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With continuing advances in the burgeoning field of electronic brachytherapy, an 

accurate method of 3D dosimetry is needed to ensure understanding of dose distributions, 

which can improve patient care. The aim of this study was to characterize the Xoft Axxent 

electronic brachytherapy source using PRESAGETM dosimeters in order to obtain 

independent confirmation of TG-43U1 dosimetry values, as well as to further add to the 

literature of both Xoft and PRESAGE. 

PRESAGE is a polyurethane-based solid 3D dosimeter doped with a radiochromic 

leuco dye which produces a linear change in optical density when exposed to radiation. 

This optical density change is imaged using an optical-CT scanner and reconstructed for 

analysis using MATLAB software. A Xoft source with a measured air kerma strength of 

126095 U was used in this experiment to irradiate 8 PRESAGE dosimeters to 15 Gy at 1 

cm in order to evaluate the dose rates from r=1 cm to r=5 cm. The dosimetric parameters 

were calculated and compared to the Rivard et al. (1)(1) parameters.  

In general, the measured results closer to the source more closely matched the 

comparison data than those values measured further from the source. The radial dose 

function was within 6% of the expected values, and the anisotropy function, ignoring the 

extreme outlier at each radius, was within 35% of the expected values. An incorrect shutter 

value was used when imaging the dosimeters so that the post-irradiation scans were 

repeated 2 months after the irradiation, allowing time for the dosimeter to darken as it aged, 

which increased background noise, and time for the dose signal to fade, thereby bringing 

the dose signal closer to the background noise. The experiment should be repeated to 

obtain more accurate results.  
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1 Introduction 

1.1 Statement of Problem 

1.1.1 General Problem Area 

With advances in radiotherapy technology leading to the delivery of more conformal 

doses to smaller treatment volumes (2, 3), quality assurance (QA) of such delivery and 

equipment has become more important. Currently, 1D and 2D QA methods are used to 

sample dosimetric data in 3D volumes. Dosimetry is performed so the radiation dose given 

to a patient can be accurately measured, but this is innately a 3D problem, wherein the 

radiation interacts with atoms within the patient’s body in all directions, and should therefore 

have a 3D method of measurement. 1D and 2D systems have been used effectively, but 

can have volume average, artifacts, and energy dependence. The advantage of 3D 

dosimetry is that a complete dose distribution can potentially be measured in a single 

irradiation; this is impractical for TLD irradiations, and film only provides one plane at a 

time. 3D dosimetry can conceivably save the physicist valuable time. 

The need for a 3D dosimeter is accentuated when considering brachytherapy, or 

short range therapy, where small radioactive sources are placed directly within the 

treatment site, creating sharp dose fall-off regions. The dose in these regions is difficult to 

measure accurately using conventional dosimetry systems. For example, it is difficult to 

accurately measure steep dose gradients using 1D dosimeters such thermoluminescence 

dosimeters, due to their finite size and volume-averaging effects(4); and some 2D 

dosimeters such as film are subject to artifacts from handling, dependence on energy, and 

possibly dependence on dose rate (at the extrema of dose and dose rate) (5). Dose 

measurements are required to characterize brachytherapy sources for patient treatment-

planning calculations.  

1.1.2 Specific Problem Area 

PRESAGETM is a new type of 3D dosimeter which addresses some of the problems 

of 1D and 2D dosimeters(6) mentioned above. PRESAGE has been used to determine 

dose distributions from a linear accelerator(6), low dose rate (LDR) brachytherapy 

sources(7), as well as high dose rate (HDR) brachytherapy sources(8).   

In the last decade, a new electronic brachytherapy source, Xoft Axxent (Xoft, Inc., a 

subsidiary of iCAD, San Jose, CA) has been studied for use in partial breast irradiation 

(PBI) treatments for breast cancer. Xoft has also been studied for use in skin treatments 

and in vaginal cancer treatments as a replacement for 192Ir(9). Although many Xoft 

applications have been studied since its introduction (10-12), there is only one published 
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paper that provides TG-43U1 dosimetry data for the source (1). PRESAGE has not yet 

been used to characterize this new HDR system.  

1.2 Background 

1.2.1 Brachytherapy 

Brachytherapy, or short range radiotherapy, is a method of radiation treatment 

wherein a radioactive source is placed in or near a tumor and the radiation from the 

decaying source causes damage to the tumor cells, often while sparing more surrounding 

normal tissue than external beam radiotherapy (13). Generally, brachytherapy uses sealed 

radioactive sources, radioactive material encapsulated within a metal wall, to deliver this 

form of treatment. It can be delivered interstitially, inside a cavity (intracavitary), or to the 

surface of a patient. Cancers that are commonly treated with brachytherapy are skin, 

breast, prostate, vaginal, cervix, and eye.(14) 

There are advantages to brachytherapy over external beam radiotherapy. First, 

brachytherapy involves placement of sources in or close to the target tissue, maximizing the 

tumor dose and minimizing the dose to surrounding normal tissue. Second, brachytherapy 

has a lower dose rate when compared to external beam radiotherapy.  The lower dose rate 

can be exploited, as will be explained below.    

Brachytherapy was first performed with radium sources, and later, radon, cobalt, 

tantalum, gold, and americium. Today, these sources have been replaced by cesium, 

iodine, iridium, and palladium (15). Brachytherapy, using the various isotopes, will either be 

classified as low dose rate (LDR) or high dose rate (HDR) depending on the ICRU 

definition. The International Commission on Radiation Units (ICRU) and Measurements 

Report 38 (16) defines three main categories of dose rate: high, medium, and low, as 

described in Table 1.  

 

Dose Rate Category Dose Rate (Gy/hr) 

Low Dose Rate (LDR) .04 - 2 

Medium Dose Rate (MDR) 2 - 12 

High Dose Rate (HDR) >12 

Table 1. Dose rate categories from ICRU Report 38 (16) 

Table 2 contains the most commonly used radioisotopes in each dose rate category, along 

with their dose rate, half-life, and gamma-ray energy range.  
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Isotope Dose Rate Half-life γ-ray Energy 

241Am LDR 432.2 years 13.9-59.5 keV 

137Cs HDR/LDR 30.0 years 662 keV 

60Co HDR/LDR 5.26 years 1.17-1.33 MeV 

198Au LDR 2.7 days 0.41-1.09 MeV 

125I LDR 59.4 days 35.5 keV 

192Ir HDR/LDR 73.8 days 0.14-1.06 MeV 

103Pd LDR 17.0 days 20-22.7 keV 

226Ra LDR 1622 years 0.05-2.4 MeV 

222Rn LDR 3.83 days 0.05-2.4 MeV 

182Ta LDR 115 days 0.04-1.45 MeV 

Table 2. Common brachytherapy radionuclides and their characteristics (14, 15) 

LDR brachytherapy involves placement of sources within or adjacent to the tumor 

for an extended period of time, often several days and in some cases, permanently.  The 

low dose rate allows normal tissue to perform repair during the treatment, in contrast with 

fractionated external beam therapy where repair takes place between treatment fractions.  

At the same time, however, the continuous dose delivery allows the total dose, or a large 

fraction of the dose, to be delivered in a shorter elapsed time, thereby minimizing tumor 

repopulation effects.  

In contrast, HDR brachytherapy combines the shorter overall treatment time and 

dose localization capabilities of LDR brachytherapy with the benefits of hypofractionated 

external beam therapy. With HDR, normal cells have time between treatment fractions to 

repair sublethal damage. (13)  

AAPM TG-43U1(17) discusses how to calculate the dose from brachytherapy 

sources, and AAPM TG-56 (18) discusses how to calibrate brachytherapy sources. TG-

43U1 will be discussed in detail in Chapter 2, and TG-56 will be briefly explained here for 

the most common HDR source, 192Ir. The HDR iridium source has no national standard; 

however, an interpolation can be made between 137Cs and orthovoltage energies. As an 

interim standard, the interpolative free air secondary standard method is now accepted. 

(19) To perform this calibration, air kerma rate measurements are taken along the z-axis of 

the source from 10 to 100 cm away with an ion chamber in a free air geometry. (Section 2.4 

and Figure 21 provide a detailed description of the TG-43U1-defined coordinate system.) 

The ion chamber should have a buildup cap thick enough to ensure secondary electron 
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equilibrium. The 192Ir air kerma calibration factor is derived by interpolating between the 

137Cs and orthovoltage air kerma factors, which are Accredited Dosimetry Calibration 

Laboratory (ADCL) or National Standards Institute of Technology (NIST) traceable. It 

should be noted that this calibration procedure is not recommended to be performed by 

clinical medical physicists, but rather by the trained calibration laboratory personnel. This 

procedure is only noted here for comparison with the Xoft Axxent calibration procedure.  

Both AAPM TG-56 and AAPM TG-59 (20) discuss how to perform a standard HDR 

treatment. This is discussed here very generally, again, for comparison with a Xoft Axxent 

electronic brachytherapy treatment. An HDR source is at the end of a long wire, which is 

kept within the shielded afterloader. The patient is setup with the catheter in place, within 

the appropriate applicator, as is applicable to the treatment. The personnel leave the room 

and operate the afterloader from outside the treatment vault. When the treatment begins, 

the source, on its wire, moves out of the afterloader and down into the catheter, and into the 

patient. Various dwell positions and dwell times of the HDR source, as determined with the 

treatment planning system (TPS) to achieve the desired dose to the tumor, are controlled 

by the HDR console during treatment.  

1.2.2 Electronic brachytherapy 

In response to complicated intraoperative radiotherapy procedures and 

requirements, as well as the inconvenience of dealing with radioactive materials regulations 

and security requirements, small, mobile, low kV x-ray sources were developed in the late 

1990s. (21) These sources have since been co-opted by the brachytherapy community. 

Their low energy x-rays greatly minimized exposure to the staff, though their usage is 

currently limited to small tumors. The Xoft Axxent system was ostensibly developed to 

mimic the treatment energies of HDR 192Ir so it could be directly substituted into many 

current cancer treatment techniques. 

AAPM TG-61 (22) covers low energy x-ray calibration and dosimetry. This is 

typically used for superficial and orthovoltage machines, but, the Xoft User’s Manual (22) 

states that it should be applied in the interim while an AAPM task group report is being 

prepared on electronic brachytherapy. Low kV x-ray calibrations should be traceable to a 

national standard, either NIST or an ADCL, and are performed in air, to obtain the air kerma 

strength. 

1.2.2.1 Xoft 

Xoft Axxent is an electronic brachytherapy system that consists of an electronic 

controller, a miniature electronic x-ray source inside a flexible catheter (shown in Figure 1), 
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and a balloon applicator. The x-ray tube inside the catheter is water-cooled with sterile 

water; the x-ray tube inside the catheter is shown in Figure 2. The catheter is 250 mm in 

length and 5.1-5.4 mm in diameter. (23)  

 

 

Figure 1. Xoft Axxent source in its shipment box. 

 

 

Figure 2. Drawing of inside the Xoft catheter.(1) 

The Xoft source can deliver dose at voltages of 40 kV, 45 kV, and 50 kV. The 

average energy of the Xoft spectrum at 50 kV is 26.6-26.7 keV. The dose rate is expected 

to be 0.6 Gy/min at 3 cm from the source axis. 

