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ABSTRACT 
 

Utilizing haplotypes for sensitive SNP array-based 

discovery of somatic chromosomal mutations	

Selina Maria Vattathil, B.S., B.A. 

Supervisory Professor: Paul Scheet, Ph.D. 

Somatic copy-number (CN) gains and losses and copy-neutral loss of heterozygosity (CNLOH) 

frequently occur in tumors and play a major role in the progression of disease by altering gene dosage 

and unmasking deleterious recessive variants.  Characterizing these mutations in an individual tumor 

sample is therefore critical for research on the relationship of specific mutations to disease outcome and 

for clinical decision-making based on mutations with known impact.  A pervasive hindrance to sensitive 

detection of these mutations is genetic heterogeneity and high levels of contaminating normal cells in 

tumor samples, which limit the fraction of cells carrying informative mutations.  The method presented 

here is the first method to utilize population-based haplotype estimates to discover low-frequency 

somatic kilobase- to megabase-size CN alterations and CNLOH mutations using DNA microarrays.  The 

major innovation of the method is the use of phase concordance as a robust metric to measure evidence 

of allelic imbalance in the face of sporadic phasing errors in the statistical haplotype estimates and 

stochastic variation in the microarray data.  In addition to presenting a hidden Markov model that uses 

the phase concordance data to perform agnostic whole-genome discovery of imbalanced regions, we also 

describe how to test candidate regions, and to infer the haplotype of the major chromosome.  We 

demonstrate through controlled experiments using lab-created tumor-normal mixture samples and in 

silico simulated data that the sensitivity is higher than that of existing methods, detecting specific 

imbalance events in samples with 7% tumor or less, while maintaining specificity.  We also demonstrate 

the potential of the method via a real-data analysis of genomic mosaicism in the general population using 

over 30,000 samples that were previously analyzed using another method.  We made nearly three times 
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as many calls in these samples as the previous analysis (1,119 vs. 379), most of which appear to exist at 

low frequencies.  These findings validate recent hypotheses that somatic variation in healthy tissues is 

more prevalent than had previously been reported, and provides valuable observations of in vivo 

mutations that can be studied to make inference on genetic robustness and how these mutations impact 

cell fitness. 
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CHAPTER 1 

Introduction to mosaicism, heterogeneity, and  

SNP array-based detection methods 
CHAPTER 1: Introduction to mosaicism, heterogeneity, and SNP array-based detection methods 

1.1 Mosaicism and heterogeneity 

Mosaicism is the presence of two or more genetically-distinct cell lineages within an individual derived 

from a single zygote.  Novel cell lineages are the products of somatic genome-altering events which may 

affect entire chromosomes, interstitial or telomeric chromosomal segments, or one or a few nucleotides.  

Mosaicism is considered separate from chimerism, which exists when an individual carries cell lineages 

from multiple zygotes, for example when an individual has received an organ transplant or received cells 

from a fraternal twin in utero.  The average adult human body is made up of about 1013 cells (1), each of 

which can be traced back along its developmental lineage to the single-cell zygote, and in most organs 

there is some level of constant ongoing cell renewal from stem cells.  So, the number of possible cell 

divisions at which a somatic mutation can occur is substantial.  Assuming there are 106 independent stem 

cells in the intestinal epithelium which each give rise to terminal daughter cells every few weeks, nearly 

every site in the genome will have been mutated in some cell in the intestine alone by the end of a 

person’s lifetime (2).  Depending on the point in an individual’s development at which a mutation 

occurs, the cell population carrying the mutation may exist in only a part of a tissue, in multiple tissues 

or organs, or in almost all cells in the individual.   

 In the field of cancer genetics, the term ‘heterogeneity’ is usually used instead of ‘mosaicism’ to 

describe the existence of multiple genetically-distinct cell populations.  Since tumor cells are already 

expected to carry somatic mutations that make them genetically distinct from normal cells, the term 

usually refers to multiple genetically-distinct populations existing within the subset of an individual’s 

cells that are considered tumor cells. 
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1.1.1 Somatic mutation mechanisms 

The variety in event types is owing to the variety of different mechanisms or processes by which the 

mutations are generated.  I will be focusing here on mutations that generate allelic imbalance, or a 

departure from the 1:1 ratio of the maternal and paternal alleles.   

Chromosome mis-segregation during mitosis results in whole-chromosome loss and gain.  The 

mitotic chromosome mis-segregation rate was estimated at about 0.01 per cell division in vitro (3).  A 

cell normally executes processes to prevent mis-segregation during mitosis, but centrosome 

amplification, hyperstability of kinetochore-microtubule attachments, sister chromatid cohesion defects, 

and failure of spindle assembly checkpoints can all result in mis-segregation (3).  Chromosome loss 

followed by reduplication of the remaining homologue will result in whole-chromosome CNLOH.  

Although the loss and gain may occur in either order, it is considered more likely that in these cases the 

loss occurs first, and then the diploid cell line is strongly selected for over the aneuploid cell line (4).  

Trisomy rescue is a specific example of chromosome mis-segregation and is unusual in that the inherited 

genome is more aberrant than the one that results after the mutation.  In trisomy rescue, the individual 

inherits two copies of a chromosome from one parent (usually the mother) and one copy from the other 

parent.  At some point after fertilization, one of the extra chromosomes is not passed on to one daughter 

cell, leaving a diploid cell.  If the chromosome that is lost is from the parent that contributed the extra 

copy, then the new genome is essentially normal, with the usual level of heterozygosity and proper 

imprinting.  If the lost chromosome is the one from the parent who contributed exactly one copy, then the 

homologous chromosomes will be of uniparental inheritance, and will have segments of uniparental 

heterodisomy (homologous segments derived from each of the parent’s homologues) and segments of 

uniparental isodisomy (homologous segments both derived from the same parental homologue, and 

therefore completely identical, barring any other mutations).  Segments of both types of disomy will 

exist as a result of meiotic recombination during gametogenesis in the parent.  Since meiotic non-

disjunction is much more likely in females than males, trisomy rescue creates maternal uniparental 
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disomy (UPD) more often than it does paternal UPD.  Mosaicism will exist in the case of trisomy rescue 

only if the trisomic cell lineage survives.  Studies of X-inactivation suggest that trisomic cells are subject 

to severe negative selection in early embryonic development (5), so the mosaicism in these cases may be 

very short-lived.  This expectation of transiency of mosaicism due to strong negative selection against 

cells with an aneuploid genome applies even more so to monosomy rescue. 

Double-strand DNA break repair is another class of mechanisms that can result in somatic allelic 

imbalance.  The two major subcategories of mechanisms are non-homologous end joining (NHEJ) and 

homologous recombination.  The canonical NHEJ is largely error-free, but when multiple DSBs are 

present can result in deletions or insertions (6).  The homologous recombination mechanisms include the 

canonical pathway which involves resolution of double Holliday junctions, and several alternative 

mechanisms including single-strand annealing (SSA), synthesis-dependent strand annealing (SDSA), and 

break-induced replication (BIR).  When recombination occurs during G1 phase, the homologous 

chromosome is the appropriate template; in G2 phase, the sister chromatid is the preferred template but 

recombination can also occur with the homologous chromosome.  Canonical homologous recombination 

can result in a crossover product or a non-crossover product.  Crossover between homologous 

chromosomes in G1 results in daughter cells with translocations.  Crossover between homologous 

chromosomes in G2 will either create two daughter cells with translocations or one daughter cell with 

maternal UPD and one daughter cell with paternal UPD, depending on how the chromosomes segregate.  

In the latter case, a single crossover event will result in the two cells having CNLOH segments from the 

crossover point to the end of the chromosome (i.e. terminal CNLOH), while a double crossover will 

result in an interstitial segment of CNLOH.  Mitotic recombination is a major source of mosaicism in 

normal cells (7), and is often cited as a possible mechanism for the second hit to a tumor suppressor gene 

in cancer.  Studies in mouse hybrids of distantly related strains have shown that the rate of mitotic 

recombination is positively correlated with the level of sequence identity between homologous 

chromosomes, and also varies across tissues (8).  Crossover results in observable allelic imbalance in the 

heterogeneous mixture only if the two new populations come to different frequencies, which is possible 



4 

 

by chance but is more likely if the genetic divergence gives one population an advantage over the other.  

The alternative pathways do not involve crossover, but most pathways including the canonical pathway 

have the potential for gene conversion, or the unidirectional copying of a segment of a one homologous 

chromosome to repair the broken chromosome.  Gene conversion involves small segments of DNA, from 

a few base pairs up to 1-2 kb.  Another potential source of allelic imbalance is the 5’-3’ resection step 

that occurs during homologous recombination, and which can be so extensive in some mechanisms that 

large segments or even whole arms can be deleted (6).  BIR involves replication using the homologous 

chromosome of the entire terminal segment of a damaged chromosome, so can result in terminal 

CNLOH.   

Stalled replication forks also initiate repair mechanisms that may leave behind mutations.  

Mechanisms for dealing with a stalled replication fork include NHEJ, microhomology-mediated end 

joining (MMEJ), and template switching, with the most popular working models being the fork stalling 

and template switching (FoSTeS) model of Lee et al. and the microhomology-mediated break-induced 

replication (MMBIR) model by Hastings et al. (9).  Imperfect DNA repair and inaccurate restart of a 

stalled replication fork are hypothesized to be the common mechanisms for generation of de novo simple 

deletions and tandem duplications, which are the types of aberrations that make up the bulk of non-

recurrent de novo copy number variants (9).  Although these hypotheses are based on studies of 

constitutive variants, the observed mutations indicate that these types of de novo mutations occurred 

during DNA replication.  Somatic copy number variation appears to occur at a higher rate at segmental 

duplications and other repeat-rich sequences and therefore may occur by some of the same mechanisms 

that generate inherited variation (10).  Other classes of mutations that have been seen in mosaic form 

include balanced and unbalanced translocations,  ring chromosomes, isochromosomes (11) and single 

nucleotide substitutions (12). 
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1.1.2 Chromosomal instability in cancer 

The rates of generation of different types of DNA aberrations and the control of which repair mechanism 

is employed in response to an error together impact the observed rates of different types of mutations.  

Tumor cell populations, since they often have DNA repair deficiencies and are hyperproliferative, can be 

expected to produce a different spectrum of mutations (in terms of type and frequency) than normal cells.  

Chromosome instability, or a high rate of numerical or structural chromosomal aberration, is, in fact, 

common in most cancer types due to dysregulation of DNA repair and mitosis.  The most common cause 

of whole-chromosome and arm-level losses and gains is defective assembly of the mitotic spindle, 

especially transient multipolarity and merotelic attachments.  Transient multipolarity describes the 

situation in which a multipolar mitotic spindle is formed in early mitosis due to presence of 

supernumerary chromosomes, but is converted to a bipolar spindle before anaphase by clustering of the 

centrosomes into two groups.  It is distinct from permanent multipolarity, in which the supernumerary 

centrosomes are not clustered and the cell therefore undergoes multipolar cell division.  Whereas 

permanent multipolarity causes severe chromosome mis-segregation and daughter cells are unlikely to 

survive, transient multipolarity creates less severe aneuploidy and can produce viable daughter cells with 

a new aneuploid  genome (13).  Transient multipolarity has been observed only in chromosomally 

instable cancer cells, which emphasizes its importance as a mechanism for generating instability (14).  

Merotelic attachment describes the attachment of one kinetochore to spindle fibers from both poles, and 

can lead to aneuploidy (when it creates anaphase lag) as well as mis-segregation of chromosome arms 

(when the stress from spindle fibers pulling in opposite directions distorts the kinetochore and causes the 

DNA molecule to shear and break at the centromere).  Merotelic attachments occur with increased 

frequency in cells with spindle assembly checkpoint defects, but can also occur in normal bipolar cells 

(15).  Failure of the mitotic checkpoint increases the rate of uncorrected merotelic attachments and 

therefore the rate of whole-chromosome and arm-level mis-segregation. 
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An important mechanism of structural mutations in chromosomally instable cells is breakage-

fusion-bridge (BFB) cycles.  BFB cycles are initiated when a chromosome with a double-strand break or 

loss of telomere function is replicated, creating sister chromatids which each have ends unprotected by 

telomeres.  These sticky ends are likely to fuse, creating one dicentric molecule.  Pulling apart of the two 

centromeres during anaphase will cause the chromosome to break into two fragments, each of which 

segregates to a daughter cell.  Since the break in anaphase does not necessarily occur at the site of the 

initial fusion, the daughter cells may inherit a deletion or a reciprocal terminal duplication.  This process 

repeats in subsequent mitoses until the chromosome acquires a telomere, usually by translocation from 

another chromosome (16).   

Not all tumor cell populations suffer from chromosome instability, nor is chromosome instability 

a prerequisite for structural aberrations and aneuploidy.  Aberrations may arise as one-off events and be 

transmitted as stable variation to daughter cells.  Large-scale aberrations and aneuploidy are expected to 

occur with low frequency in normal cells and may serve as tumor-initiating events, and especially as the 

‘second hit’ that unmasks existing functional variation.  However, they do not inevitably lead to 

malignant transformation (13).   

1.1.3 Clonal expansion of somatic mutations 

In the strictest sense, the existence of one genetically mutated cell is enough to qualify an 

individual as mosaic, but a single mutant cell among thousands or millions of normal cells is 

phenotypically irrelevant.  Once a mutation occurs, many factors come into play to determine whether 

that cell will divide and give rise to a clone of mutant cells, what the size of that clonal population will 

be, how long it will persist, and what difference it will make to the individual.  What is the nature of the 

mutation and what genes or other functional elements are impacted?  Are those elements functionally 

relevant to the specific cell given the tissue type and the developmental stage of the individual?  Does 

any functional alteration impact the proliferation or growth potential of the cell relative to other cells that 

are competing for the same resources?  Does the mutation’s impact on genome structure impact the 
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stability of the cell?  Will the cell be passing the mutation on to daughter cells or is it a terminal cell in a 

lineage?  Some mutations will be deleterious and cause the cell to malfunction and the clone to be 

eliminated by negative selection.  Many, however, will have no net effect on the cell either because they 

are functionally neutral or affect a gene for which there are redundant or compensatory mechanisms, and 

may come to detectable frequency by genetic drift.  Still other mutations will be advantageous to the cell 

and may experience positive selection.   

1.1.4 Systemic consequences of mosaicism 

Whether or not a somatic mutation persists depends primarily on how it impacts fitness at a cellular 

level.  The impact of the mutation on an individual level is a different evaluation altogether.  The 

phenotypic impact of mosaicism on the individual can take a wide range.  Although it can be best 

described as a spectrum of consequences, here I will present examples of phenotypes caused by 

mosaicism in the following four categories: cancer, non-malignant disease, negligible health impact, and 

restoration of health.  

Cancer 

Cancer is a highly heterogeneous set of diseases whose single most defining characteristic is the 

acquisition of somatic mutations that transform a normal cell into a malignant population.  Cancer is by 

far the most prevalent known example of mosaicism-associated disease, and is special among 

mosaicism-associated phenotypes for several reasons.  First, by definition, cancer cells acquire 

accelerated proliferative capacity and immortality, which allows the mutant clone to increase greatly in 

size.  This characteristic makes the presence of mosaicism easier to detect.  Second, cancer is exceptional 

in the multitude of somatic genomic alterations that have been associated with it.  For example, reports 

of whole-chromosome deletion and duplication exist in the Mitelman database for every chromosome 

(17).  Not only do cancer cells exhibit a range of events, most cancer cells carry multiple somatic 

mutations.  Third, a cancer cell population may comprise multiple genetically distinct subclones due to a 

driver mutation that causes chromosomal instability.  Often, the sheer number of mutations that are 
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observed in a given cancer cell population and genetic heterogeneity within the population interfere with 

the identification of the somatic mutations that drive the cancer initiation and progression.  Despite its 

prevalence and the obvious causal nature of somatic mutations, the complexity of the mechanisms in any 

individual’s cancer and the variation among individuals makes understanding cancer very difficult.  

Interestingly, the extreme level of genomic aberration observed in many cancers highlights the high level 

of robustness of the human genome and in some ways help to support the notion that sporadic random 

somatic mutations can be of little consequence and should be expected at a low frequency in normal 

tissues. 

Non-malignant disease 

Some inherited genetic diseases are known to also exist in mosaic form. In some diseases the mosaic 

form is phenotypically less severe than the constitutional form, with the severity proportional to the 

number of cells carrying the somatic mutation.  For example, mosaic versions of all of the inherited 

trisomies (chromosomes 13, 18, 21) are less severe than the inherited forms.  In other diseases, the 

inherited and mosaic forms produce qualitatively different phenotypes (11).  For example, inherited 

HRAS G12S mutations are associated with Costello syndrome, which includes developmental delay and 

specific skin phenotypes, while mosaic HRAS G12S mutation in epidermal tissue has been associated 

with sebaceous nevi, a different skin phenotype (18).  The difference in effects is likely to be related to 

the specific tissues affected in the mosaic case and the timing of the mutation.   

A number of genetic diseases can only be caused by somatic mutations and cannot be inherited 

or passed to offspring, either because the mutation disrupts gametogenesis or is embryonic lethal.  

Examples of this class of mosaic disorders include McCune-Albright Syndrome, Pallister-Killian 

Syndrome, and Beckwith-Wiedemann Syndrome.   

Another important category of mosaic diseases is skin diseases, since they have visually obvious 

manifestations and have historically been easy to identify as mosaic.  The observation that the patterning 
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of the mutant cells followed the known patterns of cell migration prompted the early models of clonal 

mosaicism (11, 19).   

Mosaicism may have a particularly important role in the brain, both in the context of brain 

disorders and perhaps also in normal brain function.  Somatic mutation has been observed in 

monozygotic twin pairs discordant for neurodegenerative disease, and has been hypothesized as a 

potential common cause of sporadic cases of neurodegenerative disease (20).   One study (21) used a 

read depth binning method applied to single-cell sequence data from 110 human frontal cortex neurons 

collected posthumously from 3 individuals and found that 45 cells (41%) exhibited at least one somatic 

CNV.  Some cells had low-level aneuploidy, whereas others were observed to have only one or two 

small or subchromosomal CNVs.  LINE-1 transposable elements have already been suggested as a 

mechanism for generation of neuronal plasticity (22).  The high rate of somatic CNVs observed in the 

study suggests another mechanism for genetic diversification in neuronal cells, and the presence of 

mutations in all three individuals examined lends credence to the hypothesis that somatic mutation is part 

of normal neuronal function.  The authors further argue that maintenance of genomic plasticity in human 

neurons may actually have been selected for since it allows for an individual to express a greater range of 

behavioral phenotypes from a single inherited genome (22). 

The possibility of cryptic (undetected) mosaicism has been gaining ground recently as a partial 

explanation for genetic diseases observed to have unusual inheritance patterns.  For example, it has been 

reported that an increasing number of individuals diagnosed with diseases that are presumed to be caused 

by de novo mutation have actually been found to carry mosaic somatic mutations (7).  Somatic mutation 

is an especially plausible explanation in diseases where sporadic cases are associated with a later age of 

onset compared to cases with familial inheritance (20). 

Mosaicism has been associated with complex disease as well.  A recent study found a five-fold 

higher rate of large (>2 Mb) mosaic mutations in blood samples from individuals with Type 2 diabetes 

(T2D) compared to individuals without T2D.  Since almost all of the mosaic mutations they discovered 

were also reported in studies of mosaicism in the general population, the authors interpret the results as 
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evidence that T2D increases the risk of blood mosaicism, not that mosaicism increases risk of T2D.  

Combined with the idea that age-related genetic instability increases disease risk by causing unbalanced 

expression or unmasking of deleterious recessive alleles (23), this conclusion suggests the avenue by 

which T2D creates an ‘accelerated aging’ phenotype, conferring higher risk for age-related diseases such 

as cancer and cardiovascular disease.    

