groups: (1) one intraperitoneal (IP) injection of a NO-donor, 2-(N,N-

diethylamino)diazenolate-2-oxide, diethylammonium salt (DEA-NO; 80 μg/kg; 

Cayman Chemical); or (2) one IP injection of an NO-independent sGC allosteric 

activator (BAY41-2272;  200 μg/kg; Cayman Chemical). MABP was recorded in 

both treatment groups in preconditioned mice using the CODA tail-cuff system. 

Baseline blood pressure changes following IP injection of sterile PBS (200 μl) 

were recorded for 20 minutes prior to the injection of sGC agonist. Injections 

were made through a hole drilled in the animal holder. Following the IP injections 

of agonists, blood pressure was recorded at 36-second intervals over a period of 

20 minutes.  
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Tissue Homogenate Preparation: 

The descending aorta from wild type or AGS3 -/- mice was surgically 

removed, homogenized in a glass-glass conical tissue grinder and sonicated in 

an ice bath for 16 seconds total with 4-second pulses. To separate residual 

tissue debris from cellular lysate homogenates were centrifuged at 5,000 x g for 

15 minutes at 4 °C. Supernatants were subsequently centrifuged at 100,000 x g 

for 1 hour at 4°C to separate the membrane fraction (pellet) from the cytosolic 

fraction. Each fraction was placed into a separate microcentrifuge tubes and 

stored at -80 °C for later use. Sample protein amounts were determined by the 

implementation of a Bradford assay. Absorbance values from a dilution-series of 

unknown samples are interpolated onto a plot for the standard (bovine serum 

albumin) to determine sample protein concentrations.   

Phosphodiesterase Activity:  

To measure total tissue PDE activity, [α-32P] GTP was first converted to 

[α-32P] cGMP by reacting with purified sGC at 37 °C in reaction buffer (4 mM 

MgCl2, 0.05 mg/ml creatine kinase, 5 mM phosphocreatine,125 mM triethanol 

amine (TEA), and 1 mM dithiothreitol (DTT)). Reactions were stopped by briefly 

heating the samples at 100 °C. The reaction product, [α-32P] cGMP, was used as 

substrate to measure PDE activity in mice aortic lysates with or without a 

nonspecific PDE inhibitor, IBMX (1 mM) or a PDE5 specific inhibitor, Sildenafil 

(200 μM). All reactions were incubated in a 37 °C water bath for 15 minutes and 

heat inactivated at 100°C for 3 minutes. Samples were then centrifuged for 5 

minutes at room temperature to pellet the precipitated proteins. An aliquot of 
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each supernatant (10 µl) was then analyzed by thin layer chromatography (TLC) 

on a pre-washed polyethyleneimine cellulose plate in a solvent system containing 

equal volumes of 0.5 M of ammonium acetate (pH 6) and 0.5M of ammonium 

formate (pH 4). [α-32P] GTP alone with reaction buffer, or in the presence with 

purified sGC were used as controls to determine cGMP and GTP migration 

position The bands corresponding to substrate and product were visualized by X-

ray film autoradiography overnight at -80 °C, and quantified by densitometric 

analysis using NIH ImageJ software.  

sGC Activity Assay: 

Soluble guanylyl cyclase activity in aortic lysates was assayed in the 

presence or absence of 100 μM NO donor DEA-NO by the formation of [α-32P] 

cGMP from [α-32P] GTP. Following tissue lysate separation by centrifugation, 20 

μl of aortic tissue supernatants were mixed with 10 μl of reaction buffer (125 mM 

TEA, 250 μM EGTA, 10 mM IBMX, 4 mM MgCl2, 0.05 mg/mL creatine kinase, 5 

mM creatine phosphate, 1 mM DTT, 100 μM GTP, 500 μM GTP/0.08 μCi of [α-

32P] GTP). After incubating at 37°C for 10 minutes, reactions were stopped by 

heat-inactivation for 3 minutes at 100°C. Reaction products were separated and 

quantified by TLC, as described above.  

Western Blots: 

Tissue lysate proteins were separated by SDS/polyacrylamide gel 

electrophoresis (8% gels) and transferred to PVDF membranes. Membranes 

were blocked with 5% milk containing 0.1% Tween-20 for 30 minutes and 

incubated with the desired primary antibody for 2 hours at room temperature or 
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overnight at 4 °C. Primary antibodies were: anti-α1 polyclonal antibodies (Sigma 

Aldrich, catalog # G4280) (1:1000 dilution); anti-LGN goat polyclonal antibody 

(AbCam, catalog # ab84571) (1:1000 dilution); and anti-α-actin polyclonal 

antibody (Sigma Aldrich, catalog # SAB2500963) (1:2000 dilution). For detection 

of β1, polyclonal antibodies raised in rabbits against the SRKNTGTEETKQDDD 

peptide of human sGC β1- subunit conjugated to KHL were used (1:500 dilution). 

