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GENOMIC CHARACTERIZATION OF POLYPS IN FAMILIAL ADENOMATOUS
POLYPOSIS PATIENTS AND IDENTIFICATION OF CANDIDATE

CHEMOPREVENTIVE DRUGS

Francis Anthony San Lucas, M.S.
Advisory Professor: Paul Scheet, Ph.D.

Secondary Advisor: Eduardo Vilar, M.D., Ph.D.

Familial adenomatous polyposis (FAP) is an autosomal dominant disease characterized by
APC germline mutations and the development of hundreds to thousands of premalignant
adenomas in the gastrointestinal tract at a young age. If left untreated, these patients
inevitably develop colon cancer (CRC) and small bowel tumors. We performed exome
sequencing of samples from 12 FAP patients to characterize adenomas and to identify
candidate genes of adenoma development that may serve as potential targets for
chemoprevention drug development. From each patient, a blood and at least one polyp were
sequenced with a total of 25 polyps analyzed. In some cases, normal mucosa samples were
also sequenced. We characterized point mutations, insertions, deletions and chromosomal
allelic imbalance. In addition, we performed RNA sequencing of 8 polyps and 4 normal
mucosa samples from the colon and small bowel of 2 additional FAP patients.

Somatic APC truncating mutations and loss of chromosome 5q were recurrent across
polyps, although we found no recurrent intra-patient somatic APC point mutations, indicating

intra-patient polyp heterogeneity. Oncogenic driver events such as activating KRAS mutations



were identified in multiple polyps. Further, analysis of mutation allele fractions suggests that
several of the polyps studied are multi-clonal in nature. Excluding the known genes APC and
KRAS, 50 candidate genes were identified that are putatively involved in the early
development of CRC. These genes could play a role in future chemoprevention strategies.
Most of these genes have been previously associated with CRC. In addition, a gene fusion in
PTEN was detected and a novel, recurrent REG3A fusion was identified in duodenum polyps.
The WNT signaling pathway, aberrant in 92% of CRCs, was recurrently altered in 80% of
polyps.

We identified colon and duodenum gene expression signatures of FAP patients and
screened them against drug-induced signatures using our Cancer in-silico Drug Discovery
(CiDD) software. CiDD identified Celecoxib, a COX-2 inhibitor that has already been clinically
tested as a chemopreventive drug, providing validity to our drug development approach.
CiDD also identified a novel candidate compound, TTNPB, which targets the Retinoid

pathway as a potential drug for chemopreventive treatment of FAP patients.
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1 Introduction

1.1 Background

1.1.1 Genetic basis and clinical description of Familial Adenomatous Polyposis (FAP)
Colorectal cancer (CRC) is the second leading cause of mortality in the United States' and
fourth worldwide?. Nearly half of the general population will develop at least one benign
colonic polyp in their lifetime with approximately 3% going on to develop CRC3. Symptoms are
rare until late stages, thus most sporadic CRC cases go undetected. There are two primary
forms of hereditary CRC: Familial Adenomatous Polyposis (FAP) and Lynch Syndrome (or
hereditary non-polyposis colorectal cancer, HNPCC). These are both autosomal dominant
diseases where patients are predisposed to cancers due to germline mutations in key genes.
FAP is characterized by mutations in the Adenomatous Polyposis Coli (APC) gene, whereas Lynch
Syndrome patients have germline mutations in genes involved in the DNA mismatch repair
pathway including MLH1, MSH2, TACSTD1, MSH6 and PMS2%. As such, FAP patients are born
with only one normal allele of the APC tumor suppressor gene, predisposing them to the
development of adenomas at younger ages compared to the general population. Similarly,
Lynch Syndrome patients are born with a defect that predisposes them to higher mutation rates
compared to normal individuals, giving them increased probabilities of obtaining key genomic
aberrations in genes crucial for the development of carcinomas. Both of these patient
populations are more likely to develop tumors compared to the general population. The focus

of the research described in this dissertation will be on FAP.



CRCs are thought to progress from a normal epithelium to an adenoma, or pre-malignant
lesion, and then to a carcinoma (the so-called adenoma-to-carcinoma sequence model°). This
sequence describes steps of gene and pathway alterations that give abnormal cells a selective
advantage to proliferate (see Figure 1). The initial step in tumorigenesis in the majority of
adenomas, which are premalignant lesions, is the loss of the APC gene. Intermediate adenomas
have activating mutations in KRAS, late adenomas are characterized by loss of SMAD4, and

carcinomas have acquired TP53 mutations among other alterations.
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Figure 1: Step-wise progression of sporadic and inherited (FAP and HNPCC) forms of CRC from normal epithelia to

adenomas and carcinomas (http://syscol-project.eu/about-syscol/).



The APC germline mutations of FAP patients accelerate the initiation of the adenoma-to-
carcinoma sequence, resulting in the development of hundreds to thousands of polyps,
generally in the colon and rectum and with lower densities in the small intestine such as the
duodenum, ileum and jejunum* (see Figure 2). The development of these polyps in large
numbers greater than 100 is termed polyposis. If left untreated, some polyps will inevitably
progress into cancer in the lower gastrointestinal tract and less frequently in the upper
gastrointestinal tract®. FAP accounts for less than 1 percent of all CRC cases and affects
approximately 1 in 10,000 people’. Patients with FAP develop CRC at an average age of 35
years if left untreated, although there is variability within and between families, some of which

can be explained by specific germline mutations in APC*.
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Figure 2: Overview of the gastrointestinal tract (http://en.wikipedia.org/wiki/Human_gastrointestinal_tract). In FAP
patients, polyps develop and proliferate both in the lower (e.g., the colon and rectum) and the upper gastrointestinal
tract (e.g., the duodenum and ileum). Malignancy rates of lower gastrointestinal tract polyps are higher than those in

the upper tract. Therefore, resection of the colon and rectum are common prophylactic surgical procedures in FAP

patients.



The primary cause of death for FAP patients has historically been CRC, which generally
develops by the third or fourth decade of life>. However, the current standard of treatment,
which includes regular surveillance through colonoscopy until the polyp burden becomes
unmanageable, often by 20 years of age, at which point prophylactic surgical resection of the
colon with colectomy or proctocolectomy, which includes removal of the rectum, is performed
for cancer prevention purposes and has reduced the mortality by CRC greatly in the last 2 to 3
decades®. While surgery significantly improves the overall survival of FAP patients, the
quality-of-life of these patients is reduced, apart from negative psychological aspects that are
also associated with these surgeries. For example, reports have associated infertility with these
surgeries®. In addition, patients with colectomies have a 25% risk of developing cancer in the
preserved rectum °¢. These patients require surveillance of the rectum throughout the remainder
of their lives.

The second leading cause of death after CRC in FAP patients stems from desmoid tumors
and duodenal adenocarcinoma'®. Studies have shown that duodenal adenomas have a
prevalence of around 65% in FAP patients at a median age of 38 years and the lifetime risk for
these patients of developing these lesions approaches 100%!!. Although chemopreventive
strategies have shown some effectiveness for inducing regression of colorectal polyps, their
value in delaying or preventing duodenal polyps has been disappointing?.

The inevitable risk of cancer in the colorectum and potentially the duodenum, and the
young age at which FAP patients must undergo life-altering preventive surgery make

chemoprevention in both the large and small intestine an urgent need. Thus, it has been our



goal to molecularly profile the differences between the at-risk normal mucosa and polyps of
FAP patients to gain biological insights into the development of pre-malignant lesions,
which may guide the development of chemopreventive strategies to delay or prevent the

development of polyps and cancer in the colorectum and duodenum.

1.1.2  Role of the Adenomatous Polyposis Coli (APC) gene in adenoma formation

APC is a gene with 15 exons located in the long arm of chromosome 5 in band q22.2 that
encodes a 2843 amino acid protein. The vast majority of APC mutations result in a truncated
protein, where approximately one third of germline mutations in APC lie between codons 1061
and 1309%2. Whereas the germline mutations are scattered throughout the 5 half of the APC
gene, the majority of somatic mutations in both FAP and sporadic forms of CRCs are clustered
between codons 1286 and 1513, in the so-called mutation cluster region (MCR)®.

The APC gene is a tumor suppressor and promotes the degradation of beta-catenin. The
regulation of beta-catenin by APC is accomplished by portions of the gene sequence including
three 15-amino-acid repeats and seven 20-amino-acid repeats that respectively bind and
downregulate beta-catenin via ubiquitination!*. Loss of APC results in a constitutive activation
of beta-catenin, such that beta-catenin will be translocated to the nucleus and will activate the
transcription of many WNT target genes, which leads to cellular proliferation among activation
of other cellular processes'>. More than 90% of sporadic CRC patients have functional APC

alterations!®. Normally, for APC driven tumorigenesis, bi-allelic alteration initiates disease



development. FAP patients have inherited only one normal functioning APC allele, which
increases their probability and rate of disease development.

There are several FAP phenotypes that correlate with specific APC germline mutations.
Mutations between codon 1250 and codon 1464 are associated with profuse polyposis where
patients have greater than 5,000 colorectal polyps'®. Mutations in codon 1309 are associated
with early onset adenoma development (10 years earlier) and earlier CRC at ages less than 35
years of age!®. Mutations at the 5" and 3’ ends of the APC gene are associated with attenuated
FAP, where patients are characterized by oligopolyposis, presenting with less than 100

colorectal polyps, with later onset of CRC at greater than 50 years of age!2.

1.1.3 Current chemopreventive strategies

Chemoprevention delays or prevents the development of cancer through the use of
natural or pharmaceutical agents!”. FAP patients are ideal for assessing the efficacy of
chemopreventive agents for adenomatous polyps because FAP patients predictably develop
polyps that are visible and countable prior to their transformation to cancer. Polyp counts in
these patients provide a convenient measure of the effectiveness of chemopreventive agents.
The potential benefits of chemoprevention in FAP consist mainly of the prevention of adenomas
and the delay of tumor growth, thus giving FAP patients a longer and higher quality-of-life.

In the early 1980’s, epidemiological studies found that treatment with aspirin, a non-
steroidal anti-inflammatory drug (NSAID), was associated with a reduced risk for CRCs'8. Since

then, NSAIDs have been extensively tested for chemoprevention of CRC in patients with



hereditary predispositions, as well as the general population. NSAIDs inhibit COX, a key
enzyme in the conversion of arachidonic acid to prostaglandins and other eicosanoids. There
are 2 isoforms of the COX enzyme, COX-1 and COX-2. COX-1 is constitutively expressed in
virtually all tissues, whereas COX-2 is absent under physiologic conditions®. COX-2 is induced
in several clinical contexts such as inflammation and cancer. Overexpression of COX-2 has been
observed in colorectal polyps and carcinomas?. The effectiveness of NSAIDs in repressing the
growth of adenomas appears to be via inhibition of COX-2, although it has been suggested that
NSAIDs may be effective independent of COX-2 suppression?’.

Thus, NSAIDs such as Sulindac, Celecoxib, Rofecoxib and others have been developed as
chemopreventive strategies. In initial studies of the NSAID Sulindac, a substantial activity
delaying the growth of polyps was observed?8. Later, Celecoxib, gained U.S. Food and Drug
Administration (FDA) approval for chemoprevention of polyps in patients with FAP?.
However, significant cardiovascular toxic effects were observed during clinical trials in sporadic
CRC populations and safety concerns led to withdrawal of the drug?324. Aspirin has recently
been proposed for standard chemopreventive treatment of CRC in individuals predisposed to
CRC in addition to the general population. Two Phase III clinical trials evaluated aspirin as a
chemopreventive agent in patients with FAP and Lynch Syndrome — the CAPP1 and CAPP2
studies, respectively. These studies showed that aspirin reduced the number of colon and
rectum polyps in Lynch Syndrome patients and to a lesser extent in FAP patients. Currently,
the chemopreventive agent of choice is aspirin in Lynch Syndrome and Sulindac in FAP%2,
However, there are currently no FDA approved chemopreventive agents available, illustrating

the need for further development of chemopreventive strategiess. Further, the value of these



agents for the prevention of polyps in the small intestine is unclear with yet no studies showing

statistically significant regression of duodenal polyps in FAP patients®.

1.2 Objectives

Our long-term goal is to develop more effective chemopreventive therapies for the colon
and duodenum of FAP patients. A comprehensive annotation of the genomic landscape of
adenomatous polyps in FAP patients has not been previously attempted through next-generation
sequencing (NGS) studies and is critical for enabling future targeted chemopreventive drug
identification and development. In addition, aside from a single study where the normal
mucosa, an adenoma and an adenocarcinoma were exome sequenced from one sporadic CRC
case?”, adenomas in both the sporadic and hereditary contexts have been largely ignored with
regards to NGS studies. Thus, the objective is first to molecularly characterize FAP polyps at a
high-resolution by characterizing the exome and transcriptome of these lesions. As initial steps
towards this goal, we are sequencing and characterizing the exomes of colon polyps and the
transcriptomes of colon and duodenum polyps along with paired normal mucosa samples.

With advances in NGS technologies, the whole genomes and exomes of colorectal
adenocarcinomas have been sequenced and comprehensive landscapes of genetic alterations
and gene expression alterations have been characterized by The Cancer Genome Atlas (TCGA)
consortium?. We will leverage these data and compare our FAP polyp genomic landscape
with those of TCGA CRC tumors in an effort to identify a more comprehensive set of potential

therapeutic targets that may be involved in the early development of CRC. By comparing FAP



polyp somatic events to those of CRC and identifying similarities between the two, we will
propose events that occur early in the development of CRCs. Conversely, by identifying CRC
events that are absent in our FAP polyp data set, we can propose events that are involved in the
transformation of colorectal adenomas to carcinomas.

High-throughput, high-resolution profiling through exome and RNA-sequencing of FAP
adenomas may provide insights into the molecular mechanisms underlying the early
development of CRC and may reveal genes or pathways that may be targeted by
chemoprevention to delay or halt the tumorigenesis process in early stages. As such, our
objectives are the following;:

1. To characterize the genomic landscape of FAP colon polyps through exome
sequencing analyses to compare identified recurrent somatic events to those previously
associated with CRC to identify genes involved in early CRC development, which may
help guide future chemoprevention strategies (see red boxes in Figure 3).

2. To identify candidate chemopreventive drugs to target the gene expression signatures
of the at-risk normal mucosa of both the colon and duodenum in FAP patients, where
the gene expression signatures are inferred from RNA sequence of colon and duodenum
polyps and normal mucosa (see blue boxes in Figure 3). Ideally, chemoprevention
strategies would include effective drugs or compounds that have minimal toxicity and

which are inexpensive.
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Figure 3: Overview of samples, objectives and software developed for the genomic characterization of colon polyps

and the identification of candidate chemopreventive drugs for FAP patients.

In summary, effective chemopreventive strategies may reduce disease incidence, delay
progression or lessen the severity of disease and disease-related secondary effects in FAP
patients. Alternative benefits of chemopreventive strategies would be to postpone the need for
prophylactic surgery providing patients a longer and better quality-of-life.

The research design, the analyses and biological interpretation of the FAP colon polyp
genomes and the colon and duodenum polyp transcriptomes, and identification of candidate
chemopreventive drugs is presented in this dissertation. In chapter 2, I describe our
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experimental design and patient samples, then present colon polyp somatic profiles and
compare them to those of CRC from TCGA. In chapter 3, I present gene expression signatures
representative of the difference between the at-risk normal mucosa and polyps in both the colon
and duodenum of FAP patients, introduce a computational screening framework for candidate
drug identification by illustrating its application to FAP, and describe the setup for follow-up
drug testing. In chapter 4, I discuss the significance of our FAP research findings, describe
future directions and discuss the potential impact of the bioinformatics tools that we developed
over the course of this project. “Appendix A: Sequencing analysis pipelines” describes the
pipelines created for the analysis of our exome and RNA sequencing data. In addition, the
following new bioinformatics methods were developed: (1) variant tools for more simple
annotation and analysis of identified NGS genetic variants, (2) hapLOHseq for the sensitive
detection of chromosomal allelic imbalance events from exome sequencing data, and (3) the
Cancer in silico Drug Discovery framework (CiDD) for the identification of candidate
chemopreventive drugs. These three pieces of software (see green boxes in Figure 3) are

described in detail in three subsections of “Appendix B: Bioinformatics software”.
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2 Genomic characterization of FAP polyps

In the adenoma-to-carcinoma sequence, it has been described that WNT pathway activation,
which normally arises through bi-allelic loss of the APC gene, is the initiating event in the
development of adenomas, which are pre-malignant lesions®. Further, KRAS mutations are
often present when an adenoma transitions to later stages (e.g., the development of high-grade
dysplasia), and subsequently, alterations in PIK3CA and TP53 or other genes occur during the
progression into an invasive adenocarcinoma, or cancer. We sought to characterize the genome
of adenomas through exome sequencing to further refine the somatic alterations and genes that
might be involved in adenoma development to identify candidate targets for chemoprevention.
In this chapter, I describe the mutation and chromosomal allelic imbalance profiles of FAP
polyps and compare them to profiles of CRC from TCGA. A special emphasis is placed on
identifying somatic APC events and alterations in WNT signaling since these events are
expected to be key initiating events of adenoma formation. I conclude by proposing a list of

candidate genes that may contribute to the initiation or development of adenomas.

2.1 Methods

2.1.1 Available patients and samples

To characterize somatic alterations in polyps of FAP patients, we conducted a genome-
wide analysis of polyps from 12 patients. Samples for 4 patients were collected at the Catalan
Institute of Oncology. Colon polyp and normal mucosa samples from these patients were

extracted after prophylactic surgical resection of the colon. Colon polyp and normal mucosa
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samples from 8 additional patients were collected at MD Anderson Cancer Center through
endoscopic excision. Germline DNA was extracted from peripheral blood lymphocytes using
the Blood & Cell Culture DNA Mini Kit (Qiagen). Polyp and normal mucosa DNA was extracted
using the QIAmp DNA Mini Kit (Qiagen). A blood sample and one or more polyp samples were
collected from each patient with a total of 25 polyps analyzed. Additionally, for 11 of the 12

patients, a normal mucosa sample was obtained.
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Person Tissue Type Sample Name  APC Germline Mutation (cDNA) APC Germline Mutation (protein)
Blood CATA01_B01_Vilar01
Normal Mucosa | CATAO1_NO1_Vilar02
CATAO1 Polyp CATAO1_PO1 Vilar13 €.3927_3931delAAAGA p.Glu1309Aspfs*4
Polyp CATAO01_P02_Vilarlé
Polyp CATAO01_P03_Vilarl7
Polyp CATAO1_PO4_Vilar18
Blood CATA02_B01_Vilar04
Normal Mucosa | CATA02_NO1_Vilar05
CATA02 Polyp CATA02_PO1_Vilarl4 ¢.4393_4394delAG p.Ser1465Trpfs*3
Polyp CATA02_P02_Vilar19
Polyp CATA02_P03_Vilar21
Blood CATAO03_B01_Vilar07
CATAO03 [Normal Mucosa | CATA03_NO1_Vilar08 c. [1958+3G>A(;)c.1959G>A] -
Polyp CATAO3_P01_Vilarls
Blood CATAO04_B01_Vilar10
Normal Mucosa | CATAO4_NO01_Vilar1l
CATAO4 gz:zg gﬁ;ﬁgj:gg;:x;:z:g c.1412delG p.Gly471Aspfs*27
Polyp CATAO4_PO03_Vilar23
Polyp CATAO4_P04_Vilar24
Blood MDACO01_B01_Vilar44
Normal MDAC01_NO1_Vilar43
MDACO1 Polve MDACOL POL VilaraL ¢.1880dupA p.Ala630*
Polyp MDACO01_P02_Vilar42
MDAC02 Blood MDACO02_BO1Vilar46 €.3810T>A p.Cys1270*
Polyp MDACO02_P01_Vilard5
Blood MDACO08_B01_Vilar50
MpAcog |—Normal | MDACO8_NO1 Vilard9 .622C>T p.GIn208*
Polyp MDACO08_P01_Vilar47
Polyp MDACO08_P02_Vilar48
Blood MDAC10_B01_Vilar53
MDAC10 Normal MDAC10_NO01_Vilar52 c.3440dupA p.Ser1148Thrfs*18
Polyp MDAC10_P01_Vilar51
Blood MDAC14_B01_Vilar58
Normal MDAC14_NO01_Vilar57
MDAC14 Polyp MDAC14_P01_Vilar54 del 8-9 -
Polyp MDAC14_P02_Vilar55
Polyp MDAC14_P03_Vilar56
Blood MDAC17_B01_Vilar62
Normal MDAC17_NO01_Vilar61
MDAC17 Polvp MDACL7_POL Viarss ¢.1658G>A p.Trp553*
Polyp MDAC17_P02_Vilar60
Blood MDAC18_B01_Vilar65
MDAC18 Normal MDAC18_NO01_Vilar64 €.4393_4394delAG p.Ser1465Trpfs*3
Polyp MDAC18_P01_Vilar69
Blood MDAC20_B01_Vilar68
MDAC20 Normal MDAC20_NO01_Vilar67 c.477C>G p.Tyr159*
Polyp MDAC20_P01_Vilar66

Table 1: FAP patients, samples collected for exome sequencing and their APC germline mutations.

2.1.2 Data collection

Exome DNA was captured using the SeqCap EZ Human Exome library v3.0 capture chip

from Roche NimbleGen, which has a target capture region of 64 Mb. Samples were sequenced
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on an Illumina HiSeq 2000 sequencer with 76 base paired-end reads at a mean depth of 80 reads
(or “80x”) at the MD Anderson Cancer Center sequencing core facility. Reads were aligned
with the Burrows-Wheeler Alignment software (BWA)? to the reference human genome version
hg19. The initial alignment results were further processed with local realignment, duplicate
read marking and base quality recalibration by using Picard and the Genome Analysis Toolkit
(GATK)* and by applying recommended best practices for sequence analysis from the Broad
Institute. For a complete description of the sequence alignment pipeline, see section 5.1 in
Appendix A. After filtering for only those reads that map to the target exome region, the mean

on-target depth was 64x (see Table 2).
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Sample Name Target Mean Depth %@10X %@20X %@50X %@100X

CATA01_BO01_Vilar01 85.23 0.959 | 0.923 | 0.892 0.721
CATAO01_NO1_Vilar02 85.14 0.959 | 0.921 | 0.889 0.714
CATA01_PO1_Vilar13 90.7 0.970 | 0.940 | 0.916 0.764
CATA01_P02_Vilar16 70.29 0.969 | 0.930 | 0.878 0.577
CATA01_P03_Vilarl7 71.83 0.970 | 0.932 | 0.879 0.582
CATA01_P04_Vilar18 72.39 0.971 | 0.933 | 0.884 0.595
CATA02_B01_Vilar04 90.95 0.961 | 0.927 | 0.899 0.745
CATA02_NO1_Vilar05 84.52 0.962 | 0.928 | 0.900 0.723
CATA02_P01_Vilar14 71.19 0.963 | 0.920 | 0.880 0.621
CATA02_P02_Vilar19 78.75 0.964 | 0.929 | 0.896 0.680
CATA02_P03_Vilar21 74.87 0.964 | 0.928 | 0.890 0.642
CATA03_B01_Vilar07 77.54 0.967 | 0.923 | 0.870 0.604
CATA03_NO1_Vilar08 69.46 0.955 | 0.901 | 0.834 0.533
CATA03_P01_Vilarl5 63.29 0.960 | 0.908 | 0.851 0.535
CATA04_B01_Vilar10 74.76 0.941 | 0.856 | 0.788 0.550
CATA04_NO1_Vilarll 71.14 0.950 | 0.888 | 0.819 0.539
CATA04_P01_Vilar12 81.57 0.975 | 0.942 | 0.905 0.666
CATA04_P02_Vilar22 79.26 0.968 | 0.935 | 0.896 0.653
CATA04_P03_Vilar23 74.1 0.968 | 0.932 | 0.886 0.606
CATA04_P04_Vilar24 66.22 0.967 | 0.925 | 0.859 0.528
MDACO1_BO01_Vilar44 45.65 0.978 | 0.921 | 0.812 0.294
MDAC01_NO1_Vilar43 43.32 0.979 | 0.910 | 0.771 0.270
MDACO1_P01_Vilar41l 45.08 0.985 | 0.923 | 0.801 0.289
MDACO01_P02_Vilar42 49.44 0.984 | 0.923 | 0.815 0.346
MDACO02_B01_Vilar46 62.46 0.983 | 0.941 | 0.881 0.507
MDACO02_P01_Vilar45 58.75 0.981 | 0.935 | 0.863 0.464
MDACO08_B01_Vilar50 71.72 0.987 | 0.949 | 0.905 0.600
MDAC08_NO1_Vilar49 28.69 0.982 | 0.841 | 0.536 0.116
MDACO08_P01_Vilar47 29.4 0.979 | 0.862 | 0.574 0.109
MDACO08_P02_Vilar48 62.07 0.982 | 0.938 | 0.874 0.498
MDAC10_B01_Vilar53 63.4 0.982 | 0.942 | 0.889 0.527
MDAC10_NO1_Vilar52 69.91 0.983 | 0.944 | 0.899 0.588
MDAC10_P01_Vilar51 65.94 0.983 | 0.942 | 0.890 0.548
MDAC14_B01_Vilar58 44.69 0.982 | 0.919 | 0.800 0.287
MDAC14_NO1_Vilar57 42.59 0.984 | 0.919 | 0.790 0.256
MDAC14_P01_Vilar54 58.93 0.980 | 0.938 | 0.877 0.478
MDAC14_P02_Vilar55 62.26 0.984 | 0.942 | 0.885 0.514
MDAC14_P03_Vilar56 65.1 0.984 | 0.944 | 0.891 0.544
MDAC17_B01_Vilar62 61.37 0.985 | 0.940 | 0.876 0.496
MDAC17_NO01_Vilar61 60.33 0.985 | 0.941 | 0.875 0.486
MDAC17_P01_Vilar59 45.32 0.985 | 0.921 | 0.801 0.294
MDAC17_P02_Vilar60 44.45 0.983 | 0.923 | 0.803 0.280
MDAC18_B01_Vilar65 66.48 0.987 | 0.946 | 0.891 0.549
MDAC18_NO1_Vilar64 58.7 0.985 | 0.936 | 0.859 0.463
MDAC18_P01_Vilar69 57.13 0.980 | 0.910 | 0.793 0.426
MDAC20_B01_Vilar68 60.81 0.986 | 0.941 | 0.876 0.488
MDAC20_NO1_Vilar67 60.89 0.987 | 0.945 | 0.885 0.493
MDAC20_P01_Vilar66 55.53 0.986 | 0.939 | 0.862 0.427

Table 2: Exome coverage summary for FAP samples. The on-target mean depth is 64x with an average of 92.5% of

the target regions being covered by at least 20x.