Mosaicism in healthy individuals 

An increasing amount of observational evidence from primary tissue samples indicates that base 

substitutions and large chromosomal changes occur with low but non-zero frequency during normal 

tissue maintenance and do not necessarily lead to disease.  For example, Tomasetti et al. (24) used 

somatic point mutation data from tumor whole-exome sequencing to test the relationship between 

number of mutations and patient age, and to estimate what fraction of the observed mutations occurred 

during tumor progression and what fraction occurred before tumor initiation.  They found that patient age 

strongly correlated with the number of mutations in tumors originating from self-renewing tissues 

(chronic lymphocytic leukemia, uterine cancer, and colorectal cancer), but not in tumors originating from 

non-self-renewing tissue (pancreatic ductal adenocarcinoma).  By assuming that the time from tumor 

initiation to diagnosis was approximately the same across individuals, the authors were able to estimate 

the number of mutations that occurred during tumor progression and subtract this number from the total 

number to estimate the number of mutations that occurred before tumor initiation, and therefore 

represent neutral mutations that occurred during normal tissue self-renewal.  They combined these 

numbers with patient age information to estimate somatic substitution rates of 6.4 x 10-10 and 7.6 x 10-10 

mutations per base per cell division in lymphocytes and colorectal epithelial cells, respectively. 

Several recent large-scale studies used SNP array data to directly analyze the rate of somatic 

segmental copy-number variation and CNLOH in the general population.  Laurie et al. (25) analyzed 

50,222 samples from 15 different case-control GWA studies collected as part of the Gene-Environment 

Association Studies consortium.  The study phenotypes included cancers and non-cancer conditions, and 



11 

 

the subjects had a wide age range, from newborns to subjects more than 80 years old.  They found that 

the prevalence of a detectable mosaic event was low for younger age groups but increased to 2-3% for 

subjects more than 80 years old.  They also found a tenfold increased risk of incident hematological 

cancer for individuals with detectable blood mosaicism compared to subjects without detectable blood 

mosaicism, suggesting that mosaic mutations may be a biomarker for cancer risk (although the absolute 

increase in risk was low since the cancer incidence was low, as the authors point out).  Jacobs et al. (26) 

also found that the prevalence of mosaicism increased to about 2% in cancer-free individuals older than 

75 years, and found an even stronger relationship between blood mosaicism and incident hematological 

cancer (odds ratio 35.4). 

Another study (27) also sought to investigate the relationship between mosaicism and age, but 

collected SNP array data expressly for the purpose instead of using existing GWAS data.  The Forsberg 

et al. study was also unique in that it used comparison of monozygotic twin pairs to confirm the somatic 

origin of mutations and performed orthogonal validation (using qPCR and custom tiling-path 

oligonucleotide arrays) of mutations identified using Illumina arrays.  They found that both large 

megabase-range mutations and smaller kilobase-range variants were more common in older individuals.  

The samples they used were from a longitudinal cohort study, and for a subset of samples they analyzed 

samples taken at different timepoints taken several years apart.  They observed from these intra-

individual comparisons that the intra-individual frequency of clonal populations sometimes increased 

and sometimes decreased over time, suggesting that the mutations increased the proliferative capacity of 

the cells enough to bring them to observable frequency but that the mutant cells were not immortalized.   

Somatic reversion 

At the positive end of the spectrum are somatic mutations that result in complete or partial restoration of 

a normal phenotype in individuals with an inherited disease variant and associated disease.  Somatic 

reversion includes back mutations which exactly reverse the inherited variant (for example, point 

substitution of an abnormal allele to the wild-type allele), or compensatory mutations such as an insertion 
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that corrects a frameshift caused by a deletion elsewhere in the gene.  At first blush, somatic reversion 

may seem like lightning striking the same location twice.  However, Davis and Candotti (28) suggest that 

the rate of somatic mutation is high enough that these types of mutations happen often, and the timing of 

the mutation early enough in the developmental pathway on the cellular level is the most important factor 

influencing whether or not restoration of normal phenotype is detected on the organismal (human) level.  

Implicitly, reversion seems more likely if the mutation that confers a normal phenotype also confers a 

selective advantage to the cell.  This is true in the example of Wiskott-Aldrich syndrome (WAS).  WAS 

is caused by a loss of function of the WAS gene, which impairs T-cell proliferation.  T-cell progenitors 

with reversions will produce more T-cells than non-revertant progenitors, and the abundance of T-cells 

will in turn restore immune function.  An alternate hypothesis is that cases of reversion are associated 

with higher mutation rate, either globally or at the site of the causative mutation.   

1.2 Detecting somatic mutations -- SNP arrays and other methods 

Many techniques exist for detecting mosaic mutations, each with unique strengths and weaknesses.  

There is no single strategy that meets all of the criteria one would consider, such as sensitivity for events 

of all types and genomic sizes and all cell fractions, ease of execution, ease of interpretation, and 

requirement for a priori knowledge of genomic location.  In the remainder of this chapter I will first 

summarize the strengths and weaknesses of the most common techniques.  Then I will provide a more 

thorough explanation of how SNP arrays are used for mosaic mutation detection. 

1.2.1 Summary of common techniques 

G-banded karyotyping is a common technique for perinatal genetic testing of individuals suspected to 

carry chromosomal aberrations, i.e. because of observation of phenotypes known to be associated with 

chromosomal aberrations.  Karyotyping has been used for decades, so is well established and remains the 

most reliable and trusted method for detecting large constitutional abnormalities, and is among the subset 

of methods that can reveal balanced rearrangements such as inversions and translocations.  However, 



13 

 

making and reading karyotypes is time-consuming and labor-intensive and therefore usually only a 

modest number of cells are examined, at least in the initial screening of an individual; commonly 20 cells 

are assayed (29).  Since mutations can only be detected if they are present in the sampled cells, a limited 

number of cells may translate to limited power to detect low-frequency mosaicism.  For example, 

analysis of 20 cells has a 95% chance of detecting a mosaic mutation present at a proportion of 14% (30).  

Of course, follow-up may be conducted on individuals for whom alternative lines of evidence suggest 

low-level mosaicism.  G-banding is too low-resolution to be useful for detecting mutations smaller than 

several megabases (31), and will not provide evidence of CNLOH.   

 Fluorescence in situ hybridization (FISH) is another microscopy technique.  FISH involves 

designing probes to target specific genetic sequences or structures, such as particular genes or the 

centromere or telomere.  Probes labelled with differently colored fluorescent markers can be combined in 

a single experiment to interrogate the copy number and chromosomal location of multiple targets at once, 

and can therefore be used to identify copy number variation as well as translocations and inversions.  

Like G-banding, usually only a limited number of cells is assayed at a time, although more cells may be 

visualized at once especially if the interest is only in copy number of one or a few regions (since the 

number of fluorescent spots per cell can be counted without requiring very high image resolution).  FISH 

can reveal variation involving small genetic regions (a few kilobases (32)).  Spectral karyotyping (SKY) 

is related to FISH in that it involves combinations of colored probes, but instead of targeting a few 

specific regions it involves ‘painting’ of each chromosome or even arm in a unique color, so karyotypes 

can be assembled automatically using computer software that recognizes the signal for each 

chromosome.  Like G-banded karyotypes, the sensitivity of both FISH and SKY analysis for discovering 

low-frequency mosaic or heterogeneous mutations can be low depending on how many cells are assayed.  

Another factor is that, since these techniques require growing and stimulating cells in culture, estimates 

of the mosaic cell fraction may be inaccurate if the mutant cells are subject to different negative or 

positive selection pressures in culture than in vivo (31).    
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 Several innovative methods based on PCR have recently been developed and are useful for 

assessing copy number of specific genetic regions.  Real-time quantitative PCR (qPCR) is commonly 

used to detect single nucleotide polymorphisms and can also be used to detect constitutive copy number 

variation using a protocol that involves comparison of signal from test and reference copy number probes 

(32, 33).  However, the precision of the test is not sufficient to detect mutations if the mutant cell fraction 

is very small or to discriminate mosaic from constitutive mutations if the mutant cell fraction is very high 

and there is no germline sample available.  Other allele-specific qPCR assays have high sensitivity and 

specificity for mutations that are rare within a sample and could be used for validation of suspected 

heterogeneous CNVs using inherited heterozygous sites.  These would not be efficient methods for 

discovering variation, but qPCR can be useful for validating mosaic mutations (27).     

 Multiplex ligation-dependent probe amplification (MLPA) for detecting copy number variation 

involves PCR using fluorescently-labeled ligation-dependent probes targeting suspected CNV loci 

followed by capillary gel electrophoresis of the PCR products.  Probes for different loci are designed to 

have different sizes of amplicons, so the height of peaks at different locations in the electropherogram 

will be proportional to the concentration of copy number alleles in the sample.  By designing probe sets 

to have different amplicon sizes for different target regions, multiple regions can be tested at once (32).  

Once a probe set has been designed, MLPA is an efficient experiment for inferring copy number for tens 

of loci of interest with one reaction per genomic sample and has enough precision to identify mosaic 

mutations (34) with sizes ranging from single nucleotides to multi-megabase events (by using multiple 

probes) (34), but is not suited for mutation discovery without a priori knowledge of variant loci of 

interest. 

 Whole-genome sequencing (WGS) can detect heterogeneous copy-number variation, CNLOH, 

and balanced translocations.  Mate-pair and paired-end sequencing are especially useful (compared to 

single-end sequencing) for detecting translocations and small insertions and deletions, since they 

improve read mapping.  Analysis of read depth can reveal larger copy number changes.  WGS has the 

potential to provide very complete resolution of a heterogeneous sample.  On the other hand, several 
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factors make it less than ideal.  First, if the goal is detection of mosaic mutations, high coverage of the 

genome must be achieved, which will make the experiments expensive.  Second, the scale of the data and 

the complexity and sheer amount of computer processing required to transform the raw data means that 

sequence analysis is a major undertaking unless a pipeline has been set up (and maybe even then as 

well).  

 High-density whole-genome SNP arrays provide somewhat of an intermediate option between 

traditional cytogenetics and targeted PCR techniques and WGS.  The sample preparation is relatively 

straightforward and akin to preparation protocols for PCR (DNA must be extracted and purified from 

tissue, but no cell culturing or library preparation required), it does not require a priori knowledge of the 

locations of mutations, and some data processing and informatics is required to obtain interpretable 

results, but requires computing power on the order of a desktop machine instead of a computing cluster.  

During the past decade, SNP arrays and array comparative genomic hybridization have supplanted 

cytogenetics techniques as the first-line tests in prenatal and neonatal genetic diagnostic laboratories (11) 

and have immensely increased the rate of detection for mosaic segmental and whole-chromosome 

abnormalities in that setting.  SNP arrays have also made it possible to conduct large-scale surveys of 

somatic mosaicism, as discussed above, and of chromosomal abnormalities in cancer. SNP arrays are 

useful for detecting mosaic whole-chromosome or segmental aberrations, but generally not point 

mutations, since only a small fraction of sites are measured directly.  The two major manufacturers of 

SNP arrays are Affymetrix and Illumina.  They employ different chip manufacturing techniques and 

probe designs, and so the native data types are unique and have different error characteristics and of 

course each manufacturer has unique proprietary normalization procedures.  Illumina is now providing 

arrays for targeting 2.5 million or even 5 million SNP and CNV loci.   

SNP arrays were originally designed for the purpose of calling genotypes at each marker, and the 

basic calling algorithms in use today still assume that the majority of the sample is diploid, which is a 

reasonable except for studies of tumor samples.  A number of publically-available methods have been 

developed for inferring constitutive and mosaic copy number aberrations. These usually rely not only the 
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called genotypes but also on intermediate-level data, which may be subject to bias and miscalibration and 

always display some imprecision.  Some of the common sources of bias include GC content of the target 

region and inherent differences in signal intensity from the different fluorescent tags.  Miscalibration can 

arise when the sample is highly aneuploid, since the baseline values are calculated from the sample itself 

using an algorithm that assumes that most of the genome is diploid.  The random and non-random non-

biological variation in SNP array data makes the detection of mosaic events from them a non-trivial 

endeavor.  Much research has been aimed in recent years at improving normalization strategies such that 

the observed data accurately represents the underlying sample characteristics, and at interpretation 

strategies for extracting the information of interest from the normalized data.  In section 1.2. I will 

review the historically important and state-of-the-art methods for inferring copy number changes and 

CNLOH in heterogeneous samples; in order to understand the basis of these methods, I will first provide 

some background on two intermediate data types, the B allele frequency and the log R ratio, that are 

commonly used as observed data in these methods.   These two data types are the result of normalization 

and processing of even lower level observations; I will not provide details on the normalization methods 

(unique methods for Affymetrix and Illumina arrays), although they are also a field of ongoing research.  

The BAF and LRR data types are native to Illumina arrays; they are not native to Affymetrix data but are 

a natural way to represent the underlying state at each marker and Affymetrix data can be coerced to 

produce them.     

1.2.2 SNP array data 

Each SNP marker on a SNP microarray is designed to target a biallelic variant site.  The two alleles are 

labeled as ‘A’ and ‘B’ (arbitrarily in the case of Affymetrix arrays, and according to an algorithm based 

on the specific alleles and sometimes on sequence context in the case of Illumina arrays (35)).  At each 

marker, the raw intensity data are transformed to make genotype calls.  In addition to the genotypes, two 

intermediate data types, the B allele frequency (BAF) and the log R ratio (LRR), can be calculated from 

the raw data.  The BAF represents the proportion of sampled chromosomes that carry the B allele.  The 
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LRR is a measure of the average per-cell copy number.  These data types are native to the Illumina 

platform and are easy to output using Illumina’s proprietary GenomeStudio software.  With Affymetrix 

SNP arrays, the BAFs and LRRs may be calculated from .CEL files using Affymetrix Power Tools. 

 With Illumina arrays, genotype calls are made for each marker by comparing the observed BAF 

and LRR values to expected values derived using data from control samples.  Illumina provides sets of 

expected values for each array that have been calculated using HapMap data.  For a copy number of 2, 

the expected LRR value is 0.  For the three diploid genotypes at a biallelic marker AA, AB, and BB, the 

expected BAF values are 0, 0.5, and 1, respectively.  Visualization of the BAFs and LRRs for a normal 

region emphasizes a few important points (Figure 1).  First, the points in the BAF plot form three distinct 

bands roughly located at 0, 0.5, and 1, one for each of the three possible genotypes.  In other words, the 

data for a good-quality DNA sample that has been properly processed is quite predictable, and outlying 

points are usually few and easy to identify.  Second, all three bands exhibit some noise.  The two 

homozygote bands tend to be less noisy than the heterozygote band, probably because of an explicit 

shrinkage that is performed on BAFs that are close to the extremes of the value range (36).  While the 

imprecision in the heterozygote BAFs in a normal sample has little to no impact on the genotype 

determination, we will see that it is the reason that SNP array-based strategies for detecting allelic 

imbalance encounter a loss of sensitivity for low-proportion events.   
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Figure 1. Examples of whole-genome B allele frequency (BAF) and log R ratio (LRR) data.  Top plot 

shows BAFS, bottom plot shows LRRs.  Green lines indicate chromosome boundaries and yellow lines 

indicate centromere regions.  Points are plotted by marker index, so chromosomes are scaled by marker 

count, not genomic size.  In the BAF plot, grey points indicate that no genotype call was made at the 

marker, and red points indicate markers where no BAF value was produced (they are arbitrarily plotted 

at 0). 

The data for a region of a genome that is in imbalance or has undergone a copy number change 

will be similarly predictable.  When there is complete loss of heterozygosity, all of the BAFs will be 

close to 0 or 1, and there will be no middle band of points.  When the sample contains a mixture of 

normal cells and cells with allelic imbalance, the BAFs at inherited heterozygous markers will be shifted 

away from the expected heterozygote value (generally 0.5), but less so than in a 100% aberrant sample.  

Figure 2 presents examples of BAF plots expected for a samples that contain mixtures of normal cells 

and mutant cells with a hemizygous deletion (top row), CNLOH (middle row), and duplication (bottom 

row) at mutant cell fractions 0%, 5%, 10%, 15%, 20%, 50%, and 100%.  Even though both hemizygous 
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deletion and CNLOH create loss of heterozygosity, the two types of mutation create unique BAF patterns 

even when they occur at the same frequency because they result in different copy numbers.  Duplications 

do not create LOH, and the shifts in the BAF pattern are smaller than either hemizygous deletions or 

CNLOH occurring at the same frequency.  In other words, the expected distance between the observed 

BAFs and the expected BAF at heterozygote markers (generally 0.5) is a function of both the mutation 

type and the fraction of the sampled cells that carry that mutation.  A similar relationship exists for the 

LRRs, but note that LRRs in CNLOH mutation regions have the same expected LRR as those in normal 

regions.  The theoretical expected magnitude of the observed deviations given the event type and mutant 

cell fraction are given by 
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hemizygous deletions, CNLOH, and duplications, respectively).  Since the normalization procedure that 

generates the BAFs and LRRs from the raw measured data may not be perfectly tuned, other factors such 

as scale or shift parameters may be included in these equations when they are applied in practice.  These 

equations are for the simplest case of heterogeneity, where there is a normal cell population and exactly 

one mutant cell population.  In more complex situations the same principle of the observed values being 

a function of the weighted average of the expected values for each population applies, but of course all of 

the populations would need to be factored in order to make accurate inference.   
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Figure 2. Examples of BAF plots for mosaic deletions, CNLOH, and duplications. Data were simulated 

for proportions other than 0% and 100% by weighted averaging of the observed heterozygous BAFs 

from constitutively normal and constitutive homozygous (for deletion and CNLOH) and truly duplicated 

(for duplication) regions.  Purple points are BAFs at heterozygous markers and light blue points are 

BAFs at homozygous markers based on genotype calls from the normal (0%) sample.   

1.2.3 Review of existing methods for detecting low-proportion chromosomal aberrations       

All existing methods depend on 1) there being a consistent pattern in the data from within a region 

affected by a single allelic imbalance event and 2) the pattern in abnormal regions being distinguishable 

from the pattern in normal regions.   So, genomewide characterization of allelic imbalance status can be 

thought of in terms of the need to identify the breakpoints between normal and abnormal regions (or 

between adjacent abnormal regions arising from distinct mutations), and the need to interpret the 

observed data in abnormal regions to infer the specific chromosomal aberration (i.e. copy number, 
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fraction of sampled cells affected, the specific haplotype affected).  Some methods perform first 

breakpoint detection and then characterization, while other methods perform the two procedures jointly 

or iteratively.  Existing methods for the most part employ one of two breakpoint detection strategies – 

circular binary segmentation (CBS) or hidden Markov models (HMMs).  CBS was introduced by Olshen 

and colleagues (37) in the context of detecting copy number variation using aCGH data.  In this method, 

the data (i.e. LRR values) across markers in a normal region are considered to be independent and 

identically distributed (IID) following a Gaussian distribution, and the data in abnormal regions will 

follow a Gaussian distribution with a different mean than normal regions.  For each possible breakpoint 

(usually the breakpoints will occur between a consecutive pair of data points), a likelihood ratio is 

calculated to assess whether the observations to the left and the right of the border have different means, 

and a breakpoint is assigned to the segmentation that produces the highest likelihood ratio above a 

specified threshold.  The procedure is then repeated recursively within each newly defined segment.  The 

advantage of CBS is that the only assumption is that the data are normal, and it is robust to that 

assumption (which is useful, since BAF and LRR data often have a more heavy-tailed distribution).  CBS 

is therefore a good option for segmenting highly complex samples, such as tumor samples.  One major 

drawback is that, since BAFs in an abnormal region are likely bimodal, BAF data must be transformed to 

obtain something approximately normal before CBS can be used.  Most often, a mirroring transformation 

is applied.  This transformation step greatly reduces the sensitivity for detecting low-frequency mutations 

(38).  Another characteristic that could be considered a drawback is that it can only be applied to one-

dimensional data, so BAFs and LRRs must be analyzed separately and the results somehow reconciled.  

A joint analysis offers potential for greater power.   