The power requirement for the Xoft Axxent device is 15 W. The maximum beam 

current is 300 µA, but is adjustable for treatment. The x-ray tube can be stepped to different 
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dwell positions within the catheter at millimeter intervals and for different dwell times, just as 

conventional HDR sources can be. The manufacturer recommends that each Xoft source is 

disposed of after whichever of the following occurs first: 10 fractions, 170 minutes of 

treatment time, or 35 days after the initial calibration, provided the cooling water is 

vacuumed out after each use. (24) All sources are disposable. The Xoft system complies 

with the International Electrotechnical Commission (IEC) medical electrical safety 

equipment standard 60601-2-17. (25) 

 

 

Figure 3. Xoft Axxent electronic brachytherapy system controller (24) 

Both BrachyVision and Plato TPS have been verified for use with the Xoft Axxent 

electronic brachytherapy source. If an electrical malfunction occurs during the treatment, as 

mandated by the IEC (25), the controller, shown in Figure 3, will stop the treatment and 

record the treatment values at that time. The display shows dwell position, and total 

planned time, elapsed time, and time left at current dwell position; the display screen, as 

part of the system controller, is shown in Figure 3.  

Air kerma strength is measured by the manufacturer prior to shipment, and again by 

the physicist prior to each fraction. Before each clinical treatment, the air kerma strength of 

the source is measured and compared to the “nominal” air kerma strength, which was 

determined when the system was initially calibrated and is used to create treatment plans. 

A ratio of the “nominal” to the measured air kerma strength is used to adjust the dwell times 
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in the TPS. The air kerma strength is measured in the attached Standard Imaging well 

chamber and electrometer (Models HDR 1000 Plus and MAX-4000, respectively (Standard 

Imaging, Middleton, WI)) using a custom insert that attenuates the source. The purpose of 

this insert is threefold: 1) it shields the source so personnel may remain in the treatment 

room while calibrating, 2) it absorbs the lower energy photons that would be absorbed in 

the applicator during treatment, and 3) it reduces the source output so it is within the 

operating range of the electrometer. This well chamber, insert, and electrometer system 

must be calibrated by an ADCL every two years.  

The well chamber calibration for this source has no NIST standard procedure; 

however, the ADCL at the University of Wisconsin (UW) developed a secondary calibration 

method combining methodology described in both TG-43U1 and TG-61 (Report 79) on low 

energy x-ray dosimetry. The calibration coefficient for the well chamber is based on a 

comparison of the I-125 national standard and the measurement of the Xoft Axxent source 

using an Attix free-air chamber (FAC) at the UWADCL (University of Wisconsin Accredited 

Dosimetry Calibration Laboratory). First, a well chamber calibration coefficient C is obtained 

for I-125, resulting in air kerma strength per corrected well chamber current unit (U/A). Next, 

the output of the Xoft source is measured in the FAC, and then in the well chamber; a 

calibration coefficient is obtained for Xoft. The ratio R is defined as the ratio of the Xoft 

calibration coefficient to C, the I-125 well chamber calibration coefficient. C times R results 

in NSK, or the air kerma strength well chamber calibration coefficient for Xoft. This is the 

“nominal” SK used in the TPS; SK is air kerma strength in U, and its full TG-43U1 definition 

is provided in Chapter 2. The manual describes a “compensated” air kerma strength value, 

which is the air kerma strength corrected for temperature and pressure. (24) 

Each patient receives their own disposable Xoft source. To deliver a treatment, the 

source is connected to the high voltage and water-cooling systems, calibrated in the well 

chamber, then finally inserted into the applicator in the patient. The operator may stay in the 

room during the treatment, due to the low energy nature of the x-rays produced by the Xoft 

source. This is an advantage to treating with Xoft. For example, for a breast cancer 

treatment, a 0.4 mm lead equivalent shield placed over the patient’s breast will reduce 

exposure from 15 mR/h to 1 mR/h at the operator’s location. However, the resulting 

scattered radiation will increase the dose to the patient. To further reduce exposure, 

personnel may wear lead-equivalent aprons. This also drastically reduces the room 

shielding requirements. (23) 
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TG-152 (publication date unknown) has been assigned to address clinical 

application and quality assurance procedures for electronic brachytherapy sources, 

including the Xoft Axxent system.  

1.2.2.2 Previous Xoft Studies 

Xoft has been studied as an alternative accelerated partial breast irradiation (APBI) 

method (10, 26), in nonmelanoma skin cancer treatment (12), and in endometrial cancer 

treatment (10). These studies were performed to compare Xoft with the current accepted 

treatment method, the 192Ir HDR source, in effectiveness and dose coverage. There have 

been poster displays describing the Xoft dosimetry as determined using MOSFET(27), film 

(28, 29), ion chambers(29), an x-ray spectrometer(29), and solid and liquid water (30), as 

well as Monte Carlo simulations (30-32), but the Rivard et al. paper (1) is the only published 

source that provides the TG-43U1 dosimetry parameters. It should be noted that these 

posters were all done in part by a Xoft employee, and so technically violate the TG-43U1 

recommendation that “independent and redundant dosimetric characterizations” be 

performed for every new brachytherapy source intended for clinical use. 

Rivard et al. used both Monte Carlo simulations and liquid water measurements with 

a PTW parallel plate ionization chamber to characterize the source.  The Monte Carlo 

simulations were based on the MCNP5 code and the EPDL97-based mcplib04 cross-

section library.  TG-43U1 parameters (radial dose function, anisotropy function) were 

determined for radial distances between 0.4 cm and 15 cm, and angles between 0° and 

175°.  Ion chamber measurements were made many locations corresponding to the 

calculation points.  Operating voltages of 40 kV, 45 kV and 50 kV were used for simulations 

and measurements. The Rivard et al. data was used to create the Xoft User’s Manual. 

Characterizing the Xoft source with PRESAGE is a novel experiment, and would add 

independently-derived dosimetry data to the existing body of knowledge. A better 

understanding of Xoft dosimetry can be used to more accurately treat patients.  

1.2.3 PRESAGE Dosimeters 

1.2.3.1 Gel Dosimetry 

PRESAGE (Heuris Pharma LLC) was introduced in 2003 as an alternative to gel 

dosimeters. Gel dosimetry was first explored in the 1950s; the first radiosensitive gels were 

doped with a dye and would change color due to a chemical reaction when exposed to 

radiation. The next type of gel dosimeter was doped with chloral hydrate, which reacted to 

radiation; the change in the gel could be observed using pH probe measurements or 
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spectrophotometry. In the 1980s, the chemical reaction to radiation in Fricke gels, which 

were doped with ferrous sulfate, could be imaged with an MRI machine.   

Another type of gel dosimeter, now more common, is the polymer gel dosimeter, 

which would polymerize as a function of dose when exposed to radiation. The 

polymerization could be measured using MRI, optical-CT, x-ray CT, or ultrasound. BANANA 

(made of bis-acrylamide in an aqueous agarose matrix, nitrous oxide, and agarose) and 

BANG (made of bis-acrylamide in an aqueous agarose matrix, nitrogen, and aqueous 

gelatin) gels are examples of polymer gels. The optical-CT scanner developed for use with 

these gels was a precursor to the optical-CT scanner used in this project. (33) 

There are drawbacks to using gel dosimeters. First, they are oxygen-sensitive; 

oxygen inhibits the polymerization process. Polymer gels must be manufactured and stored 

in an oxygen-free environment, which is not practical in a clinical setting. Next, gels must be 

stored in a container, but imaging the container results in edge artifacts, even when steps 

are taken to minimize these effects via refractive index matching fluid. In Fricke gels, 

diffusion of the ions caused a loss of spatial resolution and an unstable dose distribution. 

Other types of gels do not have the same diffusion issue. Lastly, when using optical-CT to 

image gel dosimeters, light scatter artifacts become an issue. PRESAGE addresses these 

issues, as explained in the next section. (34)  

1.2.3.2 Characteristics of PRESAGE 3D Dosimeters 

When exposed to radiation, PRESAGE dosimeters produce an optical density 

change that can be imaged with an optical-CT to determine dose. A PRESAGE dosimeter, 

as seen in Figure 4, is a polyurethane-based dosimeter that is doped with leucomalachite 

green (LMG) dye which reacts linearly to radiation dose, regardless of photon energy and 

dose rate. (6) Halocarbon free radical initiators respond to high energy radiation, and in so 

doing, oxidize the LMG, creating the change in OD. The sensitivity of the dosimeter 

depends on the type of halogens used in the initiator. (35) The oxidation of the LMG dye 

creates a stable signal in PRESAGE. However, some current experimental formulations of 

PRESAGE are attempting to create a reusable dosimeter and so do not allow a lasting 

stable signal. Different PRESAGE formulations are made to be more sensitive to different 

types of radiation, e.g., photons versus protons.  

- 
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Figure 4. Example of an irradiated solid 1 kg PRESAGE dosimeter. 

PRESAGE was created so the user can acquire a 3D volume of data from a single 

irradiation. PRESAGE is imaged using an optical-CT scanner, which provides the user with 

the optical density changes in the dosimeter which are used to determine dose. (6) The 

resolution of PRESAGE depends on the resolution of the scanner used to image it (see 

section 1.2.3.2 for more information). Its effective Z is ~7.7, which closely mimics that of 

soft tissue or water (Zeff ~ 7.4, in both cases). The density of PRESAGE is 1.05 g/cm3, 

which compares well with that of water. (36) PRESAGE, unlike gel dosimeters, is not 

oxygen sensitive and requires no external container. With PRESAGE, there is no diffusion 

of the dye, and it can be synthesized into different shapes and sizes.  PRESAGE is, 

however, light and heat sensitive. 

Although PRESAGE is currently best used as a relative dosimeter, an absolute dose 

calibration curve can be created for each batch of PRESAGE using cuvettes containing the 

PRESAGE material. The cuvettes are irradiated to a range of doses, then the optical 

density (OD) is read out. A graph of OD change versus dose in Gy is created and can be 

used to scale the larger PRESAGE dosimeters from that batch to an absolute dose. The 

calibration curve illustrates that the change in OD is linear with dose. The calibration curve 

can account for signal changes post-irradiation; it has been shown that the “standard” 

formulation signal can fade by 4% per 24-hour post-irradiation period. (6) With a slightly 
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different formulation (the “soft” batch), this signal fading can be accelerated, so that a 

dosimeter would be bleached and reusable after a week. Current research in this direction 

is ongoing. 

1.2.3.3 Drawbacks of PRESAGE 

PRESAGE is sensitive to UV and blue light (35). To prevent this sensitivity, 

PRESAGE is stored in black, light-tight bags when not in use. Scanning and irriadiating is 

performed with the lights out. PRESAGE is also sensitive to temperature. This issue is dealt 

with by storing PRESAGE in a refrigerator kept at 4° C. For the entire pre-irradiation scan, 

irradiation, post-irradiation scan process, it is recommended that the PRESAGE be kept at 

room temperature for accurate dosimetry. (6, 37) 

1.2.3.4 Optical-CT Imaging with DMOS 

The optical-CT scanner used at the Imaging and Radiation Oncology Core in 

Houston (IROC-Houston, formerly the Radiological Physics Center (RPC)) is called DMOS 

(Duke Medium-field-of-view optical-CT scanner) and it is shown in Figure 5. The 

configuration of the scanner is as follows: a diffuse red LED light shines through the 

dosimeter, which is placed in an indexing tank, and on through a lens into a CCD camera. 