Each individual and sample is characterized by a germline mutation in the APC gene as

described in Table 1. The vast majority of FAP patients are characterized by nonsense

mutations on the 5" half of APC as were our samples. Germline mutations were verified in each
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sample through visualization of aligned sequence reads in the Integrative Genomics Viewer (IGV)

software3!.

2.1.3 Strategies for calling somatic events

We performed exome sequencing to identify somatic events in our polyp samples
including point mutations, insertions, deletions and chromosomal allelic imbalance (Al) events,
which we define as large amplifications, deletions and loss-of-heterozygosity (LOH) event regions
of greater than 10 MB. Data not analyzed include small copy number variants (CNV) less than 10
MB and structural variations such as translocations and inversions. These data are typically
analyzed using SNP arrays and whole genome sequencing, respectively. With the exception of
the verification of APC germline mutations in the blood and normal mucosa samples, the
current focus of our project is on somatic variation. Thus, blood and normal samples were
simply used as reference samples to allow for the characterization of polyp events as somatic
(versus germline). Inspecting somatic variation in normal mucosa samples is the subject of
future work and is out of scope of this dissertation. Figure 4 illustrates three general pipelines
and the associated software that have been implemented for the genomic characterization of
FAP polyps, which are the following: (1) alignment and quality control of sequencing reads (in
black) as described previously, (2) calling and controlling of false positives for somatic point

mutations and indels (in red), and (3) calling of chromosomal allelic imbalance events (in blue).
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Exome sequencing for 12 FAP patients
25 polyps and their matched normal mucosa and blood
64x on-target coverage (SeqCap EZ Human Exome, Illumina Hi-Seq 2000)

Paired end reads aligned using BWA to hg19 and locally realigned using GATK

3454 potential somatic point events (Mutect) Samples genotyped at
454 potential somatic indels (IndelDetector) 1KG sites (GATK)

1521 somatic point events in functional regions (vtools/Annovar) Haplotypes estimated (genotypes phased by
76 somatic indels in functional regions (vtools/Annovar) MACH with 1KG ref panel)

1108 funct (2212 total) somatic point events rare in population (vtools/ESP)
46 funct (329 total) somatic indels rare in population (vtools/1KG)

1048 funct (1943) somatic point events visually verified (IGV) 26 allelic imbalance events identified
18 funct (199 total) somatic indels visually verified (IGV) (haplohseq)

Figure 4: Simplified pipelines for the alignment of sequencing reads (black), calling of somatic point mutations, and

indels (red) and identification of chromosomal allelic imbalance events (blue) from exome sequencing data.

Mutect®? was run for calling point mutations and Indelocator® was executed for calling
small insertions and deletions (see Figure 4). Mutect and Indelocator were designed for calling
mutations and indels in the context of low tumor purity and for identifying subclonal events
making them suitable in the context of pre-cancerous lesions. To control for false positives, we
annotated mutations with public databases and applied a filtering strategy to remove putative
mutations that were likely to be common polymorphisms. Specifically, any somatic mutation
that has been identified as a germline variant in a public sequencing project is likely to be a false
positive mutation call. This “mutation” is likely a germline variant that was correctly identified

in a polyp sample but failed detection in the paired blood sample.
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To support this part of the event calling pipeline, we developed variant tools (vtools), a
flexible annotation and analysis toolset that greatly simplifies the storage, annotation and
filtering of variants and the analysis of the underlying samples®. Storing, annotating and
analyzing variants from NGS projects can be difficult due to the availability of a wide array of
data formats, tools and annotation sources, as well as the sheer size of the data. Useful tools,
including the GATK*, ANNOVAR? and BEDTools*, can be integrated into custom pipelines for
annotating and analyzing sequence variants. However, building flexible pipelines that support
the tracking of variants alongside their samples, while enabling updated annotation and re-
analyses is not a simple task. Using a command-line driven reporting structure, variant tools can
be used to manage and analyze genetic variants obtained from sequence alignments, and the
toolset could be used as a foundation for building more sophisticated analytical pipelines. The
variant tools concept is illustrated in Figure 5 and its functions are described in more detail in

Appendix B section 6.1.
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analysis workflow management of external data sources

and variant annotation
Figure 5: Overview of variant tools®. This software facilitates the management, annotation and analysis of genetic
variants from NGS studies.

Somatic events called by Mutect and Indelocator were annotated through variant tools
with population allele frequencies of the 1000 Genomes Project* and the Exome Sequencing Project
(version with 6,500 exomes) a for subsequent filtering of likely common polymorphisms and
false positives. We excluded any candidate somatic mutations seen at 1% or greater population
allele frequency in either of these projects.

In order to further limit false positive calls after filtering based on annotations, we
developed a simple sequencing read verification pipeline to help control for systematic sequencing
errors. The pipeline identifies potential errors by looking for evidence of variant reads in
normal samples at all sites where somatic events were called. The verification pipeline

implements the following workflow:
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1. Create a master list of all the putative somatic mutations identified in all polyps.

2. Obtain a genotype call (from the UnifiedGenotyper of the GATK) and the variant allele
fraction at all of the sites in the master list for all FAP samples including blood, normal
mucosa and polyp samples. A variant allele fraction for a site is the number of reads
harboring the variant allele divided by the total number of reads covering that site.

3. For each putative somatic mutation, mark it as “failed verification” if any of the
following are true:

a. agermline genotype call in any blood or normal mucosa sample in our project

contains the variant allele (with the exception of APC germline mutations which

may also be seen as a somatic mutation in a polyp),
b. the variant allele fraction is 2% or greater in the paired blood sample, or
c. the variant allele fraction is 5% or greater in the paired normal mucosa sample.
Finally, we visually verified point mutations and insertions and deletions using IGV. In
total, through our filtering process we reduced the 3,454 original point mutation calls to 1,943
visually verified point mutations. For insertions and deletions, we reduced the 454 original
calls to 199 visually verified calls.
A description of the pipeline for calling chromosomal allelic imbalance (Al) events is
described in Appendix A, section 5.4. This pipeline prepares data and runs hapLOHseq,
software that we developed, for identifying regions of chromosomal A, which I describe in

Appendix B, section 6.2.
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214 Prioritizing and validating mutations

For prioritization of events, mutations were annotated using variant tools with functional
prediction statuses as determined by PolyPhen2¥, LRT®*, SIFT** and MutationTaster*. These
predictions were pre-calculated by dbNSFP%. In addition, driver prediction statuses for each
point mutation were obtained by running CHASM*2. Finally, recurrence of events in existing
cancer data sets was assessed by annotating mutations with the COSMIC database* through
variant tools.

A strategy for categorizing mutations into functional tiers was then applied to all somatic
events. First, indels and stop gain (or nonsense) and loss mutations were separated into their
own tiers. Then the remaining mutations were prioritized using the following tier definitions
where lower tier numbers correspond to higher priorities.

* Tier 1: Driver mutations — classified as a driver mutation (based on an empirical p-value
<0.05 from CHASM) and seen in multiple (2 or more) other tumors in the COSMIC
database

* Tier 2: Damaging recurrent mutations — predicted to be damaging by 2 or more
algorithms and seen in multiple (2 or more) other tumors in the COSMIC database

* Tier 3: Damaging mutations — predicted to be damaging by 2 or more algorithms

* Tier 4: Potentially damaging mutations — predicted to be damaging by 1 algorithm

* Tier 5: Passenger mutations — remaining point mutations that are not stop gains or stop

losses
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* Stop gains and losses — any mutation that results in a nonsense mutation, such that the
gene is prematurely truncated, or any mutation that alters an existing stop codon, such
that the gene is elongated

* Functional insertions and deletions — any insertion or deletion in the coding region of a

gene.

Tier Number of events

Tier 1: Driver mutations 52
Tier 2: Damaging recurrent mutations 22
Tier 3: Damaging mutations 214
Tier 4: Potentially damaging mutations 170
Tier 5: Passenger mutations 1434
Stop gains and losses 51
Functional insertions and deletions 18

Table 3: Number of somatic events per tier definition

Mutations identified in APC or in known colorectal cancer genes or those predicted to be
driver mutations in Tier 1 have been validated with Sanger sequencing in cases where we have
enough DNA to perform the sequencing. Primers for amplification and sanger sequencing
validation were designed by using a custom pipeline that incorporates Primer3* that targeted
mutations with 50 bases of flanking DNA sequence on the 5" and 3" ends of the mutation.
Sanger sequencing was performed on an ABI 3730 Capillary DNA Analyzer. Sequence trace
files were manually inspected for the verification of point mutations, insertions and deletions.

(Table for validated/failed mutations?)
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2.1.5 Strategy for identifying candidate genes involved in early CRC development

Our strategy for identifying important candidate genes involved in the early development
of CRC was to find recurrently mutated genes in our data set that have been previously
identified as CRC genes. We identified CRC genes from 3 large-scale projects: TCGA colorectal
project®, Vogelstein et al* and Seshagiri et al*. We also interrogated pathways known to be
deregulated in CRC: most importantly, the WNT, MAPK and ERBB signaling pathway. We
identified the genes for these pathways using the Molecular Signatures Database (MSigDB)¥. 1If a
sample had a nonsynonymous mutation on any gene in a given pathway, that sample was

labeled as having an alteration in that pathway.

2.2 FAP polyp genomic profiles

Here, I present a characterization of the genomic landscape of FAP adenomas based on
the exome sequence data. I compare mutation rates and base substitution profiles between FAP
polyps and CRC tumors. Somatic alterations in APC and other previously identified CRC genes
are characterized. Additionally, recurrent chromosomal allelic imbalance events, which we
define as amplifications, deletions and copy-neutral loss-of-heterozygosity (cn-LOH) events are
identified and interpreted in the context of the adenoma-to-carcinoma sequence. In total, 52
genes that have previously been associated with CRC and that are recurrently altered in our
adenomas are proposed as candidate genes involved in the early development of CRC. These

genes will be followed up with functional studies in future projects.

24



221 Mutation profiling

To minimize batch effects in our comparisons between our FAP polyps and TCGA CRC
samples, we downloaded 107 tumor/normal pairs of exomes from the TCGA project where the
samples were sequenced on the Illumina Hiseq machine (the same sequencing technology used
for our FAP polyps) and we ran these samples through the same bioinformatics pipelines on
which we ran our FAP samples. Of the 107 CRC tumor exomes downloaded, 22.4% (24 of 107)
of the tumors were stage I, 42.1% (45 of 107) were stage II, 21.5% (23 of 107) were stage III and
11.2% (12 of 107) were stage IV tumors. Three samples lacked tumor stage classifications. The
same pipelines that were used with our FAP polyps to identify somatic point mutations and

generate mutation reports were applied to the CRC exomes.

2.2.1.1 Mutation rates

We assessed the similarity of mutation rates and base substitution profiles from TCGA
CRC samples and FAP polyps. In the TCGA CRC publication?, the authors identified 2 classes
of samples based on mutation rates: hypermutators (samples with greater than 10 mutations/Mb)
and nonhypermutators (samples with less than 10 mutations/Mb). The samples that we
downloaded from the TCGA were not included as part of the results in the TCGA CRC
manuscript because they are newer samples, sequenced after the manuscript was published.
We identified the mutation rates for the TCGA CRC samples and recapitulated the
hypermutator and nonhypermutator findings of the TCGA in these newer samples and
subsequently treated these two classes of samples separately (see Figure 7). Mutation rates are

represented as the number of mutations per megabase for each sample.
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rati . mutation count 1.000.000 (1)
= *
mutationrate callable bases (1,000,000

For a base, or a specific nucleotide position in a polyp genome, to be callable, a minimum
coverage of 12x in the polyp sample and a minimum coverage of 8x in the corresponding blood
sample from the same patient is required. These minimum coverage requirements result in 80%

power to identify mutations by the Mutect software®. The total number of callable bases is then

the denominator in the mutation rate calculation.
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Figure 6: TCGA CRC tumors can be classified into one of two groups based on mutation rate: hypermutated for

mutation rates greater than 10 mutations per megabase or nonhypermutated otherwise

Mutation rates of FAP polyps (mean mutation rate = 1.74 mutations/Mb) are lower than
that of nonhypermutated CRCs (mean mutation rate = 4.26 mutations/Mb; T-Test p-value =
8.92e-13) as expected since adenomas are in an earlier stage of tumorigenesis compared to

carcinomas. The mutation rates identified in the FAP polyps overlapped those of TCGA CRC
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nonhypermutated samples (see the mutation rate boxplot of Figure 7). The polyp mutation rate
is an order of magnitude smaller than that of hypermutated CRCs (mean mutation rate = 50.88
mutations/Mb). We expect this because FAP polyps are not characterized by alterations in
mismatch repair genes, which generally typify microsatellite instable and hypermutated
carcinomas. A contributing factor of the mutation rate difference between polyps and
nonhypermutated CRCs could be due to a lower power to detect mutations in polyps because

of potentially higher normal mucosa contamination as compared to TCGA CRC samples.

FAP Polyp and TCGA CRC
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Figure 7: FAP polyp mutation rates compared to TCGA hypermutated and nonhypermutated CRCs
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2.2.1.2 Mutation base substitution signatures

One strategy for identifying candidate mechanisms that drive tumor mutational processes
is to evaluate mutation base substitution signatures. Figure 8 illustrates mutation base
substitution signatures across several cancer types. In each signature plot at the bottom of
Figure 8, vertical bars represent the base substitution frequencies for individual tumor samples
of the corresponding cancer type. Based on these profiles, we can attempt to infer mutational
processes that are the source of the base substitution signatures. For example, the high C->T
substitutions in melanoma samples can be attributed to UV exposure. The high C->A

substitutions in lung cancer samples are thought to be attributed to tobacco smoke exposure®.
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Figure 8: Mutational signatures across cancer types #.

To refine the mutation signatures of Figure 8, Alexandrov et al identified base substitution

profiles at a higher resolution by incorporating flanking bases for each base substitution*. For
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example, instead of identifying the numbers of C->T substitutions, they incorporated all
possible combinations of flanking bases around the C and T (e.g., ACG -> ATG, ACC -> ATC,
....). After doing this, they associated their refined base substitution signatures with mutational
mechanisms for several cancers. They associated CRC mutation signatures with 3 distinct
mutational processes: (1) a strand-specific mutational process due to POLE mutations, (2) DNA
mismatch repair deficiency and (3) aging mechanisms*. Using this flanking-base strategy, there
are 96 possible base substitutions comprising their mutation signatures. Many of our samples
have fewer than 96 mutations, thus we are not reliably able to perform a similar analysis on our
polyp data. So we make a more qualitative comparison between sample types by comparing

the base substitution profiles of Figure 9.
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Figure 9: Base substitution profiles of FAP polyps versus TCGA hypermutated and nonhypermutated CRCs suggest
that the FAP polyps have similar mutation processes underlying them compared to TCGA CRC nonhypermutated

tumors
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Based on base substitution profiles, the mutation signature of FAP polyps resemble that of
nonhypermutated CRCs, suggesting that the mutational processes behind nonhypermutated
CRCs are the same as those for FAP polyps. Hypermutators are largely microsatellite-high
tumors with one or more mutations in DNA mismatch repair genes or mutations in POLE?,
Neither of these genes was identified as mutated in analyses of our FAP polyps, leaving aging

or an unidentified mutational process as the likely source of mutations in FAP adenomas.

2.2.1.3 Variant allele fraction profiling
Another strategy for mutation profiling is in the analysis of variant allele fractions (VAFs).
Analysis of VAFs can provide insights into the purity and clonality of samples. The variant (or

mutation) allele fraction, f for a particular somatic mutation m is:

number of variant reads,, ()

™ = “total number of reads,,

VAFs for mutations in chromosomal allelic imbalance regions (see section 2.2.2) were
ignored in addition to mutations on chromosomes X and Y. In this way, only somatic
mutations in copy neutral autosomal regions were included in the VAF profiling analyses. The
resulting VAF distributions of the somatic mutations identified in 2 polyps are illustrated in
Figure 10. In the CATA01_P04_Vilar18 sample, the VAF distribution is shifted close to 0 with a
mean VAF of around 0.08. All the VAF values CATA01_ P04 Vilar1l8 are smaller than 0.2

reflecting that these mutations all occur in a small proportion of the cells sequenced. Thus, we
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infer that this sample has low polyp purity. In contrast, the VAF distribution for
CATA04_P01_Vilar12 has two peaks, which represents VAFs for multiple clones. The founding
clone has a mean VAF at around 0.35. To get a simple estimate of purity, we can multiply this
VAF by 2 because these variants are all heterozygous genotypes, and we would expect to see
the variant alleles in the founding clone in approximately one-half of these reads (assuming no
copy number alterations). This would indicate that this sample has good polyp purity, with a

purity estimate of 0.7 (purity = 0.35*2=0.7).

CATA01_P04_Vilar18 CATA04_P01_Vilar12

mutation count

mutation count
0 5 15

vahant allele fraction vakjant allele fraction

Mean of distribution is close Mixture distribution suggests
to 0 reflecting low polyp purity that this polyp has at least 2
major clones

Figure 10: The distributions of variant allele fractions can be interpreted to identify samples of low polyp purity or to

characterize samples exhibiting patterns of multi-clonality.

If we generate VAF distribution plots for all polyps and assess multi-clonality, we can
easily identify 5 polyps that show evidence of being comprised of at least 2 major clones (see
Figure 11). In addition, several polyps have VAF distributions tightly shifted near 0, indicating
as we expected, that these polyps have low purity and are challenging to genomically

characterize.
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Figure 11: Distributions of variant allele fractions for all 25 polyps. Several polyps show evidence of multi-clonality

(with their variant allele fraction plots boxed in red) suggesting that they are acquiring driver mutations and

Figure 12 illustrates VAFs for all of the mutations identified in each FAP polyp using

boxplots. In addition, the boxplots indicate whether or not each polyp had a somatic mutation

in APC, and if so, a red dot indicates the VAF of that APC mutation. We identified somatic APC
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mutations in 52% (13 of 25) of polyps. For those samples with APC mutations, the APC
mutations generally have a higher mutation allele fraction compared to other polyp mutations

suggesting that somatic APC mutations are initiating events and reside in the founding clone of

polyps.
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Figure 12: Mutation allele fractions for APC somatic events relative to those of other somatic events in the 25 FAP
polyps. Samples are ordered and grouped by patient IDs, where this illuminates a potential batch effect with
regards to polyp purity. For example, CATA01 and CATAO02 samples appear to have lower allele fractions and purity
relative to CATA03, CATA04, MDACO01 and others, indicating that fluctuations in purity levels may be influenced by

the persons and processes used to obtain the polyp samples.
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Several of the samples without an APC somatic event exhibit lower mutation allele
fractions, reflecting lower purity in these samples and suggesting a lower power to detect APC
mutations. Another possibility is that a chromosomal allelic imbalance event, such as a deletion

or copy-neutral LOH event may be the source of inactivation of the second APC allele.

2.2.2 Chromosomal allelic imbalances

A well-studied mechanism by which cancer cells alter the activity of tumor suppressor
genes and oncogenes is through fluctuations in gene dosage. For FAP, deletion or LOH of
chromosome 5q, where APC resides, is a known mechanism of APC loss™. In this project, we
searched for such chromosomal allelic imbalance (Al) events in exome sequencing data. We define
these Al events as genomic aberrations of greater than 10MB due to amplifications, deletions

and cn-LOH events.

2.2.2.1 Identifying chromosomal Al events from exome sequencing data with hapLOHseq
Typically, data from array comparative genomic hybridization (aCGH) or single nucleotide
polymorphism (SNP) arrays are analyzed for the identification of copy number and Al events.
Often these experiments are performed in addition to exome or whole genome sequencing on
tumor samples®. However, due to limitations in sample DNA, we were not able to run such
experiments on the same polyps from which exome sequencing was performed. For this
reason, we interpreted chromosomal Al events from exome sequencing data through the

development of new software called hapLOHseq.
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The traditional strategy behind identification of Al events is finding bands of separation as
illustrated in the simulated VAF band plots of Figure 13. These plots show the VAFs for
heterozygous sites across a region of the genome. In “normal” regions of the genome, we
would expect that at heterozygous sites, 50% of reads would harbor the variant allele and the
other 50% would harbor the reference allele. Thus, in “normal” regions we would expect to see
a VAF band at 0.5. This is illustrated with the normal sample of Figure 13. In the 100% tumor
sample, there is an Al event, which results in the frequencies of the alleles of one haplotype (e.g.,
a configuration of alleles on one chromosome) to elevate in excess of the second haplotype
where the allele frequencies decreased, resulting in 2 separate bands showing the deviation of
the VAFs from 0.5. Thus these haplotypes, or alleles, are not in a 50/50 balance, rather, this is an
allelic imbalance event.

The band separation in the 100% tumor sample is obvious, so the event can be identified
visually in these plots or via a simple algorithm. However, as the tumor purity decreases, such
as in the 30% tumor and 15% tumor samples, it becomes harder to visually identify this event.
We developed a method for exome sequencing data that addresses issues in detection of subtle
allelic imbalances in the context of lower tumor purities. Our method, hapLOHseg, is a next-
generation sequencing based extension of hapLOH?!, which is an allelic-imbalance detection

method that is designed for SNP microarray data.
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Figure 13: Methods that detect chromosomal allelic imbalance are dependent on either coverage fluctuations (not

shown here) or identifying separation of allele frequency bands away from 0.5.

hapLOHseq extends the idea of searching for heterozygous sites with VAFs that deviate

from 0.5 to instead look for deviation of haplotype allele frequencies deviating from 0.5, improving
the sensitivity of identifying such events. In the simulated VAF data of Figure 14, at 10% tumor
purity, it is difficult to see any deviation of VAFs from 0.5 because the two bands overlap each
other and there is no visual separation between them. But if we knew the haplotypes, and then
looked for allelic imbalance between the haplotypes, the event becomes easier to discern. This
is the intuition behind the method of hapLOHseg, i.e., to first estimate haplotypes and then check
if there is allelic imbalance between the 2 haplotypes. The method is described in Appendix B

section 6.2.
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Figure 14: The intuition behind hapLOH and hapLOHseq is that these methods look for allelic imbalance of haplotypes
rather than band separation of individual VAFs. Haplotype imbalances are easier to identify when the events are

subtle compared to visually identifying VAF band separation.

2.2.2.2 Chromosomal Al profiling

We executed hapLOHseq with default parameters on all samples in the FAP project.
hapLOHseq plots for 4 samples from the patient CATAO1 are shown in Figure 15. For the blood,
normal mucosa and 2 polyp samples, each hapLOHseq plot illustrates the VAFs for the
corresponding sample at all genomic markers that are heterozygous in the germline (blood)
sample for CATAOL. Thus, hapLOHseq characterizes and identifies allelic imbalances of
germline haplotypes in the polyp samples. The blue and red lines of hapLOHseq plots show the

probabilities of chromosomal Al events across the normal and polyp genomes, respectively.
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Figure 15: hapLOHseq plots for 4 samples from the CATAO1 patient. The flat blue lines for the blood and normal
mucosa samples reflect probabilities near 0 for Al events across these samples. The red lines represent the

probabilities of events (ranging from 0 at the bottom of the plot to 1 at the top of the plot) across the polyps.

For the CATAO1 blood and normal mucosa samples in Figure 15, the probabilities of Al
events are virtually 0 across these genomes. For polyp 1, an Al event was identified with a
probability near 1 at chromosome 5q. The band separation at the hapLOHseq identified Al
region can be visually verified. Polyp 2 is suspected of having very low polyp purity due to its

very low mutation rate of 0.246 mutations per megabase. Illustrating the capabilities of
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identifying subtle Al at low purities, Al events were also identified in polyp 2 at chromosomes 5

and 19.
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Figure 16: Summary of FAP polyp chromosomal allelic imbalance events identified by hapLOHseq compared to

recurrent amplifications and deletions inferred from SNP arrays from the TCGA CRC project.

Similarly, hapLOHseq was applied to all of the FAP patient samples and then the results
were summarized and compared with CRC Al profiles. For CRC Al events, copy number
profiles inferred from SNP arrays were downloaded for 70 stage I microsatellite stable tumors.
Figure 16 summarizes Al events for FAP and TCGA CRC samples across the genome. Al
events in the polyps are illustrated with black bars in the top section. TCGA CRC stage I tumor

events are illustrated with red and blue bars (amplifications and deletions respectively) below
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the FAP polyp Al events. A summary histogram for both the polyp and CRC events are shown
at the tops of both sections.

For polyp Al events, we did not distinguish among amplifications, deletions and copy-
neutral LOH events in Figure 16. Some of these events were characterized visually by
comparing the coverage profiles of tumor samples (at these Al events) to their paired normal
samples. Amplifications, deletions and cn-LOH classifications for recurrently aberrant genes
within these regions are depicted in Figure 19. However, many of the polyp Al events are too
subtle to confidently determine the event type. In these cases, we classified the events as subtle
Al For consistency in the current comparison of these polyp Al events to CRC copy number
alterations, we treat the hapLOHseq event calls as generic allelic imbalance events.

By comparing FAP polyp Al events to chromosomal copy number aberrations in stage 1
CRC, we can identify regions of the genome that have events in both polyps and stage 1 CRCs.
Regions that are aberrant in both data sets are suggestive of events occurring early in the
development of CRCs. Common aberrant regions in both data sets are loss of 5q (through
deletion or cn-LOH) and amplification of chromosome 7, 13 and 20. Loss of 5q is a common
mechanism of losing one copy of an APC gene and was observed in 25% (5 of 25) of polyps.
Gains of chromosomes 7, 13 and 20 have been associated with the early development of
carcinomas in previous studies®. Chromosome 7 increases are thought to be mechanisms of
EGFR and MET oncogene amplification®. Chromosome 13 amplification has been associated
with gains in the oncogene CDX2%. Genes associated with the colon adenoma to carcinoma
progression as a result of gains in chromosome 20 include: C20o0rf24, AURKA, RNPC1, THIL,

ADRM]1, C200rf20 and TCFL5%. Gain of 20q has also been associated with a progression
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towards invasiveness®. The mutation rate of polyps with allelic imbalance of 20q is 3.235
mutations per megabase, which is higher than the overall mean mutation rate of our polyps,
which is 1.75 mutations per megabase (t-test p-value = 8.575e-4). Further, the mutation rate of
polyps with allelic imbalances on chromosome 20 approach the mutation rate of 3.95 mutations
per megabase of the TCGC non-hypermutated CRCs, supporting the idea that these polyps
have progressed further along the adenoma-to-carcinoma sequence.