Membranes were then washed three times for 10 minutes with 1X Tris Buffered 

Saline with Tween-20 (TBS-T). The horseradish peroxidase-conjugated 

secondary antibodies were used at dilutions of 1:3000 (anti-mouse, Sigma 

catalog # MFCD00162644) or 1:5000 (anti-rabbit, catalog # MFCD00162788; 

and anti-goat, catalog # MFCD00162340) dilutions. Membranes were then 

washed three times with TBS-T for 10 minutes. Immunoreactive bands were 

visualized on Kodak Biomax X-ray film by enhanced chemiluminescence (ECL 

Plus, GE Healthcare). Densitometric analysis was performed using NIH ImageJ. 

Probed proteins were normalized to either α-actin from smooth muscle cell 

samples, or β-actin from lung samples.  

Histology/Autofluorescence:  

Descending aortas from AGS3 -/- and wild type mice were quickly 

removed following cervical dislocation, embedded in optimal cutting temperature 

compound (OCT) by flash freezing in liquid nitrogen and stored at -80°C. Frozen 

samples were serially cut into 5 μm sections using a Microm 505E cryostat and 

transferred to microscope slides. Each specimen was dehydrated in 95% ethyl 

alcohol solution for 30 seconds, briefly rehydrated by submerging in water for 10 
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seconds and then stained with Shandon Gill 3 Hematoxylin (Thermo Scientific) 

for 4 minutes. The stained specimens were then dehydrated again by dipping in 

increasing concentrations of ethyl alcohol in water, cleared using Shandon Bluing 

Reagent (Thermo Scientific) for 1 minute and counterstained with Shandon Eosin 

Y Cytoplasmic Counterstain (Thermo Scientific) for 30 seconds. Again, each 

specimen was serially dehydrated in increasing concentrations of ethyl alcohol 

and then fixed in Histo-Clear (National Diagnostics). Sections were imaged under 

a light microscope to assess lumenal cross sectional area. A Nikon ECLIPSE Ti 

fluorescence microscope with a CoolSNAP photometrics camera was used to 

assess elastin deposition (48).  

RNA Isolation /Real-Time Quantitative RT-PCR:  

Total RNA was isolated from aortic tissue using Ambion’s RiboPure kit. 

Tissues were harvested from AGS3 -/- and wild type mice, snap frozen in liquid 

nitrogen, and ground to a fine powder with a chilled mortar and pestle.  Ground 

tissue samples were collected, reconstituted in Ambion’s proprietary “TRI” 

reagent, subjected to 5 rounds of freeze/thawing, and centrifuged at 12,000 x g 

for 20 minutes at 4 °C. RNA was isolated from the supernatants by adding 200 μl 

of chloroform and centrifuging at 12,000 x g for 15 minutes at 4° C. RNA was 

precipitated from the aqueous layer by addition of 200 μl of 100% ethanol, 

collected by centrifugation, transferred to Ambion’s provided filter columns, and 

finally eluted with 40 μl of sterile water. Purified RNA was stored at -80 °C. 

cDNA Synthesis: 

 cDNA was synthesized in thin-walled PCR tubes by mixing 2 μg of total 
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RNA with 10 μl of RT master mix consisting of: 2 μl of 10x RT buffer, 2 μl of 10x 

random hexamers, 0.8 μl of 100 μM dNTP, 1 μl of RNAse inhibitor, 1 μl  (200 

units) of Superscript reverse transcriptase and 3.2 μl of water. The reaction 

mixture was incubated at 37° C for 150 minutes. 

qRT-PCR: 

Eight μl of PCR master mix (400 nM forward and reverse primers (IDT, 

Coralville, IA), 100 nM fluorogenic probe (Biosearch Technologies, Novato, CA), 

5 mM MgCl2, 200 μM deoxynucleotides, PCR buffer, and 1.25 units of Taq 

polymerase (Invitrogen) were added to wells of a 96-well plate containing 2 ul of 

each synthesized cDNA. Each 96-well plate reserved wells for an 18S probe as a 

standard for data normalization, and a no-template control well for each probe to 

account for non-specific fluorescence.  All reactions were performed in triplicate 

using the following cycling conditions in a Mastercycler ep realplex real-PCR 

system (Eppendorf): 95 °C, 1 minute; followed by 40 cycles of 95 °C, 12 

seconds, and 60 °C, 30 seconds.  

