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BRIT1/MCPH1 MEDIATES THE DNA DAMAGE RESPONSE BY INDUCING P53 

STABILITY AND PROMOTING ATR SIGNALING 

 

Edward Wang, B.S. 

Supervisory Professor: Shiaw-Yih Lin, Ph.D. 

 

 The BRCT-repeat inhibitor of hTERT (BRIT1)/MCPH1 protein promotes the process of 

homologous recombination (HR) to repair DNA double strand breaks (DSBs). In response to 

DSBs, BRIT1 foci form at damaged sites, and recruits downstream repair proteins including 

53BP1, MDC1, NBS1, and the SWI/SNF complex to the DSB region to promote DNA repair. 

BRIT1 copy number deficiency correlates with increased genomic instability in ovarian cancer 

specimens and breast cancer cell lines. Here, we propose that additional functions of BRIT1 

include a direct interaction with the p53 tumor suppressor protein to promote p53 stability, and 

binding and recruitment of TopBP1 to sites of replication stress to maintain ATR signaling. 

 The stability of p53 is largely dependent on its negative regulator, the MDM2 ubiquitin 

E3 ligase. Here, we provide evidence that in addition to its role as an upstream regulator of 

DNA damage response, BRIT1 is able to directly interact with p53 to promote p53 stability. Our 

results suggest that BRIT1 protects p53 from degradation, and this occurs even in the absence 

of DNA damage. The level of BRIT1 expression proportionally reduces MDM2-p53 interaction, 

increases MDM2 ubiquitylation and degradation, while decrease the ubiquitylation of p53. We 

show that these findings are clinically relevant, as BRIT1 deficiency increases breast cancer 

cell proliferation and transformation in vitro, while BRIT1 expression reduces breast tumor 

growth in vivo. 

 The ataxia telangiectasia mutated and Rad3-related (ATR) kinase is a major mediator 

of DNA damage repair and replication stress response pathways. The key function of ATR is to 

induce S and G2 phase checkpoints through its interaction and phosphorylation of several
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proteins, including Chk1. We demonstrate here that BRIT1 is required to maintain ATR 

activation for cellular recovery from DNA damage and replication stress. We found that BRIT1 

directly interacts with TopBP1. BRIT1 deficiency compromises TopBP1 foci formation, and 

reduces activation of ATR targets. We also found that the BRIT1-TopBP1 interaction is 

dependent on ATM/ATR-mediated phosphorylation of BRIT1 at Ser322, suggesting that 

ATM/ATR instigate a feed-forward mechanism through BRIT1, allowing long-term activation of 

DNA repair. Together, our work provides insight into novel mechanism for how BRIT1 promotes 

genome stability.  
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Chapter 1 

 

INTRODUCTION AND BACKGROUND 

 

Genomic instability and cancer 

 

 In their seminal review published in 2000, Hanahan and Weinberg described six 

acquired characteristics, or ‘hallmarks’, that may exist among most or all cancers (Hanahan 

and Weinberg, 2000). These characteristics include self-sufficiency in growth signals, 

insensitivity to anti-growth signals, tissue invasion and metastasis, limitless replicative potential, 

sustained angiogenesis and evading apoptosis. They explain that there must exist a vast 

number of genetic abnormalities in a cell that allow these characteristics to take root. However, 

it is unlikely that these abnormalities sequentially occur naturally over the course of a person’s 

lifetime. It is more likely that these abnormalities arise from defects in the cell cycle checkpoint 

and DNA repair machinery that function together to maintain the genome. These defects lead 

to a condition where mutations that would normally be repaired efficiently, remain unrepaired 

and passed on to daughter cells, allowing mutations to accumulate. Since these mutations 

stem from defects in the cell cycle checkpoint and DNA repair machinery, mutational frequency 

is high, driving acquisition of the six characteristics of cancer. The term ‘genomic instability’ 

describes the characteristic of high genetic abnormalities existing in a cell, likely caused by 

defects in genome maintenance machinery. Appropriately, genomic instability was termed an 

‘enabling characteristic’, because it provides the means by which the six characteristics of 

cancer are acquired (Hanahan and Weinberg, 2000). In 2011, an updated review on the topic 

of cancer ‘hallmarks’ was published, suggesting further characteristics shared among cancer 

cells, namely deregulated cellular energetics and avoiding immune destruction. However, it 
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remains unchanged that genomic instability is an enabling characteristic that drives the 

acquisition of all other characteristics. 

 To maintain genomic stability, cells have evolved mechanisms to deal with stress 

factors, e.g. ionizing radiation, replication stress, oncogene-induced hyperproliferation, etc., 

which may compromise the genome. Integral mechanisms include the DNA damage response 

(DDR) and the replication stress response (RSR) (Curtin, 2012). In recent years, the BRIT1 

(BRCT repeat inhibitor of hTERT) protein has been described to play an important role in the 

DDR, due to its DNA damage-sensing role in DNA repair. In this work, we show that BRIT1 has 

an additional role in DDR, which involves maintaining the expression level of the p53 tumor 

suppressor protein. Furthermore, we show that the role of BRIT1 in DNA repair extends beyond 

DNA damage-sensing, and also involves cell cycle checkpoint activation, and therefore a role 

in RSR. 

 

DNA damage response maintains genome stability 

 

DNA damage response consists of cell cycle checkpoint and DNA repair 

 DNA damage comes from many sources, and these are often categorized as either 

exogenous to the cell, such as ionizing radiation, or endogenous, such as replication fork 

collapse and reactive oxygen species arising from metabolic byproducts. The types of damage 

include chemical modifications of bases or DNA adducts that alter the backbone structure of 

DNA, and single- and double-strand breaks. Sensor proteins that recognize the damaged DNA 

induce a checkpoint response that inhibits progression of the cell cycle, which gives the DNA 

repair system time to repair the DNA. Based on the cell cycle phase in which the DNA repair 

system is activated, either of two major repair pathways will be activated; homologous 

recombination (HR) activated from S-phase through G2, and non-homologous end joining 

(NHEJ) activated throughout the cell cycle (Branzei and Foiani, 2008). When double strand 

breaks occur in the G1 phase, NHEJ is the main mechanism of repair, however HR is the 
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favored mechanism when cells have duplicated its genome in the S and G2 phases, because 

HR is an error-free mechanism. Upstream proteins in HR proteins also function to induce cell 

cycle checkpoint. Together, cell cycle checkpoint and DNA repair are two major pathways 

within DNA damage response (Harper and Elledge, 2007). 

 

DNA damage-induced cell cycle checkpoint 

 Cell cycle checkpoints coordinate DNA repair with cell cycle progression. When DNA is 

damaged, sensor proteins that recognize the damage and initiate repair are also the proteins 

that initiate the checkpoint response to halt cell cycle progression until repair is complete. Two 

major sensors of DNA damage are ATM (Ataxia telangiectasia mutated) and ATR (ATM and 

Rad3-related), members of the phosphatidylinositol-3-kinase-like kinase (PIKK) family (Lovejoy 

and Cortez, 2009). ATM is commonly associated with response to double-strand DNA breaks, 

while ATR is associated with response to single-strand DNA breaks or stalled replication forks 

(Bartek and Lukas, 2007; Shiloh, 2003) (Figure 1). ATM and ATR together phosphorylate 

hundreds of targets, and several of their targets are secondary kinases, e.g. Chk1 and Chk2, 

which have their own set of targets. Together, the cell cycle checkpoint is a network linked 

through phosphorylation signaling cascades (Matsuoka et al., 2007). These kinases activate 

unique as well as overlapping downstream targets to create a cross-talking system that 

achieves the same purpose of cell cycle checkpoint activation, regardless of cell cycle phase 

(Shiloh, 2006). 

 Single strand breaks occur approximately 1000x more frequently than double strand 

breaks in mammalian cells (Haber, 1999). However, double strand breaks are much more 

dangerous in terms of their effect on genetic instability if left unrepaired, or if errors occur 

during repair (Betermier et al., 2014; Ferguson and Alt, 2001). HR, as mentioned, is the 

preferred method of double strand break repair in S and G2 phases. How does HR lead to 

checkpoint activation? Double strand break formation is followed first by the MRE11-Rad50-

NBS1 (MRN) complex localizing at the break site. This is followed by recruitment of ATM  
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Figure 1. Mammalian cell cycle checkpoints 
 
A schematic representation of molecular pathways involved in transmitting the signal from the 
sites of DNA damage to delay (green) or arrest (blue) the cell cycle progression at multiple 
transitions. The apical kinases ATM/ATR (red) and Chk2/Chk1 (black) together with their major 
substrates (P) are indicated. Note that the ‘delayed & sustained’ part of the checkpoint 
response lacks the intra-S-phase component (X). Asterisk indicates that other proteins, all 
direct targets of ATM and ATR kinases, also participate in the ‘acute and transient’ cell cycle 
delay during S phase (BRCA1, 53 BP1, FANCD2) and at the G2/M boundary (BRCA1, 53BP1). 
Adapted from Lukas, J., Lukas, C., Bartek, J., DNA Repair 3, 997-107 (2004) with permission 
from Elsevier.  
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through a direct interaction with Nbs1 C-terminus, which activates ATM (Buscemi et al., 2001; 

Horejsi et al., 2004). Of the many targets of ATM, CtIP (CtBP-interaction protein) in particular 

plays an important role in double strand DNA resection to generate single strand DNA (You et 

al., 2009). Support for this concept comes from studies showing that CtIP depletion abrogates 

RPA (replication protein A) coating of ssDNA, and thus compromises ATR activation and Chk1 

phosphorylation (Huertas and Jackson, 2009; Sartori et al., 2007; Yu and Chen, 2004). 

Generation of ssDNA is often considered the signal for ATR signaling and subsequent 

checkpoint activation (Costanzo et al., 2003; Zou and Elledge, 2003). The presence of ssDNA 

recruits RPA to directly bind and protect ssDNA (Byun et al., 2005). The ATRIP-ATR complex 

recognizes ssDNA-bound RPA through ATRIP binding to RPA (Ball et al., 2005). At this point, 

ATR is active, and is able to undergo trans autophosphorylation at T1989 of the ATR dimer (Liu 

et al., 2011).  ATR also phosphorylates Rad9 of the Rad9-Hus1-Rad1 (9-1-1) complex 

(Delacroix et al., 2007). The 9-1-1 complex, or clamp, is loaded onto dsDNA adjacent ssDNA 

via the Rad17 clamp loader (Lee and Dunphy, 2010). Phosphorylated 9-1-1 creates a binding 

site for TopBP1 (Topoisomerase (DNA) II binding protein 1). TopBP1 is a protein that contains 

eight BRCT domains, and through its two N-terminal BRCT domains, binds to phospho-Rad9 

(Lee et al., 2007). TopBP1 also binds directly to ATRIP via both N- and C-terminal ends. This 

interaction then allows TopBP1 to interact with ATR through its ATR activation domain (AAD) 

located between BRCT6 and 7 (Kumagai et al., 2006). ATR is fully active and able to 

phosphorylate all its downstream targets only when bound to TopBP1 (Choi et al., 2010). A 

major downstream target of ATR is Chk1, which directly induces the cell cycle checkpoint 

through its kinase activity. ATR phosphorylates Chk1 at S317 and S345, leading to Chk1 auto-

phosphorylation at S296 (Liu et al., 2000; Zhao and Piwnica-Worms, 2001). ATR 

phosphorylation of Chk1 allows Chk1 to dissociate from chromatin to target downstream 

proteins such as Cdc25b. Therefore, ATR phosphorylation of Chk1 may not directly affect Chk1 

activity, but rather, displaces Chk1 to act on its targets (Smits et al., 2006). Activated Chk1 

maintains Cdc25b at low levels by promoting Cdc25b degradation (Kramer et al., 2004). High 
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levels of Wee1 kinase through S and G2 phases promote Tyr15 phosphorylation and inhibition 

of Cdc2 and Cdk2 (Watanabe et al., 1995). If Chk1 keeps Cdc25b at low levels during 

checkpoint activation, then Cdk/cylin complexes remain at low activity since Cdc25b is not able 

to dephosphorylate the complexes (Sorensen and Syljuasen, 2012). Collectively, we see how 

the DNA damage response encompasses the sensing of a single or double strand DNA break, 

to generating a single stranded DNA that is recognized by ATR, which through several 

phosphorylation events, leads to checkpoint activation. These events are activated upon 

ssDNA and dsDNA breaks as well as during replication stress. While the checkpoint system is 

activated, the DNA repair machinery is working together to repair the DNA. 

 

Double strand DNA break repair by homologous recombination 

 The DNA damage response, which elicits repair and checkpoint mechanisms, is a 

complex process that is only activated when DNA is severely damaged, such as when double 

strand breaks occur (Bekker-Jensen and Mailand, 2010; Wyman and Kanaar, 2006). With 

respect to the DNA repair process itself, the process can be simplified by categorizing the 

components of the DNA repair machinery generally into sensor, transducer and effector 

proteins (Polo and Jackson, 2011). As mentioned, sensor proteins consist of the upstream 

components that localize immediately to the damage site. The Ku70 and Ku80 heterodimer is 

the sensor protein for NHEJ, while the MRN complex and ATM can be considered sensors of 

DNA damage within the HR pathway (Lieber and Wilson, 2010). We describe in this section, 

the HR pathway since it is in this pathway that the BRIT1 protein is mostly known to function. 

 As mentioned, MRN complex sits atop the DSB repair chain and constitutes the DNA 

damage sensor. The MRE11 subunit along with CtIP, are required for DNA resection to form 

single stranded DNA (Sartori et al., 2007), which sets the stage for ATR recruitment and 

checkpoint activation as described. Via the NBS1 subunit, ATM is recruited to the damaged 

site, and this step sets the stage for DNA repair. ATM phosphorylation of histone H2AX at 

Ser139 to form γH2AX is a well-known event marking the presence of a double strand break 
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(Yuan et al., 2010). This phosphorylation, however, is not unique to ATM, as DNA-PKcs and 

ATR also target this site (Bonner et al., 2008). This phosphorylation event occurs within 

minutes after double strand break induction, e.g. after ionizing radiation, and their localization 

at damaged sites can be observed as IR-induced foci (IRIF) under immunofluorescence 

(Bonner et al., 2008). Numerous repair proteins depend on the γH2AX signal for recruitment to 

the damaged site to form IRIF themselves. One of these is BRIT1, which forms IRIF within a 

couple of minutes after DNA damage, and promotes recruitment of several downstream 

proteins, discussed in more detail in a later section (Wood et al., 2007b). Suffice to mention for 

now that BRIT1 promotes downstream processes that aid in chromatin remodeling to increase 

accessibility of repair proteins to the site of damage (Peng et al., 2009). Just downstream of 

γH2AX and BRIT1 is the MDC1 protein, which binds directly to Ser139- γH2AX through its 

BRCT domains (Stucki et al., 2005). CK2-mediated phosphorylation of MDC1 at SDTDXD/E 

clusters leads to recruitment of NBS1. NBS1 binds to p-MDC1 through its FHA and tandem 

BRCT repeats (Wu et al., 2008). Since NBS1 then recruits ATM via direct binding, MDC1 can 

be regarded as a point of damage signal amplification, since ATM recruitment downstream of 

MDC1 leads to increased formation of γH2AX adjacent to the damage site. Besides 

phosphorylation, ubiquitylation is another post-translational modification that plays a significant 

role in the DNA repair pathway. RNF8 is a RING finger ubiquitin E3 ligase that, like NBS1, also 

binds via its FHA domain to p-MDC1 (Huen et al., 2007). Huen et al. showed that this binding 

to p-MC1 and subsequent ubiquitylation of H2AX promotes recruitment of RAP80-BRCA1. 

RNF8 ubiquitylates H2AX, creating a binding site for RAP80, through its ubiquitin interacting 

motif (UIM). RAP80 then recruits BRCA1 to the damaged DNA site (Huen et al., 2007; Kim et 

al., 2007). This process is aided by yet another RING protein, RNF168, which localizes to 

ubiquitylated H2A and H2AX, in an RNF8-dependent manner. Together, RNF8 and RNF168 

promotes BRCA1 and 53BP1 recruitment by ubiquitylating H2A and H2AX (Doil et al., 2009). 

 The downstream DNA damage response proteins that are recruited to the damaged 

DNA aid the repair process. For example, BRCA2 recruitment is required for Rad51 to perform 
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the homologous recombination step (Moynahan and Jasin, 2010; Yang et al., 2002). While 

Mre11 is responsible for initial and limited DNA resection, BLM (Bloom’s syndrome protein) 

helicase and Exo1 (exodeoxyribonuclease I) interaction mediates further resection (Mimitou 

and Symington, 2008). Rad51 uses the resected DNA for strand invasion in HR (Nimonkar et 

al., 2008). However, Rad51 activity requires direct interaction with BRCA2. BRCA2 contains 

eight central BRC (Galkin et al., 2005) repeats that form the basis of interaction with Rad51. 

Binding between the two proteins Rad51 to bind to ssDNA, and not dsDNA, in the presence of 

ATP (Carreira et al., 2009). The interaction between BRCA2 and Rad51 is regulated by Cdk-

mediated phosphorylation of BRCA2 at S3291. Phosphorylation at this site blocks BRCA2 

interaction with Rad51. Under DNA damage conditions in S and G2, Cdk activity is low, and 

BRCA2 and Rad51 are able to interact to process damaged DNA (Esashi et al., 2005). CDK 

activity also regulates CtIP activity. Here, Cdk targeting of CtIP at T847 promotes resection in 

S-phase where resection during DNA replication is frequent. However, after resection and 

during checkpoint activation, Cdk activity is low until damage is repaired (Huertas and Jackson, 

2009). Collectively, DNA repair by HR is regulated by post-translational modifications such as 

phosphorylation and ubiquitylation of proteins to aid in their interaction, as well as by the cell 

cycle itself, which allows HR to initiate and come to completion before moving toward mitosis.  

 

Replication stress response is a barrier to genomic instability.  

 

 During DNA replication, the region of DNA unwinding and bi-directional replication is 

called the replication fork (Figure 2). At the fork, many proteins work in concert to maintain 

continuous replication along the template DNA. When replication encounters challenges that 

impede normal synthesis, the replication process becomes temporarily stalled, and the 

condition is referred to as replication fork stalling (Branzei and Foiani, 2010). During fork 

stalling, the cell undergoes replication stress response (RSR), which activates the replication 

checkpoint to allow the cell time to recover from the stress that causes the replication fork to  
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Figure 2. ATR signaling regulates replication and cell-cycle transitions. 
 
ATR phosphorylates numerous substrates to regulate replication and cell-cycle transitions. A 
major ataxia-telangiectasia mutated and RAD3-related (ATR) kinase substrate is checkpoint 
kinase-1 (CHK1). Phosphorylation of CHK1 releases it from chromatin and increases its kinase 
activity. CHK1 has numerous substrates, some of which regulate cell-cycle transitions and 
replication-origin firing. Many ATR substrates, including minichromosome maintenance protein-
2 (MCM2), MCM3, replication protein A (RPA), RAD9 (which is part of the 9‑1‑1 complex), 
topoisomerase-binding protein-1 (TOPBP1), RAD17 and CHK1, are at the replication fork. 
ATRIP, ATR-interacting protein; Pol, polymerase; Pre-RC, pre-replicative complex. Adapted 
from Cimprich, K.A., Cortez, D., Nat Rev Mol Cell Biol 9, 616-627 (2008) with permission from 
Nature Publishing Group.  
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stall. The high fidelity of DNA replication is attributed in part to this response system. When a 

cell is unable to recover, the DNA may undergo replication fork collapse, which leads to a 

double strand break. The RSR functions to prevent genomic instability that could result from 

significant damages to the DNA (Branzei and Foiani, 2010). 

 DNA replication or synthesis initiates from one of many origins of replication across a 

single chromosome. The double-stranded DNA is unwound bi-directionally away from the 

origin, as the two replication forks pull away from each other to elongate the nascent strand of 

DNA along its template. Major players in DNA synthesis reside at the replication fork and 

together form the replisome machinery. The replisome contains all the proteins and complexes 

required for DNA synthesis. These include: topoisomerase which breaks the phosphodiester 

bond to unwind double strand DNA (Pommier, 2013), the MCM (minichromosome 

maintenance) helicase enzyme complex which separates the annealed double strand DNA 

(Tanaka and Araki, 2013), the leading and lagging-strand DNA polymerases (Heitzer and 

Tomlinson, 2014), the RPA (replication protein A) trimer that binds and protects single-strand 

DNA from digestion (Prakash and Borgstahl, 2012), and the PCNA (proliferating cell nuclear 

antigen) clamp protein which is loaded onto double strand DNA via RFC (replication factor C) 

and aids in the processivity of DNA polymerases (Mailand et al., 2013), as well as others. The 

high processivity of DNA polymerases and the linked helicase enzyme allows efficient DNA 

replication. However, impediments to replication occur frequently, and they must be removed in 

order to return to a state of high processivity.  

 There are many causes of replication fork stalling. MCM helicase and DNA 

polymerases are tethered in such a way that as single strand DNA emerges from MCM-

mediated double strand DNA separation, DNA polymerase follows immediate to extend the 

nascent DNA chain (Aparicio et al., 1997; Zhu et al., 2007). When MCM and DNA polymerase 

uncouple, MCM may continue to separate double strand DNA even as DNA polymerase lags 

behind. Uncoupling causes a stretch of ssDNA to become exposed, signaling RPA binding to 

protect ssDNA. This constitutes the initial step of replication stress response, leading to the 
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intra-S phase checkpoint to stall the replication fork and inhibit further synthesis until the 

replisome is repaired (Byun et al., 2005). Uncoupling of leading and lagging strand DNA 

polymerases also leads to ssDNA exposure, triggering fork stalling (Sogo et al., 2002). 

Replication progress may also be blocked by bulky lesions intercalated within the DNA, by 

aberrant DNA structures such thymine dimers, by protein-DNA structures such as tRNA-protein 

structures present during transcription occurring adjacent to replicating DNA, as well as by 

dNTP depletion such as when cells are treated with hydroxyurea (Matsuoka et al., 2007). 

Checkpoints that are activated by stalled forks are often removed once the impediment is 

resolved, such as by the convergence of adjacent origins of replication that complete 

replication (McGlynn and Lloyd, 2002a, b; Torres et al., 2004). However, when such adjacent 

origins are unavailable, and lesions are not resolved, then the replication fork may collapse, 

leading to a double strand break, which would then activate recombination repair (Branzei and 

Foiani, 2005). 

 While replication forks are stalled, the replication stress response checkpoint stabilizes 

the fork until repair is complete. This replication checkpoint is essentially the same checkpoint 

that is activated by double strand breaks induced, for instance, by ionizing radiation. This 

makes sense when considering that DNA resection after double strand breaks exposes ssDNA 

in the same manner as helicase-polymerase uncoupling during replication fork stalling. In both 

instances, ssDNA is bound by RPA complexes, which stabilize the ssDNA, followed by 

recruitment of ATR. Activated ATR phosphorylates several downstream targets such as the 

MCM helicase, RPA, PCNA, claspin, Chk1, and others, to induce the replication checkpoint 

(Cimprich and Cortez, 2008). 

 

The role of p53 in maintaining genome stability 

 

 A hallmark of cancer is the ability to evade apoptosis, the process of programmed cell 

death (Hanahan and Weinberg, 2000). The p53 tumor suppressor protein responds to a range 
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of stress signals, which include DNA damage, oncogene-induced hyperproliferation, replication 

stress and hypoxia (Gudkov and Komarova, 2003; Meek, 2004; Michael and Oren, 2003; 

Vousden and Lu, 2002). The well-studied response to these stressors makes p53 an 

established regulator of cell cycle checkpoint and apoptosis. Apoptotic signals are detected by 

either of two categories of sensor proteins, either membrane-bound or intracellular. Membrane-

bound sensors or receptors signal the extrinsic apoptotic pathway while intracellular sensors 

such as p53 signal the intrinsic apoptotic pathway. The p53 pathway can be divided into the 

various sequences of events starting from, 1) negative p53 regulation under normal conditions 

to prevent cell cycle arrest and apoptosis to 2), stress-induced stabilization of p53 and finally 3) 

p53-mediated activation of cell cycle checkpoint and apoptosis. In this section, we provide an 

overview of this sequence of events to summarize the tumor suppressor roles of p53 in 

mediating genome stability after cellular stress. 

 

Regulation of p53 expression and activity 

 Due to negative regulation by MDM2 (Hdm2 in human), p53 protein expression is 

normally kept at low levels (Figure 3). However, elevated Mdm2 expression due to gene 

amplification or hyperactivation of Mdm2 due to loss of an Mdm2-negative regulator, e.g. ARF, 

leads to p53 inactivation. This abrogates the checkpoint- and apoptosis-inducing capabilities of 

p53 (Tovar et al., 2006). Mdm2 overexpression has been observed in over 40 types of 

malignancies, correlates with a worse prognosis, and so is a clinically relevant target in cancer 

(Rayburn et al., 2005). Besides p53, the Mdm2 oncogene has also been shown to target other 

tumor suppressors such as Rb and ARF (Meek and Knippschild, 2003). Mdm2 is a ubiquitin E3 

ligase that binds to the N-terminal transactivation domain of p53 and promotes ubiquitylation at 

the C-terminal region of p53, leading to proteasomal degradation (Michael and Oren, 2003). 

This ubiquitin ligase activity depends on the RING and zinc finger domains of Mdm2 (Lindstrom 

et al., 2007). This activity requires direct binding between Mdm2 and p300, a co-activator of 

p53 transcriptional activity  
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Figure 3. Regulation of p53 by MDM2 
 
p53 and MDM2 form an auto-regulatory feedback loop. p53 stimulates the expression of 
MDM2; MDM2 inhibits p53 activity because it blocks its transcriptional activity, favours its 
nuclear export and stimulates its degradation. Different cellular signals, such as DNA-damage 
or oncogene activation, induce p53 activation. DNA damage favors p53 phosphorylation, 
preventing its association with MDM2. Activated oncogenes activate the ARF protein, which 
prevents the MDM2-mediated degradation of p53. Similarly, inhibitors of the p53–MDM2 
interaction should activate p53 tumour-suppressor activity in tumour cells that express wild-type 
p53. These compounds, because they bind to MDM2, could also affect the p53- independent 
activities of MDM2. Adapted from Chène P., Nat Rev Cancer 3, 102-109 (2003) with 
permission from Nature Publishing Group.  
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(Zhu et al., 2001). MDM2 mediates multiple monoubiquitin attachment to p53 while p300 

mediates subsequent polyubiquitylation (Lai et al., 2001). Additionally, Mdm2 binds to the N-

terminal transactivation domain of p53, which inhibits p53 binding to DNA (Momand et al., 

1992). This interaction also promotes p53 nuclear export (Roth et al., 1998), and promotes 

interaction with histone deacetylase 1 (HDAC1), which deacetylates p53 at its C-terminus, 

making it more prone to ubiquitylation and degradation (Ito et al., 2002; Meek, 2004). In the 

same family as Mdm2, MdmX (Mdm4) is a cytoplasmic protein that is bound by Mdm2. Mdm2 

binding to Mdm4 translocates the complex into the nucleus and importantly, stabilizes Mdm2 to 

allow negative regulation of p53 (Tovar et al., 2006). Finally, casein kinase I (CK1) also directly 

interacts with and phosphorylates Mdm2 to promote p53 regulation by Mdm2. CkI inhibition 

leads to the same phenotype of increased apoptosis as treating cells with Nutlin-3, an Mdm2 

inhibitor (Huart et al., 2009). 

 

DNA damage induces p53 stabilization and activity 

 Under a variety of stimuli including DNA damage, ionizing radiation, genome instability, 

transforming growth factors, and overexpressed oncogenes, the negative regulation of Mdm2 

on p53 is relieved in order to stabilize p53 (Lavin and Gueven, 2006). Proteins that promote 

p53 stability include ARF, ATM/Chk2 and ATR/Chk1 tumor suppressors (Banin et al., 1998; 

Chehab et al., 2000; Orlando et al., 2014; Shieh et al., 2000; Tibbetts et al., 1999). p53 

contains three major domains: an N-terminal transactivation domain, a central DNA binding 

domain, and a C-terminal tetramerization domain. Under cellular stress, in order to stabilize 

p53, several kinases within the DNA damage pathway phosphorylate the N-terminal p53 

domain (ATM/ATR - Ser15, Chk1/Chk2/ - Ser20) (Shiloh, 2003). These phosphorylation events 

alleviate MDM2 binding to p53, promotes p53 stability, and allows p53 to respond to cellular 

stress. The response can lead to inhibiting cell proliferation temporarily to allow repair, or arrest 

them permanently (senescence), or activate the apoptotic pathway. While ATM phosphorylates 

p53 at Ser15, it also phosphorylates MDM2 at Ser395, which blocks Mdm2-mediated exported 
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of p53, and is an important part in p53 induction. C-Abl phosphorylates adjacent to this site at 

Ser394, inhibiting Mdm2’s ability to mediate degrade p53 (Meek, 2004). In addition to 

phosphorylation, dephosphorylation of p53 also occurs in an ATM-dependent manner. 

