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THE ROLE OF THE C5A RECEPTOR IN HOST DEFENSE AGAINST LISTERIA 

MONOCYTOGENES 

Daniel G. Calame, B.S. 

Supervisory Professor: Rick Wetsel, Ph.D. 

 

 Listeria monocytogenes (Lm) is a major cause of mortality resulting from food 

poisoning in the United States. While the complement component C5 is known to be 

protective in listeriosis, it is unknown how its cleavage fragment C5a participates. Here we 

show in a model of systemic Lm infection that the C5a receptor is essential for host defense. 

C5aR-/- mice have reduced survival and increased bacterial burden in the liver and spleen in 

comparison to WT mice. Surprisingly, C5aR-/- mice also have a dramatic reduction in 

splenocyte numbers resulting from elevated cell death as indicated by TUNEL staining and 

caspase 3 activity. This splenocyte depletion affected all major subsets of splenocytes, 

indicating a broad protective effect for C5aR. C5aR was not required for the production of 

protective cytokines such as TNF-α, IFN-γ and IL-6. As Type 1 IFN impedes the host 

response to Lm through the promotion of splenocyte death, we examined the effect of C5a 

and C5aR on type 1 IFN expression in vivo and in vitro. Serum levels of IFN-α and IFN-β 

are significantly higher in C5aR-/- mice than WT mice. The elevation of type 1 IFN in 

C5aR-/- mice correlated with increased expression of TRAIL, a downstream target of type 1 

IFN and an important driver of splenocyte loss in listeriosis. Pre-stimulation with C5a 

directly represses LPS-induced IFN-β expression in the macrophage cell line J774A in vitro. 

Finally, treatment of C5aR-/- mice with a type 1 IFN receptor blocking antibody resulted in 
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near complete rescue of Lm-induced mortality. Thus, these findings reveal for the first time 

a critical role for C5aR in host defense against Lm through the suppression of type 1 IFN 

expression. 
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GENERAL INTRODUCTION 

Listeriosis  

Foodborne illness has long been a scourge of mankind. While little record exists of 

its prevalence or death toll prior to the modern era, there is reason to believe foodborne 

disease has had a marked impact on human history. For example, Alexander the Great, the 

renowned conqueror of the ancient world, was vanquished not through military defeat but by 

typhoid fever (1). Although improvements in sanitation have greatly reduced its incidence, 

food poisoning continues to be a major problem today. As many as 1 in 6 Americans are 

sickened annually by contaminated food (2, 3). One of the most serious foodborne illnesses 

is listeriosis. The causative agent of listeriosis is the Gram positive bacillus Listeria 

monocytogenes (Lm). While Lm was first identified in 1926, its route of transmission was 

not recognized until the early 1980s when an outbreak of listeriosis was linked to a coleslaw 

manufacturing plant (4, 5). The threat of Lm to the food supply stems from several factors. 

First, Lm is widely dispersed in the environment. Samples of soil, ground water, and fecal 

material from domestic animals frequently contain Lm (6). Through these sources it can 

easily taint manufactured food products. Second, Lm is endowed with remarkable hardiness. 

It tolerates both high salinity and acidity, treatments used in food preparation to limit 

bacterial growth (7). Finally, in contrast to other pathogenic bacteria, Lm proliferates at 

temperatures as low as 4˚C (8). Thus, a modest initial inoculum can result in high levels of 

contamination after prolonged refrigeration. For these reasons, strict protocols for food 

preparation are enforced by regulatory agencies in the United States and abroad. 

Unfortunately, breakdowns in these protocols are common and result in regular outbreaks of 

listeriosis. A prime example of this was a 2011 outbreak involving contaminated 
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cantaloupes from Jensen Farms in Colorado (9). The CDC reports that 147 people were 

afflicted, resulting in 33 deaths and one miscarriage. As a consequence, Lm was responsible 

for the deadliest outbreak of foodborne illness in U.S. history.   

Healthcare providers frequently view listeriosis as an uncommon condition (9). 

Healthy adults are generally resistant to Lm, developing a mild gastroenteritis at most upon 

exposure. However, in the elderly, immunocompromised, and patients with chronic illness, 

listeriosis results in severe systemic disease associated with sepsis, meningitis/encephalitis, 

and/or death (10). The mortality rate following hospitalization is extremely high (20-30%) in 

comparison to more common foodborne illnesses such as salmonellosis and shigellosis (6). 

Because of this, listeriosis is the third leading cause of death from food poisoning in the 

United States and the second leading cause in the European Union (9, 10). As the population 

continues to age and more immunosuppressive drugs enter the market the incidence of 

invasive listeriosis will likely increase.  A second susceptible group are pregnant women and 

their unborn children (6, 10). Although pregnant women seldom have significant illness 

themselves, Lm breaches the placental barrier and causes severe infections in the fetus, with 

abortion, stillbirth or neonatal sepsis/meningitis as possible outcomes. Therefore, listeriosis 

may cause severe illness across the full span of human life, from the unborn to the elderly. 

 

Life cycle of Listeria monocytogenes 

Aside from its clinical significance, Lm has been of great importance to the scientific 

community as a model organism for the study of intracellular pathogenesis. Accordingly, its 

life cycle and virulence factors are extensively described (11, 12). Lm readily enters non-
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professional phagocytes through a family of cell surface proteins called internalins. For 

example, the best characterized internalin, internalin A (InIA), binds E-cadherin and triggers 

cytoskeletal remodeling to promote bacterial internalization (13). As E-cadherin is a 

junctional protein expressed by epithelial cells, InIA allows Lm to penetrate the intestinal 

epithelial barrier. Curiously, murine E-cadherin does not act as a receptor for InIA (14). This 

explains the poor infectivity of Lm by gastric lavage in mice. In line with this, transgenic 

mice expressing human E-cadherin are more susceptible to intragastric infection than WT 

mice, and mutant Lm expressing a modified InIA that binds murine E-cadherin are 1000-

fold more capable of infecting mice through the intragastric route (15, 16). Similarly, 

internalin B promotes internalization through its recognition of the host receptor tyrosine 

kinase Met (17). Once inside the cell, Lm secretes several virulence factors to lyse the 

phagosome. Of primary importance is the pore-forming molecule listeriolysin O (LLO) (18). 

LLO-deficient Lm strains are avirulent and cannot leave the phagosome. Lm also secretes 

phospholipases that, together with LLO, release bacteria into the nutrient-rich cytosol (11, 

12). Once in the cytosol, Lm hijacks host actin filaments to move about the cell. This is 

achieved through the virulence factor ActA (19). By polymerizing actin, ActA propels Lm 

through the cell and ultimately allows its intercellular migration through protrusions of the 

host cell membrane into neighboring cells. Taken together, these factors make Lm an 

extremely efficient pathogen by allowing it to live within the cell and evade immune 

recognition. 
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Figure 1. Life cycle and virulence factors of Listeria monocytogenes. A) Lm initially 

enters the host cell through phagocytosis. To access the intracellular compartment of non-

phagocytic cells such as those of the intestinal epithelium, Lm binds E-cadherin through 

internalin A (InIA) and/or Met through internalin B (InIB). This binding triggers the uptake 

of Lm into a phagosome. B) Once inside the phagosome, Lm secretes the pore-forming 

toxin listeriolysin O (LLO) and phospholipase C (PLC). LLO and PLC lyse the phagosomal 

membrane, releasing Lm into the cytosol where it replicates freely. C) Lm exploits the host 

cell’s actin cytoskeleton through the virulence factor ActA. ActA polymerizes actin 

monomers to propel Lm through the cytoplasm. This propulsion ultimately allows for its 

intercellular spread via membrane protrusions.  
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Host response to Listeria monocytogenes 

 Considerable work has also gone into the characterization of the host response to 

Lm. Much of it has focused on the adaptive immune response. A T cell response involving 

both CD4+ and CD8+ T cells is required for sterilizing immunity during a primary infection 

and for secondary responses (20, 21). In contrast, humoral immunity does not appear to 

make a significant contribution (22, 23). This likely reflects the bacterium’s capacity for 

intercellular spread without causing cell lysis. CD4+ T cells confer protection through the 

secretion of IFN-γ, an essential cytokine that increases the bactericidal capabilities of 

macrophages (21, 24). Similarly, CD8+ T cells have bactericidal activity through some 

combination of cytokine production and cytolytic activity (24).  

 While adaptive immunity is required for total clearance of Lm from the organism, a 

potent innate immune response must precede it to provide bacterial containment and activate 

lymphocytes. In fact, the earliest response occurs within minutes of its injection into the 

bloodstream. Tissue macrophages rapidly sterilize the blood by phagocytosing the 

circulating bacteria (25). Kupffer cells, the tissue macrophages of the liver, play a major role 

in this process, and indeed the vast majority of Lm is sequestered in this organ (26). 

Neutrophils also have an important early function as they quickly infiltrate the liver and 

participate in bacterial clearance (26-29). In contrast, neutrophils are dispensable for 

bacterial control in the spleen (28, 29). Cells of monocyte/macrophage lineage are 

paramount as their depletion or defective mobilization result in profound failure to clear the 

Lm from either organ (30-32). Furthermore, many acute inflammatory cytokines contribute 

to the early host response to Lm. Studies with neutralizing antibodies and knockout mice 

have revealed essential roles for TNF-α, IL-6, IL-12 and the IL-1 family (33-39). In addition 
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to their ability to mobilize and activate neutrophils, monocytes and macrophages, these 

cytokines also drive the expression of IFN-γ by NK cells, providing an early innate source 

of the critical macrophage activating cytokine (40, 41). 

 Although the overall direction of the innate immune response is protective during 

Lm infections, certain elements have detrimental effects. The anti-inflammatory cytokine 

IL-10 acts broadly to curtail inflammatory responses and thereby limit immunopathology 

(42, 43). Therefore, IL-10 is a double edge sword during infection – on one hand it can limit 

immune injury, but on the other hand it can dampen the immune response to pathogens. 

Examples of infectious models that fall on each side of the blade are plentiful (43). In 

listeriosis models, however, the effects of IL-10 are largely detrimental (44-46). Similarly, 

there is also ample evidence that the type I IFNs are harmful during systemic Lm infections 

(47-49). Mice deficient in the type I IFN receptor IFNAR1 or the type I IFN-inducing 

transcription factor IRF3 are highly protected against Lm. Type I IFNs are thought to 

sensitize lymphocytes and myeloid cells to cell death (50, 51). Numerous TUNEL+ 

lymphocytes are observed in the spleen between 48 to 72 hours post-infection (hpi) in WT 

mice whereas few are seen in IFNAR1-/- and IRF3-/- mice (47, 48, 50, 52). While leukocyte 

depletion is harmful in its own right, apoptotic lymphocytes trigger IL-10 expression in 

splenic macrophages and dendritic cells (50). Thus, type I IFNs set in motion a deleterious 

chain of events that inhibit the innate and adaptive responses to Lm.  
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The Complement System 

 A major element of innate immunity is the complement system. Complement 

consists of a large collection of secreted proteins that sequentially cleave one another to 

yield multiple effector molecules. This cascade of protein cleavage is triggered by pathogens 

via one of three pathways (53). While the pathways differ in their initiating factors and the 

molecules employed, all converge with the formation of a C3 convertase, a complex of 

complement fragments that activate C3, the cornerstone of the complement cascade. The 

first pathway identified, the classical pathway, is initiated by the C1 complex, a complex of 

C1q, C1r, and C1s. The pathway begins when C1q binds to antibody-antigen immune 

complexes and subsequently undergoes a conformational change. This conformational 

change triggers the autocatalytic activation of C1r, which in turn cleaves and activates C1s. 