Hidden Markov models underlie the second major category of segmentation algorithms.  In the 

case of SNP array data that has been successfully normalized, it is usually reasonable to assume that the 

observations at each marker are independent conditional on the underlying mutation state, making it 

possible to use an HMM where the BAF and LRR data are the observed data and some representation of 

the genomic state is the hidden state.  Most HMM methods use the possible allele-specific copy numbers 
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in the mutant cells as discrete hidden states, and include a parameter representing the frequency of 

mutant cells.  Examples include OncoSNP (39) and GPHMM (40).  One method, PSCN (41), uses a 

continuous-state HMM, where the latent state is a two-dimensional variable representing the average 

frequency in the sample of each of the two inherited alleles at an inherited heterozygous site.  A 

summary of the input data and segmentation methods for the aforementioned implementations and others 

is presented in Table 1. 
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Name Year segmentation strategy input data paired/unpaired/trio CNLOH

DNAcopy (37) 2004 CBS LRRs unpaired  no 
AsCNAR  (42) 2007 HMM  Allelic intensities  unpaired or paired  yes  

SOMATICs (43) 2008 
Adaptive Weights 
Smoothing 

BAFs, LRRs† unpaired yes 

BAFsegmentation (44) 2008 CBS BAFs unpaired or paired yes 

genoCNA (45) 2009 HMM 
BAFs, LRRs, population 
allele frequencies 

unpaired or paired yes 

GAP (46) 2009 CBS BAFs, LRRs, genotypes unpaired yes 
gBPCR (47) 2010 Bayesian PCR genotypes, LRRs  unpaired  yes  
OncoSNP (39) 2010 Bayesian HMM BAFs, LRRs unpaired yes 
ASCAT (48) 2010 PCR BAFs, LRRs unpaired or paired yes 
MAD (49) 2011 Sparse Bayesian Learning  BAFs, LRRs unpaired yes 
GPHMM (40) 2011 HMM BAFs, LRRs unpaired yes 
PSCN (41) 2011 Continuous-state HMM BAFs, total intensities  unpaired or paired  yes  
TAPS (50)   -- Allelic intensities unpaired yes 

HAPSEG (51) 2011 CBS 
Allelic intensities, haplotype 
estimates† 

unpaired no 

Battenburg algorithm (52) 2012 PCR 
BAFs, haplotypes from 
matched normal sample† 

paired yes 

POD (53) 2013 
Binomial testing in 
overlapping windows 

genotypes, BAFs, LRRs† trio yes 

 

Table 1. Existing SNP array-based methods for allelic imbalance in heterogeneous samples.  CBS-circular binary segmentation. HMM-hidden 

Markov model.  PCR-piecewise constant regression.  BAF-B allele frequency.  LRR-log R ratio.  †data type is not used for segmentation, only for 

post-segmentation characterization. 
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So far, I have emphasized that the BAFs at inherited heterozygous markers in abnormal regions 

exhibit an increased deviation from 0.5, and the magnitude of the deviation is predictable given the 

mutation type and affected cell fraction.  The deviations can be described not only by their magnitude, 

but also by their direction, i.e. towards 0 or 1.  The direction is determined by the allele configuration 

(haplotypes) of the inherited chromosomes, and which of them has been lost or gained in the mutant 

cells.  To use the direction of deviations to assist in the detection or characterization of allelic imbalance 

regions requires knowledge about the inherited haplotypes.  Until recently, no methods used the direction 

information, either ignoring it by taking the absolute value of the deviations or integrating over the two 

possible directions.  Two recently published strategies make use of best-guess haplotypes estimated from 

population genetics-based statistical methods to improve post-segmentation characterization of abnormal 

regions, and one uses highly accurate haplotypes inferred from trio data to perform segmentation.   

The goal of the first method, HAPSEG (51), is to estimate for each abnormal region the average 

ratio of the copy number of each of the haplotypes, or homologues, per cell relative to the inherited copy 

numbers (which would be 1 for each haplotype in a normal diploid region).  The algorithm involves first 

performing segmentation using summed allele-specific intensities, and then uses individual allele-

specific intensities (similar to BAFs) to make an initial definition of the inherited haplotypes.  The 

assumption is that in regions where the level of imbalance is high, the two BAF bands in the germline 

heterozygous regions will be sufficiently diverged to provide accurate observation of the true haplotypes.  

In more subtly imbalanced regions, where the two BAF bands overlap, the statistically-estimated 

haplotypes will provide a more accurate estimate of the true haplotypes.  The two sets of haplotypes 

(BAF-estimated and statistically-estimated) are compared in the called abnormal regions, and where it 

appears that the BAF-estimated haplotypes are noisy, they are corrected using the statistically-estimated 

haplotypes.  Homologue-specific copy ratios are then calculated for each segment by smoothing the 

values at each marker. 

The second strategy was published in a study of breast tumor evolution that collected SNP array 

and sequence data from tumor and matched normal samples (52).  The first step in the procedure, which 
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the authors refer to as the Battenburg algorithm, is to estimate inherited haplotypes using the genotypes 

from the normal sample and a population genetics-based statistical method (Beagle (54) was used in the 

published experiment).  Then, if the frequency of each haplotype at each marker is plotted in a different 

color (for example red for one haplotype and blue for the other haplotype), in regions of imbalance the 

two haplotype frequencies will form two bands that will switch whenever there has been a phasing error, 

creating a plot that resembles a ‘Battenburg marking’, or a two-color checkerboard pattern.  In normal 

regions the two bands will overlap.  The evidence for distinct versus overlapping bands is then assessed.  

Neither the main text nor the supplemental materials explicitly mention the specific testing strategy, 

although the authors mention comparing observed haplotype frequencies to the expected frequency of 

0.5, and this could be done using a t-test if a region of interest is defined.  It appears that in the published 

analysis the approach was applied to each chromosome, which would be a powerful approach for 

discovering low frequency aneuploidy.   

Both of the above methods first define segments of interest, and then use haplotype information 

to perform characterization within the segment.  Only one existing strategy uses haplotype information to 

perform segmentation.  The POD method (53) first uses trio (mother, father, offspring) genotypes to 

estimate haplotypes for the offspring, then identifies potentially abnormal (over-represented) alleles by 

comparing the BAF at each marker to a threshold, then infers the parental source for any abnormal 

alleles.  Using markers with abnormal alleles, POD discovers segments of over-representation from one 

parent by applying two-sided binomial tests in overlapping windows and subsequently annotates each 

segment using LRRs.  Trio-based phasing provides highly accurate haplotypes at informative loci and 

this method is very useful in cases where trio genotypes are available. 

1.3 Relevance of new SNP array methods for sensitive detection of low-frequency mutations 

Decades worth of case studies and research has demonstrated that genomic mosaicism in humans is not 

an uncommon phenomenon and that the aberrations that can be tolerated in an individual sometimes defy 

conventional wisdom.  Probably the situation in which the need for sensitive detection is most obvious is 
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in genetic studies of cancer.  One pervasive hindrance to the identification of tumor-associated mutations 

is the presence of large amounts of contaminating normal tissue in a tumor sample.  The tumor cells 

carrying informative mutations, then, make up only a fraction of the cells in the sample.  In some cases, 

samples contain so little tumor cells that they are unusable.  Tumor-normal mixture was the motivating 

context for our method.  The ongoing generation of subclonal mutations, which start out with low 

frequency, is another reason that relevant mutations may be present in only a fraction of the sampled 

cells, even in a sample with high tumor content.  Therefore, sensitive methods will allow analysis of 

samples that may previously have been discarded for having low purity, and will provide a more 

complete characterization than lower-resolution methods.  These are important benefits both in the 

research setting to properly characterize the genetic mutations in a sample so that any potential 

relationship to phenotype can be accurately described, and in the clinical setting to make sure 

informative genetic markers are not overlooked.  

Outside of cancer, mosaicism and genetic heterogeneity have been most thoroughly studied in 

individuals that were highly suspected to carry somatic or de novo germline mutations because they 

exhibited phenotypes such as intellectual disability or skin diseases with distinctive spatial patterning 

known to often be caused by these types of mutations.  The landscape of somatic mutations in other 

populations remains to be explored.  Whole-genome sequencing performed as part of the 1000 Genomes 

Project revealed that phenotypically healthy individuals carry an average of 250-300 inherited variants 

that are predicted to cause loss of function and several hundred inherited variants that have been 

associated with disease (55), further underlining the complexity of genotype-phenotype relationships and 

genetic robustness.  Acknowledging that variants that appear to be deleterious may not actually have a 

significant effect has now become vital to proper interpretation of the genetic variation that is discovered 

in whole-genome and whole-exome analyses performed to find variants associated with disease.  

Likewise, a better understanding of the range and impact of somatic variation will undoubtedly provide 

context that will be valuable for making informed decisions when it comes to studying and interpreting 

an individual’s genetic risk for disease – for example, is organ- or tissue-specific sampling prescribed?  
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In the context of fundamental biology, characterization of natural somatic mutation is a way to capture 

the routine maintenance processes that have been executed in a cell population, and looking at the types 

of mutations observed across samples will show what variation exists in these processes, perhaps across 

individuals, across tissues, across environments, or over time as individuals age.  

 The specific benefits of SNP arrays is that they are relatively cheap and efficient, can be applied 

agnostically, and can potentially detect a wide range of allelic imbalance and balanced copy number 

changes with sizes ranging from kilobases to whole chromosomes.  A number of analysis methods have 

been developed for using SNP array data for mutation detection from SNP array data from 

heterogeneous samples, and several publications have acknowledged the potential sensitivity 

improvement that can be gained by using haplotype information.  So far, however, only two strategies 

have been published for using haplotype information to characterize predefined segments of interest, and 

only the POD method has used haplotype information as a source of signal for defining segments of 

allelic imbalance and works only in the special case where trio data are available to infer highly accurate 

haplotypes. 

1.4 Dissertation outline   

My dissertation project has focused on the development, implementation, testing, and real-world 

application of a novel algorithm for using estimates of inherited haplotypes to discover regions of low-

frequency allelic imbalance from whole-genome SNP array data.  The remainder of this dissertation is 

organized as follows.  Chapter 2 describes the algorithm, beginning with a discussion of the motivation 

for incorporating inherited haplotypes into a method for detecting somatic allelic imbalance, and how 

phase concordance allows the use of imperfect haplotype estimates.  The subsequent section gives a 

detailed description of the algorithm we have developed based on this motivation, including notes on the 

specific implementation available in the hapLOH software that we have written.  The final section 

presents guidelines for the pre-processing and post-processing quality control measures that should be 

applied to achieve high-quality results from hapLOH, and explains the necessity of each step.  Chapter 3 
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demonstrates the performance of the method using simulated and real data.  The first section describes 

results from a set of computationally simulated data which demonstrates the performance of the method 

compared to other state-of-the-art SNP array-based methods and touches upon the parameter settings and 

their impact on results.  The second section describes results from analysis of real heterogeneous tumor 

samples which demonstrates that hapLOH works for data from Affymetrix as well as Illumina arrays and 

provides an example of how being able to detect low-frequency imbalance changes the interpretation of 

results compared to a study that employed less sensitive methods.  Chapter 4 details an analysis of SNP 

array data from over 30,000 samples to characterize somatic mosaicism in the general population.  

Chapter 5 lays out potential short-term and long-term improvements and extensions to the method, and 

outlines additional applications of the method outside of the ones that are demonstrated here.  
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CHAPTER 2 

A method for combining SNP array data and haplotypes 
CHAPTER 2: A method for combining SNP array data and haplotypes  

Portions of this chapter are based upon “Haplotype-based profiling of subtle allelic imbalance with SNP 

arrays”, Selina Vattathil and Paul Scheet (2013), Genome Research 23(1): 152-158.   

2.1 Use of haplotype information 

2.1.1 Biological and statistical rationale 

As was mentioned in the previous chapter, all of the existing methods except HAPSEG (51), the 

Battenburg algorithm (52), and POD (53) consider the magnitude characteristic of BAFs only, ignoring 

or summing over possible values for the direction characteristic.  In our method, we consider the 

direction of the observed BAF from the expected heterozygote value.  Within an imbalanced region, the 

direction of the deviation at each marker correlates with the allele on the excess haplotype at that marker.  

In the case of allelic imbalance resulting from somatic mutation, we know that the excess haplotype is 

one of the germline haplotypes, which means that the directions correlate with one of the germline 

haplotypes.  In a region where there is subtle imbalance, if we pick one of the two germline haplotypes 

and divide the heterozygous markers into two groups according to which allele is on that haplotype, we 

would see that the points within a group tend to shift in the same direction (Figure 3, left panel).  If we 

do the same in a normal region, where the deviations are due to measurement error, not imbalance, there 

is no correlation between group membership and direction (Figure 3, right panel).  This means that one 

way to test for imbalance is to test for independence between the direction of BAF shifts and the group 

membership that can be defined using the inherited haplotypes.  Even the slight correlation created at 

low aberrant cell fractions is strong enough evidence to reject the null hypothesis of independence.  In 

fact, this is exactly the statistical basis for the POD method.  The primary limitation of this strategy is 

that defining the group memberships requires perfect knowledge of the inherited haplotypes.  In cases 

where trio data is available, perfect haplotypes can be inferred by assuming Mendelian inheritance (and 
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filtering sites at which there are Mendelian inconsistencies), but only for the subset of markers where the 

genotypes in the three individuals allows unambiguous phasing.   

 

 

Figure 3. Grouping using haplotype information reveals marker clustering in imbalance regions.  The left 

panel shows a simulated region with CNLOH in 5% of cells, and the right panel shows a normal region.  

Points were colored by choosing one of the inherited haplotypes and determining the allele on that 

haplotype at each marker.  Only inherited heterozygous markers are shown.    

 In cases where trio phasing is not an option (and until long-range sequencing or other forms of 

chromosome separation and typing become scalable), the only way to efficiently make whole-genome 

estimates of inherited haplotypes is using population-based statistical phasing methods.  These methods 

have high accuracy, but will make occasional phasing errors, such that the best-guess haplotypes will be 

a mosaic of the true haplotypes with chunks of markers that are perfectly phased separated by switch 

errors (Figure 4).  The rate of switch errors depends on multiple factors including the local 

recombination rate at the locus, the quality of the reference population, and the specific phasing method, 

but one can expect accuracies of something like 95%, which translates to an average of one switch error 

per 20 heterozygous markers.  
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Figure 4. Example of switch errors in haplotype estimates.  In this cartoon, the estimated haplotypes 

contain two switch errors.   

2.1.2 Choice of phase concordance as metric 

In order to use these imperfect haplotypes to assess the observed directions of BAF deviations for 

evidence of imbalance, we borrow a metric called switch error rate that is commonly used to assess the 

accuracy of a set of unordered haplotype estimates.  In unordered haplotype estimates, an error occurs 

when the alleles at one marker are incorrectly phased with respect to an adjacent marker.  Only 

heterozygous markers are considered in this assessment, since it is impossible to make a phasing error at 

a homozygous marker (because there is only one possible configuration).  The switch error rate is then 

the ratio of the number of switch errors made over the number of consecutive heterozygous pairs.  In the 

example in Figure 4, two switch errors were made out of a total of 35 heterozygous marker pairs, so the 

switch error rate is 2/35 = 0.04.  This could also be expressed in terms of the switch accuracy rate, which 

in this example would be 0.96.   

 In our method, we use the switch accuracy metric described above to compare two sets of 

haplotypes, the statistically estimated set of haplotypes and a set constructed using the BAF deviations 

that we anticipate will reflect actual allele frequencies in the sample (see next section).  We assess phase 

concordance between these sets by evaluating agreement at each consecutive two-marker haplotype, 

producing a binary score for every marker pair.  The metric is more accurately described as ‘switch 

consistency’ than ‘switch accuracy’, since we are comparing two sets of estimated haplotypes and the 
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true haplotypes are unknown.  This local scoring is the critical characteristic that makes this 

transformation strategy so valuable in the setting we consider, because it allows subsequent testing to be 

sensitive in the face of both switch errors inherent to statistically-estimated haplotype estimates, and to 

high levels of noise that will exist in the BAF-based haplotype estimates when the aberrant cell fraction 

is low.  We use the term ‘phase concordance’ to describe the average switch consistency rate for a 

region.   

2.2 Algorithm and implementation details 

2.2.1 Calculation of phase concordance 

We begin with two pieces of SNP array data for each marker – the genotype call with alleles labeled A 

and B and the BAF.  Since our method is designed for mixtures with a high proportion of normal cells, 

we use genotype calls obtained from the mixed sample and assume they are representative of the 

germline, since small deviations in the BAFs and the LRRs will not alter the genotype call.   

The first step in the procedure is to estimate the two sets of haplotypes.  Let us call the estimates 

made using the population-genetics based statistical models ݄ሺሻ and ݄ሺሻ
ᇲ
.   A number of software 

packages are available that can be used to produce these estimates.  The BAF-based haplotypes, which 

we call ݄ሺሻ and ݄ሺሻ
ᇲ
, are defined by the allele configurations at the heterozygous markers only.  Note 

that the pair of haplotypes are unordered, so the ݄ሺሻ and ݄ሺሻ
ᇲ
 labels may be assigned arbitrarily.  The 

BAF-based haplotype estimates are constructed as follows.  Let M denote the number of heterozygous 

markers, and ܾ denote the BAF at heterozygous marker ݉	ሺ݉ ൌ 1,…  ሺሻ by callingࢎ ሻ.  We defineܯ,

each allele ݄
ሺሻ	independently at each marker: 

 

݄
ሺሻ ൌ ൜ܤ, ܾ  ෨ܾ

,ܣ otherwise,
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where ෨ܾ is some threshold. When ݄
ሺሻ is equal to ෨ܾ, the alleles are assigned with equal probability.  The 

haplotype ݄ሺሻ, then, is an estimate of the overrepresented haplotype as indicated by the BAFs.  For the 

optimal interpretation of the phase concordance, we should define the threshold ෨ܾ at each marker by the 

median BAF for a diploid heterozygous genotype at that marker; since in practice we rarely know or 

have enough samples to estimate this value with precision, we instead use the median of observed BAFs 

across all heterozygous loci for the sample.  Since we consider only heterozygous sites, ݄
ሺሻᇱ can be 

defined for each marker ݉ by the complementary allele to ݄
ሺሻ, and is the BAF-based estimate of the 

underrepresented haplotype.  

 Once the two haplotype estimates are constructed, we can assess phase concordance using switch 

consistency.  Formally, let ݔ be an indicator of consistency between the two sets of 2-site haplotypes 

defined by ቀ݄
ሺሻ, ݄ାଵ

ሺሻ ቁ and ቀ݄
ሺሻ, ݄ାଵ

ሺሻ ቁ ሺ݅ ൌ 1,… ܯ, െ 1ሻ, i.e.  

 

ݔ ൌ ቊ1, ݄
ሺሻ ൌ ݄

ሺሻ	, ݄ାଵ
ሺሻ ൌ ݄ାଵ

ሺሻ ݄			ݎ			
ሺሻ ് ݄

ሺሻ	, ݄ାଵ
ሺሻ ് ݄ାଵ

ሺሻ 	
0, otherwise.

 

 

Note that comparing one haplotype from each set is sufficient, since in each set one haplotype is 

sufficient information to define the other.   

This strategy makes several assumptions.  First, by using the same threshold value across 

markers we are assuming no marker-specific bias in the BAFs toward alleles that tend to cosegregate in 

the population, which could possibly arise if “B” allele designations were made based on population 

frequencies, intentionally or otherwise, and there existed some biased intensity for alleles of the same 

labels.  Additionally, we assume that the observed BAF values are accurate (if not precise) estimates of 

the true proportion of B alleles in the sample of interest, and not majorly distorted by DNA quality issues 

(see section 2.3).   
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2.2.2 Hypothesis testing  

The result from above is a vector ࢞ of indicators of switch consistency.  The most straightforward way to 

use this data is to test for imbalance in a specific region of interest, for example a chromosome arm or 

gene region.  To do this, first identify the consecutive heterozygous markers ሺ݆, … , ݇ሻ that map to the 

region of interest.  The length and specific markers in the region may vary across individuals, since each 

will be heterozygous at a unique set of loci.  Then,  

ݔ

ିଵ

ୀ

∼ ൫ሺ݇݉݊݅ܤ െ ݆ሻ,  ,൯

where 	is the true concordance rate in the region.  We can therefore test for evidence of imbalance by 

performing a one-sided binomial test of 0.5 <  against the null hypothesis, 	0.5 =.  Note that, since 

each element of ࢞ corresponds to a pair of heterozygous markers, we use ݔሺ,…,ିଵሻ instead of ݔሺ,…,ሻ so 

that we only use values for which both markers in the pair are within the region of interest.  The power of 

this test depends on the number of observed heterozygous markers in the test region and the true phase 

concordance for the region, which in turn depends on the biological factors including type of imbalance 

event, the proportion of tumor cells in the sample, the size of the aberration, and technical factors 

including the amount of noise in the array data and the accuracy of the statistically-estimated haplotypes.  