The aquarium is filled with a mix of octyl salicylate, octyl cinnamate, and light mineral oil to 

match the refractive index of the dosimeter at the fluid-dosimeter interfaces; this helps 

prevent dosimeter edge effects that blur the optical density signal. (38) The LMG dye used 

in PRESAGE was chosen, in part, because its visible absorbance maximum corresponds to 

the 633 nm red laser light that was used to optically scan PRESAGE in the first 

commercially-available optical-CT scanner. (6) The DMOS has a red LED light of the same 

wavelength. 
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Figure 5. Diagram of DMOS system's main components. 

The dosimeter rotates via an electronic stepper motor base. The lens rejects stray 

light that is further than 0.1° off the optical axis. The camera takes line integrals at each 

projection angle, which are used to reconstruct a 3D image via filtered backprojection. 

LabView is used to collect the images and rotate the dosimeter. An example of the DMOS 

Acquisition GUI (Duke University, NC) is shown in Figure 6. The user enters the filename 

stem, the file destination, and the scanning parameters. (39) The total scan time for a 1 kg 

dosimeter is between 15 and 20 minutes. This is a vast improvement on the first 

commercially available optical-CT scanner mentioned previously, which took 7 minutes per 

z slice, for a total scan time of a few hours. (40) 

Dosimeters are scanned prior to and after irradiation so that background and final 

OD can be determined. In general, 720 projection images are taken, one every 0.5°; 8 

images are averaged together at each projection angle. A flood image is taken without a 

PRESAGE dosimeter in the aquarium to correct for inhomogeneities in both the matching 

fluid and LED light field. A dark image is taken to correct for electronic noise. Both the flood 

and dark images are 200 averages of one projection image.  
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Figure 6. Screenshot of DMOS Acquisition GUI without a dosimeter in the tank. 

The spatial resolution of the system depends on user settings and available storage 

space for the projection images. Typically, the dosimeters at IROC-Houston are scanned to 

have either 0.5 mm or 1 mm voxels. The resolution of PRESAGE can only be as high as 

the resolution of the scanner used to image it. The CCD Basler camera captures 12-bit 

monochromatic 1040x1392 pixel arrays.  

Monochromatic light attenuates exponentially under narrow beam conditions, as 

exist in the DMOS. The optical-CT readout of a dose response in PRESAGE is explained 

by this 2D, i.e., per projection angle, equation:  

 𝐼(𝑥) = 𝐼0𝑒− ∫ 𝜇(𝑥,𝑦)𝑑𝑦 Eqn. 1 

Here, I0 is the incident intensity of the light hitting the dosimeter, I(x) is the intensity of the 

light exiting the dosimeter at position x, and µ(x, y) is the optical attenuation coefficient per 

unit length. (33) From this equation, we can calculate the OD, or absorbance, of the 

dosimeter with this equation:  

 𝑂𝐷 =  − log (𝐼
𝐼0

⁄ ) (7) Eqn. 2 

This is what is calculated and saved in the 3D data cube matrix output from the 

Reconstruction software. From the OD, the dose can be calculated, either by the cuvette 

calibration curve, or the following equation:  
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 𝐷𝑜𝑠𝑒 =  −
𝑂𝐷

𝑠 ×  𝑥
 Eqn. 3 

where OD is defined previously, s is the sensitivity (∆OD/Gy/cm) and x is the irradiated path 

length in cm. If relative dose is all that is needed, the data cube is normalized to a user-

specified dose delivered at a user-specified location. 

Reconstruction of the projection images is completed using the DMOS software; a 

screenshot of the Reconstruction GUI is shown in Figure 7. First, the pre-irradiation and 

post-irradiation optical-CT scan images are each loaded together with a flood image and a 

dark image to make the corresponding corrections for background noise. To create the 

sinogram, a 5x5 kernel median filter is applied to reduce noise, and a 1 mm voxel size is 

selected for reconstruction. As part of this process, the pre-irradiation scan image is 

subtracted from the post-irradiation scan image to obtain a net change in the dosimeter. In 

the end, a series of 2D sinograms is generated.  

A sinogram is a single image of all the raw data acquired by the CT scanner; an 

example sinogram can be seen in the top right corner of Figure 8. The horizontal axis of the 

sinogram represents each angle at which a projection image was taken; for this experiment, 

a projection image was taken every 0.5° from 0° to 360°. The vertical axis of the sinogram 

represents the projection images taken; 720 projection images were taken in this 

experiment. Filtered backprojection (FBP) is an iterative reconstruction technique which 

uses the sinogram to reconstruct a 3D tomographic image of the original scanned object; it 

is the “computed” in CT’s computed tomography.   

To perform FBP, the backprojection is completed first. Backprojection reverses the 

image acquisition steps, taking the linear optical attenuation coefficient µ for each 

projection, and “smearing” it back along the angle at which the projection image was taken 

into its position in an empty image matrix; backprojection will fill the image matrix. In this 

manner, the high attenuation areas reinforce each other, as do the low attenuation areas, 

creating a 3D reconstructed image representation of the original object scanned. A filter is 

applied to correct the 1/r blurring caused by reconstructing an image using 

backprojection.(41)  

The DMOS Reconstruction GUI, seen in Figure 7, reconstructs the final 3D optical-

CT image of the dosimeter via filtered backprojection; the “iradon” function in MATLAB 

performs the backprojection, and the RAM LAK filter smoothes out the blurriness (42). The 

user selects the center of rotation (COR) to reconstruct around, and the size of the data 

cube in mm, which should be slightly larger than the physical dosimeter size. The final 3D 
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“image” is saved as a data cube, which is the input for the radial and anisotropy data 

extraction scripts. (39)  

 

 

Figure 7. Screenshot of the DMOS Reconstruction GUI. 

  

1.2.3.5 Previous work with PRESAGE 

PRESAGE has been used to check IMRT dose distributions, and was found to be 

accurate to within 3%/3mm when evaluating dose distributions using the gamma index. (43) 

A gamma index comparison between EBT film, PRESAGE, and software-calculated dose 

distributions found three-way agreement to be within 4%/4mm. (40) An investigation of 

PRESAGE to measure doses  in the RPC head and neck (H&N) phantom yielded 

acceptable results; a gamma index comparison between Eclipse, PRESAGE, and EBT was 

within 4%/4mm for that experiment (44). PRESAGE has been investigated for use with 

radiosurgery treatment systems; Niebanck found less than 3% standard deviation of dose in 

the target (3) and Clift et al. measured scatter factors in PRESAGE that agreed with ion 

chamber measurements within 4% for every field (45). PRESAGE has also been 

investigated as a new way to perform IMRT QA, with a 94.9% passing rate for a 3%/2mm 

gamma index. (46) PRESAGE was used to obtain TG-43 dosimetric parameters for the 192Ir 

source, with a percentage of standard deviation between PRESAGE and published results 
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of 2.6% or less. (8) This will be the first time PRESAGE has been used to characterize an 

electronic brachytherapy source. 

1.3 Hypothesis and Specific Aims 

We hypothesize that PRESAGE dosimeters can measure, with 95% confidence, the 

AAPM TG-43U1 dosimetric parameters of the Xoft Axxent electronic brachytherapy source, 

to within 5% and 3mm of published values. 

The specific aims for testing this hypothesis: 

1. Write code specifically for use with PRESAGE dosimeters in MATLAB to extract 

data for TG-43U1 analysis.  

2. Determine the TG-43U1 parameters of the Xoft Axxent electronic brachytherapy 

source using PRESAGE dosimeters. TG-43U1 parameters will be extracted from the optical 

scans of the irradiated dosimeters via the code developed in Specific Aim 1. 

3. Compare PRESAGE-measured TG-43U1 parameters for the Xoft Axxent 

electronic brachytherapy system with published parameters.  

2 Methods & Materials 

2.1 Dosimeter Design 

Two formulations of PRESAGETM were irradiated with the Xoft source - a "soft" 

batch (#46), and a "hard" batch (#45. According to the manufacturer, the difference 

between the two formulations is the polyurethane used - soft versus hard. The soft batch is 

more tissue-equivalent, but will bleach over time (a new experimental formula), and the 

hard dosimeters are the usual PRESAGE formulation. The dosimeters are approximately 1 

kg, 12 cm in height, and 11 cm in diameter. Due to the size of the DMOS tank and the field-

of-view of the DMOS camera, the dosimeters cannot be much larger than this. The size of 

the dosimeters also limits the maximum radius to which the dose can be measured to 

approximately 5 cm. 

Both formulations of PRESAGE were cast with two different channel sizes, as seen 

in Figures 8-9. The two channel sizes were first suggested by Olivia Huang's research 

using AgX100 I-125 seeds (7). She found that because PRESAGE reacts linearly to dose, a 

large dose near the source will cause a great change in OD, such that when the dosimeter 

is optically CT-scanned, imaging through the center becomes difficult since the dye is so 

dark there. However, if the dosimeter is irradiated with the source in a PRESAGE plug 

(seen in Figure 10) in a large channel, the plug may be removed when the dosimeter is 

optically CT-scanned, and the center of the dosimeter won’t be as dark since the plug has 

been irradiated to the high dose instead of the dosimeter. In Huang’s experiment, a higher 
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dose was given to the large channel dosimeters than to the small channel dosimeters so 

that the dose at large radii would be readable in the scanner. Likewise, a smaller dose was 

given to the small channel dosimeters so that the dose in the center of the dosimeter could 

be read by the scanner. This way, the dose throughout the dosimeter could be measured. 

However, Huang also found that a higher dose than she used could be given to the 

dosimeters, and it was decided that for this experiment, the same, higher dose would be 

given to both channel sizes and both PRESAGE formulations. 

 

 

Figure 8. PRESAGE with 1.5 cm diameter large channel (soft batch). 

 

Figure 9. PRESAGE with 5.3 mm small channel (hard batch). 

 

Figure 10. Irradiated plug for large channel dosimeters; note the darkened end where 
the x-ray tube was located within the Xoft catheter within the plug. 

For this experiment, the larger channel size was 1.5 cm in diameter, with a 

PRESAGE plug, or insert, that fit exactly into the channel to keep the Xoft source secure in 
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a homogenous attenuating medium. The plug was removed for imaging, and the channel 

was filled with matching fluid. The smaller channel size was 5.1 mm in diameter, sized so 

that the Xoft source fit perfectly in place. From Huang's thesis, the smaller channel size was 

used to measure doses out to a radius of 2.5 or 3 cm, and the larger channel size was used 

to measure doses out to the edge of the dosimeter, at a radius of approximately 5 cm. For 

this experiment, however, it was decided that both channel sizes and both formulations 

could be irradiated to 15 Gy at 1 cm without any OD read-out issues. 