Finally, C1s cleaves C4 and C2, forming the classical C3 convertase, C4bC2a. In the related 

lectin pathway, C1q is replaced by mannose-binding lectin (MBL) (55). MBL binds 

mannose moieties on bacterial surfaces and subsequently activates two MBL-associated 

serine proteases, MASP-1 and MASP-2. The complex of these molecules resembles the C1 

complex and can similarly cleave C4 and C2 to generate C3 convertases. The last pathway 

of complement activation is called the alternative pathway (56). The alternative pathway is 

unique in that it does not require a recognition factor like C1q or MBL. Rather, the pathway 

begins with the spontaneous hydrolysis of C3. In aqueous environments, a low level of C3 

hydrolysis occurs constantly. Hydrolyzed C3 interacts with factor B and triggers the latter’s 

cleavage by factor D to form a fluid phase C3 convertase, C3(H2O)Bb. Under homeostatic 

conditions, these convertases cleave only a small amount of C3, and the resulting fragments, 

C3a and C3b, are rapidly inactivated. However, C3b can attach to bacterial surfaces and 



8 
 

interact with factor B and properdin to form a stable alternative C3 convertase, C3bBb. The 

alternative pathway also acts as an amplification loop. C3b produced by any pathway can 

associate with factor B and properdin to form alternative C3 convertases. In fact, the 

majority of complement activation in vivo is thought to result from this amplification (56). 

Finally, C3 convertases from either the classical or alternative pathways can interact with an 

additional C3b molecule to form C5 convertases (C4bC2aC3b or C3bBbC3b, respectively) 

that split C5 into C5a and C5b. C5b then concludes the complement cascade through its 

association with C6, C7, C8 and C9 to form the so-called membrane attack complex (MAC). 
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Figure 2. Overview of the Complement System. Bacteria like Lm can activate the 

complement system in one of three ways. In the classical pathway, antibodies (Ab) bind to 

the bacterial surface and undergo a conformational change allowing C1q to bind their Fc 

region. The activated C1 complex then cleaves C4 and C2 to generate the classical C3 

convertase, C4bC2a. In the lectin pathway, mannose binding lectin (MBL) binds mannose 

residues on the surface of Lm. MBL can then form a complex with MASP-1 and MASP-2 

that cleaves C4 and C2 similar to the C1 complex. Finally, in the alternative pathway, the 

spontaneous hydrolysis of C3 leads to the formation of a fluid phase C3 convertase 
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C3(H2O)Bb that can cleave C3. C3b then deposits on the surface of Lm and binds factor B 

(fB) to form the alternative pathway C3 convertase, C3bBb. This convertase allows for the 

complement amplification loop. Ultimately, all pathways converge on C3 and result in the 

generation of three types of complement effector molecules: C3b, the anaphylatoxins C3a 

and C5a, and the membrane attack complex (C5b-9). 
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Complement activation thus results in the generation of many cleavage fragments. 

Of these, the major effector molecules are C3b, the MAC (C5b-9), and C3a and C5a, the 

complement anaphylatoxins. In addition to its role in C3 & C5 convertases, the C3b 

fragment is also an important opsonizing agent. Complement activation on bacterial surfaces 

leads to a coating of C3b. C3b is recognized by many complement receptors, including CR1 

(CD35), CR3 (CD11b-CD18), and CR4 (CD11c-CD18) (57). C3b-complement receptor 

binding triggers the phagocytosis by cells of macrophage/monocyte lineage and neutrophils. 

Therefore, C3b plays an important role in the recognition and clearance of bacteria from the 

bloodstream and tissues. The MAC is also an essential component of host defense against 

bacteria. Upon inserting into the bacterial membrane, the MAC forms a transmembrane pore 

that causes bacterial lysis (58). Accordingly, complement deficiencies in man involving the 

terminal complement components C5-C9 are associated with increased susceptibility to 

infection, especially by the encapsulated bacteria Neisseria meningitides (59). However, 

Gram positive bacteria like Lm are resistant to MAC-mediated killing due to their thick 

protective layer of peptidoglycan (60). 

The final class of complement effector molecules are the complement 

anaphylatoxins. First identified in 1914 by Friedberger as the product of the reaction 

between serum and immune complexes that induces anaphylactic shock, it is now 

appreciated that the anaphylactic activity of activated complement resides in C3a and C5a 

(61, 62). C3a and C5a act through two G-protein coupled receptors, the C3a receptor (C3aR) 

and the C5a receptor (C5aR), respectively (62). There is also a second C5a receptor, C5L2, 

which lacks an intracellular signaling domain and is thought to act as a decoy receptor (63). 

As anaphylaxis is an undesirable state, anaphylatoxin activity is tightly regulated. This is 



12 
 

achieved in the serum by carboxypeptidase N (CPN) and carboxypeptidase R (CPR) (65, 

66). CPN & CPR are basic carboxypeptidases that cleave C-terminal arginine and lysine 

residues from peptides. This makes them powerful regulators of the anaphylatoxins as both 

have C-terminal arginine residues that are essential for receptor binding. The desarginated 

form of C3a has little to no biological activity, whereas C5a-desArg is usually described as 

retaining ~1-10% activity (66). However, recent studies suggest that C5a-desArg may retain 

nearly full activity in some cell types (66, 67).  

Despite their name, C3a and C5a have a broad range of biological activities outside 

of anaphylaxis. This is reflected in the wide tissue and cellular distribution of their receptors. 

Their greatest expression is seen in cells of the myeloid lineage – monocyte, macrophages, 

neutrophils, mast cells, basophils, eosinophils and dendritic cells (DC) (68, 69). In the last 

two decades, their distribution has been significantly expanded to include many non-

immune cells (70-73). C3aR and C5aR have also been identified on cells of the lymphoid 

lineage such as T cells, B cells and NK cells (74-77). In many of these cells, the 

anaphylatoxins have chemotactic activity. In particular, C5a has long been recognized as 

one of the strongest chemotactic agents known for neutrophils (78). Outside of chemotaxis, 

the anaphylatoxins also drive immune cell activation. For example, C5a primes the 

respiratory burst and triggers degranulation in neutrophils (79, 80). Numerous studies have 

also established that C5a potentiates the expression of pro-inflammatory cytokines like 

TNF-α, IL-6 and IL-1 in myeloid cells (81-84). Thus, the anaphylatoxins are often 

characterized as pro-inflammatory molecules due to their ability to recruit leukocytes, 

trigger immune cell activation, and enhance inflammatory cytokine production.  
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However, there is also evidence that the anaphylatoxins can have regulatory effects 

during the immune response. For some time it has been appreciated that C5a is a potent 

suppressor of IL-12 in monocytes and macrophages (85-87). This is surprising as IL-12 is 

critical for the development of cell-mediated immune responses through its role in the Th1 

cell differentiation. Supporting these in vitro observations, C5aR-/- mice more effectively 

control the parasite Leishmania major and have a greater Th1 response than WT mice (87). 

Thus, C5a holds IL-12 expression in check and thereby limits Th1 responses to pathogens, 

presumably in an attempt to prevent immunopathology. Outside of this, C5a can also 

heighten the expression of the anti-inflammatory cytokine IL-10 in LPS-treated 

macrophages in vitro and during endotoxemia in vivo (88). IL-10 in turn represses the 

expression of IL-17A, an important mobilizer of neutrophils during bacterial infections. 

Therefore, the anaphylatoxins cannot be categorized simply as pro-inflammatory or anti-

inflammatory molecules. C3a and C5a are perhaps best described as immune modulating 

agents (89). 

 

Complement and Listeria monocytogenes 

 There has long been interest in the role of complement in listeriosis. The 

extracellular distribution of complement has led investigators to question whether 

complement participates in the host response to intracellular bacteria. Furthermore, since 

intracellular bacteria actively seek phagocytosis, complement might even be detrimental to 

the host by facilitating phagocytosis through opsonization. As early as 1974 it was found 

that human serum enhances the killing of Lm by human monocytes (90). This enhancement 

was almost completely lost with the heat inactivation of serum. Since complement activity is 
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heat labile, this provided the first indication of an anti-listerial function for complement. 

Subsequently, work by Baker et al. definitively established that the cell wall of Lm activates 

complement (91). Incubation of the cell wall fraction with animal serum generated a 

chemotactic factor that induced neutrophil migration. Complement fixation was apparent as 

serum incubated with the cell wall fraction had reduced hemolytic activity. Furthermore, the 

molecular weight of the chemotactic factor was shown to be approximately 15 kDa, a value 

consistent with reported molecular weight of C5a. It was further demonstrated that this 

complement activation occurred through the alternative pathway. The production of the 

chemotactic factor was sensitive to EDTA, an inhibitor of both the classical and alternative 

pathway, but not EGTA, an inhibitor of the classical pathway alone. Curiously, protease 

treatment of the cell wall fraction had no effect on its ability to cause complement 

activation, suggesting that a non-protein component like peptidoglycan might be 

responsible. This study thus provided the first clear evidence that Lm activates complement 

and suggested that the resulting complement anaphylatoxins might participate in the host 

response. 

 

I. Complement opsonizes Listeria monocytogenes 

 When bacteria enter the bloodstream they are rapidly opsonized by serum factors 

such as immunoglobulins and complement. In rodent models, Lm is removed from the 

circulation at an extremely rapid rate by Kupffer cells (KCs) in the liver (26). Presumably, 

opsonization drives this early clearance through the promotion of phagocytosis. Many 

groups have attempted to determine the relative importance of immunoglobulin and 

complement in this process with mixed results. Consistent with the work of Baker et al., 
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several groups have determined that the opsonization of Lm occurs largely through 

complement activation via the alternative pathway in mouse serum (92, 93). In man, 

however, contrasting results were reported. For example, Croize et al. found that C3 deposits 

on the surface of Lm in normal human serum through alternative pathway activation (94). 

On the other hand, two other groups observed that the IgG fraction of human serum drives 

opsonization and that complement is dispensable as heat inactivation had no effect in their 

assays (95, 96). Finally, Bortolussi et al. found a role for both immunoglobulin and 

complement in Lm opsonization by human serum (97). In their experiments optimal 

opsonization required both the heat labile activity and the IgM (but not IgG) fraction of 

serum. In line with this, zymosan-treated serum lacking alternative pathway activity could 

opsonize Lm, whereas C4 inactivator-treated serum lacking classical pathway activity could 

not. It is noteworthy that in these studies low concentrations of serum (3%) were used in an 

attempt to mimic conditions found at sites of infection rather than in the circulation. When 

Bortolussi et al. tested higher concentrations of serum (10%) in their assays, heat 

inactivation did not eliminate opsonization. The reason for the discrepancies between these 

studies is not entirely clear. As this variation arose in human studies in which serum was 

prepared from multiple donors and in different countries, the differences may reflect the 

exposure status of the serum donors. In contrast, Lm exposure may be uncommon in 

laboratory animals, resulting in a lack of Lm-specific immunoglobulin and thus a complete 

complement dependence. Regardless, it is clear that complement can opsonize Lm. 

 

II. CR3 and Listeria monocytogenes 
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 Multiple complement receptors (CR1, CR3, CR4) bind to C3b-coated bacteria and 

trigger their phagocytosis (57). Early work from Rosen et al. revealed a critical role for CR3 

in the host response to listeriosis in vivo (98). Mice treated with an anti-CR3 monoclonal 

antibody (mAb) 24 hpi with Lm had massively elevated bacterial proliferation in the liver 

and spleen and complete mortality at an infectious dose that otherwise caused a modest 

sublethal infection in untreated animals. Careful histological analysis demonstrated a failure 

of neutrophils and monocytes to organize around infective foci in the liver. The work also 

ruled out a role for CR3 in early bloodstream sterilization. CR3 blockade had no effect on 

the kinetics of bacterial clearance from the blood, indicating that KCs do not utilize CR3 to 

phagocytose Lm. However, it must be recognized that as an integrin receptor, CR3 also has 

complement-independent functions. Multiple ligands for CR3 outside of the complement 

system have been identified, including ICAM-1 and extracellular matrix proteins (99). Thus, 

it is unclear what extent of this phenotype is complement-dependent.  

Subsequent studies from Drevets et al. established that CR3 contributes to listerial 

phagocytosis and killing by macrophages in vitro (93, 100, 101). Incubation with serum was 

found to greatly enhance the phagocytosis of Lm by macrophages (93). When macrophages 

were treated with an anti-CR3 monoclonal antibody, the effect of serum treatment was lost. 