In Appendix Figure 1 we present power to detect events across different event types and tumor 

proportions. 

2.2.3 Whole-genome profiling 

A second application for these transformed data is for characterizing allelic imbalance status along the 

genome.  Due to the segmental nature of AI events, signal of imbalance in the data will not be distributed 

uniformly across the genome, but rather in clusters of phase-concordant marker pairs (subsets of ܠ where 

1s are observed at frequency higher than 0.5).  We use a simple discrete-state HMM to model the 

observed switch consistency and underlying imbalance states.   
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Structure and Parameters.  Let ܮ be an indicator for the imbalance level of the interval between 

heterozygous loci ݅ and ݅  1 (݅ ൌ 1,… ܯ, െ 1).  For ease of exposition, let us assume 3 states, defined 

as follows: 0, no AI; 1, low level of AI; 2, higher level of AI.  Each non-zero state may represent a 

different copy number in the aberrant cells, or may capture one event type occurring in different 

proportions of the sample; that is, they are defined in terms of imbalance level, not explicitly in terms of 

underlying mutation characteristics.  Then ܮଵ, … ,  ெିଵ form a Markov chain on the 3 underlyingܮ

imbalance states.  We let ߙ (݈ ൌ 0,1,2) denote the emission probability ܲݎሺ ݔ ൌ 1 ∣∣ ܮ ൌ ݈ ሻ.   The 

transition probability matrix is constructed as 

 

 0 1 2 

ߣ ߣ-1 0
2

 
ߣ
2

 

ଵ 1ߣ 1 െ  ଵ 0ߣ

ଵ 0 1ߣ 2 െ  ଵߣ

 

where ߣ and ߣଵ are assumed to be constant across marker intervals.  This assumption could be relaxed, 

for example to reflect known mutation hotspots.  States 1 and 2 cannot directly communicate; the process 

must pass through the non-AI state to transition between any AI states.  The definitions also imply that 

all AI states have identical distributions on their event lengths.  Known differences in the sizes or 

frequencies of different types of copy number changes would be a potential reason to use different 

distributions for different states, but only if the states were explicitly defined in terms of copy number.  

In any case, the model is flexible enough to accommodate departures from the assumptions. 

Parameter estimation.  The emission probability for each state is estimated from the data using an 

expectation-maximization (EM) algorithm.  At each iteration the parameter ߙ is updated to  

ොߙ ൌ 	∑
௪,௫
௪,

ெିଵ
ୀଵ , 
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where ݓ, is the marginal conditional probability that the process is in state ݈ at marker interval ݅ and is 

calculated using standard forward and backward algorithms (56).   

The transition probabilities ߣ and ߣଵ may either be fixed or estimated via a stochastic-EM 

algorithm that incorporates pseudocounts for a combination of flexibility and stability.  The weight 

parameter ߛ indicates how much weight should be given to the ‘prior’ knowledge relative to the data.  

The reason we include pseudocounts in the estimation procedure is because it can otherwise be 

unpredictable when the sample does not exhibit strong evidence of imbalance.  In this procedure, at each 

iteration, we first sample ܮ given the data and the current parameter values, then combine these 

stochastic samples with the pseudocounts in a maximization step before re-estimating parameters.  

Specifically, the transition probabilities are updated to 

௦ߣ ൌ 	
௦ߣߛ  ௦ݔ
ߛ  ݊௦

 

where ߣ௦  is the transition probability calculated using the user-specified parameters for the event length 

and event prevalence, and ݊௦ and ݔ௦	are the number of sampled intervals in state category ݏ, and the 

number of transitions out of state category ݏ in the stochastic sampling.  State 0 (i.e. the normal state) is 

the only state in state category 0; all of the non-normal states make up state category 1.   

Profiling.  The evidence of the underlying imbalance level is represented by the conditional marginal 

probability of each event state at each marker interval, which is calculated using forward and backward 

algorithms.  One way to interpret these data is to sum the probabilities for the imbalance states at each 

marker, and define imbalance regions by groups of consecutive markers for which the probability of 

imbalance exceeds some threshold.  The probabilities for each state may also be assessed separately.   

2.2.4 Identification of the excess haplotype 

The third application that we present is identification of the excess haplotype in a region of imbalance, 

which we denote by ݄∗.  We assume the region covers a single event, so that ݄∗ is one of the individual’s 

true haplotypes.  To motivate the technique, note that statistical estimation provides an unordered pair of 
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haplotypes (݄ሺሻ and its complement ݄ሺሻ
ᇲ
 ) with a low but non-zero switch error rate. Thus, ݄∗ is a 

mosaic of ݄ሺሻ and ݄ሺሻ
ᇲ
, switching between the two when there has been a phasing error. Also note that 

in AI regions the haplotype ݄ሺሻ represents a naive guess at the allele in excess at each marker, although 

with low accuracy at the tumor proportions we consider. Nevertheless, when there is at least subtle 

imbalance, ݄ሺሻ contains information useful for determining which of the two haplotypes ݄ሺሻ and ݄ሺሻ
ᇲ
is 

the source for ݄∗ at each marker.  We assume a series of hidden states at ܯ heterozygous loci, denoted 

by ܪଵ, …  ሺ0,1ሻ.  The transition probabilities are	݈݁ܿܽ݁ݎ	ܺܺ ெ, form a 2-state Markov chain onܪ,

specified by locus-specific switch accuracy estimates for ݄ሺሻ (from the software used to estimate 

haplotypes), if available, or an estimate of the average accuracy otherwise.  Locus-specific estimates are 

a way to propagate “prior” information from the statistical phasing to inform distributions of the size and 

locations of “chunks” of ݄ሺሻ and ݄ሺሻ
ᇲ
 that likely represent the actual excess chromosome.  We let the 

observed data for our HMM consist of a series of indicators ݕଵ, … ,   ெ, whereݕ

 

ݕ ൌ ൝
0 , ݄

ሺሻ ൌ ݄
ሺሻ			

1 , ݄
ሺሻ ൌ ݄

ሺሻᇲ.
 

 

 Finally, the emission probabilities are specified as  

 

ሺ ݕ ൌ 1 ∣∣ ܽ, ܪ ሻ ൌ ܽூሼసಹሽሺ1 െ ܽሻூሼಯಹሽ, 

 

where ܫሼሽ is 1 if ܥ is true and 0 otherwise, and ܽ may be estimated from the data but has a natural 

relationship with the emission probabilities ߙ specified above. In practice, we simply substitute ߙො௦̂, 

where ̂ݏ is the maximum a posteriori estimate of the imbalance state for the interval to the right of the 

marker (or to the left for the last marker). The final step in our algorithm is to summarize the evidence 

that a particular allele is in excess by making maximum a posteriori probability estimates of ܪ, 
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(݉ ൌ 1,…  which yields a best-guess estimate of ݄∗.  hapLOH produces best-guess estimates of the ,(ܯ,

overrepresented haplotype for the entire genome.  Of course, these estimates are meaningless in normal 

regions, since there is no overrepresented haplotype.  The user should only consider these estimates in 

regions for which the profiling HMM produces evidence of imbalance. 

2.3 Implementation    

The method has been implemented using Perl and Python for UNIX and Mac platforms.  Various 

parameter and options may be specified via command-line arguments.  Some of the most important 

arguments are those controlling the transition probabilities.  Since transition probabilities are not a 

natural quantity for a user to think about, the input that is taken from the user is the expected genomic 

size of imbalance events and the expected genome-wide prevalence of imbalance (in other words, what 

proportion of the genome is expected to be affected by allelic imbalance).  The transition probabilities 

are then calculated using these values and the observed heterozygote density for the sample.  The user 

has the option to either use fixed transition probabilities or to estimate them for a sample.  When the 

option is selected to estimate the transition probabilities, in addition to the expected genomic size and 

expected prevalence, the user also specifies a weight parameter ߛ, and the three values are used to 

calculate pseudocounts.   

2.4 Unique sources of error and appropriate quality control 

The source of signal for hapLOH is slightly different than the source of signal for other methods, which 

necessitates specific quality control criteria to prevent false positive results.   

2.4.1 Cell line samples 

DNA samples from tumor cell lines or immortalized non-malignant tissue may acquire mutations in vitro 

that were not present in the primary sample and are not of interest.  These cell line artifacts are 

impossible to distinguish from the mutations of interest, especially since they may preferentially affect 
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regions that confer a positive advantage to the resulting lineage, just as we would expect to see in 

detectable somatic mutations occurring in vivo.  Because of this severe potential for spurious results, 

DNA samples derived from cell lines should be excluded from hapLOH analyses. 

2.4.2 Amplified DNA samples 

Whole-genome amplification (WGA) is sometimes applied to samples when the DNA quantity is low.  

There are multiple methods for WGA, each with its own strengths and drawbacks.  Multiple 

displacement amplification using Phi-29 polymerase has been widely touted as a more efficient and less 

bias-prone WGA method compared to PCR-based methods, especially for DNA that is to be applied to 

oligonucleotide arrays (including comparative genomic hybridization (CGH) arrays and SNP arrays).  In 

the case of application of SNP genotyping arrays and inference of allelic imbalance, an important 

characteristic for WGA methods is the level of allele-specific amplification bias.   This type of bias (and 

the most extreme example of bias, allelic dropout) are especially a concern in the case of very low 

amounts of input DNA, since stochastic differences in the early rounds of amplification are magnified in 

subsequent rounds (57).  Degraded DNA has also been seen to result in high levels of allele-specific 

amplification bias and allelic dropout after MDA (58).  In a set of 3,838 samples genotyped on the 

Illumina 660W array, we observed unusually high overall phase concordance for WGA samples 

compared to unamplified samples (Figure 5).  The methods descriptions for this study do not specify the 

method of WGA.  Several sources of DNA (Buffy coat, blood spot) were used for this genotyping, and 

we also noticed an association between the DNA types and genomewide average. For the most 

conservative strategy, data from samples that have undergone WGA should be excluded, especially if the 

samples were amplified from sparse or low-quality input DNA; at the very least, data from WGA 

samples should be interpreted with caution.   
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Figure 5. Effect of DNA type and WGA.   The WGA samples that were derived from Buffy coat samples 

(red triangles) generally had higher genomewide phase concordance than other sample types.  Amongst 

the non-WGA samples, the blood spot samples had slightly higher genomewide phase concordance than 

the Buffy coat samples.  

2.4.3 Inter-sample contamination 

Low levels of inter-sample contamination do not impact genotype calls, but create minor shifts in 

observed allele frequencies at markers for which the intended target individual and the contaminating 

individual have different genotypes.  These small perturbations, in fact, have been used to detect low 

levels of sample contamination in SNP array and sequence data (59, 60).  Individuals may share identical 

haplotypes for some stretches and may exhibit substantial haplotype similarity for long stretches.  These 

perturbations, then, may create a false signal of imbalance in our method.  We have found that samples 

that were estimated to have >1% inter-sample contamination using ContaminationDetection (59) tended 

to have higher overall phase concordance than samples that had estimated contamination < 1% .  We 
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suggest excluding results from samples that have an estimated ߙ value below 0.52, or a similar 

threshold. 

2.4.4 Genotyping errors 

The method utilizes genotype calls to establish the set of informative sites and in the construction of the 

truth-surrogate haplotypes.  Any type of genotyping error potentially may impact the phasing accuracy, 

although phasing algorithms are generally robust to sporadic errors and any potential impact will be 

local.  Homozygous-to-heterozygous miscalls are a potential source of inflation of the phase 

concordance, although sporadic errors are likely to have any measurable impact only if they occur at a 

very high rate or are aggregated by location due to chance.  Heterozygous-to-homozygous errors will 

decrease the informative marker count and therefore potentially result in a loss of power, but again the 

effect of sporadic errors will be minimal and will not bias results.  Genotype calls should be filtered 

based on quality scores or other appropriate filters to minimize miscalls.  It is worth noting that in a 

region with a very high level of imbalance, the BAF bands may deviate so strongly from the expected 

heterozygote and homozygote values that the genotype calling software will produce a ‘no-call’ (will not 

assign a genotype) or will produce a homozygote call at a germline heterozygous site.  The power of the 

method is severely or completely reduced in these regions, but could be restored by using BAFs from the 

sample of interest with legitimate germline genotypes from a matched normal sample.   

2.4.5 Log R ratio waviness 

Using a higher or lower DNA concentration than specified by the genotyping protocol has been shown to 

cause ‘genomic waves’, or visible oscillation of the LRRs about the expected value (61).  The wave 

pattern is related to the GC content of the target genomic sequence, so wave periods can vary along the 

genome but will cover multiple markers.  So, like copy number variation, genomic waves create 

increases and decreases in the LRR, although they generally have a sinusoidal pattern whereas somatic or 

inherited CNVs create a step-function-like pattern.  The effect of GC content will be the same for 
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chromosomes carrying either allele, and there is no evidence that BAFs are affected.   Since hapLOH 

currently only considers BAFs, not LRRs, genomic waves should not interfere with any of the hapLOH 

functions such as specific region testing or whole-genome characterization.  However, once a region has 

been identified, the LRRs become very useful for interpreting the mutation, and at that point genomic 

waves can severely impair correct interpretation.  The LRR data should be assessed for genomic waves.  

The software program PennCNV includes a function to quantify the severity of GC-associated genomic 

waves using a ‘waviness factor’ (61) which is helpful, and even visual inspection can identify samples 

with low quality data.  
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CHAPTER 3 

Proof of principle demonstrations 
CHAPTER 3: Proof of principle demonstrations 

Portions of this chapter are based upon “Haplotype-based profiling of subtle allelic imbalance with SNP 

arrays”, Selina Vattathil and Paul Scheet (2013), Genome Research 23(1): 152-158. 

3.1 Application to computationally diluted tumor samples 

3.1.1 Introduction 

The goal of the experiments presented in this section was to characterize the performance of the method 

under various scenarios and especially to test performance in samples with low tumor fractions, since 

this is the scenario in which existing SNP array methods fare poorly and where we expect the addition of 

haplotype information to be most useful.  The first proof of principle test that we conducted was to apply 

hapLOH to samples with known somatic allelic imbalance events, for which we could define true 

positive and true negative regions and therefore assess sensitivity and specificity.  We did not find any 

existing test datasets with somatic mutations in the low frequencies that we were interested in testing.  

We decided to use an existing dataset to generate what we refer to as ‘computational dilutions’ (details in 

next section).  Compared to simulating BAFs completely from scratch using theoretically expected 

shifts, the benefit of the computational mixing approach is that we preserve not only the actual level of 

random  noise in the data but also any existing correlation that exists among BAFs at individual markers.  

Possible sources of correlation include intensity variation that is associated with GC content or with dye 

bias and variation in the effectiveness of intensity calibration across markers.  Since hapLOH uses BAFs 

only, not LRRs, we did not simulate LRRs.  We chose to compare the hapLOH results to the results from 

applying BAFsegmentation  (44), which also considers BAFs but not LRRs.   

3.1.2 Materials and methods 

BAF and genotype simulation 
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To test their own detection algorithm (BAFsegmentation), Staaf and colleagues (44) created a set of 

tumor-normal mixture samples by mixing DNA from a breast cancer cell line (ATCC CRL-2324) and 

the matched lymphoblastoid (normal) cell line (ATCC CRL-2325) in nine proportions (10%, 14%, 21%, 

23%, 30%, 34%, 45%, 47%, and 50%).  They also had samples of the pure tumor and pure normal DNA, 

for a total of eleven samples.  They genotyped these samples on the Illumina HumanCNV370-Duov1 

BeadChip array.  We downloaded the genotypes, BAFs, and LRRs for these assays from GEO (accession 

GSE11976). 

The lowest dilution created in this series was 10% tumor, and our goal was to test hapLOH at 

lower tumor proportions.  We therefore constructed “computational dilutions” using the data from the 

pure cancer and pure normal samples as follows.  First, we visually inspected chromosome plots of the 

BAFs and LRRs from the pure tumor sample and identified regions that exhibited complete CNLOH or 

hemizygous deletion.  We did not include any regions that looked like they harbored subclonal mutations 

(cell line artifacts).  We also visually inspected and applied BAFsegmentation to plots of the pure normal 

sample data and excluded 7 regions from analysis due to their exhibiting cell line artifacts that would 

trigger false positive calls (Appendix Table 1).   

From the intersection of this set of complete LOH regions in the tumor sample and normal 

regions in the normal sample, we chose 15 segments to simulate as hemizygous deletions and 10 

segments to simulate as CNLOH.  Segments ranged in size from 2.39 Mb to 95 Mb and covered 25% of 

the genome (complete details for each event are presented in Appendix Table 2).  To create each 

simulated sample, we started with the pure normal sample and replaced the BAFs in the 25 regions with 

weighted averages of the BAFs from the pure tumor and pure normal samples, with the weights 

determined by the target tumor proportion for the sample and the type of event, i.e. the mixture BAF at 

marker ݅, denoted by ܾ
, is given by   

ܾ
 ൌ

ଶሺଵିሻ൫
൯ା௫ሺሻሺ

ሻ

ଶሺଵିሻା௫ሺሻ
, 

where ݂ is the fraction of mutant cells, ݔ௧ is the total copy number for the simulated event (i.e. 2 for 
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CNLOH and 1 for hemizygous deletion), and ܾ
 and ܾ

௧ are the observed BAFs in the normal and tumor 

samples, respectively. 

We created simulations at each of the proportions targeted in the lab dilution series, and also for 

proportions from 1% to 10%.  For tumor proportions below 10%, we used the genotypes from the normal 

sample since imbalance levels this small have little to no impact on the genotype calls  (in fact, even the 

genotype calls from the 10% lab dilution are nearly identical to those from the pure normal sample).  For 

each of the higher proportions, we assembled the set of genotypes for the simulated sample by replacing 

the normal genotypes in the AI regions with the genotypes from the lab sample with that tumor 

proportion.   

To generate the test data for the detection of the presence of tumor genome, we averaged the 

normal and tumor BAFs as described above, with one change.  Above, we averaged only BAFs at 

markers within the 25 event regions that we chose to simulate.  Here, since we wanted to test the ability 

to detect imbalance at the genome-wide level (without having to test a specific region), we instead 

averaged BAFs at all markers, with weights determined by assuming hemizygosity for the odd 

chromosomes and CNLOH for the even chromosomes.  We thought this reasonable based on the 

observation that these two event types constituted the majority of events and occurred in roughly equal 

proportions.  Empirical comparisons with the lab-based dilution series indicate this procedure is well 

calibrated (Appendix Figure 2). 

To test hapLOH estimation of the overrepresented haplotype, we inferred the true 

overrepresented haplotype using the pure tumor sample.  Since the pure tumor sample exhibits true 

imbalance at a high (100%) frequency, the BAFs at germline heterozygous sites have moved to either 0 

or 1, and unequivocally indicate the overrepresented allele at each marker.  For each marker within the 

simulated event regions of our curated data set, we called a “B” if the pure tumor BAF was greater than 

0.8 and an “A” if the BAF was less than 0.2.   

hapLOH settings 
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We performed statistical phasing with fastPHASE (62) using default settings. We use the 120 haplotypes 

from the HapMap CEU panel as our reference panel.  We first determined the intersection set between 

the markers in the reference panel and those in the sample data.  We used the data from these 319,000 

markers to fit the fastPHASE model using the reference samples only, and then applied the fitted model 

to the sample data to estimate haplotypes.   

We applied the hapLOH profiling HMM using an expected event length of 660 informative 

markers, or about 20 Mb, and assuming expected genomewide event prevalence of 10%.  The transition 

probability matrix was estimated for each sample using γ=1,000.  For the hapLOH haplotype estimation 

HMM, we set the transition probabilities for each sample using the local switch probability estimates 

output by fastPHASE for that sample.   