Dephosphorylation of p53 at S376 leads to increased interaction between p53 and 14-3-3σ, 

which promotes p53 binding to DNA (Waterman et al., 1998). When p53 is stabilized through 

these various mechanisms, it forms a tetramer and is able to promote transcriptional 

upregulation of its target genes. Interestingly, Mdm2 is a target gene for p53, which creates a 

feedback loop where Mdm2 negatively regulates p53 at the transcriptional level, while p53 

upregulates Mdm2 at the transcriptional level (Wu et al., 1993). 

 

Role of p53 in cell cycle checkpoint 

 When p53 is activated by DNA damage, p53 transcriptional activity targets genes that 

can be categorized into cell cycle checkpoint or apoptosis-related genes (Benchimol, 2001). 

Cell cycle checkpoint genes activated by p53 inhibit entry into S-phase and mitosis, to prevent 

synthesis of damaged DNA and proliferation of cell with damaged DNA, respectively. In 

apoptosis, p53 is mainly involved in the mitochondrial-mediated or ‘intrinsic’ pathway, but also 

plays a role in the death receptor-mediated ‘extrinsic’ pathway.  

p21 

 A few of the major p53 targets that regulate cell cycle checkpoint include p21 

(WAF1/CIP-1), 14-3-3σ and GADD45 (Harper et al., 1993; Hermeking et al., 1997; 

Papathanasiou et al., 1991) (Figure 3). p21 is a cyclin-dependent kinase inhibitor (CKI) that 

binds to Cdk proteins throughout the cell cycle. The various Cdk proteins (Cdk4, Cdk2 and 

Cdc2) bind to their respective cyclin proteins (Cyclin D, E, A and B) to promote transition 

through the various cell cycle phases. Therefore, when sensors of cellular stress signal for 

checkpoint activation, inhibition of Cdk-cyclin complexes are the key events that prevent cells 

from progressing past the checkpoint. The particular Cdk-cyclin complex that needs to be 

inhibited is cell cycle phase-specific. For the G1-S phase transition, Cdk4-Cyclin D and Cdk2-



 16

Cyclin E are inhibited, in the S-phase, Cdk2-Cyclin A is inhibited, and for the G2-M transition, 

Cdc2-Cyclin A and Cdc2-Cyclin B are inhibited (He et al., 2005). Binding of p21 to the various 

Cdk proteins inhibits the Cdk-cyclin kinase activity from functioning in their respective cell cycle 

transitions in the presence of DNA damage or cellular stress. Which checkpoint becomes 

activated depends not simply on the phase at which damage occurs, but also depends on the 

type of damage. In the case of DNA damage, different checkpoints or Cdk-Cyclins are inhibited 

depending on the specific DNA lesion (Attardi et al., 2004; Buscemi et al., 2004). For example, 

cells treated with cisplatin, which causes DNA adducts to form DNA intrastrand crosslink 

adducts leading to DNA strand breaks, causes a G2 arrest, while it’s analog 

diaminocyclohexane (trans-diacetato)(dichloro) platinum (IV) (DAP) causes a G1 arrest (He et 

al., 2005; Siddik, 2003). Both p53 and p21 are important for arrest in G1 and G2 following DNA 

damage (Bunz et al., 1998; Li et al., 1994). Cells treated with ionizing radiation typically arrest 

in G1 and G2. In the absence of either p53 or p21, cells treated with ionizing radiation failed to 

remain arrested in G2, and progressed into mitosis (Bunz et al., 1998). The G1 arrest, such as 

that elicited by DAP, is regulated by p53 through its transcriptional activation of p21, which 

blocks both Cdk4-CyclinD and Cdk2-Cyclin E kinase activity (Deng et al., 1995; He et al., 2005; 

Waldman et al., 1995). Therefore, the conclusion here is that p53 is required for p21-mediated 

inhibition of both Cdk4 and Cdk2 activity to induce G1 arrest. Since checkpoint activation is an 

important process to regulate to maintain genome stability, there are alternate mechanisms to 

inhibit Cdks. In addition to p21 inhibition of Cdk2, 14-3-3 σ, another p53 transcriptional target 

also maintain Cdk2 inhibition (Chan et al., 1999; Mailand et al., 2000). 

14-3-3σ and Cdc25 

 Cdk activity is regulated through both activating and inhibitory phosphorylation at 

different sites of the kinase. The wee1 and Myt1 kinases add inhibitory phosphates on Thr14 

and Thr15 on Cdc2 (Booher et al., 1997; Parker et al., 1991). 14-3-3σ is one of seven isoforms 

of the 14-3-3 family of proteins. 14-3-3σ is a cell cycle regulator and transcriptional target of 

p53. Under checkpoint conditions, 14-3-3σ inhibits the G2-M transition by binding to and 
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maintaining Cdc2-CyclinB in the cytoplasm. However, cells that were treated with ionizing 

radiation or Adriamycin, to induce DNA damage, arrest temporarily in G2, but continue into 

mitosis shortly after arrest and the cells displayed mitotic catastrophe. 14-3-3σ WT cells 

however, remained in G2 arrest, as the Cdc2-CyclinB complex remains in the cytoplasm 

throughout interphase, until it enters the nucleus upon initiation of mitosis (Chan et al., 1999).  

 Another mechanism whereby the 14-3-3 family of proteins maintains Cdk inhibition is 

through binding to Cdc25C. The Cdc25 family of phosphatases, which includes Cdc25A/B/C, 

removes both of the inhibitory Thr14 and Thr15 phosphates to promote cell cycle progression. 

Therefore, another mechanism to inhibit Cdk-Cyclin complexes upon cell cycle activation is to 

inhibit this family of Cdc25 phosphatases from removing the inhibitory phosphate from Cdks. 

When a checkpoint is turned on, inhibiting Cdc25 involves initial phosphorylation by Chk1 or 

Chk2. The phosphorylated Cdc25 is recognized by a 14-3-3 protein, which binds to p-Cdc25, 

and sequesters Cdc25 in the cytoplasm, which doesn’t necessarily change the activity of 

Cdc25, but does effectively abolish activity against Cdks (Meek, 2004). As long as 14-3-3 

maintains cytoplasmic sequestration of Cdc25, then this maintains Cdk inhibition and prevents 

premature entry into mitosis (Benchimol, 2001).  

GADD45  

 Like 14-3-3σ, GADD45 is another p53 transcriptional target that prevents premature 

entry into mitosis (Benchimol, 2001). Growth arrest DNA damage 45 (GADD45) includes 

GADD45α (GADD45), GADD45β (MyD118) and GADD45γ (CR6), with differential expression 

in various organs in humans (Zhang et al., 1999). All three GADD45 isoforms are elevated after 

DNA damage, where they promote cell cycle arrest, apoptosis and DNA repair (Tamura et al., 

2012). GADD45 is a DNA damage-inducible gene whose expression is elevated by p53 and 

BRCA1 (Fornace et al., 1988; Jin et al., 2000; Kastan et al., 1992). p53 binds directly to the 

third intron of GADD45 (Hollander et al., 1993). The GADD45 interacting proteins include 

PCNA, p21, Cdc2-CyclinB, and p38 kinase, amongst others (Tamura et al., 2012). In cell cycle 

regulation, GADD45 interacts directly with Cdc2 to inhibit the kinase activity of the Cdc2-
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CyclinB complex and inhibit the G2-M transition (Zhan et al., 1999). GADD45 also inhibits the 

G1-S transition, however the mechanism depends on nuclear co-localization with CRIF1 (CR6-

interacting factor 1) and inhibits the kinase activity of Cdk2-CyclinE (Chung et al., 2003). 

GADD45 expression is elevated during G1, but drops precipitously in S-phae (Tamura et al., 

2012). In terms of DNA repair, GADD45α and GADD45β participate in DNA repair through their 

interaction with PCNA to promote nucleotide excision repair and by promoting recruitment of 

repair proteins to the damaged sites (Smith et al., 1994; Tamura et al., 2012). 

  

Role of p53 in apoptosis 

 When the intrinsic apoptosis pathway is activated, p53 increases the transcription of the 

BH3-only proteins, Puma and Noxa, which in turn inhibit the anti-apoptotic proteins Bcl-2, Bcl-

XL and Mcl-1 (Benchimol, 2001). This allows Bax and Bak to permeabilize the outer 

mitochondrial membrane, and induce efflux of cytochrome C (Figure 4) (Zhang et al., 2013). 

Cytosolic cytochrome C is a signaling molecule that binds to APAF-1. APAF-1 contains three 

domains: a CARD domain, a NOD domain and a cytochrome C-binding WD40 repeat domain 

(Riedl and Salvesen, 2007). Cytochrome C binding to Apaf-1 triggers the formation of the 

apoptosome, which is a wheel-shaped complex of seven cytochrome C-bound Apaf-1 subunits 

joined in the center by oligomerization of the CARD domains from the seven Apaf-1 proteins 

(Riedl and Salvesen, 2007). Formation of the apoptosome begins the recruitment and 

activation of caspases. Caspases are cysteine-dependent aspartate-specific proteases. 

Procaspase-9, also known as the initiator caspase, is recruited to and binds the active 

apoptosome through its own CARD domain in a homotypic interaction (Bratton and Salvesen, 

2010). Procaspase-9 then undergoes conformational changes to become active caspase-9. 

Caspase-9 then cleaves downstream procaspase-3 into active caspase-3. Caspase-3 is the 

terminal caspase that initiates cellular degradation (LeBlanc and Ashkenazi, 2003; Riedl and 

Salvesen, 2007).  
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Figure 4. Cellular stress activates the p53 tumor-suppressor protein 
 
p53 initiates the intrinsic pathway by upregulating Puma and Noxa, which in turn activate Bax 
and Bak. Bax and Bak permeabilize the outer mitochondrial membrane, resulting in efflux of 
cytochrome c, which binds to the adaptor Apaf‑1 to recruit the initiator procaspase 9 into a 
signalling complex termed the apoptosome. Activated caspase 9 then cleaves and activates 
the effector caspases 3, 6 and 7 to trigger apoptosis. Cross-talk between the pathways: 
although the extrinsic and intrinsic pathways can function separately, they often interact. p53 
mainly stimulates the intrinsic pathway, but it also upregulates some of the pro-apoptotic 
receptors such as DR5 and augments extrinsic signaling. Adapted from Ashkenazi, A., Nat Rev 
Drug Discov 7, 1001-1012 (2008) with permission from Nature Publishing Group. 
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 In the extrinsic pathway, the mitochondria and cytochrome C signaling is not required. 

Instead of p53, the apoptotic sensors for the extrinsic pathway reside at the cellular membrane 

and includes TNF-R1 binding to its ligand TNF-alpha, TRAF-receptor binding TRAF, five 

receptors (TRAIL-R1-4 and osteoprotegerin) binding TRAIL and FasR binding FasL (Hanahan 

and Weinberg, 2000; LeBlanc and Ashkenazi, 2003). Transmembrane receptors in the extrinsic 

pathway activate caspase-8/10. These caspases are able to bypass the mitochondria and 

directly cleave procaspase-3 to activate caspase-3 and the initiation of cellular degradation 

through proteolysis (LeBlanc and Ashkenazi, 2003). Even though the extrinsic pathway doesn’t 

require the p53-mediated mitochondrial pathway, p53 however has been shown to upregulate 

transcription of death receptors such as DR5 (TRAIL-RII) and promote extrinsic signaling 

(Ashkenazi, 2008). The physiological outcome of apoptosis includes nuclear and DNA 

fragmentation, chromatin condensation (pyknosis) and cellular blebbing leading to cell 

shrinkage and apoptotic bodies pinching off from the cell and becoming phagocytosed 

(Kihlmark et al., 2001; Nagata, 2000; Susin et al., 2000). Within 30-120 min of apoptotic 

induction, the physiological effects take place, and within 24 hr, the cellular remnants disappear 

(Wyllie et al., 1980). 

 

Functional roles of BRIT1 in microcephaly and tumor suppression 

 

BRIT1 is a disease gene responsible for microcephaly 

 The MCPH1 or microcephalin gene, whose transcriptional product is known as MCPH1 

or microcephalin, is associated with the neurological disease, microcephaly. Affected 

individuals have reduced brain and head sizes and are characterized by a head circumference 

that is >3 standard deviations below the mean of those with the same age and gender 

(Barkovich et al., 1998; Woods, 2004). Microcephaly is divided into primary and secondary 

microcephaly. Primary or true microcephaly refers to a statically reduced brain size present in 

early fetal life and noticeable at birth, where the only neurological disorder is severe mental 
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deficiency. Secondary microcephaly is characterized by deceleration or degeneration of brain 

growth caused by neurological disorders occurring in late fetal, perinatal or postnatal stages 

(Woods, 2004). MCPH1 is located on chromosome 8p23.1, is organized into 14 exons and 

codes for an 835 amino acid protein containing three BRCA1 C-terminal (BRCT) domains 

(Jackson et al., 2002b). To date, MCPH1 is one of ten genes found to associate with 

microcephaly (Alsiary et al., 2014).  

 

BRIT1 suppresses telomerase expression  

 Clues for cellular functions of MCPH1 were initially obtained in a genetic screen in 

search of genes that repress the expression of human telomerase reverse transcriptase 

(hTERT), the catalytic subunit of the telomerase enzyme responsible for telomere maintenance 

(Morin, 1989). Amongst the candidate genes, Lin and Elledge identified a gene that they called 

BRIT1 (BRCT repeat inhibitor of hTERT) because the sequence contained BRCT domains and 

inhibited hTERT expression (Lin and Elledge, 2003). The BRIT1 gene was later matched to 

MCPH1, and their names are interchangeable. BRIT1 repression of hTERT was later 

supported by evidence that BRIT1 binds directly to the proximal region of the hTERT promoter, 

with BRIT1 overexpression reducing hTERT promoter activity by nearly 50% compared to 

empty vector (Shi et al., 2012). This provided the first evidence supporting a tumor suppressor 

function for BRIT1. 

 

BRIT1 is a DNA damage response protein involved in both cell cycle regulation and DNA 

repair pathways 

 BRCT domains are commonly found within DNA damage response proteins, where this 

domain interacts with phosphorylated sequences to promote protein-protein interactions (Yu et 

al., 2003). A BRCT domain within BRCA1 interacts with p-BACH1 (Yu et al., 2003), MDC1 with 

γ-H2AX (Stucki et al., 2005), NBS1 with p-MDC1 (Chapman and Jackson, 2008; Wu et al., 

2008) and TopBP1 with p-Rad9 (Lee et al., 2007), to name a few. Within BRIT1, a single N-
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terminal BRCT domain spans amino acids 7-83, and two C-terminal domains span amino acids 

642-720 and 753-823 (Jackson et al., 2002b). The presence of these BRCT domains 

suggested potential roles in DNA damage response. Since cell cycle checkpoint and DNA 

repair are two major pathways activated as part of the DNA damage response, BRIT1 was 

investigated for roles in both of these pathways.  

 In response to double strand breaks, the G2/M checkpoint arrests cells in G2 to allow 

time for repair before progression into mitosis (Lukas et al., 2004). However, when BRIT1 is 

knocked down, this checkpoint is poorly activated in response to IR, resulting in increased G1 

cell population compared to siRNA control-treated cells, as analyzed by flow cytometry. In 

addition, there was an increase in the apoptotic (sub-G1) cell population, suggesting increased 

sensitivity to IR after BRIT1 knockdown, which was supported by a decreased colony forming 

capability after IR (Lin et al., 2005). These results suggest that BRIT1 is important for G2 arrest 

in response to DNA damage. In search of mechanisms to explain this novel function, it was 

found that BRCA1 and Chk1 protein expression was reduced in BRIT1 knockdown cells. 

BRCA1 expression and interaction with BACH1 is required for G2 checkpoint activation, while 

Chk1 expression and phosphorylation by ATR is also key (Liu et al., 2000; Yu et al., 2003). 

Reduced BRCA1 and Chk1 expression after BRIT1 knockdown occurred independent of cell 

cycle changes, since BRIT1 knockdown alone had no significant impact on cell cycle. 

Additionally, siRNA-resistant BRIT1 was able to rescue BRCA1 and Chk1 protein expression. 

These data, and data from others, provide evidence that BRIT1 regulation of cell cycle 

checkpoint in response to DNA damage occurs, in part, through promoting BRCA1 and Chk1 

expression (Lin et al., 2005; Xu et al., 2004).   

 

BRIT1 promotes localization of DDR proteins 

 BRCT-containing proteins in DDR are often phosphorylated by ATM or ATR, and form 

nuclear foci at DNA damage sites. Since BRIT1 contains BRCT domains, Lin et al. tested 

whether BRIT1 also forms foci. Indeed, BRIT1 co-localized with γ-H2AX at double strand 
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breaks and formed foci, which was later shown to occur within just a few minutes post-IR (Lin 

et al., 2005; Rai et al., 2006; Wood et al., 2007b). Rai et al. went on to show that siRNA-

mediated BRIT1 knockdown compromised foci formation of early DDR proteins including 

53BP1, MDC1 and p-ATM. These observations suggested that BRIT1 is a proximal factor in 

the DDR pathway, and regulates the recruitment of downstream repair factors.  

 The mechanism whereby BRIT1 promotes downstream recruitment of repair proteins 

was shown to involve the chromatin remodeling complex SWI/SNF (SWItch/Sucrose 

NonFermentable) (Neigeborn and Carlson, 1984; Peng et al., 2009; Stern et al., 1984). 

SWI/SNF is a complex of SWI and SNF gene products that together, disrupt histone-DNA 

interaction through an ATP-dependent mechanism, leading to chromatin relaxation and 

increased accessibility to DNA (Pazin and Kadonaga, 1997). Peng et al. found that a direct 

interaction between BRIT1 and subunits BAF170 and BAF155 of SWI/SNF mediates 

recruitment of this complex to chromatin. The BRIT1-BAF170 occurs through ATM-mediated 

phosphorylation of BAF170 at Ser969. When chromatin relaxation is impaired after BRIT1 

knockdown, wild-type BRIT1, but not a SWI/SNF-binding defective mutant of BRIT1, is able to 

rescue this defect (Peng et al., 2009). The currently accepted model of early DNA damage 

repair includes BRIT1-mediated recruitment of SWI/SNF to relax the chromatin surrounding 

DNA damage, to promote efficient localization of repair factors (Lukas et al., 2011) (Figure 5). 

 

BRIT functions explain its roles in microcephaly and maintaining genome stability 

 BRIT1 regulation of DNA damage-induced cell cycle checkpoint, especially through 

Chk1 expression, may help explain why BRIT1 is a disease gene for microcephaly. Throughout 

interphase, Chk1 localizes in the cytoplasm, and can be found at the centrosome, where Chk1 

targets Cdc25b phosphatase for proteasomal degradation (Kramer et al., 2004). Low Cdc25b 

activity maintains the inhibitory phosphate on Cdc2 at Tyr15 to keep the Cdc2/CyclinB complex 

in an inactive state, unable to serve the function of promoting cellular entry into mitosis (Kramer 

et al., 2004). Interestingly, not only does BRIT1 regulate Chk1 protein expression levels, but 
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BRIT1 has also been shown to localize at the centrosome which depends on its N-terminal 

domain (Rai et al., 2008; Zhong et al., 2006), interact with pericentrin, and recruit Chk1 to the 

centrosome (Tibelius et al., 2009). N-terminal deletion of BRIT1 abrogates centrosomal 

localization and directly causes premature chromosome condensation (PCC), a condition 

where chromosomes condense in interphase, resulting in premature mitotic entry (Trimborn et 

al., 2004; Wood et al., 2008). When BRIT1 is depleted, or mutant, inhibitory Cdc2 

phosphorylation at Tyr15 is low since Chk1 is not recruited to the centrosome. This allows 

Cdc2/CyclinB to be active in G2, allowing premature entry into mitosis, and premature 

chromosome condensation (Alderton et al., 2006). Therefore, BRIT1 localization to 

centrosomes and regulation of Chk1 expression and recruitment to the centrosomes, ultimately 

aid in preventing PCC, a condition observed in microcephaly. 

 Additionally, work with BRIT1-/- mice shows that compared to control mice, BRIT1 

knockout mice exhibited reduced brain size and less neuroprogenitor cell proliferation (Gruber 

et al., 2011). Neurospheres from the BRIT1-/- cells exhibited premature mitotic entry, which 

uncouples mitosis and the centrosome cycle that is important for symmetrical division of 

daughter nuclei. BRIT1-/- neurospheres were further characterized to determine their response 

to DNA damage. Zhou et al. showed that BRIT1 knockout compromised homologous repair in 

the neuroprogenitor cells, which increases genomic instability, and increases apoptosis as 

supported by Gruber et al. (Gruber et al., 2011; Zhou et al., 2013). Therefore, increased 

apoptosis, along with asymmetrical mitotic division both reduce neuroprogenitor cell 

development and lead to microcephaly. 

 Several, if not all, BRIT1 functions arguably play a role in tumor suppression. The 

finding that BRIT1 is a repressor of hTERT expression is one such example (Lin and Elledge, 

2003). In normal somatic cells, telomerase activity is suppressed through inhibiting the 

expression of its catalytic subunit, hTERT. After a certain number of rounds through the cell 

cycle, differentiated cells reach their Hayflick limit and undergo replicative senescence (Hayflick 

and Moorhead, 1961). However, in nearly all cancers, hTERT expression and therefore 
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telomerase activity remain at high levels after differentiation, leading to cellular immortalization 

and tumorigenesis (Kim et al., 1994). Due to the importance of inhibiting telomerase activity in 

somatic cells, it’s not surprising that several proteins inhibit hTERT expression, including menin 

(Hashimoto et al., 2008) mad (Oh et al., 2000), and as mentioned, BRIT1, through direct 

inhibition of the promoter (Lin and Elledge, 2003; Shi et al., 2012). In addition to directly 

inhibiting the hTERT promoter, BRIT1 may also regulate hTERT expression indirectly through 

its regulation of BRCA1 expression. BRCA1 binds to c-myc at the region of myc-max 

interaction, therefore inhibiting c-myc transcriptional activity (Wang et al., 1998). One of the 

transcriptional targets of c-myc is hTERT (Wu et al., 1999). Corroborating these observations, 

BRCA1 binding to c-myc was shown to inhibit hTERT expression (Xiong et al., 2003; Zhou and 

Liu, 2003). Therefore, the finding that BRIT1 promotes BRCA1 expression not only has 

implications in cell cycle regulation, but also in hTERT repression. These direct and indirect 

mechanisms of hTERT repression help BRIT1 maintain genome stability and suppress 

tumorigenesis.  

 BRIT1 regulation of the DNA damage response is also a means of maintaining genome 

stability and promoting tumor suppression. When BRIT1 was found to promote localization of 

repair proteins to sites of DNA damage, this suggested that BRIT1 deficiency would increase 

genetic abnormalities. Indeed, BRIT1 knockdown followed by metaphase arrest using colcemid 

led to increased chromosome breaks and dicentric chromosomes in HMEC, HeLa and other 

cell types. Chromosome abnormalities were observed in 25% of cells after BRIT1 knockdown, 

and this number was significantly elevated after treatment with IR (Rai et al., 2006). These 

results suggest that the BRIT1’s function in response to IR-induced DNA damage is crucial to 

maintaining genome stability. In the following section, we discuss the work of several groups 

showing that BRIT1 deficiency correlates with tumor progression in various types of cancers. 
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Figure 5. BRIT1/MCPH1 promotes DNA damage response 
 
BRIT1/MCPH1 interacts directly with subunits of the SWI/SNF chromatin remodeling complex. 
Recruitment of SWI/SNF relaxes the chromatin around damaged DNA and promotes 
recruitment of the repair factors shown. Adapted from Lukas, J., Lukas, C., Bartek, J., Nat Cell 
Biol 13, 1161-1169 (2011) with permission from Nature Publishing Group.  
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BRIT1 expression correlates with tumor progression in several cancer types. 

 Following the observation that BRIT1 deficiency increases genetic abnormalities (Rai et 

al., 2006), Rai et al. sought a correlation between these genetic abnormalities and cancer 

progression associated with BRIT1 deficiency. They found that 72% of the 54 breast cancer 

cell lines evaluated had reduced BRIT1 DNA copy number (Rai et al., 2006). And in comparing 

several cancer cell lines and non-transformed breast cell lines, the cancer cells had 

significantly lower BRIT1 mRNA and protein expression. The group went on to show that 

BRIT1 RNA transcript levels correlated with time-to-metastasis in breast cancer. That is, lower 

BRIT1 levels associated with a shorter time to metastasis. This early link found between BRIT1 

expression and breast cancer progression prompted other groups to investigate this 

relationship.  

 In a large-scale analysis of the relationship between BRIT1 and breast cancer, 

Richardson et al. performed tissue microarray on 319 breast tumor specimens (Richardson et 

al., 2011). They found low BRIT1 expression in 29% of tumors, where 35% or less cells 

staining positive for BRIT1 in a sample indicates reduced expression, and greatest difference in 

survival. Lower BRIT1 expression correlated with higher tumor grade, where BRIT1 expression 

in Grade 2 tumors was 61%, compared to 50% in Grade 3 tumors (P < 0.003). The study goes 

on to associate low BRIT1 expression with ER or PR negative and triple negative tumors. This 

expectedly leads the authors to demonstrate that low BRIT1 expression correlates with 

decreased survival of ductal breast cancer patients, where mean survival for low BRIT1 

expression was 128 months, compared to 146 months (P < 0.05) for high BRIT1 expression. 

These findings suggest that BRIT1 is a predictor of breast cancer survival.  

 Another group also studied BRIT1 expression in breast cancer specimens, and found a 

mean 49-fold reduction in BRIT1 RNA expression in these samples compared to normal breast 

cell lines, explained at least in part by the observed 41% frequency of deletion within the BRIT1 

loci of the breast cancer specimens (Bhattacharya et al., 2013). And in a study of 82 breast 

cancer samples, 43 (52%) of the samples showed low BRIT1 nuclear staining. And from these 
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samples, high cytoplasmic staining, but not low nuclear staining, associated with high tumor 

grade (Jo et al., 2013).  

 In addition to breast cancer, other cancer cell types were analyzed to investigate BRIT1 

expression and its association with cancer progression. A recent study in cervical carcinomas 

shows reduced BRIT1 mRNA (61.3% of cases) and protein (69.8% of cases) expression 

compared to non-tumorigenic cervical cells (Mai et al., 2014). And amongst the tumor cells, 

BRIT1 expression inversely correlated with tumor grade (1 vs. 3 P = 0.013; 2 vs. 3 P = 0.047). 

Even when BRIT1 is expressed in the tumor cells, immunostaining shows reduced nuclear 

BRIT1, a phenomenon observed in other tumor types as well (Richardson et al., 2011). The 

data prompted the group to study the effect of BRIT1 on cervical cell proliferation. They showed 

that stable overexpression of BRIT1 reduced the proliferation rate in three cervical cancer cell 

lines (HeLa, SiHa, CaSki), while at least one of these showed reduced capacity for invasion 

and migration (Mai et al., 2014).  

 In a study of aberrant BRIT1 expression in human cancer, ovarian cancer specimens 

were found to have significantly reduced BRIT1 mRNA expression compared to benign ovarian 

samples (Rai et al., 2006). This study also performed comparative genomic hybridization 

(CGH) testing of advanced ovarian cancers, and found that 35 of 87 (40%) samples have 

reduced BRIT1 DNA copy number, which correlated with increased genomic instability. A large-

scale study of 294 epithelial ovarian cancer tissue samples support of these findings (Alsiary et 

al., 2014). Of the 294 samples evaluated in this study, 89 (30%) have low BRIT1 protein 

expression, and more importantly, 48% of these 89 samples were categorized as Grade 3 

tumors. The correlation between low BRIT1 copy number or expression and ovarian cancer 

found in these studies suggest that BRIT1 may prove to be a useful biomarker for ovarian 

cancer.  