Neutralization of C3 similarly reduced phagocytosis, demonstrating that C3b-CR3 

interactions were responsible for the enhanced phagocytosis. It was later found that 

listericidal macrophages such as protease peptone-elicited macrophages utilize CR3 for 

bacterial phagocytosis to a greater extent than non-listericidial macrophages such as those 

elicited by thioglycollate (100). Furthermore, listericidal macrophages restricted Lm to the 

phagosome, whereas in non-listericidal thioglycollate-elicited macrophages, Lm lysed 
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phagosomes and spread throughout the cytoplasm. These observations lead to the hypothesis 

that CR3 promotes listerial killing via phagosomal containment. To test this hypothesis, 

peptone-elicited macrophages were treated with anti-CR3 mAbs, and their ability to kill Lm 

was assessed (101). As in the case of phagocytosis, CR3 blockade dose-dependently 

inhibited bacterial killing. In fact, at high doses peptone-elicited macrophages were 

converted into permissive hosts. However, while blocking CR3 diminished listerial killing, 

it did not result in bacterial escape from the phagosome. Thus, complement and CR3 

promote the phagocytosis and killing of Lm in murine macrophages through an 

undetermined mechanism independent of phagosomal containment. 

 

III. CRIg and Listeria monocytogenes 

 As mentioned previously, Lm is rapidly cleared from the bloodstream by KCs in the 

liver following intravenous injection. Since complement opsonizes Lm through alternative 

pathway activation on the bacterial surface, its participation in this process seemed likely. 

However, KCs express little CR3, and blocking experiments indicated a lack of CR3 

involvement (98, 102). This discrepancy was resolved in 2006 with the discovery of a fifth 

complement C3b receptor, the Complement Receptor of the Immunoglobulin superfamily 

(CRIg) (103). The expression of CRIg is highly restricted, being found only in tissue 

macrophages such as KCs and a subset of peritoneal macrophages. To examine the 

contribution of CRIg to early listerial clearance, KCs were isolated from WT and CRIg-/- 

mice one hour after i.v. infection. KCs from CRIg-/- mice contained substantially less Lm 

than WT KCs, demonstrating a role for CRIg in the clearance of opsonized Lm from the 

blood. This reduced KC uptake resulted in a redistribution of Lm within CRIg-/- mice, with 
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less Lm depositing in the liver and more in the spleen and lungs as early as 10 minutes post-

injection in comparison with WT mice. CRIg-/- mice were also more susceptible to Lm-

induced mortality. Thus, CRIg is at least partially responsible for the early clearance of Lm 

from the blood. In its absence, Lm is re-directed from the liver, a site of rapid early bacterial 

clearance via recruited neutrophils, to more permissive sites of infection like the spleen and 

lung. In addition, CRIg also contributes directly to the listericidal activity of macrophages. 

Kim et al. recently reported that treatment of macrophages with either an agonistic anti-

CRIg antibody or C3b dimers enhances their ability to kill Lm (104). This CRIg-mediated 

induction of bactericidal activity was linked to elevated phagosome-lysosome fusion. CRIg 

associates with CLIC3, a chloride ion channel, which increases the chloride ion 

concentration and acidification of phagosomes and is required for CRIg-mediated killing. 

Therefore, at least two complement C3 receptors, CR3 and CRIg, contribute to listerial 

killing by macrophages. 

 

IV. Complement and the adaptive response to Listeria monocytogenes 

 For many years, immunologists regarded innate and adaptive immunity as non-

overlapping spheres. The involvement of innate immunity in the early containment of 

infections was recognized, but the adaptive response, a separate entity, was responsible for 

complete bacterial clearance. However, it is now widely appreciated that the two systems are 

fundamentally linked (105). The innate response both initiates and shapes the direction of 

adaptive immunity. As a key component of innate immunity, complement is thought to 

participate in the adaptive T cell response to pathogens (106). Early studies of complement 

in viral infections demonstrated a requisite role for C3 and/or C5aR in T cell activation in 
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response to both influenza virus and lymphocytic choriomeningitis virus (107-109). 

Complement regulates adaptive immunity through its actions on both antigen presenting 

cells (APCs) and T cells. APCs activate T cells via the engagement of antigen-loaded MHC 

molecules with antigen-specific T cell receptors, co-stimulatory molecules, and T cell 

polarizing cytokines like IL-12. Upon exposure to antigen-specific T cells or TLR agonists, 

APCs mature and develop increased T cell stimulatory capacity. Consistent with a role for 

complement in this process, C3, C3aR, and C5aR-deficient APCs express lower levels of 

class II MHC and the co-stimulatory molecules CD80 and CD86 than WT APCs and have 

reduced T cell stimulatory capability (110-114). More remarkably, a requirement for T cell 

expression of C3, C5, C3aR and C5aR has also been reported (115, 116). Resting T cells 

express low levels of complement and complement receptors. Upon T cell activation 

through antigen presentation or CD3/CD28 ligation, a substantial induction of C3, C3aR and 

C5aR occurs (115). Like APCs, T cells deficient in C3aR and C5aR produce lower levels of 

the co-stimulatory molecules CD28 and CD40L following T cell activation (115). 

Furthermore, C3aR and C5aR mediate the activation of Akt in response to CD28 ligation, an 

integral component of Th1 differentiation (115). As a consequence, the proliferation of 

purified C3aR-/- C5aR-/- T cells following CD3/CD28 ligation is severely impaired. C5aR-

mediated activation of Akt also has a pro-survival role as it limits the induction of apoptosis 

in response to T cell activation (116). This was linked to the up-regulation of the anti-

apoptotic molecule Bcl-2 and down-regulation of the pro-apoptotic receptor Fas (116). Thus, 

complement acts directly on APCs and T cells at multiple levels to promote T cell 

immunity. 
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To date, two studies have demonstrated a requirement for C3 in T cell activation 

during listeriosis. In the first study, Nakayama et al. discovered that C3-/- mice develop less 

antigen-specific CD4+ and CD8+ T cells than WT mice following Lm infection (117). 

Curiously, while C5aR contributes to T cell activation during viral infection and in other 

models, neither C5aR antagonism nor deficiency impacted T cell activation in listeriosis. To 

investigate the mechanism by which C3 contributes to T cell activation, the phenotype of 

C3-/- DCs was characterized. Again in contrast to prior work, Nakayama et al. found the 

maturation state of Lm-infected C3-/- DCs was comparable to WT DCs. In line with this, C3 

deficiency did not impede the ability of DCs to activate CD8+ T cells in vitro. Nakayama et 

al. subsequently examined whether C3 directly regulates T cell proliferation in listeriosis. 

Adoptive transfer experiments in which C3-/- CD8+ T cells were introduced into Lm-

infected WT mice revealed comparable levels of T cell activation in donor (C3-/-) and 

recipient (C3+/+) cells. As transfer into a C3 sufficient environment allows C3-/- T cells to 

activate normally it would appear that they do not have an intrinsic defect in proliferation. 

However, when purified CD8+ T cells were stimulated with plate-bound anti-CD3, less 

proliferation was observed in C3-/- CD8+ T cells than C3+/+ cells. Altogether, these results 

argue that C3 is required at the level of the T cell itself for optimal T cell activation during 

listeriosis. 

 Subsequent work by Verschoor et al. confirmed the requirement of C3 for optimal 

CD8+ T cell responses during listeriosis (118). However, their studies unearthed a 

substantially different mechanism. Whereas Nakayama et al. postulated that C3 acts directly 

on T cells to promote their activation during listeriosis, Verschoor et al. found that C3 drives 

T cell responses by targeting Lm to APCs in the spleen. In order for a productive Lm 
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infection to develop within the spleen, CD8α+ DCs must be present in the red pulp (119, 

120). Shortly after i.v. injection, Lm is detected almost exclusively within these cells. The 

importance of complement in pathogen clearance from the circulation in other models led 

Verschoor et al. to examine how C3 contributes to this phenomenon. Consistent with a role 

for C3 in this process, C3 was required for optimal colonization of the spleen by Lm. C3-/- 

CD8α+ DCs were found to contain far less Lm than C3+/+ CD8α+ DCs at 1 hpi.  

Remarkably, the targeting of Lm to CD8α+ DCs by C3 is dependent on platelet-Lm 

aggregation. Platelets bind circulating Lm through a newly identified C3b receptor, the 

glycoprotein GPIb. Like C3 deficiency, depletion of platelets or GPIb deficiency impaired 

the delivery of Lm to CD8α+ DCs. Among the various DC subsets, CD8α+ DCs are 

uniquely capable of cross-presenting exogenous antigens through class I MHC to CD8+ T 

cells. In keeping with this, the impaired uptake of Lm by CD8α+ DCs in these mice resulted 

in reduced CD8+ T cell expansion. Thus, C3 drives the development of an adaptive anti-

listerial response in vivo by diverting a small portion of Lm away from the macrophages of 

reticuloendothelial system to splenic CD8α+ DCs. This model therefore diverges 

significantly from that of Nakayama et al. and others in which a direct role for complement 

in T cell activation has been proposed. Regardless, C3 clearly contributes to the 

development of T cell immunity during listerosis. 

 

V. Role of the complement anaphylatoxin receptors in listeriosis 

A considerable body of research now stresses the importance of C3 and complement-

mediated opsonization in host defense against Lm. On the other hand, the role of the 

complement anaphylatoxins has been scarcely examined. To fill this void, our laboratory 



22 
 

recently examined the role of C3aR in a mouse model of systemic Lm infection. Very few 

studies have assessed the importance of C3aR during infection. Surprisingly, C3aR 

deficiency resulted in enhanced bacterial clearance in a mouse model of pulmonary 

Pseudomonas aeruginosa infection (121). In contrast, the work of Mueller-Ortiz et al. now 

establishes a protective role for C3aR during listeriosis (122). C3aR-/- mice fare 

significantly worse than WT mice following Lm infection, with reduced survival, increased 

bacterial burden and tissue injury. A broad analysis of serum cytokine and chemokine levels 

showed that C3aR does not contribute to the production of protective cytokines or 

chemokines during listeriosis. As discussed earlier, splenocyte apoptosis is a major feature 

of Lm infection and is thought to negatively regulate bacterial clearance through the 

induction of IL-10 expression. Since T cell-expressed C3aR reportedly promotes T cell 

survival under homeostatic conditions and during T cell activation, it was reasoned that 

C3aR might protect against Lm-induced splenocyte death (115, 116). In accordance with 

this, more splenocyte apoptosis was detected in Lm-infected C3aR-/- mice than infected WT 

mice. Furthermore, total splenocyte numbers were reduced in infected C3aR-/- mice as well. 

This splenocyte depletion was not restricted to T cells, as all splenocytes subsets were 

affected. The enhanced susceptibility of infected C3aR-/- splenocytes to cell death 

associated with lower levels of the anti-apoptotic molecule Bcl-2 and higher levels of the 

pro-apoptotic receptor Fas than in infected WT splenocytes. Thus, C3aR shifts the overall 

cellular status of splenocytes to a more anti-apoptotic state during listeriosis. In line with the 

accepted model, the increased splenocyte apoptosis in C3aR-/- mice was linked with higher 

serum levels of IL-10. To test whether the elevated apoptosis seen in C3aR-/- mice was 

responsible for the phenotype, C3aR-/- mice were pre-treated with the caspase inhibitor Z-
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VAD, an inhibitor of apoptosis, before infection. In support of the hypothesis, Z-VAD 

reduced bacterial burden in the liver, splenocyte apoptosis and IL-10 to levels comparable to 

WT mice. Thus, C3aR protects the host against listeriosis by inhibiting splenocyte death. A 

similar phenotype was recently described in C3aR-/- mice infected with the intracellular 

bacterium Chlamydia psittaci (Cp) (123). C3aR-/- mice are more susceptible to pulmonary 

Cp infections and have significantly less T cells and B cells in their draining lymph nodes 

than WT mice. It is unclear whether this reduction is a consequence of elevated cell death or 

reduced proliferation. However, it is tempting to speculate that these data taken together 

may demonstrate a broad pro-survival role for C3aR in leukocytes during intracellular 

bacterial infections.  