BAFsegmentation settings 

We applied BAFsegmentation (44) to all samples with the mBAF threshold (a parameter of the method) 

set to 0.526.  Setting the mBAF to the default value of 0.56 resulted in very low sensitivity; the value of 

0.526 corresponds roughly to the value that should allow detection of deletions in 10% of the cells and 

provided better sensitivity.  We found that using lower thresholds resulted in highly unlocalized calls, 

usually covering entire chromosomes (data not shown).   

3.1.3 Results 

In this section I will present results for the three hapLOH functions described in sections 2.2.2-2.2.4 – 

hypothesis testing, whole-genome profiling, and identification of the excess haplotype. 

Hypothesis testing.  Application of the method to the 10% tumor sample data (entire dataset, which 

included 103,556 heterozygous sites) results in a phase concordance of 0.65, which differs significantly 

from the expected null concordance of 0.5 (p-value=10-2140).  

We also extrapolated the results from the observed 370K data to predict the results that would be 

observed from application of 1M and 5M SNP chips with 30% and 25% heterozygous markers, 

respectively.  We present these results in Table 2.  We observe that in the pure normal sample the phase 
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concordance is 0.5005, which is slightly higher than the expected null concordance rate of 0.5.  This 

deviation could be due to somatic non-tumor associated events in the individual, mutation during the 

growth of the cell line, or inter-sample contamination during sample preparation.  To obtain the correct 

type I error rate for detecting tumor cells, we show power results using both the expected normal phase 

concordance rate of 0.5 and the observed ‘normal’ rate of 0.5005.  Our results indicate potential to detect 

aberrant cells for this particular breast cancer genome at concentrations on the order of 2 or 3 in a 

thousand using a hypothetical 5M SNP array (power > 50%).  It appears that below these levels the 

signal from imbalance is overcome by the stochastic variation in the BAF data, since we start to observe 

slightly erratic measures (phase concordance at .05% tumor is higher than at .10% tumor).   

 

  

Table 2. Power to detect presence of CRL-2324 cells.  We compare the expected power across tumor 

proportions (first column) and genotyping array densities.  The primary power results were calculated 

assuming a null concordance of 0.5; in parentheses we give the power assuming a null concordance of 

0.5005.  For the 370K results we used the observed phase concordance rates from the computational 

dilution data and the heterozygous marker count from the pure normal sample.  For the 1M and 5M array 

results, we used the same concordance rates and assumed 30% and 25% of markers would be 

heterozygous, respectively.  

Whole-genome profiling 

370K array 1M SNPs 5M SNPs
0% (no tumor) 0.5005 .09 (.05) .13 (.05) .28 (.04)

0.05% 0.5010 .16 (.09) .30 (.14) .74 (.31)
0.10% 0.5007 .12 (.07) .20 (.08) .51 (.14)
0.25% 0.5012 .20 (.12) .39 (.20) .87 (.51)
0.50% 0.5014 .22 (.14) .44 (.24) .92 (.61)
0.75% 0.5025 .49 (.36) .87 (.72) 1 (1)
1.00% 0.5035 .73 (.61) .99 (.95) 1 (1)
2.00% 0.5071 1 (1) 1 (1) 1 (1)

Power with type I error rate = .05
Null phase concordance 0.5 (and 0.5005)phase 

concordancetumor content
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At each marker, we summarize the pointwise evidence of imbalance by the conditional probability of 

being in an AI state, given the data and parameters (conditional marginal probabilities, or “posterior 

probabilities”).  The results for a few representative samples (0%, 4%, 7%, 10%, and 14% tumor) are 

presented in Figure 6.  The posterior probabilities for each of the two AI states, which we can call S1 and 

S2, are considered separately.  As we would expect, in the 0% tumor sample the posterior probabilities 

are at 0 for the entire genome.  At 4% tumor, signal is obvious at the CNLOH events, which create 

stronger imbalance than hemizygous deletions at the same proportion.  There is some increased posterior 

probability at some of the deletion regions, but there is also some background increased probability 

genomewide.  Since only one level of imbalance is obvious (imbalance from the CNLOH events, not the 

deletion events), having two event states is superfluous and the posterior probability at CNLOH events is 

split evenly between S1 and S2.  In the 7% tumor sample, hapLOH detects hemizygous deletions in 

addition to the CNLOH events and discriminates between the two event types, giving the hemizygous 

deletions high probability for S1 and the CNLOH events high probability for S2. BAFsegmentation 

begins to identify the stronger (CNLOH) signals at this tumor proportion.  All events in the 14% tumor 

sample are picked up by both methods except for one small true event (1.52 Mb on chromosome 21) for 

which hapLOH signal is very low.  The background noise is also almost completely mitigated, since the 

emission probabilities for the event states will be very different from that for the normal state.  At higher 

concentrations of tumor (≥34%), the BAFs for both deletions and CNLOH regions diverge so strongly 

from the expected normal value that the phase concordance reaches the upper limit determined by the 

statistical phasing accuracy, for example about 93% in this analysis.   At these proportions hapLOH no 

longer distinguishes the two types of simulated events.  
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Figure 6. Local posterior probabilities of allelic imbalance at various dilutions.  Vertical axes range from 

0 to 1 for both the BAFs (grey points) and posterior probabilities (orange lines for probability of deletion, 

blue lines for summed probability of deletion or CNLOH).  Horizontal lines at the top of each plot show 

the locations of simulated deletions (orange) and CNLOH (green). Below these, purple bars show the 

regions identified by BAFsegmentation to contain AI.  

Identification of the excess haplotype 

We evaluated the overrepresented haplotype constructed using our HMM by comparing it to the ‘true’ 

overrepresented haplotype (determined by applying a threshold to the pure tumor data) at a range of 

tumor proportions (Figure 7).  Accuracy was calculated as the proportion of correct calls at sites where 
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we could confidently call LOH using the BAFs from the pure tumor sample – about 18,000 markers for 

deletions and 8,000 markers for CNLOH.  To provide a baseline, we also constructed a naïve estimate of 

the overrepresented haplotype by simply taking the allele with the highest frequency at each site, and 

calculated its accuracy.  The method implemented in hapLOH improves accuracy over the naive estimate 

at the lower tumor proportions.  For example, at 5% tumor content and within our simulated events, 

hapLOH achieved accuracies of 80% and 89% for deletions and CNLOH, respectively, compared to 64% 

and 75% using the naive method.  As expected, the accuracy is higher in CNLOH regions than in 

deletion regions, since the BAFs are more strongly imbalanced.  As tumor proportion increases, the 

BAFs contain increasingly perfect information about the excess haplotype and incorporating the 

statistical haplotype estimates actually gives lower accuracy than the naïve BAF-only method.    

 

Figure 7. Identification of the overrepresented haplotype.  Solid lines indicate the accuracy of hapLOH's 

haplotype calls at deletions (orange) and CNLOH (green) in the curated dataset at various proportions.  

Dotted lines indicate accuracy of the naive BAF-based calls.  
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3.1.4 Robustness tests 

Robustness to parameter specification   

We have implemented hapLOH with two options for setting the transition probability matrix (TPM) for 

the profiling HMM.  For both, the user must specify two values, the expectation on the length of 

mutations and the expectation on the fraction of the genome that is imbalanced (which we refer to as 

prevalence).  In the ‘fixed’ option, the TPM is defined to satisfy the user-specified values and is left 

constant while the EM to estimate the emission probabilities is performed.  In the ‘estimate’ option, the 

initial TPM is defined using the user-specified values and then is iteratively updated via a stochastic EM.  

The true values for the mean event length and prevalence are unknown before analyzing a sample, and in 

any case it not necessarily true that specifying the correct values will result in the most desirable set of 

results from the profiling HMM.  In order to understand how different parameter values and different 

TPM specification strategies impact the profiling results, we applied hapLOH to the curated dataset 

under a range of conditions (Table 3).   

 

event length (Mb) prevalence option 

10 0.10 estimate 

15 0.10 estimate 

25 0.10 estimate 

10 0.01 fixed 

10 0.05 fixed 

10 0.20 fixed 

10 0.25 fixed 

10 0.50 fixed 
Table 3. Settings for testing of robustness to parameter specification.  For all of the runs using TPM 

estimation, the gamma value was set to 1,000.   

The posterior probability curves tend to be noisier with smaller specified mean event lengths, especially 

at the lower tumor proportions (data not shown).  Also, using fixed TPM (versus estimating the TPM 

using the data) can result in considerable and constant background noise, again most prominently 
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observable at low tumor proportions (presumable because the data is less informative and the parameters 

have a poorer fit to the data).  However, perhaps most importantly, ROC curves comparing these results 

(Figure 8) emphasize that the differences between event calls using different parameter sets is almost 

non-existent at most threshold levels.  Based on these observations, a practical strategy may be to choose 

parameters based on the targeted event length and considering the expected prevalence, but to err on the 

side of lower prevalence and larger events.   

 

Figure 8. Robustness to prevalence specification  and to using fixed or estimated TPM.  The ROC curves 

within a sample are actually or nearly overlaid, indicating that parameter choice does not have a strong 

impact for these samples. 

 

Robustness to statistical phasing errors   

The accuracy of statistical phase estimates plays a role in the sensitivity of the hypothesis test and of the 

profiling HMM.  We expected the impact to be small at the tumor proportions that are our target, as 
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state-of-the-art statistical phasing packages have accuracies upwards of 90% and the majority of the 

noise that will interfere with signal will be contributed by the BAFs.  The fastPHASE statistical 

haplotype estimates for this dataset have accuracy rates of about 93% (as estimated by fastPHASE).  To 

quantify the impact of phasing errors on sensitivity of profiling, we randomly introduced switch errors at 

rates of 0.05, 0.10, and 0.15 per interval into the haplotype estimates of the curated samples, and then 

applied hapLOH using the same parameters used for the results in section 3.1.  We then calculated ROC 

curves for each set of results.  The ROC curves for the pure normal sample and the 4%, 7%, and 10% 

tumor samples are plotted in Figure 9.  The signal from the BAFs in the 10% tumor sample appears to be 

strong enough that even severe inaccuracy in the phase estimates has minor impact.  In the 4% sample, 

for which hapLOH picked up the CNLOH events but had less signal for the more weakly imbalanced 

deletions, it appears that phasing errors have a small effect but surprising have less impact than in the 7% 

tumor sample, for which hapLOH had strong signal at almost all simulated events. To interpret this 

observation, recall that these results are from considering average sensitivity over the whole genome.  By 

comparing the posterior probabilities across added switch rates for the 4% and 7% tumor samples 

(Figure 10), we can begin to understand this observation.  First, many more true positive events had 

strong signal in the 7% sample compared to the 4% sample, so it had more potential to lose sensitivity.  

Second, the signal for the CNLOH events largely remains intact across switch rates in the 7% sample.  

The signal for the hemizygous deletions, however, does decrease.  These events had less signal to begin 

with in the 4% samples.  In summary, the impact of phasing accuracy will depend not only on the 

particular accuracy level but also on the specific level of allelic imbalance in a given event region and on 

the total set of mutations (since that will influence the final parameter estimates).  We note that errors at 

an additional 5% of intervals, which is the lowest rate we simulated here, will give these estimates an 

error rate well below that rates that are commonly produced from statistical phasing algorithms.  So, 

these results indicate that standard statistical phasing protocols are appropriate for the purposes of 

estimating haplotypes for hapLOH, and it is not necessary to allocate extra resources to improve phasing 

accuracy because small differences in accuracy have little impact on the results. 
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Figure 9. ROC curve for samples with added switch errors.  Results are shown for runs using the original 

data (solid lines), and for runs using the fastPHASE estimates with switches introduced independently at 

each marker interval at rates of .05 (dashed lines), .10 (dotted lines), and .15 (dashed-dotted lines). 
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Figure 10. Posterior probability curves demonstrating effect of decreased phasing accuracy.  Vertical axes range from 0 to 1 for both the BAFs 

(grey points) and posterior probabilities (orange lines for probability of deletion, blue lines for summed probability of deletion or CNLOH).  Horizontal 

lines at the top of each plot show the locations of simulated deletions (orange) and CNLOH (green).        
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3.1.5 Discussion 

The event states in hapLOH do not explicitly indicate event type, although they can differentiate between 

events with different levels of imbalance.  In this set of results, since we knew precisely the complement 

of event types that existed in the samples (that is, hemizygous deletion and CNLOH) and we knew that 

each event existed in the same proportion, it was reasonable to interpret the two event states as 

corresponding to different event types.  The results from this dataset indicate that the contrast between 

the multiple levels of imbalance will influence how well the profiling HMM will recognize them as 

being generated from different underlying states.  In other studies, evaluating the log R ratios in event 

regions detected by hapLOH may be helpful for determining event type (see Chapter 4 for an algorithm 

to interpret event-specific LRRs), and given the event type it may be possible to infer the mutant cell 

fraction.  Other methods do this, but miscalibration of the BAFs and LRRs can cause biased 

interpretation and intra-tumor heterogeneity interferes with the ability to borrow strength across events. 

 We use a time-homogeneous Markov chain to describe the underlying imbalance states.  This 

puts a geometric distribution on event length, with event length measured by the number of informative 

markers.  This distribution allows events from a wide range of lengths to be discovered, while naturally 

penalizing very short regions with slightly increased phase concordance that may occur due to chance.  

However, true small events with higher levels of imbalance may also go undetected.  For example, a 1.52 

Mb event in the simulated samples was not picked up by hapLOH even in the 14% tumor sample.  Very 

large events may be truncated or split.  When the transition probabilities are estimated from the data, the 

probabilities for any given event are affected by the length and level of imbalance for each of the other 

events in the sample, since they will all influence the estimation of the HMM parameters. Other 

segmentation procedures that do not have these distributional assumptions may do a better job at picking 

up small events.   
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3.2 Application to Affymetrix 6.0 data  

3.2.1 Introduction 

The goal of the work described in this section was to demonstrate that hapLOH could be applied to 

Affymetrix data, for which BAF is not a native data type.  To do this, we again looked for publicly 

available data with known true positive regions so that we could assess our hapLOH results in terms of 

sensitivity and specificity.  After searching the list of datasets available in GEO with Affymetrix 6.0 data 

(the state-of-the-art genomewide chip from Affymetrix), we chose the dataset presented in a 2010 

publication by Barresi et al. (63).  The focus of the original study was to identify tumor-associated copy-

number aberrations or CNLOH to assess the submicroscopic instability in normal-karyotype acute 

myeloid leukemia (NK-AML) genomes.  NK-AML is defined as ‘karyotypically normal’ on the basis of 

cytogenetic tests, but is known to be a genetically heterogeneous subgroup and accurate prognostication 

is difficult.  The dataset included bone marrow DNA taken at diagnosis (i.e. tumor DNA) from 19 

individuals and matched normal DNA for 11 of the individuals (obtained by sampling bone marrow at 

remission, defined as <5% blasts).  Normal DNA was not available for 8 of the patients.  A particular 

emphasis of the study was using the normal samples to distinguish inherited from somatic variants.  

Inherited variants were identified by comparing calls in the normal samples to the Database of Genomic 

Variants (64) and by comparing the calls in the tumor and matched normal samples.  They also used 

empirically-defined minimum size thresholds to control their false positive rate by using discordant calls 

between replicate samples to identify potential false positives and choose a minimum size that allowed a 

5% false positive rate.  Thresholds of 50 Kb and 80 Kb were employed for losses and gains, respectively.  

 In their investigation, Barresi et al. found an average of 50 CNLOH events larger than 1 Mb per 

tumor sample.  These included 3 CNLOH events larger than 10 Mb that are clearly visible in the BAF 

plots and were not present in the remission sample, and two large (22 Mb and 16 Mb) CNLOH events 

present in both the tumor and normal samples for the respective patient that were deemed not to be 

tumor-associated.  All CNLOH events smaller than 10Mb were present in both tumor and matched 
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normal samples and were also deemed not to be tumor-associated.  They also discovered on the order of 

10 deletion events and 10 gain events per sample, with a median of one tumor-associated deletion and 

one tumor-associated gain per sample and only one large copy number change (11 Mb deletion).  The 

authors interpreted these results as support for the relative genomic stability of NK-AML cells, while 

highlighting the potential relevance of large CNLOH events and small deletions in NK-AML.  We 

sought to investigate whether identification of low-frequency chromosomal alterations would help to 

provide additional characterization of genomic stability in NK-AML cells.    

3.2.2 Materials and Methods 

We downloaded Affymetrix 6.0 CEL files for 19 normal-karyotype acute myeloid leukemia (NK-AML) 

samples (>90% blasts), and matched remission samples (<5% blasts) for 11 of them (GEO accession 

GSE21780).  The samples are described in detail in (63).  BAFs and LRRs were extracted from the CEL 

files using PennCNV (with 77 additional CEL files from the HapMap2 CEU data to help train the 

algorithm), and genotypes were called using Birdseed v2 (65).  We applied hapLOH to each sample, 

setting transition parameters for a mean event length of 2.5 Mb and a 10% genomewide prevalence of 

AI.  To call discrete events, we summed at each interval, the probabilities of being in an imbalance state 

and defined an event as any stretch of consecutive markers for which the probability exceeded the 

threshold value of 0.5 (i.e. the evidence favored imbalance over imbalance).   

3.2.3 Results 

We identified 46 imbalanced regions in 11 samples, with a median event size of 1.55 Mb.  

Appendix Table 3 presents details for each called event.  In our analysis, 4 out of 11 paired sets harbored 

AI events in the diagnosis sample only, including two events larger than 10 Mb in two distinct samples.  

I will focus on these large events.  One of these covered 11 Mb on chromosome 3 in the diagnosis 

sample of Patient 9.  The LRR indicates that it is a hemizygous deletion.  This loss was also reported in 

the original publication.  The other large event covered 60 Mb in the terminal region of 11q in the 
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diagnosis sample of Patient 61 (Figure 11).  Inspection of the LRRs in this region suggests CNLOH.  

This event includes 5,091 heterozygous genotypes (16,828 total markers) and had a phase concordance 

of 0.86.  This event was not reported in the original publication.  Interestingly, a small (88 Kb) event in 

the remission sample of the same patient overlaps the large event in the diagnosis sample, but the 

observed BAF and phase concordance indicate a much less prevalent event.   

 

 

Figure 11. Large partial CNLOH event.  BAFs (grey points) and posterior probability of AI (blue curve) 

for chromosome 11.  The pink line at 0.5 indicates the threshold posterior probability that was used to 

call events. 
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3.2.4 Discussion 

We did not call the 3 large CNLOH events that appeared in the Barresi et al. analysis, and called 

many fewer smaller events than they did.  There are several possible explanations for the discrepancy in 

the number of event calls in the hapLOH analysis and the previous study.  First, many of the calls made 

by Barresi et al. are inherited variation rather than somatic variation.  In fact, all of the CNLOH events in 

the 1-10 Mb range occurred in both the diagnosis and remission sample when paired samples were 

available, so they were all interpreted as inherited variation.  hapLOH does not detect inherited losses 

and CNLOH because they contain no informative (i.e. heterozygous) genotypes.  Somatic mutations 

carried by a high proportion of the sample would also be missed by hapLOH for the same reason.  It is 

important to note that our method is intended to be complementary to methods that identify events 

occurring in high proportion.   

 We called one very large event, a CNLOH of 11q in Patient 61, that was not reported in the 

initial analysis of this data.  Importantly, chromosome 11 aberrations are frequently observed in 

hematological cancers, and 11q CNLOH specifically is known to be associated with disease progression 

and poor prognosis (66).  The change in frequency of an 11q CNLOH-harboring clone during AML 

development was observed directly by a study (67) that used Affymetrix SNP 6.0 genotyping at multiple 

timepoints during the progression of a patient through early disease (refractory anemia with excess blasts 

[RAEB-2]), remission, and late disease (acute myeloid leukemia).  They observed a subclone of cells 

harboring 11q CNLOH soon after RAEB-2 diagnosis, apparent disappearance of the 11q CNLOH clone 

during remission, and complete or near-complete expansion of the clone during late disease. 