2.2 Treatment setup and delivery 

2.2.1 Dose calibration 

Five cuvettes containing the soft PRESAGE formulation and ten cuvettes containing 

the hard PRESAGE formulation were requested from the manufacturer along with the 1 kg 

dosimeters used for this experiment. Cuvettes, seen in Figure 11, are small plastic vials, 

approximately 1 cm square and approximately 5 cm long, containing PRESAGE. Cuvettes 

are used to determine absolute dose for different PRESAGE batches, since PRESAGE is a 

relative dosimeter.  

 

Figure 11. PRESAGE cuvettes for dose calibration. 

Prior to irradiation, the cuvettes were labeled (S1-S5 and H1-H10) and their 

absorbance at 633 nm was determined in a Genesys 20 spectrophotometer (Thermo 

Scientific, Waltham, MA). This established a background optical density. The cuvettes were 

scanned in two directions to ensure the optical density was approximately the same 

throughout.   

The cuvettes were irradiated with an orthovoltage machine at 125 kVp, which has a 

dose rate of 74.76 cGy/min. The cuvettes should have been irradiated at 75 kVp, the beam 

closest to the 50 kVp Xoft energy characterized and available at this institution. However, 

the cuvettes were inadvertently irradiated with the 125 kVp beam instead. The doses to the 

cuvettes were originally calculated assuming the 75 kVp beam, but when the error was 

realized, the doses were recalculated.  
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For the irradiation setup, the cuvettes were placed on top of approximately 10 cm of 

solid water to prevent backscatter, and within an acrylic sheet with a cutout in the center 

large enough to place four cuvettes side-by-side. Any gap within the acrylic sheet was filled 

with previously irradiated cuvettes for consistent material densities. This setup can be seen 

in Figure 12. The SSD was 50 cm, the field size was 10 cm by 10 cm, the irradiation was to 

the surface, and the dose was calculated to muscle. 

 

Figure 12. Cuvette irradiation setup (7). 

The cuvettes were given half their total dose on one side, then turned over 180° and 

irradiated to the rest of the dose. This was to ensure that the cuvettes were evenly 

irradiated to the total dose, so the dose profile would not have any steep gradients. The 

cuvettes were irradiated to an evenly-spaced range of doses, as seen on the x-axes in 

Figures 13-14, with one held aside so a “zero” dose mark could be obtained. The cuvettes 

were irradiated to different doses so a dose calibration curve could be obtained - OD versus 

dose. 

After irradiation, the cuvettes were scanned in the same spectrophotometer at 633 

nm, again in two directions, and the ODs recorded. A graph of OD versus dose was created 

for both batches of cuvettes, as seen in Figures 13-14. Net OD was calculated by 

subtracting the average of the pre-irradiation scan ODs from the average of the post-

irradiation scan ODs.  
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Figure 13. Hard dosimeters dose response curve with a linear fit and corresponding 
R2 value. 

  

Figure 14. Soft dosimeters dose response curve with a linear fit and corresponding 
R2 value. 

2.2.2 Pre-irradiation 

The dosimeters were stored in black bags in a refrigerator kept at 4° C; PRESAGE 

is light and heat sensitive, and this procedure reduces background exposure of the 

dosimeters. Prior to scanning or irradiation, the dosimeter was removed from the fridge and 

allowed to warm up to room temperature for at least six hours.  

Eight total dosimeters were used in this experiment, four of the hard formulation, 

and four of the soft. Of the four hard dosimeters, one had a large channel, and three had a 
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small channel. Of the four soft dosimeters, two had a large channel, and two had a small 

channel. The dosimeters all had a small base glued on the bottom so they could be 

reproducibly placed and scanned in the DMOS. Since there were two different formulations, 

two different refractive index (RI) matching fluid compositions had to be created prior to the 

pre-irradiation scans. The soft dosimeters were scanned first; mineral oil was used to lower 

the RI to approximately 1.485. Next, the hard dosimeters were scanned; cinnimate was 

added to the tank to raise the RI to approximately 1.495. 

Since UT MD Anderson does not have a Xoft source, after the dosimeters were pre-

irradiation scanned to obtain a measurement baseline, they were shipped in a light-tight box 

to the UWADCL. 

2.2.3 Treatment delivery 

The Xoft Axxent controller is used to deliver treatment in the clinic. However, for this 

experiment, a Modulation Test Fixture (MTF), seen in Figure 15, provided by the 

manufacturer to the UWADCL was used. It mimics the electronic controller and TPS; it 

allows the user to adjust the tube voltage and current, among other settings. The MTF uses 

a Monte Carlo software package to create "treatment plans," which allow time for the 

source voltage and current to ramp up and ramp down. Well chamber measurements can 

be made in either the provided Standard Imaging shielded well chamber (identical to the 

one provided with the commercial unit) or the NIST-calibrated Standard Imaging well 

chamber; for this experiment, measurements were taken in the NIST-calibrated well 

chamber. 
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Figure 15. MTF at UWADCL. 

Due to the complicated procedures required to run the MTF, the staff at UWADCL 

ran the unit according to the irradiation time calculation provided to them. The irradiation 

time calculations had the units minutes per unit air kerma (in U), so that when the well 

chamber measurement of the Xoft source was taken, irradiation time was solved for and 

then plugged into the Monte Carlo system. The manufacturer gave the air kerma strength of 

the selected source, provided by Xoft (Xoft, San Jose, CA), as 126095 U. The UWADCL 

calibrated air kerma strength for this source was 1.180x1012 U/A. 

Initially, the calculated treatment time was less than one minute, which would 

introduce large ramp up errors into the dose calculations. To lengthen the treatment time, 

the weaker of the two provided Xoft Axxent sources was selected for use (SK stated 

previously); unfortunately, this only added a few seconds to the total irradiation time. To 

further lengthen the treatment time, the treatment amperage was lowered; test protocols 

were run at both 200 µA and 100 µA. At 100 µA, the treatment time was three minutes, and 

so the ramp error was greatly reduced. Previous (currently unpublished) studies at UW 

have shown that operating the source at these lower currents is an acceptable method to 

lengthen treatment times to minimize ramping errors.  
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A protocol was created to run at 50 kV and 100 µA for 180 seconds. This procedure 

was followed for all 8 irradiations. However, during all of the soft batch PRESAGE 

irradiations, the source arced part of the way into the irradiation. A new protocol was 

created for each of these cases to irradiate for the remainder of the 180 seconds. This 

introduced more ramp up error into the irradiation, but it did not change the total dose 

delivered by more than 2.7%.  

For the irradiations, the dosimeters were placed in a cylindrical phantom, 

approximately 29 cm in diameter. Foam was used to reduce the diameter to approximately 

21 cm, then the dosimeter was placed on a base that raised it approximately 5 cm above 

the bottom of the phantom. Rice was then poured around the dosimeter, which was still 

enclosed in a black bag to protect it from light. The rice, a tissue equivalent material, was 

used to produce backscatter that would be comparable to the backscatter of the ion 

chamber measurements and the Monte Carlo calculations. Rice was used instead of water 

because PRESAGE, particularly soft batch PRESAGE, is partially soluble in water. The 

dosimeter was centered in the phantom so that it was surrounded on all sides by 

approximately 5 cm of rice. For ease of transfer between dosimeters, a plastic bag was 

placed into the tank for the rice to be poured into and out of. This setup is shown in Figure 

16. 

 

Figure 16. Dosimeter shielded from light and surrounded by rice in phantom. 
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With the room lights out, the Xoft catheter was placed, either directly into the small 

channel or into the PRESAGE plug then into the large channel (seen in Figure 17). In either 

case, the catheter and plug were inserted to the very bottom of the channel. As stated 

previously, all dosimeters were irradiated to 15 Gy at 1 cm with a treatment time of 180 

seconds. In the cases when the source arced, the 180 second treatment time was 

completed, but the dose was calculated to be closer to 15.41 Gy, due to the additional ramp 

up error. The dosimeters were shipped back to IROC-Houston post-irradiation, and 

scanned in the DMOS as soon as the experimenter returned.  

 

 

Figure 17. Xoft Axxent source inside plug inside PRESAGE dosimeter. 

2.3 Imaging and analysis 

2.3.1 Optical-CT imaging 

The dosimeters were scanned post-irradiation according to the methods outlined in 

Chapter 1. Due to the two different PRESAGE batch formulations, the RI of the matching 

fluid was monitored and adjusted as needed to match the RIs used during the pre-

irradiation scans. Reconstruction of the images was also performed according to the 

methods described in Chapter 1. 
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2.3.2 Data Acquisition in MATLAB 

In an earlier work, to extract the TG-43U1 data from the DMOS optical-CT scans, 

the scans were imported into the Computational Environment for Radiotherapy Research 

(CERR) and the OD was scaled according to the calibration curve obtained from the 

cuvettes. Line profiles were taken, which create a plot of dose versus dosimeter radius, and 

parameters were input into an Excel spreadsheet for analysis. Since this is a lengthy 

process, only 12 points from each radius were taken and averaged together (7). To make 

data extraction faster and simpler, as well as to obtain more points for use in the average 

dose, code was written to do this instead.  

Two separate scripts were written - one to calculate the radial dose function, called 

radialunicorns.m, and the other to calculate the anisotropy function, called 

anisotropyunicorns.m. The codes work in similar ways: they both take an average of the 

value of the data cube within an annulus. The coordinate system used to define the annulus 

in PRESAGE is depicted in Figure 18. The annulus is defined as 3 z-planes thick, centered 

around the anode’s z-plane, with the inner and outer radii ±0.5 mm from the defined radius 

given by Rivard et al. (1); an example annulus is shown in Figure 19. For the anisotropy 

function, averages were also taken every 10° for each given radius. The polar angles noted 

were also taken from Rivard et al. (1), for ease of comparison. The entire cube is searched 

for points within the annulus. 
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Figure 18. Diagram of the transverse plane (red dashed circle) and another 
measurement plane at θ (black dashed circle), in the PRESAGE dosimeter. 

The average value of the data cube is output as an unnormalized average dose rate 

at that radius, or at that radius and angle. 

 These two codes are written out in Appendix B. To use them, the user must type the 

location of the input data cube file in the *.m file so it can be loaded, then run the script. 

This data cube is saved from the Reconstruction GUI discussed previously. The script will 

ask the user for the (x,y,z) center of the data cube, i.e., the location of the Xoft Axxent 

anode, from which point the script will do radius and angle calculations. The z-axis is 

defined in the data cube by the DMOS Reconstruction software, and MATLAB uses this 

definition when it imports the data cube. The x- and y-axes are less important because the 

radius and polar angle calculations are both performed with respect to the z-axis only. The 

user will also be asked to enter the size of the data cube (x,y,z). Both of these coordinate 

sets can be obtained by running GUIPhoenixFire.m, a code developed by a fellow lab group 

member, Slade Klawikowski, to extract dose from CyberKnife PRESAGE irradiations. A 

screenshot of the GUIPhoenixFire.m program is shown in Figure 20. 
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Figure 19. The image on the left is a top view of the dosimeter showing the annulus 
described; the z-axis points into the page. The dashed red line is the radius from 

which the delta is applied. The black circle at the center is the channel, and the black 
outline is the outer edge of the dosimeter.   