Recurrent amplification and deletion regions in the CRC data set that are absent in the
polyp Al data are representative of events associated with later adenoma development,
potentially representing events necessary for transforming a polyp into a carcinoma. Deletions
of 17p and 18q are seen in a high proportion of stage 1 CRCs in TCGA, 60% and 70%
respectively. Deletion of 17p has been associated with loss of TP53 and deletion of 18q is
associated with the loss of SMAD2 and SMAD4 (see Figure 16). These genes have been
associated with carcinoma initiation in the adenoma-to-carcinoma sequence, reflecting the

utility of our FAP polyp and CRC comparative approach.

2.2.3 Patterns of APC somatic events

In general, events characterizing FAP polyps in our data set were also prevalent in CRC
tumors. Consistent with current knowledge of FAP polyps, recurrent LOH of 5q was observed
across polyps and most other identified somatic APC events were truncating mutations. Bi-
allelic loss of APC was widespread and was detected in 72% (17 of 25) of polyps. Five of the 7

polyps lacking a somatic alteration of APC also lacked any WNT signaling pathway alterations
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(see section 2.2.4). These samples appeared to have lower polyp purity compared to the 80%
where somatic WNT pathway alterations were identified, which results in a lower power to
detect somatic events in these samples. This lower purity is reflected in the lower detectable
mutation rate in these samples (0.629 mutations/Mb) versus that in WNT altered samples (2.035
mutations/Mb; t-test p-value = 0.005). As such, we believe that 72% to 100% of the FAP polyps
have bi-allelic loss of APC. One truncating mutation at codon 564 was seen in 2 polyps from
different patients: CATA02_P03_Vilar21 and MDAC20_P01_Vilar66. This recurrent mutation has
been documented in 21 large intestine samples in the COSMIC database®. In all, putative
results show that 5 of the somatic APC events were due to deletion or LOH of 5q, 2 were single
base frameshift deletions, 2 were missense mutations (identified in the same patient) and 10

were nonsense mutations. Of the 10 nonsense mutations, 5 (50%) were C->T transitions, 4 (40%)

were G->T transversions and 1 (10%) was a C->A transversion.

APC_germline_mutations APC_germline_mutations  20-amino-acid repeats N . 20-amino-acid  WNT Pathway  Multiple Non-APC Mutation Rate
- . ‘ APC Somatic Alteration . ) . N )
(cDNA) (protein) in germline mutant allele repeats in total Gene Alteration Clones Putative Driver Events (mutations/Mb)
CATA01_P01_Vilar13 €.3927_3931delAAAGA p.Glu1309Aspfs*4 1 5q loss 1 APC - 5q loss - KRAS G12C 1.095
CATAO1_P02_Vilarlée ¢.3927_3931delAAAGA p.Glu1309Aspfs*4 1 5q loss 1 APC - 5q loss - - 0.246
CATA01_P03_Vilar17 €.3927_3931delAAAGA p.Glu1309Aspfs*4 1 5q loss 1 APC - 5q loss - BRCA2 S1733P 0.944
CATAO01_P04_Vilar18 €.3927_3931delAAAGA p.Glu1309Aspfs*4 1 R805X 1 APC - nonsense - 0.839
CATA02_P01_Vilar14 €.4393_4394delAG p.Ser1465Trpfs*3 2 == = == 0.185
CATA02_P02_Vilar19 c.4393_4394delAG p.Ser1465Trpfs*3 2 = = = 0.630
CATA02_P03_Vilar21 €.4393_4394delAG p.Ser1465Trpfs*3 2 R564X 2 APC - nonsense - KRAS G12D 2.443
CATAO03_PO1_Vilar15 |c. [1958+3G>A(;)c.1959G>A] 0 Frameshift deletion (at codon 1309) 1 APC - frameshift | _yes 2.695
CATAO04_PO01_Vilar12 c.1412delG p.Gly471Aspfs*27 0 5q loss 0 APC - 5q loss yes FBXW7 G557R 3.131
CATA04_P02_Vilar22 c.1412delG p.Gly471Aspfs*27 0 - - FZD7 - missense yes - 2.826
CATAO04_P03_Vilar23 c.1412delG p.Gly471Aspfs*27 0 E1306X 1 APC - nonsense - - 3.556
CATA04_P04_Vilar24 c.1412delG p.Gly471Aspfs*27 0 E1374X 1 APC - nonsense - - 4.104
MDACO01_P01_Vilar4l ¢.1880dupA p.Ala630* 0 Frameshift deletion (at codon 1541) 2 APC - frameshift yes FBXW?7 R465C 1.894
MDACO01_P02_Vilar42 €.1880dupA p.Ala630* 0 E1397X 2 APC - nonsense - - 2.158
MDAC02_P01_Vilar45 c.3810T>A p.Cys1270* 0 = = = = = 1.101
MDACO08_PO01_Vilar47 €.622C>T p.GIn208* 0 - - TCF7L2 - missense - - 1.822
MDACO08_P02_Vilar48 €.622C>T p.GIn208* 0 $1315X 1 APC - nonsense - - 2.388
MDAC10_PO1_Vilar51 €.3440dupA p.Ser1148Thrfs*18 0 - — - - - 0.665
MDAC14_PO01_Vilar54 del 8-9 - 0 E1408X 2 APC - nonsense - - 1.610
MDAC14_P02_Vilar55 del 8-9 0 L645F, 1646R more than 2 APC - missense - - 1.808
MDAC14_P03_Vilar56 del 8-9 - 0 5q loss 0 APC - 5q loss - - 1.662
MDAC17_P01_Vilar59 .1658G>A p.Trp553* 0 R1450X 2 APC - nonsense 0.882
MDAC17_P02_Vilar60 €.1658G>A p.Trp553* 0 == = == = == 0.566
MDAC18_P01_Vilar69 c.4393_4394delAG p.Ser1465Trpfs*3 2 R554X 2 APC - nonsense yes - 1.713
MDAC20_P01_Vilar66 c.477C>G p.Tyr159* 0 R564X 0 APC - nonsense - - 2.890

Table 4: Summary of polyp somatic events in APC and the WNT signaling pathway.
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Literature has suggested that given the location within the first altered APC allele, one can
loosely predict the location and type of the somatic alteration in the second APC allele. In a
proposed first-hit-second-hit model, APC germline mutations near codon 1300, specifically
between codons 1285 and 1378, are associated with somatic chromosome 5q loss®. CATAO1 is
the only patient in our data set with such a germline mutation. Consistent with this first-hit-
second-hit model, 75% (3 of 4) of CATA01 polyps had loss of chromosome 5q, but this event was
seen in only 9.5% (2 of 21) of the remaining samples where a somatic APC event was identified.
Thus an association exists (p-value = 0.016, Fisher’s exact test) between germline mutations
(between codons 1285 and 1378) and chromosome 5q loss in our data set.

Further, the first-hit-second-hit model proposes that for patients with APC truncating
germline mutations before codon 1264, the first repeat region of the beta-catenin binding and
degradation portion of APC, LOH or deletion of chromosome 5q is very rare%. Although not at
statistical significance our data set also suggests that this pattern is valid. Four of our FAP
patients have germline mutations located prior to the first 20 amino-acid repeat region. Only 1
in 9 of their polyps had a somatic loss of 5q. Alternatively, 25% (4 of 16) of the remaining
samples had 5q Al events.

The 20-amino-acid repeat regions of APC are involved in beta-catenin binding and
degradation. It has been proposed that between the 2 APC alleles of cells there is an optimal
number of beta-catenin repeats for cellular proliferation, where this theory motivates the first-
hit-second-hit-model of APC somatic mutation in patients with FAP such that a polyp cell ends up
with an optimal number of 1 beta-catenin repeat in the so-called just-right signaling model>.

Thus, where a person has a truncating mutation that leaves APC with 1 beta-catenin repeat,
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they are more likely to have loss of APC (or loss of 5q) as a somatic event, leaving them with 1
beta-catenin repeat in total. This pattern is observed in our dataset. Eighteen polyps exhibited
bi-allelic loss of APC and most commonly, adenoma cells were left with 1 beta-catenin repeat.
As depicted in Table 4, 1 polyp had more than 2 of the 20 amino-acid repeats within its 2 APC
alleles, 6 polyps had 2 of the 20 amino-acid repeat regions, 8 had 1 repeat region and 3 polyps
had 0 repeat regions. In summary, our data suggests that APC germline mutations may be used
as a predictor of future somatic events based on the first-hit-second-hit model * proposed for

adenoma development.

224 Alterations in WNT signaling genes are pervasive

Activation of the WNT signaling pathway causes an accumulation of beta-catenin in the
cytoplasm, leading to its eventual translocation into the nucleus where it acts as a
transcriptional coactivator of MYC and other genes resulting in cellular proliferation. Without
WNT signaling, a destruction complex would normally degrade beta-catenin. WNT pathway
genes were identified as altered in 92% of TCGA CRCs?. Specific genes that have been
identified as significantly mutated in TCGA CRCs are included in a simplified representation of

the WNT signaling pathway in Figure 17.
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Figure 17: Significantly mutated TCGA CRC genes involved in the canonical WNT signaling pathway. Several beta-
catenin inhibitors are mutated in both TCGA CRC and FAP polyps including: APC, TCF7L2, and FBXW?7, suggesting

these are key events in the early development of CRC.

Similarly, somatic alterations of WNT signaling pathway genes were seen in 80% (20 of
25) of FAP adenomas. APC is the predominantly mutated gene. Mutations resulting in
inactivation of APC, TCF7L2 and FBXW? appear to contribute to the proliferation of beta-

catenin and the growth of polyps. Further, nonsense mutations of ARID1A may contribute to
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MYC over-expression. Overexpression of both beta-catenin and MYC contribute to cellular
proliferation. Additionally, putative key genes with non-coding alterations in FAP adenomas
include AXIN2 and SOX9, which harbored a synonymous and a 5 UTR base substitution,
respectively.

We did not detect an alteration of WNT signaling pathway genes in 5 polyps represented
with rows shaded in gray in Table 4. However, these 5 polyps had low mutation rates (0.629
mutations/Mb) compared to the rest of the polyps (2.035 mutations/Mb) suggesting that we may
have missed important mutations in these polyps due to a lack of power to detect them. In
addition, Obrador-Hevia et al profiled 60 adenomas and identified WNT pathway gene
aberrations at either the DNA and/or RNA level in all adenomas®, suggesting that another
source of WNT aberrations that we are missing may be hidden in the mRNA transcripts of these
polyps. Additionally, TCGA identified over-expression of FZD10 in 19% of CRCs (Figure 17).
Without RNA sequencing of these 25 polyps, we lack the ability to identify transcript level
WNT pathway aberrations.

Looking specifically at the WNT, MAPK and ERBB signaling pathways, which are known
to be aberrant in CRC, Table 5 indicates the gene and type of mutation observed in each sample
for each of these pathways. The genes for each of these pathways were obtained from the
Molecular Signatures Database (MSigDB)* using the KEGG pathway names indicated on the
table. The table excludes Al events and only lists somatic point mutations and small insertions
and deletions. Samples with alterations in the WNT signaling pathway in addition to the
MAPK and/or ERBB pathways are shaded in gray. We expect that these samples have

progressed further along the adenoma-to-carcinoma sequence as compared to the other
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samples. This is supported by the difference in mutation rates between these samples (2.565

mutations/Mb) as compared to the remaining samples (1.552 mutations/Mb) through a T-test (p-

value = 0.030).

sample name KEGG_WNT_SIGNALING_PATHWAY KEGG_MAPK_SIGNALING_PATHWAY KEGG_ERBB_SIGNALING_PATHWAY mutation rate (mutations/Mb)

CATAO1_PO1_Vilar13 KRAS:MISSENSE KRAS:MISSENSE 1.095
CATAO1_P02_Vilar16 0.246
CATAO01_P03_Vilarl7 0.944
CATAO1_P04_Vilarig APC:NONSENSE;TCF7L2:MISSENSE 0.839
CATA02_PO1_Vilarld 0.185
CATA02_P02_Vilar19 0.630
CATA02_P03_Vilar21 APC:NONSENSE KRAS:MISSENSE KRAS:MISSENSE 2.443
CATA03_PO1_Vilar15 | CREBBP:NONSENSE;CSNK1A1:MISSENSE;APC:FRAMESHIFT 2.695
CATAO04_P01_Vilar12 STATSA:NONSENSE 3.131
CATA04_P02_Vilar22 FZD7:MISSENSE;PPP3CB:NONSENSE PPP3CB:NONSENSE 2.826
CATA04_P03_Vilar23 APC:NONSENSE;TCF7L2:NONSENSE MAP2K7:NONSENSE MAP2K7:NONSENSE 3.556
CATA04_P04_Vilar24 APC:NONSENSE 4,104
MDACO1_PO1_Vilar41 APC:FRAMESHIFT 1.894
MDACO1_P02_Vilar42 APC:NONSENSE 2.158
MDAC02_PO01_Vilar45 1.101
MDAC08_PO1_Vilar47 TCF7L2:MISSENSE 1.822
MDAC08_P02_Vilar48 APC:NONSENSE FGFR4:MISSENSE 2.388
MDAC10_PO01_Vilar51 0.665
MDAC14_PO1_Vilar54 APC:NONSENSE DUSP10:MISSENSE 1.610
MDAC14_P02_Vilar55 APC:MISSENSE 1.808
MDAC14_P03_Vilar56 1.662
MDAC17_PO01_Vilar59 APC:NONSENSE 0.882
MDAC17_P02_Vilar60 0.566
MDAC18_PO01_Vilar69 APC:NONSENSE 1713
MDAC20_P01_Vilar66 APC:NONSENSE 2.890

Table 5: Genes aberrant in the WNT, MAPK and ERBB signaling pathways. Note that some genes are members of
both the MAPK and ERBB signaling pathways. Samples are ordered by patient IDs. Those samples with alterations

in WNT signaling pathway in addition to the MAPK and/or ERBB signaling pathway are shaded in gray.

2.2,5 Candidate genes of early CRC development

Consistency in our findings with current knowledge of FAP polyps provides some
confidence in our results and suggests that our candidate gene list (shown on the left side of
Figure 19) identified for further functional studies may indeed contain true genes involved in
the development of adenomas. In addition to APC somatic events being identified in 72% (18 of
25) of polyps, activating mutations in KRAS were detected in 8% (2 of 25) of the polyps. Events

in the tumor suppressors SMAD2/4 and TP53 which are prevalent in CRC and thought to be
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events that transform adenomas to carcinomas were not seen in the FAP polyps as expected
since our samples are pre-malignant lesions.

Through application of MutSig*, the only identified significantly mutated gene in our
data set is APC (p-value = 1.15e-07 and g-value = 2.18e-03). The lack of statistical significance in
our candidate gene findings is likely due to our small sample size. As an alternative approach
to MutSig for identifying mutated genes associated with adenoma development, we looked for
recurrently altered genes in our data set that have previously been associated with CRC. The
motivation behind this is that we would expect that mutated genes associated with polyp
development are significantly mutated in CRCs. Using this strategy, the candidate genes listed
on the left of Figure 18 were identified. Excluding APC and KRAS, which are known to play

important roles in adenoma development, 17 additional candidate genes have been identified.
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Figure 18: Map of candidate genes of early CRC development based on somatic mutation characterization.

The specific criteria for including these candidate genes are the following.

1. A candidate gene must be recurrently altered in at least 2 FAP adenomas.

2. That gene must harbor at least one mutation categorized as tier 1 and 2 or the mutation

must be a nonsense mutation (see section 2.1.4 for more details on tier definitions and
for details on incorporating previously identified CRC genes into our mutation

prioritization).

Figure 18 is a summary characterization of our polyps and a map of our candidate genes of

early CRC development. The figure shows candidate genes as rows in a categorical map, where

each color corresponds to a specific type of mutation observed in each adenoma sample. The
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blue bar plot on the right shows the frequency at which each gene is altered in the FAP polyp
samples broken down by insertions and deletions (indels) or single nucleotide substitutions (SNS).
The columns of the figure correspond to the FAP polyps where the red bar plot at the top
illustrates the mutation rate for each sample broken down by noncoding, silent and nonsilent
alterations. Genes and samples are ordered in such a way to capture potential mutual
exclusivity patterns in the data. For example, APC is the most frequently altered gene and
CDC27 is the next most altered gene exclusive of the APC mutated samples. Interestingly, Yu et
al recently performed population and single-cell sequencing analyses of a bi-clonal colon cancer
case and discovered that mutated CDC27 occurs exclusively from mutated APC in each clone,
supporting the hypotheses that each of these mutations may provide unique mechanisms of
colon cancer initiation””. Most importantly, Figure 18 lists 17 genes (excluding APC and KRAS
which are known genes involved in the early development of CRC) that meet the criteria for
being candidate genes of early CRC development.

Figure 19 extends the analysis portrayed in Figure 18 to include chromosomal Al events,
which we believe characterizes FAP polyps with somatic APC alterations more accurately. For
Figure 19, the candidate gene criteria were altered such that:

1. A candidate gene must be recurrently altered in at least 2 FAP adenomas, where these

alterations can include chromosomal Al

2. That gene must harbor at least one mutation categorized as tier 1 and 2 or the mutation

must be a nonsense mutation (see section 2.1.4 for more details on tier definitions and
for details on incorporating previously identified CRC genes into our mutation

prioritization).
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In this way, even if a gene has been altered through multiple Al events in the polyps, it is not a
candidate gene unless it harbors at least one highly prioritized mutation, where this
prioritization is highly influenced by the mutation being predicted to be a driver event, by being
recurrently altered in the COSMIC database®, or by residing in a previously associated CRC

gene (see section 2.1.4 for more details).
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Figure 19: Map of candidate genes of early CRC development based on somatic mutation characterization

considering Al events.
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The aberration summary of Figure 19 now includes 5 additional APC alterations due to
chromosomal Al events, resulting in 72% (18 of 25) polyps having a somatic APC alteration.
Fifty-one candidate genes (32 additional candidate genes compared to those listed in Figure 18)
were also identified as potentially contributing to early CRC development. The blue bar plot on
the right side of Figure 19 now accounts for chromosomal Al events. In cases, where Al events
could visually be categorized as amplifications, deletions or copy-neutral LOH by inspecting
read coverage profiles across the genomes of these polyp samples and comparing them to
coverage profiles of their paired blood samples, the events are colored accordingly. In cases of
subtle Al (or Al events at very low cellular proportions) it is difficult to visually distinguish
between amplifications, deletions or LOH events and the events are left as subtle Al, although in
each of these cases in our FAP data set, it appears that these events are either deletions or copy-

neutral LOH events.

2.3 Discussion

2.3.1 Challenges of molecularly profiling polyps

In this chapter we have characterized the genomes of polyp samples, which can be more
difficult to characterize compared to tumor samples due to problems of limited amounts sample
and low purity. With the goals of performing mutation and chromosomal Al profiling of these
pre-malignant lesions, our project presented 2 primary challenges as compared to tumor

sequencing projects:
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The polyps obtained for experimentation were small and therefore we had limited
genetic material to perform additional experiments beyond exome sequencing. We
would have liked to run comparative genomic hybridization (CGH) or single nucleotide
polymorphism (SNP) arrays for higher-resolution identification of copy number events for
the same polyps that we performed exome sequencing on, however this was not
possible due to a limited amount of quality polyp DNA. The DNA remaining after
exome sequencing was conserved for Sanger sequencing validation of important
identified mutations.

Adenomas inherently have high stromal contamination due to the fact that they develop
earlier in the adenoma-to-carcinoma sequence and more closely resemble “normal

epithelium” cells in biological state as compared to carcinomas.

To overcome these challenges for the genomic characterization from limited, low-purity

samples, we performed analyses on the exome sequencing data using Mutect for the sensitive

detection of point mutations and we developed our own software, hapLOHseg, for the detection

of subtle chromosomal Al events. hapLOHseq was applied to the FAP exome sequencing data

in section 2.2.2 and the method is described in detail in Appendix B in section 6.2.

Significance of findings

In this chapter, we presented the first genomic characterization of FAP adenomas

performed through NGS. Through mutation profiling, we showed that FAP polyp mutation
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rates are lower compared to CRC mutation rates indicating that FAP adenomas are in an earlier
stage of tumorigenesis compared to CRC as expected. In addition, mutational base substitution
signatures of polyps appear to be identical to those of nonhypermutated CRCs, suggesting that
these two types of samples have the same mutational processes driving them. These processes
appear to be related to aging or other currently unidentified processes®. Several of the polyps
also appear to be multi-clonal, supporting the idea that they are evolving towards carcinomas
and acquiring driver mutations such as those on KRAS. More fundamentally, most of the
polyps (72%) exhibited second hits of the tumor suppressor gene APC, of which, bi-allelic loss is
thought to be the initiating event in the development of adenomas according to the adenoma-
to-carcinoma sequence model. For those adenomas lacking APC somatic events, this could be
due to lower power to detect APC events because of low polyp purities that these samples
appear to have, or they could have alterations not detectable through exome sequencing, such
as transcript level alterations or epigenetic alterations. Alternatively, these samples could be
harboring other important mutations exclusive of APC. Eighty percent of the adenomas
harbored alterations in WNT signaling. Additional WNT signaling genes besides APC that are
altered include AXIN2, TCF7L2, FBXW7, SOX9 and ARIDIA. In total, 50 candidate genes were
identified (excluding APC and KRAS) that are putatively involved in the early development of
CRC. These genes are currently being functionally tested in vitro through cell-line and animal

model experiments by the lab of Eduardo Vilar.
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3 Identification of candidate chemopreventive drugs for FAP

In this chapter, I present a separate but complementary phase of our project for the
identification of candidate chemopreventive drugs for FAP patients (see Figure 3 for a high-
level overview of the 2 phases of our FAP project). In the longer-term vision of this project,
knowledge gained and candidate gene targets identified from the genomic characterization of
FAP polyps (see chapter 2) will be used to inform the identification of candidate
chemopreventive drugs. Indeed, that is our hope as functional studies are currently being
performed to validate the candidate genes identified in the genomic characterization of colon
adenomas. However, at the present time, we are taking what could be viewed as a more direct
approach for identifying candidate drugs. We have performed RNA sequencing of colon and
duodenum samples in FAP patients, defined gene expression signatures representative of the
differences between FAP at-risk normal mucosa and polyps, and then identified candidate
drugs to directly target these gene expression signatures.

Ideally, chemoprevention strategies would incorporate drugs or compounds that have
minimal toxicity that are inexpensive and effective. So we take a drug repurposing approach,
by screening for candidate drug compounds that include U.S. Food and Drug Administration
(FDA)-approved drugs and nondrug bioactive compounds, which are generally considered to
be safe but which may not have been shown to be effective in their originally intended purposes
in addition to drugs that have been shown to be effective for various uses®. In this chapter, we
describe this computational screening approach, apply it to FAP polyps, and propose candidate

drugs for FAP patient chemoprevention.
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3.1 Methods

3.1.1 Available patients and samples

Samples from 2 FAP patients followed at MD Anderson Cancer Center were collected
through endoscopic biopsy (see Table 6). From each patient, normal mucosa samples from both
the colon and duodenum were obtained. From patient FAP1, 3 colon polyps and 1 duodenum
polyp were collected, and from FAPS, 2 colon polyps and 2 duodenum polyps were obtained.
RNA from polyp and normal mucosa samples were isolated using a combined protocol with

TRIzol reagent (Life Technologies) and the RNeasy Mini Kit (Qiagen).

Sample Patient Type Localization
FAP1_B1_NORMAL_COLON FAP1 | NORMAL COLON
FAP1_M1_POLYP_COLON FAP1 POLYP COLON
FAP1_F1_POLYP_COLON FAP1 POLYP COLON
FAP1_DA1_POLYP_COLON FAP1 POLYP COLON

FAP1_DG1_NORMAL_DUODENUM | FAP1 |NORMAL |DUODENUM
FAP1_DB1_POLYP_DUODENUM FAP1 [ POLYP [DUODENUM

FAP6_F6_NORMAL_COLON FAP6 [NORMAL COLON
FAP6_B6_POLYP_COLON FAP6 | POLYP COLON
FAP6_D6_POLYP_COLON FAP6 | POLYP COLON
FAP6_DH6_NORMAL_DUODENUM | FAP6 |NORMAL |DUODENUM
FAP6_DC6_POLYP_DUODENUM FAP6 [ POLYP [DUODENUM

FAP6_DD6_POLYP_DUODENUM FAP6 [ POLYP [DUODENUM

Table 6: Four normal mucosa and 8 polyps were RNA sequenced from the colon and duodenum of 2 FAP patients.

3.1.2 Data collection
RNA from the FAP samples was sequenced on an Illumina Hiseq 2000 sequencer with 76

base paired-end reads at the MD Anderson Cancer Center sequencing core facility. Reads were
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aligned and analyzed using the Tuxedo protocol for differential gene expression analyses of
RNA sequence data®. Briefly, TopHat% is used for alignment of initial reads to the human
reference genome hgl9. Sequence run summaries are provided in Table 7 and based on the
proportion of read pairs aligned (the Tuxedo protocol specifies 0.7 as being representative of
quality samples), our samples all appear to have provided high-quality sequencing reads.
Cufflinks® then assembles and quantifies transcripts. Subsequently, the software package
Cuffdiff? is used to identify differentially expressed genes. In a separate analysis, Tophat-fusion®

is used to identify gene fusions. See Appendix A sections 5.5 and 5.6, for more details.

Sample Num reads Prop reads aligned Prop read pairs aligned

FAP1_B1_NORMAL_COLON 68,011,372 0.927 0.832
FAP1_M1_POLYP_COLON 72,371,340 0.947 0.865
FAP1_F1_POLYP_COLON 73,153,262 0.939 0.792
FAP1_DA1_POLYP_COLON 66,278,382 0.947 0.853
FAP1_DG1_NORMAL_DUODENUM | 59,764,764 0.938 0.845
FAP1_DB1_POLYP_DUODENUM | 66,912,666 0.947 0.848
FAP6_F6_NORMAL_COLON 53,043,824 0.927 0.834
FAP6_B6_POLYP_COLON 61,821,220 0.943 0.853
FAP6_D6_POLYP_COLON 70,576,352 0.933 0.841
FAP6_DH6_NORMAL_DUODENUM | 77,840,378 0.935 0.839
FAP6_DC6_POLYP_DUODENUM | 73,758,696 0.943 0.855
FAP6_DD6_POLYP_DUODENUM | 78,367,938 0.941 0.851

Table 7: RNA sequencing mapping statistics indicate that the sequencing quality of each of these samples is optimal.