 BRIT1 expression was also reduced in prostate specimens. Immuno-histochemical 

analysis showed progressively lower BRIT1 staining in cancerous prostate tissue compared to 

normal prostate and benign prostate hypertrophy (Rai et al., 2006). 
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 These studies consistently demonstrate that reduced BRIT1 expression correlates with 

tumor progression. Based on the well studied role of BRIT1 in maintaining genome stability 

through promoting DNA repair, it makes sense that BRIT1 deficiency would lead to a 

compromised repair system, allowing defective DNA to persist. Because reduced BRIT1 

expression occurs in several cancer types, and is a cause of defective DNA repair, an intriguing 

study would be to test whether BRIT1 deficiency sensitizes cancer cells to DNA damaging 

therapeutics. The rationale being that although genomic instability is a characteristic and 

promoter of cancer, accumulation of significant DNA damage caused by a defective repair 

system would trigger the cell death pathway, assuming the pathway is intact. In essence, 

BRIT1 deficiency may be exploited to increase the DNA damaging potential of 

chemotherapeutics. 
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Chapter 2 

 

MATERIALS AND METHODS 

 

Cell culture 

Osteosarcoma (U2OS) cells and breast cancer cell lines were purchased from the American 

Type Culture Collection (ATCC, Manassas, VA, USA). The U2OS cells were maintained in 

McCoy’s 5A medium (Cellgro, Manassas, VA, USA) supplemented with 10% fetal bovine 

serum (FBS). MCF10A cells were maintained in mammary epithelial cell growth medium 

(Clonetics) containing insulin, hydrocortisone, epidermal growth factor and bovine pituitary 

extract (Lonza, Basel, Switzerland), supplemented with 5% horse serum. MCF7 cells were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Cellgro) supplemented with 15% 

FBS. Lymphoblastoid control cell line and 2 microcephaly cell lines [MCPH#1 (C74G); 

MCPH#2 (G321C) (Peng et al., 2009) were grown as a suspension culture in RPMI 1640 

medium supplemented with 20% fetal bovine serum. Cells were incubated at 37°C in a 

humidified incubator with 5% CO2.  

 

Plasmids and cell culture transfection 

The p3xFLAG-CMV vector encoding full-length BRIT1 was previously generated in our lab (Rai 

et al., 2006). The deletions of BRIT1 were generated from FLAG-BRIT1 plasmids via 

polymerase chain reaction using primers with restriction sites and subcloned into the N-terminal 

p3xFLAG-CMV plasmids in frame. MDM2 wild-type and deletion plasmids ∆9 (Iwatsuki et al., 

1995), ∆58-89 (Chen et al., 1993), ∆212-296 and ∆295-417 (Lukashchuk and Vousden, 2007) 

were kindly provided by Dr. Karen Vousden (The Beatson Institute for Cancer Research). The 

identity of the plasmids was confirmed by sequencing at The University of Texas MD Anderson 

Cancer Center DNA Core Sequencing Facility. TopBP1 wild-type and deletion plasmids ∆1-∆8 

and ∆AD (Wang et al., 2011) were kindly provided by Dr. Junjie Chen (The University of Texas 



 31

MD Anderson Cancer Center). FLAG-tagged ATM, ATR, ATM-KD (catalytic dead) and ATR-KD 

plasmids were generously provided by Dr. M. Kastan (St. Jude Children’s Research Hospital), 

Dr. K. Cimprich (Stanford University) and Dr. L. Zou (Harvard University) (Kim et al., 1999). 

GST-p53 (P3113, #10852) and GST-MDM2 (pGEX-4T, #16237) were purchased from 

Addgene. Cell culture transfection was performed using Lipofectamine 2000 (Invitrogen, 

Carlsbad, CA, USA), FuGENE 6 (Roche), and Oligofectamine (Invitrogen) following the 

manufacturers’ protocols. 

 

RNA interference 

BRIT1 small interfering RNA (siRNA) sequence, control siRNA and the procedures for BRIT1 

transient knockdown were all previously described (Rai et al., 2006). TopBP1 siRNA#1 and #2, 

and control siRNA were described previously (Kim et al., 2005; Lin et al., 2005). On-target 

smart pool siRNA against p53 and non-target control siRNA were purchased from Dharmacon 

Research (Thermo Fisher Scientific, Lafayette, CO, USA). BRIT1 stable knockdown was 

achieved by RNA interference using a lentiviral vector-based MISSION small hairpin RNA 

(shRNA) (Sigma-Aldrich, St Louis, MO, USA). Lentiviral particles corresponding to the 

MISSION shRNA BRIT1-target set were used as well as the MISSION nontarget shRNA 

control. Specificity and efficacy of the shRNA BRIT1 procedure were controlled by Western 

blotting after transduction and puromycin selection in MCF10A cells. BRIT1 siRNAs,  

 

Antibodies and Reagents 

Rabbit anti-BRIT1 antibody was generated as previously described (Rai et al., 2006). Anti-

FLAG M2 affinity gel, anti-FLAG M2 and anti-β-actin were purchased from Sigma-Aldrich. Anti-

p53 (DO−1), anti-MDM2 (SMP14) and HRP-conjugated anti-p53 (FL−393) were purchased 

from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-TopBP1 and anti-phospho-RPA32 

were purchased from Bethyl Laboratories. Anti-H2AX was purchased from Calbiochem. Anti-

phospho-H2AX was purchased from Millipore. Anti-RPA (Ab-1) was purchased from 
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NeoMarkers. Anti-ubiquitin, anti-phospho-p53 (Ser15), anti-phospho-CHK1 (ser345), anti-

phospho-(Ser/Thr) ATM/ATR substrate, anti-ATM, anti-ATR, anti-phospho-histone-H3 (ser10) 

and anti-GST were purchased from Cell Signaling. Anti-phospho-MCM (BM28) was purchased 

from BD Transduction Laboratories. Geneticin (G418) was purchased from Roche Applied 

Science. Puromycin was purchased from Sigma-Aldrich. Cycloheximide (CHX) was obtained 

from Sigma-Aldrich and used at a concentration of 10 µg/ml. MG132 (carbobenzoxy-L-leucyl-L-

leucyl-L-leucine) was obtained from EMD Biosciences (Billerica, MA, USA) and used at a 

concentration of 10 µM. Hydroxyurea (HU) was obtained from Sigma-Aldrich and used at a 

concentration of 1-2 mM. Nocodazole was obtained from Sigma-Aldrich and used at a 

concentration of 1 µg/mL. 

 

Immunoblotting and immunoprecipitation 

Cells were washed in phosphate buffered saline (PBS), and whole cellular extracts were 

prepared with urea buffer (8 M urea, 50 mM Tris-HCl pH7.4, and 150 mM 2-Mercaptoethanol) 

or modified radio-immunoprecipitation assay buffer (50 mM Tris-HCl, pH 7.4, 1% NP40, 150 

mM NaCl, 1 mM EDTA, 0.25% sodium deoxycholate, freshly added with 1 mM PMSF, 1 mM 

Na3VO4, 1 mM NaF, 1 µg/mL aprotinin, 1 µg/mL leupeptin, and 1 µg/mL pepstatin) for 30 

minutes on ice. Lysates were cleared by centrifugation and proteins were separated by gel 

electrophoresis. Membranes were blocked in Tris-buffered saline-0.1% Tween-20 (TBST) with 

5% (w/v) nonfat, dry milk for one hour at room temperature. Membranes were then incubated 

with primary antibodies diluted in PBS 5% bovine serum albumin (BSA) for two hours at room 

temperature. Subsequently, membranes were washed with TBST and incubated with 

horseradish peroxidase secondary antibody (1:5000) (Sigma-Aldrich) diluted in TBST with 5% 

nonfat, dry milk. Membranes were washed in TBST and bound antibody was detected by 

enhanced chemiluminescence (GE Healthcare, Pittsburgh, PA, USA). 

    For co-immunoprecipitation, U2OS cells were transiently co-transfected with FLAG-BRIT1 

wild-type plasmids and MDM2 wild-type/deletions plasmids or with MDM2 wild-type plasmids 
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and FLAG-BRIT1 wild-type/deletions plasmids. Or, U2OS cells were transiently co-transfected 

with HA-BRIT1 wild-type plasmids and FLAG-TopBP1 wild-type/deletion plasmids or with 

TopBP1 wild-type plasmids and FLAG-BRIT1 wild-type/deletion plasmids. Cellular proteins 

were extracted in RIPA buffer and immunoprecipitated with anti-FLAG M2 affinity gel (Sigma-

Aldrich) overnight. Bead-bound immunocomplexes were eluted with 3×FLAG peptide (Sigma-

Aldrich) and subjected to SDS-PAGE. For reciprocal immunoprecipitation, the whole cellular 

extracts were prepared in RIPA buffer and were subjected to incubation with antibody for two 

hours followed by incubation with Protein A/G PLUS Agarose beads (Santa Cruz 

Biotechnology) overnight at 4°C. The precipitates were washed three times with RIPA buffer, 

eluted in 3xloading buffer by boiling at 95°C for five minutes and resolved by SDS-PAGE 

followed by immunoblotting. For DNA digestion prior to immunoprecipitation, samples were 

treated with 10U/ml DNase I in 1X reaction buffer (Promega) overnight at 4°C, followed by 

clarification using centrifugation to remove debris. 

 

Chromatin fractionation 

The procedure for chromatin fractionation was performed as previously described (2005_Lin). 

In short, cells were lysed in 10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.34 M 

sucrose, 10% glycerol, 1 mM dithiothreitol, and 0.1% Triton X-100, and nuclear extracts were 

lysed in 3 mM EDTA, 0.2 mM EGTA and 1 mM dithiothreitol. Samples were clarified and pellets 

were resuspended in SDS sample buffer. 

 

In vitro proliferation assay, colony-forming assay and soft agar assay 

Standard 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide (MTT)-based cell 

proliferation assay was used to measure cell proliferation. In short, 500 to 1000 cells were 

plated in 96-well plates and MTT substrate (2 mg/ml) (Sigma-Aldrich) was added to the culture 

medium. Four hours later, the optical density was measured spectrophotometrically at 570 nm. 

For the colony-forming assay, 250 to 500 cells were seeded in six-well plates and 0.001% 
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crystal violet was used to stain the colonies 10 to 14 days later. The forming colonies were 

counted and analysed. For the soft agar assay, cells were suspended in corresponding 

medium containing 0.5% low-melting agarose (GenePure LE, ISC BioExpress, Pittsburgh, PA, 

USA) and 10% FBS. Then cells were seeded onto a coating of 1% low-melting agarose in 

medium containing 10% FBS. Colonies were scored three to four weeks after preparation. 

Colonies larger than 0.1 mm in diameter were scored as positive. 

 

Reverse transcriptase-polymerase chain reaction 

cDNA was transcribed using SuperScript III RT (Invitrogen) following the manufacturer’s 

instructions. p53 was amplified by polymerase chain reaction using the primers 5'- 

GCGCACAGAGGAAGAGAATC-3' (Forward) and, 5'-CCTCATTCAGCTCTCGGAAC-3' 

(Reverse).  

 

Purification of GST-fusion proteins and GST pulldown 

BL21 bacteria containing indicated plasmids were allowed to grow for 6 hours after addition of 

IPTG. Cell pellets were resuspended in lysis buffer and sonicated. The supernatant was 

incubated with Glutathione Sepharose 4B beads (GE Healthcare) at 4°C overnight. After 

washing, GST fusion proteins were eluted with glutathione. For pulldown, GST and GST-

BRCT5 expressed in BL21 were purified using Glutathione Sepharose 4B beads, and 

incubated with 293T lysate containing FLAG-BRIT1. The mixture was incubated in 4°C with 

gentle rotation for 1 hr and the beads were washed 3X with 1X PBS before addition of SDS 

sample buffer. 

 

In vitro ATM and ATR kinase assay 

293T cells were transfected with 8 µg of Flag-tagged ATM, ATR, ATM-KD or ATR-KD 

plasmids. Cell extracts were prepared in standard lysis buffer for immunoprecipitation (50 mM 

Tris, pH 7.5, 150 mM NaCl, 1% Tween 20, 0.3% Nonidet P-40, 1 mM sodium fluoride, 1 mM 
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Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 50 mM glycerophosphate, 1 mM DTT, 1 mM 

EGTA, 10% glycerol and protease inhibitor mixture from Roche Molecular Biochemicals). 

Cleared supernatants were immunoprecipitated with anti-Flag M2 antibody (Sigma). After 

washing with lysis buffer and kinase buffer (20 mM HEPES, pH 7.5, 50 mM NaCl, 10 mM 

MgCl2, 1 mM dithiothreitol, and 10 mM MnCl2) (Kim et al., 1999) 5 times, the 

immunoprecipitates was resuspended in 50 µL of kinase buffer containing 10 µCi of [-32P] ATP, 

10 µM ATP, 1 mM sodium fluoride, 1 mM Na3VO4, 20 mM glycerophosphate and 1 µg of GST 

fusion substrate. The kinase reaction was performed at 30°C for 20 minutes and stopped by 

the addition of SDS sample buffer, as previously described (Kim et al., 1999). Proteins were 

separated on SDS PAGE gel and transferred to PVDF membrane. Radiolabeled proteins were 

visualized by autoradiography. 

 

HU recovery and checkpoint assay 

For HU followed by nocodazole, two days after siRNA transfection and rescue transfection, 

cells were incubated in medium with or without HU (2 mM) for 24 hours. Nocodazole was 

added to the medium when the HU was removed, and cells were harvested at 0, 8, and 16 

hours after release. Harvested cells were fixed in ethanol, stained with propidium iodide, and 

analyzed by FACS. For HU followed by Taxol, cells were untreated or treated with HU (2 mM) 

for 24 hours. Cells were then fixed in ethanol and stained using phospho-histone H3 (Ser10)-

specific antibody (p-H3) and propidium iodide (PI). 

 

Immunofluorescent staining for foci formation 

Cells cultured on coverslips were washed twice in PBS, incubated in cytoskeleton buffer 

(piperazine-N,N0-bis[2-ethanesulfonic acid], pH 6.8, 100 mM NaCl, 300 mM sucrose, 3 mM 

MgCl2, 1 mM ethylene glycol bis-2-aminoethyl ether-N, N’, N’’, n’-tetraacetic acid [EGTA], and 

0.5% Triton X-100) for 3 minutes on ice. The cells were then washed with ice-cold PBS 3 times 

and incubated in stripping buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% 
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Tween 20, and 0.25% sodiumdeoxycholate) for 3 minutes on ice. After another 3 washes with 

ice-cold PBS, cells were fixed with 4% paraformaldehyde at 4°C for 30 minutes, permeabilized 

in 1% Triton X-100 and 0.5% NP-40 for another 30 minutes, blocked with 1% bovine serum 

albumin, and incubated with primary antibody for 2 hours and secondary antibody (fluorescein 

isothiocyanate or rhodamine) for 1 hour. Cells were then stained with 4’,6-diamidino-2-

phenylindole (DAPI) to visualize nuclear DNA. The coverslips were mounted on glass slides 

with anti-fade solution and visualized using a fluorescence microscope. 

 

Microscopy 

Immunofluorescent images were captured using a microscope (Nikon, Eclipse E800), equipped 

with a 60X oil objective lens (Plan Fluor, NA 1.3), and a cooled CCD camera (QImaging, Qiclick 

F-M-12). Images were acquired using NIS-Elements (Nikon). Fluorochrome used include Alexa 

Fluor 488 and 594 antibody conjugates (Life Technologies) and DAPI. 

 

Tumor growth in nude mice 

All animal studies were conducted in compliance with animal protocols approved by the MD 

Anderson Institutional Animal Care and Use Committee. Before injecting the mice with MCF7 

cells, we subcutaneously implanted 6-week-old female nude mice with 0.36 mg of 17β-estradiol 

60-day release pellets (SE121; Innovative Research of America, Sarasota, FL, USA). Then 

mice were injected in the mammary glands with 2×106 cells from various cell lines in 100 µl of 

culture medium. Each cell line was tested in ten mammary glands of five different animals. 

After two to three weeks, tumors were measured every three to five days. Volume was 

calculated as W2×L×0.52. 

 

BrdU incorporation assay 

BrdU cell proliferation assay kit was used to detect proliferative activity of cells based on the 

commercial protocol from Calbiochem. Briefly, cells were transfected with indicated plasmids. 
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The next day cells were seeded in 96-well plate at 104 to 106 cells / well. 48 hrs later, BrdU 

labelling reagent was added and incubated for 2 or 24 hrs. After fixation and denaturation, cells 

were washed and incubated with anti-BrdU antibody for 1 hour and peroxidase goat anti-mouse 

IgG horseradish peroxidase conjugate for 30 minutes. Then cells were incubated with the 

fluorogenic substrate working solution. The horseradish peroxidase catalyzes the conversion of 

the fluorogenic substrate to a blue fluorescent product. The blue fluorescent product was 

quantified using a fluorometer. 

 

Apoptosis assay 

Apoptotic cells were detected by FITC Annexin V Apoptosis Detection Kit (BD Pharmingen) 

according to manufacturer’s instruction. Briefly, cells were transfected with indicated plasmids. 

The next day cells were exposed to UV (50 J/m2). Cells were harvested for apoptosis analysis 

72 hrs after UV treatment. Cells in late apoptosis were analyzed, which were both FITC 

Annexin V and PI positive. Cells were washed with cold PBS and resuspend in 1x binding 

buffer at a concentration of 106 cells. 100 ul of cell suspension was transferred to a 5 ml culture 

tube and added 5 ul FITC Annexin V and 5 ul PI. Cells were incubated 15 min before flow 

cytometry analysis. 

 

Ubiquitylation assay 

Endogenous p53 or MDM2 are immunoprecipitated with anti-p53 (DO-1) or anti-MDM2 (SMP-

14), respectively. General IP protocol was followed to purify p53- and MDM2-antibody 

conjugates. Samples were run on SDS-PAGE and ubiquitylation was detected using an anti-

ubiquitin antibody. For input protein detection, an anti-MDM2 antibody was used, or an HRP-

conjugated anti-p53 antibody was used to avoid non-specific detection of antibody heavy-chain. 

 

Data analysis 
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All data were shown as mean ± standard deviation. Differences among groups was analysed 

by Student-Newman-Keuls (SNK)-q test using SPSS 12.0 for Windows software. Statistical 

significant was defined as * P ≤ 0.05 and ** P ≤ 0.01. Quantification of protein levels was done 

using NIH Image J software. 
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Chapter 3 

 

BRIT1 REGULATES P53 STABILITY AND FUNCTIONS AS A TUMOR SUPPRESSOR IN 

BREAST CANCER 

 

RESULTS 

BRIT1 Regulation of p53 stability is independent of DNA damage 

 In response to DNA damage, BRIT1 has been shown to play a role in recruiting 

chromatin-remodeling complexes to relax chromatin-bound DNA and allow localization of 

downstream repair proteins to sites of damaged DNA. Although these upstream functions of 

BRIT1 have been documented, it is currently unclear whether BRIT1 directly promotes 

downstream processes that follow DNA damage recognition. Cell cycle checkpoint is one such 

downstream process, which halts cell cycle progression to allow DNA repair to take place. The 

p53 tumor suppressor protein plays a crucial role in mediating the cell cycle checkpoint through 

its transcriptional activity. Although deubiquitylating enzymes such as USP7 (HAUSP) and 

USP42 have been implicated in promoting p53 stability after DNA damage (Hock et al., 2011; 

Sheng et al., 2006), there is limited knowledge regarding whether DNA damage response 

proteins directly interact with and stabilize p53. To this end, we analyzed p53 stability with 

respect to BRIT1 expression to see if there is a direct relationship between these two DNA 

damage response proteins. We used BRIT1 siRNA to knock down BRIT1 in non-transformed 

breast epithelial MCF10A cells. After knockdown, cells were treated with UV radiation to induce 

p53 stabilization and activation. Cells were collected at 0, 3 and 6 hours to determine p53 

expression post-UV radiation. Western blot shows elevated p53 expression after UV as 

expected, but lower p53 expression under BRIT1 knockdown conditions for all time points 

relative to mock and control (non-targeting siRNA) cells (Figure 6A). In addition to UV 

treatment, we also treated MCF10A cells with IR after BRIT1 knockdown since both UV and IR 

lead to p53 stabilization (Siliciano et al., 1997). Similar to the results of UV treatment, IR-
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induced p53 expression is reduced under BRIT1 knockdown conditions at all time points 

relative to mock and control cells, suggesting that BRIT1 expression promotes p53 stability 

(Figure 6B). Since p53 expression is reduced after BRIT1 knockdown even at T=0 after UV and 

IR treatment, this suggests that the effect of BRIT1 on p53 stability is independent of DNA 

damage. In addition to transient BRIT1 knockdown, we generated three stable BRIT1 

knockdown MCF10A cell lines using BRIT1 shRNAs and lentiviral particles for infection. Each 

of these three cell lines were treated with UV or IR and collected at 0, 3 and 6 hours post-

treatment. As in the transient BRIT1 knockdown cells, p53 expression was decreased for all 

time points compared to mock and control (non-targeting shRNA) cells (Figure 7A, B). The 

observation that BRIT1 regulates basal level p53 expression suggests a tumor suppressor 

function for BRIT1 that is independent of DNA damage signaling.  

 To provide further evidence that BRIT1 regulates p53 basal expression, we show that 

MCF10A cells treated with BRIT1 siRNA exhibit reduced p53 expression in the absence of 

DNA damage induction (Figure 8A), and this phenomena is also observed in MCF10A cells 

with stable BRIT1 knockdown (Figure 8B). The decrease in p53 expression could be due to 

decreased protein stability or reduced mRNA expression. To determine whether BRIT1 affects 

p53 mRNA expression, we performed reverse transcription-polymerase chain reaction (RT-

PCR) in the three MCF10A cell lines with stable BRIT1 knockdown using a p53 primer set. 

Results show that p53 mRNA levels remain stable in all three stable knockdown cell lines 

(Figure 8C). In addition, we transiently knock down BRIT1 in U2OS, MCF10A and MCF7 cells 

and performed quantitative PCR (qPCR) to see whether BRIT1 knockdown affects p53 mRNA 

expression in any of the cell lines used in this study. We found that BRIT1 knockdown does not 

significantly alter p53 mRNA expression in any of the cell lines (Figure 8D).   

 Since transient and stable BRIT1 knockdown decreases p53 expression as we have 

shown, we suspected that BRIT1 overexpression would promote p53 stability. To investigate 

this, we generated a U2OS cell line that stably expresses FLAG-BRIT1 under G418 selection. 
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As expected, Western blot shows that p53 protein expression is higher in the FLAG-BRIT1 

overexpression cells, compared to U2OS cells with 3xFLAG overexpression (Figure 9).  

 We have ruled out the possibility that BRIT1 affects p53 at the mRNA expression level 

(Figure 8C, D), and next determined whether BRIT1 affected the protein turnover rate of p53. 

We compared p53 turnover rate between three MCF10A cell lines with stable BRIT1 

knockdown versus control MCF10A cells expressing non-targeting shRNA. Cells were treated 

with cycloheximide (CHX) over 120 minutes to inhibit de novo protein synthesis. Western blots 

show that BRIT1 deficiency lowered p53 half-life from 105 to <35 min (Figure 10A). Corollary to 

this, U2OS cells with stable BRIT1 overexpression exhibited an increase in p53 half-life from 30 

to 75 minutes, compared to control (Figure 10B). These results suggest that BRIT1 regulates 

p53 by stabilizing p53 protein expression.  
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A.        

  

 

B.        

  

 

 

Figure 6. Transient BRIT1 knockdown decreases p53 expression after UV and IR.  

(A) MCF10A cells were transiently transfected with mock, control or BRIT1 siRNA and treated 
with ultraviolet radiation (UV; 50 J/m2). (B) MCF10A cells transfected as in (A), but treated with 
γ radiation (IR; 10 Gy). Cell lysates were collected at times 0, 3 and 6 hours after treatment and 
analyzed by immunoblotting. Band intensity was quantified using Image-J software and 
graphed. Note that BRIT1 deficiency reduces p53 expression at the basal level (T = 0 hr), as 
well as after DNA damage. 
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Figure 7. Stable BRIT1 knockdown decreases p53 expression after UV and IR. 

(A) Mock, control and BRIT1 stable knockdown MCF10A cells (BRIT1 KD1, BRIT1 KD2, and 
BRIT1 KD3) were treated with ultraviolet (UV; 50 J/m2). (B) The same cells used in (A) were 
treated with γ radiation (IR; 10Gy). Cell lysates were collected at times 0, 3 and 6 hours after 
treatment and analyzed by immunoblotting. Band intensity on the Western blot was quantified 
using Image-J software. A representative knockdown (BRIT1 KD1) was plotted against mock 
and control conditions. As in the transient BRIT1 knockdown experiment (Figure 1), BRIT1 
deficiency after stable knockdown reduced p53 expression at both the basal level and after 
DNA damage. 
  

BRIT1 KD1 Control Mock 

0     3      6      0     3      6     0      3     6     0      3      6     0     3     6  

BRIT1 KD2 BRIT1 KD3 

1    2.4   1.9   1.2   2.2  1.6   0.2   1     1     0.4  1.6  1.4   0.2   2.5  1.6 

UV (h) 

BRIT1 

p53 

β-Actin 

0	

0.5	

1	

1.5	

2	

2.5	

3	

0	 3	 6	

Mock	

Control	

BRIT1	KD1	

p
5
3

 p
ro

te
in

 l
e
v
e
l 

re
la

ti
v
e
  

to
 M

o
c
k

 T
 =

 0
 

1    1.8    3.2    2     2    3.5   0.5   1.9  1.6   1.9   1.9  1.5   0.2   0.6  0.7 

IR (h) 

BRIT1 

p53 

β-Actin 

  0      3      6      0     3      6     0      3     6     0      3      6     0     3     6  

BRIT1 KD1 Control Mock BRIT1 KD2 BRIT1 KD3 

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	 3	 6	

Mock	

Control	

BRIT1	KD1	

p
5

3
 p

ro
te

in
 l

e
v

e
l 

re
la

ti
v

e
  

to
 M

o
c

k
 T

 =
 0

 



 44

 
A.    B.          C. 
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Figure 8. BRIT1 deficiency reduces basal p53 protein expression. 

(A) MCF10A cells were transiently transfected with mock, control or BRIT1 siRNA. 48 hours 
post-transfection, cell lysates were collected for immunoblotting. (B) Mock, control and BRIT1 
stable knockdown (BRIT1 KD1-3) MCF10A cell lysates were harvested for immunoblotting. 
Note that BRIT1 deficiency in both (A) and (B) reduced basal p53 protein expression. (C) Mock, 
control and BRIT1 KD1-3 MCF10A cells were collected for semi-quantitative PCR to compare 
p53 mRNA expression. Note that p53 mRNA expression levels are similar between all 
samples. (D) U2OS, MCF10A and MCF7 cells were transfected with control or BRIT1 siRNA. 
48 hours post-transfection, cells were collected for Western blotting and quantitative-PCR (q-
PCR). Western blotting confirms BRIT1 knockdown, while qPCR result shows that BRIT1 
knockdown does not reduce p53 mRNA expression in any of the cell lines. 
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Figure 9. BRIT1 overexpression promotes p53 protein expression. 

Lysate from U2OS control and cells with stable BRIT1 overexpression were collected for 
Western blotting. Note that BRIT1 expression correlates with increased p53 expression.  

  

BRIT1 

p53 

β-Actin 

F
L
A

G
-B

R
IT

1 

3
xF

L
A

G
 



 46

A. 

   

    

 

B. 

   

 

 

Figure 10. BRIT1 stabilizes p53 protein expression.  

(A) Three MCF10A cell lines with stable BRIT1 knockdown or control cells expressing non-
targeting shRNA. 48 hours post-transfection, cells were treated with cycloheximide (CHX) and 
the lysate were collected over the indicated time points. Samples were run on Western blot with 
the bands quantified using Image-J and plotted on a graph as shown. Note the reduced p53 
half-life in cells deficient in BRIT1. (B) Control and stable BRIT1 overexpression U2OS cells 
treated with CHX and processed as in (A). Note that BRIT1 expression increased the relative 
half-life of p53. 
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BRIT1 binds to p53 and MDM2 

 To understand the mechanism mediating BRIT1 regulation of p53 expression, we 

conducted cellular binding experiments to test for an interaction between these two proteins. 

Western blot results show that p53 was co-immunoprecipitated with FLAG-BRIT1 from U2OS 

cells (Figure 11A). Interestingly, we found that MDM2, a binding partner and regulator of p53 

stability, also co-immunoprecipitated with FLAG-BRIT1 (Figure 11B). To show that these 

interactions occur endogenously, we immunoprecipitated endogenous p53 and MDM2 from 

MCF10A cells, and found that BRIT1 was pulled down in complex with both p53 (Figure 11C) 

and MDM2 (Figure 11D). Since p53 and MDM2 are known to have a direct interaction, we 

needed to determine whether BRIT1 interaction with either of the two proteins depends on both 

of the proteins, or whether BRIT1 interacts with both proteins independently of each other. In 

vitro binding shows that BRIT1 indeed interacts with both p53 and MDM2 independently of 

each other (Figure 12). 
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Figure 11. BRIT1 interacts with p53 and MDM2. 