Notice the sliders at the bottom of the GUI; the long slider allows the user to page 

through the optical-CT slices in z, and the x and y sliders that allow the user to select the 

center of the dosimeter. From these three sliders, the user can determine both the (x,y,z) 

center and the (x,y,z) extent of the data cube. The center of the dosimeter is not its 

measured center, but rather the point in the channel where the anode of the Xoft catheter is 

expected to be. When stepping through the z slices of the dosimeter in the PhoenixFire 

GUI, the anode was assumed to be in the last slice of the channel, as shown in Figure 20. 

 

 

PRESAGE 
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Inner R 

Radius 
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Figure 20. Screenshot of PhoenixFire GUI, showing z slice where anode is located. 

The radialunicorns.m code output a MS Excel spreadsheet of the average relative 

dose rate within each annulus for each radius. The anisotropyunicorns.m code output a MS 

Excel spreadsheet also which contains the average relative dose rate for each radius and 

angle pair. The code allows the user to name select where to save the Excel files. The data 

within these files is used to calculate the TG-43U1 parameters, which are then compared to 

the TG-43U1 parameters given in Rivard et al. (1) for Specific Aim 3.  

2.3.2.1 Testing the code 

To ensure the scripts written worked correctly, a number of test scenarios were 

created where the outcome of the script could be estimated easily by the user. The first test 

was sending a data cube matrix of all ones through the script. The output of the script 

calculated the average value for each radius annulus as one, as expected. Next, a small 

(9x9x9) data cube matrix was created where the value of the data cube was equal to the 

radius at that point, e.g., at r=3, the value is 3. This test matrix returned expected results, 

i.e., the average value at r=3 was ~3. As a final test, a data cube of similar size to those 

used in this project was run through the complete code. The data cube was taken from a 

CyberKnife irradiation, and had two peaks, one sharp and towards the top of the dosimeter, 

and one broad and flat, towards the bottom. The dose from these irradiations had some 
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angular dependence. The code was run twice, using both peaks as the center calculation 

point. The output results were as expected. 

2.4 TG-43U1 Formalism 

The AAPM TG-43U1 report is recommended for dosimetry analysis of a 

brachytherapy source. Until the AAPM Task Group No. 182 Report Recommendations on 

Electronic Brachytherapy Quality Management is released, TG-43U1 will be used.  

Figure 21 shows the polar coordinate system as defined in the report and used 

here. The orientation of the Xoft source in this image is down the z-axis; the L bracket 

denotes the anode location. The report defines the point of interest as P(r,θ), and the 

reference point as P(r0,θ0), where r0 is 1 cm and θ0 is 90° or π/2 radians. These coordinates 

and points are used to determine the radial dose function and the anisotropy function. 

 

Figure 21. Modified TG-43U1 coordinate system for brachytherapy dose calculations. 
L is the active length of the source in centimeters, r is the distance from the center of 

the source to the point of interest P(r,θ) in centimeters, and θ is the polar angle 
between the radius r and the longitudinal (z) axis of the source. (17) 

2.4.1 Air kerma strength.  

Air kerma strength SK is given in units of U, where 1 U = 1 cGy cm2/h = 1 µGy m2/h. 

TG-43U1 defines SK as the air kerma rate in a vacuum due to photons of energy greater 

than δ, at a distance d, multiplied by the distance squared.  

 𝑆𝐾 =  𝐾𝛿̇(𝑑)𝑑2 Eqn. 4 
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The distance d is defined as the distance from the source center to the point of 

interest where SK is specified. The energy cutoff δ is usually set to 5 keV to exclude low 

energy photons in the XOFT source emission spectrum that do not deliver significant dose 

past 0.1 cm in tissue. The air kerma rate is generally measured with a free air device at 

large (~1m) distances.  

Air kerma strength values are reported by the manufacturer, but can also be 

calibrated by an ADCL, which is traceable to the 1999 NIST standard for I-125 model 

MED3631-A/M (17). However, for the Xoft source, there is no NIST standard for air kerma 

strength, so the workaround calibration procedure is used. 

2.4.2 Air kerma rate calibration  

Because there is no NIST standard for this source, a workaround has been created 

by the UWADCL by combining the procedures in TG-43U1, the task group on 

brachytherapy dosimetry, and TG-61, which covers low energy (40-300 kV) x-ray beam 

dosimetry.  

First, the air kerma of an I-125 seed is measured in the shielded well chamber which 

comes with the Xoft system, using the insert that places the seed at the “sweet spot.” The 

sweet spot is defined as the point in the well chamber at which the reading from the source 

is at a maximum.(14) The calibration coefficient "C" is calculated as the air kerma divided 

by the corrected chamber current. Next, the Xoft source is placed in an Attix free air 

chamber (FAC) and the output is measured. The ratio "R" is taken of the Xoft and I-125 

coefficients, so that NSK = R x C, and NSK is defined as the Xoft air kerma in the well 

chamber. This NSK value is placed in the TPS as the nominal air kerma, and is compared to 

each new source's measured air kerma in the well chamber.  

 In clinical use, the air kerma strength of the source is measured prior to each 

fraction in the attached shielded Standard Imaging well chamber, using the insert described 

previously. This air kerma strength measurement, in U, is input into the TPS, which 

calculates dwell time and position.  

 The attached well chamber is calibrated every two years by the ADCL, as per 

requirements. The Xoft manual speaks of compensated air kerma, which is defined as air 

kerma that is temperature and pressure corrected. The final equation for compensated air 

kerma is, in units of U:  

 𝑆𝐾 =  𝑁𝑆𝐾 ×  𝑃𝑒𝑙𝑒𝑐  × 𝑀𝑟𝑎𝑤  ×  𝐶𝑇,𝑃  × 𝑃𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 Eqn. 5 

2.4.3 Dose rate 

The 2D dose rate to water equation as specified in TG-43U1 is  
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𝐷̇(𝑟, 𝜃) = 𝑆𝐾  ×  Λ × 

𝐺𝐿(𝑟, 𝜃)

𝐺𝐿(𝑟0, 𝜃0)
 × 𝑔𝐿(𝑟) × 𝐹(𝑟, 𝜃) Eqn. 6 

However, for this experiment, Gp(r,θ) and gp(r) are used, as was done in the Rivard et al. 

paper (1). This formalism assumes that the source has a cylindrically symmetric dose 

distribution with respect to the z-axis, and that the radiation emanates from a point source. 

Dose rate is in units of cGy per hour. The dose rate in PRESAGE was calculated using this 

equation and the tables in the Xoft manual (24). These tables are located in Appendix A. All 

dosimeters were irradiated to the same dose, so all dosimeters have the same calculated 

dose rate. The calculated dose rate for the PRESAGE irradiations was 

 𝐷̇(1 𝑐𝑚, 90°) = 126095 𝑈 ×  0.709 𝑐𝐺𝑦 ℎ−1𝑈−1  × 1 × 1 × 1 = 894 𝐺𝑦 ℎ−1 Eqn.7 

2.4.4 Dose rate constant 

TG-43U1 defines the dose rate constant in water (Λ) as the ratio of the dose rate at 

the reference point to the air kerma strength.  

 Λ =  
𝐷̇(𝑟0, 𝜃0)

𝑆𝐾
 Eqn. 8 

Λ has units of cGy per hour per U. The dose rate constant for Xoft was measured in both 

solid and liquid water, as well as calculated using a Monte Carlo model. The unfiltered 

source dose rate constant was not published in Rivard et al. (1), and so is taken from the 

Xoft Operator’s Manual. 

 

 Dose Rate Constant (cGy hr-1 U-1) 

Unfiltered 50 kV source 0.709 

Table 3. Dose rate constant (24) 

  

2.4.5 Geometry function 

According to TG-43U1, the geometry function provides an inverse square law 

correction based on the approximate spatial distribution of radioactivity in the source. 

Therefore, there is both a point source and a line source approximation. The effective 

length Leff of the anode in the Xoft source is 0.1 cm. Rivard et al. (1) states that at this small 

Leff, the difference between using the line source approximation and the point source 

approximation is not more than 1%, therefore they set Leff = 0, and use the point source 

approximation for the geometry function. As this paper is comparing its results to that 

paper, the same steps will be taken here. Therefore, the geometry function Gp(r,θ) is 1/r2 or 

(r0/r)2, where r and r0 are defined as before.  
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Radius (cm) 1 2 3 4 5 

Gp(r) 1 4 9 16 25 

Table 4. Geometry factors for a point source. 

2.4.6 Anisotropy function 

TG-43U1 defines the 2D anisotropy function F(r,θ) as the variation in dose as a 

function of polar angle relative to the transverse plane (i.e., at θ=90°). The equation is  

 𝐹(𝑟, 𝜃) =  
𝐷̇(𝑟, 𝜃) 𝐺𝐿(𝑟, 𝜃0)

𝐷̇(𝑟, 𝜃0) 𝐺𝐿(𝑟, 𝜃)
 Eqn. 9 

F(r0,θ0) = 1, and will decrease as r decreases, as θ approaches 0° or 180°, as 

encapsulation thickness increases, or as photon energy decreases. For this experiment, to 

match the Rivard et al. data (1), the point source geometry function Gp(r,θ) was used. The 

values for the anisotropy function for Xoft are shown in the table below, taken from the 

Rivard et al. paper. (1, 24)  

 

θ(degrees) F(2,θ) F(3,θ) F(5,θ) 

0 0.993 1.018 1.050 

10 1.001 1.027 1.054 

20 1.013 1.037 1.059 

30 1.024 1.042 1.065 

40 1.052 1.065 1.075 

50 1.072 1.080 1.080 

60 1.075 1.079 1.075 

70 1.063 1.065 1.062 

80 1.037 1.038 1.036 

90 1.000 1.000 1.000 

100 0.953 0.954 0.950 

110 0.895 0.896 0.894 

120 0.820 0.824 0.825 

130 0.709 0.721 0.731 

140 0.564 0.590 0.616 

150 
 

0.426 0.473 

160 
  

0.364 
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Table 5. Measured anisotropy function at 50 kV (1) 

 The anisotropy function in PRESAGE was calculated using the above equation, 

which reduces to 

 𝐹(𝑟, 𝜃) =  
𝐷̇(𝑟, 𝜃)

𝐷̇(𝑟, 90°) 
 Eqn. 10 

The dose rate values were pulled from the data using the script, as described in the Data 

Acquisition section. The dose rate values were corrected for zero dose as described in 

Chapter 3.  

2.4.7 Radial Dose Function 

The radial dose function gp(r) accounts for dose falloff due to attenuation and 

scattering; this does not include dose falloff from the inverse square law, since that is 

already accounted for in the geometry function. The equation for a point source (1D) is  

 𝑔𝑝(𝑟) =  
𝐷̇(𝑟, 𝜃0) 𝐺𝑝(𝑟0, 𝜃0)

𝐷̇(𝑟0, 𝜃0) 𝐺𝑝(𝑟, 𝜃0)
 Eqn. 11 

Below are the values from Rivard et al. (1). 