While C3aR clearly participates in the host response to Lm, the role of C5aR in 

listeriosis remains uncertain. Since C5a can repress IL-12 expression and inhibit the Th1 

response to the intracellular parasite Leishmania major, C5aR might be detrimental in 

listeriosis (67, 85-87). However, there is also reason to suspect a protective function for 

C5aR. Several decades ago it was found that A/J mice, a mouse strain naturally deficient in 

C5, are more susceptible to Lm (124, 125). Of the two C5 fragments, the loss of C5b is an 

unlikely candidate for this susceptibility due to the resistance of Gram positive bacteria to 

MAC-mediated lysis (60). Thus, it seems probable that the loss of C5a is responsible for the 

increased susceptibility of A/J mice. These studies therefore sought to determine the 

function of C5aR in host defense against Lm by subjecting WT and C5aR-/- mice to a model 

of systemic Lm infection. 
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INTRODUCTION 

 The CDC estimates that Listeria monocytogenes, the causative agent of the 

foodborne illness listeriosis, is responsible for approximately 1600 hospitalizations and 260 

deaths annually in the United States (9). Accordingly, Lm is the third leading cause of death 

from food poisoning and a major public health problem (7, 8, 10). Invasive listeriosis 

generally occurs in the elderly, patients suffering from chronic illness, and the immune 

compromised (10). This illustrates the importance of the immune response in host defense 

against Lm, as all three groups suffer from immune defects. While it is known that many 

components of innate and adaptive immunity are essential in this process, it is unclear what 

role the complement anaphylatoxin C5a and its receptor C5aR play. Studies in the 1980s 

demonstrated that mice with a natural deficiency in C5 such as the A/J strain are more 

susceptible to intravenous or intraperitoneal infection with Lm than C5 sufficient strains 

(124, 125). More recently, this increased susceptibility was extended to intragastric 

inoculation, the natural route of Lm infection (126). Of the two C5 cleavage fragments, C5a 

and C5b, only the absence of C5a is likely to contribute to impaired resistance in C5 

deficient mice. The membrane attack complex, a lytic pore assembled by C5b on bacterial 

surfaces, cannot penetrate the thick, peptidoglycan-rich cell wall of Gram positive bacteria 

like Lm (60). However, it must be recognized that while C5 deficiency is a major feature of 

the A/J strain, other genetic differences exist between it and C5 sufficient mouse strains like 

C57BL/6. For example, while A/J mice are more susceptible to Staphylococcus aureus than 

C57BL/6 mice, this susceptibility was linked to polymorphisms outside of the Hc (C5) locus 

(127). Thus, the listeriosis phenotype described in A/J mice could be independent of C5 
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deficiency. Alternatively, polymorphisms outside of the Hc locus could obscure a 

detrimental contribution by C5. 

C5aR is widely assumed to have anti-microbial functions. Indeed, the first phenotype 

described in C5aR-/- mice was an enhanced susceptibility to pulmonary infections with 

Pseudomonas aeruginosa (128). Furthermore, many bacteria produce virulence factors that 

either block the production of C5a or antagonize C5aR (129). Serratia marcenscens, a cause 

of hospital acquired infections, and many Streptococcus spp. produce proteases and 

peptidases that degrade C5a (130, 131). Staphylococcus spp. have two unique virulence 

factors that target C5a. CHIPS, the Chemotaxis inhibitory protein of S. aureus, binds to 

phagocytes and specifically blocks neutrophil chemotaxis towards C5a and formylated 

peptides (132, 133). They also produce SSL-7, Staphylococcal superantigen-like protein 7, 

which binds C5 and prevents its cleavage (134). Finally, it was recently reported that the Vi 

capsular polysaccharide of Salmonella typhi inhibits C3 activation and thereby prevents the 

development of a C5a-dependent neutrophil chemotactic response towards the bacteria 

(135). The evolution of virulence factors to combat C5a illustrates the importance of C5a in 

the host response to bacteria.  

However, multiple infectious disease models have unveiled detrimental roles for the 

receptor in host defense. These studies take two forms. On one hand, C5a can drive the 

development of excessive inflammation in the host, resulting in immunopathology and a 

failure of clearance. The first example of this was in sepsis. In the cecal ligation and 

puncture (CLP) model, the cecum is punctured, releasing its bacteria-rich contents into the 

peritoneum (136). This results in excessive inflammation that triggers the development of a 

sepsis-like disease in rodents. Early neutralization of C5a dampens the inflammatory 
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response and thereby rescues rodents from CLP-induced mortality (137). Additionally, 

bacterial counts in the spleen and liver are significantly reduced as well. Excessive 

inflammation is believed to cause immune paralysis in phagocytes. C5a can directly mediate 

immune paralysis in neutrophils, as high levels of C5a inhibit the respiratory burst and 

production of TNF-α in response to LPS (138, 139). Thus, C5a contributes to the 

development of an excessive inflammatory response that inhibits bacterial clearance. Similar 

findings were recently reported in a mouse model of cerebral malaria (140). 

 On the other hand, C5a can limit bacterial clearance by exerting regulatory activity. 

C5a suppresses the release of the IL-12 family of cytokines by monocytes and macrophages 

in response to bacterial products (67, 85-87). As IL-12 is a key driver of Th1 polarization, 

this activity likely limits the development of cell-mediated immunity, a critical component 

of the host response to intracellular pathogens. Indeed, C5aR-/- mice have a more robust 

Th1 response to the intracellular parasite Leishmania major (87). The increase in activated 

CD4+ and CD8+ T cells seen in C5aR-/- mice correlated with enhanced clearance of the 

parasite from the inoculation site. More recently, the gingival pathogen Porphyromonas 

gingivalis (Pg) was shown to actively exploit the regulatory activity of C5a for immune 

evasion (141). Pg secretes gingipains, cysteine proteases that cleave C5 to generate C5a. 

This activity was long considered paradoxical because of C5a’s assumed anti-microbial 

function. However, the resulting cross-talk between C5aR and TLR2 inhibits not only IL-12 

expression but also the production of nitric oxide, a potent anti-microbial factor (67, 141). 

Accordingly, treatment of macrophages with C5a reduces their ability to kill Pg. As a Th1 

response is critical for the host response to Lm, this regulatory function of C5a/C5aR could 

be detrimental in listeriosis. Therefore, in these studies we set out to determine the role of 
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C5aR in listeriosis by putting WT and C5aR-/- mice through an intravenous Lm infection 

model. 
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MATERIALS AND METHODS 

Mice  

The C5aR-/- mice used for these studies have been previously described (142). They were 

backcrossed for over ten generations onto the C57BL/6 background. Age-matched C57BL/6 

mice from our colony served as WT controls. All mice were housed in HEPA-filtered 

Techniplast cages in a barrier facility. Male mice between 11 to 14 weeks of age were used 

in these studies. All mouse protocols followed institutional guidelines for animal care and 

welfare. 

 

Bacterial infection 

Listeria monocytogenes ATCC strain 13932 (MicroBioLogics, Inc.), a clinical isolate, was 

used for all studies. Bacteria were cultured in Bacto brain heart infusion (BHI) broth at 37˚C 

to mid-logarthmic phase, pelleted by centrifugation, washed with PBS, and resuspended in 

PBS. Mice were infected i.v. with 1 X 105 bacteria in 100 µl PBS. Control mice received 

100 µl PBS. The number of bacteria present in the inoculum was verified by culturing serial 

dilutions of the inoculum on Bacto BHI agar plates. 

 

Survival study  

Mice were infected i.v. with 5 X 104 Lm and were observed every 6 hours. Mice that 

showed signs of severe morbidity were euthanized. Survival curves were generated using 

GraphPad Prism software, and statistical significance was assessed using the Logrank test. 
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Bacterial burden in the liver and spleen 

Following exsanguination from the inferior vena cava, the liver and spleen were dissected 

from mice either 24 hpi or 72 hpi, rinsed in PBS and then placed in 2 ml HBSS. Organs 

were homogenized using a PRO200 homogenizer (ProScientific) on medium speed and were 

then placed on ice. Serial dilutions were plated on BHI agar plates to determine bacterial 

numbers per organ. Data are expressed as mean CFU per organ ± SEM. 

 

Spleen histology 

The whole spleen was dissected at 72 hpi, rinsed in PBS and fixed in 10% neutral buffered 

formalin for at least 24 h at 4˚C. Organs were dehydrated, embedded in paraffin, cut into 5-

µm sections and stained with either hematoxylin & eosin or the DeadEndTM Colorimetric 

TUNEL System (Promega) for identification of apoptotic cells. Brightfield images were 

taken using Spot Advanced software and a Zeiss Axioskop microscope (Carl Zeiss) 

equipped with a SPOT-RT digital camera (Diagnostic Instruments). For spleen histology a 

20X objective was used for a final magnification of 200x. 

 

Measurement of caspase 3 activity 

Caspase 3 activity was measured in spleen homogenates using the CaspACE Assay System 

(Promega). Briefly, dissected spleens were cut in half. One half was used to enumerate the 

number of cells in the spleen, while the other half was homogenized as described above. 
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After clearing the homogenate by centrifugation, caspase 3 activity was measured as per 

manufacturer’s instructions. The measured activity was normalized by the number of cells 

per spleen (per 107 cells) and is reported as mean absorbance (A450) ± SEM. 

 

Immunophenotyping 

Spleens were dissociated into single cell suspensions using a GentleMACS Dissociator 

(Miltenyi Biotec). Suspensions were filtered successively through 100 and 40 µM filters. 

Erythrocytes were then lysed with ACK lysis buffer (Lonza). Total live cell numbers were 

determined by counting cells with a hemocytometer and trypan blue exclusion. Fc receptors 

were blocked by incubation with an anti-CD16/32 antibody (BD Pharmingen). Cells were 

subsequently stained with antibodies for CD4 (GK1.5), CD8 (53-6.7), CD19 (6D5), NK1.1 

(PK136), CD11b (M1/70), CD11c (N418), Ly6G (1A8), Ly6C (HK1.4), and/or TRAIL 

(N2B2) (Biolegend). During the final wash step DAPI (Invitrogen) was added as a viability 

dye. A minimum of 50,000 events were collected on a FACSAria (BD Biosciences) flow 

cytometer. Data analysis was done using the Kaluza program (Beckman Coulter). Dead cells 

were excluded from the analysis by gating on DAPI negative cells. Data are expressed as 

mean cell number per organ ± SEM. 

 

Statistical analysis 

Statistical analysis was done with GraphPad Prism 5. All values are expressed as mean 

values with the SEM as error bars. For experiment involving two groups, data was analyzed 

via unpaired two-tailed t test. In experiment involving multiple groups one-way ANOVA 
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with the Tukey post-test was used to determine significance. Survival curves were analyzed 

by the log-rank (Mantel-Cox) test. P values < 0.05 were considered significant. 
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RESULTS 

C5aR deficiency results in increased susceptibility to Lm 

 We began our assessment of the role of C5aR in host defense against Lm with a 

survival experiment. WT and C5aR-/- mice were injected i.v. with 4x104 CFU of Lm and then 

followed for two weeks. At this dose no mortality was observed in WT mice (9 of 9 survived). 

In contrast, approximately 60% of C5aR-/- mice succumbed to the infection within the first 

week (3 of 7 survived, p = 0.0103) (Fig. 3). To determine if C5aR contributes to the control 

of Lm we infected WT and C5aR-/- mice and then harvested livers and spleens at 24 and 72 

hpi. At 24 hpi a modest two-fold elevation of Lm was observed in the spleens of C5aR-/- mice 

compared with WT mice (p = 0.0276) (Fig. 4A). No difference in bacterial burden was 

observed in the liver between the two genotypes at this time (Fig. 4A). The liver results argue 

against a role for C5aR in early neutrophil recruitment during listeriosis. Neutrophils infiltrate 

the liver within hours of Lm injection, and their depletion results log-fold increases in bacterial 

burden at 24 hpi (24-29). Accordingly, the lack of a difference in CFUs in the liver at 24 hpi 

suggests that C5a, a potent neutrophil chemoattractant, is either unneeded or redundant in this 

regard. Indeed, recent data suggests that the related formyl peptide receptors are responsible 

for early neutrophil recruitment (143). By 72 hpi a marked difference in CFUs was observed 

in both organs. C5aR-/- mice had approximately 6-fold more bacteria in their spleens (p < 

0.0001) and 26-fold more in their livers (p = 0.0010) than WT mice (Fig. 4B). This elevation 

of bacterial burden roughly coincides with the onset of mortality in C5aR-/- mice. Therefore, 

C5aR is required for the containment and survival of Lm infection.  
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Figure 3. Survival of WT and C5aR-/- mice during Lm infection. WT and C5aR-/- mice 

were infected i.v. with 5 X 104 Lm and followed for two weeks. n = 9 for WT and n = 7 for 

C5aR-/- mice, p = 0.0110 by Log-rank test.   
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Figure 4.  Bacterial burden of WT and C5aR-/- mice during Lm infection. WT and C5aR-/- 

mice were infected i.v. with 1 X 105 Lm, and at (A) 24 hpi and (B) 72 hpi spleens and livers 

were dissected, homogenized and CFU per organ was determined. The data is presented as 

mean CFU per organ ± SEM. n = 10 per group per time point, n.s. = not significant, * p = 

0.0276, ** p = 0.0010, *** p < 0.0001 by t-test. 
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Greater spleen pathology in C5aR-/- mice 

 In order to better understand the phenotype, we next examined the histology of the 

spleen in infected WT and C5aR-/- mice. Lm initially enters the spleen through CD8α+ 

dendritic cells in the red pulp (119, 120). From there Lm migrates into the white pulp via 

dendritic cells and causes lymphocyte and myeloid cell depletion (47, 48, 52). By H&E 

staining, no obvious differences could be seen between the spleens of PBS-treated WT and 

C5aR-/- mice (Fig. 5). However, by 72 hpi the appearance of the genotypes was markedly 

different. In comparison with Lm-infected WT spleens, infected C5aR-/- spleens were 

strikingly hypocellular (Fig. 5). This was most apparent in the splenic follicles of C5aR-/- 

mice as they lacked the typical densely packed appearance still observable in WT mice. 