(A) and (B) U2OS cells were transfected with 3xFLAG or FLAG-BRIT1 expression vectors. 48 
hours post-transfection, cell lysates were collected for immunoprecipitation (IP). 3 mg lysate 
was incubated with anti-FLAG (M2) affinity gel and analyzed by Western blot using the 
indicated antibodies. (C) and (D) MCF10A cell lysate was collected for IP and incubated with 
either anti-p53 (C) or anti-MDM2 (D) along with their respective control IgG antibodies, and 
analyzed by Western blot. Input was 3% of the amount used for IP. HRP: horseradish 
peroxidase. 
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Figure 12. BRIT1 interacts with p53 and MDM2 independently of each other. 

FLAG-BRIT1 was purified from 293T cells using anti-FLAG (M2) affinity gel and eluted using 
3xFLAG peptide. GST empty vector, GST-p53 and GST-MDM2 were expresssed and purified 
from BL-21 bacteria cells using glutathione beads and eluted using L-glutathione. FLAG-BRIT1 
was incubated with the individual GST-tagged proteins and an anti-FLAG antibody was used 
for IP, and samples were run on Western blot using the indicated antibodies. Input was run on 
Western blot (FLAG) or coomassie (GST-tagged proteins). Note that FLAG-BRIT1 binds to 
both p53 and MDM2, independently of each other. 
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BRIT1 regulates p53 proteasomal degradation 

 Since BRIT1 stabilizes p53 expression, we asked whether the direct BRIT1-p53 

interaction acts to block MDM2-mediated p53 ubiquitylation and degradation. To answer this 

question, we first determined whether the decrease in p53 expression upon BRIT1 knockdown, 

as previously observed, is due to increased p53 proteasomal degradation. When we transiently 

knocked down BRIT1 in MCF10A cells, we noticed a decrease in p53 expression as expected. 

However, when these cells were treated with the proteasome inhibitor MG132, we noticed that 

p53 expression was rescued to levels observed in control cells (Figure 13A). This phenomenon 

was also observed in MCF10A cells with stable BRIT1 knockdown (Figure 13B). This suggests 

that BRIT1 deficiency leads to accelerated p53 proteasomal degradation. Since protein 

ubiquitylation is a prerequisite for proteasomal degradation, we expect that if p53 degradation 

is dependent on BRIT1, then the ubiquitylation status of p53 is also dependent on BRIT1. 

Indeed, we found that after MG132 treatment, the level of p53 poly-ubiquitylation was 

significantly elevated in BRIT1 stable knockdown cells compared to control (Figure 13C).  

Surprisingly, BRIT1 deficiency not only increased p53 ubiquitylation, but it also decreased 

MDM2 ubiquitylation (Figure 13D). This suggests that BRIT1 promotes MDM2 ubiquitylation 

and degradation. Since BRIT1 binds to p53 and MDM2, these results provide a mechanism of 

p53 stabilization where BRIT1 binding to p53 relieves p53 binding to MDM2, thus preventing 

MDM2-mediated degradation. Additionally, MDM2 ubiquitylation and degradation also 

contributes to p53 stabilization. To further show that BRIT1 contributes to MDM2 degradation, 

we overexpressed BRIT1 to see the effect on MDM2 expression. Expectedly, Western blot 

shows that BRIT1 expression reduced MDM2 expression, which was rescued by MG132 

(Figure 14A). Additionally, we show that BRIT1 deficiency leads to increased pulldown of p53 

with MDM2, which further shows that BRIT1 binding to p53 protects p53 from MDM2-mediated 

degradation (Figure 14B). To better understand the binding dynamics involving BRIT1, p53 and 

MDM2, we performed an in vitro binding experiment to see how the interaction between p53 

and MDM2 changes with increasing FLAG-BRIT1 in the reaction. Remarkably, we observed 
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that increasing concentrations of FLAG-BRIT1 decreased MDM2-p53 interaction while 

increasing FLAG-BRIT1 binding to MDM2 (Figure 14C). These results suggest competitive 

binding between the three proteins, such that BRIT1 competes with MDM2 for antagonistic 

effects against p53. Together, these results support a model where BRIT1 binding to p53 and 

MDM2 causes both reduced MDM2 binding to p53, which leads to reduced p53 ubiquitylation 

and degradation, as well as increased MDM2 ubiquitylation and degradation (Figure 14D). 
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Figure 13. BRIT1 regulates p53 proteasomal degradation.  

(A) MCF10A cells were transfected with mock, control or BRIT1 siRNA. 48 hours post-
transfection, cells were untreated or treated with 10 µM MG132 for six hours and lysate was 
collected for immunoblotting. (B) Mock, control and stable BRIT knockdown MCF10A cells 
were treated as in (A) for immunoblotting. Note that MG132 rescues the reduction of p53 
protein expression in samples with BRIT1 deficiency. (C) Control or BRIT1 stable knockdown 
MCF10A cells (BRIT1 KD1 and BRIT KD3) were untreated or treated with 10 µM MG132 for six 
hours and then collected for IP using anti-p53 antibody. The IP product was run on Western 
blot and probed using anti-ubiquitin antibody to detect ubiquitylated p53. p53 in the input was 
detected using an HRP-conjugated anti-p53 antibody. (D) MCF10A cells treated as in (C), but 
lysate was immunoprecipitated using anti-Mdm2 antibody and the Western blot was probed 
with anti-ubiquitin antibody to detect ubiquitylated MDM2. Note that while p53 ubiquitylation is 
increased in cells with BRIT1 deficiency, MDM2 ubiquitylation is decreased.  
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Figure 14. BRIT1 competes with MDM2 to bind and stabilize p53. 

(A) U2OS cells were transfected with FLAG vector or FLAG-BRIT1. 48 hours post-transfection, 
cells were untreated or treated with 10 µM MG132 for six hours, and cell lysate was collected. 
Immunoblot shows that MDM2 protein expression was reduced in samples with BRIT1 
overexpression (lane 2), however this was rescued with MG132 (lane 3). (B) U2OS cells 
transfected with control or BRIT1 siRNA. 48 hours post-transfection, lysate was collected for IP 
using anti-MDM2 antibody. Western blot was performed using the antibodies shown. Note that 
BRIT1 deficiency resulted in increased p53 binding to MDM2. (C) In vitro binding experiment. 
FLAG-BRIT1 was expressed in 293T cells and purified using anti-FLAG (M2) affinity gel, and 
eluted using 3xFLAG peptide. GST-p53 and GST-MDM2 were expressed in BL21 cells and 
purified using glutathione beads. Reactions were set up as shown, importantly with increasing 
FLAG-BRIT1 incubated with GST-p53 and GST-MDM2. Note that the amount of p53 co-
immunoprecipitated with MDM2 is inversely related to the amount of BRIT1 binding to MDM2. 
(D) A proposed model based on data presented so far. p53 is bound to MDM2 and 
ubiquitylated for proteasomal degradation. BRIT1 serves to protect p53 from degradation, 
possibly by blocking p53-MDM2 binding, which stabilizes p53 and decrease MDM2 stability. 
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BRIT1 interaction with MDM2 is required to stabilize p53 

 p53 stability is largely MDM2-dependent. We have shown that BRIT1 blocks p53-MDM2 

interaction through its competitive binding to both p53 and MDM2, however we wanted to 

clearly show that BRIT1 binding to MDM2 is sufficient for stabilizing p53 expression. To do this, 

it was necessary to map the binding domain between BRIT1 and MDM2. Our laboratory has 

previously generated FLAG-BRIT1 constructs consisting of full-length and various deletion 

constructs, notably missing one or more BRCT domains (Figure 15A). MDM2 constructs were 

kindly provided by Dr. Karen Vousden (Beatson Institute for Cancer Research) (Figure 15B). 

To determine the region of BRIT1 required for MDM2-binding, we co-overexpressed full-length 

MDM2 with wild-type or deletion mutants of FLAG-BRIT1 into U2OS cells. The co-

immunoprecipitation result shows that deletion of either the BRCT2 (‘BRIT1∆2’) or BRCT3 

(‘BRIT1∆3’) domain of FLAG-BRIT1 significantly reduces C-terminal deletions of FLAG-BRIT1, 

while deletion of the entire C-terminus containing BRCT2 and BRCT3 (‘BRIT1∆2,3’) results in 

nearly complete loss of binding to MDM2 (Figure 15C), suggesting that BRIT1 C-terminus is 

required for binding MDM2. Conversely, to determine the region of MDM2 required to bind 

BRIT1, we co-expressed full-length BRIT1 with MDM2 wild-type or deletion constructs into 

U2OS cells. The co-immunoprecipitation result shows that the zinc finger domain of MDM2 

significantly reduces the binding between BRIT1 and MDM2, suggesting this domain is critical 

for interaction (Figure 15D). Given the results of these binding experiments, we set out to 

determine whether the interaction between BRIT1 and MDM2 is sufficient to stabilize p53. If it 

is sufficient, we expect that loss of the MDM2-binding domain of BRIT1 would lead to 

decreased p53 protein expression due to increased p53-MDM2 binding and subsequent p53 

degradation. To test this, we expressed wild-type and various C-terminal deletion constructs of 

FLAG-BRIT1 into U2OS cells. Western blot result shows that BRIT1 (WT) stabilizes p53 

compared to control, however expression of BRIT1∆2,3 doesn’t increase p53 stability (Figure 

16A). Since BRIT1 binds to both p53 and MDM2, we needed to show that the inability of 

BRIT1∆2,3 to stabilize p53 is specific to changes in the BRIT1-MDM2 interaction. To do this, 
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we expressed either BRIT1 (WT) or BRIT1∆2,3 in U2OS and treated the cells with UV to 

induce p53 expression. We found that under BRIT1 (WT) expression, p53 binding to MDM2 is 

reduced, and p53 expression is stabilized compared to control. However, under BRIT1∆2,3 

expression, p53 expression is not stabilized to control, likely explained by the observation that 

the p53-MDM2 interaction is not reduced under BRIT1∆2,3 expression (Figure 16B). Together, 

these results suggest that the binding between BRIT1 and MDM2 plays a significant role in 

reducing the interaction between p53 and MDM2, which leads to stable expression of p53. 
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Figure 15. BRIT1 C-terminus and MDM2 zinc finger domains required for BRIT1-MDM2 
interaction. 
 
(A) Schematic diagram of the BRIT1 protein and BRIT1 deletions. (B) Schematic diagram of 
the MDM2 protein and MDM2 deletions. NLS: nucleolar localization signal. NES: nuclear export 
signal. (C) Mapping the MDM2-binding domain on BRIT1. U2OS cells were transfected with 
3xFLAG or the indicated FLAG-BRIT1 constructs. Lysates were collected and 
immunoprecipitated using anti-FLAG (M2) affinity gel and analyzed by immunoblotting. Note 
that the C-terminal deletion construct (BRIT1∆2,3), which lacks the BRCT2 and BRCT3 
domains, has significantly reduced binding with MDM2 compared to full-length BRIT1. (D) 
Mapping the BRIT1-binding domain on MDM2. FLAG-BRIT1 was co-transfected with the 
various MDM2 constructs shown. Samples were collected and processed as in (C). Note that 
the MDM2 construct lacking the Zinc finger domain (M∆4) has significantly reduced binding 
with BRIT1 compared to full-length MDM2. 
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Figure 16. BRIT1 binding to MDM2 directly stabilizes p53. 

(A) U2OS cells were transfected with the indicated BRIT1 constructs. 48 hours post-
transfection, lysate was collected for immunoblotting. Note that p53 protein expression is 
lowest in the sample expressing BRIT1∆2,3, which is the construct with reduced binding to 
MDM2 (as shown in Figure 10C). (B) U2OS cells were untransfected or transfected with FLAG-
BRIT1 (WT or ∆2,3). 48 hours post-transfection, cells were untreated or treated with UV (50 
J/m2). Lysate was collected 5 hours after UV treatment for immunoblotting. Note that FLAG-
BRIT1 WT, but not ∆2,3, stabilizes p53 expression compared to control. 
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BRIT1 functions as a breast tumor suppressor through p53-dependent and independent 

mechanisms 

 The role of BRIT1 in promoting DNA damage response categorizes BRIT1 as a tumor 

suppressor gene. Our study showing that BRIT1 stabilizes p53 provides an alternative 

mechanism whereby BRIT1 acts as a tumor suppressor protein. Since p53 is a frequently 

mutated gene in breast cancer, and BRIT1 expression is reduced in a significant number of 

human breast tumors (Rai et al., 2006), we wanted to test whether BRIT1 has p53-dependent 

tumor suppressor functions in breast cancer. To establish a system that shows that BRIT1 

suppresses breast cancer growth, we used the stable BRIT1-knockdown MCF10A non-

transformed breast cancer cell lines used previously in this study. Cell proliferation experiments 

using MTT show that BRIT1 knockdown leads to higher cell proliferation compared to control 

MCF10A cells (Figure 17A). Additionally, BRIT1 knockdown cells displayed increased colony 

formation in soft agar compared to control cells, suggesting that BRIT1 deficiency promotes 

anchorage-independent growth; a characteristic of cellular transformation (Figure 17B). 

Consistently, BRIT1 knockdown promoted MCF10A survival as assessed by colony formation 

assay (Figure 17C). These results suggest that loss of BRIT1 provides a growth advantage to 

breast cancer cells, supporting our hypothesis that BRIT1 acts as a tumor suppressor in breast 

cancer. 

 We next wanted to test whether the BRIT1 tumor suppressor function in breast cancer 

is dependent on p53 status. We first established a stable overexpression of FLAG-BRIT1 in the 

transformed MCF7 breast cancer cell line (Figure 18A). Corollary to our observation that BRIT1 

deficiency increased MCF10A proliferation (Figure 17A), BRIT1 overexpression in MCF7 cells 

effectively reduced cell proliferation compared to control (Figure 18B), as well as decreased 

cell survival (Figure 18C). If BRIT1 reduces cell proliferation through p53 as presumed, then we 

expect that this reduction is caused by increased cellular apoptosis due to p53 activity. To test 

this, we compared the level of apoptosis between MCF7 with stable FLAG-BRIT1 compared to 
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control. As expected, FLAG-BRIT1 expression led to increased levels of apoptosis (Figure 19). 

To further test for BRIT1’s dependency on p53, we next established stable FLAG-BRIT1 

overexpression in MCF7 in the presence of stable control of p53 knockdown. FLAG-BRIT1 

overexpression in the presence of p53 knockdown in MCF7 was confirmed by Western blotting 

(Figure 18D). Expression of FLAG-BRIT1 in the presence of p53 knockdown reduced cell 

proliferation and survival as in MCF7 with normal p53 expression (Figure 18B, C), however the 

effect was not as significant (Figure 18E, F). These results suggest that BRIT1 suppression of 

breast cancer cell proliferation and survival is dependent on the expression status of p53.  

 To provide in vivo support of these observations, we first tested for tumor growth 

abilities of MCF7 control and stable FLAG-BRIT1 overexpression cells in nude mice. As our in 

vitro results would suggest, the tumor volume of FLAG-BRIT1 overexpression MCF7 cells was 

significantly lower than control MCF7 cells (Figure 19A). When FLAG-BRIT1 was expressed 

under the stable p53 knockdown condition, the tumor volume in these mice measured smaller 

than control cells without FLAG-BRIT1 expression (Figure 19B), however this difference is not 

as significant as the difference in tumor volume for cells without p53 knockdown (control vs. 

FLAG-BRIT1 expression) (Figure 19A). These in vivo results support our in vitro results that 

together suggest that the tumor suppressor abilities of BRIT1 indeed depends on p53 

expression. Mechanistically, this can be explained by the observation that BRIT1 binds to 

MDM2 and relieves p53 from MDM2-mediated degradation, thus stabilizing p53 to function as a 

suppressor of cancer cell growth. 
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 A.      B. 

   

 

    C. 

     

 

Figure 17. BRIT1 deficiency promotes breast cell proliferation and transformation. 

(A) BRIT1 knockdown enhances the proliferation of MCF10A cells. Control or BRIT1 stable 
knockdown MCF10A cells (BRIT1 KD1, BRIT1 KD2, and BRIT1 KD3) were seeded in a 96-well 
plate at 1x103 cells/well. Cell proliferation was measured by MTT assay over four days. Note 
that BRIT1 KD1-3 increased cell proliferation compared to control. (B) BRIT1 knockdown 
induces anchorage-independent growth of MCF10A cells. Viable colonies were counted 4 days 
after seeding onto soft agar. (C) BRIT1 knockdown enhances the survival ability of MCF10A 
cells. Control or BRIT1 stable knockdown MCF10A cells (BRIT1 KD1, BRIT1 KD2, and BRIT1 
KD3) were seeded in a six-well plate at 250 cells/well. Viable colonies were stained using 
crystal violet and counted. *P ≤ 0.05, **P ≤ 0.01. Data shown as mean ± SD of three 
independent experiments. 
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A.   B.     C. 

   

 

D.   E.     F. 

   

 

Figure 18. Tumor suppressor function of BRIT1 is dependent on p53.  

(A) BRIT1 stable overexpressing MCF7 cells established using FLAG-BRIT1 expression vector 
and G418 selection. BRIT1 and p53 protein levels were analyzed by Western blotting. (B) 
BRIT1 overexpression suppresses the proliferation of MCF7 cells. Control or BRIT1 stable-
overexpression MCF7 cells were seeded in a 96-well plate at 1x103 cells/well. Cell proliferation 
was measured by MTT assay for five days. (C) BRIT1 overexpression represses MCF7 cell 
survival. Control or BRIT1 stable overexpressing MCF7 cells were seeded in a six-well plate at 
250 cells/well. Viable colonies were stained by crystal violet and counted. (D) MCF7 p53-
knockdown cells were used to establish FLAG-BRIT1 overexpressing cells using G418. 
Overexpression of BRIT1 was confirmed by Western blotting. (E) MTT assay was performed in 
control MCF7 p53-knockdown cell and BRIT1 overexpressing MCF7 p53-knockdown cells. 
Note that although BRIT1 overexpression correlates with reduced proliferation, this was not as 
significant as BRIT1 overexpression in cells with normal p53 (B). (F) Colony formation assay 
was performed in control MCF7 p53-knockdown cells and BRIT1 overexpression MCF7 p53-
knockdown cells. p53-KD: p53 knockdown. *P ≤ 0.05. Data shown as mean ± SD of three 
independent experiments. 
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   A. 

    

    

   B. 

    

 

Figure 19. BRIT1 reduction of breast tumor volume is p53-dependent.  

(A) BRIT1-overexpressing or vector control MCF7 cells with wild-type p53 were injected into 
the fat pads of nude mice and tumor volumes were measured over the time-course indicated. 
(B) BRIT1-overexpressing or vector control MCF7 cells with p53-knockdown were injected into 
the fat pads of nude mice and tumor volumes were measured over the time-course indicated. 
p53-KD: p53 knockdown. * P ≤ 0.05, ** P ≤ 0.01. Each cell line was tested in 10 mammary 
glands of N = 5 mice. 
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DISCUSSION 

 p53 stability is tightly regulated by the MDM2 ubiquitin E3 ligase, and is required for the 

timely induction of apoptosis, and so is relevant to cell death and survival (Manfredi, 2010). 

MDM2 knockout mice are embryonic lethal because of deregulated p53-mediated apoptosis 

(Jones et al., 1995; Montes de Oca Luna et al., 1995), while p53 knockout mice survive, 

possibility due to p53-independent mechanisms of DNA repair (Frenkel et al., 1999), however 

these alternative mechanisms are not adequate for normal physiological development, as p53 

knockout female mice may develop exencephaly, a condition where neural developmental 

defects lead to outgrowth of the brain (Armstrong et al., 1995). Also, even though p53 knockout 

mice may remain viable after birth, they have a high incidence of tumor formation, with p53-/- 

mice developing tumors earlier than p53-/+ (Donehower, 1996; Donehower and Lozano, 2009; 

Yamamoto et al., 2000). These findings demonstrate the importance of both p53 regulation by 

MDM2, as well as understanding the mechanisms that limit MDM2-mediated degradation of 

p53. 

 In previous studies from our lab, we have shown that BRIT1 forms foci in response to 

DNA damage, and that this is intimately connected to other proteins that form IR-induced foci 

upon DNA damage, as their ability to form foci depends on BRIT1 (Rai et al., 2006). This is one 

of the tumor suppressor functions of BRIT1, which promotes genome stability by regulating 

DNA damage detection, cell cycle checkpoint activation and repair. In this current study, we 

show that BRIT1 regulates the stability of p53. One of the major tumor suppressor functions of 

p53 is in relaying the apoptotic signal from sensor proteins to effector proteins involved in 

mitochondria-mediated apoptotic pathway (Erster et al., 2004). Our findings suggest that BRIT1 

not only maintains genome stability through its role in DNA damage repair via promoting 

protein recruitment, but also through its ability to regulate p53 protein expression and thus the 

induction of apoptosis. 

 

Regulation of p53 and MDM2 stability 
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 Our early experiments showed that the positive regulation of p53 stability provided by 

BRIT1 occurs at the basal level (Figure 6 and 7). That is, even though we saw reduced p53 

expression under UV and IR treatment when BRIT1 is deficient, the reduction was evident even 

without induction of DNA damage. This suggests that a basal level of p53 may be protected 

from MDM2 partly through BRIT1. We further show that BRIT1 promotes p53 stability by 

performing cycloheximide blocking experiments (Figure 10). An alternative method to 

determine protein half-life is the pulse-chase method. In short, radioactive 35S-labeled 

methionine or cysteine is supplemented to media during the ‘pulse’ phase, to allow the protein-

of-interest to become radio-labeled. During the wash or ‘chase’ phase, the radioactive media is 

replaced with media containing an excess of non-radioactive molecules. Cells are harvested at 

various time points and the protein-of-interest is immunoprecipitated and subjected to SDS-

PAGE. The half-life of the protein corresponds to the time required for the protein concentration 

to be reduced to half the concentration at the start of the ‘chase’ phase. 

When DNA damage occurs, p53 activation occurs in phases, where early activation 

promotes expression of cell cycle-related genes such as p21, 14-3-3σ and GADD45, followed 

by late expression of apoptotic genes such as Noxa, Bax and Puma (Zhang et al., 2011). Since 

p53 is processed for degradation under normal conditions, it seems likely that there would be 

some mechanism to protect a basal level of p53 from degradation. This basal level of p53 

would provide a target for DNA damage-activated ATM and ATR, leading to phosphorylated 

and activated p53, and a timely response to DNA damage in the form of cell cycle checkpoint 

activation. Another factor that stabilizes p53 is p300/CBP. The P300/CBP acetyltransferase 

complex acetylates p53, and this is indispensable for p53 activation. This acetylation is 

promoted by p53 phosphorylation at Thr18 and Ser15/20 after DNA damage to induce p53 

activation, but under normal conditions, MDM2 P300/CBP-p53 is in a ternary complex, and 

acetylation is inhibited by MDM2 (Ito et al., 2001; Kobet et al., 2000; Lee et al., 2010). Like the 

P300/CBP-p53 interaction, our binding data suggests that the interaction between BRIT1 and 

p53 also occurs under basal conditions, independent of DNA damage (Figure 11). Also, just as 
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has been shown that overexpression of p300/CBP stabilizes p53 (Ito et al., 2001), we have 

also shown that BRIT1 overexpression stabilizes p53 in the absence of DNA damage (Figure 

9). In search of a mechanism whereby BRIT1 stabilizes p53, we studied the effect of BRIT1 on 

p53 and MDM2 ubiquitylation. Like many E3 ligases, MDM2 undergoes autoubiquitylation 

(Fang et al., 2000). Although it was originally thought that MDM2 autoubiquitylation promotes 

autodegradation, it has recently been shown that this may not be the case, but rather, 

autoubiquitylation may actually activate the E3 ligase activity of MDM2, and promote p53 

targeting (Itahana et al., 2007; Ranaweera and Yang, 2013). This is proposed to occur through 

recruitment of E3 conjugating enzyme to the poly-ubiquitin chain on MDM2. Our data shows 

that BRIT1 deficiency leads to increased p53 polyubiquitylation, suggesting BRIT1 stabilizes 

p53. Interestingly however, we also observed that BRIT1 deficiency decreased MDM2 

polyubiquitylation (Figure 13). Based on what has been learned regarding MDM2 ubiquitylation, 

it seems that our findings would suggest that BRIT1 promotes ubiquitylation and activation of 

MDM2 against p53. However, we believe this is not the case. We show that BRIT1 

overexpression actually reduces MDM2 protein expression (Figure 14), which is rescued by 

MG132, which supports our hypothesis that BRIT1 acts to increase MDM2 ubiquitylation for 

degradation. Even though MDM2 autoubiquitylation may not lead to autodegradation, BRIT1 

may act to promote MDM2 ubiquitylation via other proteins and/or at alternate amino acids or 

linkages that would lead to MDM2 degradation. This is supported by Itahana et al., who have 

demonstrated that a deactivating mutation in MDM2 did not increase MDM2 protein expression, 

compared to wild-type MDM2, and that polyubiquitylation of MDM2 occurred in both wild-type 

and E3 ligase-dead mutants (Itahana et al., 2007). This strongly suggests that there are other 

modes of MDM2 regulation that may be affected by BRIT1. As mentioned by Itahana et al., the 

PCAF acetyltransferase mediates MDM2 ubiquitylation and degradation (Linares et al., 2007). 

Another mode of MDM2 regulation involves β-TRCP, an F-box/WD40 repeat protein involved in 

cell cycle regulation. Inuzuka et al. showed that β-TRCP mediates ubiquitylation and 

degradation of MDM2 (Inuzuka et al., 2010). Therefore, BRIT1 may promote MDM2 
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degradation by enhancing β-TRCP targeting of MDM2 for degradation. Further research is 

needed to fully understand how BRIT1 promotes MDM2 ubiquitylation and degradation. 

 Regardless of the effect that BRIT1 has on MDM2 stability, our results demonstrate that 

BRIT1 reduces the interaction between p53 and MDM2 and stabilizes p53 protein expression. 

Figure 16A shows that loss of the BRCT2,3 domains of BRIT1 leads to decreased p53 protein 

expression.  Since Figure 10C shows that the BRCT2,3 domains are required for BRIT1 to 

interact with MDM2, the result shown in Figure 16A suggests that the reduced p53 protein 

expression is due to a reduced interaction between BRIT1 and MDM2, allowing MDM2 to 

interact with and degrade p53. We demonstrate this further by showing that expression of wild-

type BRIT1 reduces p53 binding to MDM2, and therefore leads to increased p53 protein 

expression, whereas expression of the ∆BRCT2,3 BRIT1 construct does not reduce p53 

binding to MDM2, nor does it stabilize p53 protein expression (Figure 16B).  This data, together 

with Figure 16A, strongly suggest that the decreased p53 protein expression observed in lane 4 

of Figure 16A is due to an insufficiency of the mutant BRIT1 to protect p53 from MDM2-

mediated degradation. 

Clinical relevance of BRIT1 regulation of p53 

 Our research shows that BRIT1 has tumor suppressor functions in breast cancer. 

Previous work from our lab and others show a correlation between BRIT1 expression and 

breast cancer progression (Bhattacharya et al., 2013; Rai et al., 2006; Richardson et al., 2011). 