CNLOH at 11q is associated with mutations in the gene Casitas B-lineage lymphoma (CBL) 

(68).  The Cbl family of proteins (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that negatively cell 

signaling through protein tyrosine kinase pathways (69).  Loss of CBL function has been associated with 

hyperproliferation and increased potency of  hematopoietic stem cells in cell counting experiments and 

competitive repopulation experiments comparing double-knockout and wild-type mice (70).  In humans, 
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CBL mutations are usually seen with CNLOH, that is the initial loss of function CBL mutation (usually 

either a missense point mutation or deletion) is followed by CNLOH that results in loss of the remaining 

wild-type allele (69).  The interpretation of this is that a single mutant allele is insufficient to promote 

malignancy, and the CNLOH event is an oncogenic driver.  The identification of a missense mutation or 

small deletion in the CBL gene in Patient 61 would provide strong evidence that CBL is the oncogenic 

driver mutation in this patient.  

AML patients are currently subcategorized partly on the basis of the genetic mutations that are 

observed in bone marrow DNA samples, and a specific translocation involving a gene on 11q23 is on the 

list of mutations used to make the categorization, but the criteria are very specific (since the guidelines 

are based on very well established evidence only) and the 11q CNLOH that we observed the Patient 61 

sample would not be sufficient to change it from the ‘AML not otherwise specified’ category into which 

NK-AML patients are placed.  Nevertheless, the identification of low-prevalence 11q CNLOH, a known 

common oncogenic driver mutation, is valuable information.  The 11q CNLOH clone may expand, based 

on observations from previous cases.  Since the mechanism of action of Cbl is known to some degree 

(that is, it is known that wild-type Cbl attenuates protein tyrosine kinase signaling and most Cbl 

mutations involve loss of E3 function), the mutation indicates that the patient may respond to existing or 

potential therapies that are effective in cases who have other mutations that also target the same 

pathways (69). 
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CHAPTER 4 

Analysis of genomic mosaicism in non-cancerous tissue 
CHAPTER 4: Analysis of genomic mosaicism in non-cancerous tissue 

4.1 Introduction 

Several recent studies used SNP array data to investigate chromosomal abnormalities in blood and buccal 

samples from phenotypically normal individuals or individuals who do not have a phenotype known to 

be associated with mosaicism of the sampled tissue (25-27).  These and other studies (21, 71) have 

highlighted the potential offered by high-resolution technologies such as SNP arrays and sequencing for 

better understanding of the role of somatic mutation to complex disease and for the spectrum of somatic 

mutation in normal tissues (72, 73).  All three studies explicitly noted the limited sensitivity to detect 

low-frequency somatic mutations, with the Jacobs et al. study reporting events with a minimum 

frequency of 7% and the Laurie et al. study estimates that a minimum of 5% of mutant cells is required 

for detection.  The initial motivation for hapLOH was discovery of tumor mutations in tumor-normal 

mixture samples, but the method is not limited to this context.  Given the limitations cited by these other 

SNP array analyses, we expected that hapLOH could augment the existing observations of somatic 

clonal mutations in normal tissues, especially for mutations at low frequency.  To explore this, we 

applied hapLOH to the dataset previously analyzed by Laurie et al. (25). 

4.2 Materials and Methods 

4.2.1 Samples and data preparation 

All of the data that we analyzed were collected for GWA studies conducted by the Gene Environment 

Association Studies (GENEVA) Consortium.  These were case-control studies investigating the role of 

genetic variation and gene-environment interaction in a wide range of disease phenotypes, including both 

cancer and non-cancer phenotypes.  The DNA samples were collected from blood or buccal cells, or 
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from blood-derived cell lines.  All samples were genotyped using Illumina genotyping arrays (specific 

array varied across studies, Appendix Table 4).  We analyzed both case samples and control samples. 

Genotypes, B allele frequencies, and Log R Ratios were downloaded from dbGaP (study 

accession numbers, Appendix Table 4).  A subset of the samples from the Prostate study did not have 

BAFs and LRRs in dbGaP; for these we used the ‘BAFfromGenotypes’ function (specifying the 

‘by.study’ option) from the R package GWASTools (74) to calculate BAFs and LRRs from the ߠ and ܴ 

data. 

Each study was processed independently, and in case of studies with related subjects or subjects 

from various ethnicities some steps were performed on study subsets separately (as noted below).  First, 

bi-allelic SNP markers were selected using the chip-specific manifest file and criteria ‘Intensity_only=0’ 

(to exclude CNV markers) and ‘Exp_Clusters=3’ (to keep only SNP markers for biallelic sites).   

Miscalled genotypes have the potential to create false positives, although the effect of sporadic errors 

should be minor.  We applied loose filters to control the effect.  Specifically, we removed markers with 

missingness rate > 10% and markers that showed departure from Hardy-Weinberg proportions (Chi-

square or exact test p-value < 10-5).   

The samples for each study were phased in one group using either fastPHASE (62) (Melanoma, 

Preterm, and Glaucoma studies) or Beagle (54) (remainder of studies), except the Prostate study, for 

which the samples genotyped on the 1M and the 660 were phased separately.  The choice of phasing 

software was arbitrary.  Any genotypes that were imputed during Beagle phasing were subsequently 

masked.   

4.2.2 hapLOH HMM parameters and event calling 

The hidden Markov model (HMM) was set up to have two states, the minimum possible number.  A two-

state model was chosen since we expect these samples to have very low complexity, with only one event 

in most samples that have any events, and using an excessive number of states could lead to false 

positives.  Transition parameters for each study were calculated using the total marker count and 
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approximate heterozygote rate to specify an average imbalance event size of 20 Mb and average 

genome-wide imbalance rate of 0.1%.      

We performed two runs of the EM with starting values for the emission probabilities defined as 

(pn, pn + 0.05) and (pn, 0.95), where pn is the sample-specific average phase concordance rate (calculated 

using all informative markers).  We tested higher numbers of EM runs with different starting values, and 

found that the strategy we chose produces results very similar to those from running 10 EM starts with 

starting values spread throughout the parameter space.  Each EM run continued until the log likelihood 

increase was smaller than 0.0001 (usually between 4 and 20 iterations), and the parameter set with the 

highest log likelihood was used to calculate posterior probabilities.   

The unit of inference for hapLOH is a pair of consecutive heterozygous markers.  hapLOH 

outputs the posterior probability of each underlying state (in this case normal state, imbalance state) at 

each pair, or in other words at each inter-heterozygote interval.  This is effectively a continuous scoring 

of imbalance across the genome for each sample.   To create a list of discrete events, we applied a 

threshold of 0.95 to the probability of being in the imbalance state and defined an event as a run of 

intervals with probabilities exceeding the threshold.  The starting and ending base positions are define by 

the left-side marker of the first interval and the right-side marker of the last interval of the run.  

4.2.3 Quality control 

DNA quality   

An elevated value for ߙ indicates a potential sample quality issue, such as a low level of inter-sample 

contamination, which may create a false positive signal.  To control for these effects, we exclude 

samples with estimated ߙ > 0.52. 

Genomic waves 

Excessive LRR waviness interferes with proper filtering of inherited duplications and classification of 

events by copy number.  We calculated a LRR waviness ݂ݓ score using PennCNV (75) for each sample, 

and samples with scores |݂ݓ|  0.04 were excluded. 
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HLA region 

The initial results included a large number of calls overlapping the HLA region in the Melanoma study 

results.  The Melanoma study was genotyped on the Omni1-Quad array, which has much higher density 

in the HLA region than previous arrays.  We suspect the inflated call rate to reflect possible marker 

specificity issues or inherited polymorphism and chose to take a conservative approach, excluding any 

events overlapping the HLA region (genomic coordinates chr6:29,677,984-33,485,677, taken from (76)). 

Manual exclusions 

We excluded all DNA samples that were taken from cell lines or went through whole-genome 

amplification, as these samples have a higher probability of carrying imbalance acquired after sample 

collection that may be confused for true in vivo imbalance. For one sample in the Venous 

Thromboembolism study, over 75% of the genome was called as imbalance.  This sample is likely a case 

of inter-sample contamination, but did not fail the ߙ threshold.  We excluded this sample from analysis. 

Boundary editing 

For some analyses (i.e. analyses that used genomic sizes and for the concordance analysis with the 

Laurie et al. calls), we forced all event calls in our dataset to be contained within a single chromosome 

by trimming event calls that crossed into an adjacent chromosome by <30 markers and splitting event 

calls that had >=30 markers on two adjacent chromosomes.     

4.2.4 Event classification 

We used a simple thresholding procedure to call events.  Plotting the BAF and LRR deviations for all 

events shows the cluster corresponding to inherited duplications.  Based on the observed clustering, we 

chose a LRR deviation threshold of 0.08 and a BAF deviation threshold of 0.10, and any events in the 

upper right quadrant defined by these thresholds were removed as likely inherited duplications.  We 

expect these parameters to result in some events that are true high-frequency somatic events to be called 

as germline duplications; we accept this loss of sensitivity to maintain specificity.   
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The remaining calls were interpreted as mosaic events.  Those with LRR deviation > 0.05 were 

classified as gains and those with LRR deviation < 0.05 were classified as losses.  After this filter, the 

remaining calls include the CNLOH events and events involving very low cell fractions, for which we 

expect the LRR deviation will be small even if there is a copy number change.  Events with BAF 

deviation > 0.1 were classified as CNLOH, and the type for the remaining events (with small LRR 

deviation and small BAF deviation) was considered ‘undetermined’. 

4.2.5 Comparison with Laurie et al. calls 

The sample identifiers for the 514 mosaic events identified by Laurie et al. were provided to us upon 

request (C. Laurie, personal communication). We used the genomic positions to define the extent of 

overlap between hapLOH events and Laurie et al. events.  We considered only location, not event 

classification, when defining concordance.  Within the subset of events with any overlap, the vast 

majority of events had more than 80% overlap with an event in the other analysis.  For simplicity, we 

deemed calls to be concordant if they had any overlap with calls in the other analysis.  All calls in the 

Laurie et al. analysis were within chromosomes because segmentation was performed separately for each 

chromosome.  

4.3 Results 

4.3.1. Quality control summary 

We started with 36,293 unique samples after removing duplicates, whole-genome amplified samples, and 

cell line samples.  Applying a threshold to the a posteriori probability of imbalance resulted in an initial 

set of 3,478 events in 2,903 samples.  809 samples were flagged based on ߙ values, and 4,965 samples 

failed the genomic waves filter, including 583 samples that failed both of these criteria.  In total, 31,101 

samples (86% of initial set) passed sample-level QC, and these contained 2,657 calls.  From these, 1,471 

events in 1,426 samples were removed as likely duplications, and another 57 calls were removed because 
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they overlapped the HLA region.  The final set of mosaic calls includes 1,129 events in 895 samples.  A 

breakdown of the filtering per dataset is presented in Table 4 and Appendix Table 5.  

 Forty-six mosaic events were called as covering multiple chromosomes.  All chromosomes for a 

sample are considered together (by simply concatenating the data for all chromosomes, in order).    It is 

possible that consecutive chromosomes have allelic imbalance at arm termini that are adjacent when they 

are lined up, but these are more likely due to imprecise boundary definition.  We expect the latter to 

occur especially for imbalanced regions with low phase concordance, where there in not much contrast in 

phase concordance with normal regions.  Using the criteria defined in Materials and Methods, 14 multi-

chromosome events were trimmed and 32 multi-chromosome events were split.  

Genomic waves associated with GC content are expected to manifest only in LRRs, not BAFs, 

since GC content will affect variation of probe binding across markers but will not affect relative allele 

intensities within a marker.  The observed BAF and LRR patterns support this.  Since hapLOH signal is 

generated based on BAFs, not LRRs, GC-associated genomic waves are not expected to be a direct cause 

of false positive imbalance calls.  The waviness filter, then, may be expected to result in filtering of true 

somatic mosaic events.  This filter is still important, however, because accurate LRRs are critical for 

identifying inherited duplications, which if not removed would be false positives. 

The Glaucoma dataset had a large number of samples (1,155/2,185, 53%) that failed the filter for 

LRR waviness.  We also noticed that the inherited duplication call rate in this dataset was two to three 

times smaller than the rates in the other projects, and the mosaic call rate is among the highest across 

datasets, provoking us to hypothesize that the LRR waviness filter was not completely effective at 

removing samples with inaccurate LRR and that the set of mosaic calls may contain events that are truly 

inherited duplications.  However, upon manual examination of the BAF and LRR data for all 53 of the 

Glaucoma events that passed QC and were classified as mosaic, we noticed that all of the events had a 

lower level of BAF divergence than expected from inherited duplications, or displayed a sharp LRR 

decrease that indicated a copy-number loss event.  Further investigation is necessary to explain the low 

rate of duplication calls in the dataset. 
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Table 4. hapLOH call summary.  The ‘failed ߙ’ and ‘failed ݂ݓ’ categories are not mutually exclusive. 

One sample from the Vte dataset was also excluded based on manual inspection. 

4.3.2 Event classification 

For each event, we attempted to interpret the BAF and LRR data together to classify the event as mosaic 

copy-number loss (hemizygous deletion), mosaic copy-number gain, mosaic copy-neutral 

heterozygosity, or inherited duplication.  Inherited duplications, unless they include markers with 

uncalled genotypes, will create a strong signal of imbalance in the BAFs and are likely to make up a non-

negligible portion of the called events.  The inherited duplications are expected to have characteristically 

increased LRR deviation and increased BAF deviation.   

 The observed relationship between BAF deviations and LRR deviations generally matches well 

with the theoretical values expected for mosaic hemizygous deletion, CNLOH, and duplication events 

and inherited duplications (Figure 12).  The plot emphasizes that imprecision in the observed deviations 

creates difficulty in discriminating different event types when the BAF deviation (and mutant cell 

fraction) is low.  Using the criteria described in the previous section, we classified 202 events as mosaic 

losses, 67 as mosaic gains, 30 as mosaic CNLOH, 1471 as inherited duplications, and left 830 as 

unclassified.   

phenotype/ 
study pre-QC post-QC

number of 
samples count frequency

rate (average 
count/sample)

number of 
samples count

rate (average 
count/sample)

Addiction 2,801    9         <1% 131      5% 2,661    22             23       0.8% 0.009           129           136      0.051                  

Melanoma 3,033    79       3% 124      4% 2,871    83             101      2.9% 0.035           165           170      0.059                  

Lungcancer 1,629    4         <1% 79       5% 1,546    63             83       4.1% 0.054           84             88       0.057                  

Preterm 3,747    207      6% 608      16% 3,109    32             32       1.0% 0.010           126           126      0.041                  

Glaucoma 2,185    132      6% 1,155   53% 1,003    53             63       5.3% 0.063           18             19       0.019                  

Prostate_1M 4,770    19       <1% 545      11% 4,211    190           270      4.5% 0.064           249           259      0.062                  

Craniofacial 7,089    230      3% 1,332   19% 5,710    55             59       1.0% 0.010           266           277      0.049                  

Prostate_660 4,346    35       1% 212      5% 4,106    250           313      6.1% 0.076           169           171      0.042                  

Vte 2,594    12       <1% 60       2% 2,521    75             103      3.0% 0.041           105           110      0.044                  

Lunghealth 4,099    82       2% 719      18% 3,363    68             82       2.0% 0.024           115           115      0.034                  

36,293   31,101 891          1,129  2.9% 1,426         1,471   

failed α 0 failed wf

sample counts events classified as mosaic events classified as inherited duplication
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Figure 12. Event deviations colored by event type.  The grey shaded region indicates the area within the 

thresholds used to define mosaic copy number loss or gain.  The pink lines indicate the expected values 

for mosaic losses (lower line), mosaic CNLOH (middle line), and mosaic gains (upper line) for events 

occurring in from 10% to 100% of the sampled cells (dashes at 10% increments).   

Inherited duplications.  Other studies (25) have used large size as an indicator that an event must be a 

somatic, not inherited, mutation, based on the assumption that such large events will not be present in 

phenotypically normal individuals.  We made our initial classifications based only on BAF and LRR 

deviations, but did want to investigate large events in the inherited duplication category.  Out of the 

events classified as inherited duplications, 18 were larger than 10 Mb and 10 were larger than 20 Mb.  

Three of these cover the whole of chromosome 8, one covers the whole of chromosome 9, and one 

covers the whole of chromosome 12.  The next two largest events cover arms 1q (102 Mb) and 2p (89 

Mb) and the terminal portion of 13q (58 Mb).  All of these occurred in blood samples.  The whole-
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chromosome events likely had a somatic origin since trisomies for both of these chromosomes are 

thought to be incompatible with life or survival past infancy.  We do not have enough information to 

make any comparable inference about the other large arm-level events classified as duplications.  

 One large 58 Mb event at the terminal portion of 13q and five other calls between 10Mb and 25 

Mb occurred in samples from the craniofacial study, in which case-parent trios were collected.  All of 

these events occurred in children, and the data for parents was available for five of them.  In all five of 

these trios, both parents’ genomes looked normal in the region that was classified as an inherited 

duplication in the child.  Assuming they are true duplication regions, the possible explanations for the 

generation of these events, then, are de novo duplication or mosaicism in one parent or somatic mutation 

in the child.  We noticed that some of these events had lower phase concordance than expected for 

somatic events with such strongly diverged BAFs.  In fact, the pattern of phase concordance in the 

inherited duplication category is qualitatively different from the pattern in the mosaic category (Figure 

13).  When the two BAF bands in a mosaic region are completely diverged, the BAF-based phasing will 

provide very accurate inference of the true haplotypes and the observed phase concordance will be 

limited only by the accuracy of the statistical haplotype estimates, so should be well above 0.9.  Only one 

of the calls classified as mosaic with BAF deviation > 0.1 have phase concordance less than 0.9, and that 

call has such diverged BAF bands that there are many missing genotypes and what look to be 

heterozygote-to-homozygote genotyping errors that may have interfered with the statistical phasing; in 

the set of calls classified as inherited duplications, which have deviation > 0.1 by definition, 16% percent 

of events have phase concordance less than 0.9.   
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Figure 13. Comparison of patterns of BAF deviation versus phase concordance for mosaic and 

duplication calls.  

We hypothesize that these low phase concordance events in the duplication category represent 

duplications for which the three copies are unique, which can only occur as an inherited duplication 

(with one parent passing on both homologous copies in the region, and the other parent contributing a 

different copy), since in a somatic duplication there are only two source haplotypes to begin with.  We 
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used the five large duplication calls in the children from the craniofacial trios to investigate this 

hypothesis.  We applied an algorithm under development in the lab (77) that uses the B allele frequencies 

from the child and statistical haplotype estimates for each parent to compare the likelihood that the child 

carries both homologues from one parent and one homologue from the other parent versus the likelihood 

that the child carries two identical copies of one homologue from one parent and one homologue from 

the other parent.  The results are presented in Table 5.  The events with high phase concordance had low 

evidence for presence of three copies, while the two events with the lowest phase concordance had high 

evidence for three unique copies.  One event had an intermediate phase concordance level (0.82) and low 

evidence for three unique copies.  Upon looking at the data for this event we noticed that one segment 

appeared to have a higher rate of heterozygotes, which prompted us to suspect that it may be a complex 

event in terms of allele identity.  We re-analyzed this sample with a 2-state hapLOH model (keeping all 

other parameters the same as in the initial run) and found that the event was split into two distinct events, 

the left one with low phase concordance (0.76) and the right one with high phase concordance (0.95).  

We ran the likelihood calculation algorithm again separately for each segment and found that the left 

segment was found to have high probability of three unique copies.  From these results we conclude that 

at least three of the events larger than 10Mb are inherited duplications, and that unexpectedly low phase 

concordance in events with high BAF deviation is a useful indicator of non-somatic origin.  Again, these 

three events appear to be de novo and occurred in individuals with congenital physical abnormalities, so 

inherited duplications this large in phenotypically normal individuals may be very rare.  Nevertheless, we 

did not use size or assumptions on biological impact to reclassify any events that met the BAF and LRR 

deviation criteria we defined for inherited duplications.  We chose these thresholds to be conservative 

about calling mosaic events, and it may be that the inherited duplications set includes events that are 

high-frequency somatically acquired mutations (e.g. the whole-chromosome 8 and 12 events). 
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Table 5. Calls classified as inherited duplications with size >10Mb.  The likelihood calculation was 

performed only for samples from individuals for whom parental genotypes were available.   