A "% read pairs aligned" > 0.70 indicates a good quality sequencing run®.

3.1.3 Defining FAP colon and duodenum gene expression signatures
In our project, a gene expression signature is a set of up-regulated and down-regulated
genes identified by comparing at-risk normal mucosa to polyp samples of FAP patients. These

signatures are representative of the molecular alterations that differentiate at-risk normal-
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mucosa and adenomas. The normal mucosa samples of FAP patients are at-risk because they
harbor aberrant copies of the APC gene. Given the quantified transcripts reported by Cufflinks,
the software package Cuffdiff is used to identify differentially expressed genes between 2 sets of
samples, such as colon polyps versus colon normal mucosa samples. To label a gene as
differentially expressed (e.g., up-regulated or down-regulated) for inclusion into the gene
signature, we require that Cuffdiff adjusted Benjamini-Hochberg p-values be less than 0.05. For
up-regulated signature genes, we require a log: fold-change >=1. For down-regulated genes,
we require a logz fold-change <=-1. When applied to our computational drug-screening

experiments, this gene expression signature is called a query signature.

3.1.4 Identifying candidate drugs to target FAP gene expression signatures

The query signature is then fed into a software application that we have developed called
the Cancer in silico Drug Discovery framework (CiDD), where CiDD produces a report for
connections (or negative correlations) between the query signature and gene expression signatures
induced by candidate drug compounds. CiDD screens the FAP at-risk normal mucosa gene
expression signatures against those induced by drug compounds in the Connectivity Map
(CMap)™ to identify candidate drugs that may target the FAP signatures.

The CMap is a collection of gene expression data for cell lines treated with bioactive small
molecules paired with pattern matching algorithms that attempt to identify biologically
functional connections between drugs and gene expression profiles. Thus, the CMap can be

used as a database of drug-induced gene expression signatures. The CMap was designed for
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identifying candidate drugs for query signatures represented as Affymetrix HG-U133A gene
expression microarrays because its underlying drug expression signatures are represented
using Affymetrix HG-U133A data. CiDD transforms this underlying probe-based gene
expression data to more generic gene-based data so that researchers can use signatures
generated from RNA sequencing or other microarrays to identify candidate compounds using
the CMap drug experiments. Statistical procedures provided by the CMap for computational
screening of Affymetrix HG-U133A query signatures against drug-induced gene expression
signatures are implemented in CiDD for generic gene-based query signatures. These
procedures are rank-based and built upon Kolmogorov-Smirnov statistical tests. This makes
these tests more robust to technology biases and batch effects, which is important in our case
because our data were generated from RNA sequencing and not HG-U133A microarrays.
Details of CMap methods can be found in Lamb et al*® and a full description of CiDD is

provided in Appendix B section 6.3.

3.2 FAP colon and duodenum transcription profiles

3.2.1 Gene expression signatures of at-risk normal mucosa compared to polyps

Before identifying gene expression signatures representing the difference between normal
mucosa and polyp samples, we clustered the FAP samples based on their quantified gene
expression data reported by Cufflinks (see Figure 20). Generally, the colon and duodenum
samples cluster separately illustrating that the tissue specific differences in gene expression

between the colon and duodenum are greater than the gene expression differences between
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polyp and normal mucosa samples. This indicates that the colon and duodenum of FAP

patients may need to be targeted with different drugs. However, our goal is to identify a gene

expression signature that is shared between the colon and duodenum so that we can identify

candidate drug compounds that may be used for chemoprevention in both tissues.
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Figure 20: Unsupervised clustering of colon and duodenum samples suggest that the gene expression difference

between the colon and duodenum is a stronger signature than the one that differentiates polyp and normal samples.

Our strategy for finding a common gene expression signature for chemoprevention in
both the colon and duodenum of FAP patients is to (1) identify a colon or duodenum gene
expression signature and then (2) check if that signature is representative of the differences
between the at-risk normal mucosa and polyps in both the colon and duodenum in an

unsupervised clustering analysis. An alternative strategy could have been to identify a gene
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expression signature by comparing all polyps versus all normal samples. We believe however
that our proposed 2-step approach is more robust and less prone to overfitting to our data set.
Given that we have more colon polyps (5) than we have duodenum polyps (3), we likely
would have more power to detect the true underlying biological gene expression signature in
the colon compared to the duodenum in FAP patients. So Cuffdiff was run to identify
differentially expressed genes between the at-risk normal mucosa and polyps using colon
samples only. Using the criteria described in section 3.1.3, 131 differentially expressed genes
were identified (as illustrated by the rows on the heat map of Figure 21). Contrary to Figure 20,
the sample clustering in Figure 21 suggests that when limited to the genes of a colon gene
expression signature, polyps of the duodenum cluster with those in the colon. This suggests
that if we can identify a chemopreventive drug or compound that targets this colon gene
expression signature, that compound may also be effective for chemoprevention in the

duodenum.
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Figure 21: Unsupervised clustering of samples using an FAP colon gene expression signature that characterizes the
difference between that at-risk normal mucosa and polyps in the colon of FAP patients. BH adjusted p-value < 0.05
and log?2 fold-change > 1. Using this signature, the duodenum polyps cluster with the colon polyps, which suggests

that if we can identify a candidate drug to target colon polyps, that drug may also target duodenum polyps.

We then characterized pathways enriched with these signature genes that are deregulated
in the colon of FAP patients using Ingenuity Pathway Analysis (IPA). IPA identified 37 pathways
that are associated with the FAP colon gene expression signature. These pathways, an
association p-value and a ratio of the proportion of their member genes that are part of the
expression signature are listed in Table 8. As expected, the WNT/beta-catenin pathway is
associated with the colon gene expression signature (p-value = 0.021). Furthermore, several

inflammatory pathways (labeled with *) were associated with the gene expression signature,
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which might be expected since COX-2 inhibitors are known to repress adenoma development
and these inhibitors target inflammatory pathways®. In addition, several RXR activation
pathways (labeled with **) are associated with the FAP colon gene expression signature
including: (1) FXR/RXR activation, (2) LPS/IL-1 mediated inhibition of RXR function, (3) LXR/RXR
activation, (4) PXR/RXR activation, and (5) VDR/RXR activation. The development of new
chemopreventive strategies may benefit by targeting these pathways in addition to or as an

alternative to inflammatory pathways.
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FXR/RXR Activation** 2.75E-07 0.190
LPS/IL-1 Mediated Inhibition of RXR Function** 1.95E-06 0.113
Granulocyte Adhesion and Diapedesis* 1.41E-05 0.120
Agranulocyte Adhesion and Diapedesis* 1.07E-04 0.108
B Cell Development 1.10E-04 0.241
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 1.15E-04 0.140
Allograft Rejection Signaling 1.32E-04 0.153
Hepatic Cholestasis 1.41E-04 0.113
Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells* 1.55E-04 0.173
Autoimmune Thyroid Disease Signaling 2.75E-04 0.151
MIF-mediated Glucocorticoid Regulation* 3.31E-04 0.189
Graft-versus-Host Disease Signaling 3.80E-04 0.174
T Helper Cell Differentiation 3.98E-04 0.145
LXR/RXR Activation** 4.68E-04 0.111
Hepatic Fibrosis / Hepatic Stellate Cell Activation 5.37E-04 0.107
Antigen Presentation Pathway* 6.92E-04 0.175
PXR/RXR Activation** 1.07E-03 0.141
Serotonin Degradation 1.23E-03 0.154
Atherosclerosis Signaling 1.35E-03 0.099
Superpathway of Melatonin Degradation 1.38E-03 0.151
0X40 Signaling Pathway 1.58E-03 0.131
Noradrenaline and Adrenaline Degradation 1.74E-03 0.188
VDR/RXR Activation** 4.37E-03 0.115
Antioxidant Action of Vitamin C 5.37E-03 0.102
MIF Regulation of Innate Immunity 6.31E-03 0.133
Sperm Motility 7.08E-03 0.092
Phospholipases 7.24E-03 0.127
Melatonin Degradation | 1.35E-02 0.125
Nur77 Signaling in T Lymphocytes 1.82E-02 0.105
Communication between Innate and Adaptive Immune Cells 1.95E-02 0.086
Wnt/beta-catenin Signaling 2.14E-02 0.077
Dendritic Cell Maturation 2.40E-02 0.068
Ephrin B Signaling 3.09E-02 0.089
IL-4 Signaling 3.09E-02 0.093
Type | Diabetes Mellitus Signaling 3.09E-02 0.080
Calcium-induced T Lymphocyte Apoptosis 3.16E-02 0.098
Eicosanoid Signaling 3.98E-02 0.098

Table 8: Pathways associated with the FAP gene expression signature using Ingenuity Pathway Analysis (IPA).
Notable pathways include the WNT/beta-catenin signaling pathway and several inflammatory pathways*. In

addition, several RXR activation pathways** were identified.

3.2.2 Gene fusions
After identifying and characterizing differentially expressed genes between the at-risk

normal mucosa and polyps in FAP patients, Tophat-fusion® was run on RNA sequencing reads
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that failed initial alignment to RefSeq gene transcripts through Cufflinks, and 269 gene fusion
candidates were identified. To reduce the false positive rate, we required at least 1 spanning
read (a read spanning a fusion breakpoint), 1 spanning pair (a read pair where one read resides
on one gene and another resides on another gene, where the pair of reads are flanking a fusion
breakpoint) and 5 total pieces of evidence (e.g., the sum of the number of spanning reads and
spanning pairs) to call putative gene fusions. The remaining 22 putative gene fusions are listed

in Table 9.

Gene 1 Position Gene 1 pos

Gene 2 Position Num Spanning Reads Num Spanning Pairs Strands

FAP1_DA1_POLYP_COLON PRSS3 chr9:33798076 chr9 PRSS1 chr7:142460281 1 7 ff
FAP1_DA1_POLYP_COLON PARL chr3:183580484 chr3 ENSG00000217648 | chr6:143663891 1 39 rf
FAP1_DA1_POLYP_COLON GNPNAT1 chr14:53250202 chri4 PMS1 chr2:190687172 1 35 rf
FAP1_DA1_POLYP_COLON ENSG00000159314 | chr17:43511559 chr17 LOC146880 chrl7:62777797 1 29 rr
FAP1_DB1_POLYP_DUODENUM REG3G chr2:79255058 chr2 REG3A chr2:79384427 1 6 fr
FAP1_DB1_POLYP_DUODENUM [ENSG00000266613 | chr18:8413731 chri8 RFWD2 chr1:176012385 1 8 fr
FAP1_F1_POLYP_COLON RRN3P2 chr16:29127646 chrl6 ENSG00000259807 | chr16:29228801 7 6 ff
FAP1_F1_POLYP_COLON ENSG00000248827 | chr5:107061587 chr5 USP7 chr16:9009202 1 26 fr
FAP1_M1_POLYP_COLON SLC25A11 chr17:4843394 chr17 RNF167 chr17:4843823 1 14 rr
FAP6_B6_POLYP_COLON PTEN chr10:89705658 chr10 RPL11 chr1:24021154 1 26 ff
FAP6_D6_POLYP_COLON CEACAM6 chr19:42266130 chr19 CEACAMS chr19:42221373 6 196 ff
FAP6_D6_POLYP_COLON RNF6 chr13:26796139 chri3 FOXO01 chr13:41192773 1 12 rf
FAP6_D6_POLYP_COLON C110rf80 chr11:66529497 chril C1QBP chr17:5341442 1 48 ff
FAP6_D6_POLYP_COLON ZNRD1-AS1 chr6:29975965 chré HLA-B chr6:31323943 3 8 rf
FAP6_D6_POLYP_COLON RPLPOP2 chr11:61404487 chril RPLPO chr12:120637006 2 56 fr
FAP6_D6_POLYP_COLON ENSG00000225630 | chr1:565454 chrl CLCAl chr1:86950604 1 5 rf
FAP6_D6_POLYP_COLON ENSG00000259000 | chr14:45334536 chri4 DOCK11 chrX:117707777 2 5 rf
FAP6_D6_POLYP_COLON LARP4 chr12:50856408 chri2 C150rf41 chr15:36910662 9 5 ff
FAP6_DC6_POLYP_DUODENUM GRIN2B chr12:13768031 chr12 C120rf36 chr12:13529226 4 4 r
FAP6_DC6_POLYP_DUODENUM [ENSG00000232573 | chr14:99439637 chri4 RPL3 chr22:39714409 1 14 rf
FAP6_DD6_POLYP_DUODENUM [ ENSG00000224879 | chr2:79386904 chr2 REG3A chr2:79386554 1 50 fr
FAP6_DD6_POLYP_DUODENUM [ ENSG00000232380 | chr13:69560049 chri3 ZDHHC20 chr13:21961731 2 87 fr

Table 9: FAP polyp gene fusions identified with Tophat-fusion.

Interesting fusions include those involving the genes PTEN and REG3A. In CRC, PTEN is
altered through mutations, LOH and hypermethylation, where bi-allelic inactivation of the
protein is seen in 20-30% of all sporadic cases®. These types of PTEN events were not observed
in our data set; however there was a PTEN fusion event identified in the

FAP6_B6_POLYP_COLON sample suggesting that gene fusions may be another mechanism of
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PTEN inactivation. The only gene that was recurrently altered in gene fusion events was
REG3A. In a previous study, REG3A was shown to be down-regulated in 67% (20 of 30
samples) of primary human gastric cancers suggesting that REG3A is down-regulated in most
primary human gastric cancer cells®® and may be a relevant gene in the development of

duodenum adenomas.

3.3 Candidate chemopreventive drugs for FAP patients

After performing transcriptional profiling and identifying gene expression signatures of
the differences between at-risk normal mucosa and polyps in FAP patients, we used the colon
gene expression signature to identify candidate chemopreventive drugs using CiDD. Briefly, as
described in Appendix B section 6.3.2.2, in the normal workflow of CiDD, a user specifies a
tumor characteristic of interest, such as a BRAF V600E mutation. CiDD then identifies samples
in the TCGA harboring that tumor characteristic (e.g.,, CRC BRAF V600E samples) and a
reference set of samples (e.g., CRC BRAF wildtype samples). Next, CiDD performs differential
expression analyses on automatically downloaded RNA sequence data from these samples and
assesses whether a gene expression signature is associated with the tumor characteristic for use
in subsequent drug discovery screening experiments. In the case of our FAP project, we have
already identified a colon gene expression signature so we can directly use it for drug screening.
Thus, only steps 3 and 4 of the CiDD workflow were applied to the FAP colon gene expression

signature (see Figure 22).
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Figure 22: The FAP gene expression signatures were directly input into CiDD, where steps 3 and 4 of the generic

workflow were run for the identification of candidate drugs.

Table 10 lists CiDD identified candidate drugs for chemoprevention in the at-risk normal

mucosa of FAP patients. Three metrics of the drug screening analyses are depicted on the table:

1. Enrichment score: a score in the range of -1 to 1 where -1 is reflective of a drug compound

being negatively correlated with the query gene expression signature and 1 representing

positive correlation. The score is calculated using an algorithm that accounts for

correlation of the query signature with potentially multiple instances of a drug-induced

gene expression signature®.

2. Permutation P-value: a measure of significance for the enrichment score based on

calculating thousands of enrichment scores by randomly sampling enrichment scores for

candidate compounds and assessing the significance of the candidate compound

enrichment score.
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3. Specificity: a measure of the selectivity of a drug compound for the phenotype of interest.
Random query signatures are extracted from MSigDB¥ and run against the CMap to
generate a background list of enrichment scores and specificity indicates how often a

score equal to or more significant than the enrichment is seen.

Compound Enrichment score Permutation P-value Specificity
TTNPB* -0.926 0.020 0.006
SC-560 -0.896 0.000 0.010
PF-00539745-00 -0.884 0.010 0.013
Gly-His-Lys* -0.851 0.020 0.019
cinchonine -0.843 0.000 0.003
brinzolamide -0.831 0.000 0.000
yohimbic acid* -0.821 0.020 0.010
biperiden -0.793 0.000 0.019
viomycin -0.785 0.010 0.045
canadine -0.747 0.010 0.029
cyclic adenosine monophosphate -0.746 0.010 0.016
benzathine benzylpenicillin -0.729 0.020 0.026
eticlopride -0.725 0.020 0.010
vancomycin -0.721 0.030 0.022
cloxacillin** -0.689 0.040 0.016
colistin -0.685 0.040 0.029
debrisoquine -0.646 0.040 0.010
foliosidine -0.602 0.000 0.026
diprophylline -0.598 0.010 0.013
thiamazole -0.550 0.020 0.048
piperacillin -0.539 0.020 0.029

Table 10: Candidate drugs identified from the FAP colon gene expression signature that describes the differences
between the at-risk normal mucosa and polyps in the colon of FAP patients. The number of asterisks following a
compound indicates if the compound was identified as a candidate drug using the combined colon plus duodenum

gene expression signature and/or the duodenum-only gene expression signature.

To be identified as a candidate drug in Table 10, we required a permutation p-value <
0.05, an enrichment score < 0 and a specificity < 0.05. These criteria define drug compounds
that, at a level of statistical significance, induce gene expression signatures that are negatively
correlated with the colon polyp gene expression signature in addition to inducing responses

that are highly specific to the colon polyp signature. In the results tables, the drugs are ranked
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by their enrichment scores, where the most negatively connected drugs are ranked towards the

top of the list. Of initial interest, SC-560, a COX inhibitor, is the second ranked drug in the list.

This drug has been shown to be effective by inhibiting colon cancer cell proliferation with

concomitant GO/G1-phase cell cycle arrest®. Drugs of the same class, Celecoxib and Rofecoxib

have also shown activity for the prevention of adenomas in clinical trials?**?, providing some

validity to this candidate drug list.

To reinforce confidence in our findings, we generated additional gene expression
signatures using different comparison classes of normal mucosa and polyp samples with the
thought that drugs that appear on multiple candidate drug lists may have a better chance of
being truly effective drugs for chemoprevention in both the colon and duodenum of FAP
patients. In Table 11, we identified candidate drugs using a query signature for colon and

duodenum samples combined. In Table 12, we identify candidate drugs to repress a gene

expression signature for FAP duodenum samples exclusively.

spaglumic acid -0.983 0.000 0.000
lycorine -0.833 0.000 0.010
cloxacillin** -0.779 0.000 0.010
quinpirole* -0.817 0.000 0.000
yohimbic acid* -0.905 0.010 0.000
arachidonyltrifluoromethane -0.939 0.020 0.006
ketoconazole -0.700 0.020 0.000
celecoxib -0.652 0.020 0.000
cefotiam -0.653 0.040 0.026
quipazine -0.653 0.040 0.016

Table 11: Candidate drugs identified from the combined colon and duodenum gene expression signature. The
number of asterisks following a compound indicates if the compound was identified as a candidate drug using the

colon-only gene expression signature and/or the duodenum-only gene expression signature.
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From these lists, we identified an initial pair of interesting candidate drugs for follow-up.
To treat both the colon and duodenum of FAP patients in Table 11, Celecoxib was identified,
which is a COX-2 inhibitor that has shown substantial activity in previous studies for repressing
the development of colon polyps®2%. However, as explained in section 1.1.3, this drug has been
associated with cardiovascular side effects and thus is not FDA approved. Nevertheless,
identifying this as a candidate drug again provides some validity in the candidate drug results.
Another interesting drug is TTNPB, which is the top-ranked compound for chemoprevention in
the colon in Table 10 and the second-ranked compound for chemoprevention in the duodenum
in Table 12. This compound was also near the top of the ranked candidate compound list
(based on an enrichment score of -0.688) for the combined colon and duodenum signature in
Table 11 although the permutation p-value did not reach statistical significance so TTNPB is not
listed in this table. Additionally, TTNPB is an RXR agonist, and the pathways identified as
deregulated in FAP polyps were RXR activation pathways (see Table 8), providing additional

biological justification for testing this drug compound in follow-up experiments.
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Compound Enrichment score Permutation P-value Specificity

sulfaquinoxaline -0.904 0.000 0.003
TTNPB* -0.900 0.010 0.006
Gly-His-Lys* -0.891 0.000 0.006
atractyloside -0.853 0.000 0.000
Prestwick-1103 -0.817 0.000 0.000
clorsulon -0.804 0.000 0.006
3-acetamidocoumarin -0.797 0.000 0.032
gentamicin -0.791 0.000 0.022
chenodeoxycholic acid -0.764 0.010 0.026
isometheptene -0.755 0.010 0.016
ikarugamycin -0.727 0.050 0.035
podophyllotoxin -0.727 0.020 0.048
bumetanide -0.720 0.020 0.032
naringenin -0.715 0.020 0.029
quinpirole* -0.706 0.020 0.016
etynodiol -0.683 0.020 0.006
16-phenyltetranorprostaglandin E2 -0.664 0.020 0.026
CP-863187 -0.648 0.020 0.045
jopromide -0.646 0.020 0.042
cloxacillin** -0.644 0.020 0.029
methyldopate -0.644 0.020 0.048
harpagoside -0.641 0.020 0.038
folic acid -0.636 0.020 0.045
josamycin -0.635 0.010 0.019
diethylstilbestrol -0.626 0.000 0.010
mefexamide -0.621 0.020 0.032
suramin sodium -0.602 0.040 0.035
bambuterol -0.601 0.040 0.026
ampyrone -0.576 0.050 0.029
pindolol -0.569 0.050 0.026

Table 12: Candidate drugs identified from the duodenum gene expression signature. The number of asterisks
following a compound indicates if the compound was identified as a candidate drug using the combined colon plus

duodenum gene expression signature and/or the colon-only gene expression signature.

3.4 Discussion

We have identified an FAP colon gene expression signature representative of the molecular
differences between the at-risk normal mucosa and polyps of FAP patients and screened it
against a database of drug-induced signatures using a software framework that we developed
called CiDD. We have validated, in silico, the candidate celecoxib, a COX-2 inhibitor that has
already been clinically tested as a chemopreventive drug in FAP, which helps support the
utility of our approach. CiDD also identified the novel candidate TTNPB, which is an RXR

agonist for chemoprevention in both the colon and duodenum of FAP patients.
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Sulindac and bexarotene, drugs similar to celecoxib and TTNPB, have been successfully
tested on cell lines and are currently being tested on APCM"* mice by Dr. Eduardo Vilar and his
lab members at MD Anderson Cancer Center. The APCM/* model is one of the most widely
used mouse models of FAP. These mice harbor a heterozygous L850X nonsense mutation in
APC. The protocols, breeding of mice and laboratory work for the testing of these drugs have

been created and managed by Dr. Eduardo Vilar and his lab members.
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4 Conclusions and future directions

The long-term goal of the project described in this dissertation is to define the genomic
landscape of FAP polyps, to determine their biological significance and to use this information
to develop novel chemopreventive strategies for FAP patients. Of note, although hereditary
forms of CRC constitute less than 5% of all cases, their study has tremendously informed the
understanding of the molecular biology of CRC in general. This is highlighted by the current
recommendation to use aspirin for the prevention of sporadic CRC and the approval of COX-2
inhibitors as treatment for polyps in FAP2. Thus, our long-term goal and the current findings
presented in this dissertation, and the conclusions that follow, have the potential to impact the
care of not only FAP patients but also the general population. In this chapter, I summarize our
conclusions and describe possible future directions of our FAP project, and I conclude by
speculating on the additional impact on cancer research that may be made through the new

bioinformatics tools that we have developed.

4.1 Promising candidate genes of early CRC development

The basic strategy followed in this dissertation involved the genomic and transcriptomic
profiling of FAP polyps, which are benign lesions, and the comparison of these profiles to those
of CRC tumors. This strategy allowed us to identify and differentiate the events that may be
crucial for the initial development of these pre-cancerous lesions versus those that might be

responsible for developing these lesions into carcinomas. This strategy, which leverages TCGA
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data, can generally be applied to other NGS-based chemoprevention projects for any tissue type
that is represented within the TCGA initiative.

In summary, somatic APC truncating mutations and loss of chromosome 5q were
recurrent across polyps. Driver events such as activating KRAS mutations were identified in
multiple polyps. Further, analysis of mutation allele fractions suggests that several of the
polyps studied are multi-clonal and accumulating additional driver events. Excluding the
known genes APC and KRAS, 50 candidate genes have been identified that could potentially
play a role in future chemopreventive drug development projects. Of these genes, notable
inhibitors of beta-catenin in the WNT signaling pathway were identified, namely AXIN2,
TCF7L2, FBXW7 and SOX9 (in addition to APC). ARID1A, which is a MYC inhibitor that helps
to control cellular proliferation was also recurrently mutated in our data set (see Figure 17). The
majority of the candidate genes have been previously associated with CRC, providing
additional evidence that they are important in the early development of CRC. In addition, a
PTEN gene fusion was detected and a novel, recurrent REG3A fusion was identified in
duodenum polyps from 2 patients. These genes are currently being biologically validated with

functional studies in the lab of Eduardo Vilar at MD Anderson Cancer Center.

4.2 Next steps in the characterization of FAP adenomas and the development

of FAP chemopreventive strategies

We identified a gene expression signature representative of the molecular differences

between at-risk normal mucosa and polyps in the colon of FAP patients that was associated
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with deregulation of inflammatory pathways and RXR activation pathways (Table 8). We
screened this signature against drug-induced signatures using our CiDD software. Using a
combined gene expression signature representative of the differences between the at-risk
normal mucosa and polyps in both the colon and duodenum of FAP patients, CiDD identified
Celecoxib, a COX-2 inhibitor that targets inflammatory pathways, which has previously been
clinically developed as a chemopreventive drug, thus illustrating the validity of our approach.
CiDD also identified the novel chemopreventive candidate drug TTNPB, an RXR agonist, in
separate analyses using FAP colon and then duodenum samples. Sulindac and bexarotene,
drugs of similar function to celecoxib and TTNPB, are currently being tested on APC™»* mice in
the lab of Eduardo Vilar at MD Anderson Cancer Center.

An additional 40 FAP samples have been RNA sequenced recently at the MD Anderson
Cancer Center sequencing core facility and these data were not included in the analyses in this
dissertation. These samples will be analyzed to perform a more in-depth characterization of the
colon and duodenum transcriptomes in the near future. These data will help us to refine the
FAP gene expression signatures and allow us to more confidently define the transcriptome
differences between the colon and duodenum of FAP patients, which may provide insights into
how best to treat the at-risk normal mucosa in both the colon and duodenum of FAP patients.