However here, using MCF10A and MCF7 cells, we show that BRIT1 directly affects cell 

transformation in vitro and tumor formation in vivo. Specifically, we show that BRIT1 deficiency 

increases the transformation of MCF10A cells (Figure 17) leading to more rapid proliferation 

and anchorage independent growth. We also show that BRIT1 overexpression in MCF7 tumor 

cells in vivo decreased tumor growth, and that the degree of growth inhibition is dependent on 

p53 expression. That is, BRIT1-mediated tumor growth suppression occurs in both p53-

dependent and independent manners, though the effect is stronger in tumors with wild-type 

p53. It is worth noting that this negative effect on tumor growth reveals a previously unknown 
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tumor suppressor function of BRIT1. That is, BRIT1 is mostly known for maintaining genome 

stability through its role in DNA damage response. Only when damage occurs, is BRIT1 

recruited to the site of DNA damage for repair. However, we show here that BRIT1 maintains 

genome stability through p53 regulation at the basal level, maintaining p53 expression in the 

absence of induced DNA damage, as well as after DNA damage. This demonstrates that 

BRIT1 operates at multiple layers of genome maintenance. BRIT1 appears to activate p53-

mediated checkpoint activation by recruiting upstream proteins, including kinases such as ATM 

and ATR, which in turn promote p53 stability through phosphorylation. Furthermore, BRIT1 

may also directly interact with p53 to alleviate MDM2-mediation degradation. Given our finding 

that BRIT1 mediates its breast tumor suppressor functions partly through p53 stabilization, it 

prompted us investigate whether there is a clinical correlation between BRIT1 versus p53 

expression in breast patient samples. Since disease-related mutations in BRIT1 are rare 

(Ghani-Kakhki et al., 2012), we only looked for changes in p53 protein (or mRNA) expression 

relative to decreases in BRIT1 DNA copy number. We downloaded mRNA (RNASeq) and 

RPPA level 3 data publicly available from the Cancer Genome Atlas Project (TCGA; http://tcga-

data.nci.nih.gov/) from patients with breast invasive carcinoma. Putative copy number data as 

generated by GISTIC algorithm was obtained from cbio portal (http://www.cbioportal.org/public-

portal/). Data were categorized by differences in BRIT1 DNA copy number: homozygous 

deletion, single-copy deletion, diploid and greater than two copy numbers. Overall changes in 

BRIT1 appears to affect p53 protein expression (P < 0.01), however there doesn’t appear to be 

a visible decrease in p53 protein expression relative to loss of BRIT1 DNA copy number from 

diploid to homozygous deletion (Figure 20A). When only diploid and >Diploid BRIT1 DNA copy 

numbers were analyzed, p53 protein expression was not significantly altered (P = 0.2759), 

although in the diploid samples, there appears to be a higher percentage with lower p53 protein 

expression compared to the >Diploid samples, where only 1 out of 38 samples had 

considerably lower p53 expression (Figure 20A). This observation is consistent with our 

hypothesis that BRIT1 expression protects p53 from MDM2-mediated degradation. To be sure 
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that this trend is limited to p53 protein expression, BRIT1 DNA copy number was plotted 

against p53 mRNA. Results show that even in the >Diploid BRIT1 copy number condition, there 

was a significant percentage of samples with low p53 mRNA expression (Figure 20B). This 

suggests that protection of p53 expression by increased BRIT1 expression is limited to the 

protein level. 

 Our in vivo studies (Figure 18) demonstrated that BRIT1 overexpression reduces tumor 

growth, and we figured that this phenomenon occurred in a p53-dependent pathway, since p53 

KO reduced the effects on MCF7 tumor growth inhibition. Therefore, we expected that patient 

data would show that p53 protein expression would decrease in proportion with BRIT1 DNA 

copy number (Figure 20A). However, this was not readily observed. Perhaps there are other 

factors to consider in the relationship between BRIT1 and p53. It has been reported that 

besides MDM2-mediated inactivation of p53, other mechanisms include viral-induced 

inactivation and degradation, cytoplasmic sequestration, and importantly, mutational 

inactivation of p53 frequently observed in many cancer types (Davidoff et al., 1991; Gasco et 

al., 2002; Moll et al., 1992; Pharoah et al., 1999). In these situations, despite BRIT1-mediated 

stabilization of p53 protein expression, p53 activity may still be compromised. Additionally, it 

would be interesting to see whether there are differences in BRIT1 regulation of p53 expression 

relative to the various subtypes of breast cancer.  
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A. 

 
B. 

 
 
 
Data analysis and graphs kindly generated by Dr. Cristina Ivan. 
 
 
Figure 20. BRIT1 DNA copy number compared to p53 protein and mRNA expression in 
breast cancer specimens. 
 
TCGA data of breast cancer patient specimens were analyzed. The Shapiro-Wilk test was 
applied and verified that p53 RPPA/mRNA data in different groups according to BRIT1 DNA 
putative copy number don’t follow a normal distribution. Accordingly, Kruskal-Wallis test 
followed by a Nemenyi post-hoc test, was applied to assess the relationship between p53 
RPPA/mRNA and BRIT1 copy number. A box-and-whisker plot (Box plot represents first (lower 
bound) and third (upper bound) quartiles, whiskers represent 1.5 times the interquartile range) 
was used to visualize the data (log2). Analyses were carried out in R statistical environment 
(version 3.0.1) (http:///www.r-project.org/). All tests were two-sided and considered statistical 
significant at the 0.05 level. (A) p53 RPPA levels in different groups according to BRIT1 DNA 
putative copy number. P = 0.0084 is given by the Kruskal-Wallis test and shows that p53 
protein expression has different distributions in different groups. However, when the test is 
applied to the ‘Diploid’ and ‘>Diploid’ groups, the result is non-significant. (B) p53 mRNA levels 
in different groups according to BRIT1 DNA putative copy number. P = 0.2074 is given by the 
Kruskal-Wallis test. R-V, rabbit antibody validated for RPPA. 
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Chapter 4 

 

BRIT1 AMPLIFIES ATR SIGNALING BY COORDINATING TOPBP1 RECRUITMENT 

  

RESULTS 

BRIT1 associates with TopBP1 in a DNA damage- and stress-dependent manner 

 Since the identification of BRCT repeats within the BRIT1 sequence, there has been 

much work describing the role that BRIT1 plays in DNA damage response (Lin and Elledge, 

2003; Peng et al., 2009; Rai et al., 2006). The bulk of early evidence supports BRIT1 as an 

upstream recruiter of DDR proteins to sites of damaged DNA (Rai et al., 2006), however it 

remains unknown whether BRIT1 plays a role in the downstream processes of DNA damage 

repair, such as damage signal amplification or activation of transducer proteins involved in 

repair. To shed light on this matter, a proteomic analysis was performed to identify BRIT1 

binding partners (Peng et al., 2009). One of the identified proteins was TopBP1, a known 

activator of ATR signaling. To confirm this finding, FLAG-BRIT1 was expressed and 

immunoprecipitated from U2OS cells. Western blot shows that endogenous TopBP1 was pulled 

down with FLAG-BRIT1 (Figure 21A). Reverse binding was also performed by 

immunoprecipitating endogenous TopBP1, which pulled down BRIT1. Interesting, more BRIT1 

was pulled down when cells are treated with hydroxyurea (HU), suggesting that replication 

stress promotes the BRIT1 and TopBP1 interaction (Figure 21B). To further confirm replication 

stress-dependent binding, FLAG-BRIT1 was expressed an immunoprecipitated from U2OS 

after control or UV treatment. Western blot shows increased TopBP1 pull down in the UV 

conditions (Figure 21C). To further support BRIT1-TopBP1 interaction, immunofluorescence 

shows that BRIT1 and TopBP1 co-localize after UV treatment (Figure 21D). Because BRIT1 

and TopBP1 are both chromatin interacting proteins, we wanted to test whether the observed 

interaction was DNA dependent, that is, whether the proteins were co-immunoprecipitated 

indirectly due to their association with DNA. Immunoprecipitation of TopBP1 was performed 
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after cellular lysate was left untreated or treated with DNase I to digest DNA. Results show that 

similar amounts of BRIT1 were pulled down irrespective of DNase I treatment (Figure 22). 

These results reveal TopBP1 as a novel binding partner of BRIT1, and that their interaction is 

replication stress dependent. 
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A.       B. 

      

C.      D. 

  

 

Figure 21. BRIT1 associates with TopBP1 in a Replication stress-dependent manner. 

(A) U2OS cells were transfected with 3xFLAG or FLAG-BRIT1. 48 hours post-transfection, cell 
lysate was collected for IP using anti-FLAG (M2) affinity gel overnight. Samples were washed 
and analyzed by Western blotting. Input was 3% of the amount used for IP. (B) U2OS cells 
were untreated or treated with hydroxyurea (HU) (2 mM) for 3 hours, and lysate was collected 
for immunoprecipitation using IgG or anti-TopBP1 antibody. Samples were analyzed by 
Western blotting and the indicated proteins were probed. Note that BRIT1 co-
immunoprecipitated with TopBP1 endogenously, and this interaction was increased in the 
presence of HU. (C) U2OS cells were transfected with 3xFLAG or FLAG-BRIT1. 48 hours post-
transfection, cells were untreated or treated with UV (50 J/m2) for 3 hours. Cell lysates (3 mg) 
were collected for immunoprecipitation using anti-FLAG (M2) affinity gel and immunoblotted 
with anti-FLAG or anti-TopBP1 antibody. The input was 3% of that used in the 
immunoprecipitation. Note that TopBP1 co-immunoprecipitation with FLAG-BRIT1 was 
elevated after UV treatment. (B) and (C) together suggest that replication stress increases 
BRIT1 binding with TopBP1. (D) U2OS cells were treated with UV (50 J/m2) for 3 hours. cells 
were then fixed and immune-stained with anti-BRIT1 and anti-TopBP1 antibodies. Scale bar, 

10 µm. 
 

  

- + FLAG-BRIT1 

TopBP1 

TopBP1 

FLAG 

FLAG In
p

u
t 

IP: FLAG 

Ig
G

 

To
p
B

P
1 

Ig
G

 
To

p
B

P
1 

IP 

HU - + 

BRIT1 

TopBP1 

BRIT1 

TopBP1 

In
p

u
t 

- + - + - + - +

- - + + 

Input IP: FLAG 

TopBP1 

FLAG 

UV (50J/m2) 

FLAG-BRIT1 

- UV 

BRIT
1 

TopBP1 Merge DAPI 

+ UV  

(50 J/m2) 



 73

   

 

Figure 22. BRIT1 associates with TopBP1 independent of DNA. 

U2OS cells were collected and lysed using a modified RIPA buffer with gentle rotation at 4oC 
for 1 hour. Samples were either untreated or treated with DNase I for an additional hour at 4oC 
with gentle rotation. Samples were then separated for DNA extraction or for 
immunoprecipitation using normal IgG or anti-TopBP1 antibodies. Immunoblotting was 
performed to detect the indicated proteins (left panel). DNA extraction was performed using 
Trizol reagent to confirm digestion of DNA (bottom panel). This result shows that BRIT1 
interacts with TopBP1, and this interaction occurs independent of crosslinking with DNA. 
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BRIT1 promotes TopBP1 recruitment to damaged DNA 

 Since we have shown that BRIT1 binds and co-localizes with TopBP1 at sites of DNA 

damage, we asked whether BRIT1 is required for TopBP1 recruitment to damaged DNA. First, 

since BRIT1 is known to localize at double-strand DNA break, we tested whether BRIT1 

recruitment to IR-induced DNA damage sites is TopBP1-dependent. Immunofluorescence 

shows that TopBP1 knockdown doesn’t affect BRIT1 IRIF formation (Figure 23). Next, to show 

whether TopBP1 recruitment to replication stress sites is BRIT1-dependent, we used patient-

derived cells containing homozygous loss-of-function truncation mutations to BRIT1 (a gift from 

Dr. Andrew P. Jackson) (Jackson et al., 2002a). These mutants contain a C74->G nucleotide 

mutation resulting in a premature stop codon. We refer to two of these mutant cells as 

‘MCPH1#1’ and ‘MCPH1#2’ (from the alternative name of BRIT1, microcephalin), with ‘control’ 

cells derived from unaffected members of the same family. After two hours of HU treatment, 

control cells form TopBP1 foci at presumed sites of replication stress. However in the BRIT1 

mutant cells, TopBP1 foci formation was defective, with the same phenomenon observed after 

UV treatment (Figure 24A, B). Defective recruitment of TopBP1 is expected to correlate with 

impaired ATR signaling since TopBP1 play an important role in ATR activation. Indeed, we 

show that BRIT1 knockdown compromised p-MCM2 levels after UV treatment (Figure 24C). 

Together, these results suggest that the interaction between BRIT1 and TopBP1 allows BRIT1 

to promote TopBP1 recruitment to sites of replication stress or DNA damage. 
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Figure 23. TopBP1 is not required for BRIT1 IRIF formation. 

U2OS cells were transfected with control, luciferase-specific (Luc) or TopBP1-specific siRNA 
(#1 and #2). Cells were then treated with IR (10 Gy). 1 hour later, cells were fixed and 

immunostained with anti-TopBP1 and anti-BRIT1 antibodies. Scale bar, 10 µm. Note that there 
isn’t a noticeable change in BRIT1 foci forming ability when TopBP1 is deficient. 
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 A. 

  

 

 B.      C. 

    

 

Figure 24. BRIT1 promotes TopBP1 recruitment to sites of DNA replication stress. 

(A) BRIT1-proficient human cells (Control) and BRIT1-deficient cells from patients with 
microcephaly (MCPH1#1 and MCPH1#2) were treated with HU (2 mM) or UV (50 J/m2) for 2 
hours. Cells were fixed and immunostained with anti-BRIT1 and anti-TopBP1 antibodies. Scale 

bar, 10 µm. (B) Quantitative results from (A), plotting the fold-change of the number of cells 
with more than 5 foci. Control group was set as 1. Data are presented as mean ± standard 
deviation of 3 independent experiments. At least 50 cells were scored in each sample. Note 
that TopBP1 foci was significantly reduced in cells deficient for BRIT1. (C) U2OS cells were 
transfected with control or BRIT1-specific siRNA. 48 hours post-transfection, cells were 
untreated or treated with UV (50J/m2) for 3 hours. Western blotting of the cellular lysate was 
performed to observe the expression of the indicated proteins. Note that BRIT1 deficiency 
reduced the expression of an ATR phosphorylation target, MCM (minichromosome 
maintenance), after UV treatment.  
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BRIT1 amplifies ATR signaling 

 The data so far point to BRIT1 as a mediator of ATR signaling. We looked further into 

the effect that BRIT1 has on ATR target activation, to better understand the extent that BRIT1 

affects ATR signaling through TopBP1 recruitment. Under replication stress, ATR 

phosphorylates the RPA32 subunit of RPA at S33. We look at S33-RPA32 phosphorylation 

status after TopBP1 knockdown, which we expect to be reduced. As expected, U2OS cells with 

TopBP1 deficiency resulted in dramatically decreased S33-RPA32 phosphorylation after UV 

treatment (Figure 25A). However, BRIT1 knockdown only led a slight decrease in pS33-RPA32 

after UV or HU treatment (Figure 25B). We had expected that if BRIT1 affects TopBP1 

recruitment, and thus ATR activation, then BRIT1 knockdown would compromise ATR 

signaling. We decided to test the kinetics of ATR signaling by harvesting cells at various time 

points of UV and HU exposure under BRIT1 knockdown conditions. Western blot shows that as 

in Figure 25B, BRIT1 knockdown did not have a significant effect on S33-RPA32 

phosphorylation after one hour exposure to HU. However, over three hours, the BRIT1 

knockdown cells clearly displayed lower levels of pS33-RPA32 (Figure 25C). We tested for this 

phenomenon in BRIT1 mutant cells, where control or MCPH1#1 cells were untreated or treated 

with HU for up to six hours. Similar to BRIT1 knockdown cells in U2OS, MCPH1#1 cells 

displayed a more noticeable reduction in pS33-RPA32 signal over time (Figure 25D). When the 

HU-treated cells were stained with anti-pS33-RPA32 for immunofluorescence, results show 

that BRIT1 knockdown cells displayed fewer numbers of foci after the one hour time point 

compared to control cells (Figure 25E). Since the amount of RPA protein bound to DNA 

depends on the availability of ssDNA, we tested whether the reduction in pS33-RPA32 after 

BRIT1 knockdown or in MCPH1#1 cells is actually due to a decrease in S33-RPA32 

phosphorylation, or a decrease in the amount of chromatin-bound RPA. We performed 

chromatin fraction of cells expressing BRIT1 siRNA, and the Western blot for RPA shows that 

BRIT1 deficiency does not affect the level of chromatin-bound RPA after UV or HU treatment 
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(Figure 25F). Together, these results demonstrate that BRIT1 may be dispensable for 

activation of ATR signaling, but plays a role in amplifying or sustaining ATR signaling. 
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Figure 25. BRIT1 amplifies ATR signaling. 

(A) U2OS cells were transfected with control, luciferase-specific (Luc) or TopBP1-specific 
siRNA (#1 and #2). 48-72 hours post-transfection, cells were untreated or treated with UV (50 
J/m2). One hour post-radiation, cell lysate was collected and the expression of TopBP1, pS33-
RPA, and total RPA was detected by Western blotting. TopBP1 deficiency reduced pS33-
RPA32 signal as expected, since TopBP1 is important for ATR-mediated phosphorylation. (B) 
MCF10A cells were transfected with control siRNA or BRIT1-specific siRNA. 48-72 hours later, 
cells were treated with UV (50 J/m2) or HU (2 mM). One hour post-treatment, cell lysate was 
collected and expression of TopBP1, pS33-RPA, and total RPA was detected by Western 
blotting. Note that BRIT1 deficiency caused no noticeable change in pS33-RPA32 signal after 
UV treatment, and only a slight reduction after HU treatment. (C) U2OS cells were transfected 
with control siRNA or BRIT1-specific siRNA. 48-72 hours post-transfection, cells were treated 
with HU (2 mM) and harvested at the indicated time points. Expression of TopBP1, pS33-
RPA32, and total RPA was detected by Western blotting. Image J software was used to 
quantify the pS33-RPA32 bands to plot a graph using Excel software. Note that a trend in 
reduced pS33-RPA32 signal over the three-hour time course is observed after HU treatment. 
(D) BRIT1-deficient lymphoblastoid cells from patients with microcephaly (MCPH1#1) and 
BRIT1-proficient cells (Control) were treated with HU (2 mM) and harvested at the indicated 
time points. Cellular lysate was collected for immunoblotting to compare levels of pS33-RPA32 
(left panel), and the bands were quantified using Image J software and plotted on a graph using 
Excel software (bottom panel). As in the BRIT1 knockdown cells (C), these BRIT1-deficient 
cells also displayed a trend in reduced pS33-RPA32 over the time-course after HU treatment. 
(E) U2OS cells were transfected with control or BRIT1-specific siRNA. 48 hours post-
transfection, cells were exposed to HU (2 mM) for the indicated times. pS33-RPA32 was 
detected using immunofluorescent staining. Image J software was used to quantify the pS33-
RPA32 bands to plot a graph using Excel software. Lysate was run on Western blot and 
immunoblotted with anti-BRIT1 antibody. Correlating with decreased pS33-RPA32 band 
observed after BRIT1 knockdown (C and D), there is a decrease in pS33-RPA32 foci after HU 
treatment. (F) U2OS cells were transfected with control or BRIT1-specific siRNA. 48 hours 
post-transfection, cells were either untreated, or treated with HU (2 mM) or UV (50 J/m2) for 6 
hours. Cells were then harvested for chromatin fractionation and immunoblotted to detect the 
indicated proteins. Note that there is no noticeable difference in the level of chromatin-bound 
RPA after BRIT1 knockdown, however there is a reduction in pS33-RPA32. 
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BRIT1 bp250-500 and BRCT5-TopBP1 are required for BRIT1-TopBP1 interaction. 

 As we have already shown that BRIT1 is a binding partner of TopBP1, we used wild-

type and deletion constructs of FLAG-BRIT1 to map the region required for TopBP1 binding 

(Figure 26A). Myc-TopBP1 was co-expressed with FLAG-BRIT1 constructs in U2OS cells. 

Western blot shows that a region between bp250-500 is required for interaction with TopBP1 

(Figure 26B). To confirm that this region is important for binding, we generated a new FLAG-

BRIT1 construct lacking bp250-50 (B∆7) (Figure 26C). When FLAG-BRIT1 (WT) or B∆7 were 

expressed in U2OS cells, we found that B∆7 binding with TopBP1 was significantly reduced 

compared to FLAG-BRIT1 (WT) binding to TopBP1 (Figure 26D). This confirms that the BRIT1 

region between bp250-500 is required for TopBP1 binding (Figure 26D).  
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A.       B. 

   

 

C.       D. 

    

 

Figure 26. BRIT1 bp250-500 is required for BRIT1-TopBP1 interaction.  
 
(A) Schematic diagram of wild-type BRIT1 and deletion mutants of BRIT1. 
(B) U2OS cells were transfected with myc-TopBP1 and FLAG-BRIT1 (WT) or a one of the 
indicated FLAG-BRIT1 mutants. Cell lysate was collected and immunoprecipitated using anti-
FLAG (M2) affinity gel and analyzed by Western blotting. The input was 3% of that used in the 
immunoprecipitation. Note that the region of BRIT1 between base pair 250-500 displayed 
significantly reduced binding to TopBP1. (C) Schematic diagram of wild-type BRIT1 and the 
B∆7 deletion mutant of BRIT1. (D) U2OS cells were transfected with 3xFLAG, FLAG-BRIT1 
and B∆7 as indicated. 48 hours later, cells lysate was collected for immunoprecipitation using 
anti-FLAG (M2) affinity gel and analyzed by Western blotting. The input was 3% of that used in 
the immunoprecipitation. Note that B∆7 binding to TopBP1 is reduced compared to FLAG-
BRIT1 (WT). 
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BRIT1 is phosphorylated by ATM and ATR 

 In response to replication stress, several proteins within the ATR pathway are 

phosphorylated by ATR, including RPA subunits and Chk1. Since we show here that BRIT1 

amplifies ATR signaling through TopBP1, we asked whether BRIT1 is a phosphorylation target 

of ATR. ATM and ATR substrates are phosphorylated on a S/TQ motif, so we used an antibody 

targeting this motif to see whether BRIT1 is a potential target. Western blot shows that BRIT1 

could be pulled down using this antibody, while phosphatase treatment abolishes the signal, 

suggesting that BRIT1 is phosphorylated on some S/TQ site. Interestingly, HU treatment 

resulted in a stronger pulldown signal, suggesting that BRIT1 phosphorylation at S/TQ is 

induced by replication stress (Figure 27A). As we scanned the BRIT1 sequence for potential 

phosphorylation sites, we noticed that the sequence downstream of S322 bears homology to 

the sequence around Ser15 of p53 (Figure 27B). Therefore, to help determine whether S322-

BRIT1 is a phosphorylated site, we used an antibody recognizing p-p53 (S15) to test whether 

this antibody could immunoprecipitate BRIT1. Indeed, Western blot shows that the p-p53 (S15) 

pulls down BRIT1 even in the absence of HU, suggesting a basal level of BRIT1 

phosphorylation, possibly due to endogenous stress or DNA damage. When cells are treated 

with HU, the phosphorylation signal for BRIT1 is increased, and importantly, an S322A 

mutation nearly abolishes the BRIT1 signal, which strongly suggests that the S322 site is a 

target of ATM or ATR (Figure 27C). To further confirm that HU induces phosphorylation at 

S322-BRIT1, we used the anti-pS/TQ antibody to pulldown BRIT1 wild-type or S322A mutant. 

Expectedly, only the BRIT1 wild-type was immunoprecipitated after HU treatment (Figure 27D). 

Together, these results show that S322-BRIT1 is a potential target of ATM or ATR upon 

replication stress. 

 To specifically identify ATM and/or ATR as kinases for BRIT1, we performed in vitro 

kinase experiments using a GST-BRIT1 construct comprising of 100 amino acids around S322. 

We show that wild-type ATM phosphorylates GST-322wt, but not GST-322mut (Figure 28A). 

Interestingly, we show that wild-type ATR is also able to phosphorylate GST-322wt. However, 
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ATR is also able to phosphorylate the GST-322mut construct, suggesting that ATR 

phosphorylates at BRIT1 sites other than S322 (Figure 28B). This is consistent with the 

observation that the S322A-BRIT1 mutant doesn’t completely abolish phosphorylation after 

replication stress (Figure 28D). To show that ATR phosphorylates BRIT1 in the cellular setting, 

we used an ATR inhibitor drug, VE-821, to see the effect on BRIT1 phosphorylation. Western 

blot shows that ATR inhibition significantly reduces BRIT1 phosphorylation (Figure 28C), 

suggesting that ATR is a BRIT1 kinase. 
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 A.      B. 

    

 

 C.      D. 

    

 

Figure 27. BRIT1 Ser322 is phosphorylated upon replication stress. 

(A) U2OS cells were transfected with 3xFLAG or FLAG-BRIT1. 48 hours post-transfection, cells 
were untreated or treated with HU (2 mM) for 3 hours. Cell lysate was collected for 
immunoprecipitation using an anti-p-S/T antibody. The precipitates were incubated with or 
without Lambda PPase for 20 minutes at 30°C, eluted with 3x loading buffer by boiling at 95°C 
for 5 minutes, and resolved by SDS-PAGE followed by Western blotting. Result suggests that 
BRIT1 is a phosphorylated protein. (B) Diagram showing the homology between BRIT1 and 
p53 around S322 and S15, respectively. (C) U2OS cells were transfected with 3xFLAG, FLAG-
BRIT1 (WT) or the S322A construct. 48 hours post-transfection, cells were untreated or treated 
with HU for 3 hours. Immunoprecipitation was conducted using an anti-phospho (p)-p53 
antibody. The precipitates were incubated with or without Lambda PPase for 20 minutes at 
30°C. (D) U2OS cells were transfected as in (C). 48 hours post-transfection, cells were 
untreated or treated with HU for 3 hours. Immunoprecipitation was conducted using an anti-p-
S/T antibody. pS345-Chk1 was used as a positive control to demonstrate activated ATR 
signaling after HU treatment. Note that the phosphorylation of the BRIT1-S322A mutant is 
much reduced compared to FLAG-BRIT1 (WT). 
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 A.      B. 

   

 

    C. 

     

 

Figure 28. ATM and ATR phosphorylate BRIT1 on S322. 

(A) The sequence around BRIT1 S322 was cloned into a GST vector, and the BRIT1 S322A 
mutant (S322A) was made in this vector. U2OS cells were transfected with wild-type (WT) or 
kinase-deletion-mutant (KD) FLAG-ATM expression vectors as indicated. Cell lysate was 
collected for immunoprecipitation using anti-FLAG (M2) affinity gel, incubated overnight, and 
incubated with 3xFLAG Peptide for 1 hour for elution. The eluted sample was incubated with 
ATP [γ-32P] and GST or GST-BRIT1 (322wt or 322mut) as indicated for 30 min at 30°C. 
Samples were run on SDS-PAGE and exposed to x-ray film. Result indicates that ATM 
phosphorylates 322wt, but not 322mt. (B) U2OS cells were transfected with WT or KD FLAG-
ATR expression vectors as purified as in (A). Kinase assay was performed as in (A). (C) U2OS 
cells were transfected with 3xFLAG or FLAG-BRIT1. 48 post-transfection, cells were either 
untreated or treated with an ATR inhibitor (VE-821) at 2 µM for 3 hours. Cells were then either 
untreated or treated with UV (50 J/m2). Cell lysate was collected and immunoprecipitated with 
p-S/T-specific antibody, and run on Western blot to detect the indicated proteins. 
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BRIT1 phosphorylation and interaction with TopBP1 are required for TopBP1 

recruitment  

 We have determined the BRIT1 domain required for binding to TopBP1, and we have 

found a BRIT1 site of phosphorylation mediated in part by ATR. Using the B∆7 BRIT1 mutant 

that either lacks the TopBP1 binding domain, or the S322A phospho-mutant, we sought to 

determine whether these mutants negatively affect TopBP1 recruitment to sites of replication 

stress. The overexpression constructs are all siRNA resistant. Under BRIT1 knockdown 

conditions, TopBP1 accumulation at replication stress sites was rescued by wild-type BRIT1, 

but not by the B∆7 or S322A mutants (Figure 29A, B). Expectedly, we observed in these cells 

that when the levels of ATR signaling is diminished in the BRIT1 knockdown condition – as 

measured by the level of pS33-RPA32 Western blot signal – only wild-type BRIT1 was able to 

rescue RPA32 phosphorylation, while the mutants failed to do so (Fig 29C). Similar results 

supporting the importance of the TopBP1 binding domain and phosphorylation site were 

observed in MCPH1#1 BRIT1 mutant cells.  
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Figure 29. BRIT1 phosphorylation and interaction with TopBP1 are required for TopBP1 
accumulation at sites of replication stress.  
 