 The depletion of splenocytes during Lm infections is thought to result from cell 

death and is associated with the appearance of TUNEL+ cells between 48 to 72 hpi (47, 48, 

52). We therefore did TUNEL staining to further characterize the differences in pathology 

between the genotypes. In PBS-treated WT and C5aR-/- mice, little to no TUNEL staining 

was seen (Fig. 6). Consistent with prior reports, Lm infection resulted in the appearance of 

TUNEL+ cells in WT mice at 72 hpi. In spleens of C5aR-/- mice, a dramatic increase in the 

amount of TUNEL staining was observed (Fig. 6). Thus, the TUNEL assay suggests that a 

greater degree of cell death occurs in spleens of Lm-infected C5aR-/- mice. We also 

examined caspase 3 activity in spleen homogenates from PBS treated and Lm-infected WT 

and C5aR-/- mice. Caspase 3 is the key executioner caspase that initiates apoptosis. 

Therefore, its activation is used as an indicator of apoptosis. PBS-treated animals had little 

caspase 3 activity (Fig. 7). Similar to the results of TUNEL staining, Lm-infected C5aR-/- 

mice had substantially more caspase 3 activity on a per cell basis than Lm-infected WT mice 
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(p < 0.0001). Taken together, these results suggest that C5aR protects against spleen 

pathology during Lm infection by preventing splenocyte death. 
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Figure 5.  Histological examination of the spleens of WT and C5aR-/- mice during Lm 

infection. WT and C5aR-/- mice were infected i.v. with PBS or 1 X 105 Lm, and their 

spleens were removed at 72 hpi, formalin fixed and paraffin embedded. 5-µm sections were 

stained with hematoxylin & eosin and examined under a 20x objective for a total 

magnification of 200x. Images are representative of 4 mice per group.  
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Figure 6.  TUNEL staining of spleens from WT and C5aR-/- mice during Lm infection. WT 

and C5aR-/- mice were infected i.v. with PBS or 1 X 105 Lm, and their spleens were 

removed at 72 hpi, formalin fixed and paraffin embedded. 5-µm sections were subjected to 

TUNEL staining and examined under a 20x objective for a total magnification of 200x. 

Images are representative of 4 mice per group.  
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Figure 7.  Caspase 3 activity in spleen homogenates from WT and C5aR-/- mice during Lm 

infection. Spleen homogenates were prepared from PBS treated and Lm-infected WT and 

C5aR-/- mice at 72 hpi, and caspase 3 activity was measured. Data is presented as mean 

caspase 3 activity per 107 cells ± SEM. n = 4 per condition and genotype, *** p < 0.0001 by 

ANOVA with Tukey post-test. 
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Massive splenocyte depletion occurs in Lm-infected mice 

 To expand on our histological observations, we assessed the total number of viable 

cells in the spleens of infected and uninfected mice. No significant difference in splenocyte 

numbers was observed between uninfected WT and C5aR-/- mice (Fig. 8A). At 24 hpi 

splenocyte numbers were not significantly different from uninfected mice, and no difference 

existed between the genotypes. However, by 72 hpi there was a 43% reduction in splenocyte 

numbers in WT mice vs. uninfected WT controls (p = 0.0097). In line with the histological 

data, infected C5aR-/- mice had approximately 80% fewer splenocytes than infected WT 

mice at this time point (p = 0.0007) (Fig. 8A). Similarly, spleen weight was significantly 

reduced in infected C5aR-/- mice versus WT mice at 72 hpi (p = 0.0003) (Fig. 8B).  

 The spleen consists of many types of immune cells that play different roles in the 

course of an infection. C5aR is thought to be expressed by many of them, albeit with 

considerable variation in expression levels. Recent work indicated a direct role for T cell-

expressed C5aR in promoting T cell survival both in vitro and in vivo (115, 116). Therefore, 

it seemed important to determine if the cell loss was specific for particular subsets of 

splenocytes. To test this we dissociated spleens, counted the number of viable cells, and then 

used cell surface staining along with a viability dye to identify the major subsets of live 

lymphocytes and myeloid cells. Similar numbers of B cells (CD19+), CD4+ & CD8+ T 

cells, NK cells (NK1.1+), neutrophils (CD11b+, Ly6G+/Ly6C+), monocytes (CD11b+, 

Ly6G-/Ly6C+) and dendritic cells (CD11c+) were observed in uninfected WT and C5aR-/- 

mice (Fig. 9A) and in mice at 24 hpi (Fig. 9B). This provided further evidence that C5aR is 

not critical for early immune cell recruitment during listeriosis. By 72 hpi every cell type 
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examined was significantly reduced in C5aR-/- mice relative to their WT counterparts (p ≤ 

0.0444) (Fig. 9C). C5aR thus broadly protects against splenocyte depletion in listeriosis.  
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Figure 8. Total splenocyte numbers and spleen weight in WT and C5aR-/- mice during Lm 

infection. (A) WT and C5aR-/- mice were infected i.v. with 1 X 105 Lm, and their spleens 

were removed 24 hpi and 72 hpi for determination of total viable cell counts. Spleens from 

uninfected animals were used as controls. Data is presented as mean cells per spleen ± SEM. 

n = 3 per genotype for controls, 6 per time point and genotype otherwise. (B) WT and C5aR-

/- mice were infected i.v. with 1 X 105 Lm, and their spleens were removed at 72 hpi. 

Spleens were fixed for 24 h in formalin and then dried and weighed. Spleens from 

uninfected animals were used as controls. Data is presented as mean weight per spleen ± 
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SEM. n = 3 per genotype for controls, 4 per infected genotype. * p ≤ 0.0097, ** p ≤ 0.0007, 

*** p = 0.0003 by ANOVA with Tukey post-test. 
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Figure 9. Splenocyte subset analysis in WT and C5aR-/- mice during Lm infection. WT and 

C5aR-/- mice were infected i.v. with 1 X 105 Lm, and their spleens were removed 24 hpi 

and 72 hpi for determination of total viable cell counts. Spleens from uninfected animals 

were used as controls (A). Splenocytes were stained with various markers and the viability 

dye DAPI to determine the number of live splenocyte cell types at 24 hpi (B) and 72 hpi (C). 

Myeloid cells were defined as follows: Neu = neutrophils, CD11b+ Ly6G+ Ly6C+, Mo = 

monocytes, CD11b+ Ly6G- Ly6C+, DC = dendritic cells, CD11c+. Data is presented as 
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mean cells per spleen ± SEM. n = 3 per genotype for controls, 6 per time point and genotype 

otherwise. * p ≤ 0.0444, ** p ≤ 0.0074, *** p = 0.0003 by t-test. 
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DISCUSSION 

In this study, we have shown for the first time that the C5a receptor is essential for 

host defense against the intracellular pathogen Listeria monocytogenes. Significant mortality 

is observed within the first week of infection in C5aR-/- mice at a dose that otherwise causes 

a sublethal infection in WT mice. The elevated mortality was associated with increased 

bacterial burdens in the spleen at 24 hpi and in both the liver and spleen at 72 hpi, indicating 

that C5aR is required for bacterial containment. Remarkably, C5aR deficiency also resulted 

in a significant increase in splenocyte depletion. Histological examination of the spleen 

revealed a striking hypocellular appearance in C5aR-/- mice at 72 hpi that was not seen in 

WT mice. As elevated TUNEL staining and caspase 3 activity were detected in C5aR-/- 

spleens, it would appear that this hypocellularity results from increased cell death. The 

hypocellular appearance of the spleen was confirmed by performing cell counts in 

dissociated spleens. C5aR-/- mice had only 1/5th the number of splenocytes that WT mice 

had at 72 hpi. This reduction in splenocyte numbers was also paralleled by a 50% reduction 

in spleen weight in C5aR-/- mice in comparison with WT mice. Finally, we looked to see if 

the elevated splenocyte loss in C5aR-/- mice was associated with a specific splenocyte 

subset. In fact, all splenocyte subsets examined were similarly affected. The protection 

afforded splenocytes by C5aR during listeriosis is therefore a broad one. 

C5a can drive the recruitment of neutrophils to sites of inflammation. Hence, it is 

reasonable to expect that the absence of C5aR might impair their recruitment during 

listeriosis. However, the data present here suggests that is not the case. Neutrophils are 

critical participants in early bacterial clearance in the liver (25-29). An influx of neutrophils 

can be detected as early as 1 hpi (143). Following neutrophil depletion, log-fold elevations 
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in bacterial CFUs are seen in liver at 24 hpi (29). Therefore, if C5aR is an important driver 

of neutrophil recruitment, one would expect to see elevated bacterial counts in C5aR-/- 

livers at this time. The lack of a difference between WT and C5aR-/- mice at 24 hpi suggests 

C5aR plays little role in neutrophil recruitment to the liver. Indeed, while C5a is a powerful 

neutrophil recruiting factor, there are other molecules with similar potency. For example, 

formylated peptides, small peptides shed by bacteria, activate two related G-protein coupled 

receptors, the formyl peptide receptors (FPR1 and FPR2). It is known that Lm secretes 

formylated peptides and that mice deficient in FPR1 are highly susceptible to Lm infection 

(145, 146).  More recently, it was discovered that FPR1 and FPR2 are almost entirely 

responsible for early neutrophil recruitment in listeriosis (143). Additionally, the 

chemokines MIP-2 and IL-8 are produced in the liver following Lm infection, and their 

neutralization was found to impair neutrophil recruitment (147). C5aR may therefore be 

redundant in this regard.  

While our study is the first comprehensive examination of the role of C5aR in 

listeriosis, Nakayama et al. previously assessed the contribution of C5aR to T cell activation 

in a similar model (117). The two studies may seem contradictory at a superficial level. In 

their work, C5aR was found to be dispensable for T cell activation during listeriosis. In 

contrast, we found that C5aR deficiency resulted in a large reduction in T cell numbers in 

the spleen. However, this is an apples to oranges comparison. Here we examined total T cell 

numbers at 24 and 72 hpi, whereas Nakayama et al. compared the number of activated, 

antigen specific T cells at 168 hpi. Accordingly, these observations are not necessarily 

incompatible. For example, antigen-specific T cells may be protected against the T cell 

depletion seen in C5aR-/- mice. Alternatively, antigen-specific T cells may rebound from 
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their early depletion in C5aR-/- mice and expand to levels comparable to WT mice by 168 

hpi. Future investigations will hopefully reconcile these observations.  

Relatively few studies to date have examined the role of C5aR in the host response to 

intracellular bacteria. Outside of Lm, it is well-established that C5aR protects mice during 

Mycobacterium bovis bacillus Calmette-Guerin (BCG) infections (148-153). This protection 

is conferred in several ways. First, C5a enhances cytokine and chemokine production in 

BCG infected macrophages (148). This in turn appears to enhance their bactericidal activity 

(148, 150). Second, C5a is needed for optimal T cell activation by DCs, as C5-/- DCs 

produce less IL-12p70 and have reduced CD40 expression relative to WT cells (151). 