Statistical Analysis:  

Results are expressed as mean ± SD, unless indicated otherwise. One-

way analysis of variance, followed by Turkey’s post-hoc test was used for 

comparisons of hemodynamic time-course following DEA-NO and BAY41-2272 

treatments. P <0.05 was considered significant. 
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Figure 7. PCR genotyping of AGS3-/- 

(KO) and wild type mice. The 

expected 565-bp WT band was 

amplified from a WT mice ear sample, 

whereas the KO mouse sample 

exhibited instead a single 310-bp band, 

reflecting the loss of exon 3. 
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RESULTS: 

I hypothesized that AGS3 acts as a negative modulator of sGC, and that 

an absence of AGS3 should increase sGC activity and function in tissues. To test 

this hypothesis I used an AGS3-defecient mouse model that was made available 

to us by Dr. Stephen Lanier at the Medical University of South Carolina. A 

knockout mouse line allows the investigator to better understand the role of the 

missing gene product by noting any phenotypic deviations compared to wild type 

mice, and by corroborating these observations with biochemical assays. In our 

case we thought that it was important to obtain an AGS3 knockout mouse line as 

a means to elucidate the changes of physiological and biochemical function of 

sGC in native tissues. With permission from Dr. Stephen Lanier, an AGS3-null 

mouse colony was established and maintained at the University of Texas Health 

Science Center’s Animal Core Facility. Before evaluating the changes in sGC 

activity and function that may be caused by the lack of AGS3 protein, we 

confirmed the knockout of the AGS3 gene in the mice that were bred in our 

Animal Facility. As shown in Figure 7, genomic PCR confirmed the deletion of 

exon 3 of AGS3-/-.  
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Figure 8. Expression of LGN protein is 
not detected aortas and is not 
increased in AGS3-/- mice. Lung and 
aortic tissue from wild type and AGS3-/- 
mice were homogenized and 
immunoblotted for the presence of LGN 
in cytosolic fractions. 
 

 

LGN/AGS3 – Since previous studies demonstrated that LGN and AGS3 

proteins have similar effects on sGC function in vitro, we set out to test whether 

LGN might be up regulated to compensate for the lack of AGS3 protein in AGS3-

/- mice. Therefore, a Western blot analysis was used to assess the levels of LGN 

in lung and aortic tissue from AGS3-/- and wild type mice. As shown in Figure 8, 

we found equivalent amounts of LGN in lung tissue for both wild type and AGS3-/- 

mice. However, we found no LGN signal in aortic tissue. This observation is 

consistent with the studies by the Lanier group, who evaluated the expression of 

LGN and AGS3 in a variety of mouse tissues (49). They found that the two 

proteins are differently expressed between tissues. Results in Figure 8 suggest 

that LGN expression was not increased in AGS3-deficient mice. A similar 

conclusion can be drawn from results of RT-qPCR assays probing for AGS3 and 

LGN in aortic tissue samples from AGS3-/- and wild type mice (Fig. 9). LGN 

transcript levels were roughly equal between AGS3-/- and wild type mice (Fig. 

9B). The lack of compensatory changes in LGN in aorta of AGS3-/- mice suggests 

that aorta may be a good tissue to investigate the effects of AGS3 knockout on 

the function and activity of sGC. Additionally, RT-qPCR was able to confirm that 

the level of AGS3 transcript in aortic tissue samples of AGS3-/- mice was only 4% 
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Figure 9. Comparison of LGN and AGS3 transcript level in AGS3-/- and wild type 
mice aorta lysates. The levels of AGS3 and LGN transcripts were determined by qRT-

PCR and normalized to 18S ribosomal RNA to obtain CT values, where CT = CTAGS3-/- 
– CT18S. Relative fold change in transcript levels for AGS3 (A) and LGN (B) were 

calculated based on CT values, where CT = CTAGS3-/- -CTWT. Dashed line across 
graph demarcates equal transcript levels between AGS3-/- and wild type. Data 
represented as Mean ± SD (n=3) 

of that in its wild type counterpart (Fig. 9A). In summary, we confirmed the AGS3-

/- knockout at the gene and transcript level. Moreover, we demonstrated a lack of 

compensatory expression of homologous LGN protein in the aorta, ruling out 

functional redundancy.   
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Figure 10. AGS3-/- mice exhibit lower resting mean arterial blood pressure 

(MABP) compared to wild type mice. MABP in wild type and AGS3-/- mice was 
monitored over a 36-minute period. Data presented as mean +/- SD (n = 10, WT; n 
= 16, AGS3-/-); *p <0.05. 