(A) U2OS cells were transfected with siRNA-resistant BRIT1-wt, B∆7 or 322mt plasmids as 
indicated. After 6 hours, cells were transfected with BRIT1-specific siRNA (siBRIT1) as 
indicated to knock down the expression of BRIT1. 48 hours after siRNA transfection, cells were 
untreated or treated with HU (2 mM) for 3 hours, fixed and immunostained with anti-TopBP1 

and anti-γ-H2AX antibodies. Scale bar, 10 µm. Note that TopBP1 foci formation is rescued after 
BRIT1-wt, but not B∆7 or 322mt expression. (B) Quantitative results from (A). The number of 
TopBP1 foci per cell was quantified. Data are presented as mean ± standard deviation of 3 
independent experiments; Student’s t-test. At least 50 cells were scored in each sample. (C) 
U2OS cells were transfected and untreated or treated with HU as in (A). Expression of the 
indicated proteins was verified by Western blotting. Note that the Western blot results support 
the immunofluorescence data in (A), since only BRIT1-wt, but not B∆7 or 322mt rescued the 
pS33-RPA32 signal. 
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BRIT1 phosphorylation and interaction with TopBP1 are required for replication stress 

recovery 

 We have so far determined that BRIT1 promotes TopBP1 accumulation at sites of 

replication stress. Since TopBP1 accumulation is a prerequisite for ATR signaling, we next 

determine whether the interaction between BRIT1 and TopBP1 indeed promotes ATR 

signaling. As ATR signaling is involved in checkpoint control and cell survival from replication 

stress, we tested whether BRIT1 knockdown affects cellular sensitivity to HU- and UV-induced 

stress. Our results show that BRIT1 deficiency leads to reduced cell survival after both HU and 

UV treatment as measured by colony formation (Figure 30A, B).  

 In addition to checkpoint activation during S-phase, ATR signaling is essential for 

recovery from replication stress and complete DNA replication (Mordes et al., 2008). We 

performed a couple of experiments to determine whether BRIT1, through its interaction with 

TopBP1, regulates replication stress recovery. First, we measured the cell’s ability to recover 

from replication stress by analyzing their cell cycle profiles after HU treatment. Cells were 

treated with HU for 24 hours and then released into media containing nocodazole, then 

collected at various time points. Results show that in BRIT1 knockdown cells, there is a greater 

accumulation of cells in the G1 phase after HU treatment, suggesting that these cells are not 

recovering as efficiently from the damage accumulated during replication stress. We show that 

although wild-type BRIT1 was able to promote recovery out of G1, both the B∆7 and S3222 

mutants of BRIT1 were not able to do so (Figure 30C, D). As an alternative method to test for 

replication stress recovery, we measured the level of the mitotic marker, phospho-histone H3 

(p-H3) Ser10, after cells are treated with HU followed by taxol to allow stressed cells to recover 

and accumulate in mitosis. We first performed this experiment in BRIT1-mutant MCPH1#1 cells 

and found that these cells displayed lower levels of p-H3 after HU and taxol treatment, 

suggesting that BRIT1 deficiency prevents cells from recovering from replication stress and 

continuing through the cell cycle (Figure 30E). Similar results supporting the role of BRIT1 in 

replication stress recovery are observed in BRIT1 knockdown cells. Importantly, the level of p-
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H3 is rescued in the BRIT1 knockdown cells by expression of wild-type BRIT1, but not the B∆7 

mutant nor the S322A phospho-mutant (Figure 30F). Together, these results suggest that 

BRIT1 plays an important role in cellular response and recovery from replication stress, and 

that this function is dependent on the TopBP1 interaction domain of BRIT1 as well as the 

ATM/ATR-targeted S322 phosphorylation site of BRIT1. 
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Figure 30. BRIT1 phosphorylation and interaction with TopBP1 are required for 
replication stress recovery. 

 
(A and B) MCF10A cells were transfected with control or BRIT1-specific siRNA (BRIT1 KD) for 
48-72 hours. Cells were then untreated or treated with HU (10 mM) for 24 hours (A) or UV (50 
J/m2) for 3 hours (B). Cells were then seeded in a 6-well plate at 250 cells/well. Viable colonies 
were stained by crystal violet and counted. Data are presented as mean ± standard deviation 
(error bars) from 3 independent experiments. (C) U2OS cells were transfected with BRIT1-wt, 
B∆7 or 322mt plasmids as indicated. Six hours post-transfection, cells were transfected with 
BRIT1-specific siRNA (BRIT1-KD) as indicated to knock down the expression of BRIT1. 48 
later, cells were incubated in medium with or without HU (2 mM) for 24 hours. Cells were then 
released into media containing Nocodazole (1 µg/mL). Cells were harvested at 0, 8 and 16 h 
after release. Harvested cells were fixed in ethanol, stained with propidium iodide, and 
analyzed by FACS. (D) Quantitative results from (C). The percentage of cells in G1 phase is 
shown. Data are presented as mean ± standard deviation of 3 independent experiments; 
Student’s t-test. (E) BRIT1-proficient cells (Control) cells and BRIT1-deficient cells (MCPH1#1) 
were untreated or treated with HU (2 mM) for 24 hrs. Cells were then washed to remove HU 
and released into media with or without Taxol (2 ng/ml) for 10 hours. Cells were then fixed and 
stained using phospho-Histone H3 (Ser10)-specific antibody (p-H3) and propidium iodide (PI) 
(left panel). The population of cells that stained positive for p-H3 (Ser10) was plotted on a 
graph to compare the conditions as shown (right panel). Bar graph represents the average from 
three independent experiments. (F) U2OS cells were treated with control or BRIT1 siRNA 
(BRIT1-KD) and reconstituted with the indicated constructs. 48 hours after transfection, cells 
were treated with HU (2 mM) for 4 hours, and released into taxol for 10 hours. Cells were then 
fixed and stained using p-H3 antibody and PI (left panel). The population of cells that stained 
positive for p-H3 was plotted on a graph to compare the conditions as shown (right panel). Bar 
graph represents the average from three independent experiments. 
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DISCUSSION 

 The DNA damage response incorporates DNA repair and cell cycle checkpoint 

activation (Curtin, 2012). BRIT1 is known to be involved in the DNA repair process through its 

recruitment of repair factors to the site of DNA damage. In this study however, we provide 

evidence suggesting that BRIT1 may also play a role in cell cycle checkpoint activation in 

response to DNA damage. Interestingly, the replication stress response also activates the cell 

cycle checkpoint, and this functions to promote removal of stress impediment before damage 

occurs, e.g. in the form of replication fork collapse, leading to double strand DNA breaks. In this 

sense, the RSR can be viewed as a mechanism of preventative maintenance to safeguard the 

genome against DNA damage. Since the proteins and signaling events in checkpoint signaling 

is similar between DNA damage and the RSR, this suggests that BRIT1 may have a role in 

promoting cell cycle checkpoint signaling after both DNA damage and replication stress.  

 ATRIP-ATR recruitment to DNA is followed by ATR trans autophosphorylation (Liu et 

al., 2011). Therefore, initial activation of ATR signaling occurs independent of TopBP1. 

However, TopBP1 recruitment to the site of ATR localization is a prerequisite for optimal ATR 

activity. TopBP1 recruitment allows ATR to target several of its downstream targets including 

claspin, Chk1 and MCM2 (Kumagai et al., 2006; Liu et al., 2006). Furthermore, kinase activity 

is required to maintain DNA damage signal. For example, in response to DNA damage, ATM 

makes the initial phosphorylation on Ser15-p53, while ATR phosphorylation at the same site is 

required to maintain this phosphorylation over several hours (Meek, 2004). Therefore, it is 

important to study the mechanisms that allow ATR to maintain signaling over a prolonged 

period during DNA damage or replication stress. The general mechanism of ATR activation and 

downstream signaling has been well described (Flynn and Zou, 2011), but there remains a gap 

in understanding how ATR signaling is maintained. Our research aims to help fill this gap by 

introducing BRIT1 as a regulator of ATR signaling, through recruitment of TopBP1.  
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 Our initial observations that BRIT1 promotes TopBP1 recruitment to sites of replication 

stress after UV and HU treatment, suggested that BRIT1 might affect ATR signaling through 

TopBP1 (Figure 24). Indeed, BRIT1 deficiency did have a negative effect on ATR signaling. 

However this effect was not apparent until two to three hours after UV or HU treatment (Figure 

25). We noticed that even though the initial phosphorylation of the ATR target RPA32 wasn’t 

affected, time-course experiments demonstrated that pS33-RPA32 was reduced over several 

hours in BRIT1 deficient cells. To clearly show that BRIT1 depletion impairs RPA 

phosphorylation at later time points after initial ATR activation, we first quantified and plotted 

the pS33-RPA32 bands in Figure 25C to compare ATR activity under siBRIT1 versus siControl 

conditions. The graph shows that BRIT1 knockdown leads to a shorter activation period 

compared to control. Second, in Figure 25E, U2OS cells were transfected with siControl or 

siBRIT1 to compare changes in ATR signaling. 48 hours post-transfection, cells were treated 

with HU over a period of 3 hours. Cells were then fixed and stained for pS33-RPA32 foci. We 

show that in cells with BRIT1 knockdown, there are a reduced number of foci as time increased 

toward 3 hours of HU exposure, compared to cells treated with siControl. Finally, we showed 

that the relationship between BRIT1 and positive ATR pathway regulation is relevant in BRIT1-

deficient patient cells. We used a BRIT1-deficient lymphoblastoid cell line (MCPH1#1) and a 

BRIT1-proficient ‘Control’ cell line, treated them with HU and collected samples over a 6-hour 

time course to quantify and compare pS33-RPA32 levels between the two cell lines. We show 

that MPCH1#1 cells displayed reduced pS33-RPA32 levels compared to Control cells (Figure 

25D). Together, our data support the conclusion that BRIT1 deficiency impairs RPA 

phosphorylation at later time points after initial ATR activation. These results are consistent 

with the current knowledge of ATR signaling being a later response to DNA damage, and being 

maintained over several hours, compared to the initial response by ATM (Appella and 

Anderson, 2001). Additionally, because we conclude that TopBP1-mediated activation of ATR 

is compromised by BRIT1 deficiency, we needed to show that this effect was not caused by a 

decrease in the amount of chromatin-bound RPA after BRIT1 knockdown. To test this 
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possibility, we conducted a chromatin fractionation experiment. We transfected U2OS cells with 

control siRNA or BRIT1 siRNA. 48 hours later, cells were either left untreated, or treated with 

HU (2 mM) or UV (50 J/m2) for 6 hours. Cells were then harvested for chromatin fractionation to 

determine whether changes in BRIT1 expression correlates with chromatin-bound RPA. Our 

results show that the level of chromatin-bound RPA remains unchanged between control and 

BRIT1 siRNA-treated cells (Figure 25F).  This result suggests that the reduced p-RPA in 

BRIT1-knockdown cells was not due to the reduced amount of RPA binding to chromatin.  

 For a better understanding of the mechanism of TopBP1 recruitment, we performed 

binding experiments to see whether TopBP1 recruitment depended on a direct interaction with 

BRIT1. Our results show that the region from base pair 250-500 of BRIT1 is required for BRIT1 

to co-immunoprecipitate with TopBP1. Furthermore, we show that a BRIT1 mutant that lacks 

this potential binding domain (B∆7) does not co-IP with TopBP1. Since base pair 250-500 

doesn’t lie within any of the three BRCT domains of BRIT1, which are known to bind phospho-

peptides, it seems unlikely that BRIT1 binds to a phospho-peptide sequence within TopBP1, 

though this cannot be ruled out until further binding studies are done to determine the region of 

TopBP1 that binds BRIT1. 

 Determining whether ATM and/or ATR phosphorylate BRIT1 was important to see if 

ATR is involved in mediating TopBP1 recruitment through BRIT1. If so, this would suggest 

another self-propagating mechanism of ATR signaling, where ATR phosphorylates targets that 

promote its own signaling pathway. This phenomenon has been observed in ATR 

phosphorylation of RPA and TopBP1 (Liu et al., 2012; Vassin et al., 2009). Through our IP 

experiments using anti-pS/TQ and anti-pS15-p53 antibodies, we demonstrated that S322-

BRIT1 is a candidate phopshorylation site (Figure 27). We then performed in vitro kinase 

experiments to demonstrate that both ATR and ATM are potential kinases for Ser322-BRIT1 

(Figure 28). This result is interesting on a couple of levels. First is that the Ser322 of BRIT1 

does not lie within the TopBP1-binding domain (bp 250-500) of BRIT1. Finding an ATR 

phosphorylation site on BRIT1 that lies within this region could have provided a simple 
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explanation for the BRIT1-TopBP1 interaction. That is, it would suggest that one of the eight 

BRCT domains within TopBP1 requires Ser322-BRIT1 to be phosphorylated in order for 

interaction to occur. However, since Ser322 doesn’t lie within the TopBP1-binding domain of 

BRIT1, it remains unclear how phospho-Ser322 aids in BRIT1 interaction with TopBP1, as we 

go on to show that it certainly does promote this interaction. Second, the kinase experiment 

results are interesting because we find that both ATM and ATR are both able to phosphorylate 

BRIT1. That ATM and ATR target the same protein is not a surprise. There have been many 

documented instances where ATM and ATR share targets, and this crosstalk often functions as 

backup mechanisms or prerequisites for the two pathways to work properly (Gatei et al., 2001; 

Stiff et al., 2006; Tibbetts et al., 1999; Ward and Chen, 2001). Thus, ATM phosphorylation of 

BRIT1 may provide a binding site for an early-phase of recruitment of proteins downstream of 

BRIT1. And upon DNA resection and ATRIP-ATR recruitment to ssDNA-RPA, ATR mediates a 

late-phase recruitment of TopBP1 through BRIT1 phosphorylation. 

 A functional replication stress response allows cells to recover from S-phase arrest and 

continue into G2 and M-phase. We presumed that reduced ATR signaling due to BRIT1 

deficiency would compromise the RSR, and result in slower recovery from S-phase arrest 

following induction of replication stress. Indeed, our results show that cells with BRIT1 

deficiency have a lower percentage of phospho-histone H3 (p-HH3) signaling compared to 

BRIT-normal cells after release from S-phase arrest (Figure 30E,F). Previous studies from our 

lab have shown that BRIT1 deficiency does not directly lead to a decrease in S-phase cells 

(Peng et al., 2014; Peng et al., 2009), and so the reduced p-HH3 staining in BRIT1-deficient 

cells is not due to a reduction in S-phase cells. Similarly, in our results where BRIT1 deficiency 

reduced TopBP1 foci (Figure 29A), this is also not due to reduced S-phase cells. 

 As mentioned in the introduction, BRIT1 is one of ten genes that associate with 

microcephaly. It’s interesting to consider how the current finding that BRIT1 promotes ATR 

signaling helps to further explain how BRIT1 inhibits microcephaly. Previous findings show that 

BRIT1 inhibits microcephaly through recruitment of Chk1 to centrosomes, along with promoting 
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HR to prevent neuroprogenitor cell apoptosis (Alderton et al., 2006). Along similar lines, ATR 

signaling is crucial in activating S-phase checkpoint so that stalled replication forks have an 

opportunity to undergo repair prior to replication restart, and to prevent fork collapse leading to 

double strand breaks and apoptosis (Flynn and Zou, 2011). The mutual inhibition of apoptosis 

by ATR and BRIT1 suggests that BRIT1 may inhibit apoptosis, and therefore microcephaly, in 

part through ATR regulation. This is supported by the fact that hypomorphic mutations in ATR 

is linked to Seckel syndrome, which shares characteristics with microcephaly (Majewski and 

Goecke, 1982). Seckel syndrome and microcephaly both display sensitivity to replication 

stress, and it’s been suggested that similarities in the clinical features of these diseases are an 

effect of deficient ATR activity (Neitzel et al., 2002). Our data suggest that ATR-mediated 

phosphorylation of BRIT1 may be a mechanism to ensure sustained ATR signaling to stabilize 

replication forks (Figure 27, 28). Therefore, BRIT1 may contain ATR-independent mechanisms 

of suppressing microcephaly, e.g. regulation of Chk1 recruitment to centrosomes, while ATR 

inhibits microcephaly in a BRIT1-dependent mechanism. In addition to its role in replication fork 

stability, ATR and other Seckel factors participate in centrosome maturation. Others have 

shown that defective ATR causes supernumerary centrosomes, and impaired cell cycle 

progression (Alderton et al., 2004). This finding that ATR maintains centrosome structure 

parallels BRIT1’s function of maintaining spindle formation and chromosome alignment during 

metaphase (Rai et al., 2008). Although our findings suggest that BRIT1 affects ATR signaling 

at replication stress sites, it’s possible that BRIT1 may affect ATR function at centrosomes as 

well. Defects in centrosome maintenance affect cell proliferation and would therefore have 

implications in neuroprogenitor cell development (Higginbotham and Gleeson, 2007). 

Therefore, an interaction between BRIT1 and ATR at centrosomes provides a mechanism of 

maintaining chromosome stability to inhibit microcephaly. 

 In summary, our study on BRIT1-mediated TopBP1 recruitment has significance in both 

DNA damage repair and replication stress response. BRIT1 promotes DNA repair protein 

recruitment to the sites of DNA damage, and as we present here, also recruits TopBP1 to 
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promote the long-term activation of ATR signaling. With this new information, we can view 

BRIT1 as a mediator of early DNA damage response and checkpoint activation, as well as a 

protein involved in preventing genomic instability by maintaining the replication fork during DNA 

replication (Figure 31). 
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Figure 31. A model of BRIT1 functions in DNA damage repair and replication stress 
response. 
 
BRIT1 has been shown to play a role in the early process of homologous recombination by 
recruiting repair proteins to the site of DNA damage. These include the SWI/SNF complex, 
53BP1, MDC1 and Nbs1. Here we provide evidence that BRIT1 also is involved in the 
replication stress response during DNA replication. We propose that BRIT1 recruits TopBP1 to 
sites of ATR activation, and that this occurs through a direct interaction with TopBP1, and 
ATM/ATR-dependent phosphorylation of BRIT1 at Ser322. Together, these data demonstrate 
that BRIT1 promotes checkpoint response, which is required for proper repair of DNA damage 
and resolution of replication stress. 
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Chapter 5 

CONCLUDING REMARKS 

 

 The findings described herein involve two novel functions of BRIT1. First, we have 

shown that BRIT1 interacts with MDM2 to inhibit MDM2 from targeting p53 for ubiquitylation 

and degradation. This is the first time that BRIT1 has been shown to play a role in the p53 

pathway and to therefore have an effect on cellular apoptosis. Second, we have shown that 

BRIT1 is involved in the replication stress response through recruitment of TopBP1 to sites of 

replication stress. This finding provided evidence that BRIT1 not only functions upstream in the 

DNA damage response, but also functions in the replication stress response, in a manner that 

promotes the long-term maintenance of ATR signaling. Therefore, both findings are 

independently significant. However, it is interesting to speculate on the implications that the 

findings have on each other, as well as on other known functions of BRIT1. 

 Functional outcomes of replication stress signaling include cell cycle checkpoint 

activation and induction of apoptosis after a prolonged checkpoint. Since BRIT1 maintains ATR 

signaling, BRIT1 would therefore be expected to promote p53 transcriptional activity simply due 

to ATR-mediated phosphorylation and activation of Chk1, which in turn phosphorylates p53 to 

promote p53 activation.  Therefore, our finding that BRIT1 promotes p53 stability through 

negative regulation of MDM2, adds a layer of complexity to ATR pathway regulation by BRIT1. 

Our findings suggest that not only does BRIT1 sustain ATR signaling locally at the site of 

replication stress, but BRIT1 also functions at a distance to relieve p53 from MDM2-mediated 

ubiquitylation and degradation. The latter may serve to ensure that a pool of p53 molecules are 

available for ATR or Chk1 targeting, and as suggested earlier, allowing an early p53 response 

upon replication stress.  

 We have already discussed the possibility that the ATR-mediated phosphorylation of 

BRIT1 at Ser322 may aid in BRIT1 binding to TopBP1. This is based on the fact that TopBP1 

contains several BRCT domains capable of binding phospho-peptides, and that previous work 
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has shown that indeed, BRCT5 of TopBP1 binds to MDC1, which is important for TopBP1 

recruitment (Wang et al., 2011). As the interaction between BRIT1 and TopBP1 is further 

studied with respect to BRIT1 phosphorylation, so too should the interaction between BRIT1 

and p53 or MDM2 be inspected to determine if BRIT1 phosphorylation aids in p53 stabilization. 

Could BRIT1 phosphorylation affect its interaction with MDM2? Since BRIT1 is able to interact 

with MDM2 to stabilize p53 in the absence of DNA damage, we would expect that BRIT1 

phosphorylation would not be required to stabilize p53 through the MDM2 inhibition 

mechanism. Possibly more interesting, is whether BRIT1 phosphorylation by ATR affects p53 

transcriptional activity. Since BRIT1 localizes to replication stress sites or DNA damage sites, 

and we’ve shown that BRIT1 interacts directly with p53, it would be worth testing the possibility 

that BRIT1 interacts with and recruits p53 to promote p53 transcriptional activity. Since BRIT1 

has previously been shown to interact with the E2F transcription factor to promote E2F target 

gene transcription (Yang et al., 2008), this sets the precedence for a similar function for BRIT1 

and p53. 

 BRIT1’s has been shown to promote chromatin relaxation through its interaction with 

the chromatin-remodeling complex, SWI/SNF (Peng et al., 2009). This BRIT1 function is crucial 

to the recruitment of downstream proteins in response to DNA damage. SWI/SNF has been 

shown to also promote derepression of DNA response genes upon replication stress (Minard et 

al., 2011). Therefore, our current findings involving BRIT1-mediated TopBP1 recruitment may 

also be aided by SWI/SNF recruitment. That is, BRIT1’s role in chromatin relaxation may 

promote multiple mechanisms at the site of DNA damage or stress, including recruitment of 

double strand break repair proteins (Rai et al., 2006), recruitment of TopBP1 upon replication 

stress, and recruitment of transcriptional activators including E2F and potentially, p53.  

 Our studies have shown that BRIT1 deficiency promotes cell proliferation and 

transformation in a p53-dependent manner, and that ATR signaling is compromised due to 

reduced TopBP1 recruitment by BRIT1. We and others have shown that BRIT1 deficiency 

correlates with breast cancer progression (Rai et al., 2006; Richardson et al., 2011). Previous 
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work suggests that BRIT1’s role in DNA damage response is significant in such a way that loss 

of BRIT1 would compromise DNA repair processes, making cells susceptible to genomic 

instability and cancer. Here, we provide evidence for other tumor suppressor functions of 

BRIT1, which suggests that BRIT1 deficiency may promote cancer progression in ways 

besides upstream recruitment of proteins after double strand breaks. We show that BRIT1, by 

sustaining or promoting ATR signaling, appears to play a preventive maintenance role assuring 

replication forks are repaired and do not collapse to form DNA double strand breaks. This 

maintenance role of BRIT1 makes BRIT1 very unique in its ability to prevent DNA damage as 

well as being able to help repair ensuing DNA damage. The repair process then involves an 

upstream role in protein recruitment as well as the downstream role of stabilizing p53 by 

preventing MDM2-mediated degradation. Together, our studies support a multi-faceted 

approach for BRIT1 in tumor suppression. 
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Chapter 6 

 

FUTURE WORK 

 

Further explore the interaction between BRIT1 and MDM2/p53. 

 Our model depicting the interaction between BRIT1 and MDM2/p53 shows a ternary 

complex formed by these three proteins (Figure 14). We propose this model based on the 

evidence that BRIT1 binds to both MDM2 and p53 independently of each other (Figure 12) and 

that increased BRIT1 binding to MDM2 correlates with decreased binding between MDM2 and 

p53 (Figure 14). To validate this ternary complex, we could perform a double 

immunoprecipitation. For example, we could overexpress HA-MDM2 in U2OS, and use an anti-

HA antibody against cellular lysate. The immunoblot would show bands for MDM2, p53 and 

BRIT1. However, to show that the three proteins are being pulled down as one complex, and 

not due to separate interactions between MDM2-p53 and MDM2-BRIT1, we would perform a 

second immunoprecipitation using an anti-p53 antibody. If the immunoblot shows all three 

proteins, this would confirm the ternary complex. However, if the immunoblot shows only p53 

and MDM2, this means that the three proteins do not exist in a ternary complex. Since we have 

not performed this double immunoprecipitation experiment, we cannot rule out other potential 

models of interaction. An alternative model would be one where instead of a ternary complex, 

BRIT1 binds either MDM2 or p53, separately. In this model, BRIT1 binding to MDM2 effectively 

prevents MDM2 from binding to and degrading p53. In turn, p53 is stabilized, and the 

interaction between BRIT1 and p53, as suggested by their co-immunoprecipitation, may serve 

to further block p53 from binding to MDM2, or may serve purposes beyond protecting p53 from 

MDM2. A better understanding of the interaction between BRIT1 and p53 may shed light on 

which of these possibilities is most likely. An initial experiment would be to determine the region 

of p53 that binds BRIT1. Since MDM2 binds to the N-terminal transactivation domain of p53 

(Chen et al., 1993), BRIT1 binding to p53 at the same region would suggest an inhibitory effect 
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on MDM2-p53 interaction. Together, these experiments would provide evidence to support our 

proposed model, or to help generate a revised model for BRIT1-mediated p53 stabilization. 

 

Determine the mechanism by which BRIT1 reduces MDM2 protein expression. 

 Figures 9-11 together provide evidence that BRIT1 competes with MDM2 to bind and 

stabilize p53 from degradation, and that BRIT1 overexpression reduces MDM2 expression. 

However, it is still unclear how BRIT1 reduces MDM2 expression. Our model in Figure 9D 

shows that, based on our data, BRIT1 promotes MDM2 ubiquitylation, which presumably leads 

to MDM2 degradation. This would explain the reduced MDM2 expression. However, it is not 

clear whether MDM2 autoubiquitylation is occurring or whether MDM2 is being targeted for 

ubqiuitylation. Despite MDM2 being able to undergo autoubiquitylation, this may not be the 

mechanism for how MDM2 expression is being reduced, considering MDM2 autoubiquitylation 

doesn’t necessarily lead to degradation, as mentioned earlier (Itahana et al., 2007). Therefore, 

it would be interesting to determine the precise manner in which BRIT1 reduces MDM2 

expression. Could BRIT1 promote the interaction between MDM2 and an E3 ligase that 

regulates its stability, such as the PCAF acetyltransferase or β-TRCP? Experiments can be 

done to show whether BRIT1 expression correspondingly increases the binding between 

MDM2 and PCAF or between MDM2 and β-TRCP, and whether this causes changes in MDM2 

ubiquitylation pattern. Certainly, it would also be important to determine whether BRIT1 

promotes MDM2 activity as might be suggested from the decrease in MDM2 ubiquitylation 

when BRIT1 is deficient. That is, does BRIT1-mediated MDM2 ubiquitylation promote MDM2 

binding with its E2 conjugating enzyme, which would actually increase MDM2 substrate 

targeting? This possibility is not likely, since BRIT1 reduces MDM2 expression. But based on 

the recent finding that ubiquitylation affects MDM2 activity, it is worth taking this possibility into 

consideration. Understanding the mechanism whereby BRIT1 negatively regulates MDM2 is 

significant because of the effect that this has on p53 stability. For example, when the DNA 

damage response is activated in cells where BRIT1 is deleted, could there be reduced p53 



 108

expression due to loss of BRIT-mediated regulation of MDM2? To test this, BRIT1 deficient 

cells, e.g. MCPH1#1 lymphoblastoid cells or cancer cell lines with BRIT1 deficiency, and BRIT1 

wild-type cells would be treated with various DNA stress stimuli to induce a DNA damage 

response. The cells would then be analyzed for p53 protein expression, expression of p53 

transcriptional targets, e.g. p21, expression of MDM2, as well as the cells’ ability to induce 

apoptosis and cell cycle checkpoint. Although we saw in our studies, BRIT1 regulation of p53 

stability even in the absence of stress, it would be important to see how this regulation 

translates to conditions of cellular stress.  

 

Further demonstrate that BRIT1 stabilizes p53 expression 

 The in vitro data we have provided demonstrates that BRIT1 deficiency reduces p53 

stability in the absence or presence of DNA damage (Figure 6 and 7). In vivo, we show that 

BRIT1 deficiency promotes normal breast cell transformation, whereas BRIT1 overexpression 

suppresses breast cancer growth. To further demonstrate that BRIT1 deficiency reduces p53 

stability, we could perform experiments to test for the functional effects of such a reduction. In 

vitro, we could perform p53 half-life studies after BRIT1 knockdown, and then blot for changes 

in not only p53 expression, but also for decreases in expression of p53 target genes such as 

p21 and 14-3-3 or cell cycle proteins, and BAX and PUMA for apoptotic proteins. Upon DNA 

damage, BRIT1 deficiency is expected to reduce the level of p53-mediated apoptosis. This 

reduction can be tested by comparing Annexin V staining between normal and BRIT1-deficient 

cels, or by staining for caspase activation. In vivo, the tumor specimens from mice can be 

sectioned and also stained for proteins downstream of p53 transactivation. The results from 

tumor staining would provide evidence that the reduced tumor formation in BRIT1 

overexpression cells is due to increased p53-mediated transcriptional activity.  