 Another possible scenario is that we have classified some inherited copy-number variants as 

mosaic events.  This may occur if the BAF deviation, LRR deviation, or both are not representative of 

the true allelic imbalance level and copy number, which in turn is possible if the data normalization was 

not effective or the data quality is low or the called event boundaries do not match the true event 

boundaries.  To investigate the possibility that some of our mosaic calls may actually be inherited copy-

number variation, we sought to compare the locations of our calls to locations of known copy-number 

polymorphisms.  We downloaded the variants catalogued in the Database of Genomic Variants (DGV) 

(64), a curated database of copy number variants larger than 50 bp that have been identified in healthy 

individuals.  The download included about 150,000 entries.  Less than 0.4% of the reported variants are 

larger than 1 Mb; 84% are smaller than 100 Kb.  By contrast, 85% of the hapLOH mosaic calls are larger 

than 1Mb and less than 0.7% are smaller than 100 Kb.  Since the hapLOH calls do not necessarily have 

precise breakpoint definitions, we chose to compare the calls to the DGV variants by looking for >80% 

between a hapLOH call and a known polymorphism (each must have had > 80% overlap with the other), 

and 29 (2.6%) of the mosaic calls met this criterion.  Further inspection of the breakpoints and event 

sample chr start end size (Mb) location
phase 

concordance

evidence for 
unique 

homologues?

lungcancer_897 8 199,152       146,244,526 146.0 whole chromosome 8 0.98 -
vte_2212 8 166,818       146,106,670 145.6 whole chromosome 8 0.99 -
prostate_660_J_484 8 229,189       145,647,819 145.4 whole chromosome 8 0.96 -
vte_970 9 36,587         139,814,152 139.8 whole chromosome 9 0.96 -
prostate_1M_597 12 120,500       132,272,282 132.2 whole chromosome 12 0.99 -
vte_1517 1 144,155,913 246,560,134 102.4 whole arm 1q 0.97 -
prostate_1M_1950 2 19,443         88,905,353   88.9 whole arm 2p 0.99 -
craniofacial_children_1634 13 55,173,808   113,595,154 58.4 terminal 13 q 0.97 no
craniofacial_children_1611 3 79,972         24,984,831   23.2 terminal 3p 0.72 yes
craniofacial_children_873 4 133,669,279 156,775,006 23.1 interstitial 0.74 yes
craniofacial_children_2321 11 15,077,706   35,343,994   20.3 interstitial 0.82 after splitting only
glaucoma_1208 20 46,015,978   62,382,907   16.4 complex terminal 20q 0.95 -
craniofacial_children_408 20 47,690,212   62,199,875   14.5 centromere-adjacent 20 0.72 -
craniofacial_children_1919 8 36,539,160   50,382,228   13.8 straddles centromere 0.97 no
preterm_2152 11 90,028,983   103,605,932 13.6 interstitial 0.97 -
craniofacial_children_469 8 127,771,130 138,008,258 10.2 interstitial 0.95 -
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types for these events will help to make an inference on whether these events are somatic or inherited 

variants.   

Mosaic call summary. Mosaic calls ranged in size from 46 kb to 146 Mb, with a median size of 21 Mb.  

The smallest observed phase concordance value was 0.53.  A histogram of the event sizes and a plot of 

size against phase concordance are presented in Figure 14.  The vast majority of events with low phase 

concordance are large.  This observation reiterates that both the size of the event and the phase 

concordance together impact the detection power of the hapLOH HMM, and that the HMM is not well 

suited for detecting small events with low phase concordance.   

 

Figure 14. Comparison of size to phase concordance for each mosaic call.  Histogram below plot 

represent distributions for size.   
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Figure 15. Mosaic calls by chromosome.   The red shading on each chromosome ideogram indicates the region represented in the plot space below the 

ideogram.  Calls are represented by horizontal bars, colored by event type: red-loss, green-CNLOH, blue-gain, grey-undetermined.  Larger versions of 

the plots are presented in Appendix Figure 5.   
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The phase concordance in an imbalance region is affected by multiple factors including the event type, 

fraction of cells affected, level of BAF noise, and accuracy of BAF threshold specification.  The first two 

of these factors also affect the BAF deviation.  As expected, phase concordance and BAF deviation have 

a positive relationship until the deviations reach about 0.10 (Figure 13), at which point the phase 

concordance has reached a maximum (governed by the accuracy of the statistical haplotype estimates) 

and the relationship plateaus.  The obvious outlier visible in this plot is a 20.4 Mb event from the Preterm 

study with BAF deviation 0.09 and phase concordance 0.665.  The BAF plot for this region exhibits 7 

bands and the LRR data suggest an average diploid copy number.  The data pattern is consistent with an 

inheritance of three unique copies of the region followed by loss of one chromosome in one subclone and 

loss of a different chromosome in another subclone, with loss of all cells carrying the duplication.  The 

locations of the BAF bands indicate subclone fractions of approximately 1/3 and 2/3. 

 

Figure 16. Complex 20 Mb event.  The BAF pattern suggests two independent partial trisomy rescue 

events in a region in which one parent transmitted both homologues in the region and the other parent 
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transmitted a unique homologue.  In the BAF plot, blue and brown points indicate markers with 

heterozygous genotype calls, black points indicate homozygous genotype calls, and grey points indicate 

genotype no-calls.   

4.3.3 Comparison with Laurie et al. results 

We used different sample level filters than were used in the Laurie et al. analysis, and also did not gain 

access to all of the GENEVA datasets.  The intersection set of samples that passed QC and were included 

in both analyses contained 30,334 samples.  In these samples, hapLOH made almost three times as many 

calls as Laurie et al. (1,119 v. 379).  The locations and event classification of all calls in the intersection 

sample set are presented in Appendix Figure 5.  For overlapping calls, the breakpoints are, for the most 

part, very similar.  We note that Laurie et al. manually edited breakpoints by visual inspection of the 

BAF and LRR plots for each putative event that was called by their automated segmentation algorithm, 

whereas we performed no editing of breakpoints other than the trimming or splitting of multi-

chromosome calls.  Laurie et al. also manually removed some event calls if the BAF and LRR plots did 

not show visually apparent shifts.   

According to the concordance criteria described in the previous section, there were 295 hapLOH 

calls that were also made by Laurie et al., 88 calls made by Laurie et al. only, and 824 calls made by 

hapLOH only.  Another 111 calls made by Laurie et al. were in samples that failed hapLOH sample-

level QC, and 42 hapLOH calls were in samples that were excluded from the Laurie et al. analysis, 

probably due to failure to meet the sample-level QC criteria employed in that analysis.  Concordance 

results by dataset are presented in Table 6. 
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hapLOH calls Laurie et al. calls 

not found 
by Laurie 

et al.  

found by 
Laurie et 

al. 
found by 
hapLOH 

not found 
by 

hapLOH 

addiction 19 79% 5 21% 5 83% 1 17% 

melanoma 83 78% 23 22% 24 75% 8 25% 

lungcancer 53 62% 32 38% 32 80% 8 20% 

preterm 27 84% 5 16% 5 56% 4 44% 

glaucoma 41 68% 19 32% 19 76% 6 24% 

prostate_1M 178 71% 72 29% 69 79% 18 21% 

craniofacial 42 71% 17 29% 17 77% 5 23% 

prostate_660 230 73% 87 27% 85 79% 22 21% 

vte 86 83% 17 17% 17 57% 13 43% 

lunghealth 65 78% 18 22% 18 86% 3 14% 

Overall 824 74% 295 26% 291 77% 88 23% 
Table 6. Concordance between Laurie et al. and hapLOH calls.  Concordance was calculated using only 

the 30,334 samples included in both the hapLOH and Laurie et al. analyses.  The columns give the 

numbers and fraction (out of the total made in the dataset in that analysis) of concordant calls (purple 

columns) and discordant calls (pink and blue columns).  Discrepancies occur between the counts in the 

purple columns when a call in one analysis overlaps multiple calls in the other analysis.  The Venn 

diagram summarizes the concordance between the analyses.   

The events that were called only by Laurie et al. fall into three categories.  The first category comprises 

44 events that include few to no heterozygous calls. These may include regions of inherited 

homozygosity (either by chance identity-by-descent or germline CNLOH or deletion), or regions in 

which a large enough fraction of cells have imbalance that the BAF and/or LRR values are so aberrant 

that the Illumina genotyping algorithm could not make genotype calls or calls homozygous genotypes.  

hapLOH relies on heterozygous genotypes to calculate phase concordance, and also relies on the 

genotype calls accurately representing the inherited genotypes even in regions of allelic imbalance.  The 

second category is short events.  Twenty-two of the events called only by Laurie et al. had fewer than 

100 markers, and another 11 had between 100 and 200 markers.  With the parameter settings that we 

used for this analysis, hapLOH is not well suited to pick up events of this size.  The third category of 
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events is large events that were detected by hapLOH but were excluded from the set of mosaic calls.  

This category included 6 large events that we excluded as inherited duplications, and 5 calls that 

overlapped the HLA region.    

 

Figure 17. Genomic size versus phase concordance. Each point represents a hapLOH or Laurie et al. call, 

and colors indicate the concordance status.  Most of the Laurie et al. calls had little or no heterozygous 

markers so phase concordance could not be calculated; all of these are plotted at phase concordance 1. 

The genomic size and phase concordance for events called by both analyses and the events called by 

hapLOH only are summarized in Figure 17.  This plot is similar to that in Figure 14, except only includes 

hapLOH event calls in the 30,334 intersection samples with Laurie et al.  Within events with phase 

concordance >0.8, the rate of concordance is 71% for events larger than 1 Mb and only 18% for events 

smaller than 1 Mb.   No events with phase concordance <0.8 were called by Laurie et al.  Although we 

do not know if all the hapLOH calls represent true events, our results indicate that hapLOH has the 
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potential for more sensitive detection of low-cell-fraction mosaic events than the method employed by 

Laurie et al.  

4.4 Discussion 

The results presented here suggest that somatic mosaicism in phenotypically normal individuals is higher 

than was reported in recent large-scale studies.  This is not surprising, since these studies note that they 

used methods that lose sensitivity for low-frequency mutations, of which we would expect there to be 

many.  These results further add to the observational evidence of somatic mosaicism in normal tissue.  

We have not calculated  the fraction of mutant cells for each of the calls we made because that 

calculation relies on knowing the copy number of the mutation, which we cannot reliable infer for the 

majority of the calls.  We are working on an improved strategy for classifying calls by copy number that 

will take into account the length of the called region (to account for the level of precision in the deviation 

measurements) and the background noise for the specific sample carrying the call.  This information 

combined with breakpoint analyses may be useful for learning about the mechanisms that generated the 

mutations (78).   

The filtering method we used here for removing inherited duplications is crude, but we believe it 

is effective at reducing the number of inherited variants falsely called as mosaic.  Large inherited 

duplications certainly occur but are rare, so given the sizes of the hapLOH mosaic event calls it is 

unlikely that many of these are inherited duplications.  Inherited deletions and homozygosity by descent 

are not detected by hapLOH since they include no heterozygous genotype calls, so we did not need to 

take any measures to remove them.   

 We were not able to experimentally validate the mosaic calls we made, because we did not have 

access to the DNA samples.  Previous tests of the method using lab-created cell line mixtures and in 

silico simulations suggest that the hapLOH method has high sensitivity, and we used sample-level filters 

to reduce the number of false positive calls generated from samples with low-quality data.  Several other 

studies that used SNP array methods for detecting somatic mosaicism in non-malignant tissues have 
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conducted experimental validation, and provide support for the specificity of SNP array methods in 

general in this context.   Rodgríquez-Santiago et al. (78) confirmed blood mosaicism for 42 out of 42 

events using MLPA and microsatellite analysis on blood DNA from the same source sample as was used 

for SNP array discovery analysis.  They also used FISH to confirm the events in 3 out of 4 matched 

bladder tumor samples for which the tissue was available; a mosaic trisomy of chromosome 22 found in 

the blood using SNP array was not detected in the tumor sample using FISH.  Forsberg et al. used qPCR 

to validate calls (27).  Many of the mutations we called occur in lower frequency than those detectable 

by the other SNP array methods, as evidenced by the very small BAF and LRR deviations; MLPA and 

qPCR may not provide conclusive evidence of a false positive for such low-frequency events.  FISH 

would be more appropriate, but is only possible if an appropriate sample of cells was available.  

Evaluation of recurrent events across multiple datasets will help to provide support for the calls.  

We used a 2-state HMM here for all samples, which was reasonable given that most samples 

should have at most one event, but using such a reduced model means that higher complexity samples 

may not fit.  This may result in false negatives in samples carrying an event with strong imbalance 

(either a somatic event or an inherited duplication) and also another event with a lower level of 

imbalance.  One way to investigate this possibility is to re-analyze the samples with an HMM with an 

additional event states, or censoring the data from the previously called event, or fixing the emission 

probability corresponding to a phase concordance value intermediate to that of the previously called 

event and the baseline. 

The boundary definition for events may be imprecise, especially at events with low phase 

concordance.  The most obvious examples of events with imprecise boundaries are those that extend into 

adjacent chromosomes, for which the called boundaries are outside of the true boundaries.  We also see 

examples of higher-phase concordance events where the posterior probability drops below the calling 

threshold (i.e. 0.95) at one or both ends of the called region and it is apparent that the called boundaries 

are within the true boundaries.  An alternative event calling strategy that would improve the boundary 
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definitions for these events would be to use a high threshold (i.e. 0.95) to discover events and a slightly 

lower threshold (between 0.5 and 0.95) to define the boundaries for the discovered event. 

Our analysis was designed for discovery of low-frequency events.  Since small events with low 

frequency create only weak signal, we implicitly were aiming for large events (and also explicitly, by use 

of a mean event size of 20 Mb).  Small events with high frequency do create a strong enough signal that 

they are picked up using this parameter setting as well.  This bias for events in certain size and phase 

concordance ranges must be kept in mind when we try to interpret the observed distribution of events.  

There is a biological rationale for expecting to observe large events mostly at low frequencies, since they 

might be more likely to have a negative impact on cell fitness and therefore keep a clone from ever 

reaching high frequencies.  However, we do see a number of large events with high phase concordance, 

suggesting mutant cell frequencies of at least 15%; these may carry mutations that increase cell fitness or 

are neutral and were observed due to drift.  The lack of observed events with small size and low 

frequency is clearly due to the lack of power to detect this category of events; we expect there to be a 

substantial number of true events in this category.  One way to get a more comprehensive discovery of 

somatic events would be to combine a hapLOH analysis with an analysis using a different method that is 

more suited for events in this category.   

One of the major observations of the Laurie et al. study was a sharp increase in the rate of 

detected mosaicism in elderly individuals compared to younger individuals.  This observation may 

indicate a higher rate of somatic mutation in the elderly, which is consistent with the hypothesis that 

mutation rate increases with age due to reduction in DNA repair activity or increase in the incidence of 

errors (for example, increased incidence of structural rearrangements from loss of telomere function).  

An alternative explanation is that the mutation rate is largely constant over time, but detectable 

mosaicism is associated with age because in older individuals there has been more time for mutations to 

accumulate and the subsequent mutant clone to expand to a detectable frequency.  Given the latter 

hypothesis, the strength of the observed association will be highly dependent on the minimum detectable 

mutation frequency of the method used to generate observations.  Our analysis made many more 
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observations of low-frequency mutations than the Laurie et al. analysis.  Comparison of age association 

results between the two anal may help to define the relative contribution of each of the above 

explanations for the higher mosaicism rate observed in the elderly.  

Genes or variants within somatically imbalanced regions may be relevant to proliferation, given 

that the mutant clones increased to detectable frequency.  We so far have performed an initial 

investigation of recurrently imbalanced regions, with chromosomes 15 and 20 carrying the regions with 

the highest number of calls.  Several of the recurrently imbalanced regions include genes that have been 

associated with cancer.  All of the blood samples in the study were collected from individuals without 

diagnosed hematological cancer.  We can therefore conclude that any observed event is not sufficient to 

initiate transformation, but how important is its potential impact on cellular proliferation?  Is it simply a 

commonly occurring clonal mutation that has neutral impact at the systemic level, or does it promote the 

risk of cancer and represent a valuable early disease biomarker?  Follow-up on the hematological cancer 

status and on any further accumulation of somatic mutations in individuals with blood mosaicism 

involving cancer-associated genes will be helpful for making this distinction.  We would expect the 

landscape of tolerated and functional somatic mutations to vary by tissue, so similar studies using 

samples from other tissues would provide complementary information.  These results have great 

potential to improve the interpretation of mutations observed in tumors.  Regions with no observed 

somatic imbalance may indicate the presence of genes that are sensitive to aberrant gene dosage and are 

critical to cell function; we are also trying to characterize regions with very few imbalance calls. 
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CHAPTER 5 

Conclusions and future directions 
CHAPTER 5: Conclusions and future directions 

5.1 Overall significance of the project 

The method presented here is the first method to utilize imperfect population-based haplotype estimates 

to discover low-frequency somatic chromosomal mutations from SNP array data.  The major innovation 

of the method is the use of phase concordance as a robust metric to measure evidence of allelic 

imbalance in the face of sporadic phasing errors in the statistical haplotype estimates and stochastic 

variation in the B allele frequencies.  In addition to describing a hidden Markov model that uses the 

phase concordance data to perform agnostic whole-genome discovery of imbalanced regions, we also 

describe how to test candidate regions and infer the haplotype of the major chromosome.  We have 

demonstrated through controlled experiments that the sensitivity is higher than other existing methods 

while maintaining specificity, and that the strategy is applicable to both Affymetrix and Illumina data.  

The hidden Markov model has been implemented in publically-available software with a user-friendly 

command line interface and online documentation so that researchers may easily apply the method to 

their own data.  The method is complementary to existing SNP array methods for detecting mosaic 

kilobase- to megabase-size CNV and CNLOH events, since it targets a lower range of the allelic 

imbalance spectrum (< 10% mutant cells) while still detecting mutations with mid-level imbalance.  The 

superior performance in the low-imbalance range makes it especially useful for detecting mutations in 

tumor samples with high proportions of contaminating normal cells.  We also demonstrate the potential 

of the method via a real-data analysis of over 30,000 samples from phenotypically normal individuals 

that were previously analyzed using another method.  We made nearly three times as many calls in these 

samples, most of which appear to exist at low frequencies.  These findings validate recent hypotheses 

that somatic variation in healthy tissues is more prevalent than had previously been reported due to 
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undercalling of low-frequency mutations, and provides valuable observations of in vivo mutations that 

can be studied to make inference on genetic robustness and how these mutations impact cell fitness.   

5.2 Potential model extensions and software improvements 

5.2.1 Alternative segmentation strategies and strategies to accommodate higher-complexity samples 

Fitting a hidden Markov model to the switch accuracy data and then calculating conditional marginal 

probabilities (to which I have been referring as posterior probabilities) via the forward-backward 

algorithm provides a continuous measure of the local evidence of imbalance across the genome, which 

can in turn be transformed to define discrete regions of balance or imbalance.  This segmentation 

approach has several advantages.  For example, it is computationally efficient.  The computational 

complexity of the forward-backward algorithm is ߍሺܮଶܰሻ, where L is the number of hidden states and N 

is the number of markers.  Basic CBS has complexity ߍሺܰଶሻ, but DNAcopy, the R package 

implementing CBS, uses a hybrid approach for obtaining p-values (combination of permutation to define 

empirical null distribution and approximation using standard normal distribution when number of 

markers in segment is large enough), and has rules for early stopping when the evidence for a segment is 

high, two strategies which improve computational complexity (79).  So, the HMM is at least comparable 

or better in terms of computation time.       