Aim1: sGC Dependent Regulation of Blood Pressure in AGS3-/- Mice 

To assess the effects of AGS3-deficiency on sGC-mediated regulation of 

blood pressure, we measured hemodynamic changes in wild type and AGS3-/- 

mice in response to NO-dependent and NO-independent sGC activators. First, 

we evaluated the resting blood pressure of both AGS3-/- and wild type mice. As 

shown in Figure 10, we found that AGS3-/- mice have a lower resting blood 

pressure in AGS3-/- mice than in wild-type counterparts. This observation is in 

line with previous results by Blumer et al, who recorded a 117 mmHg MABP for 

wild type mice and a 107 mmHg MABP for AGS3-/- animals (47). 

Hemodynamic response to sGC activators - Next, blood pressure changes 

in wild type and AGS3-/- mice were monitored following IP-administration of two 

different sGC activators. First, we recorded the changes in blood pressure 
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Figure 11. sGC-dependent vasomotor function is elevated in AGS3-/- animals 
following DEA-NO administration. (A) Changes in MABP in AGS3-/- and wild type 
mice following a single DEA-NO (80 g/kg) IP injection. MABP was non-invasively 
measured using the CODA system (Kent Scientific). (B) Maximal change in MABP 
following DEA-NO injection. (C) Time required to restore 80% of MABP following 
DEA-NO injection. Data are presented as mean+/- SE (n = 7). * p < 0.01. 
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following injection of DEA-NO, a chemical compound that releases NO while in 

circulation and mimics the endogenous production of NO. MABP changes were 

monitored over a 20-minute period to detect the maximal change in blood 

pressure, and the time required for restoration of blood pressure. As shown in 

Figure 11, AGS3-/- mice initially responded with a slightly larger, but not 

statistically significant, decrease in blood pressure following DEA-NO 
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Figure 12. sGC dependent vasomotor function is elevated in AGS3-/- animals 

following BAY41-2272 administration. (A): Changes in blood pressure in AGS3-/- and 
wild type mice following a single IP injection of BAY41-2272 (200 µg/kg). MABP were 
non-invasively measured using the CODA system. (B) Maximal change in the MABP 
following BAY41-2272. (C) Time required to restore 80% MABP following BAY41-2272. 
Data are presented as mean +/- SE (WT n = 10; AGS3-/- n = 16). *p<0.01. 
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administration compared to wild type mice (Fig. 11A, B). We observed that 

AGS3-/- mice maintained the decreased blood pressure much longer than the 

wild type controls (Fig. 11A, C). We also probed the mice with an NO-

independent sGC activator, BAY41-2272. The use of an NO-independent sGC 

activator allows us to determine if the effects of DEA-NO may be attributed to 

sGC-independent effects of NO. The results presented in Figure 12 indicate that 

AGS3-/- mice experience a much larger decrease in the MABP (Fig. 12B), and 

require longer times to restore MABP to initial values (Fig. 12C).  In conclusion, 

the sGC-dependent decreases in blood pressure by BAY41-2272 and by NO 

were more pronounced in AGS3 deficient mice.  
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Figure 13. Wild type and AGS3-/- mice blood vessel structure. (A) Four sections 
per mouse (n=6) were stained with H&E to visualize the anatomy of blood vessels (left 
panels). Four sections per mouse (n=6) were used to assess the extracellular matrix 
in the vascular wall by monitoring the autofluorescence of elastin (right panels). (B) 
Fractional luminal sectional area was determined from H&E sections by taking the 
ratio of the luminal area in the section to the area of the whole vessel. Data is 
presented as mean +/- SD based on 24 sections from 6 mice per group (n=24).  
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  Histology of Blood Vessels - To check whether the differences between 

the mouse strains might have been a result of vascular anatomical variations 

between AGS3-/- and wild type mice, descending aortas from each strain was 

excised and sectioned for H&E staining and autofluorescence detection. H&E 

staining allowed proper distinctions to be made between smooth muscle and 

adventitia of the vessel, which allowed cross sectional area quantifications to be 

made for the lumen and the media layer containing vascular smooth muscle 

cells.  This provided a means to separately measure lumenal and whole vessel 

cross sectional areas for each section. The data was normalized by calculating a 

ratio of the cross sectional areas of the lumen and the whole vessel (Fractional 

lumen cross section). The fractional lumenal cross sections in AGS3-/- and wild 

type mice were roughly similar (Fig. 13A and B).  
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An elevated deposition of the extracellular matrix may significantly affect 

the vasorelaxing properties of blood vessels (48). Therefore, we also assessed 

the deposition of extracellular matrix in the aortas of AGS3-/- and wild type mice. 