 

Investigate the clinical applicability for BRIT1 regulation of p53 expression 

 TCGA data shows no significant correlation between BRIT1 DNA copy number and p53 
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protein expression in breast cancer (Figure 20). Although we have shown in vitro that BRIT1 

stabilizes p53 protein expression, and that BRIT1 expression reduces breast tumor size in vivo 

(dependent on p53 status), we have yet to show that the reduction in tumor size is actually 

caused by more stable p53 expression in the BRIT1 overexpressing tumor cells. To test for 

this, tumors from both normal BRIT1 and BRIT1 overexpressing conditions would need to be 

analyzed. Each specimen would be analyzed for p53 protein expression, to check whether 

BRIT1 overexpression alone had an effect on p53 stability. Also, staining of p53 transcriptional 

targets would need to be checked to see whether p53 activity is elevated in the BRIT1 

overexpressing cells. And in the comparatively smaller tumors where BRIT1 is overexpressing, 

histological analysis should be checked to determine if there is increased apoptotic cell death. 

 If after these analyses are performed, and it’s observed that BRIT1 expression alone 

indeed promotes p53 protein expression and activity leading to reduced tumor size, it would 

then be important to understand why clinical samples do not show a significant correlation 

between BRIT1 DNA copy number and p53 protein expression. An initial test would be to first 

test additional cancer cell lines for BRIT1 and p53 correlation in vitro, to determine whether the 

effects we’ve observed is limited to certain cell lines. In other cell lines, there may be other 

mechanisms that maintain p53 expression. And even in cell lines where BRIT1 expression is 

normal, p53 protein expression may be low due to reasons beyond BRIT1 expression. Since 

p53 is highly mutated in cancer, it wouldn’t be surprising that there are other factors that lower 

p53 expression. For instance, a study of the expression signature of p53 in breast cancer has 

shown that p53 transcript expression may be reduced in some cancers (Miller et al., 2005). In 

these instances, even normal BRIT1 copy number may not be able to sufficiently stabilize p53, 

and there would be no correlation between BRIT1 DNA copy number versus p53 protein 

expression. However it would be interesting to see whether BRIT1 overexpression would have 

an effect on p53 protein even in cases where there is no correlation. If BRIT1 overexpression 

increases p53, this would suggest that BRIT1 is able to stabilize p53, but at diploid levels, the 

effect may not be significant due to other factors that reduce p53 expression.  
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 It is well known that tumors with wild-type p53 are generally more sensitive to genotoxic 

agents than tumors with mutant p53 (Brosh and Rotter, 2009; Vogelstein and Kinzler, 2004). 

Based on our research however, even tumors containing wild-type p53 may be less sensitive to 

genotoxins if BRIT1 is deficient, as p53 stability and apoptotic activity is compromised. 

Therefore, it is of interest to conduct further correlation studies between BRIT1 and p53. These 

studies may aid in effective targeting of BRIT1-deficient tumors.  

 

Further investigate the interaction between BRIT1 and TopBP1 

 The model for ATR activation through TopBP1 has been well studied (Figure 2). Our 

research adds to this model a mechanism for maintaining ATR signaling. However there are 

still details yet to be resolved. We have shown that BRIT1 binds to TopBP1 within the base pair 

region between 250-500. However we have not yet determined which region of TopBP1 binds 

to BRIT1. We would need to obtain TopBP1 constructs that lack each of the eight BRCT 

domains, and test the constructs for binding to BRIT1. It has been shown that the BRCT5 

domain of TopBP1 interacts with phosph-MDC1 to promote TopBP1 recruitment (Wang et al., 

2011), the N-terminal BRCT domains interact with phospho-Rad9 of the 9-1-1 complex 

(Delacroix et al., 2007), and several BRCT domains within TopBP1 interact with ATRIP 

(Kumagai et al., 2006; Xu and Leffak, 2010). Since we found that ATR phosphorylates BRIT1 

at Ser322, it seems possible that TopBP1 would bind BRIT1 at this site through one of its 

BRCT domains.  

 Even after a better understanding of the interaction between BRIT1 and TopBP1, it is 

still unclear where the interaction occurs within the cell. Is the complex recruited to the DNA en 

bloc, or does BRIT1 provide a docking site to recruit TopBP1 to the site replication stress or 

DNA damage? Figure 16 shows that BRIT1 binds to TopBP1 independent of DNA. This 

suggests that the proteins may be interacting distant from the site of damage. It would be 

interesting to see whether separation of the chromatin fraction still allows us to detect binding. 

Similarly, nuclear fractionation would tell us whether the proteins interact in the cytosol. 
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 Furthermore, how does BRIT1-TopBP1 fit into the current model of ATR signaling? ATR 

deficiency has been shown to induce γH2AX formation, presumably in response to formation of 

double strand breaks (Chanoux et al., 2009). Since our work shows that BRIT1 promotes the 

long-term accumulation of TopBP1, perhaps BRIT1 interaction with TopBP1 does not have an 

effect on ATR signaling until BRIT1 is able to localize to γH2AX foci. Since unresolved single 

strand breaks collapse and become double strand breaks, leading to H2AX phosphorylation, it 

would be interesting to generate a cell line that contains mutant H2AX unable to form γH2AX 

(Brown et al., 2012), and to see whether BRIT1 is able to promote TopBP1 recruitment. BRIT1 

has previously been shown to form foci dependent on γH2AX, so it is possible that TopBP1 

recruitment depends on γH2AX formation (Wood et al., 2007a). ATR signaling that is 

maintained by BRIT1 can be tracked by immunoblotting for ATR target proteins such as p21, 

Chk1 and MCM.  

 

Test BRIT1-deficient tumors for sensitivity to RSR-inducing therapeutics. 

 Replication stress inducing therapeutics such as cisplatin and gemcitabine induce DNA 

damage and genomic instability, leading to apoptosis. However, in cells that are proficient in 

DNA damage response in repair, the therapeutic effect of the drugs is diminished, as the 

damage becomes repaired. On the other hand, when either the ATM and/or ATR pathways are 

defective, drug sensitivity is increased. For example, in cells where ATM is defective (ataxia 

telangiectasia patient cells), the synergy of cisplatin and an ATR inhibitor is significantly 

increased (Reaper et al., 2011). This is the case because functional ATM commonly rescues 

ATR defects, as they share common targets. When ATM is unable to compensate for ATR 

function, then cells are unable to resolve the damage and cells will more likely undergo 

apoptosis. In our studies, we showed that BRIT1 promotes the long-term activation of ATR 

signaling. Looking at this from a therapeutic perspective, BRIT1 deficiency would mimic ATR 

inactivation. Because of this, it would be interesting to test whether BRIT1 deficiency sensitizes 

cells to cisplatin or other DNA damaging agents, especially under conditions where the ATM 
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pathway is compromised. Liang et al. have already generated mice models with BRIT1 

deficiencies. They have shown that shown that BRIT1 knockout mice were growth-retarded at 

adulthood, and were more sensitive to ionizing radiation, as all BRIT1-/- mice died within nine 

days post-IR, while the majority of BRIT1-/+ or +/+ mice survived past 4 weeks (n = 

30/genotype) (Liang et al., 2010). Another in vivo study demonstrated that BRIT1 deletion 

caused a defect in HR and increasing genomic instability in mice neuroprogenitor cells (Zhou et 

al., 2013). Using similar animal models, BRIT1 deficiency can be tested for sensitivity to DNA 

damaging and stress-inducing therapeutics such as cisplatin and gemcitabine, especially when 

the ATM pathway is inhibited. If BRIT1 deficient cells do display elevated sensitivity, we could 

test whether ATR signaling is intact, to check whether drug sensitivity is caused by defects in 

ATR signaling and checkpoint activation. Together, these studies would help clarify whether 

BRIT1 promotes the replication stress response through ATR signaling. 

  



 113

REFERENCES 

 

Alderton, G.K., Galbiati, L., Griffith, E., Surinya, K.H., Neitzel, H., Jackson, A.P., Jeggo, P.A., 

and O'Driscoll, M. (2006). Regulation of mitotic entry by microcephalin and its overlap with ATR 

signalling. Nature cell biology 8, 725-733. 

Alderton, G.K., Joenje, H., Varon, R., Borglum, A.D., Jeggo, P.A., and O'Driscoll, M. (2004). 

Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling 

pathway. Human molecular genetics 13, 3127-3138. 

Alsiary, R., Bruning-Richardson, A., Bond, J., Morrison, E.E., Wilkinson, N., and Bell, S.M. 

(2014). Deregulation of microcephalin and ASPM expression are correlated with epithelial 

ovarian cancer progression. PloS one 9, e97059. 

Aparicio, O.M., Weinstein, D.M., and Bell, S.P. (1997). Components and dynamics of DNA 

replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S 

phase. Cell 91, 59-69. 

Appella, E., and Anderson, C.W. (2001). Post-translational modifications and activation of p53 

by genotoxic stresses. European journal of biochemistry / FEBS 268, 2764-2772. 

Armstrong, J.F., Kaufman, M.H., Harrison, D.J., and Clarke, A.R. (1995). High-frequency 

developmental abnormalities in p53-deficient mice. Current biology : CB 5, 931-936. 

Ashkenazi, A. (2008). Directing cancer cells to self-destruct with pro-apoptotic receptor 

agonists. Nature reviews Drug discovery 7, 1001-1012. 

Attardi, L.D., de Vries, A., and Jacks, T. (2004). Activation of the p53-dependent G1 checkpoint 

response in mouse embryo fibroblasts depends on the specific DNA damage inducer. 

Oncogene 23, 973-980. 

Ball, H.L., Myers, J.S., and Cortez, D. (2005). ATRIP binding to replication protein A-single-

stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. 

Molecular biology of the cell 16, 2372-2381. 



 114

Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C.W., Chessa, L., Smorodinsky, N.I., 

Prives, C., Reiss, Y., Shiloh, Y., and Ziv, Y. (1998). Enhanced phosphorylation of p53 by ATM 

in response to DNA damage. Science 281, 1674-1677. 

Barkovich, A.J., Ferriero, D.M., Barr, R.M., Gressens, P., Dobyns, W.B., Truwit, C.L., and 

Evrard, P. (1998). Microlissencephaly: a heterogeneous malformation of cortical development. 

Neuropediatrics 29, 113-119. 

Bartek, J., and Lukas, J. (2007). DNA damage checkpoints: from initiation to recovery or 

adaptation. Current opinion in cell biology 19, 238-245. 

Bekker-Jensen, S., and Mailand, N. (2010). Assembly and function of DNA double-strand break 

repair foci in mammalian cells. DNA repair 9, 1219-1228. 

Benchimol, S. (2001). p53-dependent pathways of apoptosis. Cell death and differentiation 8, 

1049-1051. 

Betermier, M., Bertrand, P., and Lopez, B.S. (2014). Is non-homologous end-joining really an 

inherently error-prone process? PLoS genetics 10, e1004086. 

Bhattacharya, N., Mukherjee, N., Singh, R.K., Sinha, S., Alam, N., Roy, A., Roychoudhury, S., 

and Panda, C.K. (2013). Frequent alterations of MCPH1 and ATM are associated with primary 

breast carcinoma: clinical and prognostic implications. Annals of surgical oncology 20 Suppl 3, 

S424-432. 

Bonner, W.M., Redon, C.E., Dickey, J.S., Nakamura, A.J., Sedelnikova, O.A., Solier, S., and 

Pommier, Y. (2008). GammaH2AX and cancer. Nature reviews Cancer 8, 957-967. 

Booher, R.N., Holman, P.S., and Fattaey, A. (1997). Human Myt1 is a cell cycle-regulated 

kinase that inhibits Cdc2 but not Cdk2 activity. The Journal of biological chemistry 272, 22300-

22306. 

Branzei, D., and Foiani, M. (2005). The DNA damage response during DNA replication. Current 

opinion in cell biology 17, 568-575. 

Branzei, D., and Foiani, M. (2008). Regulation of DNA repair throughout the cell cycle. Nature 

reviews Molecular cell biology 9, 297-308. 



 115

Branzei, D., and Foiani, M. (2010). Maintaining genome stability at the replication fork. Nature 

reviews Molecular cell biology 11, 208-219. 

Bratton, S.B., and Salvesen, G.S. (2010). Regulation of the Apaf-1-caspase-9 apoptosome. 

Journal of cell science 123, 3209-3214. 

Brosh, R., and Rotter, V. (2009). When mutants gain new powers: news from the mutant p53 

field. Nature reviews Cancer 9, 701-713. 

Brown, J.A., Eykelenboom, J.K., and Lowndes, N.F. (2012). Co-mutation of histone H2AX 

S139A with Y142A rescues Y142A-induced ionising radiation sensitivity. FEBS open bio 2, 

313-317. 

Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J.P., Sedivy, J.M., Kinzler, 

K.W., and Vogelstein, B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA 

damage. Science 282, 1497-1501. 

Buscemi, G., Perego, P., Carenini, N., Nakanishi, M., Chessa, L., Chen, J., Khanna, K., and 

Delia, D. (2004). Activation of ATM and Chk2 kinases in relation to the amount of DNA strand 

breaks. Oncogene 23, 7691-7700. 

Buscemi, G., Savio, C., Zannini, L., Micciche, F., Masnada, D., Nakanishi, M., Tauchi, H., 

Komatsu, K., Mizutani, S., Khanna, K., Chen, P., Concannon, P., Chessa, L., and Delia, D. 

(2001). Chk2 activation dependence on Nbs1 after DNA damage. Molecular and cellular 

biology 21, 5214-5222. 

Byun, T.S., Pacek, M., Yee, M.C., Walter, J.C., and Cimprich, K.A. (2005). Functional 

uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent 

checkpoint. Genes & development 19, 1040-1052. 

Carreira, A., Hilario, J., Amitani, I., Baskin, R.J., Shivji, M.K., Venkitaraman, A.R., and 

Kowalczykowski, S.C. (2009). The BRC repeats of BRCA2 modulate the DNA-binding 

selectivity of RAD51. Cell 136, 1032-1043. 

Chan, T.A., Hermeking, H., Lengauer, C., Kinzler, K.W., and Vogelstein, B. (1999). 14-3-

3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616-620. 



 116

Chanoux, R.A., Yin, B., Urtishak, K.A., Asare, A., Bassing, C.H., and Brown, E.J. (2009). ATR 

and H2AX cooperate in maintaining genome stability under replication stress. The Journal of 

biological chemistry 284, 5994-6003. 

Chapman, J.R., and Jackson, S.P. (2008). Phospho-dependent interactions between NBS1 

and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO 

reports 9, 795-801. 

Chehab, N.H., Malikzay, A., Appel, M., and Halazonetis, T.D. (2000). Chk2/hCds1 functions as 

a DNA damage checkpoint in G(1) by stabilizing p53. Genes & development 14, 278-288. 

Chen, J., Marechal, V., and Levine, A.J. (1993). Mapping of the p53 and mdm-2 interaction 

domains. Molecular and cellular biology 13, 4107-4114. 

Choi, J.H., Lindsey-Boltz, L.A., Kemp, M., Mason, A.C., Wold, M.S., and Sancar, A. (2010). 

Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling. 

Proceedings of the National Academy of Sciences of the United States of America 107, 13660-

13665. 

Chung, H.K., Yi, Y.W., Jung, N.C., Kim, D., Suh, J.M., Kim, H., Park, K.C., Song, J.H., Kim, 

D.W., Hwang, E.S., Yoon, S.H., Bae, Y.S., Kim, J.M., Bae, I., and Shong, M. (2003). CR6-

interacting factor 1 interacts with Gadd45 family proteins and modulates the cell cycle. The 

Journal of biological chemistry 278, 28079-28088. 

Cimprich, K.A., and Cortez, D. (2008). ATR: an essential regulator of genome integrity. Nature 

reviews Molecular cell biology 9, 616-627. 

Costanzo, V., Shechter, D., Lupardus, P.J., Cimprich, K.A., Gottesman, M., and Gautier, J. 

(2003). An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA 

replication. Molecular cell 11, 203-213. 

Curtin, N.J. (2012). DNA repair dysregulation from cancer driver to therapeutic target. Nature 

reviews Cancer 12, 801-817. 



 117

Davidoff, A.M., Humphrey, P.A., Iglehart, J.D., and Marks, J.R. (1991). Genetic basis for p53 

overexpression in human breast cancer. Proceedings of the National Academy of Sciences of 

the United States of America 88, 5006-5010. 

Delacroix, S., Wagner, J.M., Kobayashi, M., Yamamoto, K., and Karnitz, L.M. (2007). The 

Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes & 

development 21, 1472-1477. 

Deng, C., Zhang, P., Harper, J.W., Elledge, S.J., and Leder, P. (1995). Mice lacking 

p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 

82, 675-684. 

Doil, C., Mailand, N., Bekker-Jensen, S., Menard, P., Larsen, D.H., Pepperkok, R., Ellenberg, 

J., Panier, S., Durocher, D., Bartek, J., Lukas, J., and Lukas, C. (2009). RNF168 binds and 

amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair 

proteins. Cell 136, 435-446. 

Donehower, L.A. (1996). The p53-deficient mouse: a model for basic and applied cancer 

studies. Seminars in cancer biology 7, 269-278. 

Donehower, L.A., and Lozano, G. (2009). 20 years studying p53 functions in genetically 

engineered mice. Nature reviews Cancer 9, 831-841. 

Erster, S., Mihara, M., Kim, R.H., Petrenko, O., and Moll, U.M. (2004). In vivo mitochondrial 

p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can 

precede p53 target gene activation. Molecular and cellular biology 24, 6728-6741. 

Esashi, F., Christ, N., Gannon, J., Liu, Y., Hunt, T., Jasin, M., and West, S.C. (2005). CDK-

dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. 

Nature 434, 598-604. 

Fang, S., Jensen, J.P., Ludwig, R.L., Vousden, K.H., and Weissman, A.M. (2000). Mdm2 is a 

RING finger-dependent ubiquitin protein ligase for itself and p53. The Journal of biological 

chemistry 275, 8945-8951. 



 118

Ferguson, D.O., and Alt, F.W. (2001). DNA double strand break repair and chromosomal 

translocation: lessons from animal models. Oncogene 20, 5572-5579. 

Flynn, R.L., and Zou, L. (2011). ATR: a master conductor of cellular responses to DNA 

replication stress. Trends in biochemical sciences 36, 133-140. 

Fornace, A.J., Jr., Alamo, I., Jr., and Hollander, M.C. (1988). DNA damage-inducible transcripts 

in mammalian cells. Proceedings of the National Academy of Sciences of the United States of 

America 85, 8800-8804. 

Frenkel, J., Sherman, D., Fein, A., Schwartz, D., Almog, N., Kapon, A., Goldfinger, N., and 

Rotter, V. (1999). Accentuated apoptosis in normally developing p53 knockout mouse embryos 

following genotoxic stress. Oncogene 18, 2901-2907. 

Galkin, V.E., Esashi, F., Yu, X., Yang, S., West, S.C., and Egelman, E.H. (2005). BRCA2 BRC 

motifs bind RAD51-DNA filaments. Proceedings of the National Academy of Sciences of the 

United States of America 102, 8537-8542. 

Gasco, M., Shami, S., and Crook, T. (2002). The p53 pathway in breast cancer. Breast cancer 

research : BCR 4, 70-76. 

Gatei, M., Zhou, B.B., Hobson, K., Scott, S., Young, D., and Khanna, K.K. (2001). Ataxia 

telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate 

phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-

specific antibodies. The Journal of biological chemistry 276, 17276-17280. 

Ghani-Kakhki, M., Robinson, P.N., Morlot, S., Mitter, D., Trimborn, M., Albrecht, B., Varon, R., 

Sperling, K., and Neitzel, H. (2012). Two Missense Mutations in the Primary Autosomal 

Recessive Microcephaly Gene MCPH1 Disrupt the Function of the Highly Conserved N-

Terminal BRCT Domain of Microcephalin. Molecular syndromology 3, 6-13. 

Gruber, R., Zhou, Z., Sukchev, M., Joerss, T., Frappart, P.O., and Wang, Z.Q. (2011). MCPH1 

regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic 

entry through the Chk1-Cdc25 pathway. Nature cell biology 13, 1325-1334. 



 119

Gudkov, A.V., and Komarova, E.A. (2003). The role of p53 in determining sensitivity to 

radiotherapy. Nature reviews Cancer 3, 117-129. 

Haber, J.E. (1999). DNA recombination: the replication connection. Trends in biochemical 

sciences 24, 271-275. 

Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. 

Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., and Elledge, S.J. (1993). The p21 Cdk-

interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816. 

Harper, J.W., and Elledge, S.J. (2007). The DNA damage response: ten years after. Molecular 

cell 28, 739-745. 

Hashimoto, M., Kyo, S., Hua, X., Tahara, H., Nakajima, M., Takakura, M., Sakaguchi, J., 

Maida, Y., Nakamura, M., Ikoma, T., Mizumoto, Y., and Inoue, M. (2008). Role of menin in the 

regulation of telomerase activity in normal and cancer cells. International journal of oncology 

33, 333-340. 

Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. 

Experimental cell research 25, 585-621. 

He, G., Siddik, Z.H., Huang, Z., Wang, R., Koomen, J., Kobayashi, R., Khokhar, A.R., and 

Kuang, J. (2005). Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 

activities. Oncogene 24, 2929-2943. 

Heitzer, E., and Tomlinson, I. (2014). Replicative DNA polymerase mutations in cancer. Current 

opinion in genetics & development 24, 107-113. 

Hermeking, H., Lengauer, C., Polyak, K., He, T.C., Zhang, L., Thiagalingam, S., Kinzler, K.W., 

and Vogelstein, B. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. 

Molecular cell 1, 3-11. 

Higginbotham, H.R., and Gleeson, J.G. (2007). The centrosome in neuronal development. 

Trends in neurosciences 30, 276-283. 



 120

Hock, A.K., Vigneron, A.M., Carter, S., Ludwig, R.L., and Vousden, K.H. (2011). Regulation of 

p53 stability and function by the deubiquitinating enzyme USP42. The EMBO journal 30, 4921-

4930. 

Hollander, M.C., Alamo, I., Jackman, J., Wang, M.G., McBride, O.W., and Fornace, A.J., Jr. 

(1993). Analysis of the mammalian gadd45 gene and its response to DNA damage. The 

Journal of biological chemistry 268, 24385-24393. 

Horejsi, Z., Falck, J., Bakkenist, C.J., Kastan, M.B., Lukas, J., and Bartek, J. (2004). Distinct 

functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low 

doses of ionizing radiation. Oncogene 23, 3122-3127. 

Huart, A.S., MacLaine, N.J., Meek, D.W., and Hupp, T.R. (2009). CK1alpha plays a central role 

in mediating MDM2 control of p53 and E2F-1 protein stability. The Journal of biological 

chemistry 284, 32384-32394. 

Huen, M.S., Grant, R., Manke, I., Minn, K., Yu, X., Yaffe, M.B., and Chen, J. (2007). RNF8 

transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. 

Cell 131, 901-914. 

Huertas, P., and Jackson, S.P. (2009). Human CtIP mediates cell cycle control of DNA end 

resection and double strand break repair. The Journal of biological chemistry 284, 9558-9565. 

Inuzuka, H., Tseng, A., Gao, D., Zhai, B., Zhang, Q., Shaik, S., Wan, L., Ang, X.L., Mock, C., 

Yin, H., Stommel, J.M., Gygi, S., Lahav, G., Asara, J., Xiao, Z.X., Kaelin, W.G., Jr., Harper, 

J.W., and Wei, W. (2010). Phosphorylation by casein kinase I promotes the turnover of the 

Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer cell 18, 147-159. 

Itahana, K., Mao, H., Jin, A., Itahana, Y., Clegg, H.V., Lindstrom, M.S., Bhat, K.P., Godfrey, 

V.L., Evan, G.I., and Zhang, Y. (2007). Targeted inactivation of Mdm2 RING finger E3 ubiquitin 

ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer cell 12, 

355-366. 



 121

Ito, A., Kawaguchi, Y., Lai, C.H., Kovacs, J.J., Higashimoto, Y., Appella, E., and Yao, T.P. 

(2002). MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. The 

EMBO journal 21, 6236-6245. 

Ito, A., Lai, C.H., Zhao, X., Saito, S., Hamilton, M.H., Appella, E., and Yao, T.P. (2001). 

p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and 

inhibited by MDM2. The EMBO journal 20, 1331-1340. 

Iwatsuki, K., Horiuchi, A., Ren, L.M., and Chiba, S. (1995). D-1 dopamine receptors mediate 

dopamine-induced pancreatic exocrine secretion in anesthetized dogs. Hypertension research : 

official journal of the Japanese Society of Hypertension 18 Suppl 1, S173-174. 

Jackson, A.P., Eastwood, H., Bell, S.M., Adu, J., Toomes, C., Carr, I.M., Roberts, E., 

Hampshire, D.J., Crow, Y.J., Mighell, A.J., Karbani, G., Jafri, H., Rashid, Y., Mueller, R.F., 

Markham, A.F., and Woods, C.G. (2002a). Identification of microcephalin, a protein implicated 

in determining the size of the human brain. American journal of human genetics 71, 136-142. 

Jackson, A.P., Eastwood, H., Bell, S.M., Adu, J., Toomes, C., Carr, I.M., Roberts, E., 

Hampshire, D.J., Crow, Y.J., Mighell, A.J., Karbani, G., Jafri, H., Rashid, Y., Mueller, R.F., 

Markham, A.F., and Woods, C.G. (2002b). Identification of microcephalin, a protein implicated 

in determining the size of the human brain. American journal of human genetics 71, 136-142. 

Jin, S., Zhao, H., Fan, F., Blanck, P., Fan, W., Colchagie, A.B., Fornace, A.J., Jr., and Zhan, Q. 

(2000). BRCA1 activation of the GADD45 promoter. Oncogene 19, 4050-4057. 

Jo, Y.H., Kim, H.O., Lee, J., Lee, S.S., Cho, C.H., Kang, I.S., Choe, W.J., Baik, H.H., and 

Yoon, K.S. (2013). MCPH1 protein expression and polymorphisms are associated with risk of 

breast cancer. Gene 517, 184-190. 

Jones, S.N., Roe, A.E., Donehower, L.A., and Bradley, A. (1995). Rescue of embryonic lethality 

in Mdm2-deficient mice by absence of p53. Nature 378, 206-208. 

Kastan, M.B., Zhan, Q., el-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., 

Vogelstein, B., and Fornace, A.J., Jr. (1992). A mammalian cell cycle checkpoint pathway 

utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587-597. 



 122

Kihlmark, M., Imreh, G., and Hallberg, E. (2001). Sequential degradation of proteins from the 

nuclear envelope during apoptosis. Journal of cell science 114, 3643-3653. 

Kim, H., Chen, J., and Yu, X. (2007). Ubiquitin-binding protein RAP80 mediates BRCA1-

dependent DNA damage response. Science 316, 1202-1205. 

Kim, J.E., McAvoy, S.A., Smith, D.I., and Chen, J. (2005). Human TopBP1 ensures genome 

integrity during normal S phase. Molecular and cellular biology 25, 10907-10915. 

Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., 

Wright, W.E., Weinrich, S.L., and Shay, J.W. (1994). Specific association of human telomerase 

activity with immortal cells and cancer. Science 266, 2011-2015. 

Kim, S.T., Lim, D.S., Canman, C.E., and Kastan, M.B. (1999). Substrate specificities and 

identification of putative substrates of ATM kinase family members. The Journal of biological 

chemistry 274, 37538-37543. 

Kobet, E., Zeng, X., Zhu, Y., Keller, D., and Lu, H. (2000). MDM2 inhibits p300-mediated p53 

acetylation and activation by forming a ternary complex with the two proteins. Proceedings of 

the National Academy of Sciences of the United States of America 97, 12547-12552. 

Kramer, A., Mailand, N., Lukas, C., Syljuasen, R.G., Wilkinson, C.J., Nigg, E.A., Bartek, J., and 

Lukas, J. (2004). Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 

kinase. Nature cell biology 6, 884-891. 

Kumagai, A., Lee, J., Yoo, H.Y., and Dunphy, W.G. (2006). TopBP1 activates the ATR-ATRIP 

complex. Cell 124, 943-955. 

Lai, Z., Ferry, K.V., Diamond, M.A., Wee, K.E., Kim, Y.B., Ma, J., Yang, T., Benfield, P.A., 

Copeland, R.A., and Auger, K.R. (2001). Human mdm2 mediates multiple mono-ubiquitination 

of p53 by a mechanism requiring enzyme isomerization. The Journal of biological chemistry 

276, 31357-31367. 

Lavin, M.F., and Gueven, N. (2006). The complexity of p53 stabilization and activation. Cell 

death and differentiation 13, 941-950. 