Finally, C5aR is required for the formation of granulomas, dense collections of macrophages 

and lymphocytes that limit the dissemination of BCG (149, 152, 153). C5aR may make 

similar contributions during listeriosis. In contrast, C5aR is not significant during pulmonary 

infections with Chlamydia psittaci (Cp) (154). While C3-/- and C3aR-/- mice have reduced 

survival and impaired bacterial clearance, C5-/- and C5aR-/- mice are indistinguishable from 

WT mice (123, 154). Curiously, several aspects of the phenotype of C3aR-/- mice in this 

model are similar to that of C3aR-/- and C5aR-/- mice during listeriosis. Of particular note, 

Cp-infected C3aR-/- mice have less B cells and CD4+ T cells in lung-draining lymph nodes 

than Cp-infected WT mice (123). This may point to a broad role for the anaphylatoxin 

receptors in lymphocyte survival during intracellular bacterial infections. Why C5aR is 

protective during Lm infection but not Cp infection is unclear. However, the importance of 

C5aR can vary between tissues. For example, C5aR is required for the clearance of 

Pseudomonas aeruginosa from the lung but is dispensable for its clearance in the 
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peritoneum (128). C5aR may therefore be required during systemic infections but be 

dispensable during pulmonary infections with intracellular bacteria. 

 A series of papers recently proposed that C3/C5 and C3aR/C5aR are important 

factors in T cell survival and activation (115, 116). Likewise, C5a prolongs the survival of 

neutrophils during sepsis (155). C5aR may therefore protect mice against listeriosis by 

providing pro-survival signals that limit Lm-induced splenocyte death. Protection of 

lymphocytes would be particularly beneficial. One of the paradoxes of listeriosis is that 

while lymphocytes are needed for complete bacterial clearance, their presence during the 

early phase of infection is detrimental. Splenectomized mice and lymphocyte deficient 

mouse strains (e.g. SCID, RAG-/-) have reduced bacterial loads during the first few days of 

infection in comparison with lymphocyte sufficient mice (156, 50). Reconstitution of 

lymphocyte deficient mice with bone marrow from lymphocyte sufficient mice increases 

their susceptibility (50). The susceptibility conferred by lymphocytes is thought to be a 

consequence of lymphocyte apoptosis. Apoptotic lymphocytes inhibit innate immunity 

through the induction of the anti-inflammatory cytokine IL-10 in macrophages (157). In 

keeping with this, almost no IL-10 is detectable in the spleens of RAG-/- mice at 72 hpi, 

whereas substantial amounts are seen in WT mice (50). Therefore, if C5a/C5aR directly 

provides pro-survival signals to lymphocytes during listeriosis it could account for the 

results seen in this model. 

However, it will be important to examine how C5aR modulates cytokine production 

before continuing to explore this hypothesis. For example, if C5aR is required for optimal 

production of protective cytokines like IFN-γ or TNF-α, then the elevated cell death might 

be downstream of a failure to contain bacterial growth. Similarly, since type 1 IFN impairs 
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the host response by enhancing splenocyte death, C5aR could protect splenocytes through 

the inhibition of type 1 IFN expression. Resolution of these questions will allow for the 

discovery of the mechanism by which C5aR protects the host during listeriosis 
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CHAPTER TWO 

 

 

 

The C5 Anaphylatoxin Receptor (C5aR) protects against Listeria 

monocytogenes infection by inhibiting Type 1 IFN expression 
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INTRODUCTION 

The early host response to Listeria monocytogenes (Lm) is dominated by the innate 

immune system. While a Th1 response is required for sterilizing immunity, numerous 

studies have demonstrated an essential role for innate immune cells and cytokines during the 

first few days of an infection, a period preceding the activation of adaptive immunity. 

Deficiency or neutralization of many pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-

6, IL-1β, and IL-12 results in enhanced susceptibility to listeriosis with elevated bacterial 

loads by 72 hours post-infection (hpi) (33-39). While the production of cytokines is largely 

driven by bacterial recognition through Toll-like receptors and cytoplasmic DNA sensors, 

there is reason to believe that the complement anaphylatoxin C5a might participate in their 

induction. Many studies have demonstrated that C5a can potentiate the production of TNF-

α, IL-6, and IL-1β in response to bacterial products in monocytes and macrophages in vitro 

(81-83). These observations have subsequently been validated in vivo following the 

development of complement knockout mice. For example, mice lacking DAF, a complement 

regulator that inhibits the formation of C3 convertases on the cell surface, have substantially 

higher serum levels of TNF-α, IL-6, and IL-1β following LPS injection than their wild-type 

(WT) counterparts (84). This increase is almost entirely dependent on C5a, as cytokine 

levels in mice doubly deficient in DAF and C5aR are not significantly different from WT 

mice. Similarly, C5aR deficiency or blockade is associated with reduced cytokine 

production in mouse models of sepsis, liver injury, Porphyromonas gingivalis-induced 

periodontitis, and renal ischemia-reperfusion injury (67, 158, 159, 160). Thus, C5a could 

protect the host against Lm by contributing to the early induction of protective cytokines. 
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However, not all of innate immunity is protective during listeriosis. A large amount 

of evidence now shows that the type 1 IFNs, IFN-α and IFN-β, are detrimental in mouse 

models of Lm infection. Mice deficient in either the type 1 IFN receptor IFNAR or the type 

1 IFN-inducing transcription factor IRF3 are highly resistant to listerosis (47-49). This 

resistance is thought to stem from type 1 IFN’s ability to promote cell death in lymphocytes 

and myeloid cells (47, 48, 51). Type 1 IFN do not trigger cell death themselves but rather 

increase the sensitivity of cells to insults from bacteria and bacterial products. This results 

from the induction of numerous pro-death genes including TRAIL, DAXX, PKR, and p53 

(47, 161, 162). Consistent with this, treatment of lymphocytes with type 1 IFN increases 

their susceptibility to LLO-induced apoptosis, and Lm-infected macrophages undergo 

necrotic cell death in a type 1 IFN-dependent fashion (48, 51). Furthermore, few TUNEL+ 

splenocytes are observed in the spleens of Lm-infected IFNAR-/- and IRF3-/- mice in 

contrast with the considerable TUNEL staining seen in WT mice (47, 48). Although the loss 

of effector immune cells is likely detrimental in and of itself, lymphocyte apoptosis causes 

additional immune suppression through the induction of IL-10 expression in macrophages 

(157). Indeed, mice lacking either IFNAR or lymphocytes produce little IL-10 during 

listeriosis (50). An alternative hypothesis to explain the protection afforded by C5aR in this 

model would therefore be that C5a/C5aR negatively regulates type 1 IFN expression. Thus, 

in these studies we sought to examine how C5aR regulates cytokine production during Lm 

infection. 

 

 

 



55 
 

MATERIALS AND METHODS 

Reagents 

LPS (E. coli 0111:B4) was obtained from Sigma-Aldrich. Purified human C5a (<0.1 EU 

endotoxin/µg) was purchased from Complement Research Technologies.  

 

Mice  

The C5aR-/- mice used for these studies have been previously described (30). They were 

backcrossed for over ten generations onto the C57BL/6 background. Age-matched C57BL/6 

mice from our colony served as WT controls. All mice were housed in HEPA-filtered 

Techniplast cages in a barrier facility. Male mice between 11 to 14 weeks of age were used 

in these studies. All mouse protocols followed institutional guidelines for animal care and 

welfare. 

 

Bacterial infection 

Listeria monocytogenes ATCC strain 13932 (MicroBioLogics, Inc.), a clinical isolate, was 

used for all studies. Bacteria were cultured in Bacto brain heart infusion (BHI) broth at 37˚C 

to mid-logarthmic phase, pelleted by centrifugation, washed with PBS, and resuspended in 

PBS. Mice were infected i.v. with 1 X 105 bacteria in 100 µl PBS. Control mice received 

100 µl PBS. The number of bacteria present in the inoculum was verified by culturing serial 

dilutions of the inoculum on Bacto BHI agar plates. 
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Cytokine measurements  

Most cytokines and chemokines were measured in sera or clarified liver homogenates taken 

at 24 & 72 hpi by the Milliplex Mouse Cytokine/Chemokine 22-plex kit (Millipore 

#MPXMCYTO70KPMX22) on the Luminex 200 system. Serum IFN-α and IFN-β levels at 

24 hpi were measured using the VeriKine Mouse IFN Alpha ELISA kit and VeriKine 

Mouse IFN Beta ELISA kit (R&D Systems), respectively, as per manufacturer’s 

instructions. IFN-β was measured in cell culture supernatants using the LEGEND MAX 

Mouse IFN-β ELISA kit (Biolegend).  

 

In vitro experiments 

J774A cells were obtained from frozen stocks in our lab and were cultured in 10% FBS 

supplemented DMEM. The night before experiments 2x105 cells were plated per well in 48 

well tissue culture treated plates (Corning). C5a was added to wells approximately 1 hour 

before treatment with 100 ng/ml LPS. For Lm infections bacteria were added at a 

multiplicity of infection (MOI) of 1 and then plates were centrifuged for 5 minutes at 

approximately 100g to deposit the bacteria onto the cells. The infection was allowed to 

progress for 1 hour. The cell membrane impermeable antibiotic gentamicin (Sigma) was 

then added to a final concentration of 10 µg/ml to limit extracellular bacterial replication. 

Supernatants were removed at the time indicated and centrifuged for 15 minutes at 10,000g 

to remove dead cells and bacteria. 

 

Survival study  
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Mice were infected i.v. with 5 X 104 Lm and were observed every 6 hours. Mice that 

showed signs of severe morbidity were euthanized. For rescue experiments mice were 

injected i.p. with 1 mg of either the IFNAR blocking antibody, MAR1-5A3 (BioXCell) or an 

isotype control antibody, MOPC-21 (BioXCell), 4 hours before infection. Survival curves 

were generated using GraphPad Prism software, and statistical significance was assessed 

using the Logrank test. 

 

Statistical analysis 

Statistical analysis was done with GraphPad Prism 5. All values are expressed as mean 

values with the SEM as error bars. For experiment involving two groups, data was analyzed 

via unpaired two-tailed t test. In experiment involving multiple groups one-way ANOVA 

with the Tukey post-test was used to determine significance. Survival curves were analyzed 

by the log-rank (Mantel-Cox) test. P values < 0.05 were considered significant. 
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RESULTS 

C5aR is not required for the expression of protective inflammatory cytokines and 

chemokines 

 Many cytokines are required during the first 72 hours of Lm infection to marshal the 

innate immune response (33-39). Outside of the aforementioned cytokines, the cytokine G-

CSF also plays a critical role during listeriosis as a growth factor driving myelopoiesis 

(163). Additionally, multiple chemokines including MCP-1, MIP-1α, and IP-10 act to recruit 

immune cells to sites of infection (30, 32, 164-166). As C5a potentiates inflammatory 

cytokine and chemokine expression in many models, we anticipated that the susceptibility of 

C5aR-/- mice to Lm might be linked to deficient production of these protective molecules 

during Lm infection. We therefore examined serum cytokine and chemokine levels in WT 

and C5aR-/- mice at 24 and 72 hpi through the Luminex platform. Contrary to our 

expectations, the expression of most cytokines and chemokines were either similar or 

elevated in C5aR-/- mice compared with WT mice as early as 24 hpi (Fig. 10A,B). While 

bacterial numbers in the spleen were increased at this time point in C5aR-/- mice and could 

contribute to the phenomena, cytokine and chemokine levels in the liver showed a similar 

pattern despite equivalent bacterial burdens in the organ at that point (Fig. 11A,B). Thus, 

C5aR is not required and may actually inhibit early inflammatory cytokine production 

during listeriosis.  
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Figure 10. Serum cytokine and chemokine levels in WT and C5aR-/- mice during Lm 

infection. WT and C5aR-/- mice were infected i.v. with 1 X 105 Lm or PBS, and serum was 

isolated from the mice 24 hpi and 72 hpi. Cytokine (A) and chemokine (B) levels were 

measured using the Luminex platform. Sera from PBS injected animals had little to no 

detectable cytokines and chemokines, and no differences were observed between the 

genotypes (data not shown). Data is presented as mean pg/ml ± SEM. n = 10-12 mice per 

genotype per time point. * p ≤ 0.0388, ** p ≤ 0.0086, *** p < 0.0001 by t-test. 
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Figure 11. Liver cytokine and chemokine levels in WT and C5aR-/- mice during Lm 

infection. WT and C5aR-/- mice were infected i.v. with 1 X 105 Lm or PBS, and their livers 

were homogenized at 24 hpi and 72 hpi. Cytokine (A) and chemokine (B) levels were 

measured using the Luminex platform. Homogenates from PBS injected animals had little to 

no detectable cytokines and chemokines, and no differences were observed between the 

genotypes (data not shown). Data is presented as mean pg/ml ± SEM. n = 10-12 mice per 

genotype per time point. * p ≤ 0.0388, ** p ≤ 0.0086, *** p < 0.0001 by t-test. 
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C5a represses type 1 IFN expression in vivo 

 The phenotype of Lm-infected C5aR-/- mice is in many ways reminiscent of the 

phenotype of IFNAR-/- mice (47-49). IFNAR-/- mice have significantly enhanced bacterial 

clearance at 72 hpi but show little difference in bacterial counts at 24 hpi relative to WT 

mice, indicating that the detrimental effects of type 1 IFN manifest during second and third 

days of infection. Similarly, in C5aR-/- mice bacterial counts were only modestly elevated at 

24 hpi whereas at 72 hpi a large difference was observed. IFNAR-/- mice are protected 

against splenocyte death, whereas C5aR-/- mice have greatly enhanced splenocyte depletion. 