We took advantage of the autofluorescence of elastin in the vascular tissue to 

assess whether significant changes in matrix structure or amount occurred due to 

AGS3 deficiency. As shown in Figure 13A (right panels), images acquired with a 

FITC filter did not reveal any differences in matrix structure or amount between 

wild type and AGS3-/- mice. These data on lumen and matrix dimensions allowed 

us to conclude that there were no gross distortions in the structural elements in 

the vessels that may directly affect the vasomotor function in AGS3-/- mice.  

Previous studies demonstrated that totally sGC deficient mice develop 

hypertension (50). Moreover, mice that lack sGC only in vascular smooth muscle 

cells also develop hypertension (50,51), indicating that sGC-dependent 

regulation of blood pressure is contributed predominantly by the vascular smooth 

muscle cells. Thus, the data presented above suggest that changes in the 

hemodynamic parameters in response to sGC agonists in AGS3-/- mice may be 

attributed to changes in sGC vasomotor function in the vascular bed.  

  



-32- 

 

Aim2: sGC activity in AGS3-/- mice  

The main goal of this aim was to determine if sGC activity was changed in 

the aortic tissue of AGS3-/- mice. Before directly testing this hypothesis, we set to 

rule out some processes that may indirectly affect the activity of sGC in AGS3-/- 

mice including changes to the PDE activity and altered sGC expression.  

PDE Activity - Decreased PDE-dependent hydrolysis of cGMP may 

significantly enhance the vascular response to sGC targeting agents without 

affecting sGC activity. Thus, we assessed whether the absence of AGS3 

expression altered PDE activity. Aortic tissue lysates from AGS3-/- and wild type 

mice were incubated with [32P] cGMP, as described in Methods. The 

representative chromatogram in Figure 14A illustrates the procedure for 

quantitating PDE activity in lysates with or without a PDE inhibitor. The reaction 

product [32P] GMP was separated from the substrate [32P] cGMP using TLC, as 

described in Methods. The intensity of the [32P] GMP was quantified by 

densitometry to determine the amount of generated GMP. We found that similar 

amounts of AGS3-/- lysate produced ~50% more [32P] GMP than the wild type 

lysates, indicating an elevated PDE activity in the AGS3-/- tissue (Fig. 14A).  The 

use of PDE inhibitors allowed us to confirm that the observed conversion of 

cGMP to GMP was due to PDE activity. Figure 14B shows the rate of GMP 

formation in the presence of PDE5 specific inhibitor (Sildenafil) and a general 

PDE inhibitor, IBMX. Interestingly, in wild type mice the overall PDE activity may 

be contributed primarily by PDE5, as sildenafil and IBMX inhibitions were PDE 
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Figure 14. Phosphodiesterase (PDE) activity in aortic lysates of AGS3-/- and wild 
type mice. cGMP [α-32P] was synthesized using purified sGC and was incubated with 
mouse aortic lysates in the presence of PBS, specific PDE5 inhibitor Sildenafil, or 
nonspecific PDE inhibitor IBMX. Reaction products were separated by TLC on 
polyethyleneimine cellulose TLC plates. (A) A representative TLC radiochromatogram 
with substrate and product of PDE reaction indicated. (B) PDE activity in aortic lysates of 
wild type and AGS3-/- in the presence of vehicle (PBS), Sildenafil or IBMX. Data are 
presented as mean +/- SD (n=6). * p<0.05.  

statistically indistinguishable. However, in AGS3-/- mice, the nonspecific PDE 

inhibitor (IBMX) provided significantly more PDE inhibition than Sildenafil, 

suggesting that one or more other PDEs may be up-regulated in AGS-/- mice. In 

summary, PDE activity actually increases in AGS3-/- mice so altered PDE activity 

cannot explain the enhanced sGC dependent function observed in the AGS3-/- 

mice.   

sGC Subunit Expression in AGS3-/- Mice - Increased expression of sGC 

protein in AGS3-/- also might explain the observed enhancement of the sGC-

dependent hemodynamic response. To test this, a Western blot analysis was 

performed on aortic tissues. The cytosolic fractions expected to contain sGC 

were separated by SDS-PAGE and probed with antibodies against the α1 or β1 
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Figure 15. Expression of sGC subunits in AGS3-/- and wild type mice. (A) 
Expression of α1 and β1 sGC subunits in cytosolic fractions of AGS3-/- and wild type 
aortic lysates was probed by Western blotting using antibodies against α1 and β1 of 
sGC subunits. α-actin was used to assess equal loading. (B) α1 sGC does not 
translocate to the membranes. High-speed supernatants (Sn) and pellets (P) from 
wild type and AGS3-/- aortic tissues were separated by ultracentrifugation and 
probed for α1 sGC by Western blotting.  
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subunits of sGC. The results shown in Figure 15A demonstrate that very similar 