On the other hand, we have noticed several examples of suboptimal performance that may be 

ameliorated by adjusting the segmentation procedure.  First, the success in calling events depends not 

only on how much the phase concordance for the event differs from the normal phase concordance, but 

also how it relates to the phase concordance of any other events in the sample, especially when a small 

number of event states is specified.  The reason for this is that, in the default procedure, the emission 

probabilities for the normal state and each of the event states is iteratively updated to the MLE based on 

the observed data from the whole genome.  The consequence of this is that, in samples with multiple 

events of different levels of imbalance, the emission probabilities are likely to fit the more extreme 
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values, and the more subtle events may go undetected if the phase concordance is closer to the normal 

phase concordance than the phase concordance for the more extreme events.  The sizes of the true 

segments and the choice of parameters controlling the transition probabilities will also play a role.  As a 

demonstration, we performed two runs of the hapLOH HMM on a series of lab-diluted tumor-normal 

mixture samples in which we changed only the number of hidden states (we ran a 2-state HMM and 4-

state HMM).  The tumor cells were complex, with multiple events of different types.  There are a few 

ways to address this issue.  The most obvious solution is to simply run the HMM with a larger number of 

hidden states.  This may work well for more complex samples, but the downside of this is that if the 

specified number of states is larger than the number of states that hapLOH can distinguish (i.e. the 

sample is less complex than predicted), then some states may have very similar phase concordance 

values and the evidence for an event will be split between multiple states.  If there are multiple states that 

end up with low emission probability, only one of which will be defined as the ‘normal’ state, then this 

strategy may result in false positives because segments that have slightly elevated phase concordance by 

chance may be called as events.  An iterative procedure might work well, where the HMM is first run 

with a lower number of states and samples with event calls are re-run with a higher number of states to 

capture any lower-imbalance events that were missed.  Another option is to mask the data from any 

called events and perform a second run of the HMM using the remaining data.  These strategies can be 

expected to recover events with low phase concordance that were missed in the first run, and potentially 

also recover short events in samples that also have longer events (which would probably drive the 

transition probabilities to favor longer events).  A third option is to fix the emission probabilities to 

ensure that there is an event state for different levels of imbalance.  

A second issue that we observe in the hapLOH results is that the boundary definition can be 

imprecise.  There are a few different categories of imprecise boundaries.  For some events the boundaries 

are obviously conservative, and are within a region with visibly diverged BAF bands, because the 

posterior probability tapers off at the boundaries and falls below the event calling threshold.  This slight 

decrease in posterior probability also sometimes results in one event being split into multiple events.  
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One option to address this is to use one threshold to identify locations of events, and a lower threshold to 

define the set of markers belonging to the event.  For example, we could use 0.95 to identify a peak that 

indicates an event region and 0.5 to define the boundaries of that specific event.  Another option is to use 

the endpoints indicated by the HMM segmentation as initial boundaries to conduct CUSUM-based (80) 

boundary refinement using the observed BAF values; this is similar to the strategy implemented in POD 

(53).  I expect this will do well for events with moderate to high imbalance and will be particularly useful 

to identify and properly define overlapping events and adjacent events, and should provide some 

improved precision for low-level imbalance events as well.  Another automated method that might be 

helpful for refining boundaries at low-frequency events is to perform a second pass of the HMM using 

emission probabilities fixed at low values. 

5.2.2 Adaptation to sequence data 

We have designed the hapLOH software for genotypes and B allele frequencies from SNP array data, but 

the principles underlying the method may also be used to detect allelic imbalance from whole genome or 

whole exome sequencing data.  The most important difference is that sequence data provides discrete 

allele counts at each marker, while SNP array data provides a continuous allele frequency.  The sampling 

variation in these counts should be taken into account, especially when the sequencing depth is low.   

Other important differences include mapping bias that may skew allele counts toward the reference 

allele, and unevenly spaced markers especially when using exome sequence data.  All of these 

differences can be accommodated, and in fact a version of the method for sequence data has been 

implemented and applied to exome sequence data by a colleague in the lab (F. Anthony San Lucas, 

unpublished).   

5.2.3 Automated post-processing  

As is the case for many experiments, the sample preparation and results interpretation steps of a hapLOH 

analysis are much more time-consuming and challenging than the generation of results.  Thus, utility 
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scripts for pre-processing and post-processing are among the most efficient ways to make hapLOH more 

easy to use.   

 The most onerous pre-processing step is statistical phasing.  It is somewhat counter-intuitive, but 

this step is more complicated when sample size is low, because in that case a separate reference dataset 

must be used to fit the statistical model, which has multiple implications  First, if the test and reference 

data use different sets of markers, then either the user must filter and/or augment each of them so that 

they contain exactly the same set of markers (fastPHASE), or the markers in the test dataset that are not 

included in the reference dataset will be dropped during phasing and the results files will not match the 

input files (BEAGLE, MaCH), and then the user will need to identify the dropped markers and modify 

the BAF files accordingly.  Another issue is that the user must ensure that the allele designation scheme 

and genome reference version used to characterize the markers positions and polymorphisms are the 

same for the test and reference datasets, and convert one dataset or the other if they do not match, and 

then convert the test dataset back to A/B labeling since this is the allele designation scheme is required 

by hapLOH.  One way to make this step easier is to provide ready-to-use or partially prepared reference 

data.  fastPHASE provides an option to save parameter values after fitting the model.  So we could fit the 

model to a set of reference samples using all of the SNP markers on, for example, the Illumina 2.5 array, 

and then output the parameters to files.  Users would then need only to specify these files to rebuild the 

model and phase their samples of interest, without having to re-label alleles or filter the marker set.  

Other popular methods, including BEAGLE, MaCH, and IMPUTE2, and SHAPEIT, do not have the 

option of saving models.   

The 1000 Genomes Project data is currently the only public reference dataset available that 

includes enough sites to be useful for phasing Illumina 2.5 array datasets, and the documentation pages 

for each of the aforementioned softwares include links to download 1000 Genomes Project data in the 

correct format for use as a reference dataset.  However, the files are very large, much larger than 

necessary since for the purposes of running hapLOH it is not helpful to impute additional genotypes that 

are not on the array (since they will not have a B allele frequency value anyway).  Ideally we would 
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provide reference files including just the markers on the Illumina 2.5 array, already in A/B format.  A 

single reference panel including individuals from diverse genetic backgrounds would be sufficient to 

provide high-quality phasing for test samples from any genetic background (81). 

 Currently, there is no option in the hapLOH software to automatically call discrete events based 

on applying thresholds to the posterior probabilities (the method I used in Chapter 4).  This should be 

one of the next functions to make available, since a list of discrete calls is generally easier to interpret 

than the posterior probabilities themselves.  Also, since it is highly advisable to visually follow up on 

event regions to identify potential data quality issues that may create false positives or bias event-specific 

statistics such as median BAF or LRR deviation and phase concordance, automatic generation of plots 

for called events is also important.  Both of these steps could be added as functions that could be turned 

on with hapLOH command line flags, or could be provided as separate utility scripts. 

5.3 Additional applications 

In this work I presented two possible scenarios in which hapLOH is a relevant choice of method for 

identifying low-frequency somatic segmental imbalance: identifying tumor mutations from samples with 

high levels of normal contamination, and detecting non-malignant intra-individual variation in normal 

samples.  We envision several other applications in which hapLOH may be valuable.  For example, 

hapLOH may be useful for identification of low-frequency clones in samples with high tumor cell 

fractions.  In these cases it might be necessary to use a matched normal sample to infer the inherited 

genotypes, since high-frequency imbalance in the tumor cells may affect the genotype calls.  Another 

potential application is multiple-timepoint analysis of mutation dynamics.  This is feasible since 

preparing samples for and running SNP arrays is cost-effective and not too laborious, especially if 

multiple samples are prepared in parallel, and because the hapLOH method is efficient.   

The usefulness of the method will be further improved by using custom-designed arrays such as 

the Oncochip (82), which includes probes for candidate functional cancer mutations discovered through 

sequence analysis on a backbone of markers tagging common variation that could be used for phasing.  
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This way somatic copy number and CNLOH mutations can be analyzed simultaneously with inherited 

sequence variants in an efficient manner. 
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Appendix 
APPENDIX 

Tables 

chr start bp end bp marker count size (Mb) 

2 31,982,105 33,266,534 131 1.28 
2 38,755,294 38,887,094 16 0.13 
6 99,536 68,754,442 9,968 68.65 
11 71,640,522 134,435,899 7,795 62.8 
12 28,466,092 28,491,511 8 25.42 
12 31,157,554 31,298,174 20 0.14 
16 30,423,993 88,690,776 5,604 58.27 

Appendix Table 1. Regions excluded from simulated sample data.  Upon visual examination of the tQN-

normalized array data from the normal cell line sample, we noticed several obvious structural variants, 

likely cell-line artifacts. In order to assess the sensitivity and specificity rates for our methods and the 

other methods, since these would persist in the computational dilution data, we decided to mask these 

regions of the genome to prevent them from creating false positive calls. We ran BAFsegmentation on 

the normal cell line sample using default parameters, which identified 8 segments on 4 chromosomes. 

One segment corresponded to a visible deletion on chromosome 16, and two contiguous segments 

corresponded to a visible deletion on chromosome 6. In these cases the segments did not cover the entire 

region that could be visually identified by looking carefully at the BAFs and LRRs. For these events, we 

excluded a region that included both the BAFsegmentation segments and any additional contiguous loci 

that appeared (by inspection) to be part of the same event. Another region on chromosome 6 was 

identified (11 SNPs only), approximately 700 SNPs downstream from the other segments. The exclusion 

region on chromosome 6 was extended to include this event. A segment on chromosome 2 corresponds 

to an obvious increase in copy number. Another small segment (16 SNPs) was identified about 800 SNPs 

downstream. These two regions were excluded according to the BAFsegmentation segment coordinates. 

A segment on chromosome 12 corresponds to a small duplication event. BAFsegmentation also 

identified another small event about 400 SNPs upstream. Both of these regions were excluded according 
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to the BAFsegmentation segment coordinates.  An apparently heterogeneous region on chromosome 11 

was also excluded. 

chr start index end index start bp end bp marker 
count 

size (Mb) type 

2 11,800 17,750 102,083,769  162,645,233  5,951  60.56 del 
3 10,850 14,200 95,977,726  128,522,090  3,351  32.54 CNLOH 
4 1 1,450 63,508  11,233,183  1,450  11.17 del 
4 1,800 3,050 14,085,628  24,243,339  1,251  10.16 del 
4 14,450 19,985 141,764,847  191,164,126  5,536  49.40 del 
5 16,000 19,916  149,859,181  180,642,521  3,917  30.78 CNLOH 
7 1  1,250  149,081  10,030,213  1,250  9.88 CNLOH 
8 1  6,200  166,818  47,383,928  6,200  47.22 del 
9 3,100  6,450  15,879,411  38,350,333  3,351  22.47 del 
9 11,800  14,750  109,184,150  130,054,427  2,951  20.87 del 
10 14,300  16,209  122,528,909  135,284,293  1,910  12.76 CNLOH 
12 4,650  15,374  37,245,320  132,288,869  10,725  95.04 del 
13 4,000  4,300  48,985,143  51,376,986  301  2.39 CNLOH 
13 5,200  12,029  60,650,097  114,108,121  6,830  53.46 CNLOH 
14 2,150  3,100  35,794,972  45,110,909  951  9.32 del 
14 4,950  5,300  61,557,191  64,441,966  351  2.88 CNLOH 
14 5,800  7,200  69,548,910  81,198,589  1,401  11.65 CNLOH 
15 1  3,550  18,421,386  53,338,047  3,550  34.92 del 
18 1  1,700  2,842  11,531,256  1,700  11.53 CNLOH 
18 6,850  9,950  53,442,584  72,398,882  3,101  18.96 del 
19 1  1,450  217,034  11,590,705  1,450  11.37 del 
19 3,800  6,115  43,854,070  63,776,118  2,316  19.92 del 
21 3,700  3,950  37,537,165  39,062,090  251  1.52 del 
22 1  800  15,276,762  21,136,795  800  5.86 del 
22 3,400  5,540  36,380,965  49,524,956  2,141  13.14 CNLOH 

Appendix Table 2. Details of events simulated in computational dilution dataset.  Start and end indices are 

1-based; Start and end chromosomal base pair positions (BP) are 1-based and given according to position 

annotations in the array manifest (which used the hg18 genome build).   
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Sample  start SNP  chromoso
me 

start bp end SNP end bp Number of 
informativ
e markers 

Phase 
concordan
ce 

samp1 rs17025785 3 30642429 rs9813622 30723944 29 0.931 
samp1 rs7630256 3 67867664 rs12486635 79280400 1001 0.891 
samp2 rs17649641 17 41353200 rs8080254 42702891 120 0.750 
samp2 rs2825523 21 19627751 rs2826530 21108259 111 0.667 
samp10 rs7528118 1 56741343 rs1022636 58133153 208 0.572 
samp10 rs7642123 3 153610044 rs6797289 157080481 249 0.602 
samp10 rs7692447 4 135190819 rs13151254 139767513 298 0.587 
samp10 rs1461349 11 37157502 rs11821682 41821239 296 0.618 
samp10 rs7488279 12 5438481 rs17728942 8179670 193 0.606 
samp10 rs1342606 13 82759884 rs418853 87877460 328 0.576 
samp10 rs9559492 13 87991344 rs1948851 89058641 14 0.786 
samp10 rs1409911 13 89165586 rs4773607 90412505 129 0.589 
samp10 rs1906160 15 37813417 rs2291620 38116265 16 0.750 
samp10 rs3107997 18 26174242 rs8093901 27288097 146 0.596 
samp10 rs6025034 20 54655431 rs13038808 54878739 41 0.610 
samp11 rs478410 13 29554081 rs7325798 30495592 136 0.632 
samp11 rs2911851 15 29118254 rs951443 31705123 229 0.620 
samp12 rs13191136 6 167606330 rs9283859 169721000 190 0.616 
samp14 rs494723 6 10854213 rs4574630 11726173 90 0.633 
samp14 rs11794457 9 7358850 rs12235266 8292479 161 0.621 
samp14 rs2507903 11 114504525 rs592525 118889063 355 0.594 
samp14 rs3741808 12 67011218 rs4019400 74096025 625 0.602 
samp14 rs785450 15 27928636 rs2596210 31579227 316 0.674 
samp14 rs874187 19 49509008 rs12460033 51098538 76 0.776 
samp15 rs774381 12 65726355 rs10878795 66911125 119 0.622 
samp19 rs882311 10 1219548 rs622898 3512302 330 0.664 
samp20 rs11166104 1 98989371 rs945748 103256102 374 0.602 
samp20 rs6880142 5 149105642 rs153478 150619632 156 0.635 
samp20 rs7758899 6 116374038 rs4946399 119470457 185 0.632 
samp20 rs7077992 10 934496 rs7904349 3411055 335 0.687 
samp20 rs2356535 14 50445000 rs2069002 51320440 87 0.621 
samp21 rs6442749 3 2730983 rs4493418 2811418 17 1.000 
samp21 rs9422881 10 127110624 rs7075452 127340239 33 0.879 
samp21 rs4930561 11 67688337 rs7481750 68904167 82 0.780 
samp21 rs6606662 11 68915925 rs9630218 69588488 38 0.789 
samp21 rs674374 11 69817313 rs3017478 70375682 44 0.864 
samp21 rs1028050 11 71929039 rs6592575 74000654 88 0.818 
samp21 rs605954 11 74258861 rs1965277 134355825 5091 0.863 
samp21 rs1556999 13 46870340 rs11148069 47117281 15 0.933 
samp22 rs2714298 2 14769944 rs6717502 16858388 198 0.616 
samp22 rs354707 2 143602907 rs1580063 148794127 287 0.603 
samp22 rs17341291 3 133383722 rs9843725 137185555 403 0.600 
samp22 rs6879951 5 123873768 rs17517907 124554764 83 0.711 
samp22 rs513870 6 11616840 rs12211264 16021001 431 0.587 
samp22 rs12701976 7 42474899 rs12375125 47349043 352 0.571 
samp22 rs11218071 11 120322070 rs1238553 121207450 121 0.620 
Appendix Table 3. hapLOH AI calls made in Barresi data set by applying threshold of 0.5 to posterior 

probabilities.   
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full name short name dbGaP accession array DNA sources 

Study of Addiction: Genetics and Environment (SAGE) Addiction 000092.v1.p1 Human1M blood 

cell lines 

High Density SNP Association Analysis of Melanoma Melanoma 000187.v1.p1 Omni1-Quad blood 

A Genome Wide Scan of Lung Cancer and Smoking Lung Cancer 000093.v2.p2 HumanHap550 blood 

Genome-Wide Association Studies of Prematurity and 

its Complications 

Preterm 000103.v1.p1 660W-Quad blood spot 

blood spot (WGA) 

Buffy coat 

Buffy coat (WGA) 

The Primary Open-Angle Glaucoma Genes and 

Environment (GLAUGEN) Study 

Glaucoma 000308.v1.p1 660W-Quad blood 

cheek 

A Multi-ethnic Genome-wide scan of Prostate Cancer, 

with Japanese and Latino substudies 

Prostate_1M 000306.v3.p1 Human1M blood 

International Consortium to Identify Genes and 

Interactions Controlling Oral Clefts 

Craniofacial 000094.v1.p1 610-Quad blood 

Appendix Table 4. GENEVA dataset dbGaP accession numbers and array types.   
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Appendix Table 5. Summary of filtered events.  Each event may have been in a sample that failed QC, may have met the BAF and LRR criteria 

and been marked as a likely inherited duplication, may have overlapped the HLA region, or may have met failed multiple of these filters.  Calls 

that failed none of these filters were categorized as mosaic events.  

sample QC sample QC sample QC sample QC
duplication duplication duplication duplication

HLA HLA HLA HLA CALLED AS MOSAIC
addiction 4 10 0 0 136 1 1 23
melanoma 19 10 78 0 170 34 5 101
lungcancer 4 5 0 0 88 2 0 83
preterm 35 24 0 0 126 0 0 32
glaucoma 179 20 2 0 19 1 0 63
prostate_1M 63 28 1 0 259 1 5 270
craniofacial 122 53 33 2 277 1 1 59
prostate_660 25 5 0 0 171 4 0 313
vte 38 7 1 0 110 0 1 103
lunghealth 33 19 1 0 115 0 0 82

FILTERS FAILED

DA
TA

SE
T
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Figures 

 

 

Appendix Figure 1. Power to detect allelic imbalance in a specific region of interest.  We show power as 

a function of the number of informative sites in the tested region, assuming the entire tested region was 

affected by AI, for hemizygous deletion and NCLOH at four tumor proportions.  Power will be lower if 

imbalance only affects a portion of the tested region.  The results were calculated using the phase 

concordance rate per event type and tumor proportion observed from the simulated CRL-2324 data 

described in Chapter 3 of the main text (p.43).  The maximum false positive rate was set to 5%; the 

sawtooth appearance of the curve at the lower marker counts is due to fluctuation in the actual false 

positive rate due to the discreteness of the binomial probability distribution. 
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Appendix Figure 2. Calibration of computations simulations of BAFs.    The genomewide phase 

concordance (using the heterozygous markers defined using the pure normal sample) are plotted against 

tumor proportion.  At the proportions at which we have lab dilutions, the phase concordance from the lab 

dilution samples (green) and that from the simulated data (orange) show similar patterns.  The simulated 

data are slightly conservative, indicating that perhaps more of the events are CNLOH than what we 

assumed for these dilutions. 
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Appendix Figure 3. hapLOH results for computational dilutions of CRL-2324/CRL-2325.    Vertical axes 

range from 0 to 1 for both the BAFs (grey points) and posterior probabilities (orange lines for probability 

of deletion, blue lines for summed probability of deletion or CNLOH).  Horizontal lines at the top of 

each plot show the locations of simulated deletions (orange) and CNLOH (green). Below these, purple 

bars show the regions identified by BAFsegmentation to contain AI. 

 

 

 

Appendix Figure 4. Genomic waves in LRRs.  Left panel shows BAFs (top) and LRRs (bottom) for a 

50,000 marker region from a sample that passed the waviness filter; right panel shows the same from a 

sample that failed the waviness filter.   
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Appendix Figure 5. Per-chromosome plots of mosaic event calls in the GENEVA analysis.  The red shading on each chromosome ideogram indicates the 

region represented in the plot space below the ideogram.  Calls are represented by horizontal bars, colored by event type: red-loss, green-CNLOH, blue-

gain, grey-undetermined.   
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