These parallels led us to suspect that C5a/C5aR might inhibit the type 1 IFN pathway in 

listeriosis. We therefore examined type 1 IFN expression in WT and C5aR-/- mice. There 

are two major types of type 1 IFN, IFN-α and IFN-β. In Lm models IFN-α expression is 

partially dependent on IFN-β, and type 1 IFN expression peaks at 24 hpi (167-169). At this 

time point both IFN-α and IFN-β were significantly elevated in the serum of C5aR-/- mice 

(p ≤ 0.0004) (Fig. 12). As in prior reports serum IFN-β levels were quite low (38, 39). 

However, a consistent difference was seen between WT and C5aR-/- mice. 
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Figure 12. Serum type 1 interferon expression in WT and C5aR-/- mice during Lm 

infection. . WT and C5aR-/- mice were infected i.v. with 1 X 105 Lm or PBS, and serum 

was isolated from the mice 24 hpi and 72 hpi. IFN-α (A) and IFN-β (B) were measured by 

ELISA. Sera from PBS injected animals had no detectable type 1 IFN (data not shown). 

Data is presented as mean pg/ml ± SEM. n = 9-11 per genotype, *** p ≤ 0.0004 by t-test. 

 

 

 

 

 

 

 

  



63 
 

An important target downstream of type 1 IFN in listeriosis is the TNF-related 

apoptosis-inducing ligand (TRAIL). A member of the TNF superfamily, TRAIL is a type 1 

IFN response gene (170). Indeed, in the spleens of IFNAR-/- mice the induction of TRAIL 

expression in response to Lm infection is highly blunted (47). While TRAIL expression can 

be induced in a variety of immune cells, in listeriosis its expression is observed primarily on 

the surface of NK cells (171). TRAIL triggers cell death by binding to the death receptors 

DR4 and DR5, two receptors that are widely expressed among immune cells (171). TRAIL-

/- mice resemble IFNAR-/- mice in their enhanced containment of Lm and reduced 

splenocyte depletion (171, 172). Thus, we examined TRAIL expression on NK1.1+ NK 

cells by flow cytometry to determine whether the elevation of type 1 IFN observed in C5aR-

/- mice was biologically significant. In PBS-treated animals little to no TRAIL+ NK cells 

were observed (Fig. 13A). By 72 hpi a small fraction of NK cells were TRAIL+ in WT 

animals. The percentage of TRAIL+ NK cells was significantly higher in C5aR-/- mice (p < 

0.0001) (Fig. 13B). Altogether, these data show that C5aR inhibits type 1 IFN expression 

and its downstream target TRAIL during listeriosis. 
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Figure 13. Natural killer cell expression of TRAIL in WT and C5aR-/- mice during Lm 

infection. WT and C5aR-/- mice were treated with PBS or infected and their spleens 
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removed at 72 hpi. Splenocytes were stained with the viability dye DAPI, TRAIL-PE, and 

NK1.1-APC to determine the percentage of live TRAIL+ NK cells. Representative 

histograms of DAPI-, NK1.1+ cells are shown (B). The percentage of live TRAIL+ NK cells 

in mice from two independent experiments are shown in a scatter plot (C). n = 6 per group, 

** p = 0.0055, *** p < 0.0001 by ANOVA with Tukey post-test. 
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C5a negatively regulates LPS-induced IFN-β expression in vitro 

 While C5a potentiates the expression of many pro-inflammatory cytokines, it has 

been known for some time that C5a selectively inhibits the induction of IL-12 expression in 

macrophages in response to the bacterial product LPS (67, 86, 87). As C5a/C5aR inhibits the 

expression of type 1 IFN in vivo during listeriosis, we were curious if C5a could similarly 

repress type 1 IFN expression in vitro. To examine this, we utilized J774A cells, a murine 

macrophage cell line. When J774A cells were stimulated concurrently with LPS and C5a, 

C5a had no effect on their production of IFN-β (data not shown). However, when J774A 

cells were pre-incubated with C5a for 1 hour and then stimulated with LPS, a clear 

inhibition of IFN-β expression was observed (Fig. 14A). This inhibition was observed even 

at C5a concentrations as low as 1 ng/ml (Fig. 14A). As pre-incubation with C5a was 

required for the inhibition of IFN-β, we subsequently did a time course experiment to 

examine the kinetics of this inhibition (Fig. 14B). Inhibition of IFN-β expression could be 

seen after a pre-incubation as short as 30 minutes but did not reach a maximal level until 2 

hours. This state of IFN-β repression was maintained as long as 8 hours after stimulation 

with C5a, but by 12 hours the effect had dissipated. Thus, exposure to C5a induces a limited 

period of reduced LPS responsiveness in terms of IFN-β production in macrophages (Fig. 

14B). We also examined the ability of C5a to repress Lm-induced IFN-β production in 

macrophages. Infection of J774A cells with Lm resulted in the release of much greater 

amounts of IFN-β than observed in response to LPS. While C5a caused a modest reduction 

of Lm-induced IFN-β expression it was not significant (Fig. 14C).  
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Figure 14. C5a represses LPS-induced IFN-β expression in J774A macrophages (A) 

J774A cells were pre-treated with a dose range of C5a for 1 h and then stimulated with 100 

ng/ml LPS for 20 h. IFN-β was measured in supernatants by ELISA. (B) J774A cells were 

incubated with medium with or without 50 nM C5a for the time indicated and then 

stimulated with 100 ng/ml LPS for 20 h. IFN-β was then measured in supernatants by 

ELISA. The percent inhibition was calculated by dividing the difference in the concentration 

of IFN-β between C5a treated wells and untreated wells by the concentration of IFN-β in 

untreated wells. (C) J774A cells were pre-treated with a dose range of C5a for 1 h and then 

infected with Lm at a MOI of 1 for 20 h. IFN-β levels in supernatants were determined by 

ELISA. Data is presented as mean pg/ml or % inhibition ± SEM and are representative of at 
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least 2 independent experiments. ns = not significant, *** p < 0.0001 by ANOVA with 

Tukey post-test. 
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Blockade of the type 1 interferon receptor rescues C5aR-/- mice 

 If dysregulation of type 1 IFN expression is indeed responsible for the mortality 

observed in Lm infected C5aR-/- mice then inhibition of the type 1 IFN axis should rescue 

them. To test this, we administered either an isotype antibody or an IFNAR blocking 

antibody (MAR1-5A3) i.p. 4 hours before i.v. infection (173). Similar to our earlier survival 

study, at a dose of 5x104 CFU, WT mice showed no mortality (12 of 12 survived) (Fig. 15). 

C5aR-/- mice given MAR1-5A3 were almost completely rescued (13 of 14 survived), 

whereas an isotype antibody failed to rescue them (3 of 14 survived) (p < 0.0001). Taken 

together, our data suggests that C5a protects mice during listeriosis by directly repressing 

type 1 IFN expression. 

 

 

 

 

 

 

 

 

 

 



70 
 

 

Figure 15. Blocking IFNAR rescues C5aR-/- mice from Lm-induced mortality. 4 hours 

before infection C5aR-/- mice were administered 1 mg of either the IFNAR blocking 

antibody MAR1-5A3 or an isotype antibody MOPC-21 i.p. in PBS. WT and C5aR-/- mice 

were then infected i.v. with 5 X 104 Lm and followed for two weeks. n = 12-14 mice per 

condition, p < 0.0001 by Log-rank test. 
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DISCUSSION 

 In this chapter we provide evidence that the complement anaphylatoxin receptor 

C5aR protects mice against Lm through the inhibition of type 1 IFN expression. In the 

previous chapter it was shown that the absence of C5aR in mice during listeriosis resulted in 

a dramatic elevation of splenocyte depletion in comparison with WT mice. As type 1 IFN 

greatly enhances lymphocyte apoptosis and macrophage necrosis in listeriosis, we examined 

serum IFN-α & β levels at 24 hpi and found that both are significantly elevated in C5aR-/- 

mice in comparison with WT mice. This elevation was associated with increased expression 

of TRAIL, a type 1 IFN-response gene and a major driver of Lm-induced splenocyte 

depletion, in splenic NK cells in C5aR-/- mice. We subsequently demonstrated that C5a 

directly suppresses IFN-β expression induced by the TLR4 agonist LPS in the macrophage 

cell line J774A, cells representative of one of the major sources of type 1 IFN during 

listeriosis. Finally, we showed that blockade of IFNAR rescued C5aR-/- mice from Lm-

induced mortality, thereby demonstrating that the elevation of type 1 IFN seen in C5aR-/- 

mice is responsible for their increased susceptibility to Lm.  

 In the last ten years it has been suggested that the complement anaphylatoxins C3a 

and C5a directly promote the survival of a wide variety of immune and non-immune cells 

including neutrophils, T cells, neurons, and tumor cells through their receptors C3aR and 

C5aR (115, 116, 155, 174, 175). In vitro, constitutive signaling through the anaphylatoxin 

receptors is required for optimal T cell survival (115). Similarly, T cell activation and 

expansion in vivo requires C3aR and C5aR signaling at the level of the T cell, in part 

because the anaphylatoxin receptors inhibit activation-induced T cell apoptosis (115, 116). 

In support of this hypothesis, the absence or antagonism of C3aR and C5aR reduces T cell 
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activation and expansion in many mouse models (109, 115, 116, 176). However, it is as of 

yet unclear whether the direct pro-survival activity of the anaphylatoxins in vitro completely 

accounts for these observations in vivo. For example, C3a and C5a potently modulate the 

expression of numerous cytokines that influence cellular activation and survival. Outside of 

T cells, the anaphylatoxins also promote cellular survival and regeneration in murine 

hepatocytes and embryonic chick retinas in vivo (177, 178). While C3aR and/or C5aR are 

expressed by both cell types, the protection afforded by the anaphylatoxins is achieved 

indirectly through the induction of multiple cytokines including IL-6, TNF-α, and IL-8. Here 

we have discovered an additional means by which C5aR can have pro-survival activity 

through an indirect mechanism. Instead of bolstering the expression of protective cytokines 

as in liver or retina injury models, C5aR protects against Lm-induced splenocyte loss 

through the inhibition of type 1 IFN expression.   

 While generally thought of as a pro-inflammatory molecule, C5a can also adopt a 

regulatory role in certain contexts. The first demonstration of this came over a decade ago in 

two papers showing that C5a inhibits the expression of IL-12 in human macrophages in 

response to LPS and Staphylococcus aureus (85, 86). Since then this inhibitory activity has 

been extended to include most members of the IL-12 cytokine family and additional stimuli 

such as CD40 activation and the intracellular bacteria Porphyromonas gingivalis (67, 87). 