amounts of the β1 subunit are found in aorta cytosol of both AGS3-/- and wild 

type mice. However, substantially less α1 subunit was observed in the aorta from 

AGS3-/- mice (Fig. 15A). As translocation of α1 sGC to membrane compartments 

might explain the decrease in the cytosolic α1 levels, we assessed the amounts 

of α1 in the membrane fractions. As shown in Figure 15B, α1 proteins was not 

observed in the 100,000 x g pellets (membrane fraction) from either wild type or 

AGS3-/- aortas. Thus, translocation to the membrane does not occur to any 

significant extent and there is actually an overall decrease in α1 protein levels in 

aortas of AGS3-/- mice.  

Next, we looked for possible differences in transcription in AGS3-/- and 

wild type mice that might explain the differences in α1 protein levels between the 

mice strains. RT-qPCR was utilized to measure the relative abundance of α1 

mRNA in aortic samples from AGS3-/- and wild type mice (Fig 15A). We found 
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Figure 16. Level of sGC transcripts in AGS3-/- and wild type mice. Transcript 
levels of α1, β1 and α2 were determined by qRT-PCR and normalized to 18S 

ribosomal RNA to obtain CT values, where CT = CTtarget – CT18S. Relative fold 
change in transcript levels for α1 (A), β1 (B) and α2 (C) were calculated based on 

CT values, where CT = CTtarget -CTWT. Dashed line across graph demarcates 
equal transcript levels between AGS3-/- and wild type samples. Data are presented as 
mean ± SD (n=3).  

that wild type and AGS3-/- samples contained comparable levels of α1 sGC 

transcript. This means that differences in α1 protein level are not due to 

differences in α1 message levels.  

Previous reports have noted increased amounts of α2 protein in aortas of 

α1 knockout mice (52). Thus, we looked for changes in α2 transcript level in the 

AGS3-/- mice. As shown in Figure 16, we found that AGS3-/- mice had essentially 

unchanged transcript levels for α1, α2 or β1 sGC subunits. This implies that there 

was no compensation of α1 loss through increased transcription and translation 

of the α2 sGC subunit in aorta of the AGS3-/- mice. As sGC is an obligate 

heterodimer, the observed decrease in α1 protein levels implies a lower amount 

of functional sGC in the AGS3 knockout animals. In conclusion, the enhanced 

sGC-dependent response observed in AGS3-/- mice is not the result of increased 
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Figure 17. sGC activity is elevated in AGS3-/- aorta lysates. GTP [α-32P] was 
incubated with equal amounts of wild type and AGS3-/- mouse aortic lysates in the 
presence of PBS (B), or 100 μM DEA-NO (NO). Reaction products were 
separated on a polyethyleneimine cellulose TLC plate and visualized by 
radiography. (A) A representative TLC radiochromatogram with the positions of 
substrate (GTP) and product (cGMP) of the sGC reaction indicated. GMP and 
putative GDP positions are also indicated. (B) The quantity of cGMP was 
determined by densitometry and used to calculate relative sGC activity in wild 
type and AGS3-/- mice. Data are presented as mean +/- SD (n=3) *p<0.05. 
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sGC expression in these animals. 

sGC Activity - Next, we sought to directly assess sGC activity in AGS3-/- 

mice. We measured the accumulation of [32P] cGMP in aortic tissue cytosol 

incubated with [α-32P] GTP, in the presence or absence of an NO-donor, DEA-

NO. Similar to the PDE assay, the reaction products were separated by TLC and 

the amount of [32P] cGMP formed was quantified. Previously preformed controls 

validated the position of GTP, cGMP and GMP along the vertical axis of the TLC 

plate (not shown). As expected, DEA-NO increased sGC activity in both AGS3-/- 

and wild type mice (Fig 17A,B). However, we found that the same amount of 

AGS3-/- lysate total protein generated more cGMP in response to NO than did the 

wild type lysate (Fig. 17A). To take into account the difference in the expression 

of functional heterodimeric sGC between AGS3-/- and wild type mice, sGC 

conversion rates were normalized to the expression of the α1 subunit and 
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reported as the percent of wild type sGC activity. As presented in Figure 17B, 

this analysis indicated that relative specific activity of sGC in AGS3-/- mice was 

nearly 5 times higher than in the wild type mice. These results strongly indicate 

that the absence of AGS3 protein lead to an inherently more active sGC. In 

summary, these data clearly are consistent with our hypothesis that AGS3 is a 

negative modulator of sGC in vivo.  
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DISCUSSION: 