Additional data types may also prove useful in continuing to refine our genomic analyses
of colon polyps and potentially duodenum polyps such as SNP arrays for higher-resolution
copy number variant calling or whole genome sequencing for mining DNA in non-coding
regions of the genome. Additionally, power to detect mutations in the polyps could be

improved by deepening sequence coverage, which would be an especially useful strategy for
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mutation calling in low purity settings. Deeper coverage would also help in characterizing
polyp clonality. Tools for characterizing clonality are dependent on accurate somatic mutation
calling and the precise characterization of allele fractions for those mutations, both of which are
more accurate with deeper sequencing.

To overcome problems of limited DNA in polyps, we could perform mutation calling and
transcriptome characterization from the same RNA sequence reads of polyps. It is possible to
detect somatic mutations in the RNA sequence data, which would allow us to characterize
mutations in genes that are transcribed. Methods such as SNPiR exist for calling variants in
RNA sequence data. SNPiR has shown 98% specificity and 70% sensitivity of calling coding
variants in RNA sequence data that were verified using exome and whole genome sequencing®”.

Other chemoprevention clues may be hidden in the genomes of normal mucosa samples.
So another focus of future work is to characterize aberrations found in the colon normal mucosa
of FAP patients. This characterization may provide insights into pre- or early-adenoma

development that may be very useful in the development of chemopreventive strategies.

4.3 Bioinformatics software developed for NGS-based chemopreventive

research

This project required the development of several pipelines and tools. In order to annotate
our data set easily and flexibly in combination with other large-scale data sets such as the 1000
Genomes Project, the Exome Sequencing Project, the COSMIC database and several others, we

developed variant tools, which simplified the management and characterization of samples and
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their mutations tremendously. We also characterized chromosomal allelic imbalance (Al) in the
pre-cancerous setting, where low “tumor” purities can make this data more difficult to analyze
compared to that of tumors, using software that we developed for NGS data called hapLOHseg.
CiDD was developed to computationally identify candidate drugs to target tumor gene
expression signatures inferred from RNA sequence data.

These tools could be applied to many settings. Variant tools is a generic toolset for the
analysis of genetic variants and can be applied to all NGS disease-research studies including
cancer and non-cancer related diseases. hapLOHseq can be applied to a variety of settings where
the detection of subtle chromosomal Al events is helpful. This includes, the early detection of
cancer or metastatic disease, the sensitive detection of recurrence, the characterization of cancer
evolution temporally and spatially, etc. As a complementary tool, CiDD can be used to identify
an initial set of candidate drugs to target specific subtypes of cancer that might be detected.
Further, CiDD may be helpful for candidate drug identification for any tumor exome or whole
genome study being performed today, even in the absence of RNA sequence data in these
studies. CiDD makes this possible because CiDD can obtain RNA sequence data from TCGA as
a surrogate for RNA sequence of samples being genomically characterized (by identifying

TCGA samples that are genomically similar to those being studied).
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5 Appendix A: Sequencing analysis pipelines

In the following sections, I document the tools, versions of tools and commands executed
for sequencing analysis pipelines implemented for this project. The pipelines are described
using tables where the rows in the table specify an ordered list of minimal commands needed to
replicate analyses described in this dissertation. In practice, these commands were
implemented to run on a cluster and high-performance servers. Various steps were parallelized
on a chromosome level such that for a single sample, 22 jobs (one for each chromosome
excluding chromosomes X and Y) would run in parallel in a cluster environment. To simplify
the description of the major steps of these pipelines, split/merge commands and intermediate

reporting steps that are common to such pipelines, have been omitted.

5.1 Exome sequence alignment

Here we include the minimal commands that could be used to repeat the alignment
procedure of our FAP exome sequence data. The Burrows-Wheeler Aligner (BWA)? is used for
initial alignment. Picard is used for manipulating and cleaning up Sequence Alignment/Map
(SAM) format files®®. The Genome Analysis Toolkit (GATK)* was used to perform local
realignment of sequencing reads. SamTools® was used for indexing bam files and generating
mapping statistics. For high-level quality assessment, SamTools was used to assess the
proportion of aligned reads that were aligned on-target (e.g., the number of reads aligned to the
exome target region), which is a reflection of the quality of the exome capture process, and

BEDtools* was run to estimate aligned sequencing depth.
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Software Version Command Parameters of interest Comment

bwa 0.5.9-r16 aln Align reads to the human reference build hg19.

bwa 0.5.9-r16 sampe Generate sam format alignment for read pairs.
Soft-clip alignments that hang off the end of

picard 1.95 CleanSam reference sequenceand set MAPQ to 0 if a read is
unmapped.

samtools | 0.1.16 view Convert from sam to bam format.

picard 1.95 SortSam SORT_ORDER=coordinate Sort reads by genomic position.

samtools | 0.1.16 index Create bam file index for fast read access.

. --known:dbsnp dbsnp_137.hg19.vcf Identify potentially problematic aligned regions
gatk 264 |RealignerTargetCreator --known:indels 1000G_biallelic.indels.hg19.vcf [around known common polymorphisms and indels.
gatk 2.6.4 IndelRealigner Realign reads around identified regions.
picard 1.95 MarkDuplicates REMOVE_DUPLICATES=true Mark and remove redundant sequencing read pairs.
samtools | 0.1.16 index Re-index the realigned and cleand bam file.

-cov ReadGroupCovariate This is the first pass of the base quality score
gatk 264 BaseRecalibrator -cov QualityScoteCovariate recalibration, whic.h-collects metrics in recalibration
-cov CycleCovariate tables for the specified covariates used for
-cov ContextCovariate recalibration.
gatk 264 PrintReads Generate bam with recalibrated ql{ality scores using
the output BQSR file from the previous command.
bedtools | 2.16.1 coverage Generate coverage statistics.
samtools | 0.1.16 idxstats Get summary of mapped and unmapped reads.

Table 13: A minimal list of ordered commands required for the alignment of exome sequencing reads to the human

reference hg19 build.

5.2 Calling point mutations

Given the aligned sequence files produced by our exome sequence alignment pipeline,
MuTect?2 is run on polyp-blood sample pairs for the sensitive detection of point mutations.
Potential false positive mutations that might be common polymorphisms are identified by
cross-checking candidate mutations against population variant databases (including the 1000
Genomes* project and the Exome Sequencing Project) and removing those seen in 1% or more
of the general population. A custom verification pipeline (described in section 2.1.4) is also run
that looks for evidence of variant reads in the paired blood and normal mucosa for each
candidate polyp mutation, where mutations are filtered out if variant reads are found in 2% or

5% of reads in the blood or normal mucosa, respectively. Subsequently, a subset of
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nonsynonymous mutations were visually verified using the Integrative Genomics Viewer (IGV)3.
For each patient, we performed visual verification by inspecting the sequencing reads at each
candidate mutation site across all of that patient’s samples. We looked for signs of false
positives, which include:

1. Mutations appearing to be located only on the ends of reads, which are lower
quality base calls.

2. Observing several variant alleles around the candidate mutation, which suggests
that there may be an indel in the surrounding area, resulting in poorly mapped
reads and the generation of false positives.

We found that, after running our verification pipeline (described in section 2.1.4), there were

very few mutations that failed visual verification.

Software Version Parameters of interest Comment
All lllumina Hi-seq 2000 reads were aligned using the
alignment pipeline described in Appendix A, section 5.1.
—reference_sequence ucsc.hgl9 fasta Call somatic point mutations by CQmParlng each polyp to a

. . matched blood sample. Information in COSMIC and dbSNP
mutect 1.4 |--cosmic hgl9_cosmic_v54_120711.vcf |, T .

is used to distinguish true somatic events from false

--dbsnp dbsnp_137.hg19.vcf o
positives.

alignment pipeline

Table 14: MuTect calls point mutations for polyp (or tumor) samples using paired sequence alignment files.

Subsequently, mutation reports were generated using variant tools®, where we annotated our
mutations with information from COSMIC#*, dbNSFP*, the 1000 Genomes Project* and the

Exome Sequencing Project.
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5.3 Calling insertions and deletions

Similarly to point mutation calling, somatic insertions and deletions (indels) were detected
using paired polyp and blood samples. IndelLocator (i.e., IndelGenotyperV2) was run to call the
indels. The same verification pipeline (described in section 2.1.4) was run to identify false
positives by searching for evidence of variant reads in each polyp’s paired blood and normal
mucosa sample. Unlike with point mutations, where we visually verified only a subset of the
data (because there were very few false positives identified through their visual verification), all

indels were visually verified using IGV because of their higher false-positive rate.

Software Version Parameters of interest Comment

All lllumina Hi-seq 2000 reads were aligned using the
alignment pipeline described in Appendix A, section 5.1.
Call somatic insertions and deletions by comparing each
polyp to a matched blood sample.

alignment pipeline

IndelGenotyperV2 |36.3336 |--somatic

Table 15: IndelLocator calls insertions and deletions for polyp (or tumor) samples using paired sequence alignment

files.

5.4 Chromosomal allelic imbalances

Chromosomal allelic imbalances (Al) are called using hapLOHseq (see Appendix B, section
6.2). hapLOHseq identifies regions of the genome where there is an excess of one haplotype (i.e.,
allelic imbalance). To do this, first germline haplotypes need to be statistically estimated (i.e.,
genotypes need to be phased). Then hapLOHseq is run to look for segments of the genome where
allele frequencies that are higher than expected (e.g., greater than 0.5) are enriched for the alleles

in an estimated germline haplotype. These are the candidate Al regions.
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First, the GATK is used to call genotypes for blood samples at sites that are polymorphic

in the 1000 Genomes project. Then, MaCH®, a Markov Chain based haplotyper, is used to

statistically estimate haplotypes (using a reference panel of 200 European haplotypes). Of note,

hapLOHseq also includes a phasing algorithm that we developed called pairwise-phasing (see

Appendix B, section 6.2.2.1.2), where the main benefit of pairwise-phasing is that one can phase

a variant call format (VCF) file directly without the need of processing sequencing read files.

Finally, hapLOHseq is run using each polyp’s VCF file and the corresponding estimated

germline haplotypes. To classify each putative hapLOHseq event as somatic, we verified that the

events did not exist in the blood samples by running hapLOHseq on the blood and normal

mucosa samples as well.

Software Version Command Parameters of interest Comment
. I All lllumina Hi-seq 2000 reads were aligned using the
alignment pipeline . L . . . .
alignment pipeline described in Appendix A, section 5.1.
-gt_mode GENOTYPE_GIVEN_ALLELES Call genotypes (within the exome target region) at the sites
-out_mode EMIT_ALL_SITES that are polymorphic in the 1000 genomes project. The
-stand_call_conf 0.0 positions for the 1000 genomes SNP sites were obtained by
gatk 2.6.4 UnifiedGenotyper --annotation AlleleBalance downloading the EUR reference panel data from
--annotation DepthPerAlleleBySample http://www.sph.umich.edu/csg/abecasis/MACH/download/
--annotation Coverage and then intersecting these coordinates with the target
--annotation AlleleBalanceBySample region of the Nimblegen SeqCap EZ3 capture chip.
—rounds 30 Custom scripts were run to transform the VCF generated by
—states 50 the GATK into PED format for MaCH. A reference panel of
mach 1.0.18 —-phase 200 European haplotypes (-h) were downloaded from and
-h EUR.200.haplotypes http://www.s_ph.urrTlch.edu/csg/fdbeca5|s/MACH/downIoad/
were used as input into the phasing.
--est_aberrant_emissions
--num_states 2
--initial_param_normal 0.5 Identify allelic imbalance events using the estimated
haplohseq 0.1 --initial_param_event 0.51 haplotypes and the polyp VCF files. hapLOHseq is described
--event_prevalence 0.001 in Appendix B, section 6.2.
--event_length 50
--vcf_min_depth 10

Table 16: Minimal commands executed for the calling genotypes, estimating haplotypes and then detecting allelic

imbalance events from exome sequence data.
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5.5 Quantifying transcripts and identifying differentially expressed genes

The Tuxedo protocol® was implemented to perform RNA sequence transcript
quantification and for the analysis of differential gene expression. TopHat® is used for
alignment of initial reads to the human genome reference hg19. Cufflinks®! then assembles and
quantifies isoform and gene-level transcripts. Subsequently, the software package Cuffdiff*? is
used to identify differentially expressed genes, where genes with an adjusted Benjamini-
Hochberg p-values less than 0.05 and a log2 fold-change >=1 or log2 fold-change <= -1 are
labeled as differentially expressed. CummerBund (not shown below) is an R package that is part
of the Tuxedo protocol, designed for the interrogation of CuffDiff results, which we used to

explore the expression data.

Software Version  Parameters of interest Comment
--fusion-search
--keep-fasta-order
--bowtiel
--no-coverage-search
tophat 209 -ro This performs mapping of RNA-seq reads to the human genome
--mate-std-dev 80 reference hgl9.
--fusion-min-dist 100000
--fusion-anchor-length 13
--fusion-ignore-chromosomes chrM
hg19/Homo_sapiens/UCSC/hg19/Sequence/Bowtielndex/genome
cufflinks 211 This assgmble_s transcripts and quatifies isoform-level and gene-level
expression using FPKM.
g hg19/Homo, sapiens/UCSC/hgl9/Annotation/Genes/genes.gtf The hg19 gene definition file (-g) and the refere'nce seque'nce (-s) are
cuffmerge 1.0.0 -s hg19/Homo_sapiens/UCSC/hg19/Sequence/Chromosomes resources that were downloaded from the cufflinks website
- (http://cufflinks.cbcb.umd.edu/igenomes.html).
cuffdiff 211 -b hg19/Homo_sapiens/UCSC/hg19/Sequence/Chromosomes The rfeference falsta for bias correction (-b) is the same parameter value
used in the previous cuffmerge step (-s).

Table 17: Minimal ordering of commands to quantify transcripts and identify differentially expressed genes for a

single 2-class comparison.

5.6 Detecting gene fusions

RNA sequence reads were aligned using TopHat to the human genome reference hg19.

The remaining unmapped read pairs were used as input to Tophat Fusion®. Tophat Fusion
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identifies putative gene fusions. We filtered these gene fusions and required putative fusion

events to have at least 1 read mapped to a fusion breakpoint, 1 read pair with reads flanking the

fusion breakpoint and a total of 5 (reads plus read pairs) providing such pieces of evidence for

candidate fusion events.

Software Version Parameters of interest Comment
--fusion-search
--keep-fasta-order
--bowtiel
--rl)o-coverage-search This performs mapping of RNA-seq reads to the human
tophat 2.0.9 r genome reference hgl9. The read pairs that do now align
--mate-std-dev 80 R . .
K B the hg19 are used in the fusion detection step.
--fusion-min-dist 100000
--fusion-anchor-length 13
--fusion-ignore-chromosomes chrM
hg19/Homo_sapiens/UCSC/hg19/Sequence/Bowtielndex/genome
Align initially unmapped read pairs to the human genome
--num-fusion-reads 1 reference hgl9. Identify candidate fusion events and
. --num-fusion-pairs 1 separately report those events where there exists at least 1
tophat-fusion-post 2.0.9

--num-fusion-both 5
hg19/Homo_sapiens/UCSC/hg19/Sequence/Bowtielndex/genome

read that spans the fusion breakpoint, 1 read pair that
straddles the fusion breakpoint, and there exists at least 5
pieces of evidence total between the reads and read pairs.

Table 18: Minimal commands to generate a list of candidate gene fusions from RNA sequence data.
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6 Appendix B: Bioinformatics software developed and applied

in this project

6.1 NGS variant management, annotation and analysis: vtools

The contents of this chapter are based on the following article, reprinted with permission,

from the journal Bioinformatics:

San Lucas, F. A., Wang, G., Scheet, P. & Peng, B. Integrated annotation and analysis of genetic
variants from next-generation sequencing studies with variant tools. Bioinformatics 28, 421-422

(2011).

6.1.1 Introduction

Tracking samples and predicted variants from next-generation sequencing (NGS) projects
often requires building custom analysis pipelines. Data standards such as the BED”® and VCF”!
file specifications can be used to represent these variants in a common format, simplifying
integration of tools and the construction of these analysis pipelines. Difficulties include the
integration of diverse annotation sources and the management of many large intermediate files
containing millions of predicted variants and millions more associated annotations for each
sample. These annotation sources and intermediate files often have fundamental inconsistencies
using either 0- or 1-based coordinates and potentially different genomic builds, which can

complicate their management and integration.
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For biologists or analysts who have familiarity with programming and running tools from
the command line, there are many useful tools that can be integrated into custom pipelines to
annotate and filter variants. These tools include ANNOVAR3* and BEDTools%>. However,
building effective pipelines that relate variants to their samples and sample attributes (such as
cases and controls), while applying multiple annotation sources requires a large customization
effort. A framework for building pipelines that facilitate simple, reproducible and recurrent
analyses is currently lacking. Therefore, we have developed variant tools, a flexible, open-source
toolset upon which custom pipelines can be easily constructed. This toolset facilitates the
storage of variants (alongside their sample details) as well as the annotation, filtering and
reporting of these variants at multiple levels — starting with variant reports based on individual

samples to project-wide variant reports.

6.1.2 Methods

Python scripting language and it can incorporate either SQLite or MySQL as the backend
database engine. The toolset is designed around a master variant table that often consists of
millions of variants for all of the samples in a sequencing project along with variant attributes
(called fields in variant tools). Variant fields can include sample statistics, which variant tools can
generate, or information provided by annotation data sources. Regardless of the source of these
fields, they can be used to select, output and analyze genetic variation from the project. As
illustrated in Figure 5, analyzing genetic variants from NGS projects typically involves four

steps, namely importing, annotating, filtering, and reporting:
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Sample and variant import: variant tools accommodates a variety of variant file formats. It
supports import of VCEF files or other tab-delimited formats such as intermediate output
from ANNOVAR or BEDTools. It is capable of annotating and reporting on all types of
variants, including indels, as long as annotation sources are available. The toolset also
supports annotation and reporting of project variants using multiple genomic builds, by
automatically downloading and integrating the UCSC [iftOver tool”. As an example, if
variants are imported to a project using build hg18, they can be annotated using
annotation sources designed for build hg19, and exported based on either hg18 or hg19

coordinates.

Amnnotation: variant tools can incorporate databases that annotate individual variants,
genomic locations and regions, such as genes, and other annotation fields. A growing
number of annotation sources such as dbNSFP* or KEGG pathways™ can be downloaded
automatically by variant tools whereas customized annotation databases could be created
following a well-documented procedure. Any genomic data source can be imported into
the database as long as project variants can be linked to the annotation source through an

annotation attribute (such as genomic coordinates or a gene name).

Select variants of interest: Variants can be selected by read depth (if provided by the
imported VCFs), by any of the available annotation fields (such as variant type, gene,

pathway or predicted damaging effects) or by sample frequency across subsets of
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samples, which is useful for comparing variants across populations such as cases and
controls. Complex criteria involving multiple fields from different annotation sources can
be used to select or filter variants. Selected variants can be counted, exported, or saved to
separate underlying tables, where they can be annotated and filtered separately from

other variants.

Export reports: Variants from a table can be exported with an arbitrary number of fields,
regardless of their sources. This allows users to output sample statistics such as numbers
of homozygous and heterozygous genotypes in samples for selected variants alongside
annotation information. More interestingly, arithmetic operations and aggregate functions
can be used to output summary statistics of variants such as the average depth of

coverage for a particular set of variants.

variant tools installs easily and sets up a working environment with human genome
annotation sources that can be downloaded automatically. Because variant tools manages
project variants and annotation sources for the user, it is easier to reanalyze variants as genomic
builds change and as annotation sources are updated or become available. The burden of
tracking VCF files, annotation files and numerous scripts is reduced. variant tools is freely
available at http://varianttools.sourceforge.net. This website includes source code,

documentation, tutorials and a description of available public annotation data sets.
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6.1.3 Discussion

Despite an intuitive command-line interface, some high-level reports, such as calculating
sample transition/transversion ratios or reporting the number of variants per gene, involve
several vtools commands. To simplify the use of variant tools, we provide a reporting command
vtools_report that generates example summary reports. These reports make the use of variant
tools more practical, and the vtools_report source code provides examples of how to combine
and further customize vtools commands.

Within variant tools, variants are linked to but stored separately from their annotations
within a relational database removing the need to store large, repetitive, intermediate
annotation files, which helps to conserve disk space. To improve query performance in
annotation and filtering, database indexes are automatically created for the users. These
indexes do add to the storage needs of variant tools.

For an example, we created a vtools project with 44 whole genome VCF files with 161
million predicted sample variants. This required 3.3G of disk space to store the variants within
an SQLite database compared to 2G of disk space for the VCF files compressed or 9G
uncompressed. As an added benefit of the vtools approach, these variants were stored using
both hg18 and hg19 genomic coordinates within SQLite. When using a MacPro workstation
with 2 Quad-Core Intel Xeon Processors at 2.26GHz and 8G of RAM, the project creation
required 3.5 hours. This time can be reduced to an hour if variants are processed in parallel by
vtools on a cluster system before they are merged to a larger project. The time required for
subsequent annotation and filtering of these variants ranged from 1 to 10 minutes. Additional

details and other examples can be found in the tutorials section of the software website.
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We have provided a pre-configured but customizable framework for the analysis of
predicted variants from NGS data. Although our efforts were motivated by a desire to produce
initial, non-statistical analyses, we are currently expanding our software to include a suite of
powerful tests for association studies. Our general framework will allow the direct comparison

and implementation of a wide array of analytical methods.

6.2 Detection of allelic imbalance events: haplL.OHseq

6.2.1 Introduction

A well-studied mechanism by which cancer cells alter the activity of tumor suppressor
genes and oncogenes is through copy number alteration (CNA) events. One such aberration class
that we focus on in this project is chromosomal allelic imbalance (AI). We define chromosomal
Al as genomic aberrations of greater than 10 megabases due to amplification, deletion or copy
neutral loss-of-heterozygosity (cn-LOH) events. The detection and characterization of these
chromosomal events has many potential applications in cancer studies. For example,
characterizing tumor samples with specific chromosomal amplifications and deletions can be
used to inform therapeutic decision-making as these events provide insights into the
progression of aberrant cells to cancer and even to metastasis”™. Further, the sensitive detection
of specific Al biomarkers can be used for the early detection of cancer and for the management
of cancer resistance”.

The traditional strategies for identifying CNA or Al events employ cytogenetic

technologies, such as karyotyping and fluorescence in situ hybridization (FISH). In the last decade,
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array-based comparative hybridization (aCGH) and single-nucleotide polymorphism (SNP) array
based approaches have become popular technologies for CNA detection”. One drawback of
these methods, however, is that their probes are sparsely located along the genome and they are
pre-defined, making it challenging to pinpoint event boundaries and detect novel and rare Al
events. More recently, methods based on whole genome sequencing data have gained in
popularity, due to their higher-resolution, more precise detection of CNA boundaries, and
ability to identify novel CNAs”. In addition, some tools exist for the detection of CNA from
exome sequencing and are designed to address some of the issues inherent in this data.
Examples of these tools include ExomeDepth” and ExomeCNV78. ExomeDepth models the
relative coverage between a sample of interest and its expected coverage based on a statistical
model generated from a reference panel of exome sequenced samples. The ExomeDepth
statistical model is designed to account for the capture bias in coverage that is common to
exome sequence data. ExomeCNYV takes a similar approach, but also incorporates allele
frequencies at heterozygous sites for detection of cn-LOH events. These methods are designed
to identify exon and gene-level copy number events from either paired samples or from a
sample and a reference panel of exomes.

No method exists however for detecting subtle chromosomal Al events in exome sequence
data which could be extremely valuable in cancer studies, especially where limited tissue
availability exists and renders surveys with other technologies (e.g., SNP arrays) impossible.
Subtle Al events are those amplification, deletion or cn-LOH events that exist in a small
proportion of the cells sequenced, potentially in 20% or less of the cells. hapLOHseq is a software

tool that we developed especially for the sensitive detection of chromosomal Al events from
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next-generation sequencing (NGS) data, and more specifically from exome sequencing data for the
project described in this dissertation. hapLOHseq is a NGS-based adaptation of a method called
hapLOH®!, which was designed for the subtle detection of Al events inferred from SNP array
data. Inputs to hapLOHseq include variant call format (VCF) files generated from either whole-
genome or exome sequencing and optionally, statistically phased germline haplotypes for these
samples. The output for each hapLOHseq run is a report of putative Al regions of the genome
along with a detailed report that includes the probability of each polymorphic heterozygous site
being in a region of AL

hapLOHseq relies on Al or the deviation from the expected one-to-one allele ratio at
heterozygous sites in germline DNA. For example, consider a heterozygous site with arbitrarily
labeled alleles of A and B. A duplication event over the site results in either an AAB or ABB
genotype with a corresponding imbalanced allele ratio of 2:1 or 1:2. A deletion event results in
an A- or B- genotype with severely imbalanced allele ratios of 1:0 or 0:1. Similarly, cn-LOH
events result in AA or BB genotypes with allele ratios of 2:0 or 0:2. With high-purity tumor
samples and characterization of germline genotypes from paired normal samples, one can
directly compare genotypes of the tumor and normal samples and clearly characterize the
tumor genome and infer copy number changes using existing methods such as ExomeCNV7,
However, when the sample has low tumor purity and contains a high-proportion of normal
cells and a small proportion of tumor cells, the called genotypes will reflect those of the
germline, not the tumor. Thus, to characterize the tumor we must make inferences of

aberrations using subtle signals of Al inferred from the lower-level allele read counts.
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6.2.2 Methods

The hapLOHseq method works by capturing subtle Al signals whenever there exists
imbalances in haplotypes rather than simply relying on imbalances observed at independent,
heterozygous sites. The method consists of 3 general steps, which include the following:

1. Estimate germline haplotypes using statistical, population genetics, from the
called genotypes. These haplotypes can be estimated from a germline sample or
alternatively, directly from a tumor sample in situations where the tumor purity is
very low (e.g., the proportion of normal cells is very high).

2. Assess similarity between the observed reference allele frequencies from the
sequencing reads and the estimated haplotypes.

3. Identify Al regions where this similarity is higher than expected indicating
haplotype imbalance.

These steps are described in further detail in the following sections.

6.2.2.1 Estimation of germline haplotypes

6.2.2.1.1 Existing statistical software

Several statistical software packages can be used to estimate haplotypes for use in
hapLOHseq such as MaCH®, Beagle” or fastPHASE®. In this project, we used MaCH as described
in Appendix A, section 5.4. In order to properly estimate haplotypes using this strategy, it is
necessary to have and process binary alignment map (BAM) files. The reason for this is that from

variant call format (VCF) files, which is usually the end product for a sequenced sample, one
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cannot distinguish between missing genotypes and homozygous reference sites (because VCFs
typically do not report homozygous reference genotypes). Going back to reads in a BAM file to
make homozygous reference calls can be resource intensive, requiring large amounts of disk
space for storage and a high-number of processors often in a distributed computing
environment for analysis. In addition, users typically have VCF files of sequence variant calls
but they may not have access to the low-level read data (i.e., BAM files).