 

r (cm) gp(r ) 

1.0 1.000 

1.2 0.920 

1.4 0.848 

1.6 0.786 

1.8 0.732 

2.0 0.683 

3.0 0.511 

4.0 0.399 

5.0 0.317 

Table 6. Radial dose function values measured at 50 kV (1) 

The radial dose function in PRESAGE is calculated using the equation above, which 

reduces to 

 𝑔𝑝(𝑟) =  
𝐷̇(𝑟, 90°) × 𝑟2 

𝐷̇(1,90°)
 Eqn. 12 

The dose rate values were pulled from the data using the script, as described in the Data 

Acquisition section. The dose rate values were corrected for zero dose as described in 
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Chapter 3. Note that for the radial dose function, the measurements are taken at different 

radii, but all in the transverse (θ = 90°) plane. 

3 Results for Xoft Source 

3.1 Soft Dosimeter Batch 

The soft PRESAGETM dosimeters were excluded from the results. The formulation 

was created so it would fade over time after irradiation, and it was observed that in the short 

time between irradiation with Xoft at the UWADCL and the post-irradiation scan at IROC-

Houston, the signal in the soft dosimeters faded too much to provide useful dose 

information. Figure 22 shows the pre-irradiation and post-irradiation images for comparison. 

It is also noted here that the Xoft source formed an electric arc during each irradiation of a 

soft dosimeter, but not during any of the hard dosimeter irradiations. This was thought to be 

a random effect, the only result of which was the soft dosimeter irradiations were then 

forced to be delivered in a fractionated manner, e.g., one 120 second irradiation followed by 

a 60 second irradiation, instead of one 180 second irradiation.  
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Figure 22. Prescan and postscan images of a soft dosimeter with a large channel. 
Note that the irradiation seems to have had almost no effect on the dosimeter, 

probably due to fading. 

3.2 Radial dose function 

 The radial dose function measured and calculated in PRESAGE is shown in Table 

7. This data is taken from a single small channel dosimeter; the average radial dose 

function data from all four dosimeters is shown in Appendix C. PRESAGE measurements at 

4 cm radius were removed from the analysis due to the negligible level of signal above the 

background that existed there; no data was expected at r = 5 cm due to the size of the 

dosimeters and edge effects. The PRESAGE-measured radial dose functions for r = 1 cm 

to r = 2 cm agree with those calculated by and Rivard et al. (1) to within 6%. However, at r = 

3 cm, the radial dose function measured in PRESAGE shows an under-response by 51.1%; 

this suggests that the noise level at r = 3 cm is comparable to the measureable dose at that 

radius, probably due to the age of the dosimeter during its final scan and the exacerbation 
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of edge effects in PRESAGE as the dosimeter ages. A graphical representation of the radial 

dose function comparison is shown in Figure 23. 

 

r (cm) 
Rivard 
et al. 
value 

PRESAGE 
value 

Percent 
Error  

1 1 1 0 

1.2 0.920 0.958 4.2 

1.4 0.848 0.894 5.5 

1.6 0.786 0.831 5.7 

1.8 0.732 0.751 2.6 

2 0.683 0.689 0.9 

3 0.511 0.250 51.1 

Table 7. Radial Dose Function Comparison 

 

 

Figure 23. Graphical comparison of the radial dose function. Rivard et al. is in blue 
diamonds, and PRESAGE is in red squares. 

3.3 Anisotropy function  

 Table 8 shows the anisotropy function measured and calculated in PRESAGE. 

Refer to Table 5 for the Rivard et al. anisotropy function values. The data from PRESAGE 

at r = 5 cm was not included because no data is expected at that radius, due to the size of 

the dosimeter and edge effects of PRESAGE. The angles 140° and 160° are very close to 
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the channel, subjecting the readings there to edge effects. Table 9 shows the percent error 

values for the anisotropy function, comparing the Rivard et al. (1) values to the PRESAGE 

values. 

 

θ°/r(cm) 2 3 

0 1.260 1.371 

10 1.202 1.239 

20 1.193 1.315 

30 1.280 1.264 

40 1.307 1.266 

50 1.285 1.299 

60 1.346 1.261 

70 1.316 1.224 

80 1.196 1.137 

90 1.000 1.000 

100 0.864 0.930 

110 0.693 0.835 

120 0.641 0.708 

130 0.832 0.631 

140 1.316 0.542 

150 1.029 2.154 

160 1.231 4.970 

Table 8. Anisotropy function measured in PRESAGE 

 

 Ignoring the extreme outlier for each radius (θ=140° for r=2, and θ=150° for r=3), the 

r = 2 cm values are within 27% of the Rivard et al. data, and the r = 3 cm values are within 

35% of the Rivard et al. data.  

 

θ°/r(cm) 2 3 

0 26.9 34.6 

10 20.1 20.6 

20 17.8 26.8 

30 25.0 21.3 
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40 24.3 18.9 

50 19.9 20.3 

60 25.2 16.8 

70 23.8 14.9 

80 15.4 9.5 

90 0.0 0.0 

100 9.3 2.5 

110 22.6 6.8 

120 21.9 14.1 

130 17.3 12.5 

140 133.3 8.2 

150 
 

405.6 

160 
  

Table 9. Anisotropy function: Percent Error 

 

 Table 10 shows the standard deviation and Table 11 shows the coefficient of 

variance expressed as a percent for the PRESAGE anisotropy function data. These values 

are lower closer to θ = 90°, and increase as θ moves away from the transverse plane. This 

suggests that the measurements taken closest to the source are the most accurate; 

measurements in PRESAGE of the dose distribution from the Xoft appear to have a more 

rapid falloff than expected at large radii and at polar angles further from the transverse 

plane.  

 

θ°/r(cm) 2 3 

0 0.589 0.375 

10 0.557 0.349 

20 0.516 0.342 

30 0.514 0.322 

40 0.445 0.271 

50 0.360 0.223 

60 0.358 0.127 

70 0.345 0.060 

80 0.162 0.038 
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90 0.000 0.000 

100 0.090 0.046 

110 0.153 0.115 

120 0.127 0.079 

130 0.339 0.166 

140 1.361 0.238 

150 1.043 2.025 

160 1.112 7.074 

Table 10. PRESAGE Anisotropy function: Standard Deviation 

θ°/r(cm) 2 3 

0 46.8 27.4 

10 46.3 28.1 

20 43.2 26.0 

30 40.2 25.5 

40 34.0 21.4 

50 28.0 17.2 

60 26.6 10.1 

70 26.2 4.9 

80 13.5 3.3 

90 0.0 0.0 

100 10.4 4.9 

110 22.1 13.8 

120 19.9 11.2 

130 40.7 26.3 

140 103.4 43.9 

150 101.3 94.0 

160 90.4 142.3 

Table 11. PRESAGE Anisotropy Function: Percent Coefficient of Variance 

 Figures 24 and 25 plot the anisotropy function at both radii and compare the Rivard 

et al. values with the PRESAGE values. 
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Figure 24. Anisotropy function for r=2cm. 

 

 

Figure 25. Anisotropy function for r=3cm. 

 

4 Discussion  
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 During the initial data analysis process, concentric rings were seen in the final data 

images; an example of this artifact is shown in Figure 26. These artifacts varied in 

thickness, brightness, and location, but were centered in the dosimeter and not around the 

channel, as might have been expected. These artifacts made the data past a radius of ~3 

cm in the dosimeters unusable. An investigation was undertaken to determine the artifacts’ 

cause and possible solutions. 

  

 

Figure 26. Reconstructed image showing the concentric ring artifact which is 
centered in the dosimeter and not around the dosimeter’s channel. 

The floods and dark images were checked to determine if there were any streaks 

that could be causing the rings. Different center of rotation (COR) columns were used in the 

image reconstructions as an inappropriate COR can cause the appearance of rings. A stray 

light correction was performed. Different floods were taken and used to reconstruct the 

images again.  Pre-irradiation and post-irradiation scans were reconstructed separately and 

inspected. The rings appeared in both sets of images, though the appearance of the rings 

differed in each image; an example of these results is shown in Figure 27. The post-

irradiation scan was repeated and reconstructed for each dosimeter, but the rings 

remained. Two unirradiated dosimeters were scanned, one from each batch, then 

reconstructed as pre-irradiation scans only. The artifacts were visible in those images as 

well. No other lab group members had seen these concentric rings in any current or 

previous data, and no one had used the same PRESAGETM batches as were used here. A 

literature search was done, but the only concentric ring artifacts found were in gel 

dosimeters, and the causes of which did not apply to PRESAGE dosimetry (47, 48).  
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Figure 27. Top row shows pre-irradiation scans of two different dosimeters. Bottom 
row shows post-irradiation scans of two other dosimeters. Note the differing 

appearance of the rings in each image. 

 Finally, a query was sent to Titania Juang at Duke University. By looking at the 

number of counts per pixel in the RAW images, she determined that the flood and the 

projection images had been taken at different shutter values. The projection images were 

taken at a much higher shutter value than the flood, so that when the flood was used to 

correct the projection images during reconstruction, negative counts resulted in the final 

image. The flood image was darker than the dosimeter in the projection image, and had 

counts that were ~1000 lower than the projection images’ counts; this can be seen in Figure 

28. 
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Figure 28. Projection image on left with Index (counts) of 4095. Flood image on right 
with Index at same location as in projection image of 644.9, giving a delta of over 

3000. 

This count difference was confirmed. Since the issue was with the projection 

images, which could not be retaken due to time constraints, the RAW projection images 

were pulled into MATLAB. MATLAB’s image processing tools were explored as a possible 

solution. A post-irradiation projection image was darkened using the ‘brighten(-0.5)’ 

command. The new image, seen in Figure 29, showed that there was no data outside a 

radius of approximately 3 cm because the dosimeter there had been washed out by so 

much light due to the high shutter value. The same was done to a pre-irradiation projection 

image with the same result. In these darkened images, the cause of the concentric rings 

could be seen. It is theorized that the cause of the rings is the non-homogeneous light field 

of the IROC-Houston DMOS. It was already known that the field was darker in the center 

and brighter at the edges, but now images of how the light field brightness changes with 

radius show this inhomogeneity in more detail. This phenomenon had not been seen until 

now because other lab members used the correct shutter setting and did not use such large 

dosimeters as were used here. Since image processing could not improve the amount of 

data available in the images, another solution was attempted. 
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Figure 29. The extent of the available data (300-900 on the x-scale) can be seen in 
this darkened image of a post-irradiation scan projection image. Also seen are the 

causes of the concentric rings in the reconstruction images (bands of different 
contrast at 200, 300, 800, and 900 on the x-scale). 