As previously mentioned, the NO/sGC/cGMP pathway has significant 

cardiovascular implications. Activation of the pathway is known to be beneficial 

for atherosclerosis, thrombosis, or stroke patients by inhibiting platelet adhesion 

to vascular endothelium (53)and/or by relaxing smooth muscle cells to reduce 

blood pressure (54). However, in the pathological state, NO bioavailability is 

reduced by its interaction with the increase in abundance of reactive oxygen 

species generated by surrounding inflammatory processes (55). As a result, NO-

dependent activation of sGC is compromised, and unable to mediate 

vasodilation. Currently, NO-donors (glyceryl trinitrate, isosorbide nitrates) are 

used as pharmacological agents to supplement the loss of endogenous NO 

levels that are ultimately thought to mitigate vasoconstriction in patients 

experiencing angina (56). Unfortunately, research has shown that these patients 

develop tolerance over time, limiting the efficacy of this treatment method (57). 

Elevated levels in circulating NO from exogenous treatment sources, react with 

local reactive oxygen species to further curb NO availability, and to further 

increase oxidative stress (58). Moreover, elevated oxidative stress results in the 

oxidation of sGC, rendering it unresponsive to available NO (58). Therefore, 

there is a growing need in the clinic for methods that implement NO-independent 

activation of sGC to manage cardiovascular diseases. With this category of drug, 

oxidative stress stemming from NO-donor treatment could be minimized. The list 

of agents that have been identified to activate sGC without the use of NO has 

expanded in recent years. Nevertheless, many of these compounds are found to 
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be toxic in vivo (59). As a result, alternative for a safe and effective treatment 

method for stimulating sGC are needed. 

In this study, we show that AGS3 deficiency in mice resulted in increased 

duration of sGC-mediated vasodilation compared to wild type mice, which could 

be attributed to increased activity of sGC in aorta. These studies describe an 

AGS3 function outside its accepted role as a receptor-independent activator of 

G-protein signaling, highlighting its action in modulating sGC function.  

To gain insight into the possible changes in sGC function, an AGS3 

knockout colony was obtained from Dr. Stephen Lanier, whose group generated 

these mice. We believed this was a strong approach that allowed us to directly 

assess the changes in sGC activity in the absence of endogenous AGS3. 

Generating a similar knockout model in fruit flies or yeast would have provided 

limited information regarding the effect of AGS3 on sGC.  

Once we had confirmed the mice were indeed AGS3 null, we monitored 

and compared hemodynamic responses to sGC activators in AGS3-/- and wild 

type mice. Administration of either an NO-dependent (DEA-NO) or an NO-

independent activator (BAY41-2272) of sGC in AGS3-/- mice resulted in extended 

depression in the mean arterial blood pressure as compared to wild type mice. 

Our direct measurements of sGC activity indicated that the activity was nearly 

five times higher in AGS3-/- mice than in the wild-type counterparts. These results 

led us to infer that elevated sGC activity sustains the decrease in the mean 

arterial blood pressure. The confluence of results from in vivo blood pressure 

monitoring and in vitro biochemical assays in the present study support my 
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hypothesis that AGS3 operates as a negative modulator of sGC function. To 

ensure that NO-dependent signaling processes function properly, the rise and fall 

of intracellular cGMP levels in response to NO should be tightly regulated. AGS3-

dependent inhibition of sGC may contribute to this regulation.  

Unexpectedly, we discovered that AGS3-/- deficient mice express a lower 

level of α1 sGC subunit in aorta as compared to their wild-type counterparts. 

Although our studies demonstrated that this decrease is not due to changes in α1 

transcription, it remains to be determined if the exact cause involves translational 

control, ubiquitin-mediated protein degradation, or post-transcriptional regulation 

by microRNAs. Secondary to this observation, we were interested in 

understanding why the level of β1 sGC subunit protein did not decrease together 

with α1. Traditionally, unbound subunits of a larger complex of proteins become 

unstable and are targeted for proteolysis. However, our after observation of an 

imbalance in sGC subunit expression in aortas of AGS3-/- mice appears to 

counter this notion. Literature analysis identified a study by Zabel et al (60), 

which tested whether sGC subunits are capable of forming homodimers 

intracellularly. They demonstrated that both α1 and β1 subunits form stable 

homodimers in the absence of the opposite subunit. It is thus reasonable to 

consider that the β subunit of sGC in AGS3-/- mice escapes degradation due to 

homodimerization. 

The proposed role of AGS3 as a negative modulator of sGC activity has 

important implications ifor regulating sGC function. Current regulators of sGC 

function that are considered for applications in a clinical setting are NO 
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generators, or NO-independent sGC activators targeting an sGC allosteric site. 