To address this, we have developed a computationally efficient method of phasing, called
pairwise phasing, that is embedded in hapLOHseq and runs on VCF files (without the need for
BAM files). We describe the pairwise phasing method and compare its phasing accuracy to

MaCH’s phasing accuracy in the subsequent sections.

6.2.2.1.2 Pairwise phasing

The basic idea behind pairwise phasing is to estimate haplotypes using genotypes provided
in a VCF file in an iterative, pairwise fashion. Given all of the heterozygous sites in a VCF file
that are polymorphic in the 1000 Genomes (1KG) Project (we call these sites informative
heterozygous sites), the pairwise phasing algorithm walks across these sites and iteratively
appends an allele from each heterozygous site that is more likely to be phased, or paired, with an
allele of the current informative heterozygous site based on pre-computed pairwise linkage
disequilibrium (LD) calculations. These paired alleles are provided with hapLOHseq in a pairwise

phase map.
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COORD REF ALT REF PATRED ALLELES

chrl:63671 AGAACTATAATGATACCTTGACAAGGAAGGACAAGAAGAAGTCGCGGTTT
chrl:69511 GCCTCCCAACTGCCCCTAGGTGGGAGAAGAAGGAGAGAGACGACCGCCCC
chr1:135203 CCCTATCATTGTAGCTTGACAAAGAGAAAAAAAGAGAAGTCACCGTTTCT
chrl1:173709 ACTCCAATGATACGCAAATAGAGAGGGACGGAAAGAAGTCATCGCCTCTT
chrl:664010 CTACAATTGCCCGCAAACAAGGAAGGACAAGGAGGAGTCATCGTTCCTCG
chrl1:701835 TCCAATTGTAGCTTGACAAAGAGAAAAAAGGAGAAGTCGCGGCTTCTCGC
chrl:717474 ATCATTGCCGCTTGACAAGGAGAAGAAAGGAGAAGTCACCGTTTCTTGAG
chrl:717485 CAATTGCACCTTGATAAAAAGAAAAAGGGAGAAGTCGCGGCTTCTTGAGA
chrl1:752894 CTCTGTAGCTTGGTAAAGGAAAGCAGGAGGAGACGGCGGTTTGTCGCAGG
chrl:753405 TCGATAGCTTAGTAAAGAAAGGCGGGAGCAAACGGTGCTCCGTCGCAGAG
chrl:762061 TTGTAGCTTGATAGAGAAGGACAAGGAGAAGTCACCGTTTCTTGAAAATT
chrl:762320 TGTAGCTTGGTAAAAAAAAGAAAGGACAAGCCACCCTTTCTTGAGAATTA
chrl:762330 ATAGCTTGATAAAAAGAAAAAGGGAGAAATCGCGGTTTCTCGCGAATTAG

QOO OO0 8E FOFEQ
HHEPFPFQPFPESOQOQOQFQPR

Figure 23: A snippet of a pairwise phase map. Each row corresponds to a 1KG polymorphic site and is defined with a
genomic coordinate and reference and alternate alleles. The ref-paired alleles specify the alleles at subsequent
polymorphic sites that are more likely to be paired with the reference allele in the current row based on pre-

computed LD values.

The pairwise phase map contains a row for each polymorphic site in the 1KG data set (see
Figure 23). Each polymorphic site is defined by a coordinate and a reference and alternate
allele. The ref-paired alleles are strings of alleles at subsequent polymorphic sites that are more
likely to be paired with the reference allele for the genotype in the current row in the map based
on pre-computed LD values. The length of the ref-paired alleles character string is referred to
as the depth of the pairwise phase map. An exhaustive pairwise phase map would contain ref-
paired alleles for all subsequent polymorphic sites on the current chromosome. This would
result in a very large pairwise phase map and an inefficient phasing algorithm because at some
genetic distance LD becomes negligible and accounting for these data becomes detrimental to
the performance of the phasing algorithm. Optimally, the pairwise phase map would be deep
enough to pair up the vast majority of adjacent informative heterozygous sites but the map
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would not be unnecessarily deep resulting in an inefficient algorithm. Thus, depth can be
thought of as a tuning parameter of our pairwise phasing algorithm.

To estimate an optimal depth for the pairwise phase map, we generated a histogram of
the numbers of polymorphic markers in between each pair of adjacent informative het sites in a
1KG sample, inferred from a whole genome VCF file and an exome-only-version of the VCF file
(see Figure 24). The distributions in the 2 plots are similar, where the vast majority of adjacent
informative het pairs have less than 50 polymorphic sites between them. This suggests that a
pairwise phase map depth of 50 may be optimal for capturing most of the pairwise information

within these data types without adding inefficiency to the pairwise phasing process.
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Figure 24: Distribution of the number of 1KG polymorphic sites that are in between adjacent informative

heterozygous sites in a TCGA germline sample (TCGA-19-2620).

Here I describe the algorithm for determining the ref-paired alleles. Given m
polymorphic sites in a reference panel (e.g., a set of 1IKG haplotypes), and a depth of d, for each
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polymorphic site, we assess its LD with d subsequent sites. Letiand j (i=1,...,m;j=i+1,...,i+d)
refer to 2 polymorphic sites in the reference panel, where i is the current heterozygous site and j
is a paired heterozygous site. We determine which allele at each site j is phased with the
reference allele at the current site 7, by computing Drr and Dra. Drr is a measure of LD between
the reference allele at site i and the reference allele at site j and represents how often reference
alleles at sites i and j co-occur on the same haplotypes in the reference panel relative to the
expectation based on allele frequencies. Similarly, Dra is a measure of the LD between the
reference allele at site i and the alternate allele at site j. Here are the simple 6 lines of pseudo

code.

[1] Drr = Prirj — Prirrj
[2] Dra = Priaj — Pripaj
[3] 1if Dgrr > Dga then
[4] R; paired with Rj
[5] else

[6] R; paired with Aj

This algorithm calculates LD values and determines allele pairings for each polymorphic
site with a predetermined number of subsequent polymorphic sites. This number is the depth of
the pairwise phase map discussed previously. By default, our hapLOHseq pairwise phase maps
are constructed to a depth of 50. Of note, in cases where this depth is not large enough to
accommodate pairs of informative het sites that are genomically spaced with more than 50
polymorphic sites between them, phasing is assigned randomly. A whole genome and an

exome version of the pairwise phase maps will be made available with hapLOHseg.
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Given a pairwise phase map, phasing simply consists of incrementing along each
informative het site in a sample of interest, identifying the next informative het site, and
determining which allele at the next het site is phased with the reference allele at the current site
through a simple lookup in the pairwise phase map. As the algorithm iterates over all
informative het pairs, it builds up haplotype estimates one pair at a time. The performance of
the phasing algorithm scales linearly with the number of informative het sites that are available
in the input VCF file. Of importance, although this was not our original motivation, it takes a
few minutes to run pairwise phasing and hapLOHseq on hundreds of exome sequenced samples
as opposed to days or weeks to run the MaCH pipeline and hapLOHseq.

To assess the performance of the pairwise phasing algorithm at varying depths, we
generated pairwise phase maps at varying depths and then performed pairwise phasing on a
1000 Genome sample’s whole genome VCF file and an exome-only-version of the VCF file.
Figure 25 illustrates the phasing performance of our algorithm by comparing our estimated
haplotypes to the haplotype published by the 1000 Genomes project. The figure indicates that,
as expected, phasing whole genome VCFs provides more accurate estimates of haplotypes as
compared to exome VCFs due to the much higher number of data points available in whole
genome sequencing data. In addition, the accuracies of the haplotype estimates peak at around
a depth of 40 or 50 in the pairwise phase map which further supports our decision to use a

pairwise depth of 50 by default in the construction of pairwise phase maps.
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Figure 25: Phase concordance (an estimate haplotype similarity) for whole genome and exome-estimated haplotypes
compared to the haplotype published by the 1000 Genomes project for a sample using pairwise phase maps at

varying depths. This suggests that there is negligible gain in phasing accuracy at a pairwise depth of 30 or more.

6.2.2.1.3 Performance of MaCH and pairwise phasing

To assess the phasing accuracy of MaCH and pairwise phasing, we took a tumor/normal
pair of samples from a TCGA patient (TCGA-19-2620) and phased its germline haplotypes
using both strategies on three chromosomes (8, 9 and 10) where there are obvious chromosomal
Al events in its paired tumor sample. In these regions, we can easily identify the true
overrepresented and underrepresented haplotypes because the allele frequency bands are
separate and distinct (see Figure 26). To identify these true haplotypes, at each heterozygous
site in these tumor sample chromosomes, we identify the overrepresented allele (i.e., the allele
at greater than 0.5 allele frequency) and assign it to the overrepresented haplotype and assign
the underrepresented allele (i.e., the allele at a less than 0.5 allele frequency) to the

underrepresented haplotype.
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Figure 26: Variant allele frequencies across the exome at heterozygous sites in a tumor sample for a TCGA patient
(TCGA-19-2620). A clear separation of allele frequencies, producing 2 bands, can be visually identified across

chromosomes 8, 9 and 10.

The two resulting haplotypes define the true germline haplotypes on these chromosomes
for this patient. This process was repeated for both a whole genome and an exome VCF for
tumor samples of the same patient. We then ran our MaCH phasing pipeline and our pairwise
phasing algorithms on the germline samples for this patient on chromosomes 8, 9 and 10. To
assess the accuracy of the phasing strategies, we calculated the switch accuracy®', a measure of
the similarity between the true haplotypes and those estimated, for each phasing analysis and
report them in Table 19. If two haplotypes have no resemblance, we would expect a switch

accuracy of around 0.5. If two haplotypes were identical, the switch accuracy would be 1.

Phasing strategy Sequencing tech Num markers Switch accuracy

Pairwise phasing Exome 669 0.777
MaCH phasing Exome 770 0.784
Pairwise phasing [ Whole genome 103388 0.943
MaCH phasing Whole genome 104606 0.942

Table 19: Performance of pairwise and MaCH phasing in the exome and whole genome contexts. The switch

accuracies are nearly equal comparing pairwise and MaCH phasing.
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Table 19 also indicates the number of informative het sits (i.e., Num markers) available to
each phasing strategy. The MaCH phasing pipeline requires access to the raw sequence files
and calling genotypes at sites in the 1000 Genomes reference panel. By processing the BAM
files directly as opposed to using only variant sites (which are available in VCEF files), this
strategy allows for homozygous genotypes being available for phasing and additional
heterozygous sites being available for hapLOHseq event calling. The MaCH phasing strategy is
much more computationally demanding with the potential benefit of better phasing and
subsequently more accurate Al event calling. There were 101 additional heterozygous markers
in the exome analysis and 1,218 additional heterozygous markers in the whole genome analysis
using the MaCH strategy versus pairwise phasing. Switch accuracies however between MaCH
and pairwise phasing are almost identical, suggesting that the substantial computational gains
and the ease of use of pairwise phasing come at a minimal cost when switch errors are the
relevant loss function. For hapLOHseq and hapLOH this is indeed the case. We assess the
improvement of hapLOHseq event calling using MaCH versus pairwise phasing (due to the

increased number of informative markers associated with MaCH phasing) in section 6.2.3.

6.2.2.2 Phase concordance with frequency-based phasing

After statistical estimation of germline haplotypes, we assessed whether or not these
haplotypes were in allelic imbalance in regions of the genome where there appear to exist an
excess haplotype and an underrepresented haplotype based on allele frequencies. First, we

determine what VCF allele frequencies indicate to be the excess haplotype by applying a
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threshold at each marker independently in a frequency-based phasing algorithm. The threshold
is defined as the median variant allele frequency in the data set. The alleles above the threshold
constitute one haplotype and the alleles below the threshold constitute the other. If no
imbalance exists, these allele-frequency based haplotypes reflect only stochastic deviation.
Otherwise, if there exists some true level of Al the frequency-based haplotypes should bear
some resemblance to the estimated germline haplotypes. This resemblance is quantified with
phase concordance, a measure of similarity between 2 haplotypes. Switch accuracy®!, or more
appropriately, switch consistency accommodates errors in statistical haplotype reconstructions
and is used as the metric for phase concordance in hapLOHseq. This is the same phase
concordance metric that is used by hapLOH and is described in detail in the corresponding
manuscript®l.

Briefly, I describe how phase concordance is calculated. At each pair of adjacent
informative het sites, if the overrepresented alleles (e.g., the alleles with allele frequencies larger
than the frequency threshold) reside on the same statistically estimated haplotype, a “1” is
recorded. If the alleles reside on different statistically estimated haplotypes, a “0” is recorded.
In normal regions of the genome, we do not expect that an excess haplotype exists. In this case,
we expect to record “1”s and “0”s at random, and the running average of these numbers, the
phase concordance, would be 0.5. In regions where there is allelic imbalance and where an excess
haplotype exists, we expect that the frequency-based haplotypes have some resemblance to the
statistically estimated haplotypes, and we expect to observe a higher number of “1”s (e.g., we
expect a phase concordance > 0.5). This string of “1”s and “0”s is referred to as switch

enumerations.
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6.2.2.3 Identification of allelic imbalance regions with a hidden Markov model

To identify regions of the genome with higher than expected phase concordance, we
implemented a simple HMM that was proposed and implemented in hapLOH®!. The observed
data in the HMM are the aforementioned switch enumerations. Leti=1,...,m represent
informative heterozygous sites in the genome. Let Li be an indicator for whether or not the
interval between i and i+1 is contained within a region of Al in the tumor genome. L;...,Lm1
form a Markov chain on two or more states. By default, hapLOHseq implements a 2-state HMM
where state 0 represents no Al and state 1 represents Al If there are multiple Al event states
(e.g., HMMs with 3 or more states), each event state corresponds to a different degree of Al

The transition probabilities are constructed as shown in Figure 27.

1\,

1A,

@ Normal state
. Allelic Imbalance state

Figure 27: hapLOHseq HMM state transition diagram. There is one normal state and one or more Al event states
where if there exists more than one Al state, each Al state represents events with different degrees of Al. By default,

hapLOHseq uses one event state (i.e., n=1).
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Welet au (1=0,1,...,n) denote the emission probability Pr(x=1IL=l). The emission
probability oo for the normal state is set to 0.5 by default, which is the expected phase
concordance in normal regions of the genome. In these regions, the frequency-based
haplotypes have no resemblance to the statistically estimated haplotypes because there is no
haplotype imbalance. For other states, the parameter will be larger than 0.5 and will be
estimated using the Baum-Welch algorithm?®? which is an algorithm that attempts to find the
HMM parameters that maximize the likelihood of the observed switch enumerations. These
parameters are estimated separately for each chromosome. The probability that the process is
in state [ at marker interval i is calculated using the standard forward and backward algorithm®
and these are reported in hapLOHseq output files.

Initial values for 15 and A, are set from 2 user parameters that represent the expected
event prevalence (p) and the expected event length (y) in megabases. By default, hapLOHseq
takes the default size of a genome analyzed (3 billion for humans) and divides that by the
number of informative het sites in the sample being analyzed. This value represents the
average distance between informative het sites in megabases. The expected event length y is
then divided by this distance and represented in terms of numbers of het sites with an x in the

parameterizations below. Prevalence is represented with a p.

1
fo =TTy ©)
x(5)
M= 4)
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For further details of this HMM including its performance in simulated settings please see the
hapLOH manuscript®. In the next section, we apply and assess the performance of hapLOHseq

using the MaCH and pairwise phasing strategies on a TCGA sample at various tumor purities.

6.2.3 Results

We obtained the whole genome and exome sequencing reads for the tumor (brain tissue)
and normal (blood) sample of a patient with glioblastoma (TCGA-19-2620) from TCGA.
Additionally, the published LOH and CNA calls for this tumor sample inferred from SNP
arrays were obtained for comparison to hapLOHseq Al calls. To assess the performance of
hapLOHseq at different levels of tumor purity, we created computational mixtures of the reads,
which represent tumor sequencing at various purity levels. Sequencing read pairs from the
tumor and normal BAM files were randomly sampled and merged into mixed BAM files at the
tumor proportions listed in the first column of Table 20. TCGA estimates that the proportion of
tumor DNA that is in the tumor sample is 80%. Thus, an estimate of the actual proportion of

tumor DNA in each of these mixtures is listed in the second column of Table 20.
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Tumor sample proportion (%) Tumor DNA proportion (%)

0 0
5 4
10 8
15 12
20 16
25 20
35 28
50 40
70 56
100 80

Table 20: Tumor mixtures generated by mixing random sequence read pairs from a tumor and normal sample from a
TCGA patient (TCGA-19-2620). Reads were mixed using the sample proportions specified. TCGA estimates that the
tumor sample has 80% tumor DNA and 20% normal DNA. The estimated tumor DNA proportion of each mixture is

specified.

hapLOHseq was then run on the tumor mixture BAM files for both whole genome and
exome sequencing using two phasing strategies — MaCH and pairwise phasing as described in
section 6.2.2.1. hapLOHseq was run on all of these samples using an estimated event length of 20
megabases. The event prevalence parameter was set to 0.001 for the exome sequencing runs
and set to 0.00001 for the whole genome sequencing runs. The prevalence for the whole
genome analyses was set lower to reduce noise in the whole genome sequencing results.

hapLOHseq plots were then generated for 4 sets of runs. Figure 28 and Figure 29 show the
results of running hapLOHseq on the exome sequencing tumor mixture samples using MaCH
and pairwise phasing, respectively. Figure 30 and Figure 31 show the results of running
hapLOHseq on the whole genome sequencing tumor mixture samples using MaCH and pairwise
phasing, respectively. These figures include at the top, 2 panels that show the LOH and CNA
calls across the genome published by the TCGA. The intensity of the red color in the LOH plot

reflects the degree of LOH observed at these sites. In the CNA plot, red represents
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amplification events and blue represents deletion events. The intensity of those colors reflects
the copy number change observed in these regions. The subsequent hapLOHseq plots show
(with gray dots) the variant allele fractions (VAFs) observed in the various tumor mixture
samples at polymorphic sites across the genome that are heterozygous in the germline sample.
In addition, there is a red line that shows the probability of regions of the genome being in
allelic imbalance based on probabilities (from O to 1) reported by hapLOHseq.

As can be seen in these plots, at higher tumor purities, it is easier to identify Al events. In
the exome sequencing analyses, the more prominent events, which were identified by TCGA on
chromosomes 8, 9 and 10 can be found in the hapLOHseq results at 20% tumor purity with some
signal of the events showing in purities as low as 8%. The MaCH phasing strategy appears to
be performing better than the pairwise phasing at these lower tumor purities. Given that the
phasing accuracy of MaCH and pairwise phasing are almost identical, the improvement in
hapLOHseq sensitivity is likely due to the increased number of informative het sites (770 using
the MaCH strategy versus 669 using the pairwise phasing strategy) that are available to

hapLOHseq using the MaCH phasing strategy.
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Figure 28: hapLOHseq calls at different computational dilutions for a single TCGA sample derived from exome
sequencing data using MaCH to statistically estimate germline haplotypes. Calls made and published from SNP

microarray analysis by the TCGA are represented in the top two bars (LOH and CNA events, respectively).
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Figure 29: hapLOHseq calls at different computational dilutions for a single TCGA sample derived from exome
sequencing data using pairwise phasing to estimate germline haplotypes. Calls made and published from SNP

microarray analysis by the TCGA are represented in the top two bars (LOH and CNA events, respectively).
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Figure 30: hapLOHseq calls at different computational dilutions for a single TCGA sample derived from whole
genome sequencing data using MaCH to statistically estimate germline haplotypes. Calls made and published from

SNP microarray analysis by the TCGA are represented in the top two bars (LOH and CNA events, respectively).
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Figure 31: hapLOHseq calls at different computational dilutions for a single TCGA sample derived from whole
genome sequencing data using pairwise phasing to estimate germline haplotypes. Calls made and published from

SNP microarray analysis by the TCGA are represented in the top two bars (LOH and CNA events, respectively).
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The sensitivity of hapLOHseq on whole genome sequencing data is much better at tumor
purities in the range of 8% to 29%. The boundaries of events are more well-defined and the less
prominent events identified by TCGA on chromosomes 16, 19 and 22 are identified at 12%
tumor purity with some signal also seen at 8% tumor purity. The choice of phasing strategy
with whole genome sequencing appears to have little to no effect on the sensitivity of
hapLOHseq. This is likely because the phasing accuracy of MaCH and pairwise phasing are
virtually identical and the number of informative het sites is so large (greater than 100,000) that
the difference in these numbers (see Table 19) between the 2 strategies is negligible.

To summarize hapLOHseq performance, receiver operating characteristic (ROC) curves in
Figure 32 and Figure 33 show the sensitivity and specificity of hapLOHseq on calling events
larger than 10 megabases on the computational dilutions of the TCGA sample. Table 21 lists the
area under the curve (AUC) corresponding to these ROC curves. At purities between 12% and
16% hapLOHseq is able to detect some events in the exome data. At these purities, as observed
in the hapLOHseq plots, MaCH phasing is identifying events more precisely, likely due to the
increased number of informative het sites available. Applied to whole genome sequencing,
hapLOHseq is able to pick up events at tumor purities in between 4% and 8% where the choice of
phasing strategy has little effect on the accuracy of identifying Al regions.

Of note, the AUC at 80% tumor purity is lower than that compared to many of the AUC
values at lower tumor purities. We believe that at 80% tumor purities, hapLOHseq is detecting
low-proportion chromosomal events on chromosome 14. We believe these are true events that
were not detected in TCGA analyses. We believe this to be the case because we see the same

event across different technologies and phasing strategies but only at high tumor purities.
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Figure 32: ROC comparison for MaCH and pairwise phasing for exome sequencing data.
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Figure 33: ROC curves for MaCH versus pairwise phasing for whole genome sequence data.
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Pairwise phasing MaCH phasing

Tumor Pairwise phasing MaCH phasin
- = . = Whole genome Whole genome

purity Exome (AUC) Exome (AUC)

(AuC) (AuC)
80 0.984 0.963 0.956 0.958
56 0.992 0.991 0.980 0.974
40 0.999 0.994 0.986 0.985
28 0.794 0.784 0.985 0.985
20 0.696 0.809 0.988 0.984
16 0.665 0.799 0.982 0.981
12 0.606 0.749 0.982 0.981
3 0.551 0.590 0.902 0.819
4 0.420 0.531 0.635 0.625

Table 21: AUC for hapLOHseq calling strategies using pairwise and MaCH phasing for exome and whole genome

samples at varying levels of tumor purity.

6.2.4 Discussion

We have presented a new method for the detection of subtle Al events in NGS data called
hapLOHseq. We have also implemented a very efficient pairwise-phasing algorithm that allows
for the estimation of haplotypes directly from VCF files, allowing users to run hapLOHseq
without the need for low-level sequencing read files, which may either not be available, or
which may be too resource intensive to run efficiently on a large number of samples. In
summary, hapLOHseq is able to detect Al events from exome sequencing data, where these
events exist in 12% to 16% of the cells sequenced. Applied to whole genome sequencing data,
hapLOHseq has more sensitivity, being able to detect events occurring in 4% to 8% of the cells
sequenced. hapLOHseq may be useful for the detection and profiling of Al in tumor samples

that are either heavily diluted with normal tissue cells or in heterogeneous tumor samples.
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6.3 Identification of candidate drugs: cidd

Cancer in silico Drug Discovery (CiDD) is a software framework for the identification of
candidate drugs to target tumors with specific molecular characteristics. The description of
CiDD in this section is part of a manuscript entitled Cancer in silico Drug Discovery: a systems
biology tool for identifying candidate drugs to target specific molecular tumor subtypes (authored by F.
Anthony San Lucas, Jerry Fowler, Kyle Chang, Scott Kopetz, Eduardo Vilar and Paul Scheet)

that is currently under review at the journal Molecular Cancer Therapeutics.

6.3.1 Introduction

Selection of targeted therapies for cancer drug development has traditionally been based
on the presence or absence of specific somatic mutations and this has been shown to be an
effective strategy to improve patient outcomes®-%. However, a large number of targeted drugs
and other compounds that have anti-tumor properties have not been linked to specific
mutations, or biomarkers, that could be used to predict their selective efficacy®. Although next-
generation sequencing (NGS) allows researchers to rapidly and comprehensively profile tumor
mutations, the vast majority of these data have not been useful in the clinical setting since only a
small number of mutations have been used to inform prognosis or guide therapeutic
decisions®-,

Several computational approaches exist and have been implemented to predict the
functional impact of mutations, and even to predict whether a specific mutation is a driver of
the carcinogenesis process, based on several factors such as evolutionary conservation,

predicted effects on protein structure and observed recurrence in existing cancer data sets394291,
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However, these computational predictions provide little insight into how cellular processes are
altered as a consequence of the mutations. One strategy to assess whether or not specific
mutations are influential on cellular processes is to determine whether or not a mutation
induces a signature of gene expression changes”. Gene expression signatures associated with an
individual mutation could then be examined to characterize its cellular impact* and the
signature could be used as a target for candidate drug therapies®. We have developed the
Cancer in silico Drug Discovery (CiDD) platform for the purposes of characterizing tumors with
specific mutations, or more generally tumors with specific clinicopathological or molecular
characteristics, based on their putative effects on gene expression, and to identify candidate
drugs to treat these tumors.

Here, we describe the general framework and integrated data sets of this novel platform.
CiDD has been designed to generate hypotheses for the following three general problems: 1) to
determine if particular clinical or molecular characteristics are functional and therefore induce
unique gene expression signatures; 2) to find candidate drugs to treat specific tumor subgroups
based on these expression changes; and 3) to identify cell lines that resemble the tumors being

studied for subsequent in vitro experimentation.
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Phase 1: in silico hypothesis generation through CIDD
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Figure 34: Overview of CiDD. The primary objective of CiDD is to specify initial candidate drug compounds and cell

lines for laboratory drug experiments for a tumor characteristic being researched.

In addition, to illustrate the use of CiDD, we have applied it to a clinically relevant context
in cancer drug development. We report the in silico identification of candidate drug therapies
for colorectal cancers (CRCs) harboring the BRAF V600E mutation. Approximately 10% of CRCs
harbor the BRAF V600E mutation, which confers a poor prognosis and presents a therapeutic
challenge®**. We describe the analyses performed with CiDD that have identified novel targets
for BRAF mutant CRCs and have validated drugs that have already been identified as agents

that target this tumor subtype such as EGFR inhibitors.