Beyond the IL-12 family, C5a also represses the production of IL-17A in LPS-activated 

macrophages in vitro and in a mouse model of endotoxemia in vivo (179). Furthermore, the 

inhibitory effects of C5a are not limited to cytokines, as C5aR also suppresses the 

expression of the chemokines CCL17 and CCL22 in DCs during allergic asthma models 

(180). Pathogens even exploit the regulatory activity of C5a for their own gain (141). The 
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gingival pathogen Porphyromonas gingivalis actively cleaves C5 to trigger crosstalk 

between C5aR and TLR2 that in turn inhibits the release of nitric oxide. While the effects of 

C5a/C5aR on a variety of cytokines has been examined, to date no one has looked at how 

they regulate the type 1 IFNs. This dissertation therefore adds type 1 IFNs to the scope of 

C5a/C5aR’s regulatory functions for the first time. Since the primary source of type 1 IFN 

during listeriosis are splenic CD11b+ myeloid cells, we also examined the ability of C5a to 

inhibit IFN-β expression in the macrophages cell line J774A (167-169).  Pre-treatment of 

J774A cells with C5a potently inhibited LPS-induced IFN-β expression but did not have a 

consistent inhibitory effect on Lm-induced IFN-β expression. Notably, Lm induced the 

release of substantially more IFN-β in J774A cells than LPS. This greater production may 

therefore have obscured the suppressive effects of C5a during Lm infection in vitro. 

Regardless, these experiments show that C5a can directly repress type 1 IFN expression in 

macrophages and may hint at the mechanism in listeriosis. 

 It is increasingly appreciated that type 1 IFN is harmful during intracellular bacterial 

infections (161, 162). Studies with the intracellular pathogens Salmonella typhimurium, 

Chlamydia muridarium, Brucella abortus and Lm have illustrated that type 1 IFN broadly 

promotes macrophage and lymphocyte death (47, 48, 144, 181, 182). Beyond this, type 1 

IFN can inhibit the immune response in other ways. For example, type 1 IFN appears to 

dampen the responsiveness of macrophages to IFN-γ during Lm infections (183). Although 

type 1 IFN induces IL-10 expression during listeriosis through lymphocyte apoptosis, in 

other models type 1 IFN directly induces IL-10 expression in macrophages and lymphocytes 

(161). Furthermore, type 1 IFN suppresses the expression of IL-17, a key anti-bacterial 

cytokine, in both innate γδ T cells and Th17 cells (184-186). C5aR may therefore have 
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developed a regulatory role for type 1 IFN in order to limit their detrimental effects during 

intracellular bacterial infections.   
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SUMMARY 

 In this dissertation, we have identified the complement anaphylatoxin receptor C5aR 

as a major component of host defense against the intracellular bacteria Listeria 

monocytogenes. Following intravenous infection with Lm, C5aR-/- mice had elevated 

mortality and bacterial burden relative to WT mice. The worsened outcomes in C5aR-/- 

mice were also associated with increased spleen pathology. Histological examination 

revealed a markedly hypocellular appearance of the spleens of Lm-infected C5aR-/- mice in 

comparison with WT mice. Consistent with this, cell counts revealed that infected C5aR-/- 

mice have 1/5th as many splenocytes as WT mice at 72 hpi. All splenocyte subsets examined 

– neutrophils, monocytes, dendritic, T cells, B cells, and NK cells – were reduced in number 

in C5aR-/- mice. The increased splenocyte depletion is a consequence of elevated cell death, 

as the spleens of C5aR-/- mice have more TUNEL staining and caspase 3 activity than those 

of WT mice.  

Splenocyte loss is a major feature of listeriosis in the mouse. A key contributor to 

this process are the type 1 IFNs. Since C5aR-/- mice have elevated splenocyte depletion 

during listeriosis, we hypothesized that C5aR protects against Lm by inhibiting the 

expression of type 1 IFNs. Indeed, the serum of Lm-infected C5aR-/- mice contained more 

IFN-α & β than that of WT mice. To test the importance of this increase in type 1 IFN 

expression, we also assessed the expression of a downstream target of type 1 IFN, TRAIL, 

in Lm-infected WT and C5aR-/- mice. More TRAIL+ NK cells were observed in C5aR-/- 

mice than WT mice, demonstrating that the elevation of IFN-α & β in C5aR-/- mice has a 

biologically significant effect. We also determined that C5a can directly repress IFN-β 

expression in macrophages in response to LPS. Finally, we discovered that blockade of the 
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type 1 IFN receptor IFNAR rescues C5aR-/- mice from Lm-induced mortality. Therefore, 

the up-regulation of type 1 IFN in C5aR-/- mice is indeed responsible for their worse 

outcomes during listeriosis. This dissertation therefore provides the first evidence that 

C5a/C5aR negatively regulates type 1 IFN expression. A model to explain the results of 

these studies is provided in Figure 16. 

 

Figure 16. Proposed Model of C5aR-Mediated Protection against Lm. A) Lm triggers 

the release of type 1 IFN from infected myeloid cells. This type 1 IFN then enhances 

splenocyte death, which in turn decreases bacterial clearance. B) Lm activates the alternative 

pathway and thereby generates C5a. C5a inhibits the release of type 1 IFN from Lm-infected 

myeloid cells either directly or indirectly through other C5aR expressing cells. As a 

consequence, C5a reduces splenocyte loss and increases bacterial clearance.                                                              
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As with any scientific study, many questions arise from this work. Chief among them 

is how C5a inhibits type 1 IFN expression at the cellular level. In many cases C5a appears to 

modulate cytokine expression through the activation of the p42/p44 MAP kinase ERK 

and/or the Akt kinase (84). Indeed, multiple studies have shown that C5a negatively 

regulates members of the IL-12 family through either ERK or Akt (67, 87). Outside of 

C5a/C5aR, PGE2, a prostaglandin that signals through G-protein coupled receptors, inhibits 

the induction of type 1 IFN expression in macrophages in response to LPS and influenza 

virus through the activation of Akt (187, 188). Akt is therefore an especially attractive 

target. Furthermore, it is unclear why C5a-mediated inhibition of type 1 IFN expression 

requires pre-incubation with C5a. In most studies in which C5a was found to repress 

cytokine expression, C5a was either administered concurrently with the primary stimulus 

(e.g. LPS) or shortly before (e.g. 10 minutes prior) (67, 85-87). The observation that 

maximal inhibition of LPS-induced type 1 IFN requires a 2 to 8 hour pre-incubation with 

C5a therefore differs from earlier studies. By deciphering the signaling pathways involved in 

this inhibition further insight into this process may be gained. It is additionally unclear why 

C5a did not inhibit Lm-induced IFN-β. As mentioned in the Results and Discussion sections 

of Chapter 2, the amount of IFN-β released by Lm-infected J774A cells was much greater 

than that released by LPS-treated cells. It is therefore possible that this high level of 

induction might have overwhelmed the suppressive effects of C5a. Future experiments 

utilizing lower doses of Lm may reveal C5a-mediated inhibition of Lm-induced IFN-β. 

Furthermore, as the duration of pre-incubation with C5a influences the degree of inhibition 

seen in LPS-treated J774A cells, it may be necessary to optimize this aspect for Lm 
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infection experiments as well. Alternatively, C5a may repress IFN-β during listeriosis 

indirectly as proposed in Figure 16. 

Another intriguing question is whether or not C5a suppresses type 1 IFN expression 

during viral infections. Unlike in intracellular bacterial infections, type 1 IFN have a well-

established protective role in antiviral responses (161, 162). Therefore, C5aR might act to 

the detriment of the host during viral infections. However, this is not necessarily so. During 

viral infections, the major source of systemic type 1 IFN is the plasmacytoid dendritic cell 

(189). In contrast, during Lm infection, macrophages and myeloid dendritic cells produce 

type 1 IFN, whereas plasmacytoid dendritic cells do not (164-166). It is important to note 

that the expression of C5aR on plasmacytoid dendritic cells is controversial. Human 

plasmacytoid dendritic cell reportedly express C5aR, whereas murine cells do not (190, 

191). Accordingly, C5a may not impact the production of type 1 IFN during viral infections 

in the mouse. Alternatively, in viral infections in which myeloid cells are a major source of 

type 1 IFN such as pulmonary influenza infections, C5a may act to keep the antiviral 

response in check as to limit type 1 IFN-mediated immunopathology (192). Future studies 

are needed to test this hypothesis. 

While the data shown here establishes a suppressive role for C5a in type 1 IFN 

expression, it is possible that C5a may regulate the type 1 IFN axis in other ways. For some 

time it has been known that C5a represses the induction of IRF-1 and IRF-8 by LPS in 

macrophages (87). The Interferon Regulatory Factors are transcription factors induced by 

IFNs in addition to other microbial products. Optimal expression of many IFN response 

genes require IRF-1 and/or IRF-8 activity. For example, IRF1-/- mice fail to generate nitric 

oxide in response to IFN-γ (193).  Therefore, C5a may provide additional inhibition to the 
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type 1 IFN axis downstream of IFNAR activation. In line with this hypothesis, C5a was 

recently found to repress the expression of IL-27 in response to IFN-α in macrophages 

(194). This repression was associated with reduced induction of IRF-1, a critical driver of 

IL-27 expression. A broader look at the subset of IFN response genes that are repressed by 

C5a may further clarify the mechanisms by which C5a/C5aR protect against Lm and 

perhaps other intracellular bacteria. 

 Animal models have provided us with immense insight into the molecular basis of 

disease. However, it is increasingly appreciated that they have major limitations. For 

example, while the neutralization of TNF-α rescues rodents in sepsis models, anti-TNF-α 

monoclonal antibodies and soluble TNF receptors have little benefit in septic patients. These 

failings are likely a consequence of several factors (195). First, in many cases there are 

significant discrepancies between animal models and human disease. These discrepancies 

frequently arise from the complexity of disease in man. Listeriosis primarily affects the 

immunocompromised – either the elderly, patients undergoing treatment with immune 

suppressants, or those with chronic illness – yet virtually all animal studies utilize immune 

competent mice. Second, there are substantial differences between mice and men. The 

natural route of Lm infection in man is via the intestinal tract. As discussed earlier, 

differences in the structure of murine and human E-cadherin make mice highly resistant to 

oral Lm infection. As a consequence, most mouse studies involve infection via the 

intravenous or intraperitoneal route. Although all routes of infection result in systemic 

infections, there is evidence that the shape of the immune response can differ greatly 

between routes. While type 1 IFN is detrimental during intravenous Lm infections, a recent 

report demonstrated that it protects the mouse from oral infections (196). Third, most animal 
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studies make use of single or a few strains of highly inbred mice, whereas the human 

population is genetically diverse.  Certain mouse strains have highly biased immune 

responses that influence their susceptibility to Lm. For example, Balb/c mice have strong 

Th2 and weak Th1 responses, whereas the opposite is seen in C57BL/6 mice. The choice of 

strain therefore creates a bias towards particular aspects of immunity that may not generalize 

to the human population.  

 There are several ways in which these concerns could be dealt with. First, it is 

possible to reconstitute the immune system of immunodeficient mice with human cells via 

hematopoietic stem cell transplantation (197). These humanized mice contain human 

immune cells of all hematopoietic lineages and thus allow for in vivo studies of the human 

immune system in models that cannot be done in man. Second, ex vivo studies with human 

monocytes could clarify if C5a can repress IFN-β expression in man as seen in the mouse. 

Finally, an intragastric infection model could be developed using a transgenic Lm strain 

with modified internalin A that binds to murine E-cadherin. This would allow the mouse 

model to better resemble the natural route of infection in listeriosis. These studies would 

therefore demonstrate how the results of this dissertation translates into the human system. 

With that said, some predictions from experimental animal work in listeriosis have 

been confirmed in man. In the mouse, neutralization of TNF-α or deficiency of the TNF 

receptor results in profound susceptibility to Lm infection. In line with this, the risk of 

developing listeriosis is elevated in patients undergoing treatment with the TNF-α blockers 

infliximab, entanercept and adalimumab (198). As there is considerable interest in bringing 

C5aR antagonists to the clinic for the treatment of a variety of diseases such as macular 

degeneration, transplant rejection and arthritis, the work has important implications for the 
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use of C5/C5aR antagonists in man. Patients undergoing treatment with these agents should 

avoid unpasteurized food products and unwashed produce, and physicians should be aware 

of their patients’ increased risk of listeriosis. 
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