The existing approaches do not include alternative modes of regulating sGC 

function. Namely, little efforts have been focused on identifying and down 

regulating endogenously produced agents involved in deactivating sGC. As a 

start to filling this gap, we provide evidence that removing AGS3 expression in 

vascular smooth muscle tissue results in slower sGC deactivation and more 

sustained blood vessel dilation.  

The exact mechanism of AGS3-dependent inhibition of sGC remains 

uncharacterized. In a previous study conducted by Chauhan and colleagues (46), 

it was demonstrated that activated sGC was inhibited in the presence of AGS3. It 

remains to be determined whether a direct interaction between sGC and AGS3 is 

required. Co-immunoprecipitation experiments with purified proteins might be 

conducted to test for direct interaction between AGS3 and sGC. As mentioned 

previously, AGS3 is highly similar to LGN protein, a proven direct sGC interactor 

(43). Furthermore, that study demonstrated that sGC-LGN interaction results in 

inhibition of sGC activity. Mapping the region of interaction between sGC and 

LGN revealed that the TPR-containing domain of LGN is sufficient for interaction 

with the catalytic domain of sGC (46). Because of the high degree of amino acid 

sequence homology (70%) between AGS3 and LGN in the TPR domain (aa 1-

390), it is reasonable to assume that AGS3 also binds and interacts with sGC at 

the catalytic domain to inhibit its function. Elevated sGC activity and function in 

AGS3-/- mice may also be explained by increased stability of the sGC-NO 

complex. As described above, once NO dissociates from sGC the production of 
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cGMP falls to a basal state. In future studies, this hypothesis might be tested by 

direct spectroscopic analyses of the stability of sGC-NO complex in the absence 

and presence of purified AGS3.  

Future studies will also need to be performed to determine whether AGS3 

alone is sufficient for sGC deactivation, or if additional cellular factors are 

needed. Previous studies demonstrated that AGS3 can bind with more than one 

protein simultaneously (42). For example, the GoLoco domain of AGS3 is 

capable of binding several Gα subunits to coordinate distinct G-protein signaling 

pathways (61). This multivalent action is likely a result of the presence of multiple 

GPR motifs in the GoLoco domain. Previous studies also demonstrated that just 

one TPR motif is sufficient to mediate protein-protein interactions (62). Thus, 

AGS3, which contains seven TPR motifs, may potentially bind seven different 

target proteins. The linker region of LGN, located between the TPR and GoLoco 

domains, has also been shown to interact with postsynaptic density 95 (PSD95), 

synapse-associated protein 102 (SAP 102), and the serine/threonine kinase 

LKB1 (63), suggesting that this region of AGS3 may also bind to other proteins.  

All together, AGS3 may have the potential to function as a scaffolding protein 

and recruit accessory proteins into a larger complex that modulate sGC function. 

Further work is needed to determine the exact nature of any protein complex that 

associates with sGC. While the present studies revealed the effects of AGS3 

deficiency in the vascular function of sGC, it remains to be determined whether 

sGC function is affected in other tissues. Of special interest are the lung and 

brain tissues, where high level of sGC and AGS3 has been previously 
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reported(46,49).  

It also remains to be determined whether AGS3 interactions have 

additional cellular signaling implications. Originally found to bind and stabilize Gαi 

in the GDP state located in the cellular membrane(43), AGS3 effectively 

increases the production of cAMP from ATP in the cell. How might recruitment of 

AGS3 into a complex with activated sGC affect Gαi signaling? It has been 

previously reported that the membrane bound FERM and PDZ domain containing 

1 protein (Frmpd1) localizes AGS3 to membrane fractions by its interaction with 

the TPR domain of AGS3 (64). These studies demonstrated that upon the cell 

receiving a stimulus, AGS3 might switch binding partners, altering the extent of 

its association with Gαi. A similar process may be postulated for sGC-AGS3 

interaction. Moreover, the putative scaffolding function of AGS3 and its 

association with membrane-bound proteins may affect the localization of sGC 

among various subcellular locations.  

In conclusion, the present studies provide additional support to the 

hypothesis that AGS3 protein is a negative modulator of sGC function. While 

many aspects of the mechanism of action are not understood, this interaction 

may be the basis for a new type of regulation of sGC function in the 

cardiovascular system. One can envision a new type of drug that interferes with 

the interaction of AGS3 and sGC to modulate the inhibition of sGC by AGS3, 

thereby sensitizing the response of sGC to endogenous NO levels. Additionally, 

novel therapeutic interventions aimed at dilating blood vessels might be tailored 

to increase sGC activity targeted disruption of AGS3.  
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