6.3.2 Methods
CiDD is a systematic drug discovery platform that integrates and analyzes large-scale

cancer data sets with the primary goal of identifying candidate drugs and cell lines to be
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validated experimentally in vitro (see Figure 34). The core data sets used by CiDD include The
Cancer Genome Atlas (TCGA), the Connectivity Map (CMap) and the Cancer Cell Line Encyclopedia
(CCLE). CGiDD is purely computational and depends on publicly available clinical and
experimental datasets, as well as annotation databases. CiDD is written in Python, has R
package dependencies and is command-line driven allowing it to be integrated into
bioinformatics pipelines. The software and code are freely available at

http://scheet.org/software.

6.3.2.1 Data assembly

Required experimental data sets for performing CiDD analyses are TCGA? and the
CMap?®®. The CCLE* is required to identify cell-lines most appropriate for subsequent
experimentation. TCGA includes clinical, mutation and gene expression data for thousands of
samples across multiple cancer types. CiDD provides commands to download, query and
analyze these data. The CMap is a collection of gene expression data for cell lines treated with
small molecules paired with pattern-matching algorithms that attempt to identify biologically
functional connections between drugs and gene expression profiles®. CiDD utilizes CMap build
02, which contains more than 7,000 expression profiles representing the effects of 1,309
compounds. The CCLE provides molecular profiles for 947 cancer cell lines which include DNA
copy number, gene expression and DNA mutation data®.

The experimental data from CMap consists of rank-based gene expression values from the

Affymetrix HG-U133A microarray. Thus CMap is designed for the analysis of Affymetrix gene
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expression data only, which hinders using CMap with gene expression data collected from non-
Affymetrix platforms. To overcome this limitation, CiDD transforms bulk-downloaded CMap
data from Affymetrix probe-based rank values to Entrez gene-based ranks. Gene-based ranks
are determined by taking the mean probe rank for each gene, sorting the mean rank values and
then assigning a rank for each gene based on the sorted values. This allows results from RNA
sequencing and Agilent microarray technologies, such as those provided by TCGA, to be
analyzed with the drug-perturbed data of the CMap in a standardized way at the gene level. A
similar strategy has been applied in the R package gCMAP® that allows users to query the
CMap using Affymetrix probe identifiers or gene symbols. Gene-expression signatures derived
from both Agilent gene expression microarrays and RNA sequencing have identified validated
candidate drugs when analyzed with the Affymetrix-based drug signatures of CMap®-*
demonstrating the feasibility of a cross-platform approach.

CiDD also uses optional annotation data sets, which include the Molecular Signatures
Database (MSigDB)* for characterizing gene sets and drug databases including DrugBank®,
Matador'® and KEGG Drug” for annotating candidate drugs. These drug databases provide
information such as drug pharmacology, gene and pathway targets to make the drug reports
produced by CiDD more informative for researchers. Public data from TCGA are automatically
downloaded by CiDD, while data from CMap, CCLE and MSigDB require registration at their
respective websites prior to downloading. Upon download, CiDD automatically prepares and
manages all of the data sets for drug discovery analyses. Further descriptions of the contents of

these data sets along with installation and pre-processing details are provided in section 6.3.3.1.
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6.3.2.2 CiDD workflow

A common workflow using the CiDD framework is illustrated in Figure 35. Initially, a
CiDD project based on a TCGA cancer type is created and clinical, mutation and gene
expression data for TCGA samples are automatically downloaded. For an analysis, CiDD first
identifies samples for use in computational experiments from TCGA based on user-defined
clinicopathological or molecular phenotypes, such as specific gene mutations, microsatellite
instability status, tumor stage, or a variety of other patient or tumor characteristics reported
through TCGA projects. Based on the defined phenotype, CiDD identifies 2 classes of samples
to compare. For a mutation-based phenotype, CiDD establishes one class containing samples
with a defined mutation or set of mutations and a second class containing samples that are
wild-type for the genes of interest. For a clinical phenotype, the user specifies both classes
explicitly, such as the two classes corresponding to microsatellite instable and microsatellite
stable tumors. CiDD then attempts to identify a gene-expression signature that is associated
with the defined patient or tumor characteristic. If a gene expression signature exists for the
phenotype of interest, that signature is characterized with gene sets defined in MSigDB and the
signature is used to identify candidate drug therapies through pattern-matching algorithms
proposed by the CMap. Subsequently, CiDD characterizes candidate drugs using databases
such as DrugBank, Matador and KEGG Drug. Finally, CiDD identifies candidate cell lines on
which to test the drugs in vitro by analyzing experimental data from the CCLE. The primary
results of a CiDD execution are a biologically annotated candidate drug list and candidate cell

lines for subsequent drug experimentation.
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6.3.2.3 Gene signature identification

TCGA provides gene expression data from Agilent microarrays, Illlumina GA RNA
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sequencing and Illumina HiSeq RNA sequencing. The gene expression data type to analyze can

be specified as a parameter to CiDD. By default, CiDD will choose the technology that provides

data for the largest number of samples with the phenotype of interest. Using the R package

Limma' which is designed for both microarray and RNA sequencing differential expression
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analyses, CiDD identifies up- and down-regulated genes. CiDD characterizes differential
expression results with known biological pathways by performing gene set tests from the piano

Bioconductor package!®?, while using gene sets defined by MSigDB.

6.3.2.4 Generation of a k-top scoring pairs (k-TSP) classifier

For generating a classifier that is robust across gene expression technologies, CiDD takes a
non-parametric approach to classification and adopts an extension of the top scoring pairs (TSP)
method!®. Using the R package ktspair'®, CiDD generates a k-TSP classifier for predicting the
status of the phenotype of interest on independent samples. The algorithm works by first
ranking gene expressions for each sample and then identifying pairs of genes whose relative
orderings within each sample class are opposite of one another. By default, to improve
computational performance, CiDD limits the number of genes considered for inclusion in the
classifier to only those genes in the gene expression signature. For each gene in a pair, g1 and g,
and for each sample s, the algorithm keeps track of whether the expression of g1 in sample s is
less than the expression of g2 in sample s. The pairs that most consistently maintain their relative
expression ordering in class 1 while having a reverse ordering in class 2 become gene pairs in
the classifier. A score is assigned to each pair by the ktspair algorithm that represents the
percentage of samples in the two classes that exhibit the expected ordering of g1 and g2. CiDD
chooses the k pairs that meet a default threshold score of at least 0.8. The prediction is class 1 if
the average expression value for the g1 genes is lower than the average expression value for the

g2 genes; it is class 2, otherwise.

120



6.3.2.5 Candidate drug identification

CiDD connects the gene expression changes associated with the phenotype of interest
with candidate drug compounds that induce a negatively correlated gene expression profile.
CiDD compares the phenotype gene expression changes, termed a query signature, to rank-
based gene expression profiles induced by CMap compounds. To compare rank-based gene
expression profiles, CiDD implements a nonparametric pattern-matching algorithm based on
the Kolmogorov-Smirnov statistic as described by Lamb et al. Briefly, where up-regulated
query genes tend to appear near the bottom of a compound’s ranked gene expression profile
and down-regulated query genes appear near the top of the ranked gene expressions, this
suggests negative connectivity. Positive connectivity refers to the reverse scenario, where up-
regulated query genes appear near the top of a compound’s ranked gene expression profile and
down-regulated query genes appear near the bottom of the ranked profile. There are multiple
connectivity scores for each drug, one for each experiment where that drug was tested against
an individual cell line. Connectivity scores range from -1 to +1 corresponding to negative and
positive connectivity. Enrichment is a measure that aggregates the connectivity scores for all
instances of a drug experiment to determine if they collectively have a negative or positive
connectivity (ranging from -1 to 1) with the phenotype of interest. To assess the significance of
the enrichment score, we have implemented the permutation procedure used by CMap, where
the Kolmogorov-Smirnov statistic is computed for a set of CMap expression profiles generated

from a single compound of interest within an ordered list of all the CMap expression profiles.
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This provides an empirical p-value (CMap refers to it as a permutation p-value), a measure of the
proportion of times the observed enrichment of a set of instances, or one more striking, would
happen by chance. The metric specificity is a measure of the selectivity of a drug compound for
the phenotype of interest. To determine specificity, random query signatures are extracted from
MSigDB and run against the CMap to generate a background list of enrichment scores.
Candidate drug compounds are deemed to have high specificity if results from these random
query signatures do not identify the same candidate drug compounds as those from the query
signature. CiDD then queries data downloaded from drug databases to annotate the candidate
drug compounds with meaningful clinical and biological information to facilitate the biological

interpretation of the list of candidate drugs.

6.3.2.6  Cell line identification

CiDD first selects CCLE cell lines based on user-specified tissue types. Then, CiDD
optionally identifies cell lines that contain a user-specified mutation by interrogating CCLE
mutation annotation files derived from either targeted sequencing of common cancer genes or
from Oncomap 3.0, which is a SNP array that genotypes samples at the most common cancer
mutation sites. Finally, CiDD runs its k-TSP classifier on CCLE gene expression data, as
described in the previous section, to predict if a cell line’s gene expression profile is
representative of the phenotype being studied. Cell lines that meet these criteria are reported as

candidates for use in subsequent drug experiments.
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6.3.3 CiDD software description

6.3.3.1 Installation

Cancer in silico Drug Discovery (CiDD) is designed to run on Linux or Mac OS X
environments with a recommended minimum of 100 GB of free disk space and 4 GB of
memory, making it runnable on most bioinformatics desktop computers. CiDD is written in
Python and has software and data dependencies. To use CiDD, users should follow the

software and data set installation procedures described here.

6.3.3.1.1 Software installation
Software pre-requisites
The following should be installed before installing CiDD.
* Python 2.7 or greater
* Python libraries: numpy and Ixml
* R 3.0 or greater
* Rpackages: edgeR, Limma, piano
* firehose_get (https://confluence.broadinstitute.org/display/GDAC/Download)

* tcga_util: a companion Python module for use with CiDD (http://scheet.org/software)

CiDD software installation
To install CiDD, download the source code from http://scheet.org/software and install the cidd
command-line tool by running the following;:

sudo python setup.py install
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6.3.3.1.2 Data set installation

CiDD stores and manages data within a local data store. A data store is a directory on the
user file system where data sets used by the CiDD framework are stored. A user can create a
single data store that is shared between multiple CiDD projects and analyses. To do this, a user
can set an environment variable called $DATA_STORE to the full path of the data store
directory. This will tell CiDD where to find the default data store. As an alternative, a user can
specify the location of their data store with each CiDD command through a --data_store
parameter. This alternative approach works best if a user wants to keep TCGA cancer type data
separate and manage multiple data stores. The following steps are required to initialize a CiDD
data store:

1. Create the directory structure:
mkdir ccle cmap drug_annotations msigdb tcga custom
Alternatively, if no data store exists when the cidd setup command is run to initialize a
CiDD project (see section 6.3.3.2.1) CiDD will create an empty data store directory
structure and automatically populate the data store with an initial TCGA data set.

2. Download and store CiDD required data sets within the data store subdirectories.
Project-specific TCGA data are automatically downloaded and managed by CiDD in the
local data store. The user must download other required data sets into the data store
(details follow).

3. Download and install optional drug annotation data sets within the data store
subdirectories. These files are only needed for annotating candidate drug reports

(details follow).
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Here we describe the external data sets and files that the CiDD framework uses. There are 3
datasets listed here that are required to run CiDD and need to be downloaded manually and

stored in the local data store. Other data sets are optional.

Data set descriptions

TCGA datal® are automatically downloaded and managed by tcga_util, which is a
companion Python module for use with CiDD. For a specified cancer project in TCGA, CiDD
automatically downloads the clinical data, somatic mutations and gene expression data from
RNA-sequencing and Agilent microarrays. The amount of data downloaded from TCGA is
dependent on the cancer and data type being studied. In addition to the default data
downloaded, data such as protein expression or miRNA expression could also be downloaded
by tcga_util explicitly. The estimated download size of TCGA data ranges from 100 — 200 MB
for most cancer projects.

The Connectivity Map (CMap), MSigDB* and the Cancer Cell Line Encyclopedia (CCLE)*
data downloads require user registration at their respective websites as detailed below. Data
from DrugBank®®, MATADOR'’ and KEGG” Drug are not required by CiDD, but if available,
they provide annotation sources for candidate drugs. Details of non-TCGA data dependencies

are listed here.

CONNECTIVITY MAP (required)

requires registration: yes
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website:
install location:

data files:

* instance inventory:

e data matrix:

* gene sets:

MSIGDB (required)
requires registration:
website:

install directory:

data files:

http://www broadinstitute.org/cmap

$DATA_STORE/cmap

cmap_instances_02.xls (1.6 MB)
rankMatrix.txt.zip (309 MB)

msigdb_gene_sets.zip (270 KB)

yes
http://www broadinstitute.org/gsea/msigdb/collections.jsp
$DATA_STORE/msigdb

C2 curated gene sets: c2.all.v4.0.symbols.gmt (3.1 MB)

CANCER CELL LINE ENCYCLOPEDIA (required)

requires registration:
website:
install directory:

data files:

*  mRNA expression:

yes
http://www .broadinstitute.org/ccle/data/browseData

$DATA_STORE/ccle

CCLE_Expression_Entrez_2012-09-29.gct (167.2 MB)

* Cell Line Annotations: CCLE_sample_info_file_2012-10-18.txt (196 KB)

* Oncomap mutations:

CCLE_Oncomap3_2012-04-09.maf (318 KB)
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* Hybrid capture sequencing mutations:

CCLE_hybrid_capture1650_hg19_NoCommonSNPs_NoNeutralVariants_CDS_2012.05.0

7.maf (56.5 MB)

DRUGBANK (optional)
requires registration:
website:

install directory:

data files:

MATADOR (optional)
requires registration:
website:

install directory:

data files:

KEGG DRUG (optional)
requires registration:
FTP site:

install directory:

data files:

no
http://www.drugbank.ca/downloads
$DATA_STORE/drug_annotations/drugbank

full database in XML format: drugbank.xml.zip (16 MB)

no
http://matador.embl.de
$DATA_STORE/drug_annotations/matador

drug-protein interactions: matador.tsv.gz (419 KB)

no
ftp://ftp.genome.jp/pub/kegg/medicus
$DATA_STORE/drug_annotations/keggdrug

drug-molecule interactions: drug.kegg (21.7 MB)

127



6.3.3.2 CiDD commands

The CiDD framework is flexible for incorporation into custom workflows. The workflow
can be modified and steps can be replaced with user-defined scripts. All workflow steps are
executed with simple CiDD commands that are described here, where the intermediate input
and output files of each command are stored and used in subsequent steps. Separating steps in
this way allows users to more easily replace steps in the workflow with their own preferred
methods or scripts. As an example, in a common workflow, a user specifies a molecular or
clinicopathological phenotype of interest for a cancer type. CiDD would then identify sample
IDs for 2 classes of samples for subsequent gene expression analyses. Alternatively, instead of
specifying a clinical characteristic or mutation as the phenotype of interest, a user can perform
their own analyses to identify samples with phenotypes that might not be directly supported by
CiDD that she is interested in. This might include a class of samples with a particular
methylation profile for a phenotype. The user could run an externally generated classifier
based on methylation data and then identify their own subsets of samples based on the
classifier’s predictions. She can then supply her sample identifiers with class labels to CiDD at
step 2, bypassing step 1. Similarly, other steps in the workflow can be replaced with user-
created scripts. Here we describe the CiDD commands. For a description of parameters for

each CiDD command, users can specify the -h flag with each command (e.g., cidd setup -h).

6.3.3.2.1 cidd setup
A CiDD project is initialized with the command cidd setup. Upon execution, clinical data,

somatic mutations and gene expression data are automatically downloaded into the user data
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store for a specified TCGA cancer type specified with a --cohort parameter. Other TCGA data
such as methylation or protein expression data can be downloaded explicitly into the user data
store with the tcga_util command. Multiple cidd setup commands can be run for the same
CiDD project to install data for multiple TCGA cancer types or multiple data release versions at
anytime. By default, subsequent CiDD analyses will use the latest data sets downloaded unless

otherwise specified through command parameters.

6.3.3.2.2 cidd clinical_signature, cidd_mutation_signature and cidd custom_signature

For a specified clinical or mutation-based phenotype, these commands can be used to
identify gene expression signatures and then to characterize gene expression signatures using
gene set tests. CiDD uses the R package Limma'® to identify differentially expressed genes
between the two classes as defined by command parameters. Limma supports both continuous
expression measurements of microarray data and count measurements from RNA sequencing!%
which is appropriate for analysis of the TCGA data, which consists of gene expression data
from Agilent microarrays, lllumina GA RNA sequencing and Illumina HiSeq RNA sequencing.
The choice of expression data type can be specified through an --expression_type parameter. By
default, CiDD will choose the expression technology that has data available for the largest
number of samples with the phenotype of interest. CiDD requires a Benjamini-Hochberg
adjusted p-value to be less than or equal to 0.05 and a log: fold change greater than 1 to label a
gene as being differentially expressed for inclusion in the gene signature, although these default
parameters can be modified. The resulting sets of up- and down-regulated genes comprise the

gene expression signature, which putatively represents the functional consequence of the
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mutation or phenotype being studied. A third, more generic, signature-based command cidd
signature can be executed if a user wants to generate a signature based on two classes of
samples where they have determined sample class membership external to CiDD. This
command can also be used if users want to generate a signature using their own gene
expression data set external to the TCGA.

This signature is then characterized with MSigDB* using the Bioconductor package
piano'®. By default, the reports generated by CiDD identify KEGG pathways that are associated
with the phenotype of interest. Other MSigDB options for gene set groupings are also

supported by CiDD, such as those defined by BIOCARTA, REACTOME, and GO.

6.3.3.2.3 cidd classifier

This command supports the generation of a mutation or phenotype classifier through
cidd classifier generate and the application of the classifier for prediction with the cidd classifier
predict command. CiDD constructs the gene expression classifier with an extension of the
widely used non-parametric, rank-based algorithm, top scoring pairs (TSP)1%>1%7 called k-TSP'*
that is later applied downstream on CCLE samples to help identify candidate cell lines on
which to test drug compounds. If an independent data set is available, one can also apply the

classifier on this data set to assess the performance of the classifier.

6.3.3.2.4 cidd drugs
The cidd drugs command takes the signature generated from the cidd signature
commands and finds candidate drugs from the CMap that induce a gene expression signature

in the opposite direction to the one associated with the phenotype of interest. The CMap is a
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collection of gene expression data for cell lines treated with bioactive small molecules paired
with pattern-matching algorithms that attempt to identify biologically functional connections
between drugs and gene expression profiles®. CiDD utilizes CMap build 02, which contains
more than 7,000 expression profiles representing the effects of 1,309 compounds. After
identifying candidate drugs, the cidd drugs command annotates the candidate drugs using
drug databases.

Before running cidd drugs, CiDD performs pre-processing of the CMap data. CMap
(http://www .broadinstitute.org/cmap) is designed to allow users to upload a list of up- and
down-regulated Affymetrix probe IDs that comprise a gene expression signature under study.
The underlying gene expression data for CMap were collected from Affymetrix HG-U133A
gene expression microarrays and are designed for use on Affymetrix gene expression data,
which hinders using CMap with gene expression data collected from non-Affymetrix platforms.
Thus, CiDD transforms bulk-downloaded CMap data from Affymetrix probe-based rank values
to Entrez gene-based ranks. Gene-based ranks are determined by taking the mean probe rank
for each gene, sorting the mean rank values and then assigning a rank for each gene based on
the sorted values. This allows results from RNA sequencing and Agilent microarray
technologies, such as those provided by TCGA, to be analyzed with the drug-perturbed data of
the CMap in a standardized way at the gene level. A similar strategy has been applied in the R
package gCMAP® that allows users to query the CMap using microarray probe identifiers or
gene symbols. Gene-expression signatures derived from both Agilent gene expression

microarrays and RNA sequencing have identified validated candidate drugs when analyzed
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with the Affymetrix-based drug signatures of CMap?® demonstrating the feasibility of a cross-
platform approach.

Further supporting a cross-platform approach, the pattern matching algorithms of the
CMap are rank-based and robust to distributional assumptions of the data and to differences in
normalization procedures across multiple data sets®. The command cidd drugs compares the
phenotype gene expression changes, termed a query signature, to rank-based gene expression
profiles induced by CMap compounds. The algorithm connects the gene expression changes
induced by the phenotype of interest with candidate drug compounds that induce a negatively
correlated gene expression profile. To compare rank-based gene expression profiles, CiDD
implements the nonparametric pattern-matching algorithms based on the Kolmogorov-Smirnov
statistic as described by Lamb et al®®.

Briefly, the “enrichment score” describes the connectivity between a drug and a query
signature. This score ranges from -1 to +1 where a score near -1 reflects negative connectivity
and a score near +1 reflects positive connectivity. A “permutation p-value” ranging from 0 to 1
provides a measure of significance for this score. A “specificity” value ranging from 0 to 1
describes how specific the drug is for the query signature, where a value close to 0 reflects high
specificity. After calculating these metrics, CiDD then queries data downloaded from drug
databases to annotate the candidate drug compounds with meaningful clinical and biological
information to facilitate the biological interpretation of the list of candidate drugs. CiDD
annotates candidate CMap drug compounds with DrugBank®, KEGG Drug” and Matador'®.
CiDD attempts to link CMap provided compound names to drug database names, identifiers

and drug aliases. Where links exist, the CMap identifiers are annotated with drug
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pharmacology, drug gene targets and drug pathway targets to help put the drugs into a
biological context for clinical researchers. Additionally, Matador provides known drug-mRNA

and drug-protein interactions.

6.3.3.2.5 cidd cell_lines

The CCLE provides molecular profiles for 947 cancer cell lines which include DNA copy
number, gene expression and DNA mutation data®. From this data, cidd cell_lines searches the
CCLE to identify cell lines that most closely resemble the cancer subtype being studied based on
a specified tissue, a possible mutation of interest and the gene expression classifier generated by
CiDD. Cell lines that fulfill criteria based on these characteristics are recommended for use in
subsequent drug experiments. If a specific mutation is being studied (e.g., BRAF V600E), that
mutation is searched for in the CCLE data set by querying mutations detected from Oncomap
arrays and capture sequencing. These mutations are limited to 381 specific mutations across 33
genes using Oncomap 3.0 and to the coding regions of the 1651 genes defined in the CCLE

target capture region. Search criteria can be relaxed through parameters of the command.

6.3.3.2.6 tcga_util

TCGA datasets are sufficiently useful and complex to warrant their own tool for
downloading, querying, pre-processing and managing them. For this purpose, we developed
tcga_util, a Python package, for use within the CiDD framework; however, tcga_util can also be
useful as a stand-alone tool for generalized TCGA analyses. tcga_util manages TCGA data
locally and has been designed for simple use at the command-line, which allows

bioinformaticians to integrate TCGA data into their own repeatable analyses or custom

133



applications and pipelines. CiDD uses this package directly for the automated download and
management of TCGA data. These data sets are the source of the clinical and molecular data for
CiDD to perform molecular characterization of the phenotypes of interest. Examples of clinical
information includes age at diagnosis, gender and tumor stage as well as molecular diagnostics
such as the presence of specific KRAS or BRAF mutations and microsatellite instability status.
Available clinical data varies across TCGA tumor types. Molecular data available include
whole genome and exome sequencing, methylation profiling, and gene and protein expression
profiling, among other data types. Alternatively, direct TCGA data download through URLs
and web forms is available through the NCI's TCGA Data Portal'®. Another more user-friendly
alternative for downloading and exploring subsets of TCGA data is the cBioPortal'®, which
includes visual tools for browsing and analyzing TCGA data. An option for bulk TCGA data
download is the utility firehose_get. Firehose is a large-scale data analysis pipeline that
automatically performs standard pre-processing of TCGA data, easing the integration of data
across cancer types and making the data more amenable to downstream analyses
(https://confluence.broadinstitute.org/display/GDAC). The main goal of tcga_util is to help
users query, download and filter through analysis-ready TCGA data for use in downstream
analyses. To avoid duplication of effort, tcga_util leverages firehose_get for the majority of its
TCGA data download, while adding functionality for the filtering and querying of downloaded
data. tcga_util provides the following functionality:

1. download of TCGA clinical and experimental data into a local data store organized by

cancer and data type simplifying repeat or new analyses,
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2. sample query tools to easily find samples of interest based on clinical and mutational
criteria,

3. creation of filtered data matrices that are composed of data for samples of interest that
are easier to work with in downstream analysis tools such as R,

4. ability to update the local data store with the latest TCGA data releases, and

support of version tracking downloaded TCGA data for analysis reproducibility.

6.3.3.3 CiDD file descriptions
The files described here are generated by the previously described CiDD commands.
Several of these files are intermediate results, being output by one CiDD command and then

used as input in subsequent CiDD commands.

6.3.3.3.1 Sample files: {analysis_name}_{cases|controls}.samples

For a specified mutation or clinical characteristic, CiDD defines two classes of samples — a case
class and a control class. The sample files list the TCGA identifiers that are a part of each class.
These are generated by the cidd signature commands and used by tcga_util to construct case

and control gene expression matrices.

6.3.3.3.2 RNA sequencing read count matrices: {analysis_name}_{cases|controls}.readcounts
CiDD downloads TCGA level 3 RNA sequencing data by default. The downloaded read count
data has been RSEM normalized. These files are tab-delimited where genes correspond to rows
and samples correspond to columns. Values in the files correspond to read counts. One file is

generated for each class of samples by the cidd signature commands.
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6.3.3.3.3 Agilent expression matrices: {analysis_name}_{cases|controls}.expr

CiDD downloads TCGA level 3 Agilent gene expression data by default. These data have been

Lowess normalized. These files are tab-delimited where genes correspond to rows and samples
correspond to columns. Values in the matrix correspond to a gene expression level. One file is

generated for each class of samples by the cidd signature commands.

6.3.3.3.4 Differential expression results: {analysis_name}.diff _exp
Differential expression results from Limma are output in the diff_exp tab-delimited file. These
results are produced by the cidd signature commands. Each row corresponds to a gene and
differential expression metrics are represented in the columns. These columns include:

* logFC: log: fold-change corresponding to the phenotype of interest

* AveExpr: average log:-expression value

* t: t-statistic

e DP.Value: differential expression raw p-value

* adj.P.Val: Benjamini-Hochberg adjusted p-value or g-value

* B:log-odds that the gene is differentially expressed
Documentation describing Limma can be found at

http://www .bioconductor.org/packages/release/bioc/html/limma.html.