4.2 Solution to Remove the Artifact 

The post-irradiation scans for the hard dosimeters were retaken with the correct shutter 

setting; an example projection image is shown in Figure 30, and compared to a flood image 

taken at the same shutter value. In Figure 31 is an image showing the absence of artifacts 

in the retaken image. The shutter setting was not discussed in the RPC DMOS Scanning 

Guide (39) and had been left out of lab member training. This issue has now been 

remedied. The scans were reconstructed as post-irradiation scans only, since the pre-

irradiation scans could not be retaken. The data analysis was performed using these 

reconstructed post-irradiation scans. However, since these post-irradiation scans were 

performed 2 months after the irradiation, the dosimeters have aged. Older dosimeters are 

darker overall, and the radiation signal faded. Furthermore, edge effects are exacerbated in 

older dosimeters. The data obtained from the new post-irradiation scans will be subject to 

these age effects, and will not compare well with the Rivard et al. (1) data. 

However, since the “post scan” only reconstruction was performed, no subtraction of 

background OD value in the dosimeter was completed. To remedy this, the dose rates at 
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large radii for each dosimeter were plotted and a background value was chosen at the point 

where the data appeared to level out in the plot. This background value was then 

subtracted from all dose rates. An example of this plot is shown in Figure 32. 

 

 

Figure 300. Projection image on left with Index 3692. Flood image on right with Index 
at same location as in projection image of 3964, giving a delta of less than 30. 

 

 

Figure 311. Final post-irradiation scan of a dosimeter showing no ring artifact. The 
rings seen in this image relate to the dose at various radii. 
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Figure 322. Example background level plot. The background value selected for this 
dosimeter was 0.0150. 

4.2.1 Dose Rate and Dose Rate Constant 

Due to this background subtraction correction and the unavailability of applicable 

cuvette dose calibration curves, the doses reported are relative to each dosimeter. 

Therefore, the dose rate and dose rate constants were not calculated for comparison. 

5 Uncertainty Analysis 

 TG-43U1 (17) recommends a generic uncertainty analysis for dosimetric quantities 

measured and calculated for brachytherapy sources. TG-138 (49) outlines a procedure for 

this analysis. Table 12 contains a summary of Type A (k=1) and Type B (k=1) uncertainties 

as well as an estimation of the expanded relative uncertainty (k=2), which is defined as a 

95% confidence limit. The total standard uncertainty (k=1) for the dose rates measured in 

PRESAGE was estimated to be 5.7%, and the expanded uncertainty (k=2) was 11.4%. 

 The Type A, or statistical, uncertainties in this experiment were all related to the 

measurements taken in PRESAGE, for both the radial dose function and the anisotropy 

function. These uncertainties were calculated as the uncertainty in the dose rate at a 

selected radius (or radius and polar angle) and the uncertainty in the dose rate at the 

reference point, added in quadrature. The uncertainties in the dose rates were calculated 

as a percent coefficient of variance. An example for a selected radius and polar angle will 

be presented in the sections that follow. There were several Type B, or random, 

uncertainties in this experiment. First, the uncertainty of the air kerma strength measured at 

the UWADCL includes the equipment used to make the measurement and the 
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reproducibility of the measurement; this was estimated to be 5% (k=1). The uncertainty in 

the current and voltage supplies used to run the Xoft source was estimated to be less than 

1%. Since the anode in the Xoft source is not a point source but has a finite and 

measureable thickness, this introduces 1.5% uncertainty into the experiment. PRESAGETM 

is not exactly water-equivalent, as discussed previously, and so this introduces an 

estimated 2% uncertainty into the experiment.  

 The total standard uncertainty is the quadrature sum of all the listed uncertainty 

components, and the expanded relative uncertainty is simply twice that value. 

 

Uncertainty Component Type A (k=1) Type B (k=1) 

Xoft air kerma strength (UWADCL)  5.0% 

Current, voltage uncertainty   <1.0% 

Anode thickness  1.5% 

Water-equivalency of PRESAGE  2.0% 

Total standard uncertainty (k=1) 5.7% 

Expanded relative uncertainty (k=2) 11.4% 

Table 12. Uncertainty in PRESAGE measurement of Dose Rate 

5.1 Anisotropy function  

 The anisotropy function is a ratio between two dose rates. Therefore, uncertainty in 

the Xoft air kerma strength measurement will cancel out. The uncertainty in current will 

cancel out as well, leaving the voltage uncertainty as <1%, which will be ignored. The Type 

A uncertainty at a radius of 3 cm and a polar angle of 60° is 64.4%. This large uncertainty in 

the measurement dominates the uncertainty estimate for the anisotropy function. Thus, the 

total uncertainty (k=1) for the anisotropy function is 64.4%, and the expanded uncertainty 

(k=2) is 128.9%. 

5.2 Radial dose function 

 The radial dose function is also a ratio of two dose rates, so the Xoft air kerma 

strength measurement and tube current uncertainties cancel out here as well, and the 

uncertainty in the voltage can be ignored as before. The Type A uncertainty at a radius of 2 

cm is 29.5%. Therefore, the total uncertainty (k=1) is 29.6% and the expanded uncertainty 

(k=2) is 59.2%. 

6 Conclusion 

The hypothesis for this project was rejected. The PRESAGETM dosimeters were not 

able to measure, with 95% confidence, the AAPM TG-43U1 dosimetric parameters of the 
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Xoft Axxent electronic brachytherapy source, to within ±5%/3mm of Rivard’s published 

values. 

Despite errors in methodology, the radial dose and anisotropy functions were more 

accurate closer to the source. The radial dose function from r=1 cm to r=2 cm was within 

6% of expected values. The anisotropy function for θ=90°±10° was within 16% of the 

accepted values for r=2 cm and within 10% for r=3 cm. The experiment should be repeated. 

To improve this experiment, a new batch of hard dosimeters, containing three of 

each channel size, should be irradiated using the Xoft source. The pre-irradiation scans, 

post-irradiation scans, and flood images should all be taken at the same and correct shutter 

value. Prior to shipping the dosimeters to the UWADCL for irradiations, the pre-irradiation 

scans should be reconstructed and viewed to ensure the images are “clean” and will 

provide acceptable data. A dose calibration should be performed by irradiating 10 cuvettes 

from the same batch as the dosimeters on the 75 kVp orthovoltage machine; the doses 

delivered should range from 0 Gy to 18 Gy. When irradiating the small channel dosimeters, 

a dose larger than 15 Gy may be given to ensure the OD at r = 5 cm is detectable. 

As for future work, it would be greatly useful to the lab group, especially future 

members, to have the cuvette irradiation procedures written out for both orthovoltage and 

MV linear accelerator machines. The DMOS Scanning Guide should also be updated with a 

checklist for use during each scan, as well as further explanations on what each scanning 

parameter controls, how it can be adjusted, and when it should be adjusted. A procedure on 

how to adjust the matching fluid, including images for comparison, should be written and 

included in the lab group’s training materials. PRESAGE dose calibration data for each 

batch should be kept in a lab group shared folder for all to reference. The effects of age on 

a dosimeter, in relation to edge effects, should be further investigated. The two scripts 

written for this project could be updated to output the standard deviation for the average 

dose rate calculated for each input dose cube. 

This project’s findings illustrate the pitfalls of PRESAGE dosimetry, and the need for 

accurate and thorough training documents. However, PRESAGE remains a viable method 

to conduct 3D brachytherapy dosimetry, which could greatly improve the understanding of 

dose distributions for new brachytherapy sources as they are developed, as well as 

advance quality assurance methods. Future work in dosimetry including the use of 

brachytherapy applicators in anthropomorphic PRESAGE may begin a new chapter in 3D 

dosimetry. 

Appendix A  
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Xoft Source TG-43 Parameter Tables (24) 

 

Dose Rate Constant 

 Dose Rate Constant (cGy hr-1 U-1) 

Unfiltered 50 kV source 0.709 

 

Radial Dose Function g(r) 

Radius (cm) Dose Function 

0.5 1.418 

1.0 1.000 

1.5 0.780 

2.0 0.641 

3.0 0.470 

4.0 0.362 

5.0 0.286 

6.0 0.229 

7.0 0.185 

8.0 0.150 

9.0 0.122 

10.0 0.0989 

12.0 0.0655 

15.0 0.0352 

 

Anisotropy Function F(r, θ) 

 Angle (degrees) 

Radius 

(cm) 
0 5 10 15 20 25 30 35 40 45 50 55 60 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.252 0.425 0.556 0.676 0.743 0.796 

1.0 0.000 0.000 0.000 0.241 0.211 0.211 0.301 0.380 0.483 0.575 0.667 0.738 0.800 

1.5 0.000 0.000 0.248 0.267 0.258 0.274 0.361 0.435 0.530 0.609 0.689 0.750 0.811 

2.0 0.000 0.000 0.272 0.297 0.298 0.322 0.405 0.476 0.564 0.637 0.709 0.765 0.820 

3.0 0.000 0.250 0.296 0.319 0.327 0.357 .0426 0.508 0.590 0.656 0.721 0.773 0.824 

4.0 0.000 0.279 0.321 0.343 0.356 0.389 0.450 0.526 0.603 0.665 0.726 0.775 0.825 

5.0 0.000 0.290 0.329 0.349 0.364 0.419 0.473 0.545 0.616 0.674 0.731 0.778 0.825 
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6.0 0.000 0.313 0.349 0.369 0.385 0.424 0.489 0.562 0.626 0.681 0.737 0.782 0.828 

7.0 0.000 0.334 0.365 0.383 0.406 0.429 0.504 0.579 0.636 0.692 0.743 0.794 0.830 

8.0 0.000 0.349 0.377 0.397 0.420 0.441 0.515 0.589 0.643 0.698 0.747 0.797 0.831 

10.0 0.000 0.371 0.395 0.412 0.439 0.459 0.531 0.604 0.657 0.707 0.753 0.800 0.832 

12.0 0.000 0.384 0.407 0.426 0.454 0.473 0.542 0.613 0.663 0.712 0.757 0.801 0.831 

15.0 0.000 0.401 0.417 0.437 0.465 0.482 0.550 0.622 0.667 0.715 0.758 0.801 0.831 

 

Anisotropy Function F(r, θ) (continued) 

 Angle (degrees) 

Radius 

(cm) 
65 70 75 80 85 90 95 100 105 110 115 120 

0.5 0.840 0.883 0.914 0.945 0.970 1.000 1.021 1.041 1.053 1.063 1.065 1.064 

1.0 0.840 0.884 0.916 0.948 0.973 1.000 1.020 1.040 1.053 1.065 1.069 1.072 

1.5 0.849 0.890 0.920 0.950 0.975 1.000 1.020 1.038 1.052 1.064 1.069 1.074 

2.0 0.858 0.895 0.924 0.953 0.977 1.000 1.019 1.037 1.050 1.063 1.069 1.075 

3.0 0.860 0.896 0.925 0.954 0.977 1.000 1.019 1.038 1.052 1.065 1.072 1.079 

4.0 0.860 0.895 0.924 0.952 0.976 1.000 1.019 1.037 1.050 1.064 1.070 1.077 

5.0 0.860 0.894 0.922 0.950 0.975 1.000 1.018 1.036 1.049 1.062 1.069 1.075 

6.0 0.862 0.896 0.924 0.952 0.976 1.000 1.019 1.037 1.051 1.064 1.071 1.078 

7.0 0.866 0.898 0.929 0.954 0.979 1.000 1.021 1.039 1.056 1.066 1.076 1.081 

8.0 0.865 0.898 0.927 0.953 0.979 1.000 1.022 1.039 1.056 1.066 1.076 1.082 

10.0 0.866 0.898 0.927 0.952 0.978 1.000 1.021 1.039 1.055 1.066 1.078 1.083 

12.0 0.866 0.897 0.926 0.952 0.977 1.000 1.020 1.039 1.056 1.068 1.077 1.089 

15.0 0.865 0.895 0.925 0.951 0.977 1.000 1.022 1.039 1.057 1.071 1.083 1.093 

 