 123

LeBlanc, H.N., and Ashkenazi, A. (2003). Apo2L/TRAIL and its death and decoy receptors. Cell 

death and differentiation 10, 66-75. 

Lee, C.W., Ferreon, J.C., Ferreon, A.C., Arai, M., and Wright, P.E. (2010). Graded 

enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. 

Proceedings of the National Academy of Sciences of the United States of America 107, 19290-

19295. 

Lee, J., and Dunphy, W.G. (2010). Rad17 plays a central role in establishment of the 

interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks. 

Molecular biology of the cell 21, 926-935. 

Lee, J., Kumagai, A., and Dunphy, W.G. (2007). The Rad9-Hus1-Rad1 checkpoint clamp 

regulates interaction of TopBP1 with ATR. The Journal of biological chemistry 282, 28036-

28044. 

Li, Y., Jenkins, C.W., Nichols, M.A., and Xiong, Y. (1994). Cell cycle expression and p53 

regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9, 2261-2268. 

Liang, Y., Gao, H., Lin, S.Y., Peng, G., Huang, X., Zhang, P., Goss, J.A., Brunicardi, F.C., 

Multani, A.S., Chang, S., and Li, K. (2010). BRIT1/MCPH1 is essential for mitotic and meiotic 

recombination DNA repair and maintaining genomic stability in mice. PLoS genetics 6, 

e1000826. 

Lieber, M.R., and Wilson, T.E. (2010). SnapShot: Nonhomologous DNA end joining (NHEJ). 

Cell 142, 496-496 e491. 

Lin, S.Y., and Elledge, S.J. (2003). Multiple tumor suppressor pathways negatively regulate 

telomerase. Cell 113, 881-889. 

Lin, S.Y., Rai, R., Li, K., Xu, Z.X., and Elledge, S.J. (2005). BRIT1/MCPH1 is a DNA damage 

responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction 

in microcephaly. Proceedings of the National Academy of Sciences of the United States of 

America 102, 15105-15109. 



 124

Linares, L.K., Kiernan, R., Triboulet, R., Chable-Bessia, C., Latreille, D., Cuvier, O., Lacroix, M., 

Le Cam, L., Coux, O., and Benkirane, M. (2007). Intrinsic ubiquitination activity of PCAF 

controls the stability of the oncoprotein Hdm2. Nature cell biology 9, 331-338. 

Lindstrom, M.S., Jin, A., Deisenroth, C., White Wolf, G., and Zhang, Y. (2007). Cancer-

associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and 

attenuate MDM2-induced p53 degradation. Molecular and cellular biology 27, 1056-1068. 

Liu, Q., Guntuku, S., Cui, X.S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini-Rivera, 

S., DeMayo, F., Bradley, A., Donehower, L.A., and Elledge, S.J. (2000). Chk1 is an essential 

kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes & 

development 14, 1448-1459. 

Liu, S., Bekker-Jensen, S., Mailand, N., Lukas, C., Bartek, J., and Lukas, J. (2006). Claspin 

operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Molecular 

and cellular biology 26, 6056-6064. 

Liu, S., Opiyo, S.O., Manthey, K., Glanzer, J.G., Ashley, A.K., Amerin, C., Troksa, K., 

Shrivastav, M., Nickoloff, J.A., and Oakley, G.G. (2012). Distinct roles for DNA-PK, ATM and 

ATR in RPA phosphorylation and checkpoint activation in response to replication stress. 

Nucleic acids research 40, 10780-10794. 

Liu, S., Shiotani, B., Lahiri, M., Marechal, A., Tse, A., Leung, C.C., Glover, J.N., Yang, X.H., 

and Zou, L. (2011). ATR autophosphorylation as a molecular switch for checkpoint activation. 

Molecular cell 43, 192-202. 

Lovejoy, C.A., and Cortez, D. (2009). Common mechanisms of PIKK regulation. DNA repair 8, 

1004-1008. 

Lukas, J., Lukas, C., and Bartek, J. (2004). Mammalian cell cycle checkpoints: signalling 

pathways and their organization in space and time. DNA repair 3, 997-1007. 

Lukas, J., Lukas, C., and Bartek, J. (2011). More than just a focus: The chromatin response to 

DNA damage and its role in genome integrity maintenance. Nature cell biology 13, 1161-1169. 



 125

Lukashchuk, N., and Vousden, K.H. (2007). Ubiquitination and degradation of mutant p53. 

Molecular and cellular biology 27, 8284-8295. 

Mai, L., Yi, F., Gou, X., Zhang, J., Wang, C., Liu, G., Bu, Y., Yuan, C., Deng, L., and Song, F. 

(2014). The overexpression of MCPH1 inhibits cell growth through regulating cell cycle-related 

proteins and activating cytochrome c-caspase 3 signaling in cervical cancer. Molecular and 

cellular biochemistry 392, 95-107. 

Mailand, N., Falck, J., Lukas, C., Syljuasen, R.G., Welcker, M., Bartek, J., and Lukas, J. (2000). 

Rapid destruction of human Cdc25A in response to DNA damage. Science 288, 1425-1429. 

Mailand, N., Gibbs-Seymour, I., and Bekker-Jensen, S. (2013). Regulation of PCNA-protein 

interactions for genome stability. Nature reviews Molecular cell biology 14, 269-282. 

Majewski, F., and Goecke, T. (1982). Studies of microcephalic primordial dwarfism I: approach 

to a delineation of the Seckel syndrome. American journal of medical genetics 12, 7-21. 

Manfredi, J.J. (2010). The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an 

oncogene and a tumor suppressor. Genes & development 24, 1580-1589. 

Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., 3rd, Hurov, K.E., Luo, J., 

Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S.P., and Elledge, S.J. 

(2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to 

DNA damage. Science 316, 1160-1166. 

McGlynn, P., and Lloyd, R.G. (2002a). Recombinational repair and restart of damaged 

replication forks. Nature reviews Molecular cell biology 3, 859-870. 

McGlynn, P., and Lloyd, R.G. (2002b). Replicating past lesions in DNA. Molecular cell 10, 700-

701. 

Meek, D.W. (2004). The p53 response to DNA damage. DNA repair 3, 1049-1056. 

Meek, D.W., and Knippschild, U. (2003). Posttranslational modification of MDM2. Molecular 

cancer research : MCR 1, 1017-1026. 

Michael, D., and Oren, M. (2003). The p53-Mdm2 module and the ubiquitin system. Seminars 

in cancer biology 13, 49-58. 



 126

Miller, L.D., Smeds, J., George, J., Vega, V.B., Vergara, L., Ploner, A., Pawitan, Y., Hall, P., 

Klaar, S., Liu, E.T., and Bergh, J. (2005). An expression signature for p53 status in human 

breast cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings 

of the National Academy of Sciences of the United States of America 102, 13550-13555. 

Mimitou, E.P., and Symington, L.S. (2008). Sae2, Exo1 and Sgs1 collaborate in DNA double-

strand break processing. Nature 455, 770-774. 

Minard, L.V., Lin, L.J., and Schultz, M.C. (2011). SWI/SNF and Asf1 independently promote 

derepression of the DNA damage response genes under conditions of replication stress. PloS 

one 6, e21633. 

Moll, U.M., Riou, G., and Levine, A.J. (1992). Two distinct mechanisms alter p53 in breast 

cancer: mutation and nuclear exclusion. Proceedings of the National Academy of Sciences of 

the United States of America 89, 7262-7266. 

Momand, J., Zambetti, G.P., Olson, D.C., George, D., and Levine, A.J. (1992). The mdm-2 

oncogene product forms a complex with the p53 protein and inhibits p53-mediated 

transactivation. Cell 69, 1237-1245. 

Montes de Oca Luna, R., Wagner, D.S., and Lozano, G. (1995). Rescue of early embryonic 

lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203-206. 

Mordes, D.A., Glick, G.G., Zhao, R., and Cortez, D. (2008). TopBP1 activates ATR through 

ATRIP and a PIKK regulatory domain. Genes & development 22, 1478-1489. 

Morin, G.B. (1989). The human telomere terminal transferase enzyme is a ribonucleoprotein 

that synthesizes TTAGGG repeats. Cell 59, 521-529. 

Moynahan, M.E., and Jasin, M. (2010). Mitotic homologous recombination maintains genomic 

stability and suppresses tumorigenesis. Nature reviews Molecular cell biology 11, 196-207. 

Nagata, S. (2000). Apoptotic DNA fragmentation. Experimental cell research 256, 12-18. 

Neigeborn, L., and Carlson, M. (1984). Genes affecting the regulation of SUC2 gene 

expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845-858. 



 127

Neitzel, H., Neumann, L.M., Schindler, D., Wirges, A., Tonnies, H., Trimborn, M., Krebsova, A., 

Richter, R., and Sperling, K. (2002). Premature chromosome condensation in humans 

associated with microcephaly and mental retardation: a novel autosomal recessive condition. 

American journal of human genetics 70, 1015-1022. 

Nimonkar, A.V., Ozsoy, A.Z., Genschel, J., Modrich, P., and Kowalczykowski, S.C. (2008). 

Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. 

Proceedings of the National Academy of Sciences of the United States of America 105, 16906-

16911. 

Oh, S., Song, Y.H., Yim, J., and Kim, T.K. (2000). Identification of Mad as a repressor of the 

human telomerase (hTERT) gene. Oncogene 19, 1485-1490. 

Orlando, G., Khoronenkova, S.V., Dianova, II, Parsons, J.L., and Dianov, G.L. (2014). ARF 

induction in response to DNA strand breaks is regulated by PARP1. Nucleic acids research 42, 

2320-2329. 

Papathanasiou, M.A., Kerr, N.C., Robbins, J.H., McBride, O.W., Alamo, I., Jr., Barrett, S.F., 

Hickson, I.D., and Fornace, A.J., Jr. (1991). Induction by ionizing radiation of the gadd45 gene 

in cultured human cells: lack of mediation by protein kinase C. Molecular and cellular biology 

11, 1009-1016. 

Parker, L.L., Atherton-Fessler, S., Lee, M.S., Ogg, S., Falk, J.L., Swenson, K.I., and Piwnica-

Worms, H. (1991). Cyclin promotes the tyrosine phosphorylation of p34cdc2 in a wee1+ 

dependent manner. The EMBO journal 10, 1255-1263. 

Pazin, M.J., and Kadonaga, J.T. (1997). SWI2/SNF2 and related proteins: ATP-driven motors 

that disrupt protein-DNA interactions? Cell 88, 737-740. 

Peng, G., Chun-Jen Lin, C., Mo, W., Dai, H., Park, Y.Y., Kim, S.M., Peng, Y., Mo, Q., Siwko, 

S., Hu, R., Lee, J.S., Hennessy, B., Hanash, S., Mills, G.B., and Lin, S.Y. (2014). Genome-wide 

transcriptome profiling of homologous recombination DNA repair. Nature communications 5, 

3361. 



 128

Peng, G., Yim, E.K., Dai, H., Jackson, A.P., Burgt, I., Pan, M.R., Hu, R., Li, K., and Lin, S.Y. 

(2009). BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nature cell 

biology 11, 865-872. 

Pharoah, P.D., Day, N.E., and Caldas, C. (1999). Somatic mutations in the p53 gene and 

prognosis in breast cancer: a meta-analysis. British journal of cancer 80, 1968-1973. 

Polo, S.E., and Jackson, S.P. (2011). Dynamics of DNA damage response proteins at DNA 

breaks: a focus on protein modifications. Genes & development 25, 409-433. 

Pommier, Y. (2013). Drugging topoisomerases: lessons and challenges. ACS chemical biology 

8, 82-95. 

Prakash, A., and Borgstahl, G.E. (2012). The structure and function of replication protein A in 

DNA replication. Sub-cellular biochemistry 62, 171-196. 

Rai, R., Dai, H., Multani, A.S., Li, K., Chin, K., Gray, J., Lahad, J.P., Liang, J., Mills, G.B., 

Meric-Bernstam, F., and Lin, S.Y. (2006). BRIT1 regulates early DNA damage response, 

chromosomal integrity, and cancer. Cancer cell 10, 145-157. 

Rai, R., Phadnis, A., Haralkar, S., Badwe, R.A., Dai, H., Li, K., and Lin, S.Y. (2008). Differential 

regulation of centrosome integrity by DNA damage response proteins. Cell cycle 7, 2225-2233. 

Ranaweera, R.S., and Yang, X. (2013). Auto-ubiquitination of Mdm2 enhances its substrate 

ubiquitin ligase activity. The Journal of biological chemistry 288, 18939-18946. 

Rayburn, E., Zhang, R., He, J., and Wang, H. (2005). MDM2 and human malignancies: 

expression, clinical pathology, prognostic markers, and implications for chemotherapy. Current 

cancer drug targets 5, 27-41. 

Reaper, P.M., Griffiths, M.R., Long, J.M., Charrier, J.D., Maccormick, S., Charlton, P.A., Golec, 

J.M., and Pollard, J.R. (2011). Selective killing of ATM- or p53-deficient cancer cells through 

inhibition of ATR. Nature chemical biology 7, 428-430. 

Richardson, J., Shaaban, A.M., Kamal, M., Alisary, R., Walker, C., Ellis, I.O., Speirs, V., Green, 

A.R., and Bell, S.M. (2011). Microcephalin is a new novel prognostic indicator in breast cancer 

associated with BRCA1 inactivation. Breast Cancer Res Treat 127, 639-648. 



 129

Riedl, S.J., and Salvesen, G.S. (2007). The apoptosome: signalling platform of cell death. 

Nature reviews Molecular cell biology 8, 405-413. 

Roth, J., Dobbelstein, M., Freedman, D.A., Shenk, T., and Levine, A.J. (1998). Nucleo-

cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a 

pathway used by the human immunodeficiency virus rev protein. The EMBO journal 17, 554-

564. 

Sartori, A.A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., Baer, R., Lukas, J., and 

Jackson, S.P. (2007). Human CtIP promotes DNA end resection. Nature 450, 509-514. 

Sheng, Y., Saridakis, V., Sarkari, F., Duan, S., Wu, T., Arrowsmith, C.H., and Frappier, L. 

(2006). Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nature structural & 

molecular biology 13, 285-291. 

Shi, L., Li, M., and Su, B. (2012). MCPH1/BRIT1 represses transcription of the human 

telomerase reverse transcriptase gene. Gene 495, 1-9. 

Shieh, S.Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000). The human homologs of 

checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-

inducible sites. Genes & development 14, 289-300. 

Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nature 

reviews Cancer 3, 155-168. 

Shiloh, Y. (2006). The ATM-mediated DNA-damage response: taking shape. Trends in 

biochemical sciences 31, 402-410. 

Siddik, Z.H. (2003). Cisplatin: mode of cytotoxic action and molecular basis of resistance. 

Oncogene 22, 7265-7279. 

Siliciano, J.D., Canman, C.E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M.B. (1997). 

DNA damage induces phosphorylation of the amino terminus of p53. Genes & development 11, 

3471-3481. 



 130

Smith, M.L., Chen, I.T., Zhan, Q., Bae, I., Chen, C.Y., Gilmer, T.M., Kastan, M.B., O'Connor, 

P.M., and Fornace, A.J., Jr. (1994). Interaction of the p53-regulated protein Gadd45 with 

proliferating cell nuclear antigen. Science 266, 1376-1380. 

Smits, V.A., Reaper, P.M., and Jackson, S.P. (2006). Rapid PIKK-dependent release of Chk1 

from chromatin promotes the DNA-damage checkpoint response. Current biology : CB 16, 150-

159. 

Sogo, J.M., Lopes, M., and Foiani, M. (2002). Fork reversal and ssDNA accumulation at stalled 

replication forks owing to checkpoint defects. Science 297, 599-602. 

Sorensen, C.S., and Syljuasen, R.G. (2012). Safeguarding genome integrity: the checkpoint 

kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic 

acids research 40, 477-486. 

Stern, M., Jensen, R., and Herskowitz, I. (1984). Five SWI genes are required for expression of 

the HO gene in yeast. Journal of molecular biology 178, 853-868. 

Stiff, T., Walker, S.A., Cerosaletti, K., Goodarzi, A.A., Petermann, E., Concannon, P., 

O'Driscoll, M., and Jeggo, P.A. (2006). ATR-dependent phosphorylation and activation of ATM 

in response to UV treatment or replication fork stalling. The EMBO journal 25, 5775-5782. 

Stucki, M., Clapperton, J.A., Mohammad, D., Yaffe, M.B., Smerdon, S.J., and Jackson, S.P. 

(2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to 

DNA double-strand breaks. Cell 123, 1213-1226. 

Susin, S.A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., Costantini, P., 

Ferri, K.F., Irinopoulou, T., Prevost, M.C., Brothers, G., Mak, T.W., Penninger, J., Earnshaw, 

W.C., and Kroemer, G. (2000). Two distinct pathways leading to nuclear apoptosis. The 

Journal of experimental medicine 192, 571-580. 

Tamura, R.E., de Vasconcellos, J.F., Sarkar, D., Libermann, T.A., Fisher, P.B., and Zerbini, 

L.F. (2012). GADD45 proteins: central players in tumorigenesis. Current molecular medicine 

12, 634-651. 



 131

Tanaka, S., and Araki, H. (2013). Helicase activation and establishment of replication forks at 

chromosomal origins of replication. Cold Spring Harbor perspectives in biology 5, a010371. 

Tibbetts, R.S., Brumbaugh, K.M., Williams, J.M., Sarkaria, J.N., Cliby, W.A., Shieh, S.Y., Taya, 

Y., Prives, C., and Abraham, R.T. (1999). A role for ATR in the DNA damage-induced 

phosphorylation of p53. Genes & development 13, 152-157. 

Tibelius, A., Marhold, J., Zentgraf, H., Heilig, C.E., Neitzel, H., Ducommun, B., Rauch, A., Ho, 

A.D., Bartek, J., and Kramer, A. (2009). Microcephalin and pericentrin regulate mitotic entry via 

centrosome-associated Chk1. The Journal of cell biology 185, 1149-1157. 

Torres, J.Z., Schnakenberg, S.L., and Zakian, V.A. (2004). Saccharomyces cerevisiae Rrm3p 

DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 

cells requires the intra-S-phase checkpoint and fork restart activities. Molecular and cellular 

biology 24, 3198-3212. 

Tovar, C., Rosinski, J., Filipovic, Z., Higgins, B., Kolinsky, K., Hilton, H., Zhao, X., Vu, B.T., 

Qing, W., Packman, K., Myklebost, O., Heimbrook, D.C., and Vassilev, L.T. (2006). Small-

molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. 

Proceedings of the National Academy of Sciences of the United States of America 103, 1888-

1893. 

Trimborn, M., Bell, S.M., Felix, C., Rashid, Y., Jafri, H., Griffiths, P.D., Neumann, L.M., Krebs, 

A., Reis, A., Sperling, K., Neitzel, H., and Jackson, A.P. (2004). Mutations in microcephalin 

cause aberrant regulation of chromosome condensation. American journal of human genetics 

75, 261-266. 

Vassin, V.M., Anantha, R.W., Sokolova, E., Kanner, S., and Borowiec, J.A. (2009). Human 

RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation 

during DNA-replication stress. Journal of cell science 122, 4070-4080. 

Vogelstein, B., and Kinzler, K.W. (2004). Cancer genes and the pathways they control. Nature 

medicine 10, 789-799. 



 132

Vousden, K.H., and Lu, X. (2002). Live or let die: the cell's response to p53. Nature reviews 

Cancer 2, 594-604. 

Waldman, T., Kinzler, K.W., and Vogelstein, B. (1995). p21 is necessary for the p53-mediated 

G1 arrest in human cancer cells. Cancer research 55, 5187-5190. 

Wang, J., Gong, Z., and Chen, J. (2011). MDC1 collaborates with TopBP1 in DNA replication 

checkpoint control. The Journal of cell biology 193, 267-273. 

Wang, Q., Zhang, H., Kajino, K., and Greene, M.I. (1998). BRCA1 binds c-Myc and inhibits its 

transcriptional and transforming activity in cells. Oncogene 17, 1939-1948. 

Ward, I.M., and Chen, J. (2001). Histone H2AX is phosphorylated in an ATR-dependent 

manner in response to replicational stress. The Journal of biological chemistry 276, 47759-

47762. 

Watanabe, N., Broome, M., and Hunter, T. (1995). Regulation of the human WEE1Hu CDK 

tyrosine 15-kinase during the cell cycle. The EMBO journal 14, 1878-1891. 

Waterman, M.J., Stavridi, E.S., Waterman, J.L., and Halazonetis, T.D. (1998). ATM-dependent 

activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nature 

genetics 19, 175-178. 

Wood, J.L., Liang, Y., Li, K., and Chen, J. (2008). Microcephalin/MCPH1 associates with the 

Condensin II complex to function in homologous recombination repair. The Journal of biological 

chemistry 283, 29586-29592. 

Wood, J.L., Singh, N., Mer, G., and Chen, J. (2007a). MCPH1 functions in an H2AX-dependent 

but MDC1-independent pathway in response to DNA damage. The Journal of biological 

chemistry 282, 35416-35423. 

Wood, J.L., Singh, N., Mer, G., and Chen, J. (2007b). MCPH1 functions in an H2AX-dependent 

but MDC1-independent pathway in response to DNA damage. The Journal of biological 

chemistry 282, 35416-35423. 

Woods, C.G. (2004). Human microcephaly. Current opinion in neurobiology 14, 112-117. 



 133

Wu, K.J., Grandori, C., Amacker, M., Simon-Vermot, N., Polack, A., Lingner, J., and Dalla-

Favera, R. (1999). Direct activation of TERT transcription by c-MYC. Nature genetics 21, 220-

224. 

Wu, L., Luo, K., Lou, Z., and Chen, J. (2008). MDC1 regulates intra-S-phase checkpoint by 

targeting NBS1 to DNA double-strand breaks. Proceedings of the National Academy of 

Sciences of the United States of America 105, 11200-11205. 

Wu, X., Bayle, J.H., Olson, D., and Levine, A.J. (1993). The p53-mdm-2 autoregulatory 

feedback loop. Genes & development 7, 1126-1132. 

Wyllie, A.H., Kerr, J.F., and Currie, A.R. (1980). Cell death: the significance of apoptosis. 

International review of cytology 68, 251-306. 

Wyman, C., and Kanaar, R. (2006). DNA double-strand break repair: all's well that ends well. 

Annual review of genetics 40, 363-383. 

Xiong, J., Fan, S., Meng, Q., Schramm, L., Wang, C., Bouzahza, B., Zhou, J., Zafonte, B., 

Goldberg, I.D., Haddad, B.R., Pestell, R.G., and Rosen, E.M. (2003). BRCA1 inhibition of 

telomerase activity in cultured cells. Molecular and cellular biology 23, 8668-8690. 

Xu, X., Lee, J., and Stern, D.F. (2004). Microcephalin is a DNA damage response protein 

involved in regulation of CHK1 and BRCA1. The Journal of biological chemistry 279, 34091-

34094. 

Xu, Y.J., and Leffak, M. (2010). ATRIP from TopBP1 to ATR--in vitro activation of a DNA 

damage checkpoint. Proceedings of the National Academy of Sciences of the United States of 

America 107, 13561-13562. 

Yamamoto, M., Tsukamoto, T., Sakai, H., Shirai, N., Ohgaki, H., Furihata, C., Donehower, L.A., 

Yoshida, K., and Tatematsu, M. (2000). p53 knockout mice (-/-) are more susceptible than (+/-) 

or (+/+) mice to N-methyl-N-nitrosourea stomach carcinogenesis. Carcinogenesis 21, 1891-

1897. 



 134

Yang, H., Jeffrey, P.D., Miller, J., Kinnucan, E., Sun, Y., Thoma, N.H., Zheng, N., Chen, P.L., 

Lee, W.H., and Pavletich, N.P. (2002). BRCA2 function in DNA binding and recombination from 

a BRCA2-DSS1-ssDNA structure. Science 297, 1837-1848. 

Yang, S.Z., Lin, F.T., and Lin, W.C. (2008). MCPH1/BRIT1 cooperates with E2F1 in the 

activation of checkpoint, DNA repair and apoptosis. EMBO reports 9, 907-915. 

You, Z., Shi, L.Z., Zhu, Q., Wu, P., Zhang, Y.W., Basilio, A., Tonnu, N., Verma, I.M., Berns, 

M.W., and Hunter, T. (2009). CtIP links DNA double-strand break sensing to resection. 

Molecular cell 36, 954-969. 

Yu, X., and Chen, J. (2004). DNA damage-induced cell cycle checkpoint control requires CtIP, 

a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Molecular and 

cellular biology 24, 9478-9486. 

Yu, X., Chini, C.C., He, M., Mer, G., and Chen, J. (2003). The BRCT domain is a phospho-

protein binding domain. Science 302, 639-642. 

Yuan, J., Adamski, R., and Chen, J. (2010). Focus on histone variant H2AX: to be or not to be. 

FEBS letters 584, 3717-3724. 

Zhan, Q., Antinore, M.J., Wang, X.W., Carrier, F., Smith, M.L., Harris, C.C., and Fornace, A.J., 

Jr. (1999). Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-

regulated protein Gadd45. Oncogene 18, 2892-2900. 

Zhang, L.N., Li, J.Y., and Xu, W. (2013). A review of the role of Puma, Noxa and Bim in the 

tumorigenesis, therapy and drug resistance of chronic lymphocytic leukemia. Cancer gene 

therapy 20, 1-7. 

Zhang, W., Bae, I., Krishnaraju, K., Azam, N., Fan, W., Smith, K., Hoffman, B., and 

Liebermann, D.A. (1999). CR6: A third member in the MyD118 and Gadd45 gene family which 

functions in negative growth control. Oncogene 18, 4899-4907. 

Zhang, X.P., Liu, F., and Wang, W. (2011). Two-phase dynamics of p53 in the DNA damage 

response. Proceedings of the National Academy of Sciences of the United States of America 

108, 8990-8995. 



 135

Zhao, H., and Piwnica-Worms, H. (2001). ATR-mediated checkpoint pathways regulate 

phosphorylation and activation of human Chk1. Molecular and cellular biology 21, 4129-4139. 

Zhong, X., Pfeifer, G.P., and Xu, X. (2006). Microcephalin encodes a centrosomal protein. Cell 

cycle 5, 457-458. 

Zhou, C., and Liu, J. (2003). Inhibition of human telomerase reverse transcriptase gene 

expression by BRCA1 in human ovarian cancer cells. Biochemical and biophysical research 

communications 303, 130-136. 

Zhou, Z.W., Tapias, A., Bruhn, C., Gruber, R., Sukchev, M., and Wang, Z.Q. (2013). DNA 

damage response in microcephaly development of MCPH1 mouse model. DNA repair 12, 645-

655. 

Zhu, Q., Yao, J., Wani, G., Wani, M.A., and Wani, A.A. (2001). Mdm2 mutant defective in 

binding p300 promotes ubiquitination but not degradation of p53: evidence for the role of p300 

in integrating ubiquitination and proteolysis. The Journal of biological chemistry 276, 29695-

29701. 

Zhu, W., Ukomadu, C., Jha, S., Senga, T., Dhar, S.K., Wohlschlegel, J.A., Nutt, L.K., 

Kornbluth, S., and Dutta, A. (2007). Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to 

chromatin for initiation of DNA replication. Genes & development 21, 2288-2299. 

Zou, L., and Elledge, S.J. (2003). Sensing DNA damage through ATRIP recognition of RPA-

ssDNA complexes. Science 300, 1542-1548. 

 

  



 136

Vita 

Edward Wang was born in Taipei, Taiwan on August 6, 1980 the son of Wen-Chin Wang and 

Ming-Chiun Wang. After graduating from Gunderson high school in San Jose, California in 

1999, he attended De Anza Junior College in Cupertino, California. He then finished his 

undergraduate studies at the University of California at Santa Cruz, California where he 

obtained a Bachelor of Science degree in Molecular, Cellular and Developmental Biology in 

2004. He then worked at Abgenix, Inc. and Amgen, Inc. through 2006 where he worked as a 

Process Development Associate. He then worked at OncoMed Pharmaceuticals as a Process 

Development Associate until 2008. In the fall semester of 2008, he entered the Ph.D. graduate 

program at the University of Texas Health Sciences Center at Houston Graduate School of 

Biomedical Sciences. In 2011, he joined the lab of Dr. Shiaw-Yih Lin at the University of Texas 

MD Anderson Cancer Center and studied the mechanisms of DNA damage repair. 

 


	Brit1/Mcph1 Mediates The Dna Damage Response By Inducing P53 Stability And Promoting Atr Signaling
	Recommended Citation

	Microsoft Word - 403462-convertdoc.input.391570.EJi3n.docx