6.3.3.3.5 Gene expression signature files: {analysis_name}_{up|down}.sig
The signature files contains a list of up and down-regulated gene identifiers based on fold-

change and significance thresholds that define differentially expressed genes. These parameters
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can be specified in the cidd signature commands. The signature files produced by the cidd

signature commands are input to the cidd drugs command.

6.3.3.3.6 Signature heatmap: {analysis_name}_heatmap.png

A sample and gene clustered heatmap using the case and control samples and signature genes
is generated by the cidd signature commands. See Figure 36 for an example heatmap. The
clustering of case samples based on signature genes is illustrated with a dendrogram at that top

of the heatmap where black bars label the case samples.

6.3.3.3.7 Gene set analysis results: {analysis_name}.gsa

Gene set analysis results from the Bioconductor package piano'®? are output to the gsa file. Each
row corresponds to a gene set. By default, CiDD uses KEGG gene sets defined in MSigDB*¥ for
the gene set tests. Columns in the file specify the numbers of genes in each gene set along with
test statistic values and p-values that indicate whether or not each gene set is associated with
the phenotype of interest. The software and documentation are available at

http://bioconductor.org/packages/devel/bioc/html/piano.html.

6.3.3.3.8 Candidate drug report: {analysis_name}.drugs

The candidate drug report is a tab-delimited file produced by the cidd drugs command. Each
row corresponds to a drug, and the column data are described below. See Lamb et al*® for
algorithm details for calculating values for mean_connectivity_score, enrichment and
permutation_p.

* num_instances: the number of times that this drug was tested on a cell line
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* mean_connectivity_score: the average connectivity score ranging from -1 to 1 across all
instances of a drug. The closer the connectivity score is to -1 (i.e., the stronger the
negative connectivity), the more we might expect that the drug will negate the gene
expression signature of the phenotype of interest.

* enrichment: a measure of enrichment of all of the instances of a drug having a negative
or positive connectivity (ranging from -1 to 1) with the gene expression signature of the
phenotype of interest

* permutation_p: an estimate of the likelihood that the enrichment of a set of instances in
the list of all instances in a given result would be observed by chance

* non_null_percentage: the number of instances with non-zero connectivity scores

* specificity: a measure of the selectivity of a drug compound for the phenotype of
interest. Random query signatures are extracted from MSigDB and run against the
CMap to generate a background list of enrichment scores and specificity indicates how
often a score equal to or smaller than the enrichment is seen.

* pharmacology_drugbank: general description of the drug potentially including the drug
origin, composition, pharmacokinetics, pharmacodynamics, therapeutic use and
toxicology

* pathways_keggdrug: pathway targets of the drug

* targets_keggdrug: gene targets of the drug

interactions_matador: protein and gene interactions of which the drug is known to be a part of
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6.3.3.3.9 Cell line report: {analysis_name}.cell_lines
The cell line report lists cell lines that are similar to the case samples identified by CiDD. Each

row in the report corresponds to a candidate cell line.

6.3.4 Results: application of CiDD to BRAF V600E colorectal cancer

We applied CiDD to identify candidate drugs to treat CRCs harboring BRAF V600E
mutations using mutation and RNA-sequencing data from the TCGA colon and rectum
projects. We also identified cell lines from the CCLE that are representative of colorectal tumors
with BRAF mutations, thus making them candidates for in vitro drug testing. We refer to these
analyses as the TCGA-derived analyses. We then compared our systematic TCGA-derived
analyses generated with CiDD with analyses performed using a previously published gene
expression signature for BRAF V600E generated from CRC samples of the PETACC3 (Pan-
European Trials in Alimentary Tract Cancers) clinical trial®®>. We refer to these previously
published gene expression analyses as the PETACC3-derived analyses.

The following commands were run to perform the TCGA-derived expression analyses and
can be run to replicate the analysis using the same version of TCGA data as described in the

main manuscript:

[1] cidd setup -dr 2014 01 15 -ar 2013 09 23 \
-c coadread crc brafve600e proj
[2] cidd mutation signature -dr 2014 01 15 -ar 2013 09 23 \
-c coadread -g BRAF -aac V600E \
-gnc 20 -1fc 2 -lperm 1000 -gperm 1000 \
-gsm samplePermutation -n crc brafv600e

[3] cidd classifier generate -n crc brafv600e
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[4]

[5]

cidd drugs -np 1000 -nt 20 -n crc brafv600e

cidd cell lines —-g BRAF -aac V600E \

-t LARGE INTESTINE \

-n crc_brafv600e

The following describes the commands for the analysis:

1.

Setup a CiDD project called crc_brafv600e_proj and initialize it with data from the
TCGA colon and rectum (i.e., coadread) project using data released on 2014_01_15 and
analyses released on 2013_09_23.

Generate a mutation gene expression signature and characterize that signature with
KEGG pathways. The mutation is specified to be in the BRAF gene with an amino acid
change of V60OE. By specifying the analysis name crc_brafv600e, output files of this
command are prefixed with crc_brafv600e and can be automatically identified by CiDD
in subsequent steps by specifying the analysis name. A minimum log fold change of 2 is
specified for identifying differentially expressed genes. By default, a Benjamini
Hochberg p-value of 0.05 is required for identifying differentially expressed genes. To
assess significance for KEGG gene set tests, this command specifies the use of permuting
sample labels (as opposed to permuting gene labels) 1000 times.

Generate a k-TSP classifier to predict BRAF V600E CRC status based on the sample class
files generated in [2] by using the same analysis name crc_brafv600e.

Identify candidate drugs from the CMap using the mutation signature generated in [2]

by specifying the same analysis name crc_brafv600e. The command specifies the use of
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20 threads and 1000 permutations for assessing the significance (a permutation_p value)
for the reported connectivity scores.

5. Identify candidate cell lines that are derived from a LARGE_INTESTINE tissue type,
that harbor a BRAF V600E mutation and that exhibit a gene expression profile similar to

BRAF V600E CRCs based on the classifier generated for the crc_brafv600e analysis.

6.3.4.1 Identification of a BRAF V600E gene expression signature

Among all TCGA CRC samples, we used CiDD to identify 20 samples with a BRAF V600E
mutation and 149 BRAF wild-type samples with available [llumina GA RNA sequencing data.
Then, CiDD identified 63 up-regulated and 170 down-regulated genes (log fold-change >= 2 and
Benjamini Hochberg adjusted p-value <= 0.05) that generated a clustering of samples representative

of BRAF mutation status as shown in Figure 36.
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Figure 36: CiDD-generated heat map and clustering of BRAF V600E mutated CRCs based on TCGA Illumina GA
RNA sequencing data. Differentially expressed genes comparing BRAF V600E and BRAF wildtype samples were
identified using the Limma package in R and required to have a Benjamini Hochberg adjusted p-value <= 0.05 and a
minimum log fold change >=2. Hierarchical clustering of the samples and genes were performed using hclust with a
“pearson” distance measure in R. The BRAF V600E gene expression signature is represented with the vertical
colored bar on the right side of the figure, where red represents down-regulated genes and blue up-regulated genes.
BRAF V600E mutant samples all reside within 2 sample clusters of the heatmap, which suggests that the BRAF V600E

signature captures the gene expression response of BRAF V600E mutations.

Then, we identified pathways associated with the BRAF signature through CiDD using
Wilcoxon-based gene set tests'®. For assessing significance of the gene set tests, CiDD

performed 1000 runs of the differential expression analyses, permuting the BRAF mutant status
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of samples within each run. Fifteen KEGG gene sets were associated with the BRAF V600E
status (FDR adjusted p-value <= 0.05). To incorporate PETACC3-derived pathways as part of the
pathway analysis, a list of the top 20 pathways based on an average ranking within the TCGA
and PETACC3-derived pathway lists is provided in Table 22. Because raw gene expression data
was not available for the PETACC3-derived signature, gene set tests were not performed.
Instead, for the PETACC3-derived analysis, hypergeometric tests were applied to identify KEGG
pathways enriched with genes from this signature. Twenty-seven KEGG pathways are enriched
with genes from the PETACC3-derived signature (p-value <= 0.05). The pathway ordering in
Table 1 reflects the average of the p-value ranks within each set. Full reports are provided in
Supplementary Results (see the tcga_gsa and petacc3_hyper sheets for the TCGA-derived and
PETACC3-derived reports respectively). These pathways are consistently related to CRC biology
such as the top ranked pathway (“Colorectal Cancer”) and other pathways related to TGFf3
signaling (“TGF Beta Signaling Pathway”), which are well known for their role in CRC.
Additionally, it is known that the BRAF gene plays a role in controlling cellular proliferation
and differentiation through regulation of the MAP kinase signaling pathway!'®”, and the “MAPK

Signaling Pathway” is also represented in the top ranked pathways.
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Pathways TCGA P-value | PETACC3 P-value | TCGA rank | PETACC3 rank | Average rank | Overall rank
Colorectal Cancer 0.021 0.003 9 4 6.5 1
Bladder Cancer 0.000 0.017 2 18 10 2
Pathways in Cancer 0.050 0.004 15 6 10.5 3
Chemokine Signaling Pathway 0.040 0.012 11 16 13.5 4
JAK-STAT Signaling Pathway 0.053 0.006 20 11 15.5 5
Axon Guidance 0.057 0.003 26 5 15.5 6
FC Epsilon RI Signaling Pathway 0.021 0.050 7 27 17 7
TGF Beta Signaling Pathway 0.066 0.001 34 2 18 8
Dorso Ventral Axis Formation 0.057 0.006 25 12 18.5 9
Peroxisome 0.066 0.006 33 10 21.5 10
MAPK Signaling Pathway 0.057 0.032 24 23 23.5 11
ABC Transporters 0.068 0.018 37 19 28 12
ERBB Signaling Pathway 0.069 0.008 46 14 30 13
FC Gamma R Mediated Phagocytosis 0.062 0.069 30 31 30.5 14
Tryptophan Metabolism 0.037 0.160 10 52 31 15
B Cell Receptor Signaling Pathway 0.083 0.000 61 1 31 16
Prion Diseases 0.040 0.144 14 49 315 17
Epithelial Cell Signaling in Helicobacter Pylori Infection 0.068 0.039 39 24 31.5 18
T Cell Receptor Signaling Pathway 0.060 0.081 28 37 32.5 19
Neuroactive Ligand Receptor Interaction 0.021 0.234 3 67 35 20

Table 22: The top 20 ranked pathways associated with BRAF V600E status based on systematic TCGA gene
expression analyses presented with those derived from the independent PETACC3-based analyses. The table is
ordered by the overall rank of each pathway where the overall rank represents an average rank across both the
TCGA- and PETACC-derived analyses. P-values and ranks for pathways associated for both the TCGA- and
PETACC-derived analyses are shown. These pathways are consistently related to CRC biology such as the top-
ranked pathway “Colorectal Cancer” and the “TGF Beta Signaling Pathway” in addition to the “MAPK Signaling

Pathway” which is known to play a role in BRAF-mutant CRC.

Finally, we used CiDD to identify an 11-pair k-TSP classifier for predicting the BRAF
V600E status of independent samples using the TCGA data set. The classifier gene pairs are
listed in Table 23. For prediction, a default predictive score of 0.8 on the TCGA data set is
required for inclusion into the classifier. If the average value or rank for the g genes is less than
that of the g2 genes, the sample is predicted to harbor a BRAF V600E mutation and otherwise the

sample is predicted to be BRAF wild type.
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Pair | Gene 1 (g1) |Gene 2 (g2)|Score
1 CD109 ZNF470 0.83
2 GPR126 PLCB4 0.82
3 RBP2 TMA4SF4 | 0.82
4 0ODZ3 TDGF3 0.81
5 FPR2 ZNF141 0.81
6 LY6G6ED PIWIL1 0.81
7 SPIN3 VNN2 0.8
8 |CHRFAM7A | CTTNBP2 0.8
9 NKD1 SOX8 0.8
10 CXCL14 RARRES1 0.8
11 | PPP1R14C TRNP1 0.8

Table 23: TCGA-derived k-TSP classifier for predicting BRAF V600E status

6.3.4.2 Validation of the TCGA-derived gene-pair classifier for predicting BRAF V600E status

In order to validate the TCGA-derived gene expression analyses, we compared the
performance of a previously reported BRAF V600E gene expression classifier derived from the
PETACCS3 clinical trial ® against the gene expression classifier that we identified from the TCGA
data set.

The PETACC3-derived gene expression signature for our drug analyses consisted of 193
up-regulated and 92 down-regulated probes. These probes correspond to 224 unique genes. The
research group also developed a 32-pair TSP classifier based on Affymetrix probe IDs for
predicting the BRAF V600E status of CRCs. We translated these probe IDs to Entrez gene IDs
so the classifier could be applied to RNA sequencing and Agilent test data sets. To assess the
robustness of their gene expression results, we applied the gene-based PETACC3-derived
classifier to TCGA samples that were retrieved and annotated with BRAF mutation statuses by
CiDD. When applied to TCGA RNA sequencing data, the PETACC3-derived classifier resulted in

93.3% sensitivity and 83.5% specificity for detecting BRAF V600E samples.
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To assess the quality of the systematic TCGA-derived classifier generated by CiDD, we
compared the performance of the TCGA- and PETACC3-derived classifiers on 3 independent
data sets (see Table 24) — two have been previously published and are available in the Gene
Expression Omnibus''%!!! and the third is the CCLE data set. The sensitivity and specificity of
both classifiers are comparable on the GSE35896 and GSE42284 data sets with the PETACC3-
derived classifier exhibiting small improvements in specificity. The PETACC3-derived classifier
achieved 100% sensitivity but only 30% specificity for BRAF status prediction on the CCLE large
intestine data set. The TCGA-derived classifier had lower sensitivity (71%) but achieved better
specificity (62%). These results suggest that the systematically obtained BRAF V600E classifier
from CiDD is comparable to the published PETACC3-derived signature and that the TCGA-
derived classifier may even have improved specificity for distinguishing BRAF wild-type cell

lines from the BRAF mutant cell lines.

Data set TCGA-derived classifier PETACC3-derived classifier
sensitivity specificity sensitivity specificity
GSE35896 (n = 62)
4/6 (0.67 39/56 (0.70 4/6 (0.67 45/56 (0.80
(Affymetrix U133 Plus 2.0 Array) /6( ) /56 ( ) /61 ) /561 )
GS§42284 (n= 178.) . . 33/36 (0.92) 91/142 (0.64) 33/36 (0.92) 107/142(0.75)
(Agilent Homo sapiens 37K DiscoverPrint_19742)
CCLE LARGE_INTESTINE (n =57)
- 5/7(0.71 31/50 (0.62 7/7 (1.00 15/50 (0.30
(Affymetrix U133 Plus 2.0 Array) /71 ) /50( ) /71 ) /50( )

Table 24: Performance of the TCGA- and PETACC3-derived BRAF V600E CRC classifiers when applied to
independent gene expression data sets. The sensitivity and specificity of both classifiers are comparable with the
PETACCS3-derived classifier exhibiting small improvements in specificity on the GSE35896 and GSE42284 data sets.
The TCGA-derived classifier had lower sensitivity (71%) but achieved better specificity (62%) on the CCLE data set.

These results suggest that the systematically obtained BRAF V600E classifier from CiDD is comparable to the
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published PETACC3-derived signature and that the TCGA-derived classifier may even have improved specificity for

distinguishing BRAF wild-type cell lines from the BRAF mutant cell lines.

6.3.4.3 Candidate drug therapies for BRAF V600E CRC

Using both the TCGA and PETACC3-derived gene expression signatures, CiDD identified
potentially novel candidate drugs to treat BRAF V600E CRCs. Drugs with a negative
enrichment score and a permutation p-value less than 0.1 using the TCGA gene expression
signature are listed in Table 3. Three compounds, Gefitinib, MG-262 and Trapidil, were
identified using both the TCGA and PETACC3-derived gene expression signatures. Independent
research groups have recently shown that EGFR inhibitors such as Gefitinib and proteosome
inhibitors such as MG-262 are effective drugs for treatment of colorectal tumors with BRAF

mutations®®!12, Trapidil is a novel candidate drug that inhibits phosphodiesterase and TXA2.

Compound Enrichment score | Permutation P-value | Specificity
gefitinib* -0.995 0.016 0.000
2-deoxy-D-glucose -0.977 0.051 0.022
5286656 -0.967 0.075 0.038
yohimbic acid -0.901 0.003 0.000
amrinone -0.884 0.001 0.003
trapidil* -0.852 0.004 0.016
mycophenolic acid -0.735 0.024 0.048
withaferin A -0.679 0.026 0.054
MG-262* -0.656 0.073 0.141

Table 25: Candidate drug compounds identified systematically by CiDD for BRAF V600E CRC based on the TCGA-
derived gene expression signature. Nine drugs were identified having both a negative enrichment score and a
maximum permutation P-value of 0.1. Three of these drugs (*) were also identified using the PETACC3-derived gene

expression signature.
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6.3.4.4 Cancer cell lines that most resemble BRAF V600E CRC

Finally, in order to identify candidate cell lines for in vitro testing, CiDD analyzed data
from the CCLE. From 947 cell lines in the CCLE, CiDD identified 48 large intestine samples that
we consider to be representative of colorectal tumors. Then CiDD reduced this number to 7,
representing those large intestine cell lines that have BRAF V600E mutations. Finally, using the
11 gene-pair k-TSP classifier generated by CiDD, 5 of these cell lines were predicted to be BRAF
V600E on the basis of having similar gene expression profiles to the TCGA BRAF V600E
mutated CRCs. The five identified cell lines include RKO, SNUCS5, CL34, COLO205 and HT29.
OUMS23 and SW1417 are the two BRAF V600E large intestine cell lines that are predicted to be

BRAF wild-type by the TCGA-derived gene expression classifier.

6.3.5 Discussion

As genomic technologies have ushered in the potential for targeted drug development,
large-scale public genomic databases have matured in size, scope and information content to
complement this effort. It is thus advantageous, and indeed possibly necessary, to apply
computational genomics to inform the drug discovery process. While subgroup classification
for prognostic assessment and therapeutic planning has been applied clinically for decades,
especially among hematologic malignancies and in some solid tumors such as breast cancers,
other tumor types such as CRCs appear phenotypically homogenous and are thus clinically

indistinguishable. In order to reveal subclasses for these tumors and to generalize their genome-
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based classification, the use of genetic and transcriptomic analyses may prove essential. Systems
biology tools such as CMap, and we believe CiDD as well now, help fill this need of identifying
candidate interventions that target specific pathways deregulated in these tumor subclasses. In
this regard, CMap provided the original approach to guide drug development based on
transcriptomic data. CiDD is taking this systems biology approach further by extending the
CMap with the clinical and molecular data of TCGA along with the high-throughput
experiments of the CCLE for the purposes of systematic cancer drug discovery. While current
public resources such as that of TCGA are impressive, they are likely just a beginning. The
basic logic of CiDD naturally extends to utilization of forthcoming, larger-scale databases from
drug perturbation experiments and genetic and transcriptomic sequencing of tumors of a wider
array of sizes and associated clinical outcomes.

We believe CiDD is the first framework that supports systematic drug discovery based on
user-specified TCGA clinical and molecular phenotypes. CiDD allows researchers to perform
the following: (1) assess whether or not a mutation or clinical phenotype is associated with a
gene expression signature, (2) identify candidate drugs to target this gene expression signature,
and (3) identify cell lines for subsequent in vitro drug experimentation. We have illustrated the
power of such an approach in a meaningful application to CRCs with somatic mutations in
BRAF. CiDD also offers utility to researchers simply wishing to interrogate and organize TCGA
data, as it can be applied to create an inventory of available TCGA data with particular clinical
or genomic features, such as available data sets or patients with particular mutations,

independently of its drug identification capabilities.
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One of the most crucial steps in the BRAF V600E analysis was identifying a gene
expression signature associated with the BRAF V600E mutation and generating a classifier for
predicting mutation status. In both of these cases, we showed that the signature and classifier
of the CiDD framework are comparable to those identified from the published PETACC3-derived
analyses”. Similarly to the PETACC3-derived signature and classifier, the CiDD-generated
signature was composed of genes representative of known pathways associated with the BRAF
V600E mutation, most notably the “MAPK Signaling Pathway”, and the performance of the
classifier on independent data sets generated from orthogonal gene expression technologies
showed robustness. The advantage of CiDD analyses is that they are systematic studies of
generally available datasets. We did not have to generate any of our own experimental data,
and the gene expression analyses can be relatively easily replicated and repeated for other
mutation or clinical phenotypes.

Once we validated the gene expression signature, we used CiDD to identify candidate
compounds for tumors harboring the well-known BRAF V600E mutation. Since the initial
communication of the presence of mutations in the kinase BRAF in cancer!’?, activating
mutations have been described in several malignancies with different frequencies such as hairy
cell leukemia (100%), melanoma (50-60%), thyroid carcinoma (30-50%) and CRC (10%)!4. The
most frequently identified mutation is a valine-to-glutamic acid substitution at codon 600
(V600E) that activates the signaling cascade downstream of MEK and ERK!3. Other mutations
have been found at the same codon and are considered equivalents in terms of oncogenic
activation!. Therefore, substantial efforts were invested on developing ATP-competitive RAF

inhibitors such as Vemurafenib and Dabrafenib to specifically target the MAPK pathway. Yet,
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the clinical success of BRAF inhibition has been variable and highly dependent on the tumor
context. In this regard, Vemurafenib has demonstrated improvement in survival in patients
diagnosed with stage IV melanomas harboring the BRAF V600E mutation!''>. However, this
degree of clinical benefit has not been observed in the same molecular context in CRCs!'. This is
probably secondary to the intrinsic mechanisms of resistance to BRAF inhibition that are
specific to the tumor context!*. BRAF mutations in CRCs have been associated with poor
prognosis and an aggressive disease course, and a characteristic clinical phenotype consistent
with older age at diagnosis, female gender, right-sided location and the presence of high levels
of microsatellite instability!!7118,

Two strategies have been suggested to overcome the primary resistance to BRAF
inhibition in CRC biology. One strategy that has been supported independently by two
different groups is the inhibition of the EGFR pathway by using monoclonal antibodies against
EGFR (such as Cetuximab) or kinase inhibitors (such as Gefinitib and Erlotinib) in combination
with BRAF inhibitors. EGFR is activated by feedback mechanisms upon BRAF inhibition, thus
reactivating ERK via RAS and CRAF, therefore combinations of EGFR and BRAF inhibition will
synergize in terms of activity®®!*12, The second strategy is based on targeting the proteasome
pathway. This has demonstrated specific activity against BRAF V600E mutant CRC cell lines
and tumor xenografts. This set of experiments was performed using classical (Bortezomib) and
novel (Carfilzomib) proteasome inhibitors and demonstrated similar activity. However, as
opposed to EGFR feedback, proteasome inhibition seems to function independently of BRAF
inhibition 2. CiDD has been able to identify both types of compounds (EGFR and proteasome

inhibitors) as candidate drugs through an agnostic approach, thus providing a biological
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validation of the value of CiDD as an screening tool to identify novel drugs to be tested and
further developed in specific tumor subtypes.

CiDD also addresses the important issue of identifying the most appropriate cell lines as
pre-clinical models for cancer researchers. Systematic comparisons between cancer cell lines
and tumor samples from human tissues have documented substantial differences between the
two, emphasizing the importance of making genomically informed choices when identifying
cell lines as pre-clinical models of a tumor subtype 22. The CCLE provides mutation and gene
expression data that allow CiDD to make these molecularly informed decisions in selecting cell
lines. In our BRAF V600E analysis, CiDD identified 7 large intestine cell lines harboring the
BRAF V600E mutation. However, only 5 of the 7 were predicted to be BRAF V600E based on
CiDD’s gene expression classifier, suggesting heterogeneity among the BRAF V600E mutated
cell lines. Helpfully, CiDD prioritized those cell lines into 2 groups for in vitro testing,
proposing that 5 of the 7 BRAF V600E mutated large intestine cell lines more closely resemble
the TCGA CRC BRAF V600E tumors at a gene expression level.

CiDD has some limitations that could restrict its application in specific situations.
Primarily, CiDD is dependent on identifying a gene expression signature representative of a
phenotype of interest. In some cases, a clinical phenotype or mutation may not actually induce a
gene expression response. In other clinical contexts, such as for rare mutations and infrequent
clinical phenotypes, CiDD may not have the power to identify the true underlying gene
expression signature associated with the phenotype, because CiDD is limited by the number of
samples available in TCGA with that specific phenotype. In these rare-phenotype analyses,

CiDD may fail to identify a statistically significant gene expression signature representative of
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the phenotype of interest. Researchers interested in rare clinical or molecular subgroups will
need to consider alternative strategies for increasing their sample sizes. These strategies may
include aggregating TCGA tumor types or grouping mutations or clinical phenotypes in
biologically meaningful ways, such as aggregating rare mutations at a gene or pathway level to
increase the sample size. The CiDD command that generates gene expression signatures based
on defined mutations provides support for aggregating mutations by listing amino acid
substitutions explicitly, specifying types of mutations (such as Nonsense mutations) or by
defining sets of mutations based on gene and gene set membership. Additionally, the CiDD
framework does not support the identification of candidate drug combinations to target tumor
subtypes. The CMap provides drug-perturbed data that were generated by applying
compounds to cell lines one compound at a time. If future drug-perturbed data sets provide
gene expression data of multiple compounds being applied to cell lines, incorporation of this
data into CiDD should be relatively straightforward. As an alternative, the computational
identification of multiple interacting candidate drugs based on current data sets is a potential
area for future CiDD development.

Of course, these limitations apply more generally for these difficult scenarios and are not
unique to CiDD. In fact, CiDD helps address these limitations by being easy to run and repeat
to test multiple hypotheses quickly. Further, CiDD is a framework rather than a specific
method per se. As public databases evolve and expand, and as robust statistical methodologies
mature for cross-platform expression-based signature identification, CiDD could be adapted to
incorporate these improved components. In this sense, what we have demonstrated here is a

“lower bound” of sorts, and we expect more powerful findings to emerge from such efficient
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systems-based computation. Finally, the field of gene expression analysis, particularly for
identifying signatures of cancer subtypes, has been criticized for failing to adhere to standards
of repeatability 2. Our software facilitates repeatability and even enables replication of
findings with external data sets. In all of these aspects, we expect the community of cancer

genomic researchers to benefit from, and further contribute to, this framework.
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