Anisotropy Function F(r, θ) (continued)  

 Angle (degrees) 

Radius 

(cm) 
125 130 135 140 145 150 155 160 165 170 175 180 

0.5 1.057 1.048 1.028 0.997 0.968 0.944 0.907 0.902 0.893 0.890 0.892 0.887 

1.0 1.067 1.062 1.044 1.027 1.005 0.980 0.967 0.960 0.954 0.948 0.947 0.940 

1.5 1.072 1.068 1.055 1.042 1.025 1.006 0.998 0.992 0.986 0.980 0.974 0.969 

2.0 1.074 1.072 1.062 1.052 1.038 1.024 1.019 1.013 1.007 1.001 0.997 0.993 

3.0 1.080 1.080 1.073 1.065 1.054 1.042 1.040 1.037 1.032 1.027 1.023 1.018 

4.0 1.079 1.080 1.075 1.070 1.062 1.054 1.051 1.048 1.044 1.041 1.037 1.034 

5.0 1.078 1.080 1.078 1.075 1.070 1.065 1.062 1.059 1.057 1.054 1.052 1.050 
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6.0 1.081 1.083 1.081 1.080 1.077 1.073 1.071 1.069 1.066 1.064 1.064 1.064 

7.0 1.086 1.086 1.086 1.085 1.083 1.082 1.080 1.078 1.076 1.075 1.073 1.079 

8.0 1.090 1.087 1.088 1.088 1.090 1.084 1.084 1.085 1.080 1.079 1.081 1.080 

10.0 1.091 1.091 1.092 1.094 1.097 1.096 1.092 1.092 1.089 1.087 1.093 1.090 

12.0 1.094 1.094 1.097 1.098 1.105 1.103 1.101 1.101 1.097 1.097 1.102 1.095 

15.0 1.101 1.101 1.105 1.106 1.113 1.111 1.110 1.109 1.107 1.107 1.105 1.110 

 

Appendix B 

Radialunicorns.m Code 

%radialunicorns by sierra 
%purpose of this code is currently to spit out average dose/OD values from 
%input data cubes at various radii from a center point entered by the user 
%for use in TG-43U1 radial dose fcn 

  
clear; 
clc; 

  
%input data cube, either manually, or in prompt  
% [filename,pathname] = uigetfile('*.mat','PROMPT TEXT HERE'); 
% load([pathname,filename]); 
load('S:\SHARED\Radiation physics\Slade\Top Secret Unicorn Data\8-10-

12Bnew data cube.mat'); 
%load('C:\Users\jsirwin\Desktop\IMPORTANT DATA CUBES\ss2 data cube.mat'); 

  
%enter center coordinates 
% cx=0; 
% cy=0; 
% cz=0; 
% cx = input('Enter center x coordinate: '); 
% cy = input('Enter center y coordinate: '); 
% cz = input('Enter center z coordinate: '); 
cx=71; 
cy=72; 
cz=114; 
zsmall=0; 
zbig=0; 
zsmall=cz-1; 
zbig=cz+1; 

  
%enter extent of x, y, z coordinates for use in calculation 
% xmax=0; 
% ymax=0; 
% zmax=0; 
% xmax = input('Enter maximum x coordinate: '); 
% ymax = input('Enter maximum y coordinate: '); 
% zmax = input('Enter maximum z coordinate: '); 
xmax=140; 
ymax=140; 
zmax=151; 
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%set real radii to loop through, along with annulus radii (delta from 

real) 
r=0; 
R=0; 
delta=0; 
radius=[10:2:70]; %radius in mm 
num_radii = length(radius); %so can spit out pixelcount & average as 

arrays 
delta=.5; 
r=radius-delta; 
R=radius+delta; 

  
%code to ensure that "negative" dose is set to zero dose 
Negativeindicies=find(ReconstructedSlices.cube<0); 
ReconstructedSlices.cube(Negativeindicies)=0; 

  
%search for pixels within annulus then adds them up for statistics 

analysis 
%also computes average value at pixel (sum) for OD/DOSE output 
%borrowed from slade's phoenixfire code 
Sum=zeros(1,num_radii); 
Average=zeros(1,num_radii); 
PixelCount=zeros(1,num_radii); 
for i=1:num_radii 
    for z=zsmall:zbig 
        for x=1:xmax 
            for y=1:ymax 
                if (r(i)<(sqrt((cx-x)^2 + (cy-y)^2)) && (sqrt((cx-x)^2 + 

(cy-y)^2)<R(i))) 
                   Sum(i)=Sum(i) + ReconstructedSlices.cube(x,y,z); 
                   PixelCount(i)=PixelCount(i)+1;  
                end 
            end 
        end 
    end 
    Average(i)=Sum(i)/PixelCount(i); 
end 

  
%this section exports my data to an excel file 
%asks where you want to save the excel file, and what to call it 
[fileName, pathName]=uiputfile('*.xlsx','Export Profile'); 
%changes my 3 data arrays into vertical cells & creates one big matrix 
data=num2cell([radius; Average; PixelCount]'); 
%name each column of my data cells 
titles = {'Radius', 'Average Dose', 'Pixel Count'}; 
%place correct title at top of correct data column (cat two things 

together) 
dataout=cat(1,titles,data); 
%writes to the designated file the concatenated matrix i created above 
xlswrite(fullfile(pathName,fileName),dataout); 

 

Anisotropyunicorns.m Code 

%anisotropyunicorns by sierra 
%purpose of this code is currently to spit out average dose/OD values from 
%input data cubes at various radii and angles from a center point entered 
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%by the user for use in TG-43U1 anisotropy fcn 

  
clear; 
clc; 

  
%input data cube;  
%[filename,pathname] = uigetfile('*.mat','Enter data cube file location: 

'); 
% load([pathname,filename]); %to load file from prompt 
%load('C:\Users\jsirwin\Desktop\IMPORTANT DATA CUBES\ss2 data cube.mat'); 
load('S:\SHARED\Radiation physics\Slade\Top Secret Unicorn Data\8-10-

12Bnew data cube.mat'); 

  
%enter center coordinates 
% cx=0; 
% cy=0; 
% cz=0; 
% cx = input('Enter center x coordinate: '); 
% cy = input('Enter center y coordinate: '); 
% cz = input('Enter center z coordinate: '); 
cx=71; 
cy=72; 
cz=114; 

  
%enter extent of x, y, z coordinates for use in calculation 
% xmax=0; 
% ymax=0; 
% zmax=0; 
% xmax = input('Enter maximum x coordinate: '); 
% ymax = input('Enter maximum y coordinate: '); 
% zmax = input('Enter maximum z coordinate: '); 
xmax=140; 
ymax=140; 
zmax=151; 

  
%define all my radius, delta, and angle variables outside for loop 
theta = [0:10:160];  
thetaradians = zeros(size(theta)); 
radius = [10, 20, 30, 40, 50]; %radius in mm; added 10 for checks, 40 just 

b/c 
num_radii = length(radius); %get number of radii checking 
thetaradians = theta*pi()/180; 
num_radian = length(thetaradians); %get number of angles checking 
delta = 0; 
r = 0; 
R = 0; 
zsmall=0; 
zbig=0; 
delta = .5; %in mm 

  
%code to ensure that "negative" dose is set to zero dose 
Negativeindicies=find(ReconstructedSlices.cube<0); 
ReconstructedSlices.cube(Negativeindicies)=0; 
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%set up variables to be matrices of size radii by angle, for ease of 

output 
Average=zeros(num_radii,num_radian); 
PixelCount=zeros(num_radii,num_radian); 
Sum=zeros(num_radii,num_radian); 

  
for radiusloop = 1:num_radii  
  for radianloop=1:num_radian 

     
    %define reff in terms of (r, theta) 
    reff = radius(radiusloop) * sin(thetaradians(radianloop)); 

  
    %calculate delta z from center z coordinate for each reff 
    deltaz = radius(radiusloop) * cos(thetaradians(radianloop)); 

     
    %apply delta z to center z coordinate correctly 
    zeff = cz + deltaz; 

     
    %define inner/outer effective radii 
    r = reff - delta;  
    R = reff + delta;  

  
    %define z planes to look at. +/-1 seemed like a better choice  
    zsmall=round(zeff-1); 
    zbig=round(zeff+1); 

      
    %search for pixels within annulus then adds them up for statistics 

analysis 
    %also computes average value at pixel (sum) for OD/DOSE output 
    %borrowed from slade's phoenixfire code 
    for z=max(1,zsmall):min(zmax,zbig) %so doesn't go outside cube 

coordinates 
        for x=1:xmax 
            for y=1:ymax 
                if ((r<(sqrt((cx-x)^2 + (cy-y)^2))) && (sqrt((cx-x)^2 + 

(cy-y)^2))<R) 
                   Sum(radiusloop,radianloop)=Sum(radiusloop,radianloop) + 

ReconstructedSlices.cube(x,y,z); 
                   

PixelCount(radiusloop,radianloop)=PixelCount(radiusloop,radianloop)+1; 
                end 
            end 
        end 
    end 
    Average(radiusloop, 

radianloop)=Sum(radiusloop,radianloop)/PixelCount(radiusloop,radianloop);  
  end  
end 

  
%this section exports my data to an excel file 
%asks where you want to save the excel file, and what to call it 
[fileName, pathName]=uiputfile('*.xlsx','Export Profile'); 
%assembling arrays into matrices x 2 
dataradius=num2cell(radius'); 
title={'Radius/Angle'}; 
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radiusdata=cat(1,title,dataradius); 
avgdata=num2cell([theta; Average]);  
countdata=num2cell([theta; PixelCount]); 
data1=cat(2,radiusdata,avgdata); 
data2=cat(2,radiusdata,countdata); 
%writes to the designated file & sheet# the 2 matrices i created above 
sheet=1; 
xlswrite(fullfile(pathName,fileName),data1,sheet); 
sheet=2; 
xlswrite(fullfile(pathName,fileName),data2,sheet); 

 

Appendix C 

Radial Dose Function Comparison Data for the Average of all four dosimeters. 

r (cm) 
Rivard 
et al. 

values 

PRESAGE 
values 

Standard 
Deviation 

COV 
(%) 

Percent 
Error 

1 1 1 0 0 0 

1.2 0.920 1.022 0.354 34.6 11.1 

1.4 0.848 1.091 0.564 51.7 28.6 

1.6 0.786 1.000 0.656 65.6 27.2 

1.8 0.732 0.831 0.614 73.9 13.5 

2 0.683 0.688 0.501 72.8 0.7 

3 0.511 0.191 0.187 98.0 62.6 
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